Lecture 22 Tue 11.06.2014

Reimann-Christoffel equations and covariant derivative (Ch. 4-7 of Unit 3)

Separation of GCC Equations: Effective Potentials

Small radial oscillations 2D Spherical pendulum or "Bowl-Bowling" Cycloidal ruler&compass geometry Cycloid as brachistichrone with various geometries Cycloid as tautochrone Cycloidulum vs Pendulum Cycloidal geometry of flying levers Practical poolhall application

Small radial oscillations 2D Spherical pendulum or "Bowl-Bowling" Cycloidal ruler&compass geometry Cycloid as brachistichrone Cycloid as tautochrone Cycloidulum vs Pendulum Cycloidal geometry of flying levers Practical poolhall application

Separation of GCC Equations: Effective Potentials

$$H = \frac{1}{2} \gamma_{mn} \dot{q}^{m} \dot{q}^{n} + V = \frac{1}{2} m \dot{\rho}^{2} + \frac{1}{2} m \rho^{2} \dot{\phi}^{2} + \frac{1}{2} m \dot{z}^{2} + V \quad (\text{Numerically})$$

$$= \frac{1}{2} \gamma^{mn} p_{m} p_{n} + V = \frac{1}{2m} p_{\rho}^{2} + \frac{1}{2m\rho^{2}} p_{\phi}^{2} + \frac{1}{2m} p_{z}^{2} + V \quad (\text{Formally and Numerically})$$

Separation of GCC Equations: Effective Potentials (For isotropic $H(r,p_r,\phi,p_{\phi})$ $H = \frac{1}{2} \gamma_{mn} \dot{q}^m \dot{q}^n + V = \frac{1}{2} m \dot{\rho}^2 + \frac{1}{2} m \rho^2 \dot{\phi}^2 + \frac{1}{2} m \dot{z}^2 + V \quad (\text{Numerically}_{correct ONLY!})$ $= \frac{1}{2} \gamma^{mn} p_m p_n + V = \frac{1}{2m} p_{\rho}^2 + \frac{1}{2m\rho^2} p_{\phi}^2 + \frac{1}{2m} p_z^2 + V \quad (\text{Formally and Numerically}_{correct})$

Potential *V* is *isotropic* (cylindrical) function of radius ρ . ($V = V(\rho)$) *H* has no explicit ϕ -dependence and the ϕ -momenta is constant.

$$m\rho^2 \dot{\phi} = p_\phi = const. = \mu$$

 $m\rho^2 \dot{\phi} = p_{\phi} = const. = \mu$

$$m\dot{z} = p_z = const. = k$$

Separation of GCC Equations: Effective Potentials

$$H = \frac{1}{2} \gamma_{mn} \dot{q}^{m} \dot{q}^{n} + V = \frac{1}{2} m \dot{\rho}^{2} + \frac{1}{2} m \rho^{2} \dot{\phi}^{2} + \frac{1}{2} m \dot{z}^{2} + V \quad (\text{Numerically}_{correct ONLY!})$$

$$= \frac{1}{2} \gamma^{mn} p_{m} p_{n} + V = \frac{1}{2m} p_{\rho}^{2} + \frac{1}{2m\rho^{2}} p_{\phi}^{2} + \frac{1}{2m} p_{z}^{2} + V \quad (\text{Formally and Numerically}_{correct})$$

$$m\rho^{2}\dot{\phi} = p_{\phi} = const. = \mu$$
$$H = \frac{1}{2m}p_{\rho}^{2} + \frac{\mu^{2}}{2m\rho^{2}} + \frac{k^{2}}{2m} + V(\rho) = E = const.$$

$$m\dot{z} = p_z = const. = k$$

Separation of GCC Equations: Effective Potentials

$$H = \frac{1}{2} \gamma_{mn} \dot{q}^{m} \dot{q}^{n} + V = \frac{1}{2} m \dot{\rho}^{2} + \frac{1}{2} m \rho^{2} \dot{\phi}^{2} + \frac{1}{2} m \dot{z}^{2} + V \quad (\text{Numerically}_{correct ONLY!})$$

$$= \frac{1}{2} \gamma^{mn} p_{m} p_{n} + V = \frac{1}{2m} p_{\rho}^{2} + \frac{1}{2m\rho^{2}} p_{\phi}^{2} + \frac{1}{2m} p_{z}^{2} + V \quad (\text{Formally and Numerically}_{correct})$$

 $m\rho^{2}\dot{\phi} = p_{\phi} = const. = \mu$ $H = \frac{1}{2m}p_{\rho}^{2} + \frac{\mu^{2}}{2m\rho^{2}} + \frac{k^{2}}{2m} + V(\rho) = E = const.$

$$m\dot{z} = p_z = const. = k$$

(*Let*
$$k = 0$$
)

Separation of GCC Equations: Effective Potentials

$$H = \frac{1}{2} \gamma_{mn} \dot{q}^{m} \dot{q}^{n} + V = \frac{1}{2} m \dot{\rho}^{2} + \frac{1}{2} m \rho^{2} \dot{\phi}^{2} + \frac{1}{2} m \dot{z}^{2} + V \quad (\frac{\text{Numerically}}{\text{correct ONLY!}})$$

$$= \frac{1}{2} \gamma^{mn} p_{m} p_{n} + V = \frac{1}{2m} p_{\rho}^{2} + \frac{1}{2m\rho^{2}} p_{\phi}^{2} + \frac{1}{2m} p_{z}^{2} + V \quad (\frac{\text{Formally and Numerically}}{\text{correct}})$$

$$m\rho^{2}\dot{\phi} = p_{\phi} = const. = \mu$$
$$H = \frac{1}{2m}p_{\rho}^{2} + \frac{\mu^{2}}{2m\rho^{2}} + \frac{k^{2}}{2m} + V(\rho) = E = const.$$

Symmetry reduces problem to a one-dimensional form.

$$H = \frac{1}{2m} p_{\rho}^2 + V^{eff}(\rho) = E = const.$$

$$m\dot{z} = p_z = const. = k$$

(*Let*
$$k = 0$$
)

Separation of GCC Equations: Effective Potentials

$$H = \frac{1}{2} \gamma_{mn} \dot{q}^{m} \dot{q}^{n} + V = \frac{1}{2} m \dot{\rho}^{2} + \frac{1}{2} m \rho^{2} \dot{\phi}^{2} + \frac{1}{2} m \dot{z}^{2} + V \quad (\frac{\text{Numerically}}{\text{correct ONLY!}})$$

$$= \frac{1}{2} \gamma^{mn} p_{m} p_{n} + V = \frac{1}{2m} p_{\rho}^{2} + \frac{1}{2m\rho^{2}} p_{\phi}^{2} + \frac{1}{2m} p_{z}^{2} + V \quad (\frac{\text{Formally and Numerically}}{\text{correct}})$$

$$m\rho^{2}\dot{\phi} = p_{\phi} = const. = \mu$$
$$H = \frac{1}{2m}p_{\rho}^{2} + \frac{\mu^{2}}{2m\rho^{2}} + \frac{k^{2}}{2m} + V(\rho) = E = const.$$

Symmetry reduces problem to a one-dimensional form.

$$H = \frac{1}{2m} p_{\rho}^2 + V^{eff}(\rho) = E = const.$$

An effective potential V eff(ρ) has a centrifugal barrier.

$$V^{eff}\left(\rho\right) = \frac{\mu^2}{2m\rho^2} + V\left(\rho\right)$$

$$m\dot{z} = p_z = const. = k$$

(*Let*
$$k = 0$$
)

$$\dot{\phi} = \mu / \left(m\rho^2 \right) \qquad \dot{\rho} = \frac{d\rho}{dt} = \frac{\partial H}{\partial p_{\rho}} = \frac{p_{\rho}}{m} = \pm \sqrt{\frac{2}{m}} \left(E - V^{eff}(\rho) \right)$$
Thursday, November 6, 2014

Separation of GCC Equations: Effective Potentials $H = \frac{1}{2}\gamma_{mn}\dot{q}^{m}\dot{q}^{n} + V = \frac{1}{2}m\dot{\rho}^{2} + \frac{1}{2}m\rho^{2}\dot{\phi}^{2} + \frac{1}{2}m\dot{z}^{2} + V \qquad (\text{Numerically correct ONLY!})$ $= \frac{1}{2} \gamma^{mn} p_m p_n + V = \frac{1}{2m} p_{\rho}^2 + \frac{1}{2m\rho^2} p_{\phi}^2 + \frac{1}{2m} p_z^2 + V \quad (\text{Formally and Numerically})$

Potential *V* is *isotropic* (cylindrical) function of radius ρ . (*V* = *V*(ρ)) *H* has no explicit ϕ -dependence and the ϕ -momenta is constant.

$$m\rho^{2}\dot{\phi} = p_{\phi} = const. = \mu$$
$$H = \frac{1}{2m}p_{\rho}^{2} + \frac{\mu^{2}}{2m\rho^{2}} + \frac{k^{2}}{2m} + V(\rho) = E = const.$$

Symmetry reduces problem to a one-dimensional form.

$$H = \frac{1}{2m} p_{\rho}^2 + V^{eff}(\rho) = E = const.$$

An *effective potential Veff*(ρ) has a *centrifugal barrier*.

