Parametric Resonance and Multi-particle Wave Modes

(Ch. 7-8 of Unit 4 11.24.15)
Two Kinds of Resonance: Linear-additive vs. Nonlinear-multiplicative (Parametric resonance)
Coupled rotation and translation (Throwing revisited: trebuchet, atlatl, etc.)
Schrodinger wave equation related to Parametric resonance dynamics
Electronic band theory and analogous mechanics
Wave resonance in cyclic symmetry
Harmonic oscillator with cyclic C_{2} symmetry
C_{2} symmetric (B-type) modes
Harmonic oscillator with cyclic C_{3} symmetry
C_{3} symmetric spectral decomposition by 3 rd roots of unity
Resolving C_{3} projectors and moving wave modes
Dispersion functions and standing waves
C6 symmetric mode model:Distant neighbor coupling
C_{6} spectra of gauge splitting by C-type symmetry(complex, chiral, coriolis, current, ...)
C_{N} symmetric mode models: Made-to order dispersion functions
Quadratic dispersion models: Super-beats and fractional revivals
Phase arithmetic
Algebra and geometry of resonant revivals: Farey Sums and Ford Circles
Relating C_{N} symmetric H and K matrices to differential wave operators

Two Kinds of Resonance

Linear or additive resonance.
Example: oscillating electric E-field applied to a cyclotron orbit .

$$
\ddot{x}+\omega_{0}^{2} x=E_{s} \cos \left(\omega_{s} t\right)
$$

Chapter 4.2 study of FDHO
(Here damping $\Gamma \cong 0$)

Two Kinds of Resonance

Linear or additive resonance.
Example: oscillating electric E-field applied to a cyclotron orbit .

$$
\ddot{x}+\omega_{0}^{2} x=E_{s} \cos \left(\omega_{s} t\right)
$$

Chapter 4.2 study of FDHO
(Here damping $\Gamma \cong 0$)
Nonlinear or multiplicative resonance.
Example: oscillating magnetic \mathbf{B}-field is applied to a cyclotron orbit.

$$
\ddot{x}+\left(\omega_{0}^{2}+B \cos \left(\omega_{s} t\right)\right) x=0
$$

Chapter 4.7
Also called parametric resonance.
Frequency parameter or spring constant $k=m \omega^{2}$ is being stimulated.

Two Kinds of Resonance

Linear or additive resonance.
Example: oscillating electric E-field applied to a cyclotron orbit .

$$
\ddot{x}+\omega_{0}^{2} x=E_{s} \cos \left(\omega_{s} t\right)
$$

Chapter 4.2 study of FDHO
(Here damping $\Gamma \cong 0$)
Nonlinear or multiplicative resonance.
Example: oscillating magnetic \mathbf{B}-field is applied to a cyclotron orbit.

$$
\ddot{x}+\left(\omega_{0}^{2}+B \cos \left(\omega_{s} t\right)\right) x=0
$$

Chapter 4.7
Also called parametric resonance.
Frequency parameter or spring constant $k=m \omega^{2}$ is being stimulated.
...Or pendulum accelerated up and down (model to be used here)

Two Kinds of Resonance: Linear-additive vs. Nonlinear-multiplicative (Parametric resonance) \longrightarrow Coupled rotation and translation (Throwing revisited: trebuchet, atlatl, etc.) Schrodinger wave equation related to Parametric resonance dynamics

Electronic band theory and analogous mechanics

Coupled Rotation and Translation (Throwing)

Early non-human (or in-human) machines: trebuchets, whips.. (3000 BCE-1542 CE)

Forced Harmonic Resonance

$$
\frac{\mathrm{d}^{2} \phi}{\mathrm{dt}^{2}}+\frac{\mathrm{g}}{\ell} \phi=\frac{\mathrm{A}_{\mathrm{x}}(\mathrm{t})}{\ell}
$$

A Newtonian $\mathrm{F}=\mathrm{Ma}$ equation
Lorentz equation (with $\Gamma=0$)

Y-stimulated pendulum:
(Non-Linear Resonance)

Parametric Resonance

$$
\frac{\mathrm{d}^{2} \phi}{\mathrm{dt}^{2}}+\left(\frac{\mathrm{g}}{\ell}+\frac{\mathrm{A}_{\mathrm{y}}(\mathrm{t})}{\ell}\right) \phi=0
$$

General ϕ :

Coupled Rotation and Translation (Throwing)

The "Arkansas Whirler"

Chaotic motion from both linear and non-linear resonance (a) Trebuchet, (b) Whirler .

Positioned for linear resonance

Positioned for nonlinear resonance
device we hope to build (...someday)

Two Kinds of Resonance: Linear-additive vs. Nonlinear-multiplicative (Parametric resonance) Coupled rotation and translation (Throwing revisited: trebuchet, atlatl, etc.) \longrightarrow Schrodinger wave equation related to Parametric resonance dynamics

Electronic band theory and analogous mechanics

Schrodinger Wave Equation (With $m=1$ and $\hbar=1$)

$$
\frac{d^{2} \phi}{d x^{2}}+(E-V(x)) \phi=0
$$

With periodic potential

$$
V(x)=-V_{0} \cos (N x)
$$

main difference: independent variable
\longleftarrow space $=x$ becomes time $=t \longrightarrow$

Jerked Pendulum Equation

$$
\frac{d^{2} \phi}{d t^{2}}+\left(\frac{g}{\ell}+\frac{A_{y}(t)}{\ell}\right) \phi=0
$$

On periodic roller coaster: $y=-A_{y} \cos w_{y} t$

$$
A_{y}(t)=\omega_{y}^{2} A_{y} \cos \left(\omega_{y} t\right)
$$

Schrodinger Wave Equation (With $m=1$ and $\hbar=1$)

$$
\frac{d^{2} \phi}{d x^{2}}+(E-V(x)) \phi=0
$$

With periodic potential

$$
V(x)=-V_{0} \cos (N x)
$$

Mathieu Equation

$\frac{d^{2} \phi}{d x^{2}}+\left(E+V_{0} \cos (N x)\right) \phi=0$
main difference: independent variable
\longleftarrow space $=x$ becomes time $=t \longrightarrow$

Jerked Pendulum Equation

$$
\frac{d^{2} \phi}{d t^{2}}+\left(\frac{g}{\ell}+\frac{A_{y}(t)}{\ell}\right) \phi=0
$$

On periodic roller coaster: $y=-A_{y} \cos w_{y} t$

$$
\begin{gathered}
A_{y}(t)=\omega_{y}^{2} A_{y} \cos \left(\omega_{y} t\right) \\
\frac{d^{2} \phi}{d t^{2}}+\left(\frac{g}{\ell}+\frac{\omega_{y}^{2} A_{y}}{\ell} \cos \left(\omega_{y} t\right)\right) \phi=0
\end{gathered}
$$

Schrodinger Wave Equation (With $m=1$ and $\hbar=1$)

$$
\frac{d^{2} \phi}{d x^{2}}+(E-V(x)) \phi=0
$$

With periodic potential

$$
V(x)=-V_{0} \cos (N x)
$$

\longleftarrow space $=x$
main difference: independent variable becomes

Mathieu Equation
$\frac{d^{2} \phi}{d x^{2}}+\left(E+V_{0} \cos (N x)\right) \phi=0$
becomes
time $=t \longrightarrow$ On periodic roller coaster: $y=-A_{y} \cos w_{y} t$

$$
A_{y}(t)=\omega_{y}^{2} A_{y} \cos \left(\omega_{y} t\right)
$$

Jerked Pendulum Equation
$\frac{d^{2} \phi}{d t^{2}}+\left(\frac{g}{\ell}+\frac{A_{y}(t)}{\ell}\right) \phi=0$

$$
\frac{d^{2} \phi}{d t^{2}}+\left(\frac{g}{\ell}+\frac{\omega_{y}^{2} A_{y}}{\ell} \cos \left(\omega_{y} t\right)\right) \phi=0
$$

