Complex Variables, Series, and Field Coordinates 1

(Ch. 10 of Unit 1)
1. The Story of e (A Tale of Great $Interest$)
How good are those power series?
laylor-Maclaurin series, imaginary interest, and complex exponentials

2. What good are complex exponentials? What good are complex quantities?
E [4) Sy { ]/'i g 1. Complex numbers provide "automatic trigonometry”

2. Complex numbers add like vectors.

Easy 2D vector analysis
. . , _iot .. . .
E as y OSCI l l ator p h ase ana ly SIS 3. Complex exponentials /.\e track p?smon @d velocity using Phasor Clock.
. » . » )y 4. Complex products provide 2D rotation operations.
Easy rotation and “dot” or “cross” products
3. Easy 2D vector calculus
Easy 2D vector derivatives
Easy 2D source-free field theory

5. Complex products provide 2D “dot”(+) and “cross’(x) products.

6. Complex derivative contains “divergence”(V+F) and “curl”(VxF) of 2D vector field

7. Invent source-free 2D vector fields [V+-F=0 and VxF=0]

E aSy 2 D vector ﬁ el d 'p otent l da l [ h 6073/ 8. Complex potential ¢ contains “scalar’(F=V®) and “vector’(F=V xA) potentials
4. Riemann-Cauc hy relations (What's analytic? What's not?) The half-n-half results: (Riemann-Cauchy Derivative Relations)
E a Sy 2 D ClUl I’Vi lln ear coor dm ate dl SCOV ery Lect. 12 9. Complex potentials define 2D Orthogonal Curvilinear Coordinates (OCC) of field
cCL.

. . . 10. Complex integrals [ f(z)dz count 2D “circulation”( [Fdr) and “flux”([Fxdr)
E CZS_)/ 2 D Clr Cl/ll ation an dﬂ ux int eg ra l \) ends here 11. Complex integrals define 2D monopole fields and potentials

Easy ZD mOVlOPOZe, dipOle, and 2”-]90[8 analysis 12. Complex derivatives give 2D dipole fields
ECZS_)/ 2”-multipoleﬁeld Clndp0t€ntial expansion 13. More derivatives give 2D 2N-pole fields...
. . . . . 14. ...and 2N-pole multipole expansions of fields and potentials...
Easy stereo-projection visualization 15, and Laurent Series...
Cauchy integrals, Laurent-Maclaurin series 16. Mapping and non-analytic source analysis.



A running collection of links to course-relevant sites and articles

Physics Web Resources “Texts” Classes
Comprehensive Harter-Soft Resource Listing Classical Mechanics with a Bang! 2014 AMOP
UAF Physics YouTube channel Quantum Theory for the Computer Age 2017 Group Theory for QM
Learnlt Physics Web Applications Principles of Symmetry, Dynamics, and Spectroscopy 2018 AMOP
Modern Physics and its Classical Foundations 2018 Adv Mechanics

Neat external material to start the class:

AIP publications
AJP article on superball dynamics
AAPT summer reading

These are hot off the presses:
orting ultracold atoms in a three-dimensional optical lattice in a realization of Maxwell’'s demon - Kumar-Nature-| etters-2018
ic three-dimensional mi r r mbl m m - Berr -Nature-L rs-201

Slightly Older ones:
e :
ww ical | _ One P Ii
“Relawavity’” and quantum basis of Lagrangian & Hamiltonian mechanics:
2-CW laser wave - Bohrit Web App
| : Hamiltonian - RelaWayvity Web 2
AMOP Ch 0 Space-Time Symmetry - 2019
Seminar at Rochester Institute of Optics, Auxiliary slides, June 19, 2018



https://modphys.hosted.uark.edu/pdfs/Journal_Pdfs/Velocity_Amplification_in_Collision_Experiments_Involving_Superballs-Harter-1971.pdf
https://www.scitation.org/
https://aip-info.org/37VS-QW7L-1462CY2628/cr.aspx?v=1
https://modphys.hosted.uark.edu/pdfs/QTCA_Pdfs/QTCA_Text_2013/AMOP_Ch_0_SpaceTimeSymm.pdf
https://modphys.hosted.uark.edu/pdfs/Talk_Pdfs/Rochester_Auxilary_Slides.pdf
https://modphys.hosted.uark.edu/markup/Harter-SoftWebApps.html
https://modphys.hosted.uark.edu/markup/QTCA_Info_2014.html
https://modphys.hosted.uark.edu/markup/AMOP_Info_2018.html
https://www.youtube.com/channel/UC2KBYYdZOfotnkUOTthDjRA
https://modphys.hosted.uark.edu/markup/GTQM_Info_2017.html
https://modphys.hosted.uark.edu/markup/CMwBang_UnitsDetail_2017.html
https://modphys.hosted.uark.edu/markup/PSDSWeb.html
https://modphys.hosted.uark.edu/markup/QTCA_UnitsDetail.html
https://modphys.hosted.uark.edu/markup/MPCF_Info_2012.html
https://modphys.hosted.uark.edu/markup/CMwBang_Info_2018.html
https://modphys.hosted.uark.edu/ETC/MISC/Wave%E2%80%93particle_duality_of_C60_molecules_-_arndt-ltn-1999.pdf
https://modphys.hosted.uark.edu/ETC/MISC/Optical_Vortex_Knots_%E2%80%93_One_Photon__At_A_Time_-_Tempone-Wiltshire-Sr-2018.pdf
https://modphys.hosted.uark.edu/ETC/MISC/Sorting_ultracold_atoms_in_a_three-dimensional_optical_lattice_in_a_realization_of_Maxwell%E2%80%99s_demon_-_Kumar-n-2018.pdf
https://modphys.hosted.uark.edu/ETC/MISC/Synthetic_three-dimensional_atomic_structures_assembled_atom_by_atom_-_Barredo-n-2018.pdf
https://modphys.hosted.uark.edu/markup/BohrItWeb.html?scenario=-30104&xPhasorFactor=0.5
https://modphys.hosted.uark.edu/markup/RelaWavityWeb.html?plotType=4,5&sigmaInd=0&swordLineWidth=3
https://modphys.hosted.uark.edu/markup/LearnItTitlePage.html

The Story of e (A 1ale of Great $Interest$)  Briishspelling: insrest

Simple interest at some rate » based on a 1 year period.
You gave a principal p(0) to the bank and some time ¢ later they would pay you p(t)=(1+r-t)p(0).
$1.00 at rate »=1 (like Israel and Brazil that once had 100% interest.) gives $2.00 at t=1/year.
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Semester compounded interest gives p)=(1+r%)p©) at the half-period { and then
use P(3) during the last half to figure final payment. Now $1.00 at rate =1 earns $2.25.
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P () =1+rD)pG)=A+rL)1+rL)p0)=331=2=225
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So if you compound interest more and more frequently, do you approach INFININTEREST? )
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Simple interest at some rate » based on a 1 year period.
You gave a principal p(0) to the bank and some time ¢ later they would pay you p(t)=(1+rt)p(0).
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use P(3) during the last half to figure final payment. Now $1.00 at rate =1 earns $2.25.

=2.25

-PI\O

p’ (t) (1""’2)17(2) (1+I’2)(1+r2)p(0) %%

Trimester compounded interest gives p)=qa+ri)p©) at the I/37-period 35 or Ist trimester and

then use that to figure the 2nd trimester and so on. Now $1.00 at rate =1/ earns $2.37.
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So if you compound interest more and more frequently, do you approach INFININTEREST?

NOT!!
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Simple interest at some rate » based on a 1 year period.
You gave a principal p(0) to the bank and some time ¢ later they would pay you p(t)=(1+rt)p(0).
$1.00 at rate »=1 (like Israel and Brazil that once had 100% interest.) gives $2.00 at t=/year.
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(1) = A+rHpE)=A+r5)A+r5)p0)=331=3=2.25

Trimester compounded interest gives p)=qa+ri)p©) at the I/37-period 35 or Ist trimester and

then use that to figure the 2nd trimester and so on. Now $1.00 at rate =1/ earns $2.37.

(1) = A+rHpRH=0+rd)y0+rHpE) =0+ r5)yA+r5) A+ rH)p0)=3531=5=23

So if you compound interest more and more frequently, do you approach INFININTEREST?

NOT!!
1 12 +17¢
pl ()= (1+rH) p(0)= (%) 1=1=2.00 Monthly:  p(t)=(1+r%)2 p(0)= (%) 1=2.613
3\2 . _9 e | 5 53152 +8¢
P ()= (1+r5) p(0)=(3) 1=4=225 Weekly:  p2(0)=(1+r5) 2 p0)=(2) 1=
+12¢
3 | 365 +2¢
pi(0=+r5)°p0)=(3] 1=5=237 Daily:  p* (1) = (1+1465)® p(0) = (38} 1= 27145
+7¢
4 8760
pi(0)=+r5) p(0)= (%) 1=953="244 Hily: p (£) = (1+ 160 )% p(0) = (3325) 1=27181



Interest product formula is really inefficient: 100 products for 6-figures! .. .10° products for 9 ...

P D)= (L)

1 \m-rt
Let: mrt=n (1+m)
or: I/m=rtn (1 _I_%-t)n

m-—>o0

m—>oo

AN
/7

Nn—o0

> e

2.718281828459..

—e

ret
€

rt

pln(l) = 2.7169239322
pln(l) = 2.7181459268
pln(l) = 27182682372
pln(l) = 2.7182804693
pln(l) = 2.7182816925
pln(l) =2.7182818149
plm(l) = 27182818271

form = 1,000

form = 10,000

form = 100,000
form = 1,000,000
form = 10,000,000
for m = 100,000,000
for m = 1,000,000,000



Interest product formula is really inefficient: 100 products for 6-figures! .. .10° products for 9 ...

plm(l) =2.7169239322 form = 1,000
2.718281828459.. p/m(1) =2.7181459268 for m = 10,000

P D)= (L)

e —e plm(l) = 27182682372 form = 100,000
[ oLy e plm(l) = 27182804693  for m = 1,000,000
et mori—n Fm) Moo € plm(l) = 27182816925  form = 10,000,000
or: 1/m=rit/n 1 riyn o pim(l) = 27182818149  for m = 100,000,000
n noes € plm(l) = 27182818271  for m = 1,000,000,000

Can improve computational efficiency using binomial theorem:

-1 —1)(n—-2
(x+y)”:x”+n-x”_1y+n(nz' )xn—2y2_|_n(n 3)‘(Vl ) (133

: . _ \2 _ _ ) Define: Factorials(!):
r-t (r t)_i_n(n 1)(1’ tj +n(n )(n 2)(1” t) L

n_
(+—) =l+n- , Ol=1=1!, 21=12, 31=123,..
n 3! n

1 n

V4. tn-xy" 4y

n
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_ -1 ,_ —D(n-2) ,_ _
x+y)"=x"+n-x"y+ n(nz' )x" 2y + i 3)'(71 )x” IV x4y
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2! 3! p=0 P! nn—-1) —n ,

nn—1)(n-2)—> n3 , etc.



