Reimann-Christoffel equations and covariant derivative (Ch. 4-7 of Unit 3)

Separation of GCC Equations: Effective Potentials
Small radial oscillations
2D Spherical pendulum or "Bowl-Bowling"
Cycloidal ruler\&compass geometry
Cycloid as brachistichrone with various geometries
Cycloid as tautochrone
Cycloidulum vs Pendulum
Cycloidal geometry of flying levers
Practical poolhall application
\rightarrow Separation of GCC Equations: Effective Potentials
Small radial oscillations
2D Spherical pendulum or "Bowl-Bowling"
Cycloidal ruler\&compass geometry
Cycloid as brachistichrone
Cycloid as tautochrone
Cycloidulum vs Pendulum
Cycloidal geometry of flying levers
Practical poolhall application

Separation of GCC Equations: Effective Potentials

$$
\begin{aligned}
H & =\frac{1}{2} \gamma_{m n} \dot{q}^{m} \dot{q}^{n}+V=\frac{1}{2} m \dot{\rho}^{2}+\frac{1}{2} m \rho^{2} \dot{\phi}^{2}+\frac{1}{2} m \dot{z}^{2}+V \quad\binom{\text { Numerically }}{\text { correct ONLY! }} \\
& =\frac{1}{2} \gamma^{m n} p_{m} p_{n}+V=\frac{1}{2 m} p_{\rho}^{2}+\frac{1}{2 m \rho^{2}} p_{\phi}^{2}+\frac{1}{2 m} p_{z}^{2}+V \quad\binom{\text { Formally and Numerically }}{\text { correct }}
\end{aligned}
$$

Separation of GCC Equations: Effective Potentials (For isotropic $H\left(r, p_{r}, \phi, \mathbf{p}_{\phi}\right)$

$$
\begin{aligned}
H & =\frac{1}{2} \gamma_{m n} \dot{q}^{m} \dot{q}^{n}+V=\frac{1}{2} m \dot{\rho}^{2}+\frac{1}{2} m \rho^{2} \dot{\phi}^{2}+\frac{1}{2} m \dot{z}^{2}+V \quad\binom{\text { Numerically }}{\text { correct ONLY! }} \\
& =\frac{1}{2} \gamma^{m n} p_{m} p_{n}+V=\frac{1}{2 m} p_{\rho}^{2}+\frac{1}{2 m \rho^{2}} p_{\phi}^{2}+\frac{1}{2 m} p_{z}^{2}+V \quad\binom{\text { Formally and Numerically }}{\text { correct }}
\end{aligned}
$$

Potential V is isotropic (cylindrical) function of radius $\rho .(V=V(\rho))$ H has no explicit ϕ-dependence and the $\phi-$ momenta is constant.

$$
m \rho^{2} \dot{\phi}=p_{\phi}=\text { const } .=\mu
$$

Separation of GCC Equations: Effective Potentials (For isotropic $H\left(r, p_{r}, \phi_{,}, \mathbf{p}_{\phi}\right)$

$$
\begin{aligned}
H & =\frac{1}{2} \gamma_{m n} \dot{q}^{m} \dot{q}^{n}+V=\frac{1}{2} m \dot{\rho}^{2}+\frac{1}{2} m \rho^{2} \dot{\phi}^{2}+\frac{1}{2} m \dot{z}^{2}+V \quad\binom{\text { Numerically }}{\text { correct ONLY! }} \\
& =\frac{1}{2} \gamma^{m n} p_{m} p_{n}+V=\frac{1}{2 m} p_{\rho}^{2}+\frac{1}{2 m \rho^{2}} p_{\phi}^{2}+\frac{1}{2 m} p_{z}^{2}+V \quad\binom{\text { Formally and Numerically }}{\text { correct }}
\end{aligned}
$$

Potential V is isotropic (cylindrical) function of radius $\rho .(V=V(\rho))$ H has no explicit $\phi-$ dependence and the $\phi-$ momenta is constant.

$$
m \rho^{2} \dot{\phi}=p_{\phi}=\text { const } .=\mu
$$

If H has no explicit z-dependence then the z-momenta is constant, too.

$$
m \dot{z}=p_{z}=\text { const } .=k
$$

Separation of GCC Equations: Effective Potentials

$$
\begin{aligned}
H & =\frac{1}{2} \gamma_{m n} \dot{q}^{m} \dot{q}^{n}+V=\frac{1}{2} m \dot{\rho}^{2}+\frac{1}{2} m \rho^{2} \dot{\phi}^{2}+\frac{1}{2} m \dot{z}^{2}+V \quad\binom{\text { Numerically }}{\text { correct ONLY! }} \\
& =\frac{1}{2} \gamma^{m n} p_{m} p_{n}+V=\frac{1}{2 m} p_{\rho}^{2}+\frac{1}{2 m \rho^{2}} p_{\phi}^{2}+\frac{1}{2 m} p_{z}^{2}+V \quad\binom{\text { Formally and Numerically }}{\text { correct }}
\end{aligned}
$$

Potential V is isotropic (cylindrical) function of radius $\rho .(V=V(\rho))$ H has no explicit ϕ-dependence and the ϕ-momenta is constant.

$$
\begin{gathered}
m \rho^{2} \dot{\phi}=p_{\phi}=\text { const } .=\mu \\
H=\frac{1}{2 m} p_{\rho}^{2}+\frac{\mu^{2}}{2 m \rho^{2}}+\frac{k^{2}}{2 m}+V(\rho)=E=\text { const } .
\end{gathered}
$$

If H has no explicit z-dependence then the z-momenta is constant, too.

$$
m \dot{z}=p_{z}=\text { const } .=k
$$

Separation of GCC Equations: Effective Potentials

$$
\begin{aligned}
H & =\frac{1}{2} \gamma_{m n} \dot{q}^{m} \dot{q}^{n}+V=\frac{1}{2} m \dot{\rho}^{2}+\frac{1}{2} m \rho^{2} \dot{\phi}^{2}+\frac{1}{2} m \dot{z}^{2}+V \quad\binom{\text { Numerically }}{\text { correct ONLY! }} \\
& =\frac{1}{2} \gamma^{m n} p_{m} p_{n}+V=\frac{1}{2 m} p_{\rho}^{2}+\frac{1}{2 m \rho^{2}} p_{\phi}^{2}+\frac{1}{2 m} p_{z}^{2}+V \quad\binom{\text { Formally and Numerically }}{\text { correct }}
\end{aligned}
$$

Potential V is isotropic (cylindrical) function of radius $\rho .(V=V(\rho))$ H has no explicit ϕ-dependence and the ϕ-momenta is constant.

If H has no explicit z-dependence then the z-momenta is constant, too.

$$
m \dot{z}=p_{z}=\text { const } .=k
$$

(Let $k=0$)

Separation of GCC Equations: Effective Potentials

$$
\begin{aligned}
H & =\frac{1}{2} \gamma_{m n} \dot{q}^{m} \dot{q}^{n}+V=\frac{1}{2} m \dot{\rho}^{2}+\frac{1}{2} m \rho^{2} \dot{\phi}^{2}+\frac{1}{2} m \dot{z}^{2}+V \quad\binom{\text { Numerically }}{\text { correct ONLY! }} \\
& =\frac{1}{2} \gamma^{m n} p_{m} p_{n}+V=\frac{1}{2 m} p_{\rho}^{2}+\frac{1}{2 m \rho^{2}} p_{\phi}^{2}+\frac{1}{2 m} p_{z}^{2}+V \quad\binom{\text { Formally and Numerically }}{\text { correct }}
\end{aligned}
$$

Potential V is isotropic (cylindrical) function of radius $\rho .(V=V(\rho))$ H has no explicit ϕ-dependence and the ϕ-momenta is constant.

If H has no explicit z-dependence then the z-momenta is constant, too.

$$
m \dot{z}=p_{z}=\text { const } .=k
$$

(Let $k=0$)

Symmetry reduces problem to a one-dimensional form.

$$
H=\frac{1}{2 m} p_{\rho}^{2}+V^{\text {eff }}(\rho)=E=\text { const }
$$

Separation of GCC Equations: Effective Potentials

$$
\begin{aligned}
H & =\frac{1}{2} \gamma_{m n} \dot{q}^{m} \dot{q}^{n}+V=\frac{1}{2} m \dot{\rho}^{2}+\frac{1}{2} m \rho^{2} \dot{\phi}^{2}+\frac{1}{2} m \dot{z}^{2}+V \quad\binom{\text { Numerically }}{\text { correct ONLY! }} \\
& =\frac{1}{2} \gamma^{m n} p_{m} p_{n}+V=\frac{1}{2 m} p_{\rho}^{2}+\frac{1}{2 m \rho^{2}} p_{\phi}^{2}+\frac{1}{2 m} p_{z}^{2}+V \quad\binom{\text { Formally and Numerically }}{\text { correct }}
\end{aligned}
$$

Potential V is isotropic (cylindrical) function of radius $\rho .(V=V(\rho))$ H has no explicit ϕ-dependence and the ϕ-momenta is constant.

If H has no explicit z-dependence then the z-momenta is constant, too.

$$
m \dot{z}=p_{z}=\text { const } .=k
$$

(Let $k=0)$

Symmetry reduces problem to a one-dimensional form.

$$
H=\frac{1}{2 m} p_{\rho}^{2}+V^{\text {eff }}(\rho)=E=\text { const }
$$

An effective potential Veff(ρ) has a centrifugal barrier.

$$
V^{e f f}(\rho)=\frac{\mu^{2}}{2 m \rho^{2}}+V(\rho)
$$

Separation of GCC Equations: Effective Potentials

$$
\begin{aligned}
H & =\frac{1}{2} \gamma_{m n} \dot{q}^{m} \dot{q}^{n}+V=\frac{1}{2} m \dot{\rho}^{2}+\frac{1}{2} m \rho^{2} \dot{\phi}^{2}+\frac{1}{2} m \dot{z}^{2}+V \quad\binom{\text { Numerically }}{\text { correct ONLY! }} \\
& =\frac{1}{2} \gamma^{m n} p_{m} p_{n}+V=\frac{1}{2 m} p_{\rho}^{2}+\frac{1}{2 m \rho^{2}} p_{\phi}^{2}+\frac{1}{2 m} p_{z}^{2}+V \quad\binom{\text { Formally and Numerically }}{\text { correct }}
\end{aligned}
$$

Potential V is isotropic (cylindrical) function of radius $\rho .(V=V(\rho))$ H has no explicit ϕ-dependence and the ϕ-momenta is constant.

$$
\begin{gathered}
m \rho^{2} \dot{\phi}=p_{\phi}=\text { const } .=\mu \\
H=\frac{1}{2 m} p_{\rho}^{2}+\frac{\mu^{2}}{2 m \rho^{2}}+\frac{k^{2}}{2 m}+V(\rho)=E=\text { const } .
\end{gathered}
$$

If H has no explicit z-dependence then the z-momenta is constant, too.
$m \dot{z}=p_{z}=$ const.$=k$
(Let $k=0$)

Symmetry reduces problem to a one-dimensional form.

$$
H=\frac{1}{2 m} p_{\rho}^{2}+V^{\text {eff }}(\rho)=E=\text { const }
$$

An effective potential Veff(ρ) has a centrifugal barrier.

$$
V^{e f f}(\rho)=\frac{\mu^{2}}{2 m \rho^{2}}+V(\rho)
$$

Velocity relations:
$\dot{\phi}=\mu /\left(m \rho^{2}\right)$

$$
\dot{\rho}=\frac{d \rho}{d t}=\frac{\partial H}{\partial p_{\rho}}=\frac{p_{\rho}}{m}= \pm \sqrt{\frac{2}{m}\left(E-V^{e f f}(\rho)\right)}
$$

Separation of GCC Equations: Effective Potentials

$$
\begin{aligned}
H & =\frac{1}{2} \gamma_{m n} \dot{q}^{m} \dot{q}^{n}+V=\frac{1}{2} m \dot{\rho}^{2}+\frac{1}{2} m \rho^{2} \dot{\phi}^{2}+\frac{1}{2} m \dot{z}^{2}+V \quad\binom{\text { Numerically }}{\text { correct ONLY! }} \\
& =\frac{1}{2} \gamma^{m n} p_{m} p_{n}+V=\frac{1}{2 m} p_{\rho}^{2}+\frac{1}{2 m \rho^{2}} p_{\phi}^{2}+\frac{1}{2 m} p_{z}^{2}+V \quad\binom{\text { Formally and Numerically }}{\text { correct }}
\end{aligned}
$$

Potential V is isotropic (cylindrical) function of radius $\rho .(V=V(\rho))$ H has no explicit ϕ-dependence and the ϕ-momenta is constant.