$$V^{eff}\left(\rho\right) = \frac{\mu^2}{2m\rho^2} + V\left(\rho\right)$$

Velocity relations:

 $\dot{\phi} = \mu / (m\rho^2)$

$$m\dot{z} = p_z = const. = k$$

(*Let*
$$k = 0$$
)

Separation of GCC Equations: Effective Potentials

$$H = \frac{1}{2} \gamma_{mn} \dot{q}^{m} \dot{q}^{n} + V = \frac{1}{2} m \dot{\rho}^{2} + \frac{1}{2} m \rho^{2} \dot{\phi}^{2} + \frac{1}{2} m \dot{z}^{2} + V \quad (\frac{\text{Numerically}}{\text{correct ONLY!}})$$

$$= \frac{1}{2} \gamma^{mn} p_{m} p_{n} + V = \frac{1}{2m} p_{\rho}^{2} + \frac{1}{2m\rho^{2}} p_{\phi}^{2} + \frac{1}{2m} p_{z}^{2} + V \quad (\frac{\text{Formally and Numerically}}{\text{correct}})$$

$$m\rho^{2}\dot{\phi} = p_{\phi} = const. = \mu$$
$$H = \frac{1}{2m}p_{\rho}^{2} + \frac{\mu^{2}}{2m\rho^{2}} + \frac{k^{2}}{2m} + V(\rho) = E = const.$$

Symmetry reduces problem to a one-dimensional form.

$$H = \frac{1}{2m} p_{\rho}^2 + V^{eff}(\rho) = E = const.$$

An effective potential V eff(ρ) has a centrifugal barrier.

$$V^{eff}\left(\rho\right) = \frac{\mu^2}{2m\rho^2} + V\left(\rho\right)$$

Velocity relations:

$$\dot{\phi} = \mu / \left(m\rho^2 \right) \qquad \dot{\rho} = \frac{d\rho}{dt} = \frac{\partial H}{\partial p_{\rho}} = \frac{p_{\rho}}{m} = \pm \sqrt{\frac{2}{m} \left(E - V^{eff}(\rho) \right)}$$

Equations solved by a *quadrature integral* for time versus radius.

$$\int_{t_0}^{t_1} dt = \int_{\rho_0}^{\rho_1} \frac{d\rho}{\sqrt{\frac{2}{m} \left(E - V^{eff}(\rho) \right)}} = \left(\text{Travel time } \rho_0 \text{ to } \rho_1 \right) = t_1 - t_0$$

$$m\dot{z} = p_z = const. = k$$

(*Let*
$$k = 0$$
)

Separation of GCC Equations: Effective Potentials Small radial oscillations 2D Spherical pendulum or "Bowl-Bowling" Cycloidal ruler&compass geometry Cycloid as brachistichrone Cycloid as tautochrone Cycloidal geometry of flying levers Practical poolhall application

Stable minimal-energy radius will satisfy a zero-slope equation.

$$\frac{dV^{eff}(\rho)}{d\rho}\Big|_{\rho_0} = 0 , \quad \text{with:} \left. \frac{d^2 V^{eff}}{d\rho^2} \right|_{\rho_0} > 0$$

A Taylor series around this minimum can be used to estimate orbit properties for small oscillations.

$$V^{eff}(\rho) = V^{eff}(\rho_0) + 0 + \frac{1}{2}(\rho - \rho_0)^2 \frac{d^2 V^{eff}}{d\rho^2}\Big|_{\rho_0}$$

Fig. 2.7.4 Phase paths around fixed points (a) Stable point (b) Unstable saddle point

Stable minimal-energy radius will satisfy a zero-slope equation.

$$\frac{dV^{eff}(\rho)}{d\rho}\bigg|_{\rho_{stable}} = 0 , \quad \text{with:} \left. \frac{d^2 V^{eff}}{d\rho^2} \right|_{\rho_{stable}} > 0 .$$

A Taylor series around this minimum can be used to estimate orbit properties for small oscillations.

$$V^{eff}(\rho) = V^{eff}(\rho_{stable}) + 0 + \frac{1}{2}(\rho - \rho_{stable})^2 \frac{d^2 V^{eff}}{d\rho^2}\Big|_{\rho_{stable}}$$

An effective "spring constant" at the stable point giving approximate frequency of oscillation.

Stable minimal-energy radius will satisfy a zero-slope equation.

$$\frac{dV^{eff}(\rho)}{d\rho}\bigg|_{\rho_{stable}} = 0 , \quad \text{with:} \left. \frac{d^2 V^{eff}}{d\rho^2} \right|_{\rho_{stable}} > 0 .$$

A Taylor series around this minimum can be used to estimate orbit properties for small oscillations.

$$V^{eff}(\rho) = V^{eff}(\rho_{stable}) + 0 + \frac{1}{2}(\rho - \rho_{stable})^2 \frac{d^2 V^{eff}}{d\rho^2}\Big|_{\rho_{stable}}$$

An effective "spring constant" at the stable point giving approximate frequency of oscillation.

$$k^{eff} = \frac{d^2 V^{eff}}{d\rho^2} \bigg|_{\rho_{stable}} = \sqrt{\frac{k^{eff}}{m}} = \sqrt{\frac{1}{m} \frac{d^2 V^{eff}}{d\rho^2}} \bigg|_{\rho_{stable}}$$

Small oscillation orbits are closed if and only if the ratio of the two is a rational (fractional) number.

$$\frac{\omega_{\rho_{stable}}}{\omega_{\phi}} = \frac{\omega_{\rho_{stable}}}{\dot{\phi}(\rho_{stable})} = \frac{n_{\rho}}{n_{\phi}} \Leftrightarrow \text{Orbit is closed-periodic}$$

Stable minimal-energy radius will satisfy a zero-slope equation.

$$\frac{dV^{eff}(\rho)}{d\rho}\bigg|_{\rho_{stable}} = 0, \quad \text{with:} \left. \frac{d^2 V^{eff}}{d\rho^2} \right|_{\rho_{stable}} > 0.$$

A Taylor series around this minimum can be used to estimate orbit properties for small oscillations.

$$V^{eff}(\rho) = V^{eff}(\rho_{stable}) + 0 + \frac{1}{2}(\rho - \rho_{stable})^2 \frac{d^2 V^{eff}}{d\rho^2}\Big|_{\rho_{stable}}$$

An effective "spring constant" at the stable point giving approximate frequency of oscillation.

$$k^{eff} = \frac{d^2 V^{eff}}{d\rho^2} \bigg|_{\rho_{stable}} = \sqrt{\frac{k^{eff}}{m}} = \sqrt{\frac{1}{m} \frac{d^2 V^{eff}}{d\rho^2}} \bigg|_{\rho_{stable}}$$

Small oscillation orbits are closed if and only if the ratio of the two is a rational (fractional) number.

$$\frac{\omega_{\rho_{stable}}}{\omega_{\phi}} = \frac{\omega_{\rho_{stable}}}{\dot{\phi}(\rho_{stable})} = \frac{n_{\rho}}{n_{\phi}} \Leftrightarrow \text{Orbit is closed-periodic}$$

Some generic shapes resulting from various ratios $n\rho$: $n\phi$

Separation of GCC Equations: Effective Potentials

Small radial oscillations 2D Spherical pendulum or "Bowl-Bowling" Cycloidal ruler&compass geometry Cycloid as brachistichrone Cycloid as tautochrone Cycloidulum vs Pendulum Cycloidal geometry of flying levers Practical poolhall application 2D Spherical pendulum or "Bowl-Bowling" Spherical coordinates: $\{q^1=r, q^2=\theta, q^3=\phi\}$ obvious choice: $x=x^1=rsin\theta cos\phi, y=x^2=rsin\theta sin\phi, z=x^3=rcos\theta,$

Covariant: $g_{rr} = \mathbf{E}_r \cdot \mathbf{E}_r = 1$, $g_{\theta\theta} = \mathbf{E}_{\theta} \cdot \mathbf{E}_{\theta} = r^2$, $g_{\phi\phi} = \mathbf{E}_{\phi} \cdot \mathbf{E}_{\phi} = r^2 \sin^2 \theta$, Contravariant: $g^{rr} = 1$, $g^{\theta\theta} = 1/r^2$, $g^{\phi\phi} = 1/r^2 \sin^2 \theta$.