Interest product formula is really inefficient: 100 products for 6-figures! .. .10° products for 9 ...

plm(l) =2.7169239322 form = 1,000
2.718281828459.. p/m(1) =2.7181459268 for m = 10,000

P D)= (L)

Mm—>co =¢ pl/m(l) =2.7182682372 for m = 100,000
| L ymer Crt plm(l) =2.7182804693 for m = 1,000,000
Let: mrt=n (14 Moo C pl/m(l) =2.7182816925 for m = 10,000,000
or: I/m=rt/n 1 40Ty C rt pl/m(l) =2.7182818149 for m = 100,000,000
(1477 n—ee C pl/m(l) =2.7182818271 for m = 1,000,000,000
Can improve computational efficiency using binomial theorem:
_ -1 ,_ —D(n-2) ,_ _
x+y) ' =x"+n-x""'y+ n(nz' )x" 2y + it 3)'(71 )x” IV x4y
ret, r-t nn-1)(r-t 2 nn—-D)n-2)(r-t 3 Define: Factorials(!):
(l+7) =1+n-(7)+ ) ( " j + 3 ( - ) tee o o=1=11,  20=12, 31=123,...
p As n — oo et :
0 -t
e”:1+r-t+i(r-t)2+l(r-t)3+...= Y 1) )
2! 3! p=0 P! nn—1)—n ,
Precision order: (0=1)-e-series = 2.00000 =1+1 n(n—1)(n—2) = n’, etc.

(0=2)-e-series = 2.50000 =1+1+1/2
(0=3)-e-series = 2.66667 =1+1+1/2+1/6
(0=4)-e-series = 2.70833 =1+1+1/2+1/6+1/24
(0=35)-e-series = 2.71667 =1+1+1/2+1/6+1/24+1/120
(0=6)-e-series = 2.71805 =1+1+1/2+1/6+1/24+1/120+1/720
(0=7)-e-series = 2.71825
(0=8)-e-series = 2.71828 About 12 summed quotients
for 6-figure precision (A lot better!)



Power Series Good! Need general power series development

Start with a general power series with constant coefficients co, ¢, efc. Set =0 to get co = x(0).
X(O)=cy+ettet +ot +e,tt e + ot '+
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Power Series Good! Need general power series development

Start with a general power series with constant coefficients co, ¢y, etc. Set =0 to get co = x(0).
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Power Series Good! Need general power series development

Start with a general power series with constant coefficients co, ¢y, etc. Set =0 to get co = x(0).
X(O)=cy+ettet +ot +e,tt e + ot '+
Rate of change of position x(?) 1s velocity v(t). Set t=0 to get c; = v(0).
v(t) = %x(t) =0+c, +2c,t+ 3c3t2 + 4€4t3 + 5C5t4 + .+ ncntn_1 +
Change of velocity v(?) is acceleration a(t). Set =0 to get ¢ =%a( 0).
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Change of acceleration a(?) 1s jerk j(t). (Jerk 1s NASA term.) Set =0 to get ¢c3 = %! J(0).
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Gives Maclaurin (or Taylor) power series

[x(t):x(0)+v(0)t+  a(0)t* +3, J0)E +5, i(0)t” +3, r(0) + ...+, x1" + ]
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Good old UP | formula!



Power Series Good! Need general power series development

Start with a general power series with constant coefficients co, ¢y, etc. Set =0 to get co = x(0).
X(O)=cy+ettet +ot +e,tt e + ot '+
Rate of change of position x(?) 1s velocity v(t). Set t=0 to get c; = v(0).
v(t) = %x(t) =0+c, +2c,t+ 3c3t2 + 4€4t3 + 5C5t4 + .+ ncntn_1 +
Change of velocity v(?) is acceleration a(t). Set =0 to get ¢ =%a( 0).
a(t) = %v(t) =0+2¢, +23ct+3dct” +4-5ct + ..+ n(n—1)c " +
Change of acceleration a(?) 1s jerk j(t). (Jerk 1s NASA term.) Set =0 to get ¢c3 = %! J(0).
jt) = %a(t) =0+23c, +2:3dc,t+345ct” +...+n(n—1)(n—2)c 1" +
Change of jerk j(?) is inauguration i(t). (Be silly like NASA!) Set =0 to get ¢4 =4,i(0).
(1) = %j(r) =0+234c, +2:34-5¢cst+ ...+ n(n—1)(n—-2)(n- 3)cnt”_4 +

Gives Maclaurin (or Taylor) power series

x(2) = x(0) + v(0)t +3, a(0)t>|+3, j(O)E +3,i(0)* +3, r(0) + ... ++, x"t" + ]

/ Setting all iitial values to /= x(0) = v(0) = a(0) =j(0) =i(0) = ....
Good old UP | formula!
gives exponential: e =1+t +%! t2 +%! t3 -I-%! t4 +%! t5 + ...+%! "+



But, how good are power series

|'10.0

quartic

(1000
quadratic -
(parabola) ’

{100,

Gives Maclaurin (or Taylor) power series

[x(t):x(0)+v(0)t+%! a(0)t” +3, jO)F +3, i0)* +3, r(0) + ... +5, x"t" +

Setting all initial values to /= x(0) = v(0) = a(0) =j(0) =i(0) = ....

gives exponential: e =1+t +%! £ +%! ¢ -I-%! ¢ +%! £+ ...+%! "+



How good are power series? Depends...

= ¢ i~ £8

coste1+0——+0+—+0——"-+0+—...

2! 4 6! 8!
N 20th)
Lo, ® IStW
Unit 1
£ £ ¢! 9 Fig. 10.3

O+t+0——+0+—+0——+0+§...




1. The Story of e (A 1ale of Great $Interesty)

How good are those power series?
laylor-Maclaurin series,
imaginary interest, and complex exponentials



Suppose the fancy bankers really went bonkers and made interest rate » an imaginary number r=i0.

Imaginary numberi=v-1 powers have repeat-after-4-pattern: i'=1, i'=i, i2=-1, i3=-i, i‘=1,etc...
e e 3 Y| A\
@0y o) o) @6’
2! 3! 4! 5!
6> .0 o 6>
—1+i0-— —i— +— +i— —..  (i=~-1imples:i'=i,i*=-1,i°=i,i*=+1,i’=i,..)
2! 3! 41 5!

0° 0* 0> O
:[1— + —...}+(i9—i—+i——...}
21 4! 315!

% =1+i0+

(From exponential series)




Suppose the fancy bankers really went bonkers and made interest rate » an imaginary number r=i0.
Imaginary numberi=v-1 powers have repeat-after-4-pattern: i'=1, i!=i, i2=-1, i3=-i, i*=1, etc...
) A3 4 : D
o) (6 G0) G0
2! 3! 4 5!
6> .0 o 6>

% =1+i0+

(From exponential series)

=1ti0-— —ios +oo i (i =~-1 imples: i'=i, i*=-1,i°=i,i*=+1, i’ =i,..)
x> xt X
92 94 63 95 cosine . COS X | | :
=|l-——+——...|+|i0—i—+i——...| To match series for - 2t 416l
2! 4! 3! 5! IR

sine:smx=x——+———+---
__ 3050 T
eV = cos B - [ SInB "*., (a) x(t)=cos t / ;"

Euler-DeMoivre Theorem

2-- /
quartic >

A ANETAES // _\ |
N N

l—l_t\

IIII




Suppose the fancy bankers really went bonkers and made interest rate » an imaginary number r=i0.
Imaginary numberi=v-1 powers have repeat-after-4-pattern: i'=1, i!=i, i2=-1, i3=-i, i*=1, etc...
) A3 4 : D
o) (6 G0) G0
2! 3! 4 5!
6> .0 o 6>

% =1+i0+

(From exponential series)

—1+i0-— —i— +— +i— —... (i=+-limples: i'=i,i*=-1,i =i, i*=+1,i°=i,...)
2! 3! 4 5!
. i x° N xr %O s
cosine : cosx=1— _
9> o* S S , T3
=|1-—++ — |+ O—i—+i——... To match series for < 2l 41 6!
21 4 3! 5! | PRI R
sine:smx=x——+———+---
_ 31 51 7!
e? = cosf -+ [ sin0@ \ (a) x(t)=cos t / /
Euler-DeMoivre Theorem i | /
Imaginary axis / 12¢
14t
(o R A i
qu:;dratic o
drabola) .
0 e Unit 1
ey z=re” =x+iy Fig. 103

=sin t /
1st

0

re’ = rcos@+ isinf



2. What Good Are Complex Exponentials?

Easy trig
— Easy 2D vector analysis
Yy a5y oscillator phase analysis

Easy rotation and “dot” or “cross” products



What Good Are Complex Exponentials?

1. Complex numbers provide "automatic trigonometry"

Can't remember is cos(a+b) or sin(a+b)? Just factor €@ = eidei ..

ei(a+b) — eia eib
cos(a+b) +isin(a+b) = (cos a +isina) (cos b+ isinb)

cos(a+b)/+ isin(a+b)/=/[cos a cos b - sin a sin b]/H/[Sin a cos b + cos a sin b] /
|




What Good Are Complex Exponentials?