If H has no explicit z-dependence
then the z-momenta is constant, too.
$m \dot{z}=p_{z}=$ const.$=k$
(Let $k=0)$

Symmetry reduces problem to a one-dimensional form.

$$
H=\frac{1}{2 m} p_{\rho}^{2}+V^{\text {eff }}(\rho)=E=\text { const }
$$

An effective potential Veff(ρ) has a centrifugal barrier.

$$
V^{e f f}(\rho)=\frac{\mu^{2}}{2 m \rho^{2}}+V(\rho)
$$

Velocity relations:

$$
\dot{\phi}=\mu /\left(m \rho^{2}\right) \quad \dot{\rho}=\frac{d \rho}{d t}=\frac{\partial H}{\partial p_{\rho}}=\frac{p_{\rho}}{m}= \pm \sqrt{\frac{2}{m}\left(E-V^{e f f}(\rho)\right)}
$$

Equations solved by a quadrature integral for time versus radius.

$$
\int_{t_{0}}^{t_{1}} d t=\int_{\rho_{0}}^{\rho_{1}} \frac{d \rho}{\sqrt{\frac{2}{m}\left(E-V^{\text {eff }}(\rho)\right)}}=\left(\text { Travel time } \rho_{0} \text { to } \rho_{1}\right)=t_{1}-t_{0}
$$

Separation of GCC Equations: Effective Potentials

\longrightarrow Small radial oscillations
2D Spherical pendulum or "Bowl-Bowling"
Cycloidal ruler\&compass geometry
Cycloid as brachistichrone
Cycloid as tautochrone
Cycloidulum vs Pendulum
Cycloidal geometry of flying levers
Practical poolhall application

Small radial oscillations

Stable minimal-energy radius will satisfy a zero-slope equation.

$$
\left.\frac{d V^{\text {eff }}(\rho)}{d \rho}\right|_{\rho_{0}}=0, \quad \text { with: }\left.\frac{d^{2} V^{e f f}}{d \rho^{2}}\right|_{\rho_{0}}>0 .
$$

A Taylor series around this minimum can be used to estimate orbit properties for small oscillations.

$$
V^{\text {eff }}(\rho)=V^{\text {eff }}\left(\rho_{0}\right)+0+\left.\frac{1}{2}\left(\rho-\rho_{0}\right)^{2} \frac{d^{2} V^{e f f}}{d \rho^{2}}\right|_{\rho_{0}}
$$

Stable flat $\left.\frac{d^{2} V^{2 e f}}{d \rho^{2}}\right|_{\rho_{0}}>0 \quad$ Unstable flat $\left.\frac{d^{2} V^{2 e f}}{d \rho^{2}}\right|_{\rho_{0}}<0$

Fig. 2.7.4 Phase paths around fixed points (a) Stable point (b) Unstable saddle point

Small radial oscillations

Stable minimal-energy radius will satisfy a zero-slope equation.

$$
\left.\frac{d V^{\text {eff }}(\rho)}{d \rho}\right|_{\rho_{\text {stable }}}=0, \quad \text { with: }\left.\frac{d^{2} V^{\text {eff }}}{d \rho^{2}}\right|_{\rho_{\text {stable }}}>0 .
$$

A Taylor series around this minimum can be used to estimate orbit properties for small oscillations.

$$
V^{e f f}(\rho)=V^{\text {eff }}\left(\rho_{\text {stable }}\right)+0+\left.\frac{1}{2}\left(\rho-\rho_{\text {stable }}\right)^{2} \frac{d^{2} V^{e f f}}{d \rho^{2}}\right|_{\rho_{\text {stable }}}
$$

An effective "spring constant" at the stable point giving approximate frequency of oscillation.

$$
k^{\text {eff }}=\left.\frac{d^{2} V^{\text {eff }}}{d \rho^{2}}\right|_{\rho_{\text {stable }}} \quad \omega_{\rho_{\text {stable }}}=\sqrt{\frac{k^{e f f}}{m}}=\left.\sqrt{\frac{1}{m} \frac{d^{2} V^{\text {eff }}}{d \rho^{2}}}\right|_{\rho_{\text {stable }}}
$$

Small radial oscillations

Stable minimal-energy radius will satisfy a zero-slope equation.

$$
\left.\frac{d V^{\text {eff }}(\rho)}{d \rho}\right|_{\rho_{\text {stable }}}=0, \quad \text { with: }\left.\frac{d^{2} V^{\text {eff }}}{d \rho^{2}}\right|_{\rho_{\text {stable }}}>0 .
$$

A Taylor series around this minimum can be used to estimate orbit properties for small oscillations.

$$
V^{\text {eff }}(\rho)=V^{\text {eff }}\left(\rho_{\text {stable }}\right)+0+\left.\frac{1}{2}\left(\rho-\rho_{\text {stable }}\right)^{2} \frac{d^{2} V^{e f f}}{d \rho^{2}}\right|_{\rho_{\text {stable }}}
$$

An effective "spring constant" at the stable point giving approximate frequency of oscillation.

$$
k^{\text {eff }}=\left.\frac{d^{2} V^{\text {eff }}}{d \rho^{2}}\right|_{\rho_{\text {stable }}} \quad \omega_{\rho_{\text {stable }}}=\sqrt{\frac{k^{e f f}}{m}}=\left.\sqrt{\frac{1}{m} \frac{d^{2} V^{\text {eff }}}{d \rho^{2}}}\right|_{\rho_{\text {stable }}}
$$

Small oscillation orbits are closed if and only if the ratio of the two is a rational (fractional) number.

$$
\frac{\omega_{\rho_{\text {stable }}}}{\omega_{\phi}}=\frac{\omega_{\rho_{\text {stable }}}}{\dot{\phi}\left(\rho_{\text {stable }}\right)}=\frac{n_{\rho}}{n_{\phi}} \Leftrightarrow \text { Orbit is closed-periodic }
$$

Small radial oscillations

Stable minimal-energy radius will satisfy a zero-slope equation.

$$
\left.\frac{d V^{\text {eff }}(\rho)}{d \rho}\right|_{\rho_{\text {stable }}}=0, \quad \text { with: }\left.\frac{d^{2} V^{\text {eff }}}{d \rho^{2}}\right|_{\rho_{\text {stable }}}>0 .
$$

A Taylor series around this minimum can be used to estimate orbit properties for small oscillations.

$$
V^{\text {eff }}(\rho)=V^{\text {eff }}\left(\rho_{\text {stable }}\right)+0+\left.\frac{1}{2}\left(\rho-\rho_{\text {stable }}\right)^{2} \frac{d^{2} V^{\text {eff }}}{d \rho^{2}}\right|_{\rho_{\text {stable }}}
$$

An effective "spring constant" at the stable point giving approximate frequency of oscillation.

$$
k^{\text {eff }}=\left.\frac{d^{2} V^{\text {eff }}}{d \rho^{2}}\right|_{\rho_{\text {stable }}} \quad \omega_{\rho_{\text {stable }}}=\sqrt{\frac{k^{\text {eff }}}{m}}=\sqrt{\left.\frac{1}{m} \frac{d^{2} V^{\text {eff }}}{d \rho^{2}}\right|_{\rho_{\text {stable }}}}
$$

Small oscillation orbits are closed if and only if the ratio of the two is a rational (fractional) number.

$$
\frac{\omega_{\rho_{\text {stable }}}}{\omega_{\phi}}=\frac{\omega_{\rho_{\text {stable }}}}{\dot{\phi}\left(\rho_{\text {stable }}\right)}=\frac{n_{\rho}}{n_{\phi}} \Leftrightarrow \text { Orbit is closed-periodic }
$$

Some generic shapes resulting from various ratios $n \rho: n \phi$

(b) $\omega_{\rho}: \omega_{\phi}$ just below $1 \quad \omega_{\rho}: \omega_{\phi}=1 \quad \omega_{\rho}: \omega_{\phi}$ just above 1 prograse
precession
of nodes retrograde
precession
of nodes
(c) $\omega_{\rho}: \omega_{\phi}$ just below 2 prograte
precession
of nodes

$\omega_{\rho}: \omega_{\phi}$ just above 2 retrograde

Separation of GCC Equations: Effective Potentials

Small radial oscillations
$\longrightarrow 2 D$ Spherical pendulum or "Bowl-Bowling"
Cycloidal ruler\&compass geometry
Cycloid as brachistichrone
Cycloid as tautochrone
Cycloidulum vs Pendulum
Cycloidal geometry of flying levers
Practical poolhall application

2D Spherical pendulum or "Bowl-Bowling"

Spherical coordinates: $\left\{q^{l}=r, q^{2}=\theta, q^{3}=\phi\right\}$ obvious choice:
$x=x^{l}=r \sin \theta \cos \phi, \quad y=x^{2}=r \sin \theta \sin \phi, \quad z=x^{3}=r \cos \theta$,

2D Spherical pendulum or "Bowl-Bowling"

Spherical coordinates: $\left\{q^{l}=r, q^{2}=\theta, q^{3}=\phi\right\}$ obvious choice:
$x=x^{l}=r \sin \theta \cos \phi, \quad y=x^{2}=r \sin \theta \sin \phi, \quad z=x^{3}=r \cos \theta$,
Jacobian matrices and determinants:
$J=\left(\begin{array}{ccc}\mathbf{E}_{\mathrm{r}} & \mathbf{E}_{\theta} & \mathbf{E}_{\phi} \\ \frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} & \frac{\partial x}{\partial \phi} \\ \frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta} & \frac{\partial y}{\partial \phi} \\ \frac{\partial z}{\partial r} & \frac{\partial z}{\partial \theta} & \frac{\partial z}{\partial \phi}\end{array}\right)=\left(\begin{array}{ccc}\sin \theta \cos \phi & r \cos \theta \cos \phi & -r \sin \theta \sin \phi \\ \sin \theta \sin \phi & r \cos \theta \sin \phi & r \sin \theta \cos \phi \\ \cos \theta & -r \sin \theta & 0\end{array}\right) \xrightarrow[\substack{\theta=\pi / 2 \\ r=\rho}]{\longrightarrow}\left(\begin{array}{ccc}\cos \phi & 0 & -\rho \sin \phi \\ \sin \phi & 0 & \rho \cos \phi \\ 0 & -\rho & 0\end{array}\right) \quad$ Reduced to cylindrical coordinates:

2D Spherical pendulum or "Bowl-Bowling"

Spherical coordinates: $\left\{q^{l}=r, q^{2}=\theta, q^{3}=\phi\right\}$ obvious choice:
$x=x^{l}=r \sin \theta \cos \phi, \quad y=x^{2}=r \sin \theta \sin \phi, \quad z=x^{3}=r \cos \theta$,
Jacobian matrices and determinants:
Reduced to cylindrical coordinates:
$J=\left(\begin{array}{ccc}\frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} & \frac{\partial x}{\partial \phi} \\ \frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta} & \frac{\partial y}{\partial \phi} \\ \partial z & \partial z & \partial z\end{array}\right)=\left(\begin{array}{ccc}\sin \theta \cos \phi & r \cos \theta \cos \phi & -r \sin \theta \sin \phi \\ \sin \theta \sin \phi & r \cos \theta \sin \phi & r \sin \theta \cos \phi \\ \cos \theta & -r \sin \theta & 0\end{array}\right) \xrightarrow[\substack{\theta=\pi / 2 \\ r=\rho}]{ }\left(\begin{array}{ccc}\cos \phi & 0 & -\rho \sin \phi \\ \sin \phi & 0 & \rho \cos \phi \\ 0 & -\rho & 0\end{array}\right) \quad \operatorname{det} J=\operatorname{det} J^{\mathrm{T}}=\frac{\partial\{x y z\}}{\partial\{r \theta \phi\}}=r^{2} \sin \theta \xrightarrow[\theta=\pi / 2]{r=\rho} \rho^{2}$

Covariant metric $g_{\mu \nu}$ is matrix product $g=J^{T} \cdot J$ of Jacobian and its transpose. OCC g's are diagonal.
Covariant: $g_{r r}=\mathbf{E}_{r} \cdot \mathbf{E}_{r}=1, g_{\theta \theta}=\mathbf{E}_{\theta} \cdot \mathbf{E}_{\theta}=r^{2}, g_{\phi \phi}=\mathbf{E}_{\phi} \cdot \mathbf{E}_{\phi}=r^{2} \sin ^{2} \theta$,
Contravariant: $\quad g^{r r}=1, \quad g^{\theta \theta}=1 / r^{2}, \quad g^{\phi \phi}=1 / r^{2} \sin ^{2} \theta$.