2D Spherical pendulum or "Bowl-Bowling" Spherical coordinates: $\{q^1 = r, q^2 = \theta, q^3 = \phi\}$ obvious choice: $x=x^{1}=rsin\theta cos\phi$, $y=x^{2}=rsin\theta sin\phi$, $z=x^{3}=rcos\theta$, Jacobian matrices and determinants: Reduced to cylindrical coordinates: $\mathbf{E}_{\mathbf{r}} = \mathbf{E}_{\boldsymbol{\theta}} = \mathbf{E}_{\boldsymbol{\phi}}$ $J = \begin{pmatrix} \frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} & \frac{\partial x}{\partial \phi} \\ \frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta} & \frac{\partial y}{\partial \phi} \\ \frac{\partial z}{\partial r} & \frac{\partial z}{\partial \theta} & \frac{\partial z}{\partial \phi} \end{pmatrix} = \begin{pmatrix} \sin\theta\cos\phi & r\cos\theta\cos\phi & -r\sin\theta\sin\phi \\ \sin\theta\sin\phi & r\cos\theta\sin\phi & r\sin\theta\cos\phi \\ \cos\theta & -r\sin\theta & 0 \end{pmatrix} \xrightarrow{\theta = \pi/2} \begin{pmatrix} \cos\phi & 0 & -\rho\sin\phi \\ \sin\phi & 0 & \rho\cos\phi \\ 0 & -\rho & 0 \end{pmatrix} det J = det J^{\mathrm{T}} = \frac{\partial \{xyz\}}{\partial \{r\theta\phi\}} = r^{2}\sin\theta \xrightarrow{\theta = \pi/2}{r=\rho} \rho^{2}$ Covariant metric $g_{\mu\nu}$ is matrix product $g=J^T \cdot J$ of Jacobian and its transpose. OCC g's are diagonal. Covariant: $g_{rr} = \mathbf{E}_r \cdot \mathbf{E}_r = 1$, $g_{\theta\theta} = \mathbf{E}_{\theta} \cdot \mathbf{E}_{\theta} = r^2$, $g_{\phi\phi} = \mathbf{E}_{\phi} \cdot \mathbf{E}_{\phi} = r^2 \sin^2 \theta$, $g^{rr}=1,$ $g^{\theta\theta}=1/r^2,$ $g^{\phi\phi}=1/r^2\sin^2\theta.$ Contravariant: (Lagrangian form) (Hamiltonian form) $T = \frac{m}{2} (g_{rr} \dot{r}^2 + g_{\theta\theta} \dot{\theta}^2 + g_{\phi\phi} \dot{\phi}^2) = \frac{1}{2m} (g^{rr} p_r^2 + g^{\theta\theta} p_{\theta}^2 + g^{\phi\phi} p_{\phi}^2)$ $=\frac{1}{2}(\gamma_{rr}\dot{r}^{2}+\gamma_{\theta\theta}\dot{\theta}^{2}+\gamma_{\phi\phi}\dot{\phi}^{2}) =\frac{1}{2} (\gamma^{rr}p_{r}^{2}+\gamma^{\theta\theta}p_{\theta}^{2}+\gamma^{\phi\phi}p_{\phi}^{2})$ $=\frac{m}{2}(\dot{r}^{2}+r^{2}\dot{\theta}^{2}+r^{2}\sin^{2}\theta\dot{\phi}^{2})=\frac{1}{2m}(p_{r}^{2}+\frac{p_{\theta}^{2}}{r^{2}}+\frac{p_{\phi}^{2}}{r^{2}\sin^{2}\theta})$

2D Spherical pendulum or "Bowl-Bowling" Spherical coordinates: $\{q^1 = r, q^2 = \theta, q^3 = \phi\}$ obvious choice: $x=x^{1}=rsin\theta cos\phi$, $y=x^{2}=rsin\theta sin\phi$, $z=x^{3}=rcos\theta$, Jacobian matrices and determinants: Reduced to cylindrical coordinates: $\mathbf{E}_{\mathbf{r}} = \mathbf{E}_{\boldsymbol{\theta}} = \mathbf{E}_{\boldsymbol{\phi}}$ $J = \begin{pmatrix} \frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} & \frac{\partial x}{\partial \phi} \\ \frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta} & \frac{\partial y}{\partial \phi} \\ \frac{\partial z}{\partial r} & \frac{\partial z}{\partial \theta} & \frac{\partial z}{\partial \phi} \end{pmatrix} = \begin{pmatrix} \sin\theta\cos\phi & r\cos\theta\cos\phi & -r\sin\theta\sin\phi \\ \sin\theta\sin\phi & r\cos\theta\sin\phi & r\sin\theta\cos\phi \\ \cos\theta & -r\sin\theta & 0 \end{pmatrix} \xrightarrow{\theta = \pi/2} \begin{pmatrix} \cos\phi & 0 & -\rho\sin\phi \\ \sin\phi & 0 & \rho\cos\phi \\ 0 & -\rho & 0 \end{pmatrix} det J = det J^{T} = \frac{\partial \{xyz\}}{\partial \{r\theta\phi\}} = r^{2}\sin\theta \xrightarrow{\theta = \pi/2}{r=\rho} \rho^{2}$ Covariant metric $g_{\mu\nu}$ is matrix product $g=J^T \cdot J$ of Jacobian and its transpose. OCC g's are diagonal. Covariant: $g_{rr} = \mathbf{E}_r \cdot \mathbf{E}_r = 1$, $g_{\theta\theta} = \mathbf{E}_{\theta} \cdot \mathbf{E}_{\theta} = r^2$, $g_{\phi\phi} = \mathbf{E}_{\phi} \cdot \mathbf{E}_{\phi} = r^2 \sin^2 \theta$, $g^{rr}=1,$ $g^{\theta\theta}=1/r^2,$ $g^{\phi\phi}=1/r^2\sin^2\theta.$ Contravariant: (Lagrangian form) (Hamiltonian form) Spherical coordinates with constant radius r $T = \frac{m}{2} (g_{rr} \dot{r}^2 + g_{\theta\theta} \dot{\theta}^2 + g_{\phi\phi} \dot{\phi}^2) = \frac{1}{2m} (g^{rr} p_r^2 + g^{\theta\theta} p_{\theta}^2 + g^{\phi\phi} p_{\phi}^2)$ implies conserved azimuthal momentum: $p_{\phi} \equiv \frac{\partial T}{\partial \dot{\phi}} = m(R^2 \sin^2 \theta) \dot{\phi} = const.$ $=\frac{1}{2}(\gamma_{rr}\dot{r}^{2}+\gamma_{\theta\theta}\dot{\theta}^{2}+\gamma_{\phi\phi}\dot{\phi}^{2}) = \frac{1}{2} (\gamma^{rr}p_{r}^{2}+\gamma^{\theta\theta}p_{\theta}^{2}+\gamma^{\phi\phi}p_{\phi}^{2})$ $=\frac{m}{2}(\dot{r}^{2}+r^{2}\dot{\theta}^{2}+r^{2}\sin^{2}\theta\dot{\phi}^{2})=\frac{1}{2m}(p_{r}^{2}+\frac{p_{\theta}^{2}}{r^{2}}+\frac{p_{\phi}^{2}}{r^{2}}\sin^{2}\theta)$

2D Spherical pendulum or "Bowl-Bowling"
Spherical coordinates: {
$$q^{1}=r, q^{2}=0, q^{3}=\phi$$
 } obvious choice:
 $x=x^{1}=rsin\theta \cos\phi, y=x^{2}=rsin\theta \sin\phi, z=x^{3}=rcos\theta,$
Jacobian matrices and determinants:
 $F_{r}, F_{s}, F_{q}, F_{q}$
 $det J = det J^{T} = \frac{\partial(tyx)}{\partial(t\phi)} = r^{2} \sin\theta \cos\phi - rsin\theta \sin\phi}{\partial(t\phi)} = \frac{1}{r^{2}} \int (\frac{\cos\phi}{\theta} - \frac{\theta}{\rho} - \frac{\theta}{\rho}) \int \frac{1}{(t\phi)} \int \frac{\partial(tyx)}{\partial(t\phi)} = r^{2} \sin\theta - \frac{\theta}{r^{2}} + p^{2}}{\partial(t\phi)} \int \frac{det J}{\partial(t\phi)} = r^{2} \sin\theta - \frac{\theta}{r^{2}} + p^{2}} \int \frac{det J}{\partial(t\phi)} = r^{2} \sin\theta - \frac{\theta}{r^{2}} + p^{2}} \int \frac{det J}{\partial(t\phi)} = r^{2} \sin\theta - \frac{\theta}{r^{2}} + p^{2}} \int \frac{det J}{\partial(t\phi)} = r^{2} \sin\theta - \frac{\theta}{r^{2}} + p^{2}} \int \frac{det J}{\partial(t\phi)} = r^{2} \sin\theta - \frac{\theta}{r^{2}} + p^{2}} \int \frac{det J}{\partial(t\phi)} = r^{2} \sin\theta - \frac{\theta}{r^{2}} + p^{2}} \int \frac{det J}{\partial(t\phi)} = r^{2} \sin\theta - \frac{\theta}{r^{2}} + p^{2}} \int \frac{det J}{\partial(t\phi)} = r^{2} \sin\theta - \frac{\theta}{r^{2}} + p^{2}} \int \frac{det J}{\partial(t\phi)} = r^{2} \sin\theta - \frac{\theta}{r^{2}} + p^{2}} \int \frac{det J}{\partial(t\phi)} = r^{2} \sin\theta - \frac{\theta}{r^{2}} + p^{2}} \int \frac{det J}{\partial(t\phi)} = r^{2} \sin\theta - \frac{\theta}{r^{2}} + p^{2}} \int \frac{det J}{\partial(t\phi)} = r^{2} \sin\theta - \frac{\theta}{r^{2}} + p^{2}} \int \frac{det J}{\partial(t\phi)} = r^{2} \sin\theta - \frac{\theta}{r^{2}} + p^{2}} \int \frac{det J}{\partial(t\phi)} = r^{2} \sin\theta - \frac{\theta}{r^{2}} + p^{2}} \int \frac{det J}{r^{2}} = r^{2} \sin\theta - \frac{\theta}{r^{2}} + p^{2}} \int \frac{det J}{r^{2}} = r^{2} \sin\theta - \frac{\theta}{r^{2}} + p^{2}} \int \frac{det J}{r^{2}} = r^{2} \sin\theta - \frac{\theta}{r^{2}} + p^{2}} \int \frac{det J}{r^{2}} = r^{2} \sin\theta - \frac{\theta}{r^{2}} + p^{2}} \int \frac{det J}{r^{2}} = r^{2} \sin\theta - \frac{\theta}{r^{2}} + p^{2}} \int \frac{det J}{r^{2}} = r^{2} \sin\theta - \frac{\theta}{r^{2}} + p^{2}} \int \frac{det J}{r^{2}} = r^{2} \sin\theta - \frac{\theta}{r^{2}} + p^{2}} \int \frac{det J}{r^{2}} + \frac{\theta}{r^{2}} + \frac{\theta}{r^{2}} + p^{2}} \int \frac{det J}{r^{2}} = r^{2} \sin\theta - \frac{\theta}{r^{2}} + r^{2} \sin\theta - \frac{\theta}{r^{2}} + p^{2}} \int \frac{det J}{r^{2}} + r^{2} \sin^{2}\theta - \frac{\theta}{r^{2}} +$