1. Complex numbers provide "automatic trigonometry"

Can't remember is cos(a+b) or sin(a+b)? Just factor €@ = eidei ..

pifa+h) _ ol oib
cos(a+b) +isin(a+b) = (cos a +isina) (cos b+ isinb)
cos(a+b)/+ isin(a+b)/=/[cos a cos b - sin a sin b]/H/[Sin a cos b + cos a sin b] /

2. Complex numbers add like vectors. zsum =z +z'=(x+iy) +x'+iy)=x+x)+i(y+y)
zdiff =z—z'=(x Tiy) - (X' T )= (x-x) iy —y)

(a) (b)

yZImz—Z ,
o

lzlm/ S ”/

y—imzj ! q)*

x=Rez x=ReZz’

|ZSUM| = J(z + z')*(z +7) = J(rei‘f’ + 1 e? )*(rei‘z’ + r’ei‘P') = J(re_i¢ +re” 9 )(rei¢ + r'ei¢')

= ‘/r2 +r2 4 rr'(ei(fp—fp') + e-i(fi’—fP’)) _ ‘/r2 +r2+2m cos(¢p—¢’)  (quick derivation of Cosine Law)




What Good Are Complex Exponentials? (contd.)

3.Complex exponentials Ae™* track position and velocity using Phasor Clock.
(a) Complex plane and unit vectors

imaginary ’ imaginary
axis o : e 2=\ axis
ev=xt1y |
'y etmMA=(1+i)N2
=sin 0 .
L J eM=_] ] real

v

e+i5n/4: e-i37t/4

= -(1+)N?2 e 2=
(b) Quantum Phasor Clock ¢y = Ae™ '™l = Acoswi—i ASinor=x+iy  Unit 1

Fig. 10.5
Im Y |(The “Gonna’be”) e
Re y
x(t) = Acosmt
Phase angle or Argument X(1) Re Y CARTESIAN
O=—w7 = ATAN[V(1)/wx(t)] (The “Is”) SOMPONENTS
POLAR <+—Imy
COMPORENTS Y(t)=v(t)/®= -Asino!
Magnitude or Modulus :
Ae-i0f

AzlwI:\/w*w



What Good Are Complex Exponentials? (contd.)

3.Complex exponentials Ae™* track position and velocity using Phasor Clock.

(a) Complex plane and unit vectors

imaginary

FIMA=(1+i)N2

imaginary
axis o . e+m/2—+z axis
ev=x+1y
=sin 0 .
V =]

real

/

real
axis

L4

e+i5n/4: e—i37t/4

= -(1+i)/N2

axis

e ™A=(1-)N2

—iﬂ:/2:_l-

e

(b) Quantum Phasor Clock y = Ae'®! = Acosw—i Asinot=x+iy

Im y

Phase angle or Argument

(The “Gonna’be”)

Re y

x(t) = Acosmt
CARTESIAN.

Re\|1

O=—w1 = ATAN[V(t)/wx(1)]
POLAR
COMPONENTS

Magnitude or Modulus
=y =V yry

<+—Imy
y(t)=v(t)/m= -Asinwt

Unit 1
Fig. 10.5

Some Rect-vs-Polar relations worth remembering

Cartesian

(x,y) form )

4

*

v

r

V. =Rey(t) =x()= Acoswt=

— *
v, =Imy(¢) = ()——Asina)tzl// L4

vty

= re

=re

\ ) 2i

+i —imt
l@_re 0]

= r(cos @t —ismmt)

. tio?
zG_re 0]

= r(cos Wt +ismwt)

Polar )
(7,0)

form

\

cos 0=

sin @

1
=5;(e

r=A#wFwa+wf=dw*w

0 = —(ut=arctan(1//y/ v.)

2(e+19 e—ig) Rel//:

+160 . e—iG) Iml//:

2i

YAy
2

*k

y-v




2. What Good Are Complex Exponentials?

Easy trig
Easy 2D vector analysis

Easy oscillator phase analysis
—)  Fasy rotation and “dot” or “cross” products



What Good Are Complex Exponentials? (contd.)

4. Complex products provide 2D rotation operations.
ez = (cos + i sind)-(x + iy)= x cosh — y sind + i (xsing +ycosd )

R, r = (xcos¢—ysing)e +(xsin¢+ycos¢)éy

cos¢ —sing@ RN XCcos¢—ysin@
sing cos¢ )\ y - xXsing+ ycos¢@



What Good Are Complex Exponentials? (contd.)

4. Complex products provide 2D rotation operations.
ez = (cos + i sind)-(x + iy)= x cosh — y sind + i (xsing +ycosd )
R+¢-r =(xcos¢—ysmg@)e +(xsm¢@+ ycos¢)ey
cos¢ —sing@ RN XCcos¢—ysin@
sin¢p cos¢ J\y - xsin@+ ycoso

ei® acts on this: z=re" to give this: ei® ¢z =re®e”

Imaginary axis Imaginary axis
(i axis) (i axis)
\ ¢z =re%e? =y 0 = 4 iy

z=re' = x+iy

______________________ z=re' = x+ Iy




What Good Are Complex Exponentials? (contd.)

4. Complex products provide 2D rotation operations.
el®-z = (cosd + i sin®)(x + iy)= x cosd — y sing +i (xsing +ycosd)
R+¢-r =(xcos¢—ysmg@)e +(xsm¢@+ ycos¢)ey

cos¢ —sing@ RN XCcos¢—ysin@
sing cos¢ )\ y - xXsing+ ycos¢@

5. Complex products provide 2D “dot”(¢) and “cross”(x) products.

Two complex numbers A=A4.+iA, and B=B.+iB, and their “star” (*)-product 4 *B.
A*B=(A,+iA,) (B, +iB,)= (A, —iA,)(B, +iB,)
— (AXB)C + AyBy)+ Z(AxBy — AyBx) — A ® B + l | A X B lZJ_(x,y)

Real part 1s scalar or “dot”(e) product A*B. T
Imaginary part is vector or “cross”’(X) product, but just the Z-component normal to xy-plane.

Rewrite A*B in polar form.

A*B=(A|e®) (Bl )=|Ale” |B| e =|A||B| 'O~
=|A||B|cos(0 —0,)+i|A||Blsin(0 —0,)=A*B+il AxBl, ,



What Good Are Complex Exponentials? (contd.)

4. Complex products provide 2D rotation operations.
el®-z = (cosd + i sin®)(x + iy)= x cosd — y sing +i (xsing +ycosd)
R+¢-r =(xcos¢—ysmg@)e +(xsm¢@+ ycos¢)ey

cos¢ —sing@ RN XCcos¢—ysin@
sing cos¢ )\ y - xXsing+ ycos¢@

5. Complex products provide 2D “dot”(¢) and “cross”(x) products.

Two complex numbers A=A4.+iA, and B=B.+iB, and their “star” (*)-product 4 *B.
A*B=(A,+iA,) (B, +iB,)= (A, —iA,)(B, +iB,)
— (AXB)C + AyBy)+ Z(AxBy — AyBx) — A ® B + l | A X B lZJ_(x,y)

Real part 1s scalar or “dot”(e) product A*B. T
Imaginary part is vector or “cross”’(X) product, but just the Z-component normal to xy-plane.

Rewrite A*B in polar form.

A*B=(|A|e® ) (|B|e")=|A| e |B|es =|A||B|&' % %)
=|A||B|cos(85 — 60, +i|A||B|sin(@ —0,)=A*B+il AXBl,
A*B=|A||B|cos(0;—6,) |AXBI| =|A||B|sin(0g —6,)
=|A|cos6, |B|cosOg +|A|sin, | B|sin Oy =|A|cos6, |B|sinOg —|A|sin0, | B|cos Oy
= A.B, + A}B, = A\B, -  AB,



What Good are complex variables?
Easy 2D vector calculus
— Easy 2D vector derivatives

Easy 2D source-free field theory
Easy 2D vector field-potential theory



What Good Are Complex Exponentials? (contd.)

6. Complex derivative contains “divergence”(V+F) and “curl”(VxF ) of 2D vector field

Relation of (z,z*) to (x=Rez,y=Imz) defines a z-derivative %Z and “star” z*-derivative. %Z*
Y ol s df _ wdf L yf _1of _idf
) .y ? ( ) Applying dz dz 0x +az dy 20x 20y dz ~
Z =Xy y=5; (Z —Z*) chain-rule  df _Qx Qf Qy Qf _l@f _|_L§f E_le*:

dz*  dz*ox +8z*8y ~20x 20y



What Good Are Complex Exponentials? (contd.)

6. Complex derivative contains “divergence”(V+F) and “curl”(VxF ) of 2D vector field

Relation of (z,z*) to (x=Rez,y=Imz) defines a z-derivative ¢ and “star” z*-derivative. g,
y dz Z

L o oxdf L ovof _1f _iof |
+ B ) : :
Z* X T 1y dz~ 0z ox +az dy ~ 20x 20y c_gz :%gx_igy

o : | d ,id
7 =X—1y df _dx of  dy df _19f _|_LQf %Z*Zégﬁﬁy

dz*  dz*ox +8z*8y ~20x 20y

Derivative chain-ruie shows real pa of g/; has 2D divergence Vef and imaginary part has curl V< f.

1 3f, 9 (& - a3) —LVef +5IVxfl, | (1 )y

=t Gt i) =G5 Wt if) =3 Gl +5) 45 Gy =5




What Good Are Complex Exponentials? (contd.)

6. Complex derivative contains “divergence”(V+F) and “curl”(VxF ) of 2D vector field

Relation of (z,z*) to (x=Rez,y=Imz) defines a z-derivative gé and “star” z*-derivative. E*Z*

L o oxdf L ovof _1f _iof |
+ B ) : :
Z* X T 1y dz~ 0z ox +az dy ~ 20x 20y c_gz :%gx_igy

o : | d ,id
7 =X—1y df _dx of  dy df _19f _|_LQf ?ZZZ*Z%gXJrigy

dz*  dz*ox +8z*8y ~20x 20y

Derivative chain-ruie shows real pa of gfzf has 2D divergence Vef and imaginary part has curl V< f.

1 3f, 9 (& - a3) —LVef +5IVxfl, | (1 )y

=t Gt i) =G et if) =3 Gl +) 45 Gy =5

7. Invent source-free 2D vector fields [V-F=0 and VxF=0]

We can invent source-free 2D vector fields that are both zero-divergence and zero-curl.
Take any function f(z), conjugate it (change all i’s to —i) to give f*(z*) for which _f — 0




What Good Are Complex Exponentials? (contd.)