Schrodinger Wave Equation (With $m=1$ and $\hbar=1$)

$$
\frac{d^{2} \phi}{d x^{2}}+(E-V(x)) \phi=0
$$

With periodic potential

$$
V(x)=-V_{0} \cos (N x)
$$

\longleftarrow space $=x$
main difference: independent variable becomes
time $=t \longrightarrow$ On periodic roller coaster: $y=-A_{y} \cos w_{y} t$

$$
A_{y}(t)=\omega_{y}^{2} A_{y} \cos \left(\omega_{y} t\right)
$$

Mathieu Equation

$$
\frac{d^{2} \phi}{d t^{2}}+\left(\frac{g}{\ell}+\frac{A_{y}(t)}{\ell}\right) \phi=0
$$

Jerked Pendulum Equation

$$
\begin{aligned}
& \text { Mathieu Equation } N x=\omega_{y} t \\
& \frac{d^{2} \phi}{d x^{2}}+\left(E+V_{0} \cos (N x)\right) \phi=0 \\
& \underline{N} d x=d t \longleftrightarrow \begin{array}{|c}
\text { Connection } \\
\text { Relations }
\end{array} \\
& \frac{d^{2} \phi}{d t^{2}}+\left(\frac{g}{\ell}+\frac{\omega_{y}^{2} A_{y}}{\ell} \cos \left(\omega_{y} t\right)\right. \\
& \hline
\end{aligned} x^{2}=d t^{2}
$$

$$
\frac{N}{\omega_{y}} d x=d t \longleftrightarrow \frac{N^{2}}{\omega_{y}^{2}} d x^{2}
$$

Schrodinger Equation

Related to Jerked-Pendulum

 Trebuchet DynamicsSchrodinger Wave Equation (With $m=1$ and $\hbar=1$)

$$
\frac{d^{2} \phi}{d x^{2}}+(E-V(x)) \phi=0
$$

With periodic potential

$$
V(x)=-V_{0} \cos (N x)
$$

main difference: independent variable
\longleftarrow space $=x$ becomes time $=t \longrightarrow$

Jerked Pendulum Equation

$$
\frac{d^{2} \phi}{d t^{2}}+\left(\frac{g}{\ell}+\frac{A_{y}(t)}{\ell}\right) \phi=0
$$

$$
\text { On periodic roller coaster: } y=-A_{y} \cos w_{y} t
$$

$$
A_{y}(t)=\omega_{y}^{2} A_{y} \cos \left(\omega_{y} t\right)
$$

Mathieu Equation

$$
\omega_{y} \quad \omega_{y}^{2}
$$

$$
\frac{d^{2} \phi}{d x^{2}}+\frac{N^{2}}{\omega_{y}^{2}}\left(\frac{g}{\ell}+\frac{\omega_{y}^{2} A_{y}}{\ell} \cos (N x)\right) \phi=0
$$

Schrodinger Equation

Related to Jerked-Pendulum

 Trebuchet DynamicsSchrodinger Wave Equation (With $m=1$ and $\hbar=1$)

$$
\frac{d^{2} \phi}{d x^{2}}+(E-V(x)) \phi=0
$$

With periodic potential

$$
V(x)=-V_{0} \cos (N x)
$$

main difference: independent variable
\longleftarrow space $=x$ becomes time $=t \longrightarrow$

Jerked Pendulum Equation

$$
\frac{d^{2} \phi}{d t^{2}}+\left(\frac{g}{\ell}+\frac{A_{y}(t)}{\ell}\right) \phi=0
$$

$$
\text { On periodic roller coaster: } y=-A_{y} \cos w_{y} t
$$

$$
A_{y}(t)=\omega_{y}^{2} A_{y} \cos \left(\omega_{y} t\right)
$$

$N x=\omega_{y} t$

Trebuchet Dynamics

Schrodinger Wave Equation (With $m=1$ and $\hbar=1$)

$$
\frac{d^{2} \phi}{d x^{2}}+(E-V(x)) \phi=0
$$

With periodic potential

$$
V(x)=-V_{0} \cos (N x)
$$

main difference: independent variable
\longleftarrow space $=x$ becomes

$$
\text { On periodic roller coaster: } y=-A_{y} \cos w_{y} t
$$ time $=t \longrightarrow$ On periodic roller coaster: $y=-A_{y} \cos w_{y} t$

Jerked Pendulum Equation

$$
-N x=\omega_{y} t
$$

$$
A_{y}(t)=\omega_{y}^{2} A_{y} \cos \left(\omega_{y} t\right)
$$

$$
\begin{aligned}
& \frac{d^{2} \phi}{d t^{2}}+\left(\frac{g}{\ell}+\frac{A_{y}(t)}{\ell}\right) \phi=0 \\
& \text { dic roller coaster: } y=-A_{y} \cos w_{y} t
\end{aligned}
$$

$$
\frac{d^{2} \phi}{d x^{2}}+\left(E+V_{0} \cos (N x)\right) \phi=0
$$

$\xrightarrow{N} d x=d t \xrightarrow{\left(\begin{array}{c}\text { Connection } \\ \text { Relations }\end{array}\right.} \frac{-d^{2}}{d t^{2}}+\left(\frac{g}{\ell}+\frac{\omega_{y}^{2} A_{y}}{\ell} \cos \left(\omega_{y} t\right)\right) \phi=0$
$\omega_{y} \quad \omega_{y}^{2}$
ω_{y}^{2} $\frac{d^{2} \phi}{d x^{2}}+\frac{N^{2}}{v^{2}}\left(\frac{g}{\ell}+\frac{\hat{L}_{4}^{2} A_{y}}{\ell} \cos (N x)\right) \phi=0$
QM Energy E-to- ω_{y} Jerk frequency Connection

$$
V_{0}=\frac{N^{2} A_{y}}{\ell}
$$

$$
\text { QM Potential } V_{0}-A_{y} \text { Amplitude Connection }
$$

Schrodinger Wave Equation (With $m=1$ and $\hbar=1$)

$$
\frac{d^{2} \phi}{d x^{2}}+(E-V(x)) \phi=0
$$

With periodic potential

$$
V(x)=-V_{0} \cos (N x)
$$

main difference: independent variable
\longleftarrow space $=x$ becomes

$$
\text { On periodic roller coaster: } y=-A_{y} \cos w_{y} t
$$ time $=t \longrightarrow$ On periodic roller coaster: $y=-A_{y} \cos w_{y} t$

$$
A_{y}(t)=\omega_{y}^{2} A_{y} \cos \left(\omega_{y} t\right)
$$

Jerked Pendulum Equation

$$
\frac{d^{2} \phi}{d t^{2}}+\left(\frac{g}{\ell}+\frac{A_{y}(t)}{\ell}\right) \phi=0
$$

$N x=\omega_{y} t$

$$
\frac{d^{2} \phi}{d x^{2}}+\left(E+V_{0} \cos (N x)\right) \phi=0
$$

Mathieu Equation
$\frac{d^{2} \phi}{d t^{2}}+\left(\frac{g}{\ell}+\frac{\omega_{y}^{2} A_{y}}{\ell} \cos \left(\omega_{y} t\right)\right) \phi=0$
\langle Related to \rangle

Trebuchet Dynamics

$d x^{2}=d t^{2}$
ω_{y}^{2} $\frac{d^{2} \phi}{d x^{2}}+\frac{N^{2}}{22}\left(\frac{g}{\ell}+\frac{\mu_{\ell}^{2} A_{y}}{\ell} \cos (N x)\right) \phi=0$ QM Energy E-to- ω_{y} Jerk frequency Connection

QM Potential $V_{0}-A_{y}$ Amplitude Connection

Two Kinds of Resonance: Linear-additive vs. Nonlinear-multiplicative (Parametric resonance)
Coupled rotation and translation (Throwing revisited: trebuchet, atlatl, etc.) Schrodinger wave equation related to Parametric resonance dynamics
\rightarrow Electronic band theory and analogous mechanics

Electronic band theory and analogous mechanics

Suppose Schrodinger potential V is zero and, by analogy, the pendulum Y-stimulus A_{y} is zero

$$
-\frac{d^{2} \phi}{d x^{2}}=E \phi
$$

independent variable

$$
-\frac{d^{2} \phi}{d t^{2}}=\omega_{0}^{2} \phi
$$

Electronic band theory and analogous mechanics

Suppose Schrodinger potential V is zero and, by analogy, the pendulum Y-stimulus A_{y} is zero

$$
-\frac{d^{2} \phi}{d x^{2}}=E \phi \quad \begin{gathered}
\text { independent variable } \\
\text { space }=x \\
\text { becomes } \\
\text { time }=t
\end{gathered} \longrightarrow ~-\frac{d^{2} \phi}{d t^{2}}=\omega_{0}^{2} \phi
$$