2D Spherical pendulum or "Bowl-Bowling"

Spherical coordinates: $\left\{q^{1}=r, q^{2}=\theta, q^{3}=\phi\right\}$ obvious choice:
$x=x^{l}=r \sin \theta \cos \phi, \quad y=x^{2}=r \sin \theta \sin \phi, \quad z=x^{3}=r \cos \theta$,
Jacobian matrices and determinants:

$$
\begin{aligned}
& \mathbf{E}_{\mathrm{r}} \\
& \mathbf{E}_{\theta} \\
& \mathbf{E}_{\phi} \\
& J=\left(\begin{array}{ccc}
\frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} & \frac{\partial x}{\partial \phi} \\
\frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta} & \frac{\partial y}{\partial \phi} \\
\frac{\partial z}{\partial r} & \frac{\partial z}{\partial \theta} & \frac{\partial z}{\partial \phi}
\end{array}\right)=\left(\begin{array}{ccc}
\sin \theta \cos \phi & r \cos \theta \cos \phi & -r \sin \theta \sin \phi \\
\sin \theta \sin \phi & r \cos \theta \sin \phi & r \sin \theta \cos \phi \\
\cos \theta & -r \sin \theta & 0
\end{array}\right) \xrightarrow[\substack{\theta=\pi / 2 \\
r=\rho}]{ } \quad \text { Reduced to cylindrical coordinates: }
\end{aligned}
$$

Covariant metric $g_{\mu \nu}$ is matrix product $g=J T \cdot J$ of Jacobian and its transpose. OCC g 's are diagonal.
Covariant: $g_{r r}=\mathbf{E}_{r} \cdot \mathbf{E}_{r}=1, g_{\theta \theta}=\mathbf{E}_{\theta} \cdot \mathbf{E}_{\theta}=r^{2}, g_{\phi \phi}=\mathbf{E}_{\phi} \cdot \mathbf{E}_{\phi}=r^{2} \sin ^{2} \theta$,
Contravariant: $\quad g^{r r}=1, \quad g^{\theta \theta}=1 / r^{2}, \quad g^{\phi \phi}=1 / r^{2} \sin ^{2} \theta$.

$$
\text { (Lagrangian form) } \quad \text { (Hamiltonian form) }
$$

$$
\begin{aligned}
T & =\frac{m}{2}\left(g_{r r} \dot{r}^{2}+g_{\theta \theta} \dot{\theta}^{2}+g_{\phi \phi} \dot{\phi}^{2}\right)=\frac{1}{2 m}\left(g^{r r} p_{r}^{2}+g^{\theta \theta} p_{\theta}{ }^{2}+g^{\phi \phi} p_{\phi}^{2}\right) \\
& =\frac{1}{2}\left(\gamma_{r r} \dot{r}^{2}+\gamma_{\theta \theta} \dot{\theta}^{2}+\gamma_{\phi \phi} \dot{\phi}^{2}\right)=\frac{1}{2}\left(\gamma^{r r} p_{r}^{2}+\gamma^{\theta \theta} p_{\theta}{ }^{2}+\gamma^{\phi \phi} p_{\phi}{ }^{2}\right) \\
& =\frac{m}{2}\left(\dot{r}^{2}+r^{2} \dot{\theta}^{2}+r^{2} \sin ^{2} \theta \dot{\phi}^{2}\right)=\frac{1}{2 m}\left(p_{r}^{2}+\frac{p_{\theta}{ }^{2}}{r^{2}}+\frac{p_{\phi}{ }^{2}}{r^{2} \sin ^{2} \theta}\right)
\end{aligned}
$$

2D Spherical pendulum or "Bowl-Bowling"

Spherical coordinates: $\left\{q^{l}=r, q^{2}=\theta, q^{3}=\phi\right\}$ obvious choice:

$$
x=x^{1}=r \sin \theta \cos \phi, \quad y=x^{2}=r \sin \theta \sin \phi, \quad z=x^{3}=r \cos \theta,
$$

Jacobian matrices and determinants:

$$
\operatorname{det} J=\operatorname{det} J^{\mathrm{T}}=\frac{\partial\{x y z\}}{\partial\{r \theta \phi\}}=r^{2} \sin \theta \xrightarrow[\substack{\theta=\pi / 2 \\ r=\rho}]{ } \rho^{2}
$$

Covariant metric $g_{\mu \nu}$ is matrix product $g=J^{T} \cdot J$ of Jacobian and its transpose. OCC g's are diagonal.
Covariant: $g_{r r}=\mathbf{E}_{r} \cdot \mathbf{E}_{r}=1, g_{\theta \theta}=\mathbf{E}_{\theta} \cdot \mathbf{E}_{\theta}=r^{2}, g_{\phi \phi}=\mathbf{E}_{\phi} \cdot \mathbf{E}_{\phi}=r^{2} \sin ^{2} \theta$,
Contravariant: $\quad g^{r r}=1, \quad g^{\theta \theta}=1 / r^{2}, \quad g^{\phi \phi}=1 / r^{2} \sin ^{2} \theta$.
(Lagrangian form) (Hamiltonian form)

$$
\begin{aligned}
T & =\frac{m}{2}\left(g_{r r} \dot{r}^{2}+g_{\theta \theta} \dot{\theta}^{2}+g_{\phi \phi} \dot{\phi}^{2}\right)=\frac{1}{2 m}\left(g^{r r} p_{r}^{2}+g^{\theta \theta} p_{\theta}^{2}+g^{\phi \phi} p_{\phi}^{2}\right) \\
& =\frac{1}{2}\left(\gamma_{r r} \dot{r}^{2}+\gamma_{\theta \theta} \dot{\theta}^{2}+\gamma_{\phi \phi} \dot{\phi}^{2}\right)=\frac{1}{2}\left(\gamma^{r r} p_{r}^{2}+\gamma^{\theta \theta} p_{\theta}^{2}+\gamma^{\phi \phi} p_{\phi}^{2}\right) \\
& =\frac{m}{2}\left(\dot{r}^{2}+r^{2} \dot{\theta}^{2}+r^{2} \sin ^{2} \theta \dot{\phi}^{2}\right)=\frac{1}{2 m}\left(p_{r}^{2}+\frac{p_{\theta}^{2}}{r^{2}}+\frac{p_{\phi}^{2}}{r^{2} \sin ^{2} \theta}\right)
\end{aligned}
$$

Spherical coordinates with constant radius r implies conserved azimuthal momentum:

$$
p_{\phi} \equiv \frac{\partial T}{\partial \dot{\phi}}=m\left(R^{2} \sin ^{2} \theta\right) \dot{\phi}=\text { const } .
$$

$$
\begin{aligned}
& \begin{array}{lll}
\mathbf{E}_{\mathrm{r}} & \mathbf{E}_{\theta} & \mathbf{E}_{\phi}
\end{array} \\
& J=\left(\begin{array}{ccc}
\frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} & \frac{\partial x}{\partial \phi} \\
\frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta} & \frac{\partial y}{\partial \phi} \\
\frac{\partial z}{\partial r} & \frac{\partial z}{\partial \theta} & \frac{\partial z}{\partial \phi}
\end{array}\right)=\left(\begin{array}{ccc}
\sin \theta \cos \phi & r \cos \theta \cos \phi & -r \sin \theta \sin \phi \\
\sin \theta \sin \phi & r \cos \theta \sin \phi & r \sin \theta \cos \phi \\
\cos \theta & -r \sin \theta & 0
\end{array}\right) \xrightarrow[\substack{\theta=\pi / 2 \\
r=\rho}]{ }\left(\begin{array}{ccc}
\cos \phi & 0 & -\rho \sin \phi \\
\sin \phi & 0 & \rho \cos \phi \\
0 & -\rho & 0
\end{array}\right)
\end{aligned}
$$

2D Spherical pendulum or "Bowl-Bowling"

Spherical coordinates: $\left\{q^{l}=r, q^{2}=\theta, q^{3}=\phi\right\}$ obvious choice:
$x=x^{l}=r \sin \theta \cos \phi, \quad y=x^{2}=r \sin \theta \sin \phi, \quad z=x^{3}=r \cos \theta$,
Jacobian matrices and determinants:
$J=\left(\begin{array}{ccc}\left.\begin{array}{ccc}\mathbf{E}_{\mathrm{r}} & \mathbf{E}_{\theta} & \mathbf{E}_{\phi} \\ \frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} & \frac{\partial x}{\partial \phi} \\ \frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta} & \frac{\partial y}{\partial \phi} \\ \frac{\partial z}{\partial r} & \frac{\partial z}{\partial \theta} & \frac{\partial z}{\partial \phi}\end{array}\right)=\left(\begin{array}{ccc}\sin \theta \cos \phi & r \cos \theta \cos \phi & -r \sin \theta \sin \phi \\ \sin \theta \sin \phi & r \cos \theta \sin \phi & r \sin \theta \cos \phi \\ \cos \theta & -r \sin \theta & 0\end{array}\right) \xrightarrow[\substack{\theta=\pi / 2 \\ r=\rho}]{ }\left(\begin{array}{ccc}\cos \phi & 0 & -\rho \sin \phi \\ \sin \phi & 0 & \rho \cos \phi \\ 0 & -\rho & 0\end{array}\right)\end{array}\right.$ $\operatorname{det} J=\operatorname{det} J^{\mathrm{T}}=\frac{\partial\{x y z\}}{\partial\{r \theta \phi\}}=r^{2} \sin \theta \xrightarrow[\substack{\theta=\pi / 2 \\ r=\rho}]{ } \rho^{2}$

Covariant metric $g_{\mu \nu}$ is matrix product $g=J T \cdot J$ of Jacobian and its transpose. OCC g 's are diagonal.
Covariant: $g_{r r}=\mathbf{E}_{r} \cdot \mathbf{E}_{r}=1, g_{\theta \theta}=\mathbf{E}_{\theta} \cdot \mathbf{E}_{\theta}=r^{2}, g_{\phi \phi}=\mathbf{E}_{\phi} \cdot \mathbf{E}_{\phi}=r^{2} \sin ^{2} \theta$,
Contravariant: $\quad g^{r r}=1, \quad g^{\theta \theta}=1 / r^{2}, \quad g^{\phi \phi}=1 / r^{2} \sin ^{2} \theta$.
(Lagrangian form) (Hamiltonian form)

$$
\begin{aligned}
T & =\frac{m}{2}\left(g_{r r} \dot{r}^{2}+g_{\theta \theta} \dot{\theta}^{2}+g_{\phi \phi} \dot{\phi}^{2}\right)=\frac{1}{2 m}\left(g^{r r} p_{r}{ }^{2}+g^{\theta \theta} p_{\theta}{ }^{2}+g^{\phi \phi} p_{\phi}{ }^{2}\right) \\
& =\frac{1}{2}\left(\gamma_{r r} \dot{r}^{2}+\gamma_{\theta \theta} \dot{\theta}^{2}+\gamma_{\phi \phi} \dot{\phi}^{2}\right)=\frac{1}{2}\left(\gamma^{r r} p_{r}^{2}+\gamma^{\theta \theta} p_{\theta}{ }^{2}+\gamma^{\phi \phi} p_{\phi}{ }^{2}\right) \\
& =\frac{m}{2}\left(\dot{r}^{2}+r^{2} \dot{\theta}^{2}+r^{2} \sin ^{2} \theta \dot{\phi}^{2}\right)=\frac{1}{2 m}\left(p_{r}{ }^{2}+\frac{p_{\theta}{ }^{2}}{r^{2}}+\frac{p_{\phi}{ }^{2}}{r^{2} \sin ^{2} \theta}\right)
\end{aligned}
$$

Spherical coordinates with constant radius r implies conserved azimuthal momentum:

$$
p_{\phi} \equiv \frac{\partial L}{\partial \dot{\phi}}=\frac{\partial T}{\partial \dot{\phi}}=m\left(R^{2} \sin ^{2} \theta\right) \dot{\phi}=\text { const } .
$$

Total Energy from Hamiltonian $E=T+V($ gravity $)=$ const . :

$$
E=\frac{m R^{2}}{2} \dot{\theta}^{2}+V^{\text {effective }}(\theta)=\frac{m R^{2}}{2} \dot{\theta}^{2}+\frac{p_{\phi}^{2}}{2 m R^{2} \sin ^{2} \theta}+m g R \cos \theta=\alpha \dot{\theta}^{2}+\frac{\delta}{\sin ^{2} \theta}+\gamma \cos \theta
$$