6. Complex derivative contains “divergence”(V+F) and “curl”(VxF ) of 2D vector field

Relation of (z,z*) to (x=Rez,y=Imz) defines a z-derivative gé and “star” z*-derivative. E*Z*

. o o Lvor _13f _idf -
+ 3 29x 2 y :
Z* ATy dz az 0x +aZ 8y ~ 20x 28y c_gz :%gx_igy

I - , d ,id
Z Iy df _ox df | dy df _19f _|_LQf %Z*Z%ngrigy

dz*  dz*ox +8z*8y ~20x 20y

of 4 has 2D divergence Vef and imaginary part has curl V< f.
dz —

Derivative chain-ruie shows real part’o
d : : 1 ,9f.  9F, d a f
= (fetify) =5 G =i )t if,) =3 GL+ 5 +5GT =3 =L Vet 441Vl

7. Invent source-free 2D vector fields [V-F=0 and VxF=0]

We can invent source-free 2D vector fields that are both zero-divergence and zero-curl.
Take any function f(z), conjugate it (change all i’s to —i) to give f*(z*) for which _f — 0

For example: if f(z)=a z then f*(z*)=a-z*=a(x-iy) 1s not function of z so it has zero z-derivative.
F=(F, Fy)=("f")=(ax,-ay) has zero divergence: VeF=0 and has zero curl: IVXFI=0.
oF. oF  d(— oF
an ; a(ax) oF (—ay) g VXFl,, = . _ d(=ay) OJF(ax)

ox By ox dy odx Oy ox dy
A DFL field F (Divergence-Free-Laminar)

y—

=0

V.F =



What Good Are Complex Exponentials? (contd.)

7. Invent source-free 2D vector fields [V-F=0 and VxF =0]

We can invent source-free 2D vector fields that are both zero-divergence and zero-curl.

Take any function f(z), conjugate it (change all i’s to —i) to give f*(z*) for WhiCh‘ gf L 0-
4

For example: if f(z)=a'z then f*(z*)=a-z*=a(x-iy) 1s not function of z so 1t has zero z-derivative.
F=(F,F,)=("v.f")=(ax,-ay) has zero divergence: VeF=0 and has zero curl: IVXFI|=0.
oF, OF, ~ d(ax) +aF (—ay) _ of, _an _ d(—ay) _BF (ax) _

Vel'= i ox dy ox dy

— 0
ox dy ox dy

0 IVXFIZL(W):

precursor to
Unit 1
Fig. 10.7

F=("\.f*) =(ax,-a'y) 1s a divergence-free laminar (DFL) field.



What Good are complex variables?

Easy 2D vector calculus
Easy 2D vector derivatives
Easy 2D source-free field theory

— Easy 2D vector field-potential theory



What Good Are Complex Exponentials? (contd.)

8. Complex potential ¢ contains “scalar’(F=V®) and “vector’(F=V xA ) potentials

Any DFL field F 1s a gradient of a scalar potential field ® or a curl of a
F=VO F= VX
A complex potential ¢(z)=DP(x,y)+iA(x,y) exists whose z-derivative 1s f(z)=d ¢/dz.
Its complex conjugate ¢*(z*)=D(x,y)-iA(x,y) has z*-derivative f*(z*) =d ¢*/dz* giving DF'L field F.



What Good Are Complex Exponentials? (contd.)

8. Complex potential ¢ contains “scalar’(F=V®) and “vector’(F=V xA ) potentials

Any DFL field F 1s a gradient of a scalar potential field ® or a curl of a
F=Vo® F= VX

A complex potential ¢(z)=DP(x,y)+iA(x,y) exists whose z-derivative 1s f(z)=d ¢/dz.
Its complex conjugate ¢*(z*)=D(x,y)-iA(x,y) has z*-derivative f*(z*) =d ¢*/dz* giving DF'L field F.

To find ¢=D+iA integrate f(z)=a-z to get ¢ and isolate real (Re ¢ =®) and imaginary (Im ¢ =A) parts.



What Good Are Complex Exponentials? (contd.)

8. Complex potential ¢ contains “scalar’(F=V®) and “vector’(F=V xA ) potentials

Any DFL field F 1s a gradient of a scalar potential field ® or a curl of a
F=Vo® F= VX

A complex potential ¢(z)=DP(x,y)+iA(x,y) exists whose z-derivative 1s f(z)=d ¢/dz.

Its complex conjugate ¢*(z*)=D(x,y)-iA(x,y) has z*-derivative f*(z*) =d ¢*/dz* giving DF'L field F.
To find ¢=D+iA integrate f(z)=a-z to get ¢ and isolate real (Re ¢ =®) and imaginary (Im ¢ =A) parts.
f@Q=¢ =  ¢= d +i A=[f-dz=[az -dz=3 az*



What Good Are Complex Exponentials? (contd.)

8. Complex potential ¢ contains “scalar’(F=V®) and “vector’(F=V xA ) potentials

Any DFL field F 1s a gradient of a scalar potential field ® or a curl of a
F=Vo® F= VX
A complex potential ¢(z)=DP(x,y)+iA(x,y) exists whose z-derivative 1s f(z)=d ¢/dz.
Its complex conjugate ¢*(z*)=D(x,y)-iA(x,y) has z*-derivative f*(z*) =d ¢*/dz* giving DF'L field F.

To find ¢=D+iA integrate f(z)=a-z to get ¢ and isolate real (Re ¢ =®) and imaginary (Im ¢ =A) parts.
f@=i = ¢= o 1 A:ff°dZ=Jaz-dz=%aZ2=%a(x+iy)2

A
r N\

=% a(xz—yz) +1 axy



What Good Are Complex Exponentials? (contd.)

8. Complex potential ¢ contains “scalar’(F=V®) and “vector’(F=V xA ) potentials

Any DFL field F 1s a gradient of a scalar potential field ® or a curl of a
F=Vo® F= VX
A complex potential ¢(z)=DP(x,y)+iA(x,y) exists whose z-derivative 1s f(z)=d ¢/dz.
Its complex conjugate ¢*(z*)=D(x,y)-iA(x,y) has z*-derivative f*(z*) =d ¢*/dz* giving DF'L field F.

To find p=D+iA integrate f(z)=a-z to get ¢ and isolate real (Re ¢ =®) and imaginary (Im ¢ =A) parts.
fo=i = ¢= ® +i A=[f-dz=[az -dz=5 az’ =5 a(x+iy)’
_

A
~

=% a(x”* —y*) +i

Fxy=(x,-y)
Potential:

0(z)=z
=x2—y2+i
= O +




What Good Are Complex Exponentials? (contd.)

8. Complex potential ¢ contains “scalar’(F=V®) and “vector’(F=V xA ) potentials

Any DFL field F 1s a gradient of a scalar potential field ® or a curl of a
F=Vo® F= VX

A complex potential ¢(z)=DP(x,y)+iA(x,y) exists whose z-derivative 1s f(z)=d ¢/dz.
Its complex conjugate ¢*(z*)=D(x,y)-iA(x,y) has z*-derivative f*(z*) =d ¢*/dz* giving DF'L field F.

To find ¢=D+iA integrate f(z)=a-z to get ¢ and isolate real (Re ¢ =®) and imaginary (Im ¢ =A) parts.

f(z):z—llf — ¢: J(g +l :jfdzzjazdz :% CZZ2 :% Cl(X"'iy)z BONUS/
' N\ :

:% a(x® —y?) +i Get a free

- coordinate
system!

The (®,A) grid is a GCC
coordinate system™:

q]: o Z(x2—y2)/2 — const.
q2: — (xy) — const.

*Actually 1t’s OCC.

Potential:

O(z)=2

:X2—y2+i
= O +i




What Good are complex variables?
Easy 2D vector calculus
Easy 2D vector derivatives
Easy 2D source-free field theory
—) o5y 2D vector field-potential theory

é The half-n*-half results: (Riemann-Cauchy Derivative Relations)



What Good Are Complex Exponentials? (contd.)

8. (contd.) Complex potential ¢ contains “scalar’(F=V®) and “vector’(F=V xA ) potentials

...and either one (or half-n’-halfl) works just as well.

JoL)
Derivative ¢ 2" has 2D gradient vy = [ax ]of scalar @ and curl vxa=

L))
f(0)=% = ax

dy

of vector A (and they re equal!)

d QD" E)A
e ¢ = =< ((D IA)= 2(3 ‘Ha ND—iA) = 2(8x +ay )+2(

d _1d _id

dz T2dx 20y

d 10 ,id

dz*=29x1 29y

N

IM=lva+ivxa



What Good Are Complex Exponentials? (contd.)
8. (contd.) Complex potential ¢ contains “scalar’(F=V®) and “vector’(F=V xA ) potentials

...and either one (or half-n’-halfl) works just as well.
dA
ayA of vector A (and they re equal!)

oD
Derivative 4% has 2D gradient vy - [ax ]of scalar @ and curl vxa=
dx

oD
f@=¢ =

dy

¢ 9= (P=iA)= =5 (§,+ig, (D= iA) = z(ax+ay )+2(aA 9 =1V +lvxa

Note, mathematician definition of force field F=+V® replaces usual physicist’s definition F=-VO



What Good Are Complex Exponentials? (contd.)
8. (contd.) Complex potential ¢ contains “scalar’(F=V®) and “vector’(F=V xA ) potentials

...and either one (or half-n’-halfl) works just as well.

oD
Derivative 4% has 2D gradient vy - [ax ]of scalar @ and curl vxa=

o>
f(Z)_dq) = dy
.
i 0" = e (P—iA)= =1 +za ND—iA) 2(ax+aayq’)+2(aA —id=tvao+lvxa

of vector A (and they re equal!)

Bx

Note, mathematician definition of force field F=+V® replaces usual physicist’s definition F=-VO

Given ¢: || ¢ = () +i A The half-n"half result

1 2 2 .
find: = a(x” —y7) +i axy or find: l

%‘D % Q(Xz —)’2) l ax 5 5 axy
2 ax
Vo= a)ccb - axa 2 2 :( j:F VXA = a;A - 3; :( ):F
» ) (e =y ) @y o ) aew) V¥




What Good Are Complex Exponentials? (contd.)

