Exercise 4.3.1 Coupled oscillation

Two identical mass $M=1 \mathrm{~kg}$ blocks slide friction-free on a rod and are connected by springs $k_{1}=16 \mathrm{~N} \cdot \mathrm{~m}^{-1}$ and $k_{2}=37 \mathrm{~N} \cdot \mathrm{~m}^{-1}$ to ends of a box and coupled to each other by spring $k_{12}=36 \mathrm{~N} \cdot \mathrm{~m}^{-1}$.
a. Write Lagrangian equations of motion and derive a K-matrix form of them.
b. Solve for eigenmodes and eigenfrequencies of system and plot their directions on an X,Y-graph. Use spectral decomposition methods of Appendix 4.C to derive eigensolution projectors and eigenvectors.
c. Given initial conditions $(X(0)=1, Y(0)=0)$, plot the resulting path in the XY-plane. Show algebraically that it is a parabola.
d. Use spectral decomposition (Appendix 4.C) to derive square-roots $\mathbf{H}=\sqrt{ } \mathbf{K}$. (How many square-roots does \mathbf{K} have?)

Exercise 4.4.1 U(2) view of coupled oscillation
a. Decompose the spring \mathbf{K}-matrix for exercise 4.3 .1 into an \mathbf{H}-matrix where $\mathbf{K}=\mathbf{H}^{2}$ as in (4.4.8).
b. Give the resulting \mathbf{H}-matrix as an (A, B, C, D) combination of $\mathbf{1}, \sigma_{\mathrm{A}}, \sigma_{\mathrm{B}}$, and σ_{C} as in (4.4.9).
c. Sketch the resulting Ω-whirl vector or "crank" in real 3D (A, B, C)-space as in (4.4.10).
d. For $(X(0)=1, Y(0)=0)$ find initial \mathbf{S}-state ("spin") vector in (A, B, C)-space as in (4.4.16). Show its evolution by Ω as in Fig. 4.4.2.
e. Plot \mathbf{H}-eigenvalues $\left(\varepsilon_{1}, \varepsilon_{2}\right)$ as though they were energy levels and indicate transition rate $\Omega=\varepsilon_{1}-\varepsilon_{2}$ and mean rate $\omega=\left(\varepsilon_{1}-\varepsilon_{2}\right) / 2$.

Exercise 4.4.2 U(2) B-Type coupled oscillation

Do exercises 4.3.1 and 4.4.1 for a system with two identical springs $k_{l}=4 \mathrm{~N} \cdot \mathrm{~m}^{-1}=k_{2}$ and $M=1 \mathrm{~kg}$ masses coupled to each other by spring $k_{12}=30 \mathrm{~N} \cdot \mathrm{~m}^{-1}$. Show it is a B-type system. Does $(X(0)=1, Y(0)=0)$ also give a parabola? If not, what curve or function?

Possible Qualifying exam problems involving coupled oscillator

Exercise 4.8.1. Two's Company but Three's a Crowd
Three identical $M=1 \mathrm{~kg}$ masses slide on a friction-free ring and are coupled by three identical $k=4 \mathrm{~N} \cdot \mathrm{~m}^{-1}$ springs. (Left hand figure.) a. Show that the resulting K-matrix can be written as a combination of three matrices that commute, satisfy $\mathbf{r}^{3 m=}=\mathbf{1}$, and therefore have $3^{\text {rd }}-$ roots-of-unity eigenvalues $e^{i m 2 \pi / 3}=\left\{1, e^{i 2 \pi / 3}, e^{-i 2 \pi / 3}\right\}$.
$\mathbf{r}^{0}=\mathbf{1}=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right), \mathbf{r}^{1}=\mathbf{r}=\left(\begin{array}{lll}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right), \mathbf{r}^{2}=\mathbf{r} \cdot \mathbf{r}=\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right) \quad$ Note: $\begin{aligned} & \mathbf{r}|1\rangle=|2\rangle \\ & \mathbf{r}|2\rangle=|3\rangle \\ & \mathbf{r}|3\rangle=|1\rangle\end{aligned}$, i.e., $\mathbf{r}\left(\begin{array}{l}1 \\ \cdot \\ .\end{array}\right)=\left(\begin{array}{l}\cdot \\ 1 \\ \cdot\end{array}\right), \mathbf{r}^{2}\left(\begin{array}{l}1 \\ \cdot \\ \cdot\end{array}\right)=\mathbf{r}\left(\begin{array}{l}\cdot \\ 1 \\ \cdot\end{array}\right)=\left(\begin{array}{l}\cdot \\ \cdot \\ 1\end{array}\right)$, etc.
b. Obtain a spectral decomposition of \mathbf{r}^{m} and use it to get a K-matrix spectral decomposition, as well. Make a table of complex eigenmode phasors and their frequencies. Show how both modes and frequencies relate to the $3^{\text {rd }}$-roots $e^{i m 2 \pi / 3}$ and plot the \mathbf{K}-eigenvalues versus the mode number m. (This is called a dispersion plot, particularly if it's done for \mathbf{H}-matrix eigenvalues.)
c. Combining degenerate (equal-eigenvalue) complex eigenvector pairs to make pairs of eigenvectors with only real components.
d. Sketch the motions of each real eigenvector.

Exercise 4.8.2. ... and Four's a Mob
Do exercise 4.8.1 for four identical spring- k-coupled masses. (Right hand figure.)