Let : $\quad \alpha=\frac{m R^{2}}{2}, \quad \delta=\frac{p_{\phi}^{2}}{2 m R^{2}}, \quad \gamma=m g R \quad$ where: $\quad p_{\phi}=m R^{2} \sin ^{2} \theta(\dot{\phi})$

2D Spherical pendulum or "Bowl-Bowling"

Total Energy from Hamiltonian $E=T+V($ gravity $)=$ const . :
$E=\frac{m R^{2}}{2} \dot{\theta}^{2}+V^{\text {effective }}(\theta)=\alpha \dot{\theta}^{2}+\frac{\delta}{\sin ^{2} \theta}+\gamma \cos \theta$
Let: $\quad \alpha=\frac{m R^{2}}{2}, \quad \delta=\frac{p_{\phi}^{2}}{2 m R^{2}}, \quad \gamma=m g R \quad$ where: $\quad p_{\phi}=m R^{2} \sin ^{2} \theta(\dot{\phi})$

2D Spherical pendulum or "Bowl-Bowling"

Total Energy from Hamiltonian $E=T+V($ gravity $)=$ const . :
$E=\frac{m R^{2}}{2} \dot{\theta}^{2}+V^{\text {effective }}(\theta)=\alpha \dot{\theta}^{2}+\frac{\delta}{\sin ^{2} \theta}+\gamma \cos \theta$
Let : $\quad \alpha=\frac{m R^{2}}{2}, \quad \delta=\frac{p_{\phi}^{2}}{2 m R^{2}}, \quad \gamma=m g R \quad$ where: $\quad p_{\phi}=m R^{2} \sin ^{2} \theta(\dot{\phi})$
Equilibrium point of stable orbit

$$
\frac{d V^{\text {effective }}(\theta)}{d \theta}=\frac{-2 \delta \cos \theta}{\sin ^{3} \theta}-\gamma \sin \theta=0=\frac{-2 p_{\phi}^{2} \cos \theta}{2 m R^{2} \sin ^{3} \theta}-m g R \sin \theta
$$

2D Spherical pendulum or "Bowl-Bowling"

Total Energy from Hamiltonian $E=T+V($ gravity $)=$ const.$:$
$E=\frac{m R^{2}}{2} \dot{\theta}^{2}+V^{\text {effective }}(\theta)=\alpha \dot{\theta}^{2}+\frac{\delta}{\sin ^{2} \theta}+\gamma \cos \theta$
Let : $\quad \alpha=\frac{m R^{2}}{2}, \quad \delta=\frac{p_{\phi}^{2}}{2 m R^{2}}, \quad \gamma=m g R \quad$ where: $\quad p_{\phi}=m R^{2} \sin ^{2} \theta(\dot{\phi})$

Equilibrium point of stable orbit and small oscillation frequency near equilibrium:

$$
\frac{d V^{\text {effective }}(\theta)}{d \theta}=\frac{-2 \delta \cos \theta}{\sin ^{3} \theta}-\gamma \sin \theta=0=\frac{-2 p_{\phi}^{2} \cos \theta}{2 m R^{2} \sin ^{3} \theta}-m g R \sin \theta \quad\left(\omega_{\theta}^{\text {equil }}\right)^{2}=\left.\frac{1}{m R^{2}} \frac{d^{2} V^{\text {effective }}(\theta)}{d \theta^{2}}\right|_{\text {equil }}
$$

Total Energy from Hamiltonian $E=T+V($ gravity $)=$ const . :
$E=\frac{m R^{2}}{2} \dot{\theta}^{2}+V^{\text {effective }}(\theta)=\alpha \dot{\theta}^{2}+\frac{\delta}{\sin ^{2} \theta}+\gamma \cos \theta$
Let : $\quad \alpha=\frac{m R^{2}}{2}, \quad \delta=\frac{p_{\phi}^{2}}{2 m R^{2}}, \quad \gamma=m g R \quad$ where: $\quad p_{\phi}=m R^{2} \sin ^{2} \theta(\dot{\phi})$

Equilibrium point of stable orbit and small oscillation frequency near equilibrium:

$$
\begin{array}{lll}
\frac{d V^{\text {effective }}(\theta)}{d \theta}=\frac{-2 \delta \cos \theta}{\sin ^{3} \theta}-\gamma \sin \theta=0=\frac{-2 p_{\phi}^{2} \cos \theta}{2 m R^{2} \sin ^{3} \theta}-m g R \sin \theta & \left(\omega_{\theta}^{\text {equil }}\right)^{2}=\left.\frac{1}{m R^{2}} \frac{d^{2} V^{\text {effective }}(\theta)}{d \theta^{2}}\right|_{\text {equil }} \\
0=\left(m R^{2} \sin \theta\right) \dot{\phi}^{2} \cos \theta-m g R \sin \theta & \text { or: } \quad \dot{\phi}_{\text {equil }}^{2}=-\frac{g}{R \cos \theta_{\text {equil }}} & \text { (Polar angle librational frequency } \omega_{\theta}^{\text {equil }} \\
\text { is related to azimuthal frequency } \dot{\text { equil }} \text {. }_{2} \text {) }
\end{array}
$$

Total Energy from Hamiltonian $E=T+V($ gravity $)=$ const . :

$$
E=\frac{m R^{2}}{2} \dot{\theta}^{2}+V^{\text {effective }}(\theta)=\alpha \dot{\theta}^{2}+\frac{\delta}{\sin ^{2} \theta}+\gamma \cos \theta
$$

Let : $\quad \alpha=\frac{m R^{2}}{2}, \quad \delta=\frac{p_{\phi}^{2}}{2 m R^{2}}, \quad \gamma=m g R \quad$ where: $\quad p_{\phi}=m R^{2} \sin ^{2} \theta(\dot{\phi})$

Equilibrium point of stable orbit and small oscillation frequency near equilibrium:

$$
\begin{aligned}
& \frac{d V^{\text {effective }}(\theta)}{d \theta}=\frac{-2 \delta \cos \theta}{\sin ^{3} \theta}-\gamma \sin \theta=0=\frac{-2 p_{\phi}^{2} \cos \theta}{2 m R^{2} \sin ^{3} \theta}-m g R \sin \theta \\
& 0=\left(m R^{2} \sin \theta\right) \dot{\phi}^{2} \cos \theta-m g R \sin \theta \quad \text { or: } \quad \dot{\phi}_{\text {equil }}^{2}=-\frac{g}{R \cos \theta_{\text {equil }}}
\end{aligned}
$$

> V-Derivative for small oscillation frequency: $\begin{aligned} \frac{d^{2} V^{\text {effective }}(\theta)}{d \theta^{2}} & =-\gamma \cos \theta+\frac{2 \delta \sin \theta}{\sin ^{3} \theta}+\frac{3 \cdot 2 \delta \cos ^{2} \theta}{\sin ^{4} \theta}=-\gamma \cos \theta+2 \delta \frac{\sin ^{2} \theta+3 \cos ^{2} \theta}{\sin ^{4} \theta} \\ & =-m g R \cos \theta+\frac{2\left(m R^{2} \sin ^{2} \theta \quad \dot{\phi}\right)^{2}}{2 m R^{2}} \frac{1+2 \cos ^{2} \theta}{\sin ^{4} \theta} \\ & =-m g R \cos \theta+m R^{2} \dot{\phi}^{2}\left(1+2 \cos ^{2} \theta\right)\end{aligned}$

$$
\left(\omega_{\theta}^{\text {equil }}\right)^{2}=\left.\frac{1}{m R^{2}} \frac{d^{2} V^{\text {effective }}(\theta)}{d \theta^{2}}\right|_{\text {equil }}
$$

(Polar angle librational frequency $\omega_{\theta}^{\text {equil }}$ is related to azimuthal frequency $\dot{\phi}_{\text {equil }}^{2}$.)

Total Energy from Hamiltonian $E=T+V($ gravity $)=$ const . :

$$
E=\frac{m R^{2}}{2} \dot{\theta}^{2}+V^{\text {effective }}(\theta)=\alpha \dot{\theta}^{2}+\frac{\delta}{\sin ^{2} \theta}+\gamma \cos \theta
$$

Let : $\quad \alpha=\frac{m R^{2}}{2}, \quad \delta=\frac{p_{\phi}^{2}}{2 m R^{2}}, \quad \gamma=m g R \quad$ where: $\quad p_{\phi}=m R^{2} \sin ^{2} \theta(\dot{\phi})$

Equilibrium point of stable orbit and small oscillation frequency near equilibrium:

$$
\begin{aligned}
& \frac{d V^{\text {effective }}(\theta)}{d \theta}=\frac{-2 \delta \cos \theta}{\sin ^{3} \theta}-\gamma \sin \theta=0=\frac{-2 p_{\phi}^{2} \cos \theta}{2 m R^{2} \sin ^{3} \theta}-m g R \sin \theta \\
& 0=\left(m R^{2} \sin \theta\right) \dot{\phi}^{2} \cos \theta-m g R \sin \theta \quad \text { or: } \quad \dot{\phi}_{\text {equil }}^{2}=-\frac{g}{R \cos \theta_{\text {equil }}}
\end{aligned}
$$

$$
\left(\omega_{\theta}^{\text {equil }}\right)^{2}=\left.\frac{1}{m R^{2}} \frac{d^{2} V^{\text {effective }}(\theta)}{d \theta^{2}}\right|_{\text {equil }}
$$

(Polar angle librational frequency $\omega_{\theta}^{\text {equil }}$ is related to azimuthal frequency $\dot{\phi}_{\text {equil }}^{2}$.)

V-Derivative for small oscillation frequency:

$$
\begin{aligned}
\frac{d^{2} V^{\text {effective }}(\theta)}{d \theta^{2}} & =-\gamma \cos \theta+\frac{2 \delta \sin \theta}{\sin ^{3} \theta}+\frac{3 \cdot 2 \delta \cos ^{2} \theta}{\sin ^{4} \theta}=-\gamma \cos \theta+2 \delta \frac{\sin ^{2} \theta+3 \cos ^{2} \theta}{\sin ^{4} \theta} \\
& =-m g R \cos \theta+\frac{2\left(m R^{2} \sin ^{2} \theta \quad \dot{\phi}\right)^{2}}{2 m R^{2}} \frac{1+2 \cos ^{2} \theta}{\sin ^{4} \theta} \\
& =-m g R \cos \theta+m R^{2} \dot{\phi}^{2}\left(1+2 \cos ^{2} \theta\right)
\end{aligned}
$$

At equilibrium:

$$
\begin{aligned}
\left.\frac{d^{2} V^{\text {effective }}(\theta)}{d \theta^{2}}\right|_{\text {equil }}= & -m g R \cos \theta_{\text {equil }}+m R^{2}\left(-\frac{g}{R \cos \theta_{\text {equil }}}\right)\left(1+2 \cos ^{2} \theta_{\text {equil }}\right) \\
& =-\frac{m g R}{\cos \theta_{\text {equil }}}\left(1+3 \cos ^{2} \theta_{\text {equil }}\right)
\end{aligned}
$$

Total Energy from Hamiltonian $E=T+V($ gravity $)=$ const . :

$$
E=\frac{m R^{2}}{2} \dot{\theta}^{2}+V^{\text {effective }}(\theta)=\alpha \dot{\theta}^{2}+\frac{\delta}{\sin ^{2} \theta}+\gamma \cos \theta
$$

Let : $\quad \alpha=\frac{m R^{2}}{2}, \quad \delta=\frac{p_{\phi}^{2}}{2 m R^{2}}, \quad \gamma=m g R \quad$ where: $\quad p_{\phi}=m R^{2} \sin ^{2} \theta(\dot{\phi})$
Equilibrium point of stable orbit and small oscillation frequency near equilibrium:

$$
\begin{aligned}
& \frac{d V^{\text {effective }}(\theta)}{d \theta}=\frac{-2 \delta \cos \theta}{\sin ^{3} \theta}-\gamma \sin \theta=0=\frac{-2 p_{\phi}^{2} \cos \theta}{2 m R^{2} \sin ^{3} \theta}-m g R \sin \theta \\
& 0=\left(m R^{2} \sin \theta\right) \dot{\phi}^{2} \cos \theta-m g R \sin \theta \quad \text { or: } \quad \dot{\phi}_{\text {equil }}^{2}=-\frac{g}{R \cos \theta_{\text {equil }}}
\end{aligned}
$$

$$
\left(\omega_{\theta}^{\text {equil }}\right)^{2}=\left.\frac{1}{m R^{2}} \frac{d^{2} V^{\text {effective }}(\theta)}{d \theta^{2}}\right|_{\text {equil }}
$$

(Polar angle librational frequency $\omega_{\theta}^{\text {equil }}$ is related to azimuthal frequency $\dot{\phi}_{\text {equil }}^{2}$.)