Eigen-solutions are the familiar Bohr orbitals or, for the pendulum, the familiar phasor waves

$$
\langle x \mid k\rangle=\phi_{k}(x)=\frac{e^{ \pm i k x}}{\sqrt{2 \pi}}, \text { where: } E=k^{2} \quad\langle t \mid \omega\rangle=\phi_{\omega}(t)=\frac{e^{ \pm i \omega_{0} t}}{\sqrt{2 \pi}}, \text { where: } \omega_{0}=\sqrt{\frac{\mathrm{g}}{\ell}}
$$

Electronic band theory and analogous mechanics

Suppose Schrodinger potential V is zero and, by analogy, the pendulum Y-stimulus A_{y} is zero

$$
-\frac{d^{2} \phi}{d x^{2}}=E \phi \quad \begin{gathered}
\text { independent variable } \\
\text { space }=x \\
\text { becomes } \\
\text { time }=t
\end{gathered} \longrightarrow \quad-\frac{d^{2} \phi}{d t^{2}}=\omega_{0}^{2} \phi
$$

Eigen-solutions are the familiar Bohr orbitals or, for the pendulum, the familiar phasor waves

$$
\langle x \mid k\rangle=\phi_{k}(x)=\frac{e^{ \pm i k x}}{\sqrt{2 \pi}}, \text { where: } E=k^{2} \quad\langle t \mid \omega\rangle=\phi_{\omega}(t)=\frac{e^{ \pm i \omega_{0} t}}{\sqrt{2 \pi}}, \text { where: } \omega_{0}=\sqrt{\frac{\mathrm{g}}{\ell}}
$$

Bohr has periodic boundary conditions x between 0 and $L \quad$ Pendulum repeats perfectly after a time T.

$$
\phi(0)=\phi(L) \Rightarrow e^{i k L}=1, \text { or: } k=\frac{2 \pi m}{L} \quad \phi(0)=\phi(T) \Rightarrow e^{i \omega_{0} T}=1, \text { or: } \omega_{0}=\frac{2 \pi m}{T}
$$

Electronic band theory and analogous mechanics

Suppose Schrodinger potential V is zero and, by analogy, the pendulum Y-stimulus A_{y} is zero

$$
-\frac{d^{2} \phi}{d x^{2}}=E \phi \quad \begin{gathered}
\text { independent variable } \\
\text { space }=x \\
\text { becomes } \\
\text { time }=t
\end{gathered} \longrightarrow-\frac{d^{2} \phi}{d t^{2}}=\omega_{0}^{2} \phi
$$

Eigen-solutions are the familiar Bohr orbitals or, for the pendulum, the familiar phasor waves

$$
\langle x \mid k\rangle=\phi_{k}(x)=\frac{e^{ \pm i k x}}{\sqrt{2 \pi}}, \text { where: } E=k^{2} \quad\langle t \mid \omega\rangle=\phi_{\omega}(t)=\frac{e^{ \pm i \omega_{0} t}}{\sqrt{2 \pi}}, \text { where: } \omega_{0}=\sqrt{\frac{\mathrm{g}}{\ell}}
$$

Bohr has periodic boundary conditions x between 0 and $L \quad$ Pendulum repeats perfectly after a time T.

$$
\phi(0)=\phi(L) \Rightarrow e^{i k L}=1, \text { or: } k=\frac{2 \pi m}{L} \quad \phi(0)=\phi(T) \Rightarrow e^{i \omega_{0} T}=1, \text { or: } \omega_{0}=\frac{2 \pi m}{T}
$$

Limit $L=2 \pi=T$ for both analogies. Then the allowed energies and frequencies follow

$$
E=k^{2}=0,1,4,9,16 \ldots \quad \omega_{0}=m=0, \pm 1, \pm 2, \pm 3, \pm 4, \ldots
$$

Electronic band theory and analogous mechanics

Suppose Schrodinger potential V is zero and, by analogy, the pendulum Y-stimulus A_{y} is zero

$$
-\frac{d^{2} \phi}{d x^{2}}=E \phi \quad \begin{gathered}
\text { independent variable } \\
\text { space }=x \\
\text { becomes } \\
\text { time }=t
\end{gathered} \longrightarrow-\frac{d^{2} \phi}{d t^{2}}=\omega_{0}^{2} \phi
$$

Eigen-solutions are the familiar Bohr orbitals or, for the pendulum, the familiar phasor waves

$$
\langle x \mid k\rangle=\phi_{k}(x)=\frac{e^{ \pm i k x}}{\sqrt{2 \pi}}, \text { where: } E=k^{2} \quad\langle t \mid \omega\rangle=\phi_{\omega}(t)=\frac{e^{ \pm i \omega_{0} t}}{\sqrt{2 \pi}}, \text { where: } \omega_{0}=\sqrt{\frac{\mathrm{g}}{\ell}}
$$

Bohr has periodic boundary conditions x between 0 and $L \quad$ Pendulum repeats perfectly after a time T.

$$
\phi(0)=\phi(L) \Rightarrow e^{i k L}=1, \text { or: } k=\frac{2 \pi m}{L} \quad \phi(0)=\phi(T) \Rightarrow e^{i \omega_{0} T}=1, \text { or: } \omega_{0}=\frac{2 \pi m}{T}
$$

Limit $L=2 \pi=T$ for both analogies. Then the allowed energies and frequencies follow

$$
E=k^{2}=0,1,4,9,16 \ldots \quad \omega_{0}=m=0, \pm 1, \pm 2, \pm 3, \pm 4, \ldots
$$

Schrodinger equation with non-zero V solved in Fourier basis

$$
-\frac{d^{2} \phi}{d x^{2}}+V_{0} \cos (N x) \phi=E \phi, \quad(\mathbf{D}+\mathbf{V})|\phi\rangle=E|\phi\rangle
$$

Fourier representation: $\langle j| \mathbf{D}|k\rangle=j^{2} \delta_{j}^{k}$

$$
\begin{gathered}
\Sigma\langle j|(\mathbf{D}+\mathbf{V})|k\rangle\langle k \mid \phi\rangle=E\langle j \mid \phi\rangle \\
\text { Matrix eigenvalue equation }
\end{gathered}
$$

Electronic band theory and analogous mechanics

Suppose Schrodinger potential V is zero and, by analogy, the pendulum Y-stimulus A_{y} is zero

$$
-\frac{d^{2} \phi}{d x^{2}}=E \phi \quad \begin{gathered}
\text { independent variable } \\
\text { space }=x \\
\text { becomes } \\
\text { time }=t
\end{gathered} \longrightarrow-\frac{d^{2} \phi}{d t^{2}}=\omega_{0}^{2} \phi
$$

Eigen-solutions are the familiar Bohr orbitals or, for the pendulum, the familiar phasor waves

$$
\langle x \mid k\rangle=\phi_{k}(x)=\frac{e^{ \pm i k x}}{\sqrt{2 \pi}}, \text { where: } E=k^{2} \quad\langle t \mid \omega\rangle=\phi_{\omega}(t)=\frac{e^{ \pm i \omega_{0} t}}{\sqrt{2 \pi}}, \text { where: } \omega_{0}=\sqrt{\frac{\mathrm{g}}{\ell}}
$$

Bohr has periodic boundary conditions x between 0 and $L \quad$ Pendulum repeats perfectly after a time T.

$$
\phi(0)=\phi(L) \Rightarrow e^{i k L}=1, \text { or: } k=\frac{2 \pi m}{L} \quad \phi(0)=\phi(T) \Rightarrow e^{i \omega_{0} T}=1, \text { or: } \omega_{0}=\frac{2 \pi m}{T}
$$

Limit $L=2 \pi=T$ for both analogies. Then the allowed energies and frequencies follow

$$
E=k^{2}=0,1,4,9,16 \ldots \quad \omega_{0}=m=0, \pm 1, \pm 2, \pm 3, \pm 4, \ldots
$$

Schrodinger equation with non-zero V solved in Fourier basis

$$
-\frac{d^{2} \phi}{d x^{2}}+V_{0} \cos (N x) \phi=E \phi, \quad(\mathbf{D}+\mathbf{V})|\phi\rangle=E|\phi\rangle
$$