8. (contd.) Complex potential ¢ contains “scalar’(F=V®) and “vector’(F=V xA ) potentials

...and either one (or half-n’-halfl) works just as well.

dD
[?;D ]of scalar @ and curl vxa=

dy

Derivative ¢ Zz " has 2D gradient y¢ -
f@=%¢ =
d + _d Ay _1d .0 _
P ¢ =5 (P—-iA)=5(5, ‘Hay)(q)

of vector

ay (and they re equal!)
“on

OAY 1 1
) = 2(8x +i ay )+2(8y L ox ) _ZV(I)+2VX
Note, mathematician definition of force field F=+V® replaces usual physicist’s definition F=-V®

Given ¢: || ¢ = () +1 The half-n*-half result
1
find:

=5 a(xz—yz) +1 :
5] [ 550670 Vo 1Y (2 ax
VO = = =F VXA = = = =F
2 ) | gs0e? =) \-a Y
=const. define DF'L field-net.

Scalar static potential lines ®=const. and vector

eld.
f*(z*) =z¥=x-iy
Fey)=(x,-y)
Potential:

O(z)=z’
:x2_y2+l'
=@ +i




What Good Are Complex Exponentials? (contd.)
8. (contd.) Complex potential ¢ contains “scalar’(F=V®) and “vector’(F=V xA ) potentials
...and either one (or half-n’-halfl) works just as well.

9 dh
Derivative 4% has 2D gradient vy - [g; ]of scalar @ and curl vxa=| ” |of vector A (and they re equal!)
o T ox
» The half-n*- result
(. A\
d ¢ _d Ay =19 .0 Ay =L 9P 0D\ 1 0A -JAy_1 1
{97 =0 (D=iA) = (G HG D iA) =5 (5] +iG ) 45 G, —i5) =3 VD 43V
Note, mathematician definition of force field F=+V® replaces usual physicist’s definition F=-V®
Given ¢: || ¢ = () +1 The half-n"-half result
find: =5 a(x’ —y%) +i :
el da, 2 2 0 )
. 2 (X7 =y7) l 5 5
dy 2 (X" =y ) AT T ox " dx v
Scalar static potential lines ®=const. and vector =const. define DF'L field-net.
The half-n’-half results
are called

Riemann-Cauchy
Derivative Relations

-5 e Q(D_ Q IS QRef(Z) — Q f(Z)
fF%=(z*=jc-iy v ox ~ dy || ox — dy
xY)=(X,-Y E—
s : 9D __9A . .|| ORef(x) _ _ dImf(z)
=x’-y?+i =12 ay o ax ’ ay o a.x
S _




— {. Riemann-Cauchy conditions what’ analytic? (...and what’s not?)



Review (z,z*) to (x,y) transformation relations

. | df _dxdf ayaf _1df 19f 1[0 0
= X + — * = — -
¢ AT . Z(Z 2%) dz 9z ax Jz dy 2 dx 218)/ 2\ dx lay /
* .
7 =x—iy y=5, (2 —2z%) ¢ _9xdf aydf 19f 13f 1[0 0,

a7t 97" ax 9z dy 29x 2idy 2ldx Iy

Criteria for a field function f = fx(x,y) +i f,(x,y) to be an analytic function f(z) of z=x+iy:

First, f(z) must not be a function of z*=x-iy, that is: %—0
This implies f(z) satisfies differential equations known as the @iemann-Cauchy conditions

d d d d
i:():l ) +1i 0 (f;c+if):l afx— fy + f af implies : afx: fy and : i:—afx
dz * 2\odx 0 20 dx 9y Bx dy 0x dy ox dy

d 1(d .0 o A(of of) if(d, of) o .9 9o .o 0 0
dz _2(8)6 laj%+%)_2(8x+ay]+z(ax ay]_ax“ax‘ay oy o T E g )



Review (z,z*) to (x,y) transformation relations

. | df _dxdf ayaf _1df 19f 1[0 0
— + e %k — —
¢ AT . 2(Z 2%) dz 9z ax Jz dy 2 0x 218)/ 2\ dx lay /
* .
7 =x—iy y=1 (z —z%) d _9xdf ydf 13f 19f 1[0 0,

a7t 97" ax 9z dy 29x 2idy 2ldx Iy

Criteria for a field function f = f«(x,y) +i f,(x,y) to be an analytic function f(z) of z=x+iy:
First, f(z) must not be a function of z*=x-iy, that is: %=
This implies f(z) satisfies differential equations known as the

izozl(a+iaaj(fx+ify)=l(afx—afyj+ (af af)impliesz afxzafy and : %:—afx

dz * 2\ ox 2\ dx dy ox dy 0x  dy dy

d 1{d .d o Lfof, ) i(d of ) o 9 9 .o 0 9 L.
dz _2(836 l j(ﬁc+1][y)_2(8x+ayj+2(8x ay]_ax-l_lax_ay ay x(f lfy)_aiy(fx-l_lfy)

( ° ° o \
Riemann-Cauchy conditions

Criteria for a field function f = f«(x,y) +i f,(x,y) to be an analytic function f(z*) of z*=x-iy:

First, f(z*) must not be a function of z=x+1iy, that iS.'Z—];=0
This implies f(z*) satisfies differential equations we call Anti q{iemann-Cauchy conditions

N\
ﬁ= 1[8 j(f zfy)zl(afx+afy +i(aﬁ—aﬂj=implies: af)‘:—% and : afy:%fx
y

g_l_ 2{ldx dy ) 2\ odx dy _ox dy ox )

d 1(o . o A(of. R (o, o) o o 9O o O .. ... 9 .
( 1Y j(fx“fy)‘z[ax 8y)+2\8x+ay]_ax+lax_ 3y oy T =g A




What's analytic? (...and what’s not?)

Example: Is f(x,y) = 2x + iy an analytic function of z=x+i)?



What's analytic? (...and what’s not?)

Example: Q: Is f(x,y) = 2x + i4y an analytic function of z=x+1i)?

Well, test it using definitions: z = x + iy and: z*¥=x-1y
or: x = (z+z%)/2 and: v =-i(z-z%)/2



What's analytic? (...and what’s not?)

Example: Q: Is f(x,y) = 2x + i4y an analytic function of z=x+1i)?

Well, test it using definitions: z = x + iy and: z*=x-1y
or: x = (z+z%)/2 and: v =-i(z-z%)/2

fx,y) =2x +idy =2 (z+z%)/2 +i4(-i(z-2*)/2)



What's analytic? (...and what’s not?)

Example: Q: Is f(x,y) = 2x + i4y an analytic function of z=x+1i)?

Well, test it using definitions: z = x + iy and: z*¥=x-1y
or: x = (z+z%)/2 and: v =-i(z-z%)/2

fx,y) =2x +idy =2 (z+z%)/2 +i4(-i(z-2*)/2)
= ztz* 4+ (2z-2z%)



What's analytic? (...and what’s not?)

Example: Q: Is f(x,y) = 2x + i4y an analytic function of z=x+1i)?

Well, test it using definitions: z = x + iy and: z*¥=x-1y
or: x = (z+z%)/2 and: v =-i(z-z%)/2

fx,y) =2x +idy =2 (z+z%)/2 +i4(-i(z-2*)/2)
= ztz* 4+ (2z-2z%)
= 3z-zF



What's analytic? (...and what’s not?)

Example: Q: Is f(x,y) = 2x + i4y an analytic function of z=x+1i)?

Well, test it using definitions: z = x + iy and: z*=x-1y
or: x = (z+z%)/2 and: v =-i(z-z%)/2

fx,y) =2x +idy =2 (z+z%)/2 +i4(-i(z-z*)/2)
= ztz* 4+ (2z-2z%)
= 3z-zF

A: NO! It a function of z and z* so not analytic for either.



What's analytic? (...and what’s not?)

Example: Q: Is f(x,y) = 2x + i4y an analytic function of z=z+iy?

Well, test it using definitions: z = x + iy and: z*=x-1y
or: x = (z+z%)/2 and: v =-i(z-z%)/2

fx,y) =2x +idy =2 (z+z%)/2 +i4(-i(z-z*)/2)
= ztz* 4+ (2z-2z%)
= 3z-zF

A: NO! It a function of z and z* so not analytic for either.

Example 2: Q: Is r(x,y) = x? + y? an analytic function of z=x+1i)?

A: NO! r(xy)=z*z is a function of z and z* so not analytic for either.



What's analytic? (...and what’s not?)

Example: Q: Is f(x,y) = 2x + i4y an analytic function of z=z+iy?

Well, test it using definitions: z = x + iy and: z*=x-1y
or: x = (z+z%)/2 and: v =-i(z-z%)/2

fx,y) =2x +idy =2 (z+z%)/2 +i4(-i(z-2*)/2)
= ztz* 4+ (2z-2z%)
= 3z-zF

A: NO! It a function of z and z* so not analytic for either.

Example 2: Q: Is r(x,y) = x? + y? an analytic function of z=x+1i)?

A: NO! r(xy)=z*z is a function of z and z* so not analytic for either.

Example 3: Q: Is s(x,y) = x2-y? + 2ixy an analytic function of z=x+iy?

A: YES! s(xy)=(x+iy)? =z2 is analytic function of z.



4. Riemann-Cauchy conditions What’ analytic? (...and what’s not?)

———- /5y 2D circulation and flux integrals
Easy 2D curvilinear coordinate discovery
Easy 2D monopole, dipole, and 2"-pole analysis
Easy 2n-multipole field and potential expansion
Easy stereo-projection visualization



What Good Are Complex Exponentials? (contd.)

9. Complex integrals [ f(z)dz count 2D “circulation”( [F<dr) and “flux”([Fxdr)

Integral of f(z) between point z; and point z> is potential difference A¢p =¢(z2)- ¢(z1)
)

A¢:¢(22)_¢(21): J. f(Z)dZ:(I)(xzayz)_q)(xlayl)_l_i[A(xzayz)_A(xlayl)]
Zl — — —
AQ = AD +1 AA

In DFL-field F, A¢ 1s independent of the integration path z(#) connecting z; and z>.



What Good Are Complex Exponentials? (contd.)