V-Derivative for small oscillation frequency:

$$
\begin{aligned}
\frac{d^{2} V^{\text {effective }}(\theta)}{d \theta^{2}} & =-\gamma \cos \theta+\frac{2 \delta \sin \theta}{\sin ^{3} \theta}+\frac{3 \cdot 2 \delta \cos ^{2} \theta}{\sin ^{4} \theta}=-\gamma \cos \theta+2 \delta \frac{\sin ^{2} \theta+3 \cos ^{2} \theta}{\sin ^{4} \theta} \\
& =-m g R \cos \theta+\frac{2\left(m R^{2} \sin ^{2} \theta \quad \dot{\phi}\right)^{2}}{2 m R^{2}} \frac{1+2 \cos ^{2} \theta}{\sin ^{4} \theta} \\
& =-m g R \cos \theta+m R^{2} \dot{\phi}^{2}\left(1+2 \cos ^{2} \theta\right)
\end{aligned}
$$

At equilibrium:
$\left.\frac{d^{2} V^{\text {effective }}(\theta)}{d \theta^{2}}\right|_{\text {equil }}=$
$=-m g R \cos \theta_{\text {equil }}+m R^{2}\left(-\frac{m g R}{R \cos \theta_{\text {equil }}}\right)\left(1+2 \cos ^{2} \theta_{\text {equil }}\right)$
$\cos \theta_{\text {equil }}$
$\left(1+3 \cos ^{2} \theta_{\text {equil }}\right)$
$\left(\omega_{\theta}^{\text {equil }}\right)^{2} /\left(\dot{\phi}_{\text {equil }}^{2}\right)=\left(1+3 \cos ^{2} \theta_{\text {equil }}\right)$

Total Energy from Hamiltonian $E=T+V($ gravity $)=$ const . :
$E=\frac{m R^{2}}{2} \dot{\theta}^{2}+V^{\text {effective }}(\theta)=\alpha \dot{\theta}^{2}+\frac{\delta}{\sin ^{2} \theta}+\gamma \cos \theta$
Let : $\quad \alpha=\frac{m R^{2}}{2}, \quad \delta=\frac{p_{\phi}^{2}}{2 m R^{2}}, \quad \gamma=m g R \quad$ where: $\quad p_{\phi}=m R^{2} \sin ^{2} \theta(\dot{\phi})$
Equilibrium point of stable orbit and small oscillation frequency near equilibrium:

$$
\begin{aligned}
& \frac{d V^{\text {effective }}(\theta)}{d \theta}=\frac{-2 \delta \cos \theta}{\sin ^{3} \theta}-\gamma \sin \theta=0=\frac{-2 p_{\phi}^{2} \cos \theta}{2 m R^{2} \sin ^{3} \theta}-m g R \sin \theta \\
& 0=\left(m R^{2} \sin \theta\right) \dot{\phi}^{2} \cos \theta-m g R \sin \theta \quad \text { or: } \quad \dot{\phi}_{\text {equil }}^{2}=-\frac{g}{R \cos \theta_{\text {equil }}}
\end{aligned}
$$

$$
\left(\omega_{\theta}^{\text {equil }}\right)^{2}=\left.\frac{1}{m R^{2}} \frac{d^{2} V^{\text {effective }}(\theta)}{d \theta^{2}}\right|_{\text {equil }}
$$

(Polar angle librational frequency $\omega_{\theta}^{\text {equil }}$ is related to azimuthal frequency $\dot{\phi}_{\text {equil }}^{2}$.)

V-Derivative for small oscillation frequency:

$$
\begin{aligned}
& \frac{d^{2} V^{\text {effective }}(\theta)}{d \theta^{2}}=-\gamma \cos \theta+\frac{2 \delta \sin \theta}{\sin ^{3} \theta}+\frac{3 \cdot 2 \delta \cos ^{2} \theta}{\sin ^{4} \theta}=-\gamma \cos \theta+2 \delta \frac{\sin ^{2} \theta+3 \cos ^{2} \theta}{\sin ^{4} \theta} \\
& =-m g R \cos \theta+\frac{\dot{\theta}}{2\left(m R^{2} \sin ^{2} \theta \quad \dot{\phi}\right)^{2}} \frac{1+2 \cos ^{2} \theta}{\sin ^{4} \theta} \\
& =-m g R \cos \theta+m R^{2} \dot{\phi}^{2}\left(1+2 \cos ^{2} \theta\right) \\
& \left.\frac{d^{2} V^{\text {effective }}(\theta)}{d \theta^{2}}\right|_{\text {equil }}=-m g R \cos \theta_{\text {equil }}+m R^{2}\left(-\frac{g}{R \cos \theta_{\text {equil }}}\right)\left(1+2 \cos ^{2} \theta_{\text {equil }}\right) \\
& =-\frac{m g R}{\cos \theta_{\text {equil }}}\left(1+3 \cos ^{2} \theta_{\text {equil }}\right) \\
& \left(\omega_{\theta}^{\text {equil }}\right)^{2} /\left(\dot{\phi}_{\text {equil }}^{2}\right)=\left(1+3 \cos ^{2} \theta_{\text {equil }}\right)
\end{aligned}
$$

At bottom $\theta \rightarrow \pi$ the ratio of in-out ω_{θ} to circle ω_{ϕ} approaches $2: 1$
At equator $\theta \rightarrow \pi / 2$ the ratio approaches $1: 1$.

retrograde precession of nodes

2D Spherical pendulum or "Bowl-Bowling"

Total Energy from Hamiltonian $E=T+V($ gravity $)=$ const . :
$E=\frac{m R^{2}}{2} \dot{\theta}^{2}+V^{\text {effective }}(\theta)=\alpha \dot{\theta}^{2}+\frac{\delta}{\sin ^{2} \theta}+\gamma \cos \theta$
Let : $\quad \alpha=\frac{m R^{2}}{2}, \quad \delta=\frac{p_{\phi}^{2}}{2 m R^{2}}, \quad \gamma=m g R \quad$ where: $\quad p_{\phi}=m R^{2} \sin ^{2} \theta(\dot{\phi})$
Equilibrium point of stable orbit and small oscillation frequency near equilibrium:

$$
\begin{aligned}
& \frac{d V^{\text {effective }}(\theta)}{d \theta}=\frac{-2 \delta \cos \theta}{\sin ^{3} \theta}-\gamma \sin \theta=0=\frac{-2 p_{\phi}^{2} \cos \theta}{2 m R^{2} \sin ^{3} \theta}-m g R \sin \theta \\
& 0=\left(m R^{2} \sin \theta\right) \dot{\phi}^{2} \cos \theta-m g R \sin \theta \quad \text { or: } \quad \dot{\phi}_{\text {equil }}^{2}=-\frac{g}{R \cos \theta_{\text {equil }}}
\end{aligned}
$$

$$
\left(\omega_{\theta}^{\text {equil }}\right)^{2}=\left.\frac{1}{m R^{2}} \frac{d^{2} V^{\text {effective }}(\theta)}{d \theta^{2}}\right|_{\text {equil }}
$$

(Polar angle librational frequency $\omega_{\theta}^{\text {equil }}$ is related to azimuthal frequency $\dot{\phi}_{\text {equil }}^{2}$.)

V-Derivative for small oscillation frequency:

$$
\begin{aligned}
& \frac{d^{2} V^{\text {effective }}(\theta)}{d \theta^{2}}=-\gamma \cos \theta+\frac{2 \delta \sin \theta}{\sin ^{3} \theta}+\frac{3 \cdot 2 \delta \cos ^{2} \theta}{\sin ^{4} \theta}=-\gamma \cos \theta+2 \delta \frac{\sin ^{2} \theta+3 \cos ^{2} \theta}{\sin ^{4} \theta} \\
& \left.=-m g R \cos \theta+\frac{\dot{\theta}}{2 m R^{2}} \frac{2\left(m R^{2} \sin ^{2} \theta\right.}{} \quad \dot{\phi}\right)^{2} \frac{1+2 \cos ^{2} \theta}{\sin ^{4} \theta} \\
& =-m g R \cos \theta+m R^{2} \dot{\phi}^{2}\left(1+2 \cos ^{2} \theta\right) \\
& \left.\frac{d^{2} V^{\text {effective }}(\theta)}{d \theta^{2}}\right|_{\text {equil }}=-m g R \cos \theta_{\text {equil }}+m R^{2}\left(-\frac{g}{R \cos \theta_{\text {equil }}}\right)\left(1+2 \cos ^{2} \theta_{\text {equil }}\right) \\
& =-\frac{m g R}{\cos \theta_{\text {equil }}}\left(1+3 \cos ^{2} \theta_{\text {equil }}\right) \\
& \left(\omega_{\theta}^{\text {equil }}\right)^{2} /\left(\dot{\phi}_{\text {equil }}^{2}\right)=\left(1+3 \cos ^{2} \theta_{\text {equil }}\right)
\end{aligned}
$$

At bottom $\theta \rightarrow \pi$ the ratio of in-out ω_{θ} to circle ω_{ϕ} approaches $2: 1$
At equator $\theta \rightarrow \pi / 2$ the ratio approaches $1: 1$.

Ratio is between 2 and 1
(Usually irrational non-closed orbit).
($2: 1$ is like 2 D IHO, but $1: 1$ is like coulomb orbit.)

retrograde precession of nodes

Separation of GCC Equations: Effective Potentials

Small radial oscillations
2D Spherical pendulum or "Bowl-Bowling"
\longrightarrow Cycloidal ruler\&compass geometry
Cycloid as brachistichrone
Cycloid as tautochrone
Cycloidulum vs Pendulum
Cycloidal geometry of flying levers
Practical poolhall application

Here the radius is plotted as an irrational $R=3 / \pi=0.955$ length so rolling by rational angle $\phi=m \pi / n$ is a rational length of rolled -out circumference $R \phi=(3 / \pi) m \pi / n=3 m / n$. Diameter is $2 R=6 / \pi=1.91$

Here the radius is plotted as an irrational $R=3 / \pi=0.955$ length so rolling by rational angle $\phi=m \pi / n$ is a rational length of rolled -out circumference $R \phi=(3 / \pi) m \pi / n=3 \mathrm{~m} / \mathrm{n}$. Diameter is $2 R=6 / \pi=1.91$
Red circle rolls left-to-right on $y=3.82$ ceiling
Contact point goes from ($\mathrm{x}=6 / 2, \mathrm{y}=3.82$) to $\mathrm{x}=0$.
Contact point goes from $(\mathrm{x}=6 / 2, \mathrm{y}=3.82)$ to $\mathrm{x}=0$.
Ceiling $\mathrm{y}=3.82$

Here the radius is plotted as an irrational $R=3 / \pi=0.955$ length so rolling by rational angle $\phi=m \pi / n$ is a rational length of rolled -out circumference $R \phi=(3 / \pi) m \pi / n=3 \mathrm{~m} / \mathrm{n}$. Diameter is $2 R=6 / \pi=1.91$
Red circle rolls left-to-right on $y=3.82$ ceiling Contact point goes from ($\mathrm{x}=6 / 2, \mathrm{y}=3.82$) to $\mathrm{x}=0$.
Ceiling $\mathrm{y}=3.82$

Here the radius is plotted as an irrational $R=3 / \pi=0.955$ length so rolling by rational angle $\phi=m \pi / n$ is a rational length of rolled -out circumference $R \phi=(3 / \pi) m \pi / n=3 \mathrm{~m} / \mathrm{n}$. Diameter is $2 R=6 / \pi=1.91$
Red circle rolls left-to-right on $y=3.82$ ceiling
Contact point goes from ($\mathrm{x}=6 / 2, \mathrm{y}=3.82$) to $\mathrm{x}=\underline{0}$.

Ceiling $y=1: 94-\ldots-\ldots$ -
Green circle rolls right-to-left on $y=1$ 1.91_ceiling
Contact point goes from $(x=0, y=1.91)$ to $x=6 / 2$.