Thursday, November 6, 2014

Total Energy from Hamiltonian E=T+V(gravity)=const.:

$$E = \frac{mR^2}{2}\dot{\theta}^2 + V^{effective}(\theta) = \alpha\dot{\theta}^2 + \frac{\delta}{\sin^2\theta} + \gamma\cos\theta$$

Let: $\alpha = \frac{mR^2}{2}, \quad \delta = \frac{p_{\phi}^2}{2mR^2}, \quad \gamma = mgR$ where: $p_{\phi} = mR^2\sin^2\theta(\dot{\phi})$

Total Energy from Hamiltonian E=T+V(gravity)=const.:

$$E = \frac{mR^2}{2}\dot{\theta}^2 + V^{effective}(\theta) = \alpha\dot{\theta}^2 + \frac{\delta}{\sin^2\theta} + \gamma\cos\theta$$

Let: $\alpha = \frac{mR^2}{2}, \quad \delta = \frac{p_{\phi}^2}{2mR^2}, \quad \gamma = mgR$ where: $p_{\phi} = mR^2\sin^2\theta(\dot{\phi})$

Equilibrium point of stable orbit

$$\frac{dV^{effective}(\theta)}{d\theta} = \frac{-2\delta\cos\theta}{\sin^3\theta} - \gamma\sin\theta = 0 = \frac{-2p_{\phi}^2\cos\theta}{2mR^2\sin^3\theta} - mgR\sin\theta$$

Total Energy from Hamiltonian E=T+V(gravity)=const.:

$$E = \frac{mR^2}{2}\dot{\theta}^2 + V^{effective}(\theta) = \alpha\dot{\theta}^2 + \frac{\delta}{\sin^2\theta} + \gamma\cos\theta$$

Let: $\alpha = \frac{mR^2}{2}, \quad \delta = \frac{p_{\phi}^2}{2mR^2}, \quad \gamma = mgR$ where: $p_{\phi} = mR^2\sin^2\theta(\dot{\phi}$

)

Equilibrium point of stable orbit and small oscillation frequency near equilibrium:

$$\frac{dV^{effective}(\theta)}{d\theta} = \frac{-2\delta\cos\theta}{\sin^{3}\theta} - \gamma\sin\theta = 0 = \frac{-2p_{\phi}^{2}\cos\theta}{2mR^{2}\sin^{3}\theta} - mgR\sin\theta \qquad \left(\omega_{\theta}^{equil}\right)^{2} = \frac{1}{mR^{2}} \frac{d^{2}V^{effective}(\theta)}{d\theta^{2}}\Big|_{equil}$$

Total Energy from Hamiltonian E=T+V(gravity)=const.:

$$E = \frac{mR^2}{2}\dot{\theta}^2 + V^{effective}(\theta) = \alpha\dot{\theta}^2 + \frac{\delta}{\sin^2\theta} + \gamma\cos\theta$$

Let: $\alpha = \frac{mR^2}{2}, \quad \delta = \frac{p_{\phi}^2}{2mR^2}, \quad \gamma = mgR$ where: $p_{\phi} = mR^2\sin^2\theta(\dot{\phi}$

)

Equilibrium point of stable orbit and small oscillation frequency near equilibrium:

$$\frac{dV^{effective}(\theta)}{d\theta} = \frac{-2\delta\cos\theta}{\sin^{3}\theta} - \gamma\sin\theta = 0 = \frac{-2p_{\phi}^{2}\cos\theta}{2mR^{2}\sin^{3}\theta} - mgR\sin\theta \qquad \left(\omega_{\theta}^{equil}\right)^{2} = \frac{1}{mR^{2}} \frac{d^{2}V^{effective}(\theta)}{d\theta^{2}}\Big|_{equil}$$
$$0 = (mR^{2}\sin\theta)\dot{\phi}^{2}\cos\theta - mgR\sin\theta \quad \text{or:} \quad \dot{\phi}_{equil}^{2} = -\frac{g}{R\cos\theta_{equil}} \qquad \text{(Polar angle librational frequency } \omega_{\theta}^{equil}}{\text{is related to azimuthal frequency } \dot{\phi}_{equil}^{2}, \text{)}$$

Total Energy from Hamiltonian E=T+V(gravity)=const.:

$$E = \frac{mR^2}{2}\dot{\theta}^2 + V^{effective}(\theta) = \alpha\dot{\theta}^2 + \frac{\delta}{\sin^2\theta} + \gamma\cos\theta$$

Let: $\alpha = \frac{mR^2}{2}, \quad \delta = \frac{p_{\phi}^2}{2mR^2}, \quad \gamma = mgR$ where: $p_{\phi} = mR^2\sin^2\theta(\dot{\phi})$

Equilibrium point of stable orbit and small oscillation frequency near equilibrium:

$$\frac{dV^{effective}(\theta)}{d\theta} = \frac{-2\delta\cos\theta}{\sin^{3}\theta} - \gamma\sin\theta = 0 = \frac{-2p_{\phi}^{2}\cos\theta}{2mR^{2}\sin^{3}\theta} - mgR\sin\theta$$
$$0 = (mR^{2}\sin\theta)\dot{\phi}^{2}\cos\theta - mgR\sin\theta \quad \text{or:} \quad \dot{\phi}_{equil}^{2} = -\frac{g}{R\cos\theta_{equil}}$$

$$\frac{d^2 V^{effective}(\theta)}{d\theta^2} = -\gamma \cos\theta + \frac{2\delta \sin\theta}{\sin^3 \theta} + \frac{3 \cdot 2\delta \cos^2 \theta}{\sin^4 \theta} = -\gamma \cos\theta + 2\delta \frac{\sin^2 \theta + 3\cos^2 \theta}{\sin^4 \theta}$$
$$= -mgR \cos\theta + \frac{2\left(mR^2 \sin^2 \theta - \dot{\phi}\right)^2}{2mR^2} \frac{1 + 2\cos^2 \theta}{\sin^4 \theta}$$
$$= -mgR \cos\theta + mR^2 \dot{\phi}^2 \left(1 + 2\cos^2 \theta\right)$$

 $\left(\omega_{\theta}^{equil}\right)^{2} = \frac{1}{mR^{2}} \frac{d^{2}V^{effective}(\theta)}{d\theta^{2}}$ eauil (Polar angle librational frequency ω_{θ}^{equil}

is related to azimuthal frequency $\dot{\phi}_{equil}^2$.)

)

V-I

Total Energy from Hamiltonian E=T+V(gravity)=const.:

$$E = \frac{mR^2}{2}\dot{\theta}^2 + V^{effective}(\theta) = \alpha\dot{\theta}^2 + \frac{\delta}{\sin^2\theta} + \gamma\cos\theta$$

Let: $\alpha = \frac{mR^2}{2}, \quad \delta = \frac{p_{\phi}^2}{2mR^2}, \quad \gamma = mgR$ where: $p_{\phi} = mR^2\sin^2\theta(\dot{\phi}$

Equilibrium point of stable orbit and small oscillation frequency near equilibrium:

Total Energy from Hamiltonian E=T+V(gravity)=const.:

$$E = \frac{mR^2}{2}\dot{\theta}^2 + V^{effective}(\theta) = \alpha\dot{\theta}^2 + \frac{\delta}{\sin^2\theta} + \gamma\cos\theta$$

Let: $\alpha = \frac{mR^2}{2}, \quad \delta = \frac{p_{\phi}^2}{2mR^2}, \quad \gamma = mgR$ where: $p_{\phi} = mR^2\sin^2\theta(\dot{\phi}$