9. Complex integrals [ f(z)dz count 2D “circulation”( [F<dr) and “flux”([Fxdr)

Integral of f(z) between point z; and point z> is potential difference A¢p =¢(z2)- ¢(z1)

22
A¢:¢(22)_¢(21): J. f(Z)dZ:(I)(xzayz)_(p(xlayl)_l_i[A(xzayz)_A(xlayl)]
Zl — — —
Ap = AD +1 AA

In DFL-field F, A¢ 1s independent of the integration path z(#) connecting z; and z>.
[ £(2)dz = J(f*(z*)) dz = J(f*(z*)) (dx+idy)= j(f; ; ify*) (dx+idy)= j(fx* - if;‘)(dx+ idy)

=[(f; dx+ [, dy)+i[(f; dy—f, dx)

= [Fedr +i[FXdree,

= JFedr +i[]Fedrxe,

= JFe«dr +i[FedS where:  dS=drxe,




What Good Are Complex Exponentials? (contd.)

9. Complex integrals [ f(z)dz count 2D “circulation”( [F<dr) and “flux”([Fxdr)

Integral of f(z) between point z; and point z> is potential difference A¢p =¢(z2)- ¢(z1)

22
A¢:¢(22)_¢(21): J. f(Z)dZ:(I)(xzayz)_q)(xlayl)_l_i[A(xzayz)_A(xlayl)]
Zl — — —
Ap = AD +1 AA

In DFL-field F, A¢ 1s independent of the integration path z(#) connecting z; and z>.
[ £(2)dz = j(f*(z*)) dz = J(f*(z*)) (dx+idy)= j(fx* ; ify*) (cbx+idy)= j(fx* - ify*)(dx+ idy)

= [(fy dx+ f, dy)+i[(f; dy—f, dx)
= [Fedr +i[FXdree,

= [Fedr +i[Fedrxe,
ds

= [Fedr +i|FedS where:  dS=drXxe, e,
Adr ge=—"—~
F§‘ dr f_Big Fed
! Big;-dl' part -[12 F.ds _ AA
Real part [ Fedr = A® sums F projection across path dr
sums F projections along path that 1s, thru surface
dr that 1s, circulation on path elements dS=drxez normal to dr

to get AD . to get AA.



Here the scalar potential ®=(x?-y2?)/2 is stereo-plotted vs. (x,y)
The ®=(x?-y?)/2=const. curves are topography lines

The curves are streamlines normal to topography lines




4. Riemann-Cauchy conditions What’ analytic? (...and what’s not?)

Easy 2D circulation and flux integrals
—— 05y 2D curvilinear coordinate discovery
Easy 2D monopole, dipole, and 2"-pole analysis
Easy 2n-multipole field and potential expansion
Easy stereo-projection visualization



What Good Are Complex Exponentials? (contd.)
10. Complex potentials define 2D Orthogonal Curvilinear Coordinates (OCC) of field

The (®,A) grid 1s a GCC
coordinate system™:
q]: d Z(x2—y2)/2 — const.

g’= A = (xy) = const.

[ (@) =z*=x-iy
*Actually i1t’s OCC. Fisy=(x,-y)

Potential:

0(z)=2

=x’-y°+i
- D +

o ox dy ox dy x —y)«E°® - 19¢" 9q" | |ad 9A|_ 1£x )’j
Kajobian = = = Jacobian = = =

dg* 9dg* | |94 94| \y x)<E dy 9y | |9y I -y X

ox 8—y ox 9y dq' 9q’ 8(%) BT A

E, E E, E

E,cE, E_ -E >0
Metrictensor = (gm 8o ] = ( e ® ) = (r zj where: r’=x"+y’
g (o g [0)) 0



What Good Are Complex Exponentials? (contd.)

10. Complex potentials define 2D Orthogonal Curvilinear Coordinates (OCC) of field

The (®,A) grid 1s a GCC
coordinate system™:

q]: () Z(x2—y2)/2 — const.
g’= A = (xy) = const.

, [ =iy
*Actually i1t’s OCC. Flay=(x,)

Potential:
0(z)=2’

=x’-y°+i
=0 +

CANEE:
o ox dy ox dy (x —yJeEq’ : dq' g’ ob o 1£x )’j
Kajobian = = =

Jacobian = = = —

o 9g* | |94 94| \y x )«E gy 9| |9 Iy —y X
ox 9y ox 9y dq' 9q’ 8(%) BT A
E, E E, E
E,cE, E_ :E >0 ®
Metrictensor = (gm 8o ]: (Eq) E(D Eq) £ )z (};) zj where: r’=x"+y’
8 0} 8 L ® r

Riemann-Cauchy Derivative Relations make coordinates orthogonal

oo d a2 _y ) The half-n*-half results assure ] 0
| ox | 8x2 ax | dy dy ax
Vo= |= =B L _0004 099 VxA=| " =] = =
dy §y2( - ) 4 ? - Ox ox dy dy T ox " ox Y
0D 8(1) 0D 0D

ox ay dy ox



What Good Are Complex Exponentials? (contd.)
10. Complex potentials define 2D Orthogonal Curvilinear Coordinates (OCC) of field
The (®,A) grid 1s a GCC

coordinate system™:
q]: d Z(x2—y2)/2 — const.

q2= = (xy) = const.
Field:
. [z =z*=x-iy
*Actually i1t’s OCC. Fiew=(x)
0(z)=2
=x?y7+i
= +i
dg'  9dq' oD
N B B _ ) a 1 a 2
Kajobian = ox  dy or dy = ¥ —y|<E Jacobian = 9 9 0 d Xy
o 9g* | |94 94| \y x )«E gy 9| |9 Iy —y X
ox 9y ox 9y dq' 9q’ 8(%) BT A
E, E E, E
E. -E E. ‘E 2 0 o
Metrictensor = oo Bou | _[Fe™o @ =" where: r’=x"+y’
80 8 E 'Ecp E ‘E 0 1”2
Riemann-Cauchy Derivative Relations make coordinates orthogonal
P d a2 _ ) The half-n’-half results assure J d
ox 8x2 x Y ax Jy o ax
Vo= |= =F pp L0294 990 VxA=| 7 = = =F
dy 5y2( - ) —4) ¢ ox dx dy dy ~ 3 — —ay
_ 90 8(1) 0D 0D
ox ay dy ox
o, , G/ 0 9 9P _ 82613 0°®

Zero divergence requirement: 0=== =0 potential ® obeys Laplace equation

ax dy T Ox ox ay dy 8x2 dy”



What Good Are Complex Exponentials? (contd.)

10. Complex potentials define 2D Orthogonal Curvilinear Coordinates (OCC) of field

The (®,A) grid 1s a GCC
coordinate system™:
q]: d Z(x2—y2)/2 — const.

g’= A = (xy) = const.
1 [ @*)=z*=x-iy
*Actually it’s OCC. Fis =51
o)==
—x22+i
=@ +i
R ANE:
dx ox 9 -
Kajobian = x2 y2 X 0 :( }’j
9> 9g” | |04 oA} \y x
ox  dy ox dy
E ’E E OE
Metrictensor = Soo _| e e ®
g ) E .ECI) E .E

«—E°

~—E

Bt

Jacobian =

Riemann-Cauchy Derivative Relations make coordinates orthogonal

N 5x2<x el
V¢ p— p—

oD 9

oy ayz(

N

y)

ax

or Riemann-Cauchy
Zero divergence requirement: 0=

e

L2 2.2
zj where: r'=x"+y

The half-n*- results assure
0D 0dA dDad
E,E, = +
¢ ox dx dy dy
_ 90 BCI) 0D 0D
 ox ay dy ox
U % _092 090_00 0
ox dy T ox ox ay dy 8x2 dy>

o> 9 T
E, E E, E
9A 9 ax) ax
0
Vxa=| 7= a; :( ):F
and so does

=0 potential ®,0obeys Laplace equation

N



4. Riemann-Cauchy conditions What’ analytic? (...and what’s not?)

Easy 2D circulation and flux integrals
Easy 2D curvilinear coordinate discovery
—) Lasy 2D monopole, dipole, and 2"-pole analysis
Easy 2n-multipole field and potential expansion
Easy stereo-projection visualization



What Good Are Complex Exponentials? (contd.)

11. Complex integrals define 2D monopole fields and potentials
Of all power-law fields f(z)=az" one lacks a power-law potential @(z)= n% | 2" Ttis the n = -/ case.

1

Unit monopole field: f(z)= i: z f(z)=5= az™' Source-a monopole

It has a logarithmic potential O(z)=a'In(z)=a'In(x+iy).



What Good Are Complex Exponentials? (contd.)

11. Complex integrals define 2D monopole fields and potentials
Of all power-law fields f(z)=az" one lacks a power-law potential @(z)= n% | 2" Ttis the n = -/ case.

1

Unit monopole field: f(z)= i: z f(z)=5= az”' Source-a monopole

It has a logarithmic potential O(z)=a'In(z)=a'In(x+iy).

d(2)= @ + iA=]f()dz=]7dz=aln(z)



What Good Are Complex Exponentials? (contd.)

11. Complex integrals define 2D monopole fields and potentials
Of all power-law fields f(z)=az" one lacks a power-law potential @(z)= n% | 2" Ttis the n = -/ case.

! f(z)=5= az™' Source-a monopole

Unit monopole field: f(z)= i: z
It has a logarithmic potential O(z)=a"In(z)=a-In(x+iy). Note: In(a-b)=In(a)+In(b), In(e’)=i0, and z=re®.
()= ® + iA=[f(2)dz=]%dz=aln(z)=aln(re?)

=aln(r) + iab



What Good Are Complex Exponentials? (contd.)

11. Complex integrals define 2D fields and potentials
Of all power-law fields f(z)=az" one lacks a power-law potential @(z)= n% | 2" 1t is the case.
Unit monopole field: f(z)= iz 771 f(z)=%= az"' Source-a monopole

It has a logarithmic potential O(z)=a"In(z)=a-In(x+iy). Note: In(a-b)=In(a)+In(b), In(e’)=i0, and z=re®.
()= ® + iA=]f(z)dz=]%z=aln(z)=aln(re")

=aln(r) + iab
(a) Unit Z—line—ﬂxﬁeldf(z)=1/z

Lecture 12 Mon. 10.01
May end here

| LI E e I BN T T

f(z%)=1/z%=e"/r
Foy)=(3)/r°
Potential:

O(z)=Inz
=In r+i
=® +j




What Good Are Complex Exponentials? (contd.)