Fourier representation: $\langle j| \mathbf{D}|k\rangle=j^{2} \delta_{j}^{k}$ and $\langle j| \mathbf{V}|k\rangle=\int_{0}^{2 \pi} d x \frac{e^{-i j x}}{\sqrt{2 \pi}} V_{0} \cos (N x) \frac{e^{+i k x}}{\sqrt{2 \pi}}=\int_{0}^{2 \pi} d x \frac{e^{-i(j-k) x}}{2 \pi} V_{0} \frac{e^{-i N x}+e^{i N x}}{2}$

$$
\Sigma\langle j|(\mathbf{D}+\mathbf{V})|k\rangle\langle k \mid \phi\rangle=E\langle j \mid \phi\rangle
$$

$$
=\frac{V_{0}}{2}\left(\delta_{j}^{k+N}+\delta_{j}^{k-N}\right)
$$

[^0]
Electronic band theory and analogous mechanics

Suppose Schrodinger potential V is zero and, by analogy, the pendulum Y-stimulus A_{y} is zero

$$
-\frac{d^{2} \phi}{d x^{2}}=E \phi \quad-\frac{d^{2} \phi}{d t^{2}}=\omega_{0}^{2} \phi
$$

Eigen-solutions are the familiar Bohr orbitals or, for the pendulum, the familiar phasor waves

$$
\langle x \mid k\rangle=\phi_{k}(x)=\frac{e^{ \pm i k x}}{\sqrt{2 \pi}}, \text { where: } E=k^{2} \quad\langle t \mid \omega\rangle=\phi_{\omega}(t)=\frac{e^{ \pm i \omega_{0} t}}{\sqrt{2 \pi}}, \text { where: } \omega_{0}=\sqrt{\frac{\mathrm{g}}{\ell}}
$$

Bohr has periodic boundary conditions x between 0 and $L \quad$ Pendulum repeats perfectly after a time T.

$$
\phi(0)=\phi(L) \Rightarrow e^{i k L}=1, \text { or: } k=\frac{2 \pi m}{L} \quad \phi(0)=\phi(T) \Rightarrow e^{i \omega_{0} T}=1, \text { or: } \omega_{0}=\frac{2 \pi m}{T}
$$

Limit $L=2 \pi=T$ for both analogies. Then the allowed energies and frequencies follow

$$
E=k^{2}=0,1,4,9,16 \ldots \quad \omega_{0}=m=0, \pm 1, \pm 2, \pm 3, \pm 4, \ldots
$$

Schrodinger equation with non-zero V solved in Fourier basis

$$
-\frac{d^{2} \phi}{d x^{2}}+V_{0} \cos (N x) \phi=E \phi, \quad(\mathbf{D}+\mathbf{V})|\phi\rangle=E|\phi\rangle
$$

Fourier representation: $\langle j| \mathbf{D}|k\rangle=j^{2} \delta_{j}^{k}$ and $\langle j| \mathbf{V}|k\rangle=\int_{0}^{2 \pi} d x \frac{e^{-i j x}}{\sqrt{2 \pi}} V_{0} \cos (N x) \frac{e^{+i k x}}{\sqrt{2 \pi}}=\int_{0}^{2 \pi} d x \frac{e^{-i(j-k) x}}{2 \pi} V_{0} \frac{e^{-i N x}+e^{i N x}}{2}$

$$
\Sigma\langle j|(\mathbf{D}+\mathbf{V})|k\rangle\langle k \mid \phi\rangle=E\langle j \mid \phi\rangle
$$

$$
=\frac{V_{0}}{2}\left(\delta_{j}^{k+N}+\delta_{j}^{k-N}\right)
$$

Matrix eigenvalue equation

Electronic band theory and analogous mechanics

Schrodinger equation with non-zero V solved in Fourier basis

$$
-\frac{d^{2} \phi}{d x^{2}}+V_{0} \cos (N x) \phi=E \phi, \quad(\mathbf{D}+\mathbf{V})|\phi\rangle=E|\phi\rangle
$$

Fourier representation: $\langle j| \mathbf{D}|k\rangle=j^{2} \delta_{j}^{k}$ and $\langle j| \mathbf{V}|k\rangle=\int_{0}^{2 \pi} d x \frac{e^{-i j x}}{\sqrt{2 \pi}} V_{0} \cos (N x) \frac{e^{+i k x}}{\sqrt{2 \pi}}=\int_{0}^{2 \pi} d x \frac{e^{-i(j-k) x}}{2 \pi} V_{0} \frac{e^{-i N x}+e^{i N x}}{2}$ $\Sigma\langle j|(\mathbf{D}+\mathbf{V})|k\rangle\langle k \mid \phi\rangle=E\langle j \mid \phi\rangle$ Matrix eigenvalue equation

$$
=\frac{V_{0}}{2}\left(\delta_{j}^{k+N}+\delta_{j}^{k-N}\right)
$$

Electronic band theory and analogous mechanics

Schrodinger equation with non-zero V solved in Fourier basis

$$
-\frac{d^{2} \phi}{d x^{2}}+V_{0} \cos (N x) \phi=E \phi, \quad(\mathbf{D}+\mathbf{V})|\phi\rangle=E|\phi\rangle
$$

Fourier representation: $\langle j| \mathbf{D}|k\rangle=j^{2} \delta_{j}^{k}$ and $\langle j| \mathbf{V}|k\rangle=\int_{0}^{2 \pi} d x \frac{e^{-i j x}}{\sqrt{2 \pi}} V_{0} \cos (N x) \frac{e^{+i k x}}{\sqrt{2 \pi}}=\int_{0}^{2 \pi} d x \frac{e^{-i(j-k) x}}{2 \pi} V_{0} \frac{e^{-i N x}+e^{i N x}}{2}$

$$
\Sigma\langle j|(\mathbf{D}+\mathbf{V})|k\rangle\langle k \mid \phi\rangle=E\langle j \mid \phi\rangle
$$

Matrix eigenvalue equation

$$
=\frac{V_{0}}{2}\left(\delta_{j}^{k+N}+\delta_{j}^{k-N}\right)
$$

$$
\begin{aligned}
& \langle j|(\mathbf{D}+\mathbf{V})|k\rangle=\quad(\text { for } \mathrm{j} \text { and } \mathrm{k} \text { even }) \\
& \quad \ldots|-6\rangle,|-4\rangle,|-2\rangle,|0\rangle,|2\rangle,|4\rangle,|6\rangle, \cdots
\end{aligned}
$$

$$
\langle j|(\mathbf{D}+\mathbf{V})|k\rangle=\quad(\text { for } \mathrm{j} \text { and } \mathrm{k} \text { odd })
$$

$$
\cdots|-7\rangle,|-5\rangle,|-3\rangle,|-1\rangle,|1\rangle,|3\rangle,|5\rangle, \cdots
$$

$$
\vdots(\ddots
$$

E_{m}-values vary with amplitude V_{0} or wiggle amplitude $A_{y}=V_{0} \ell / N^{2}=2 v / N^{2}=v / 2$.
($N=2$ and
Eigenvalues for $V_{0}=0.2$ or $v=0.1$ and $V_{0}=2.0$ or $v=1.0$.

$E_{0}=$	-0.0050
$E_{1-}=$	0.8988
$E_{1+}=$	1.0987
$E_{2-}=$	3.9992
$E_{2+}=$	4.0042
$E_{3-}=$	9.0006
$E_{3+}=$	9.0006

Connection relations from p. 15-16

When pendulum is "normal" and near its lowest point ($\phi \sim 0$) then $\cos \phi \sim 1$ and $\sin \phi \sim \phi$

$$
\frac{d^{2} \phi}{d x^{2}}+\frac{N^{2}}{\omega_{y}{ }^{2}}\left(\frac{g}{\ell}-\frac{\omega_{y}^{2} A_{y}}{\ell} \cos (N x)\right)_{\phi=0} \frac{d^{2} \phi}{d x^{2}}+\left(\frac{N^{2}}{\omega_{y}{ }^{2}} \frac{g}{\ell}-\frac{N^{2} A_{y}}{\ell} \cos (N x)\right) \phi, \quad(\text { where: } \phi \sim 0)
$$

When pendulum is "inverted" near highest point $(\phi \sim \pi)$ then $\cos \phi \sim-1$ and $\sin \phi \sim \pi-\phi$.

$$
\frac{d^{2} \phi}{d t^{2}}-\left(\frac{g}{\ell}-\frac{\omega_{y}{ }^{2} A_{y}}{\ell} \cos \left(\omega_{y} t\right)\right)(\phi-\pi)=0,
$$

$E m$-eigenvalue determines pendulum Y-wiggle frequency $\omega_{y(m)}$.

$$
\begin{equation*}
E_{m}=\frac{N^{2}}{\omega_{y(m)}^{2}} \frac{g}{\ell} \quad \text { implies: } \quad \omega_{y(m)}=\frac{N}{\sqrt{E_{m}}} \sqrt{\frac{g}{\ell}}=\frac{2}{\sqrt{E_{m}}} \tag{g=1,too}
\end{equation*}
$$

Pendulum Y-wiggle frequency $\omega_{y(m)}$ for $V_{0}=0.2$ and for $V_{0}=2.0$.