2π	$11 \pi / 6$	$10 \pi / 6$	$9 \pi / 6$	$8 \pi / 6$	$7 \pi / 6$	π	$5 \pi / 6$	$2 \pi / 3$	$\pi / 2$	$\pi / 3$	$\pi / 6$

12	11	10	9	8	7	6	5	4	3	2	1	O'clock
$12 / 2$	$11 / 2$	$10 / 2$	$9 / 2$	$8 / 2$	$7 / 2$	$6 / 2$	$5 / 2$	$4 / 2$	$3 / 2$	$2 / 2$	$1 / 2$	Arc length $R \phi=(3 / \pi) \phi$

Separation of GCC Equations: Effective Potentials

Small radial oscillations
2D Spherical pendulum or "Bowl-Bowling"
Cycloidal ruler\&compass geometry
\longrightarrow Cycloid as brachistichrone
Cycloid as tautochrone
Cycloidulum vs Pendulum
Cycloidal geometry of flying levers
Practical poolhall application

The brachistichrone or minimum-time curve for a particle falling in a uniform gravitational potential. Its solution gives that of another problem, the tautochrone or equal-time period curve of Huygens. Energy conservation gives velocity v from gravitational g. Elapsed travel time t is to be minimized.

$$
\frac{d s}{d t}=v=\sqrt{2 g y}
$$

$$
t=\int d t=\int \frac{d s}{\sqrt{2 g y}}=\int d y \frac{\sqrt{1+x^{\prime 2}}}{\sqrt{2 g y}}=\int L d y
$$

The brachistichrone or minimum-time curve for a particle falling in a uniform gravitational potential. Its solution gives that of another problem, the tautochrone or equal-time period curve of Huygens. Energy conservation gives velocity v from gravitational g. Elapsed travel time t is to be minimized.

$$
\frac{d s}{d t}=v=\sqrt{2 g y} \quad t=\int d t=\int \frac{d s}{\sqrt{2 g y}}=\int d y \frac{\sqrt{1+x^{\prime 2}}}{\sqrt{2 g y}}=\int L d y
$$

A "pseudo-momentum" p_{x} for "pseudo-Lagrange" L in y-integral is constant if L is x-independent.

$$
p_{x}=\text { const. }=\frac{\partial L}{\partial x^{\prime}}=\frac{\partial}{\partial x^{\prime}} \frac{\sqrt{1+x^{\prime 2}}}{\sqrt{2 g y}}=\frac{x^{\prime}}{\sqrt{2 g y} \sqrt{1+x^{\prime 2}}}=\frac{1}{y^{\prime} \sqrt{2 g y} \sqrt{1+1 / y^{\prime 2}}} \text { where: } x^{\prime}=\frac{d x}{d y}=\frac{1}{y^{\prime}}
$$

The brachistichrone or minimum-time curve for a particle falling in a uniform gravitational potential. Its solution gives that of another problem, the tautochrone or equal-time period curve of Huygens. Energy conservation gives velocity v from gravitational g. Elapsed travel time t is to be minimized.

$$
\frac{d s}{d t}=v=\sqrt{2 g y} \quad t=\int d t=\int \frac{d s}{\sqrt{2 g y}}=\int d y \frac{\sqrt{1+x^{\prime 2}}}{\sqrt{2 g y}}=\int L d y
$$

A "pseudo-momentum" p_{x} for "pseudo-Lagrange" L in y-integral is constant if L is x-independent.

$$
p_{x}=\text { const. }=\frac{\partial L}{\partial x^{\prime}}=\frac{\partial}{\partial x^{\prime}} \frac{\sqrt{1+x^{\prime 2}}}{\sqrt{2 g y}}=\frac{x^{\prime}}{\sqrt{2 g y} \sqrt{1+x^{\prime 2}}}=\frac{1}{y^{\prime} \sqrt{2 g y} \sqrt{1+1 / y^{\prime 2}}} \text { where: } x^{\prime}=\frac{d x}{d y}=\frac{1}{y^{\prime}}
$$

Change variables from y to velocity v to simplify using: $v^{2}=2 g y, d y=\frac{v d v}{g}, \quad y^{\prime}=\frac{v}{g} \frac{d v}{d x}$

The brachistichrone or minimum-time curve for a particle falling in a uniform gravitational potential. Its solution gives that of another problem, the tautochrone or equal-time period curve of Huygens. Energy conservation gives velocity v from gravitational g. Elapsed travel time t is to be minimized.

$$
\frac{d s}{d t}=v=\sqrt{2 g y}
$$

$$
t=\int d t=\int \frac{d s}{\sqrt{2 g y}}=\int d y \frac{\sqrt{1+x^{\prime 2}}}{\sqrt{2 g y}}=\int L d y
$$

A "pseudo-momentum" p_{x} for "pseudo-Lagrange" L in y-integral is constant if L is x-independent.

$$
p_{x}=\text { const. }=\frac{\partial L}{\partial x^{\prime}}=\frac{\partial}{\partial x^{\prime}} \frac{\sqrt{1+x^{\prime 2}}}{\sqrt{2 g y}}=\frac{x^{\prime}}{\sqrt{2 g y} \sqrt{1+x^{\prime 2}}}=\frac{1}{y^{\prime} \sqrt{2 g y} \sqrt{1+1 / y^{\prime 2}}} \text { where: } x^{\prime}=\frac{d x}{d y}=\frac{1}{y^{\prime}}
$$

Change variables from y to velocity v to simplify using: $v^{2}=2 g y, d y=\frac{v d v}{g}, y^{\prime}=\frac{v}{g} \frac{d v}{d x}$

$$
p_{x}=\frac{1}{\sqrt{2 g y} \sqrt{y^{\prime 2}+1}}=\frac{1}{v \sqrt{\frac{v^{2}}{g^{2}}\left(\frac{d v}{d x}\right)^{2}+1}} \text { is: } p_{x}^{2} v^{2}=\frac{1}{\frac{v^{2}}{g^{2}}\left(\frac{d v}{d x}\right)^{2}+1} \text { is: } \frac{v^{2}}{g^{2}}\left(\frac{d v}{d x}\right)^{2}=\frac{1}{p_{x}^{2} v^{2}}-1=\frac{1-p_{x}^{2} v^{2}}{p_{x}^{2} v^{2}}
$$

The brachistichrone or minimum-time curve for a particle falling in a uniform gravitational potential. Its solution gives that of another problem, the tautochrone or equal-time period curve of Huygens. Energy conservation gives velocity v from gravitational g. Elapsed travel time t is to be minimized.

$$
\frac{d s}{d t}=v=\sqrt{2 g y}
$$

$$
t=\int d t=\int \frac{d s}{\sqrt{2 g y}}=\int d y \frac{\sqrt{1+x^{\prime 2}}}{\sqrt{2 g y}}=\int L d y
$$

A "pseudo-momentum" p_{x} for "pseudo-Lagrange" L in y-integral is constant if L is x-independent.
$p_{x}=$ const. $=\frac{\partial L}{\partial x^{\prime}}=\frac{\partial}{\partial x^{\prime}} \frac{\sqrt{1+x^{\prime 2}}}{\sqrt{2 g y}}=\frac{x^{\prime}}{\sqrt{2 g y} \sqrt{1+x^{\prime 2}}}=\frac{1}{y^{\prime} \sqrt{2 g y} \sqrt{1+1 / y^{\prime 2}}}$ where: $x^{\prime}=\frac{d x}{d y}=\frac{1}{y^{\prime}}$
Change variables from y to velocity v to simplify using: $v^{2}=2 g y, d y=\frac{v d v}{g}, \quad y^{\prime}=\frac{v}{g} \frac{d v}{d x}$
$p_{x}=\frac{1}{\sqrt{2 g y} \sqrt{y^{\prime 2}+1}}=\frac{1}{v \sqrt{\frac{v^{2}}{g^{2}}\left(\frac{d v}{d x}\right)^{2}+1}}$ is: $p_{x}^{2} v^{2}=\frac{1}{\frac{v^{2}}{g^{2}}\left(\frac{d v}{d x}\right)^{2}+1}$ is: $\frac{v^{2}}{g^{2}}\left(\frac{d v}{d x}\right)^{2}=\frac{1}{p_{x}^{2} v^{2}}-1=\frac{1-p_{x}^{2} v^{2}}{p_{x}^{2} v^{2}}$
$\left(\frac{d v}{d x}\right)^{2}=\frac{g^{2}}{v^{2}} \frac{1-p_{x}^{2} v^{2}}{p_{x}^{2} v^{2}}=\frac{g^{2}}{v^{2}} \frac{p_{x}^{-2}-v^{2}}{v^{2}}$ becomes: $\frac{d v}{d x}=\frac{g}{v^{2}} \sqrt{p_{x}^{-2}-v^{2}}$ and integral: $\int \frac{v^{2} d v}{g \sqrt{a^{2}-v^{2}}}=\int d x$ where: $a^{2}=p_{x}^{-2}$
An elementary integral results and suggests an elementary substitution $v=a \cos \theta$.

The brachistichrone or minimum-time curve for a particle falling in a uniform gravitational potential. Its solution gives that of another problem, the tautochrone or equal-time period curve of Huygens. Energy conservation gives velocity v from gravitational g. Elapsed travel time t is to be minimized.

$$
\frac{d s}{d t}=v=\sqrt{2 g y}
$$

$$
t=\int d t=\int \frac{d s}{\sqrt{2 g y}}=\int d y \frac{\sqrt{1+x^{\prime 2}}}{\sqrt{2 g y}}=\int L d y
$$

A "pseudo-momentum" p_{x} for "pseudo-Lagrange" L in y-integral is constant if L is x-independent.
$p_{x}=$ const. $=\frac{\partial L}{\partial x^{\prime}}=\frac{\partial}{\partial x^{\prime}} \frac{\sqrt{1+x^{\prime 2}}}{\sqrt{2 g y}}=\frac{x^{\prime}}{\sqrt{2 g y} \sqrt{1+x^{\prime 2}}}=\frac{1}{y^{\prime} \sqrt{2 g y} \sqrt{1+1 / y^{\prime 2}}}$ where: $x^{\prime}=\frac{d x}{d y}=\frac{1}{y^{\prime}}$
Change variables from y to velocity v to simplify using: $v^{2}=2 g y, d y=\frac{v d v}{g}, \quad y^{\prime}=\frac{v}{g} \frac{d v}{d x}$

$$
p_{x}=\frac{1}{\sqrt{2 g y} \sqrt{y^{\prime 2}+1}}=\frac{1}{v \sqrt{\frac{v^{2}}{g^{2}}\left(\frac{d v}{d x}\right)^{2}+1}} \text { is: } p_{x}^{2} v^{2}=\frac{1}{\frac{v^{2}}{g^{2}}\left(\frac{d v}{d x}\right)^{2}+1} \text { is: } \frac{v^{2}}{g^{2}}\left(\frac{d v}{d x}\right)^{2}=\frac{1}{p_{x}^{2} v^{2}}-1=\frac{1-p_{x}^{2} v^{2}}{p_{x}^{2} v^{2}}
$$

$\left(\frac{d v}{d x}\right)^{2}=\frac{g^{2}}{v^{2}} \frac{1-p_{x}^{2} v^{2}}{p_{x}^{2} v^{2}}=\frac{g^{2}}{v^{2}} \frac{p_{x}^{-2}-v^{2}}{v^{2}}$ becomes: $\frac{d v}{d x}=\frac{g}{v^{2}} \sqrt{p_{x}^{-2}-v^{2}}$ and integral: $\int \frac{v^{2} d v}{g \sqrt{a^{2}-v^{2}}}=\int d x \quad$ where: $a^{2}=p_{x}^{-2}$
An elementary integral results and suggests an elementary substitution $v=a \cos \theta$.

$$
\begin{array}{ll}
\int \frac{a^{2} \cos ^{2} \theta a \sin \theta d \theta}{g a \sin \theta}=\int \frac{a^{2}}{g} \cos ^{2} \theta d \theta=\int d x=\left[x=-\int \frac{a^{2}}{2 g}(1+\cos 2 \theta) d \theta=-\overline{-R(2 \theta+\sin 2 \theta)}\right. \\
v^{2}=2 g y=a^{2} \cos ^{2} \theta & \text { gives: } y=\frac{a^{2}}{2 g} \cos ^{2} \theta
\end{array} \text { where: } R=\frac{a^{2}}{4 g}
$$

Separation of GCC Equations: Effective Potentials

Small radial oscillations
2D Spherical pendulum or "Bowl-Bowling"
Cycloidal ruler\&compass geometry
\longrightarrow Cycloid as brachistichrone (With interesting linear dynamics)
Cycloid as tautochrone
Cycloidulum vs Pendulum
Cycloidal geometry of flying levers
Practical poolhall application