Equilibrium point of stable orbit and small oscillation frequency near equilibrium:

$$\frac{dV^{effective}(\theta)}{d\theta} = \frac{-2\delta\cos\theta}{\sin^{3}\theta} - \gamma\sin\theta = 0 = \frac{-2p_{\phi}^{2}\cos\theta}{2mR^{2}\sin^{3}\theta} - mgR\sin\theta \qquad \left(\omega_{\theta}^{equil}\right)^{2} = \frac{1}{mR^{2}} \frac{d^{2}V^{effective}(\theta)}{d\theta^{2}}\Big|_{equil}$$

$$0 = (mR^{2}\sin\theta)\dot{\phi}^{2}\cos\theta - mgR\sin\theta \quad \text{or:} \quad \dot{\phi}_{equil}^{2} = -\frac{g}{R\cos\theta_{equil}} \qquad (Polar angle librational frequency \quad \omega_{\theta}^{equil} \\ \text{is related to azimuthal frequency } \dot{\phi}_{equil}^{2} .)$$

$$\frac{V-\text{Derivative for small oscillation frequency:}}{d\theta^{2}} = -\gamma\cos\theta + \frac{2\delta\sin\theta}{\sin^{3}\theta} + \frac{3\cdot2\delta\cos^{2}\theta}{\sin^{4}\theta} = -\gamma\cos\theta + 2\delta\frac{\sin^{2}\theta + 3\cos^{2}\theta}{\sin^{4}\theta} \\ = -mgR\cos\theta + \frac{2(mR^{2}\sin^{2}\theta - \dot{\phi})^{2}}{2mR^{2}} \frac{1+2\cos^{2}\theta}{\sin^{4}\theta}}{\sin^{4}\theta} = -\gamma\cos\theta + 2\delta\frac{\sin^{2}\theta + 3\cos^{2}\theta}{\sin^{4}\theta}} = -mgR\cos\theta_{equil} + mR^{2}\left(-\frac{g}{R\cos\theta_{equil}}\right)(1+2\cos^{2}\theta_{equil})$$

$$\frac{d^{2}V^{effective}(\theta)}{d\theta^{2}} = -mgR\cos\theta_{equil} + mR^{2}\left(-\frac{g}{R\cos\theta_{equil}}\right)(1+2\cos^{2}\theta_{equil})$$

Total Energy from Hamiltonian E=T+V(gravity)=const.:

$$E = \frac{mR^2}{2}\dot{\theta}^2 + V^{effective}(\theta) = \alpha\dot{\theta}^2 + \frac{\delta}{\sin^2\theta} + \gamma\cos\theta$$

Let: $\alpha = \frac{mR^2}{2}, \quad \delta = \frac{p_{\phi}^2}{2mR^2}, \quad \gamma = mgR$ where: $p_{\phi} = mR^2\sin^2\theta(\dot{\phi}$

Equilibrium point of stable orbit and small oscillation frequency near equilibrium:

$$\frac{dV^{effective}(\theta)}{d\theta} = \frac{-2\delta\cos\theta}{\sin^{3}\theta} - \gamma\sin\theta = 0 = \frac{-2p_{\phi}^{2}\cos\theta}{2mR^{2}\sin^{3}\theta} - mgR\sin\theta \qquad \left(\omega_{\theta}^{equil}\right)^{2} = \frac{1}{mR^{2}} \frac{d^{2}V^{effective}(\theta)}{d\theta^{2}}\Big|_{equil}$$

$$0 = (mR^{2}\sin\theta)\dot{\phi}^{2}\cos\theta - mgR\sin\theta \quad \text{or:} \quad \dot{\phi}_{equil}^{2} = -\frac{g}{R\cos\theta_{equil}} \qquad (Polar angle librational frequency \quad \omega_{\theta}^{equil} \text{ is related to azimuthal frequency } \dot{\phi}_{equil}^{2} = 0$$

$$\frac{V - \text{Derivative for small oscillation frequency:}}{d\theta^{2}} = -\gamma\cos\theta + \frac{2\delta\sin\theta}{\sin^{3}\theta} + \frac{3\cdot 2\delta\cos^{2}\theta}{\sin^{4}\theta} = -\gamma\cos\theta + 2\delta\frac{\sin^{2}\theta + 3\cos^{2}\theta}{\sin^{4}\theta} = -\gamma\cos\theta + 2\delta\frac{\sin^{2}\theta + 3\cos^{2}\theta}{\sin^{4}\theta} = -mgR\cos\theta_{equil} + mR^{2}\left(-\frac{g}{R\cos\theta_{equil}}\right)\left(1 + 2\cos^{2}\theta_{equil}\right) = -\frac{mgR}{\cos\theta_{equil}}\left(1 + 3\cos^{2}\theta_{equil}\right)\left(\frac{\omega_{\theta}^{equil}}{2}\right)^{2} / (\dot{\phi}_{equil}^{2}) = (1 + 3\cos^{2}\theta_{equil})\right)$$

At bottom $\theta \rightarrow \pi$ the ratio of in-out ω_{θ} to circle ω_{ϕ} approaches 2:1

At equator $\theta \rightarrow \pi/2$ the ratio approaches 1:1.

Total Energy from Hamiltonian E=T+V(gravity)=const.:

$$E = \frac{mR^2}{2}\dot{\theta}^2 + V^{effective}(\theta) = \alpha\dot{\theta}^2 + \frac{\delta}{\sin^2\theta} + \gamma\cos\theta$$

Let: $\alpha = \frac{mR^2}{2}, \quad \delta = \frac{p_{\phi}^2}{2mR^2}, \quad \gamma = mgR$ where: $p_{\phi} = mR^2\sin^2\theta(\dot{\phi}$

Equilibrium point of stable orbit and small oscillation frequency near equilibrium:

$$\frac{dV^{effective}(\theta)}{d\theta} = \frac{-2\delta\cos\theta}{\sin^{3}\theta} - \gamma\sin\theta = 0 = \frac{-2p_{\phi}^{2}\cos\theta}{2mR^{2}\sin^{3}\theta} - mgR\sin\theta \qquad \left(\omega_{\theta}^{equil}\right)^{2} = \frac{1}{mR^{2}} \frac{d^{2}V^{effective}(\theta)}{d\theta^{2}}\Big|_{equil}$$

$$0 = (mR^{2}\sin\theta)\dot{\phi}^{2}\cos\theta - mgR\sin\theta \quad \text{or:} \quad \dot{\phi}_{equil}^{2} = -\frac{g}{R\cos\theta_{equil}} \qquad (Polar angle librational frequency \quad \omega_{\theta}^{equil}$$
is related to azimuthal frequency $\dot{\phi}_{equil}^{2}$.)

V-Derivative for small oscillation frequency:

$$\frac{t^{2}V^{effective}(\theta)}{d\theta^{2}} = -\gamma\cos\theta + \frac{2\delta\sin\theta}{\sin^{3}\theta} + \frac{3\cdot2\delta\cos^{2}\theta}{\sin^{4}\theta} = -\gamma\cos\theta + 2\delta\frac{\sin^{2}\theta + 3\cos^{2}\theta}{\sin^{4}\theta} = -mgR\cos\theta + \frac{2(mR^{2}\sin^{2}\theta - \dot{\phi})^{2}}{2mR^{2}}\frac{1+2\cos^{2}\theta}{\sin^{4}\theta} = -mgR\cos\theta + mR^{2}\dot{\phi}^{2}(1+2\cos^{2}\theta) \qquad (Me^{equil})^{2}/(\phi_{equil}^{2}) = (1+3\cos^{2}\theta_{equil})$$

At bottom $\theta \rightarrow \pi$ the ratio of in-out ω_{θ} to circle ω_{ϕ} approaches 2:1

At equator $\theta \rightarrow \pi/2$ the ratio approaches 1:1.

Separation of GCC Equations: Effective Potentials

Small radial oscillations 2D Spherical pendulum or "Bowl-Bowling" Cycloidal ruler&compass geometry Cycloid as brachistichrone Cycloid as tautochrone Cycloidulum vs Pendulum Cycloidal geometry of flying levers Practical poolhall application

is a rational length of rolled -out circumference $R\phi = (3/\pi)m\pi/n = 3m/n$.

Thursday, November 6, 2014

Here the radius is plotted as an irrational $R=3/\pi=0.955$ length so rolling by rational angle $\phi = m\pi/n$ is a rational length of rolled -out circumference $R\phi = (3/\pi)m\pi/n = 3m/n$. Diameter is $2R = 6/\pi = 1.91$

Here the radius is plotted as an irrational $R=3/\pi=0.955$ length so rolling by rational angle $\phi = m\pi/n$ is a rational length of rolled -out circumference $R\phi = (3/\pi)m\pi/n = 3m/n$. Diameter is $2R = 6/\pi = 1.91$ Red circle rolls left-to-right on y=3.82 ceiling Contact point goes from (x=6/2, y=3.82) to x=0.

Here the radius is plotted as an irrational $R=3/\pi=0.955$ length so rolling by rational angle $\phi = m\pi/n$ is a rational length of rolled -out circumference $R\phi = (3/\pi)m\pi/n = 3m/n$. Diameter is $2R=6/\pi=1.91$ Red circle rolls left-to-right on y=3.82 ceiling Contact point goes from (x=6/2, y=3.82) to x=0.