11. Complex integrals define 2D fields and potentials

Of all power-law fields f(z)=az" one lacks a power-law potential @(z)= nﬁlz” 1 Ttis the

Unit monopole field: f(z)= i: 771

Casc.

f(z)=%= az"' Source-a monopole

It has a logarithmic potential O(z)=a"In(z)=a-In(x+iy). Note: In(a-b)=In(a)+In(b), In(e’)=i0, and z=re®.

0(x)= ® + iA=]f(x)dz=[%dz=aln(z)=aln(re"

=aln(r) + iab
(a) Unit Z—line—ﬂxﬁeldf(z)=1/z

| LI E e I BN T T

[
E-
;

f(z%)=1/z%=e"/r
Fy) =)/
Potential:
O(z)=Inz

=[n r+i

=@ +i

’_
=
F
g

-

)

'h.
-

—

9

(b) Unit Z-line-vortex field f(z)=i/z

i S 5] W5 i35
I Allmis =) .”i LAy Y I 1 1 | I &1 1
— ——— — —— e —— — -— r— —

1

A

),

2,

(z*%)=-i/z*=-ie"/r
F(x,y):(y,-)C)/}"2
Potential:
O(z)=ilnz

=0 +i

=d +i




What Good Are Complex Exponentials? (contd.)

11. Complex integrals define 2D monopole fields and potentials
Of all power-law fields f(z)=az" one lacks a power-law potential @(z)= n% | 2" Ttis the n = -/ case.

-1

Unit monopole field: f(z)= iz z f(z)=5= az™' Source-a monopole

It has a logarithmic potential O(z)=a"In(z)=a-In(x+iy). Note: In(a-b)=In(a)+In(b), In(e’)=i0, and z=re®.

0()= @+ iA=[f()dz=]¢dz=aln(z)=aln(re")
=aln(r) + iab

A monopole field is the only power-law field whose integral (potential) depends on path of integration.
path that goes N times

around origin (r=0) at

constant r = R.

27rNd R 0=21N
(Re®) =a | idfO= ai@‘(z)nN = 2amiN

Ag = 95f(z)dz=095d =a

0=0 Rele



1 0(x)= O+ iA=]f(2)dz=]¢dz=aln(re")
= In(r) + i (For a=1)

f(@*)=1/z%=e"/r

Fy=(x)/r’
Potential:

0(z)=In z

=ln r+i

=D+

1-pole(flux) 1-pole(flux)
Xy

Each turn around origin

adds 27i to vector potential i

| (For a=1)
LA] -xpfvle(fhtx) LA] -ggie (flux) =
27

/
;/



(a) Unit Z-line-flux field f(z)=1/z

1 ~y
i Z

-5 15 |
il O e e L I L

[ @¥)=1/zx=e"r -
Fey=(x, w/r—7 C
Potential: I‘ s
0(z)=Inz E
=In r+i 'F )
=@ +i £
1-pole(flux) 1-pole(flux)
X,V X,y
‘:I.V V.]
'g‘ X
) / :\ \/W’ "
\ \
I-pole(flux) 1-pole(flux)
X,y Axy
' X L X
L
e / R /
\\.....I " “h..: ’/
/’/h \ ///-
!/ !/

(b) Unit Z-line-vortex field f(z)=i/z

o =

05 ) 15
L) I I I-I-IJ 1 1] I I 1 ]

1-pole(vortex)
X,y

1-pole(vortex)
X,y

2

Field:
1 (z9)=-i/zx=-ie®/r
Foy=,-x)/r’

Potential:

O(z)=ilnz
=0 +i
= +]

1-pole(vortex)
X,y

\‘\
% T
X T
Y

1-pole(vortex)
X, )

"3;‘/\’(
\.\ Y’




What Good Are Complex Exponentials? (contd.)

1(z) =(0.5 +i0.5)/z=ei"/4/\2 1(z) =(0.75 +i0.25)/z=€i'$ /z\n

“Vortex” “Hurricane”

x=-0.82 y=-4.8 0.078 |x=-3.6 y=3.2

N
T
i

(9]

9

-III_Y_I'Ij

s R A BT
i I T L e L . i _ sty i ] DR |




4. Riemann-Cauchy conditions What’ analytic? (...and what’s not?)

Easy 2D circulation and flux integrals
Easy 2D curvilinear coordinate discovery
—) Lasy 2D monopole, dipole, and 2"-pole analysis
Easy 2n-multipole field and potential expansion
Easy stereo-projection visualization



What Good Are Complex Exponentials? (2D monopole, dipole, and 2"-pole analysis)
12. Complex derivatives give 2D dipole fields

Start with f(z)=az-1: 2D line monopole field and 1s its monopole potential¢(z)= alnzof source strength a.

ole a d 1-pole )
f] pol (Z):Z: ¢dz ¢] pOle(Z):aan

Now let these two line-sources of equal but opposite source constants +a and —a be located at z=+A/2
separated by a small interval A. This sum (actually difference) of f/-role-fields is called a ciipole field.

. —a-A _ 7 -2
fdlpoze (z)= S S > dipole ()= qIn(z-5)—aln(z+5) =aln 2
3 4y e
This is like the
derivative definition.
So-called
fl]; _ AA)_f(Z) “physical dipole”
o has finite A
A A :
df f(Z+§)—f(Z—E) (+)(-) separation
dz A

if A is infinitesimal
(A—0)
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dipol a a —a-A : Z_§
fP @O 97" (2)=aln(z-3)—aln(z+5)=aln
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Z+; =3 7% 15

If interval A 1s tiny and 1s divided out we get a point-dipole field f 2-role that 1s the z-derivative of f /-role,

1-pole
prpole =0 _dfTT_ dgr prole ~ 4 _ 49
2 dz dz Z dz
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If interval A 1s tiny and 1s divided out we get a point-dipole field f 2-role that 1s the z-derivative of f /-role,

1-pole
—a df]-pole ~ d¢2-pole ¢2-pole _a _ d(P P

Z2 dZ dZ < dZ

A point-dipole potential ¢p?-role (whose z-derivative 1s f2-role) 1s a z-derivative of ¢pZ»ole,

f2-pole _

= —= +1 =—cos@—i—sinf

¢2_pole_a_ a a x-—1iy ax —ay a a
2 x+iy x+iyx—iy x24y?  x4y® T r

_ (I)Z-pole 4 A2-pole



A point-dipole potential ¢p?-role (whose z-derivative 1s f2-role) 1s a z-derivative of ¢/-»pole,

a a a x-—1i ax . —a a .a .
“_ _ = . .y= 4+ J =—cosO—i—sinb
2 x+iy x+iyx—iy xP4y?  xP4y? T r

¢2-pole _

_ (D2-pole 4 2- pole

Scalar potentials
(I):(a/K)COS O=const.

N
| 7 45

IIIIIIIII
— - e—--— A ——

a/D

|
=(a/))sin ©

f(z*)=1/z*=e'%/y?
F(x.y)=(c0s26,5in20)/r
Potential.:

O(z)=1/z
=(cos0)/r+i
= @ +i

— (Cl/l”) sin O=const.




2”-]90[6 analySiS (quadrupole:2?=4-pole, octapole:23=8-pole, ..., poie dancer,

What if we put a (-)copy of a 2-pole near its original?
Well, the result 1s 4-pole or quadrupole field f 4pole and potential ¢4-»ole,

Each a z-derivative of f2-pole and ¢2-pole,

a 1df2-pole _d¢4-pole

i B l d¢2-pOZ€

f4-pole _
Z3 2 dZ dZ 2Z2 2 dZ

¢4- pole _




2 ”—p()le analys 1S (quadrupole:2?=4-pole, octapole:23=8-pole, ..., poie dancer,

What if we put a (-)copy of a 2-pole near its original?
Well, the result 1s 4-pole or quadrupole field f 4pole and potential ¢4-»ole,

Each a z-derivative of f2-role and ¢2-pole,

a _lde-pole - d¢4-pole ¢4—pole - L_ 1 d¢2-pole

f4-pole _
Z3 2 dZ dZ 2Z2 2 dZ

4-pole
X,V

Field:
(z%)=1/23*=¢!3%/p3
F(x)=(cos38,5in30)/r"
Potential:
20(z)=1/z°
=(c0s20)/r’+i
= @O +i




4. Riemann-Cauchy conditions What’ analytic? (...and what’s not?)

Easy 2D circulation and flux integrals
Easy 2D curvilinear coordinate discovery
Easy 2D monopole, dipole, and 2"-pole analysis
> Easy 2n-multipole field and potential expansion
Easy stereo-projection visualization



2”-]?016 analysis: Laurent series (Generalization of Maclaurin-Taylor series)

Laurent series or multipole expansion of a given complex field function f(z) around z=0.

d -3 -2 -1 2 3 4 5
d—fzf(z):..a_ﬂ + a,7 "+ a2z + ay + @z + a7" + azz” + asz7 + asz +..

22-pole 21-pole 20—pole 21-pole 22-pole 23-pole 24-pole 2° -pole 26-pole

(quadrupgle) (dipole) (manapaée) (dipole (quadrupole) (octapole) (hexadecapole)
i fd at z= at z=0 at z= at 7=oco atz=oo  atz=oco  atz=oco atz=oco  atz=oo
Z:
a_~, _ a_» _ a a a a a
¢(z):...—3z 2y =20y a_lnz + agz + Sz oy 225 4 DBt Ty 550y
—2 —1 2 3 4 5 6

All field terms am-1zm-1 except /-pole ;—1 have potential term a,,-z"/m of a 2m-pole.
These are located at z=0 for m<0 and at z=o0 for m>0.

(octapole)o  (quadrupole)y (dipole)o (monopole) (dipole) (quadrupole)» (octapole)«
a_, _— a_~ _ a_» _ a a
¢(Z)=-..—4Z . +—37 2 4 —27 by a_Inz + agz + —122 + —2z3 + ...
-3 -2 -1 2 3



2”-]?016 analysis: Laurent series (Generalization of Maclaurin-Taylor series)

Laurent series or multipole expansion of a given complex field function f(z) around z=0.