Some extraordinary properties of the cycloid are related to the constant p_{x} (pseudo-momentum)

$$
\begin{aligned}
& p_{x}=\frac{\partial L}{\partial x^{\prime}}=\frac{\partial}{\partial x^{\prime}} \frac{\sqrt{1+x^{\prime 2}}}{\sqrt{2 g y}}=\frac{x^{\prime}}{\sqrt{2 g y} \sqrt{1+x^{\prime 2}}}=\frac{1}{\sqrt{2 g y} \sqrt{y^{\prime 2}+1}} \text { where: } x^{\prime}=\frac{d x}{d y}=\frac{1}{y^{\prime}} \text { and: } p_{x}^{2}=\frac{1}{4 R g} \\
& \frac{1}{p_{x}^{2}}=\text { const. }=2 g y\left(y^{\prime 2}+1\right)=v^{2} \sec ^{2} \theta=a^{2}
\end{aligned}
$$

Some extraordinary properties of the cycloid are related to the constant p_{x} (pseudo-momentum)

$$
\begin{aligned}
& p_{x}=\frac{\partial L}{\partial x^{\prime}}=\frac{\partial}{\partial x^{\prime}} \frac{\sqrt{1+x^{\prime 2}}}{\sqrt{2 g y}}=\frac{x^{\prime}}{\sqrt{2 g y} \sqrt{1+x^{\prime 2}}}=\frac{1}{\sqrt{2 g y} \sqrt{y^{\prime 2}+1}} \text { where: } x^{\prime}=\frac{d x}{d y}=\frac{1}{y^{\prime}} \text { and: } p_{x}^{2}=\frac{1}{4 R g} \\
& \frac{1}{p_{x}^{2}}=\text { const. }=2 g y\left(y^{\prime 2}+1\right)=v^{2} \sec ^{2} \theta=a^{2}
\end{aligned}
$$

t-derivatives of (x, y) give v vs $\phi=2 \theta: v^{2}=\dot{x}^{2}+\dot{y}^{2}=\dot{\phi}^{2}\left[(R+R \cos \phi)^{2}+(-R \sin \phi)^{2}\right]=2 R \dot{\phi}^{2}(1+\cos \phi)=4 R^{2} \dot{\phi}^{2} \cos ^{2} \theta$

Some extraordinary properties of the cycloid are related to the constant p_{x} (pseudo-momentum)

$$
\begin{aligned}
& p_{x}=\frac{\partial L}{\partial x^{\prime}}=\frac{\partial}{\partial x^{\prime}} \frac{\sqrt{1+x^{\prime 2}}}{\sqrt{2 g y}}=\frac{x^{\prime}}{\sqrt{2 g y} \sqrt{1+x^{\prime 2}}}=\frac{1}{\sqrt{2 g y} \sqrt{y^{\prime 2}+1}} \text { where: } x^{\prime}=\frac{d x}{d y}=\frac{1}{y^{\prime}} \text { and: } p_{x}^{2}=\frac{1}{4 R g} \\
& \frac{1}{p_{x}^{2}}=\text { const. }=2 g y\left(y^{\prime 2}+1\right)=v^{2} \sec ^{2} \theta=a^{2}
\end{aligned}
$$

t-derivatives of (x, y) give v vs $\phi=2 \theta: v^{2}=\dot{x}^{2}+\dot{y}^{2}=\dot{\phi}^{2}\left[(R+R \cos \phi)^{2}+(-R \sin \phi)^{2}\right]=2 R \dot{\phi}^{2}(1+\cos \phi)=4 R^{2} \dot{\phi}^{2} \cos ^{2} \theta$ The circle starting at $\phi=\pi=2 \theta$ turns at a constant rate $\dot{\phi}=\omega$ and moves at a constant velocity $v=\omega R$.

$$
\frac{1}{p_{x}}=a=\sqrt{4 g R}=4 R \dot{\phi}=8 R \dot{\theta} \text { or: } \omega=\dot{\phi}=\sqrt{\frac{g}{4 R}}
$$

$$
\begin{aligned}
& x=-R(2 \theta+\sin 2 \theta) \text { where: } R=\frac{a^{2}}{4 g}=\frac{p_{x}^{-2}}{4 g} \\
& y=R(1+\cos 2 \theta)
\end{aligned}
$$

Some extraordinary properties of the cycloid are related to the constant p_{x} (pseudo-momentum)

$$
\begin{aligned}
& p_{x}=\frac{\partial L}{\partial x^{\prime}}=\frac{\partial}{\partial x^{\prime}} \frac{\sqrt{1+x^{\prime 2}}}{\sqrt{2 g y}}=\frac{x^{\prime}}{\sqrt{2 g y} \sqrt{1+x^{\prime 2}}}=\frac{1}{\sqrt{2 g y} \sqrt{y^{\prime 2}+1}} \text { where: } x^{\prime}=\frac{d x}{d y}=\frac{1}{y^{\prime}} \text { and: } p_{x}^{2}=\frac{1}{4 R g} \\
& \frac{1}{p_{x}^{2}}=\text { const. }=2 g y\left(y^{\prime 2}+1\right)=v^{2} \sec ^{2} \theta=a^{2}
\end{aligned}
$$

t-derivatives of (x, y) give v vs $\phi=2 \theta: v^{2}=\dot{x}^{2}+\dot{y}^{2}=\dot{\phi}^{2}\left[(R+R \cos \phi)^{2}+(-R \sin \phi)^{2}\right]=2 R \dot{\phi}^{2}(1+\cos \phi)=4 R^{2} \dot{\phi}^{2} \cos ^{2} \theta$ The circle starting at $\phi=\pi=2 \theta$ turns at a constant rate $\dot{\phi}=\omega$ and moves at a constant velocity $v=\omega R$.

$$
\frac{1}{p_{x}}=a=\sqrt{4 g R}=4 R \dot{\phi}=8 R \dot{\theta} \quad \text { or: } \quad \omega=\dot{\phi}=\sqrt{\frac{g}{4 R}}
$$

This relates to the arc length of the cycloid from bottom $(\theta=0)$ to a point at angle $\theta<\pi / 2$ or $\phi<\pi$.

$$
s=\int_{0}^{t} v d t=\int_{0}^{t} 2 R \omega \cos \theta d t=\int_{0}^{\theta} 2 R(\omega / \dot{\theta}) \cos \theta d \theta=4 R \sin \theta
$$

Separation of GCC Equations: Effective Potentials

 Small radial oscillations2D Spherical pendulum or "Bowl-Bowling"
Cycloidal ruler\&compass geometry
\longrightarrow Cycloid as brachistichrone (With interesting curvature geometry)
Cycloid as tautochrone
Cycloidulum vs Pendulum
Cycloidal geometry of flying levers
Practical poolhall application

Arc length s is indicated by a segment $h h$ of length $2 h=4 R \sin \theta$ left hand Fig. 7.3.4 below. That is precisely the length of unwound string between points m^{\prime} and $\mathrm{m}^{\prime \prime}$, and between points m^{\prime} and m , is a segment $h^{\prime} h^{\prime}$ of length $2 h^{\prime}=4 R \cos \theta$ unwound from middle cycloid.

Unit 7
Fig. 7.3.5

Arc length s is indicated by a segment $h h$ of length $2 h=4 R \sin \theta$ left hand Fig. 7.3.4 below. That is precisely the length of unwound string between points m^{\prime} and $\mathrm{m}^{\prime \prime}$, and between points m^{\prime} and m , is a segment $h^{\prime} h^{\prime}$ of length $2 h^{\prime}=4 R \cos \theta$ unwound from middle cycloid.

Unit 7
Fig. 7.3.5

Segment $h h$ is the radius of curvature $r_{c}\left(m^{\prime}\right)=2 h=4 R \sin \theta$ of the m^{\prime} cycloid and the points m^{\prime} or $m^{\prime \prime}$ are centers of curvature for circular arcs around unwinding points $m^{\prime \prime}$ or m^{\prime}, respectively.

Arc length s is indicated by a segment $h h$ of length $2 h=4 R \sin \theta$ left hand Fig. 7.3.4 below. That is precisely the length of unwound string between points m^{\prime} and $\mathrm{m}^{\prime \prime}$, and between points m^{\prime} and m , is a segment $h^{\prime} h^{\prime}$ of length $2 h^{\prime}=4 R \cos \theta$ unwound from middle cycloid.

Unit 7

Unit 7
Fig. 7.3.5

Segment $h h$ is the radius of curvature $r_{c}\left(m^{\prime}\right)=2 h=4 R \sin \theta$ of the m^{\prime} cycloid and the points m^{\prime} or $m^{\prime \prime}$ are centers of curvature for circular arcs around unwinding points $m^{\prime \prime}$ or m^{\prime}, respectively.

Three wheels roll synchronically on their respective ceilings. As point m approaches the top of its cycloid, point m^{\prime} approaches m so that curvature becomes infinite. ($k=1 / r_{c} \rightarrow \infty$ as $\theta \rightarrow \pi / 2$.)

Arc length s is indicated by a segment $h h$ of length $2 h=4 R \sin \theta$ left hand Fig. 7.3.4 below. That is precisely the length of unwound string between points m^{\prime} and $\mathrm{m}^{\prime \prime}$, and between points m^{\prime} and m , is a segment $h^{\prime} h^{\prime}$ of length $2 h^{\prime}=4 R \cos \theta$ unwound from middle cycloid.

Unit 7
Fig. 7.3.5

Segment $h h$ is the radius of curvature $r_{c}\left(m^{\prime}\right)=2 h=4 R \sin \theta$ of the m^{\prime} cycloid and the points m^{\prime} or $m^{\prime \prime}$ are centers of curvature for circular arcs around unwinding points $m^{\prime \prime}$ or m^{\prime}, respectively.

Three wheels roll synchronically on their respective ceilings. As point m approaches the top of its cycloid, point m^{\prime} approaches m so that curvature becomes infinite. ($k=1 / r_{C} \rightarrow \infty$ as $\theta \rightarrow \pi / 2$.)

Figure 7.3 .5 shows circular arcs fitting a cycloid. The largest arc and one with the least curvature $k_{c}=1 /(4 R)$ is a circle of radius $r_{c}=4 R$ that surrounds the entire cycloid. This is the path of a simple circular pendulum. The figure shows that the circle deviates only slightly from the cycloid with the greatest deviation near the tips of the cycloid where curvature blows up.

Separation of GCC Equations: Effective Potentials

Small radial oscillations
2D Spherical pendulum or "Bowl-Bowling"
Cycloidal ruler\&compass geometry
Cycloid as brachistichrone
Cycloid as tautochrone
Cycloidulum vs Pendulum
Cycloidal geometry of flying levers
Practical poolhall application

The cycloid path has the unique ability to guarantee the same frequency $\omega=\sqrt{ }(g / 4 R)$ for any amplitude θ_{0} of oscillation within the range $\left\{-\pi / 2<\theta_{0}<\pi / 2\right\}$ between cycloid tips.

The cycloid path has the unique ability to guarantee the same frequency $\omega=\sqrt{ }(g / 4 R)$ for any amplitude θ_{0} of oscillation within the range $\left\{-\pi / 2<\theta_{0}<\pi / 2\right\}$ between cycloid tips.

The circular pendulum frequency $\omega=\sqrt{ }(g / \ell)$ holds only for small amplitudes $\theta \ll 1$.
The time integral below varies with θ_{0} in the range $\left\{-\pi / 2<\theta_{0}<\pi / 2\right\}$.

$$
t_{1 / 4}=\int_{s_{0}}^{0} \frac{d s}{\sqrt{2 g\left(y-y_{0}\right)}}=\int_{0}^{\theta_{0}} \frac{4 R \cos \theta d \theta}{\sqrt{2 g R\left(\cos 2 \theta-\cos 2 \theta_{0}\right)}}=\sqrt{\frac{4 R}{g}} \int_{0}^{\theta_{0}} \frac{\cos \theta d \theta}{\sqrt{\sin ^{2} \theta_{0}-\sin ^{2} \theta}}
$$

The cycloid path has the unique ability to guarantee the same frequency $\omega=\sqrt{ }(g / 4 R)$ for any amplitude θ_{0} of oscillation within the range $\left\{-\pi / 2<\theta_{0}<\pi / 2\right\}$ between cycloid tips.