$\omega_{y(0)}=2 / \sqrt{.0050}$	$=28.2843$
$\omega_{y\left(1^{-}\right)}=2 / \sqrt{.8988}$	$=2.10959$
$\omega_{y\left(1^{+}\right)}=2 / \sqrt{1.0987}$	$=1.90805$
$\omega_{y\left(2^{-}\right)}=2 / \sqrt{3.9992}$	$=1.00010$
$\omega_{y\left(2^{+}\right)}=2 / \sqrt{4.0042}$	$=0.99948$

$\omega_{y(0)}=2 / \sqrt{.4551}$	$=2.9646$
$\omega_{y\left(1^{-}\right)}=2 / \sqrt{.1102}$	$=6.02475$
$\omega_{y\left(1^{+}\right)}=2 / \sqrt{1.8591}$	$=1.4668$
$\omega_{y\left(2^{-}\right)}=2 / \sqrt{3.9170}$	$=1.0105$
$\omega_{y\left(2^{+}\right)}=2 / \sqrt{4.3713}$	$=0.9566$

[^1]
(From Ch. 14 Unit 5
Quantum Theory for the Computer Age (QTft $C A)$

Fig. 14.2.7 Bands vs. V. $(W=15 \mathrm{~nm}$ well,$L=5 \mathrm{~nm}$ barrier $)$ showing Bohr splitting for $(N=2)$-ring.

A quick look at band splitting for a square periodic potential (Kronig-Penney Model)

(From Ch. 14 Unit 5
Quantum Theory for the Computer Age (QTft $C A$)

Fig. 14.2.13 $\left(B_{1}, B_{2}\right)$ crossing for: $(N=2)$ at $V=12$ and $E=16$, and $(N=6)$ at $V=144$ and $E=108$.

Wave resonance in cyclic symmetry
\rightarrow Harmonic oscillator with cyclic C_{2} symmetry C_{2} symmetric (B-type) modes
Harmonic oscillator with cyclic C_{3} symmetry
C_{3} symmetric spectral decomposition by 3rd roots of unity
Resolving C_{3} projectors and moving wave modes
Dispersion functions and standing waves
C_{6} symmetric mode model:Distant neighbor coupling
C_{6} spectra of gauge splitting by C-type symmetry(complex, chiral, coriolis, current, C_{N} symmetric mode models: Made-to order dispersion functions

Quadratic dispersion models: Super-beats and fractional revivals
Phase arithmetic

Wave resonance in cyclic symmetry

Harmonic oscillator with cyclic C_{2} symmetry (B-type)
Hamiltonian matrix \mathbf{H} or spring-constant matrix $\mathbf{K}=\mathbf{H}^{2}$ with B-type or bilateral-balanced symmetry

$$
\begin{aligned}
\mathbf{H}=\left(\begin{array}{ll}
A & B \\
B & A
\end{array}\right) & =A\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)+B\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) & \mathbf{K}=\mathbf{H}^{2} & =\left(\begin{array}{cc}
A^{2}+B^{2} & 2 A B \\
2 A B & A^{2}+B^{2}
\end{array}\right) \\
& =A \cdot \mathbf{1} & +B \cdot \boldsymbol{\sigma}_{B} &
\end{aligned}
$$

C_{2}	$\mathbf{1}$	σ_{B}
$\mathbf{1}$	$\mathbf{1}$	σ_{B}
σ_{B}	σ_{B}	$\mathbf{1}$

Reflection symmetry σ_{B} defined by $\left(\sigma_{B}\right)^{2}=\mathbf{1}$ in C_{2} group product table.

Wave resonance in cyclic symmetry

Harmonic oscillator with cyclic C_{2} symmetry (B-type)

Hamiltonian matrix \mathbf{H} or spring-constant matrix $\mathbf{K}=\mathbf{H}^{2}$ with B-type or bilateral-balanced symmetry

$$
\mathbf{H}=\left(\begin{array}{ll}
A & B \\
B & A
\end{array}\right)=A\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)+B\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

$$
\mathbf{K}=\mathbf{H}^{2}=\left(\begin{array}{cc}
A^{2}+B^{2} & 2 A B \\
2 A B & A^{2}+B^{2}
\end{array}\right)
$$

$$
=\left(A^{2}+B^{2}\right) \cdot \mathbf{1} \quad+2 A B \cdot \sigma_{B}
$$

C_{2}	$\mathbf{1}$	σ_{B}
$\mathbf{1}$	$\mathbf{1}$	σ_{B}
σ_{B}	σ_{B}	$\mathbf{1}$

Reflection symmetry σ_{B} defined by $\left(\sigma_{\mathrm{B}}\right)^{2}=\mathbf{1}$ in C_{2} group product table.
(a) unit base state
$|0\rangle=|x\rangle=|2\rangle=\left|\begin{array}{l}1 \\ 0\end{array}\right|$
$\left.\begin{aligned} & \text { (b) unit base state } \\ & |1\rangle=|y\rangle=|-1\rangle=\mid \\ & 0 \\ & 1\end{aligned} \right\rvert\,$

Wave resonance in cyclic symmetry

Harmonic oscillator with cyclic C_{2} symmetry (B-type)

Hamiltonian matrix \mathbf{H} or spring-constant matrix $\mathbf{K}=\mathbf{H}^{2}$ with B-type or bilateral-balanced symmetry

$$
\mathbf{H}=\left(\begin{array}{ll}
A & B \\
B & A
\end{array}\right)=A\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)+B\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

$$
\mathbf{K}=\mathbf{H}^{2}=\left(\begin{array}{cc}
A^{2}+B^{2} & 2 A B \\
2 A B & A^{2}+B^{2}
\end{array}\right)
$$

$$
=\left(A^{2}+B^{2}\right) \cdot \mathbf{1} \quad+2 A B \cdot \sigma_{B}
$$

C_{2}	$\mathbf{1}$	σ_{B}
$\mathbf{1}$	$\mathbf{1}$	σ_{B}
σ_{B}	σ_{B}	$\mathbf{1}$

Reflection symmetry σ_{B} defined by $\left(\sigma_{\mathrm{B}}\right)^{2}=\mathbf{1}$ in C_{2} group product table.
(a) unit base state $|\mathbf{1}\rangle=\mathbf{1}|\mathbf{1}\rangle$
(b) unit base state $\left|\sigma_{\mathrm{B}}\right\rangle=\sigma_{\mathrm{B}}|\mathbf{1}\rangle$

$$
|0\rangle=|x\rangle=|2\rangle=\left|\begin{array}{l}
1 \\
0
\end{array}\right|
$$

$|1\rangle=|y\rangle=|-1\rangle=\left|\begin{array}{l}0 \\ 1\end{array}\right|$

$$
\left(\sigma_{B}\right)^{2}=\mathbf{1} \text { or: }\left(\sigma_{B}\right)^{2} \mathbf{- 1}=\mathbf{0} \text { gives projectors: }
$$

$$
\left(\sigma_{\mathrm{B}}+\mathbf{1}\right) \cdot\left(\sigma_{\mathrm{B}}-\mathbf{1}\right)=\mathbf{0}=\mathbf{p}^{(+l)} \cdot \mathbf{p}^{(-l)}
$$

Wave resonance in cyclic symmetry

Harmonic oscillator with cyclic C_{2} symmetry (B-type)