2 1 2 3 4 5

d _
¢ + Cl_lz + aO + CZIZ + azz + a3Z + a4Z + CZSZ + ...

_ -3 -
d_z—f(Z) =..d432 T adZ

22—pole 21—pole 20—pole 21—pole 22—pole 23—pole 24—pole 2° -pole 26—pole

(quadrupgle) (dipole) (monopole) (dipole) (quadrupole) (octapole) (hexadecapole)
[fd at z=0 at z=0 at z=0 at z=oco atz=oco  atz=oco  atz=oco atz=oco atz=oo
Z:
a_~ _ a_» _ a a a a a
q)(z)=...—3z 2y =20y a_lnz + apgz + I e < A R i W L
-2 -1 2 3 4 5 6

All field terms am-1zm-1 except /-pole ;—1 have potential term a,,-z"/m of a 2m-pole.

These are located at z=0 for m<0 and at z=o0 for m>0.

(octapole)o  (quadrupole)y (dipole)o (monopole) (dipole) (quadrupole)» (octapole)«
a , _ a , a , _ da a
¢(Z)=---—3Z R e a Inz + ayz + L2+ 2 4
-2 -2 -1 2 3

(with z=w-1)



2”-]?016 analysis: Laurent series (Generalization of Maclaurin-Taylor series)

Laurent series or multipole expansion of a given complex field function f(z) around z=0.

d _ _ _
d—f=f(z)=...a_3z > 4 a 5z o a,z bt a, + az + 61222 + a3z3 + a4z4 + a5z5 + ...
22—pole 21—pole 2" -pole 2! -pole 22—pole 23 -pole 24 -pole 2° -pole 26—pole
(quadrupole) (dipole) (monopole) (dipole) (quadrupole) (octapole) (hexadecapole)
[ fdz= at z=0 at z=0 at z=0 at z=oo atz=oco  atz=oco  atz=oo atz=oo  at z=oo
a a a a a a a
d()=..—277+ 27" + a Inz+ ayz + L% + 27 + 2+ 22+ 20 4.
—2 —1 2 3 4 5 6

All field terms am-1zm-1 except /-pole ;—1 have potential term a,,-z"/m of a 2m-pole.

These are located at z=0 for m<0 and at z=o0 for m>0.

(octapole)o  (quadrupole)y (dipole)o (monopole) (dipole) (quadrupole)» (octapole)«
a4, -3 a3 - a_» _ a - a, 3
O()=..— 277 +—27° + —277 + alnz + ayz + —z* + 27" +..
-3 -2 -1 2 3
a_ _ _ _ a_ _ a a
dW)=..—2w S+ wPr 2w 4 og nw + guw + —wt + 2w’ 4+
_ -2 —1 2 3
) e
ar _ a; _ _ a_ a_ a_
= %z3 —1—3122 + aozl— a_iInz + —122+ 23z2+—4z3+

(with w=z-1)



N |Z|:tan9/2:|W|_]
\ .
Z_plane — /W 1 N\ S0 0/2
2
0
] cos/0/2 /
z 0/2 cos? 0/2
0/2
S |W|:C0t9/2:|2|_1
w-plane W=UTLY
=1/z
a _ a_~r _ a_» _ a a
¢(Z):...—_§Z 337 =2ty a_lnz + apz + Elzz + ?223 + ...
(ocgzpole)o (qzadmpole)o (&z’_lpole)o (monopole) (dipole)«

(quadrupole)» (octapole)s
a2 a 3
doW + —w + —=w + ...

¢(W)=...—3w +3 Tt 227 a_jlnw +

(with z—w)
_ 94 2 a -2 -1

a_ a_, - a_
=277 4372 4 gzt - alnz+ R+ 2324 A8
3 2 -1 —2 - (with w=z1)
\’i 4 _92 -1
(a) — (b) ¢(Z) - 1 < ¢(Z) — a;23z—2
¢ y\ f(2)= a_2z_2 f(2)= a_3z_3
(+) monopole field dipole field centered quadrupole field centered
at North Pole at North Pole at North Pole
is (-) monopole field s constant field is quadratic field
near SouthPole near SouthPole near South Pole
NI d(w) = agw (W) = agw’
i N s » —
/7* k{\ > fw)=aqay fw)y=aw



-3 -2 —1 2 3 4 5
f(@)=.a3z7 " + ay,z " + a2+ a + aqz + azm + a3z + a7 + asz +..

Of all 2m-pole field terms am-1z-1, only the m=(0 monopole a-;z-/ has a non-zero loop integral (10.39).

$ f()dz=4a_z 'dz=2mia_ 27” $ f(z)dz



-3 -2 —1 2 3 4 5
f(@)=.a3z " + ay,z " + a2 + a + aqz + azm + a3z + a7 + asz +..

Of all 2m-pole field terms am-1z-1, only the m=(0 monopole a-;z-/ has a non-zero loop integral (10.39).

$ f()dz=4a_z 'dz=2mia_ =+ ¢ f(2)dz
This m=1-pole constant-a-; formula 1s just the first in a series Of Laurent coefficient expressions.
g =50 $2 @z s ay =5, 2 f(R)dz s a =5 §f()dz , ag =5, 95f(Z) L4 =gy f(Z)

Z



-3 -2 —1 2 3 4 5
f(@)=.a3z " + ay,z " + a2 + a + aqz + azm + a3z + a7 + asz +..

Of all 2m-pole field terms am-1z-1, only the m=(0 monopole a-;z-/ has a non-zero loop integral (10.39).
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This m=1-pole constant-a-; formula 1s just the first in a series Of Laurent coefficient expressions.
g =50 $2 @z s ay =5, 2 f(R)dz s a =5 §f()dz , ag =5, 95f(Z) L4 =gy f(Z)

Z

Source analysis starts with 1-pole loop integrals ¢-7'dz=2zi or, with origin shifted §(z-a)"'dz=2xi.
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Source analysis starts with 1-pole loop integrals ¢z"'dz=2xi or, with origin shifted §G-a) 'dz=27i |

They hold for any loop about point-a. Function f(z) is just f(a) on a ., circle around point-a.

(assume siny circle around z= a)
< G 35f (a)

<l a
(but any Contour that doesn’ t touch a gIves same answer)
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The f(a) result 1s called a Cauchy integral.
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9
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The f(a) result 1s called a Cauchy integral. Then repeated a-derivatives gives a sequence of them.

df@_ 1, 1), . A fla)_ 2 LG, d’f(a) _ 3, S s
da  2mi (z— a) © g4t 2mi (z— a) © 4l 2w (z—a)*




f(z)=...a_3z_3 + a_zz_z + a7+ a + a4z + a2z2 + a3z3 + a4z4 + a5z5 + ...
Of all 2m-pole field terms am-1z-1, only the m=(0 monopole a-;z-/ has a non-zero loop integral (10.39).
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This m=1-pole constant-a-; formula 1s just the first in a series Of Laurent coefficient expressions.

(Z) (Z)
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/ (z) / (a) 1 f@)
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(but any contour that doesn’t “touch a gives same answer)

The f(a) result 1s called a Cauchy integral. Then repeated a-derivatives gives a sequence of them.

d@_ 1, [ , @2 f@) , Ef@ 3 @ @) [

da 27.” (z— a) daz 27” (z— a) ’ da3 271-1 (z— a) ’ da" 21 (Z—a)”+1
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df@_ 1, @  dEf@_2, [z  dEf@_ 3 [ . df@_n, [
d 95 ) 2 C.I.> ) C.I.> 9 ) - 95 dZ
a 27 (z— a) da 2mi (z— a)

da® 27 (z— a) da" 27’ (z—q)"!

This leads to a general Taylor-Laurent power series expansion of function f(z) around point-a.
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This leads to a general Taylor-Laurent power series expansion of function f(z) around point-a.

f(2)= i an(z—a)” where : a, = 1.<_§ /() dz| = 1 d"f(a)
n=—oco 27l (Z—Cl)n+1 n! gg"

for : nZO}



Of all 2m-pole field terms am-1z-1, only the m=(0 monopole a-;z-/ has a non-zero loop integral (10.39).

$ f(2)dz =a_ 7 'dz =2mia_, =+ ¢ f(2)dz
This m=1-pole constant-a-; formula 1s just the first in a series Of Laurent coefficient expressions.
g =50 $2 @z s ay =5, 2 f(R)dz s a =5 §f()dz , ag =5, 95f(Z) L4 =gy f(Z)

Z

Source analysis starts with 1-pole loop integrals ¢z"'dz=2xi or, with origin shifted §G-a) 'dz=27i |

They hold for any loop about point-a. Function f(z) is just f(a) on a ., circle around point-a.

(assume siny circle around z= a)
1@, SBf(a) =g LDy,

Z— a 2w z—a
(but any Contour that doesn’ t touch a gIves same answer)
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@ 1, 1) , df@_ 2, /@) , Ef@_ 3, @ o @ e 6

da 27 (z_q dd®  2mi (z- a) L dd 2 (z-a) L da" 27 (z—a)"t!

This leads to a general Taylor-Laurent power series expansion of function f(z) around point-a.

f@= % a,(z-a) where : a, =—9 1(2) dz| = f(a) for: n>0
Jl=—o00 271 (Z — a)n+1 n! dan
(quadrupole)y (dipole)o (monopole) (dipole)s (quadrupole)« (octapole)s (hexadecapole)s ...

=3 -2 -1 2 3 4 5
f(R)=.axz7” + a2 "+ a2 + a + aqz + @&im + ayz7 + a7 + asz” +...
dipole monopole
moment moment



w(z)=z> gives parabolic OCC

z=-324 +155

15 mapped into

wiz)=-21 +1-19
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w= (u+ )= 2" = (z+1iy)’ is analytic function of z and w

Expansion: u=2"—y" and v =22y may be solved using |w |=| 2* |=| z |’
Expansion: |w = yu® +v* =2’ +¢* = 2
u+\}u2 +0° y2 . 7u+\/u2 +0°

2 2

Solution: z* =

Ou Or Oz 2z +2y
Oy | _ E" _| 2 —Qy] ou ov _ (E o ): -2y 2z
v E' +2y 2z dy 9y ! 4(:1:2 + yZ)
dy Ou Ov