The circular pendulum frequency $\omega=\sqrt{ }(g / \ell)$ holds only for small amplitudes $\theta \ll 1$.
The time integral below varies with θ_{0} in the range $\left\{-\pi / 2<\theta_{0}<\pi / 2\right\}$.

$$
t_{1 / 4}=\int_{s_{0}}^{0} \frac{d s}{\sqrt{2 g\left(y-y_{0}\right)}}=\int_{0}^{\theta_{0}} \frac{4 R \cos \theta d \theta}{\sqrt{2 g R\left(\cos 2 \theta-\cos 2 \theta_{0}\right)}}=\sqrt{\frac{4 R}{g}} \int_{0}^{\theta_{0}} \frac{\cos \theta d \theta}{\sqrt{\sin ^{2} \theta_{0}-\sin ^{2} \theta}}
$$

Arc length $s=4 R \sin \theta$ and cycloid height $y=R(1+\cos 2 \theta)$ are used above.
To finish integral for a $1 / 4$-period we set: $\sin \theta=\sin \theta_{0} \sin \alpha$ below.

$$
t_{1 / 4}=\sqrt{\frac{4 R}{g}} \int_{0}^{\alpha=\pi / 2} \frac{\sin \theta_{0} \cos \alpha d \alpha}{\sin \theta_{0} \sqrt{1-\sin ^{2} \alpha}}=\frac{\pi}{2} \sqrt{\frac{4 R}{g}}
$$

The cycloid path has the unique ability to guarantee the same frequency $\omega=\sqrt{ }(g / 4 R)$ for any amplitude θ_{0} of oscillation within the range $\left\{-\pi / 2<\theta_{0}<\pi / 2\right\}$ between cycloid tips.

The circular pendulum frequency $\omega=\sqrt{ }(g / \ell)$ holds only for small amplitudes $\theta \ll 1$.
The time integral below varies with θ_{0} in the range $\left\{-\pi / 2<\theta_{0}<\pi / 2\right\}$.

$$
t_{1 / 4}=\int_{s_{0}}^{0} \frac{d s}{\sqrt{2 g\left(y-y_{0}\right)}}=\int_{0}^{\theta_{0}} \frac{4 R \cos \theta d \theta}{\sqrt{2 g R\left(\cos 2 \theta-\cos 2 \theta_{0}\right)}}=\sqrt{\frac{4 R}{g}} \int_{0}^{\theta_{0}} \frac{\cos \theta d \theta}{\sqrt{\sin ^{2} \theta_{0}-\sin ^{2} \theta}}
$$

Arc length $s=4 R \sin \theta$ and cycloid height $y=R(1+\cos 2 \theta)$ are used above.
To finish integral for a $1 / 4$-period we set: $\sin \theta=\sin \theta_{0} \sin \alpha$ below.

$$
t_{1 / 4}=\sqrt{\frac{4 R}{g}} \int_{0}^{\alpha=\pi / 2} \frac{\sin \theta_{0} \cos \alpha d \alpha}{\sin \theta_{0} \sqrt{1-\sin ^{2} \alpha}}=\frac{\pi}{2} \sqrt{\frac{4 R}{g}}
$$

A cycloid has a full period of $t_{1}=2 \pi \sqrt{ } \ell / g$ for $\underline{\text { all }} \theta_{0}$. Even for large θ_{0} the "cycloidulum" matches the period of a simple circular $(\ell=4 R)$-pendulum at small θ_{0}.

SSeparation of GCC Equations: Effective Potentials

Small radial oscillations
2D Spherical pendulum or "Bowl-Bowling"
Cycloidal ruler\&compass geometry
Cycloid as brachistichrone
Cycloid as tautochrone
$\longrightarrow \quad$ Cycloidulum vs Pendulum
Cycloidal geometry of flying levers
Practical poolhall application
time $=53.940$

$$
\begin{aligned}
\Theta & =-0.381 \\
\mathrm{~d} \Theta / \mathrm{dt} & =-1.933
\end{aligned}
$$

$$
\mathrm{E}=+0.940
$$

http://www.uark.edu/ua/modphys/markup/PendulumWeb.html

http://www.uark.edu/ua/modphys/markup/CycloidulumWeb.html

Separation of GCC Equations: Effective Potentials

Small radial oscillations
2D Spherical pendulum or "Bowl-Bowling"
Cycloidal ruler\&compass geometry
Cycloid as brachistichrone
Cycloid as tautochrone
Cycloidulum vs Pendulum
\longrightarrow Cycloidal geometry of flying levers
Practical poolhall application

If you hammer a stick at a point h meters from its center you give it some linear momentum Π and some angular momentum $\Lambda=h \cdot \Pi$

Fig. 2.A.l Cycloidic paths due to hitting a stationary stick.

If you hammer a stick at a point h meters from its center you give it some linear momentum Π and some angular momentum $\Lambda=h \cdot \Pi$

Resulting angular velocity ω about the center is angular momentum Λ divided by moment of inertia $I=M \ell^{2} / 3$ of the stick.

Fig. 2.A.l Cycloidic paths due to hitting a stationary stick.

If you hammer a stick at a point h meters from its center you give it some linear momentum Π and some angular momentum $\Lambda=h \cdot \Pi$

Resulting angular velocity ω about the center is angular momentum Λ divided by moment of inertia $I=M \ell^{2} / 3$ of the stick.

$$
\begin{aligned}
\omega & =\Lambda / I & & \left(=3 \Lambda /\left(M \ell^{2}\right) \text { for stick }\right) \\
& =h \Pi / I & & \left(=3 h \Pi /\left(M \ell^{2}\right) \text { for stick }\right)
\end{aligned}
$$

Fig. 2.A.l Cycloidic paths due to hitting a stationary stick.

If you hammer a stick at a point h meters from its center you give it some linear momentum Π and some angular momentum $\Lambda=h \cdot \Pi$

Resulting angular velocity ω about the center is angular momentum Λ divided by moment of inertia $I=M \ell^{2} / 3$ of the stick.

$$
\begin{aligned}
\omega & =\Lambda / I & & \left(=3 \Lambda /\left(M \ell^{2}\right) \text { for stick }\right) \\
& =h \Pi / I & & \left.=3 h \Pi /\left(M \ell^{2}\right) \text { for stick }\right)
\end{aligned}
$$

One point P , or center of percussion (CoP), is on the wheel where speed $p \omega$ due to rotation just cancels translational speed $V_{\text {Center }}$ of stick.

Fig. 2.A.l Cycloidic paths due to hitting a stationary stick.

If you hammer a stick at a point h meters from its center you give it some linear momentum Π and some angular momentum $\Lambda=h \cdot \Pi$

Resulting angular velocity ω about the center is angular momentum Λ divided by moment of inertia $I=M \ell^{2} / 3$ of the stick.

$$
\begin{aligned}
\omega & =\Lambda / I & & \left(=3 \Lambda /\left(M \ell^{2}\right) \text { for stick }\right) \\
& =h \Pi / I & & \left.=3 h \Pi /\left(M \ell^{2}\right) \text { for stick }\right)
\end{aligned}
$$

One point P , or center of percussion (CoP), is on the wheel where speed $p \omega$ due to rotation just cancels translational speed $V_{\text {Center }}$ of stick.

$$
\Pi / M=V_{\text {Center }}=|p \omega|=p \cdot h \Pi / I
$$

Fig. 2.A.1 Cycloidic paths due to hitting a stationary stick.

If you hammer a stick at a point h meters from its center you give it some linear momentum Π and some angular momentum $\Lambda=h \cdot \Pi$

Resulting angular velocity ω about the center is angular momentum Λ divided by moment of inertia $I=M \ell^{2} / 3$ of the stick.

$$
\begin{aligned}
\omega & =\Lambda / I & & \left(=3 \Lambda /\left(M \ell^{2}\right) \text { for stick }\right) \\
& =h \Pi / I & & \left.=3 h \Pi /\left(M \ell^{2}\right) \text { for stick }\right)
\end{aligned}
$$

One point P , or center of percussion (CoP), is on the wheel where speed $p \omega$ due to rotation just cancels translational speed $V_{\text {Center }}$ of stick.

$$
\begin{aligned}
& \Pi / M=V_{\text {Center }}=|p \omega| \\
&=p \cdot h \Pi / I \\
& I / M==p \cdot h
\end{aligned}
$$

Fig. 2.A.1 Cycloidic paths due to hitting a stationary stick.

If you hammer a stick at a point h meters from its center you give it some linear momentum Π and some angular momentum $\Lambda=h \cdot \Pi$

Resulting angular velocity ω about the center is angular momentum Λ divided by moment of inertia $I=M \ell^{2} / 3$ of the stick.

$$
\begin{aligned}
\omega & =\Lambda / I & & \left(=3 \Lambda /\left(M \ell^{2}\right) \text { for stick }\right) \\
& =h \Pi / I & & \left(=3 h \Pi /\left(M \ell^{2}\right) \text { for stick }\right)
\end{aligned}
$$

One point P , or center of percussion (CoP), is on the wheel where speed $p \omega$ due to rotation just cancels translational speed $V_{\text {Center }}$ of stick.

$$
\begin{aligned}
& \Pi / M=V_{\text {Center }}=|p \omega|=p \cdot h \Pi / I \\
& I / M=\quad=\quad=p \cdot h \quad \text { or: } p=I /(M h)
\end{aligned}
$$

Fig. 2.A.1 Cycloidic paths due to hitting a stationary stick.

If you hammer a stick at a point h meters from its center you give it some linear momentum Π and some angular momentum $\Lambda=h \cdot \Pi$

Resulting angular velocity ω about the center is angular momentum Λ divided by moment of inertia $I=M \ell^{2} / 3$ of the stick.

$$
\begin{aligned}
\omega & =\Lambda / I & & \left(=3 \Lambda /\left(M \ell^{2}\right) \text { for stick }\right) \\
& =h \Pi / I & & \left(=3 h \Pi /\left(M \ell^{2}\right) \text { for stick }\right)
\end{aligned}
$$

One point P , or center of percussion (CoP), is on the wheel where speed $p \omega$ due to rotation just cancels translational speed $V_{\text {Center }}$ of stick.

$$
\begin{aligned}
& \Pi / M=V_{\text {Center }}=|p \omega| \\
& I / M=p \cdot h \Pi / I \\
&=p \cdot h \quad \text { or: } p=I /(M h)
\end{aligned}
$$

P follows a normal cycloid made by a circle of radius $p=I /(M h)$ rolling on an imaginary road

Fig. 2.A.1 Cycloidic paths due to hitting a stationary stick. thru point P in direction of Π.

If you hammer a stick at a point h meters from its center you give it some linear momentum Π and some angular momentum $\Lambda=h \cdot \Pi$

Resulting angular velocity ω about the center is angular momentum Λ divided by moment of inertia $I=M \ell^{2} / 3$ of the stick.

$$
\begin{aligned}
\omega & =\Lambda / I & & \left(=3 \Lambda /\left(M \ell^{2}\right) \text { for stick }\right) \\
& =h \Pi / I & & \left(=3 h \Pi /\left(M \ell^{2}\right) \text { for stick }\right)
\end{aligned}
$$

One point P , or center of percussion (CoP), is on the wheel where speed $p \omega$ due to rotation just cancels translational speed $V_{\text {Center }}$ of stick.

$$
\begin{aligned}
& \Pi / M=V_{\text {Center }}=|p \omega| \\
& I / M=p \cdot h \Pi / I \\
&=\quad=p \cdot h \quad \text { or: } p=I /(M h)
\end{aligned}
$$

P follows a normal cycloid made by a circle of radius $p=I /(M h)$ rolling on an imaginary road

Fig. 2.A.1 Cycloidic paths due to hitting a stationary stick. thru point P in direction of Π.

The percussion radius $p=\ell^{2} / 3 h$ is of the CoP point that has no velocity just after hammer hits at h.

Separation of GCC Equations: Effective Potentials

Small radial oscillations
2D Spherical pendulum or "Bowl-Bowling"
Cycloidal ruler\&compass geometry
Cycloid as brachistichrone
Cycloid as tautochrone
Cycloidulum vs Pendulum
Cycloidal geometry of flying levers
\longrightarrow Practical poolhall application

Practical poolhall application of center of percussion formula $I / M=p \cdot h$

Problem: Set bumper height H so ball does not skid.

Where should bumper height H be set to make ball contact point C at the center of percussion P ?

Practical poolhall application of center of percussion formula $I / M=p \cdot h$

Practical poolhall application of center of percussion formula $I / M=p \cdot h$

Where should bumper height H be set to make ball contact point \mathbf{C} at the center of percussion P?

Problem: Set bumper height H so ball does not skid.

Thats all folks!