Hamiltonian matrix \mathbf{H} or spring-constant matrix $\mathbf{K}=\mathbf{H}^{2}$ with B-type or bilateral-balanced symmetry

$$
\mathbf{H}=\left(\begin{array}{ll}
A & B \\
B & A
\end{array}\right)=A\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)+B\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

$$
\mathbf{K}=\mathbf{H}^{2}=\left(\begin{array}{cc}
A^{2}+B^{2} & 2 A B \\
2 A B & A^{2}+B^{2}
\end{array}\right)
$$

$$
=\left(A^{2}+B^{2}\right) \cdot \mathbf{1} \quad+2 A B \cdot \sigma_{B}
$$

C_{2}	$\mathbf{1}$	σ_{B}
$\mathbf{1}$	$\mathbf{1}$	σ_{B}
σ_{B}	σ_{B}	$\mathbf{1}$

Reflection symmetry σ_{B} defined by $\left(\sigma_{\mathrm{B}}\right)^{2}=\mathbf{1}$ in C_{2} group product table.
(a) unit base state $|\mathbf{1}\rangle=\mathbf{1}|\mathbf{1}\rangle$

$$
|0\rangle=|x\rangle=|2\rangle=\binom{1}{0}
$$

$\left(\sigma_{B}\right)^{2}=\mathbf{1}$ or: $\left(\sigma_{B}\right)^{2}-\mathbf{1}=\mathbf{0}$ gives projectors: $\left(\sigma_{\mathrm{B}}+\mathbf{1}\right) \cdot\left(\sigma_{\mathrm{B}}-\mathbf{1}\right)=\mathbf{0}=\mathbf{p}^{(+1)} \cdot \mathbf{p}^{(-1)}$ $\mathbf{P}^{(+)}=\left(\mathbf{1}+\sigma_{\mathrm{B}}\right) / 2$ and $\mathbf{P}^{(-)}=\left(\mathbf{1}-\sigma_{\mathrm{B}}\right) / 2$
(Normed so: $\mathbf{P}^{(+)}+\mathbf{P}^{(-)}=\mathbf{1}$ and: $\mathbf{P}^{(m)} \cdot \mathbf{P}^{(m)}=\mathbf{P}^{(m)}$)

Wave resonance in cyclic symmetry

Harmonic oscillator with cyclic C_{2} symmetry (B-type)

Hamiltonian matrix \mathbf{H} or spring-constant matrix $\mathbf{K}=\mathbf{H}^{2}$ with B-type or bilateral-balanced symmetry

$$
\mathbf{H}=\left(\begin{array}{ll}
A & B \\
B & A
\end{array}\right)=A\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)+B\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

$$
\mathbf{K}=\mathbf{H}^{2}=\left(\begin{array}{cc}
A^{2}+B^{2} & 2 A B \\
2 A B & A^{2}+B^{2}
\end{array}\right)
$$

$$
=\left(A^{2}+B^{2}\right) \cdot \mathbf{1} \quad+2 A B \cdot \sigma_{B}
$$

C_{2}	$\mathbf{1}$	σ_{B}
$\mathbf{1}$	$\mathbf{1}$	σ_{B}
σ_{B}	σ_{B}	$\mathbf{1}$

Reflection symmetry σ_{B} defined by $\left(\sigma_{\mathrm{B}}\right)^{2}=\mathbf{1}$ in C_{2} group product table.
(a) unit base state $|\mathbf{1}\rangle=\mathbf{1}|\mathbf{1}\rangle$

$$
|0\rangle=|x\rangle=|2\rangle=\left|\begin{array}{l}
1 \\
0
\end{array}\right|
$$

(b) unit base state $\left|\sigma_{B}\right\rangle=\sigma_{B}|\mathbf{1}\rangle$
$|1\rangle=|y\rangle=|-1\rangle=\left|\begin{array}{l}0 \\ 1\end{array}\right|$

C_{2} symmetry (B-type) modes
(a) Even mode $\left.|+\rangle=\left|0_{2}\right\rangle=\left\lvert\, \begin{array}{l}1 \\ 1\end{array}\right.\right)^{2} \wedge_{2}$
$\left(\sigma_{B}\right)^{2}=\mathbf{1}$ or: $\left(\sigma_{B}\right)^{2} \mathbf{- 1}=\mathbf{0}$ gives projectors: $\left(\sigma_{\mathrm{B}}+\mathbf{1}\right) \cdot\left(\sigma_{\mathrm{B}}-\mathbf{1}\right)=\mathbf{0}=\mathbf{p}^{(+1)} \cdot \mathbf{p}^{(-1)}$ $\mathbf{P}^{(+)}=\left(\mathbf{1}+\sigma_{\mathrm{B}}\right) / 2$ and $\mathbf{P}^{(-)}=\left(\mathbf{1}-\sigma_{\mathrm{B}}\right) / 2$
(Normed so: $\mathbf{P}^{(+)}+\mathbf{P}^{(-)}=\mathbf{1}$ and: $\mathbf{P}^{(m)} \cdot \mathbf{P}^{(m)}=\mathbf{P}^{(m)}$)

Wave resonance in cyclic symmetry

Harmonic oscillator with cyclic C_{2} symmetry (B-type)

Hamiltonian matrix \mathbf{H} or spring-constant matrix $\mathbf{K}=\mathbf{H}^{2}$ with B-type or bilateral-balanced symmetry

$$
\mathbf{H}=\left(\begin{array}{ll}
A & B \\
B & A
\end{array}\right)=A\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)+B\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

$$
\mathbf{K}=\mathbf{H}^{2}=\left(\begin{array}{cc}
A^{2}+B^{2} & 2 A B \\
2 A B & A^{2}+B^{2}
\end{array}\right)
$$

$$
=\left(A^{2}+B^{2}\right) \cdot \mathbf{1}+2 A B \cdot \sigma_{B}
$$

C_{2}	$\mathbf{1}$	σ_{B}
$\mathbf{1}$	$\mathbf{1}$	σ_{B}
σ_{B}	σ_{B}	$\mathbf{1}$

Reflection symmetry σ_{B} defined by $\left(\sigma_{\mathrm{B}}\right)^{2}=\mathbf{1}$ in C_{2} group product table.

C_{2} symmetry (B-type) modes
(a) Even mode $|+\rangle=\left|0_{2}\right\rangle=\binom{1}{1}^{\lambda_{2}}$

> Mode state projection:

$$
\begin{array}{ll}
x_{0}=1 / \sqrt{ } 2 & x_{1}=1 / \sqrt{2}
\end{array}
$$

(b) Odd mode $|-\rangle=\left|1_{2}\right\rangle=\left|\begin{array}{c}1 \\ -1\end{array}\right|^{\wedge \sqrt{2}}$

$x_{0}=1 / \sqrt{ } 2$	$x_{1}=-1 / \sqrt{2}$

$\left(\sigma_{B}\right)^{2}=\mathbf{1}$ or: $\left(\sigma_{B}\right)^{2} \mathbf{- 1}=\mathbf{0}$ gives projectors: $\left(\sigma_{\mathrm{B}}+\mathbf{1}\right) \cdot\left(\sigma_{\mathrm{B}}-\mathbf{1}\right)=\mathbf{0}=\mathbf{p}^{(+1)} \cdot \mathbf{p}^{(-1)}$ $\mathbf{P}^{(+)}=\left(\mathbf{1}+\sigma_{\mathrm{B}}\right) / 2$ and $\mathbf{P}^{(-)=\left(1-\sigma_{\mathrm{B}}\right) / 2}$
(Normed so: $\mathbf{P}^{(+)}+\mathbf{P}^{(-)}=\mathbf{1}$ and: $\mathbf{P}^{(m)} \cdot \mathbf{P}^{(m)}=\mathbf{P}^{(m)}$)

Wave resonance in cyclic symmetry

Harmonic oscillator with cyclic C_{2} symmetry (B-type)
Hamiltonian matrix \mathbf{H} or spring-constant matrix $\mathbf{K}=\mathbf{H}^{2}$ with B-type or bilateral-balanced symmetry

$$
\begin{aligned}
\mathbf{H}=\left(\begin{array}{ll}
A & B \\
B & A
\end{array}\right) & =A\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)+B\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) & \mathbf{K}=\mathbf{H}^{2} & =\left(\begin{array}{cc}
A^{2}+B^{2} & 2 A B \\
2 A B & A^{2}+B^{2}
\end{array}\right) \\
& =A \cdot \mathbf{1} & +B \cdot \boldsymbol{\sigma}_{B} &
\end{aligned}
$$