Separation of GCC Equations: Effective Potentials

Small radial oscillations 2D Spherical pendulum or "Bowl-Bowling" Cycloidal ruler&compass geometry Cycloid as brachistichrone Cycloid as tautochrone Cycloidal geometry of Pendulum Cycloidal geometry of flying levers Practical poolhall application

$$\frac{ds}{dt} = v = \sqrt{2gy} \qquad \qquad t = \int dt = \int \frac{ds}{\sqrt{2gy}} = \int dy \frac{\sqrt{1 + {x'}^2}}{\sqrt{2gy}} = \int L \, dy$$

$$\frac{ds}{dt} = v = \sqrt{2gy} \qquad \qquad t = \int dt = \int \frac{ds}{\sqrt{2gy}} = \int dy \frac{\sqrt{1 + {x'}^2}}{\sqrt{2gy}} = \int L \, dy$$

A "pseudo-momentum" p_x for "pseudo-Lagrange" L in y-integral is constant if L is x-independent.

$$p_x = const. = \frac{\partial L}{\partial x'} = \frac{\partial}{\partial x'} \frac{\sqrt{1 + {x'}^2}}{\sqrt{2gy}} = \frac{x'}{\sqrt{2gy}\sqrt{1 + {x'}^2}} = \frac{1}{y'\sqrt{2gy}\sqrt{1 + 1/{y'}^2}} \text{ where: } x' = \frac{dx}{dy} = \frac{1}{y'}$$

$$\frac{ds}{dt} = v = \sqrt{2gy} \qquad \qquad t = \int dt = \int \frac{ds}{\sqrt{2gy}} = \int dy \frac{\sqrt{1 + {x'}^2}}{\sqrt{2gy}} = \int L \, dy$$

A "pseudo-momentum" p_x for "pseudo-Lagrange" L in y-integral is constant if L is x-independent.

$$p_{x} = const. = \frac{\partial L}{\partial x'} = \frac{\partial}{\partial x'} \frac{\sqrt{1 + {x'}^{2}}}{\sqrt{2gy}} = \frac{x'}{\sqrt{2gy}\sqrt{1 + {x'}^{2}}} = \frac{1}{y'\sqrt{2gy}\sqrt{1 + 1/{y'}^{2}}} \text{ where: } x' = \frac{dx}{dy} = \frac{1}{y'}$$

Change variables from y to velocity v to simplify using: $v^{2} = 2gy, dy = \frac{v dv}{g}, y' = \frac{v}{g}\frac{dv}{dx}$

$$\frac{ds}{dt} = v = \sqrt{2gy} \qquad \qquad t = \int dt = \int \frac{ds}{\sqrt{2gy}} = \int dy \frac{\sqrt{1 + {x'}^2}}{\sqrt{2gy}} = \int L \, dy$$

A "pseudo-momentum" p_x for "pseudo-Lagrange" L in y-integral is constant if L is x-independent.

$$p_x = const. = \frac{\partial L}{\partial x'} = \frac{\partial}{\partial x'} \frac{\sqrt{1 + x'^2}}{\sqrt{2gy}} = \frac{x'}{\sqrt{2gy}\sqrt{1 + x'^2}} = \frac{1}{y'\sqrt{2gy}\sqrt{1 + 1/y'^2}}$$
 where: $x' = \frac{dx}{dy} = \frac{1}{y'}$

Change variables from y to velocity v to simplify using: $v^2 = 2gy$, $dy = \frac{v \, av}{g}$, $y' = \frac{v \, av}{g \, dx}$

$$p_{x} = \frac{1}{\sqrt{2gy}\sqrt{y'^{2}+1}} = \frac{1}{v\sqrt{\frac{v^{2}}{g^{2}}\left(\frac{dv}{dx}\right)^{2}+1}} \text{ is: } p_{x}^{2}v^{2} = \frac{1}{\frac{v^{2}}{g^{2}}\left(\frac{dv}{dx}\right)^{2}+1} \text{ is: } \frac{v^{2}}{g^{2}}\left(\frac{dv}{dx}\right)^{2} = \frac{1}{p_{x}^{2}v^{2}} - 1 = \frac{1 - p_{x}^{2}v^{2}}{p_{x}^{2}v^{2}}$$

$$\frac{ds}{dt} = v = \sqrt{2gy} \qquad \qquad t = \int dt = \int \frac{ds}{\sqrt{2gy}} = \int dy \frac{\sqrt{1 + {x'}^2}}{\sqrt{2gy}} = \int L \, dy$$

A "pseudo-momentum" p_x for "pseudo-Lagrange" L in y-integral is constant if L is x-independent.

$$p_x = const. = \frac{\partial L}{\partial x'} = \frac{\partial}{\partial x'} \frac{\sqrt{1 + x'^2}}{\sqrt{2gy}} = \frac{x'}{\sqrt{2gy}\sqrt{1 + x'^2}} = \frac{1}{y'\sqrt{2gy}\sqrt{1 + 1/y'^2}} \text{ where: } x' = \frac{dx}{dy} = \frac{1}{y'}$$

Change variables from y to velocity v to simplify using: $v^2 = 2gy$, $dy = \frac{vav}{g}$, $y' = \frac{v}{g}\frac{av}{dx}$

$$p_{x} = \frac{1}{\sqrt{2gy}\sqrt{y'^{2}+1}} = \frac{1}{v\sqrt{\frac{v^{2}}{g^{2}}\left(\frac{dv}{dx}\right)^{2}+1}} \text{ is: } p_{x}^{2}v^{2} = \frac{1}{\frac{v^{2}}{g^{2}}\left(\frac{dv}{dx}\right)^{2}+1} \text{ is: } \frac{v^{2}}{g^{2}}\left(\frac{dv}{dx}\right)^{2} = \frac{1}{p_{x}^{2}v^{2}} - 1 = \frac{1 - p_{x}^{2}v^{2}}{p_{x}^{2}v^{2}}$$
$$\left(\frac{dv}{dx}\right)^{2} = \frac{g^{2}}{v^{2}}\frac{1 - p_{x}^{2}v^{2}}{p_{x}^{2}v^{2}} = \frac{g^{2}}{v^{2}}\frac{p_{x}^{-2} - v^{2}}{v^{2}} \text{ becomes: } \frac{dv}{dx} = \frac{g}{v^{2}}\sqrt{p_{x}^{-2} - v^{2}} \text{ and integral:} \int \frac{v^{2}dv}{g\sqrt{a^{2} - v^{2}}} = \int dx \text{ where: } a^{2} = p_{x}^{-2}$$

An elementary integral results and suggests an elementary substitution $v=a \cos\theta$.

$$\frac{ds}{dt} = v = \sqrt{2gy} \qquad \qquad t = \int dt = \int \frac{ds}{\sqrt{2gy}} = \int dy \frac{\sqrt{1 + {x'}^2}}{\sqrt{2gy}} = \int L \, dy$$

A "pseudo-momentum" p_x for "pseudo-Lagrange" L in y-integral is constant if L is x-independent.

$$p_x = const. = \frac{\partial L}{\partial x'} = \frac{\partial}{\partial x'} \frac{\sqrt{1 + x'^2}}{\sqrt{2gy}} = \frac{x'}{\sqrt{2gy}\sqrt{1 + x'^2}} = \frac{1}{y'\sqrt{2gy}\sqrt{1 + 1/y'^2}} \text{ where: } x' = \frac{dx}{dy} = \frac{1}{y'}$$

Change variables from y to velocity v to simplify using: $v^2 = 2gy$, $dy = \frac{v \, av}{g}$, $y' = \frac{v}{g} \frac{av}{dx}$

$$p_{x} = \frac{1}{\sqrt{2gy}\sqrt{y'^{2}+1}} = \frac{1}{v\sqrt{\frac{v^{2}}{g^{2}}\left(\frac{dv}{dx}\right)^{2}+1}} \text{ is: } p_{x}^{2}v^{2} = \frac{1}{\frac{v^{2}}{g^{2}}\left(\frac{dv}{dx}\right)^{2}+1} \text{ is: } \frac{v^{2}}{g^{2}}\left(\frac{dv}{dx}\right)^{2} = \frac{1}{p_{x}^{2}v^{2}} - 1 = \frac{1-p_{x}^{2}v^{2}}{p_{x}^{2}v^{2}}$$
$$\left(\frac{dv}{dx}\right)^{2} = \frac{g^{2}}{v^{2}}\frac{1-p_{x}^{2}v^{2}}{p_{x}^{2}v^{2}} = \frac{g^{2}}{v^{2}}\frac{p_{x}^{-2}-v^{2}}{v^{2}} \text{ becomes: } \frac{dv}{dx} = \frac{g}{v^{2}}\sqrt{p_{x}^{-2}-v^{2}} \text{ and integral:} \int \frac{v^{2}dv}{g\sqrt{a^{2}-v^{2}}} = \int dx \text{ where: } a^{2} = p_{x}^{-2}$$
An elementary integral results and suggests an elementary substitution $v = a \cos\theta$.

$$\int \frac{a^2 \cos^2 \theta \, a \sin \theta \, d\theta}{g a \sin \theta} = \int \frac{a^2}{g} \cos^2 \theta \, d\theta = \int dx = x = -\int \frac{a^2}{2g} (1 + \cos 2\theta) \, d\theta = -R(2\theta + \sin 2\theta) \quad \text{where: } R = \frac{a^2}{4g}$$
$$v^2 = 2gy = a^2 \cos^2 \theta \qquad \qquad \text{gives: } y = \frac{a^2}{2g} \cos^2 \theta \qquad \qquad = R(1 + \cos 2\theta)$$