C_{2}	$\mathbf{1}$	σ_{B}
$\mathbf{1}$	$\mathbf{1}$	σ_{B}
σ_{B}	σ_{B}	$\mathbf{1}$

Reflection symmetry σ_{B} defined by $\left(\sigma_{\mathrm{B}}\right)^{2}=\mathbf{1}$ in C_{2} group product table.
(a) unit base state $|\mathbf{1}\rangle=\mathbf{1}|\mathbf{1}\rangle$
C_{2} symmetry (B-type) modes
(a) Even mode $|+\rangle=\left|0_{2}\right\rangle=\left|\begin{array}{l}1 \\ 1\end{array}\right|^{N_{2}}$
\boldsymbol{C}_{2} symmetry (B-type) modes
(a) Even mode $\left.|+\rangle=\left|0_{2}\right\rangle=\left\lvert\, \begin{array}{l}1 \\ 1\end{array}\right.\right)^{2}+\lambda_{2}$
Mode state projection:

$x_{0}=1 / \sqrt{ } 2 \quad x_{1}=1 / \sqrt{ } 2$

(b) Odd mode $|-\rangle=\left|1_{2}\right\rangle=\left|\begin{array}{c}1 \\ -1\end{array}\right|^{\wedge / \sqrt{2}}$

$\left(\sigma_{B}\right)^{2}=\mathbf{1}$ or: $\left(\sigma_{B}\right)^{2} \mathbf{- 1}=\mathbf{0}$ gives projectors: $\left(\sigma_{\mathrm{B}}+\mathbf{1}\right) \cdot\left(\sigma_{\mathrm{B}}-\mathbf{1}\right)=\mathbf{0}=\mathbf{p}^{(+1)} \cdot \mathbf{p}^{(-1)}$ $\mathbf{P}^{(+)}=\left(\mathbf{1}+\sigma_{\mathrm{B}}\right) / 2$ and $\mathbf{P}^{(-)=\left(1-\sigma_{\mathrm{B}}\right) / 2}$
(Normed so: $\mathbf{P}^{(+)}+\mathbf{P}^{(-)}=\mathbf{1}$ and: $\mathbf{P}^{(m)} \cdot \mathbf{P}^{(m)}=\mathbf{P}^{(m)}$) C_{2} mode phase \& character tables

$p=0 \quad p=1$	$p=0$	$p=1$
	$\begin{array}{l\|l} m=0_{2} & 1 \\ m=1_{2} & 1 \end{array}$	$\begin{array}{r} 1 \\ -1 \end{array}$
State m	vave-number	Operator
norm: or	"momentum"	norm
$1 / \sqrt{2}$		1/2

Wave resonance in cyclic symmetry
Harmonic oscillator with cyclic C_{2} symmetry C_{2} symmetric (B-type) modes
\rightarrow Harmonic oscillator with cyclic C_{3} symmetry
C_{3} symmetric spectral decomposition by 3 rd roots of unity
Resolving C_{3} projectors and moving wave modes
Dispersion functions and standing waves
C_{6} symmetric mode model:Distant neighbor coupling
C_{6} spectra of gauge splitting by C-type symmetry(complex, chiral, coriolis, current, C_{N} symmetric mode models: Made-to order dispersion functions

Quadratic dispersion models: Super-beats and fractional revivals
Phase arithmetic

Wave resonance in cyclic symmetry

Harmonic oscillator with cyclic C_{3} symmetry

3 -fold $\pm 120^{\circ}$ rotations $\mathbf{r}=\mathbf{r}^{1}$ and $(\mathbf{r})^{2}=\mathbf{r}^{2}=\mathbf{r}^{-1}$ obey: $(\mathbf{r})^{3}=\mathbf{r}^{3}=\mathbf{1}=\mathbf{r}^{0}$ and a $\mathrm{C}_{3} \mathbf{g} \dagger \mathbf{g}$-product-table

C_{3}	$\mathbf{r}^{0}=\mathbf{1}$	$\mathbf{r}^{1}=\mathbf{r}^{-2}$	$\mathbf{r}^{2}=\mathbf{r}^{-1}$
$\mathbf{r}^{0}=\mathbf{1}$	$\mathbf{1}$	\mathbf{r}^{1}	\mathbf{r}^{2}
$\mathbf{r}^{2}=\mathbf{r}^{-1}$	\mathbf{r}^{2}	$\mathbf{1}$	\mathbf{r}^{1}
$\mathbf{r}^{1}=\mathbf{r}^{-2}$	\mathbf{r}^{1}	\mathbf{r}^{2}	$\mathbf{1}$

\mathbf{H}-matrix and each \mathbf{r}^{p}-matrix based on $\mathbf{g} \boldsymbol{\dagger} \mathbf{g}$-table. $\mathbf{g}=\mathbf{r}^{p}$ heads $p^{\text {th }}$-column. Inverse $\mathbf{g}^{\dagger}=\mathbf{g}^{-1}$ heads $p^{t h}$-row then unit $\mathbf{g}^{\dagger} \mathbf{g}=\mathbf{1}=\mathbf{g}^{-1} \mathbf{g}$ occupies $p^{t h}$-diagonal.
$\begin{aligned}\left(\begin{array}{lll}r_{0} & r_{1} & r_{2} \\ r_{2} & r_{0} & r_{1} \\ r_{1} & r_{2} & r_{0}\end{array}\right) & =r_{0}\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)+r_{1}\left(\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right)+r_{2}\left(\begin{array}{ccc}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right) \\ \mathbf{H} & =\begin{array}{r}r_{0} \cdot \mathbf{1} \\ \mathbf{r}^{0}=\mathbf{1}\end{array}+r_{1} \cdot \mathbf{r}^{1}+r_{2} \cdot \mathbf{r}^{2}\end{aligned}$

Fig. 4.8.1
Unit 4
CMwBang

Wave resonance in cyclic symmetry

Harmonic oscillator with cyclic C_{3} symmetry

3 -fold $\pm 120^{\circ}$ rotations $\mathbf{r}=\mathbf{r}^{1}$ and $(\mathbf{r})^{2}=\mathbf{r}^{2}=\mathbf{r}^{-1}$ obey: $(\mathbf{r})^{3}=\mathbf{r}^{3}=\mathbf{1}=\mathbf{r}^{0}$ and a $\mathrm{C}_{3} \mathbf{g} \dagger \mathbf{g}$-product-table

C_{3}	$\mathbf{r}^{0}=\mathbf{1}$	$\mathbf{r}^{1}=\mathbf{r}^{-2}$	$\mathbf{r}^{2}=\mathbf{r}^{-1}$
$\mathbf{r}^{0}=\mathbf{1}$	$\mathbf{1}$	\mathbf{r}^{1}	\mathbf{r}^{2}
$\mathbf{r}^{2}=\mathbf{r}^{-1}$	\mathbf{r}^{2}	$\mathbf{1}$	\mathbf{r}^{1}
$\mathbf{r}^{1}=\mathbf{r}^{-2}$	\mathbf{r}^{1}	\mathbf{r}^{2}	$\mathbf{1}$

\mathbf{H}-matrix and each \mathbf{r}^{p}-matrix based on $\mathbf{g} \boldsymbol{\dagger} \mathbf{g}$-table.
$\mathbf{g}=\mathbf{r}^{p}$ heads $p^{t h}$-column. Inverse $\mathbf{g}^{\dagger}=\mathbf{g}^{-1}$ heads $p^{t h}$-row then unit $\mathbf{g}^{\dagger} \mathbf{g}=\mathbf{1}=\mathbf{g}^{-1} \mathbf{g}$ occupies $p^{\text {th }}$-diagonal.