Separation of GCC Equations: Effective Potentials

Small radial oscillations 2D Spherical pendulum or "Bowl-Bowling" Cycloidal ruler&compass geometry Cycloid as brachistichrone (With interesting linear dynamics) Cycloid as tautochrone Cycloidulum vs Pendulum Cycloidal geometry of flying levers Practical poolhall application

$$p_x = \frac{\partial L}{\partial x'} = \frac{\partial}{\partial x'} \frac{\sqrt{1 + x'^2}}{\sqrt{2gy}} = \frac{x'}{\sqrt{2gy}\sqrt{1 + x'^2}} = \frac{1}{\sqrt{2gy}\sqrt{y'^2 + 1}} \text{ where: } x' = \frac{dx}{dy} = \frac{1}{y'} \text{ and: } p_x^2 = \frac{1}{4Rg}$$
$$\frac{1}{p_x^2} = const. = 2gy(y'^2 + 1) = v^2 \sec^2 \theta = a^2$$

$$p_{x} = \frac{\partial L}{\partial x'} = \frac{\partial}{\partial x'} \frac{\sqrt{1 + x'^{2}}}{\sqrt{2gy}} = \frac{x'}{\sqrt{2gy}\sqrt{1 + x'^{2}}} = \frac{1}{\sqrt{2gy}\sqrt{y'^{2} + 1}} \text{ where: } x' = \frac{dx}{dy} = \frac{1}{y'} \text{ and: } p_{x}^{2} = \frac{1}{4Rg}$$
$$\frac{1}{p_{x}^{2}} = const. = 2gy(y'^{2} + 1) = v^{2} \sec^{2} \theta = a^{2}$$

t-derivatives of (x,y) give $v vs \phi = 2\theta$: $v^2 = \dot{x}^2 + \dot{y}^2 = \dot{\phi}^2 \left[\left(R + R\cos\phi \right)^2 + \left(-R\sin\phi \right)^2 \right] = 2R\dot{\phi}^2 \left(1 + \cos\phi \right) = 4R^2\dot{\phi}^2\cos^2\theta$

$$p_{x} = \frac{\partial L}{\partial x'} = \frac{\partial}{\partial x'} \frac{\sqrt{1 + x'^{2}}}{\sqrt{2gy}} = \frac{x'}{\sqrt{2gy}} \frac{1}{\sqrt{1 + x'^{2}}} = \frac{1}{\sqrt{2gy}} \frac{1}{\sqrt{y'^{2} + 1}} \text{ where: } x' = \frac{dx}{dy} = \frac{1}{y'} \text{ and: } p_{x}^{2} = \frac{1}{4Rg}$$
$$\frac{1}{p_{x}^{2}} = const. = 2gy(y'^{2} + 1) = v^{2} \sec^{2} \theta = a^{2}$$

t-derivatives of (x,y) give $v vs \phi = 2\theta$: $v^2 = \dot{x}^2 + \dot{y}^2 = \dot{\phi}^2 \left[\left(R + R\cos\phi \right)^2 + \left(-R\sin\phi \right)^2 \right] = 2R\dot{\phi}^2 (1 + \cos\phi) = 4R^2 \dot{\phi}^2 \cos^2\theta$

The circle starting at $\phi = \pi = 2\theta$ turns at a constant rate $\dot{\phi} = \omega$ and moves at a constant velocity $v = \omega R$. $\frac{1}{p_x} = a = \sqrt{4gR} = 4R\dot{\phi} = 8R\dot{\theta}$ or: $\omega = \dot{\phi} = \sqrt{\frac{g}{4R}}$

$$p_{x} = \frac{\partial L}{\partial x'} = \frac{\partial}{\partial x'} \frac{\sqrt{1 + x'^{2}}}{\sqrt{2gy}} = \frac{x'}{\sqrt{2gy}} \frac{1}{\sqrt{1 + x'^{2}}} = \frac{1}{\sqrt{2gy}} \frac{1}{\sqrt{y'^{2} + 1}} \text{ where: } x' = \frac{dx}{dy} = \frac{1}{y'} \text{ and: } p_{x}^{2} = \frac{1}{4Rg}$$
$$\frac{1}{p_{x}^{2}} = const. = 2gy(y'^{2} + 1) = v^{2} \sec^{2} \theta = a^{2}$$

t-derivatives of (x,y) give $v vs \phi = 2\theta$: $v^2 = \dot{x}^2 + \dot{y}^2 = \dot{\phi}^2 \left[\left(R + R\cos\phi \right)^2 + \left(-R\sin\phi \right)^2 \right] = 2R\dot{\phi}^2 (1 + \cos\phi) = 4R^2 \dot{\phi}^2 \cos^2\theta$

The circle starting at $\phi = \pi = 2\theta$ turns at a constant rate $\dot{\phi} = \omega$ and moves at a constant velocity $v = \omega R$. $\frac{1}{p_x} = a = \sqrt{4gR} = 4R\dot{\phi} = 8R\dot{\theta}$ or: $\omega = \dot{\phi} = \sqrt{\frac{g}{4R}}$

This relates to the arc length of the cycloid from bottom ($\theta = 0$) to a point at angle $\theta < \pi/2$ or $\phi < \pi$.

$$s = \int_0^t v \, dt = \int_0^t 2R\omega \cos\theta \, dt = \int_0^\theta 2R(\omega/\dot{\theta}) \cos\theta \, d\theta = 4R\sin\theta$$

Separation of GCC Equations: Effective Potentials

Small radial oscillations 2D Spherical pendulum or "Bowl-Bowling" Cycloidal ruler&compass geometry Cycloid as brachistichrone (With interesting curvature geometry) Cycloid as tautochrone Cycloidulum vs Pendulum Cycloidal geometry of flying levers Practical poolhall application Arc length *s* is indicated by a segment *hh* of length $2h=4Rsin\theta$ left hand Fig. 7.3.4 below. That is precisely the length of unwound string between points m' and m", and between points m' and m, is a segment *h'h'* of length $2h'=4Rcos\theta$ unwound from middle cycloid.

Arc length *s* is indicated by a segment *hh* of length $2h=4Rsin\theta$ left hand Fig. 7.3.4 below. That is precisely the length of unwound string between points m' and m", and between points m' and m, is a segment h'h' of length $2h'=4Rcos\theta$ unwound from middle cycloid.

Segment *hh* is the *radius of curvature* $r_c(m') = 2h = 4Rsin\theta$ of the *m*' cycloid and the points *m*' or *m*" are *centers of curvature* for circular arcs around unwinding points *m*" or *m*', respectively.

Arc length *s* is indicated by a segment *hh* of length $2h=4Rsin\theta$ left hand Fig. 7.3.4 below. That is precisely the length of unwound string between points m' and m", and between points m' and m, is a segment h'h' of length $2h'=4Rcos\theta$ unwound from middle cycloid.

Segment *hh* is the *radius of curvature* $r_c(m') = 2h = 4Rsin\theta$ of the *m*' cycloid and the points *m*' or *m*" are *centers of curvature* for circular arcs around unwinding points *m*" or *m*', respectively.

Three wheels roll synchronically on their respective ceilings. As point *m* approaches the top of its cycloid, point *m*' approaches *m* so that curvature becomes infinite.($k=1/r_c \rightarrow \infty$ as $\theta \rightarrow \pi/2$.)

Arc length *s* is indicated by a segment *hh* of length $2h=4Rsin\theta$ left hand Fig. 7.3.4 below. That is precisely the length of unwound string between points m' and m", and between points m' and m, is a segment h'h' of length $2h'=4Rcos\theta$ unwound from middle cycloid.

Segment *hh* is the *radius of curvature* $r_c(m') = 2h = 4Rsin\theta$ of the *m*' cycloid and the points *m*' or *m*" are *centers of curvature* for circular arcs around unwinding points *m*" or *m*', respectively.

Three wheels roll synchronically on their respective ceilings. As point *m* approaches the top of its cycloid, point *m*' approaches *m* so that curvature becomes infinite.($k=1/r_c \rightarrow \infty$ as $\theta \rightarrow \pi/2$.)

Figure 7.3.5 shows circular arcs fitting a cycloid. The largest arc and one with the least curvature $k_c = 1/(4R)$ is a circle of radius $r_c = 4R$ that surrounds the entire cycloid. This is the path of a simple circular pendulum. The figure shows that the circle deviates only slightly from the cycloid with the greatest deviation near the tips of the cycloid where curvature blows up.

Separation of GCC Equations: Effective Potentials

Small radial oscillations 2D Spherical pendulum or "Bowl-Bowling" Cycloidal ruler&compass geometry Cycloid as brachistichrone Cycloid as tautochrone Cycloidulum vs Pendulum Cycloidal geometry of flying levers Practical poolhall application

The circular pendulum frequency $\omega = \sqrt{(g/\ell)}$ holds only for small amplitudes $\theta <<1$. The time integral below varies with θ_0 in the range $\{-\pi/2 < \theta_0 < \pi/2\}$.

$$t_{1/4} = \int_{s_0}^0 \frac{ds}{\sqrt{2g(y - y_0)}} = \int_0^{\theta_0} \frac{4R\cos\theta \,d\theta}{\sqrt{2gR(\cos 2\theta - \cos 2\theta_0)}} = \sqrt{\frac{4R}{g}} \int_0^{\theta_0} \frac{\cos\theta \,d\theta}{\sqrt{\sin^2\theta_0 - \sin^2\theta}}$$

The circular pendulum frequency $\omega = \sqrt{(g/\ell)}$ holds only for small amplitudes $\theta <<1$. The time integral below varies with θ_0 in the range $\{-\pi/2 < \theta_0 < \pi/2\}$.

$$t_{1/4} = \int_{s_0}^0 \frac{ds}{\sqrt{2g(y - y_0)}} = \int_0^{\theta_0} \frac{4R\cos\theta \,d\theta}{\sqrt{2gR(\cos 2\theta - \cos 2\theta_0)}} = \sqrt{\frac{4R}{g}} \int_0^{\theta_0} \frac{\cos\theta \,d\theta}{\sqrt{\sin^2\theta_0 - \sin^2\theta}}$$

Arc length $s=4R \sin \theta$ and cycloid height $y=R(1+\cos 2\theta)$ are used above. To finish integral for a 1/4-period we set: $\sin \theta = \sin \theta_0 \sin \alpha$ below.

$$t_{1/4} = \sqrt{\frac{4R}{g}} \int_0^{\alpha = \pi/2} \frac{\sin\theta_0 \cos\alpha \, d\alpha}{\sin\theta_0 \sqrt{1 - \sin^2\alpha}} = \frac{\pi}{2} \sqrt{\frac{4R}{g}}$$

The circular pendulum frequency $\omega = \sqrt{(g/\ell)}$ holds only for small amplitudes $\theta <<1$. The time integral below varies with θ_0 in the range $\{-\pi/2 < \theta_0 < \pi/2\}$.

$$t_{1/4} = \int_{s_0}^0 \frac{ds}{\sqrt{2g(y - y_0)}} = \int_0^{\theta_0} \frac{4R\cos\theta \,d\theta}{\sqrt{2gR(\cos 2\theta - \cos 2\theta_0)}} = \sqrt{\frac{4R}{g}} \int_0^{\theta_0} \frac{\cos\theta \,d\theta}{\sqrt{\sin^2\theta_0 - \sin^2\theta}}$$

Arc length $s=4R \sin \theta$ and cycloid height $y=R(1+\cos 2\theta)$ are used above. To finish integral for a 1/4-period we set: $\sin \theta = \sin \theta_0 \sin \alpha$ below.

$$t_{1/4} = \sqrt{\frac{4R}{g}} \int_0^{\alpha = \pi/2} \frac{\sin\theta_0 \cos\alpha \, d\alpha}{\sin\theta_0 \sqrt{1 - \sin^2\alpha}} = \frac{\pi}{2} \sqrt{\frac{4R}{g}}$$

A cycloid has a full period of $t_1 = 2\pi \sqrt{\ell/g}$ for <u>all</u> θ_0 . Even for large θ_0 the "cycloidulum" matches the period of a simple circular ($\ell = 4R$)-pendulum at small θ_0 .

SSeparation of GCC Equations: Effective Potentials

Small radial oscillations 2D Spherical pendulum or "Bowl-Bowling" Cycloidal ruler&compass geometry Cycloid as brachistichrone Cycloid as tautochrone Cycloidal seometry of flying levers Practical poolhall application

http://www.uark.edu/ua/modphys/markup/PendulumWeb.html

http://www.uark.edu/ua/modphys/markup/CycloidulumWeb.html

Separation of GCC Equations: Effective Potentials

Small radial oscillations 2D Spherical pendulum or "Bowl-Bowling" Cycloidal ruler&compass geometry Cycloid as brachistichrone Cycloid as tautochrone Cycloidal geometry of Flying levers Practical poolhall application If you hammer a stick at a point *h* meters from its center you give it some linear momentum Π and some angular momentum $\Lambda = h \cdot \Pi$ $\Pi = \text{linear momentum} - \Pi$ $\Pi = \text{linear momentum} - \Pi$

Fig. 2.A.1 Cycloidic paths due to hitting a stationary stick.

If you hammer a stick at a point *h* meters from its center you give it some linear momentum Π and some angular momentum $\Lambda = h \cdot \Pi$

Resulting angular velocity ω about the center is angular momentum Λ divided by moment of inertia $I = M \ell^2/3$ of the stick.

Fig. 2.A.1 Cycloidic paths due to hitting a stationary stick.

If you hammer a stick at a point *h* meters from its center you give it some linear momentum Π and some angular momentum $\Lambda = h \cdot \Pi$

Resulting angular velocity ω about the center is angular momentum Λ divided by moment of inertia $I = M \ell^2/3$ of the stick.

 $\omega = \Lambda / I \quad (=3\Lambda / (M \ell^2) \text{ for stick})$ $= h\Pi / I \quad (=3h\Pi / (M \ell^2) \text{ for stick})$

Fig. 2.A.1 Cycloidic paths due to hitting a stationary stick.
Resulting angular velocity ω about the center is angular momentum Λ divided by moment of inertia $I = M \ell^2/3$ of the stick.

 $\omega = \Lambda / I \quad (=3\Lambda / (M \ell^2) \text{ for stick})$ $= h\Pi / I \quad (=3h\Pi / (M \ell^2) \text{ for stick})$

One point P, or *center of percussion* (CoP), is on the wheel where speed $p\omega$ due to rotation just cancels translational speed V_{Center} of stick.

Fig. 2.A.1 Cycloidic paths due to hitting a stationary stick.

Resulting angular velocity ω about the center is angular momentum Λ divided by moment of inertia $I = M \ell^2/3$ of the stick.

 $\omega = \Lambda / I \quad (=3\Lambda / (M \ell^2) \text{ for stick})$ $= h\Pi / I \quad (=3h\Pi / (M \ell^2) \text{ for stick})$

One point P, or *center of percussion* (CoP), is on the wheel where speed $p\omega$ due to rotation just cancels translational speed V_{Center} of stick. $\prod /M = V_{Center} = |p\omega| = p \cdot h \prod /I$

Fig. 2.A.1 Cycloidic paths due to hitting a stationary stick.

Resulting angular velocity ω about the center is angular momentum Λ divided by moment of inertia $I = M \ell^2/3$ of the stick.

 $\omega = \Lambda / I \quad (=3\Lambda / (M \ell^2) \text{ for stick})$ $= h\Pi / I \quad (=3h\Pi / (M \ell^2) \text{ for stick})$

One point P, or *center of percussion* (CoP), is on the wheel where speed $p\omega$ due to rotation just cancels translational speed V_{Center} of stick.

 $\prod /M = V_{Center} = |p\omega| = p \cdot h \prod / I$

$$I/M = = p \cdot h$$

Fig. 2.A.1 Cycloidic paths due to hitting a stationary stick.

Resulting angular velocity ω about the center is angular momentum Λ divided by moment of inertia $I = M \ell^2/3$ of the stick.

 $\omega = \Lambda / I \quad (=3\Lambda / (M \ell^2) \text{ for stick})$ $= h\Pi / I \quad (=3h\Pi / (M \ell^2) \text{ for stick})$

One point P, or *center of percussion* (CoP), is on the wheel where speed $p\omega$ due to rotation just cancels translational speed V_{Center} of stick. $\Pi /M = V_{Center} = |p\omega| = p \cdot h \Pi / I$ $I/M = = p \cdot h \quad or: p = I/(Mh)$

Fig. 2.A.1 Cycloidic paths due to hitting a stationary stick.

Resulting angular velocity ω about the center is angular momentum Λ divided by moment of inertia $I = M \ell^2/3$ of the stick.

 $\omega = \Lambda / I \quad (=3\Lambda / (M \ell^2) \text{ for stick})$ $= h\Pi / I \quad (=3h\Pi / (M \ell^2) \text{ for stick})$

One point P, or *center of percussion* (CoP), is on the wheel where speed $p\omega$ due to rotation just cancels translational speed V_{Center} of stick. $\prod /M = V_{Center} = |p\omega| = p \cdot h \prod /I$

 $I/M = = p \cdot h$ or: p = I/(Mh)P follows a normal cycloid made by a circle of radius p = I/(Mh) rolling on an imaginary road thru point P in direction of Π .

Fig. 2.A.1 Cycloidic paths due to hitting a stationary stick.

Resulting angular velocity ω about the center is angular momentum Λ divided by moment of inertia $I = M \ell^2/3$ of the stick.

 $\omega = \Lambda / I \quad (=3\Lambda / (M \ell^2) \text{ for stick})$ $= h\Pi / I \quad (=3h\Pi / (M \ell^2) \text{ for stick})$

One point P, or *center of percussion* (CoP), is on the wheel where speed $p\omega$ due to rotation just cancels translational speed V_{Center} of stick. $\prod /M = V_{Center} = |p\omega| = p \cdot h \prod /I$

 $I/M = = p \cdot h$ or: p = I/(Mh)P follows a normal cycloid made by a circle of radius p = I/(Mh) rolling on an imaginary road thru point P in direction of Π .

The *percussion radius* $p = \ell^2/3h$ is of the CoP point that has no velocity just after hammer hits at *h*.

Fig. 2.A.1 Cycloidic paths due to hitting a stationary stick.

Separation of GCC Equations: Effective Potentials

Small radial oscillations 2D Spherical pendulum or "Bowl-Bowling" Cycloidal ruler&compass geometry Cycloid as brachistichrone Cycloid as tautochrone Cycloidal seometry of flying levers Practical poolhall application

Practical poolhall application of center of percussion formula $I/M = p \cdot h$

Practical poolhall application of center of percussion formula $I/M = p \cdot h$

Practical poolhall application of center of percussion formula $I/M = p \cdot h$

Thats all folks!