C_{3} unit base states

$$
\begin{aligned}
&\left(\begin{array}{lll}
r_{0} & r_{1} & r_{2} \\
r_{2} & r_{0} & r_{1} \\
r_{1} & r_{2} & r_{0}
\end{array}\right)=r_{0}\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)+r_{1}\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right)+r_{2}\left(\begin{array}{ccc}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right) \\
& \mathbf{H}=\left(r_{0} \cdot \mathbf{1} \quad+r_{1} \cdot \mathbf{r}^{1}+r_{2} \cdot \mathbf{r}^{2}\right. \\
& \mathbf{r}^{0}=\mathbf{1}
\end{aligned}
$$

Wave resonance in cyclic symmetry

Harmonic oscillator with cyclic C_{3} symmetry

3 -fold $\pm 120^{\circ}$ rotations $\mathbf{r}=\mathbf{r}^{1}$ and $(\mathbf{r})^{2}=\mathbf{r}^{2}=\mathbf{r}^{-1}$ obey: $(\mathbf{r})^{3}=\mathbf{r}^{3}=\mathbf{1}=\mathbf{r}^{0}$ and a $\mathrm{C}_{3} \mathbf{g} \dagger \mathbf{g}$-product-table

C_{3}	$\mathbf{r}^{0}=\mathbf{1}$	$\mathbf{r}^{1}=\mathbf{r}^{-2}$	$\mathbf{r}^{2}=\mathbf{r}^{-1}$
$\mathbf{r}^{0}=\mathbf{1}$	$\mathbf{1}$	\mathbf{r}^{1}	\mathbf{r}^{2}
$\mathbf{r}^{2}=\mathbf{r}^{-1}$	\mathbf{r}^{2}	$\mathbf{1}$	\mathbf{r}^{1}
$\mathbf{r}^{1}=\mathbf{r}^{-2}$	\mathbf{r}^{1}	\mathbf{r}^{2}	$\mathbf{1}$

\mathbf{H}-matrix and each \mathbf{r}^{p}-matrix based on $\mathbf{g} \boldsymbol{\dagger} \mathbf{g}$-table.
$\mathbf{g}=\mathbf{r}^{p}$ heads $p^{t h}$-column. Inverse $\mathbf{g}^{\dagger}=\mathbf{g}^{-1}$ heads $p^{t h}$-row then unit $\mathbf{g}^{\dagger} \mathbf{g}=\mathbf{1}=\mathbf{g}^{-1} \mathbf{g}$ occupies $p^{t h}$-diagonal.

C_{3} unit base states

$\left(\begin{array}{lll}r_{0} & r_{1} & r_{2} \\ r_{2} & r_{0} & r_{1} \\ r_{1} & r_{2} & r_{0}\end{array}\right)=r_{0}\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)+r_{1}\left(\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right)+r_{2}\left(\begin{array}{ccc}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right)$
$\mathbf{H}=r_{0} \cdot \mathbf{1}+r_{1} \cdot \mathbf{r}^{1}+r_{2} \cdot \mathbf{r}^{2}$ $\mathrm{r}^{0}=1$

Fig. 4.8.1
Unit 4 CMwBang

Each \mathbf{H}-matrix coupling constant $r_{p}=\left\{r_{0}, r_{1}, r_{2}\right\}$ is amplitude of its operator power $\mathbf{r}^{p}=\left\{\mathbf{r}^{0}, \mathbf{r}^{1}, \mathbf{r}^{2}\right\}$

Wave resonance in cyclic symmetry
Harmonic oscillator with cyclic C_{2} symmetry
C_{2} symmetric (B-type) modes
Harmonic oscillator with cyclic C_{3} symmetry
$\rightarrow C_{3}$ symmetric spectral decomposition by 3rd roots of unity
Resolving C_{3} projectors and moving wave modes
Dispersion functions and standing waves
C_{6} symmetric mode model:Distant neighbor coupling
C_{6} spectra of gauge splitting by C-type symmetry(complex, chiral, coriolis, current, ..
C_{N} symmetric mode models: Made-to order dispersion functions
Quadratic dispersion models: Super-beats and fractional revivals Phase arithmetic

C_{3} Spectral resolution: $3^{\text {rd }}$ roots of unity

We can spectrally resolve \mathbf{H} if we resolve \mathbf{r} since is \mathbf{H} a combination $r_{p} \mathbf{r}^{p}$ of powers \mathbf{r}^{p}.

C_{3} Spectral resolution: $3^{\text {rd }}$ roots of unity

We can spectrally resolve \mathbf{H} if we resolve \mathbf{r} since is \mathbf{H} a combination $r_{p} \mathbf{r}^{p}$ of powers \mathbf{r}^{p}. \mathbf{r}-symmetry is cubic $\mathbf{r}^{3}=\mathbf{1}$, or $\mathbf{r}^{3} \mathbf{- 1}=\mathbf{0}$ and resolves to factors of $3^{\text {rd }}$ roots of unity $\rho_{m}=\mathbf{e}^{i m 2 \pi / 3}$.

$$
\rho_{1}=e^{i \frac{2 \pi}{3}} \rho_{0}=e^{i 0}=1
$$

C_{3} Spectral resolution: $3^{\text {rd }}$ roots of unity

We can spectrally resolve \mathbf{H} if we resolve \mathbf{r} since is \mathbf{H} a combination $r_{p} \mathbf{r}^{p}$ of powers \mathbf{r}^{p}. \mathbf{r}-symmetry is cubic $\mathbf{r}^{3}=\mathbf{1}$, or $\mathbf{r}^{3} \mathbf{- 1}=\mathbf{0}$ and resolves to factors of $3^{\text {rd }}$ roots of unity $\rho_{m}=\mathrm{e}^{i m 2 \pi / 3}$.

$$
\mathbf{1}=\mathbf{r}^{3} \text { implies : } \mathbf{0}=\mathbf{r}^{3}-\mathbf{1}=\left(\mathbf{r}-\rho_{0} \mathbf{1}\right)\left(\mathbf{r}-\rho_{1} \mathbf{1}\right)\left(\mathbf{r}-\rho_{2} \mathbf{1}\right) \text { where : } \rho_{m}=e^{i m \frac{2 \pi}{3}}
$$

Each eigenvalue ρ_{m} of \mathbf{r}, has idempotent projector $\mathbf{P}^{(m)}$ such that $\mathbf{r} \cdot \mathbf{P}^{(m)}=\rho_{m} \mathbf{P}^{(n)}$.

$$
\rho_{1}=e^{i \frac{2 \pi}{3}} \rho_{0}=e^{i 0}=1
$$

C_{3} Spectral resolution: $3^{\text {rd }}$ roots of unity

We can spectrally resolve \mathbf{H} if we resolve \mathbf{r} since is \mathbf{H} a combination $r_{p} \mathbf{r}^{p}$ of powers \mathbf{r}^{p}. \mathbf{r}-symmetry is cubic $\mathbf{r}^{3}=\mathbf{1}$, or $\mathbf{r}^{3} \mathbf{- 1}=\mathbf{0}$ and resolves to factors of $3^{\text {rd }}$ roots of unity $\rho_{m}=\mathrm{e}^{i m 2 \pi / 3}$.

$$
\mathbf{1}=\mathbf{r}^{3} \text { implies : } \mathbf{0}=\mathbf{r}^{3}-\mathbf{1}=\left(\mathbf{r}-\rho_{0} \mathbf{1}\right)\left(\mathbf{r}-\rho_{1} \mathbf{1}\right)\left(\mathbf{r}-\rho_{2} \mathbf{1}\right) \text { where : } \rho_{m}=e^{i m \frac{2 \pi}{3}}
$$

Each eigenvalue ρ_{m} of \mathbf{r}, has idempotent projector $\mathbf{P}^{(m)}$ such that $\mathbf{r} \cdot \mathbf{P}^{(m)}=\rho_{m} \mathbf{P}^{(n)}$. All three $\mathbf{P}^{(m)}$ are orthonormal $\left(\mathbf{P}^{(m)} \mathbf{P}^{(n)}=\delta_{\mathrm{mn}} \mathbf{P}^{(m)}\right.$) and complete (sum to unit 1).

$$
\rho_{1}=e^{\frac{i 2 \pi}{3}}
$$

$$
\mathbf{1}=\mathbf{P}^{(0)}+\mathbf{P}^{(1)}+\mathbf{P}^{(2)}
$$

$$
\rho_{2}=e^{-i \frac{2 \pi}{3}} \rho_{0}=e^{i 0}=1
$$

C_{3} Spectral resolution: $3^{\text {rd }}$ roots of unity

We can spectrally resolve \mathbf{H} if we resolve \mathbf{r} since is \mathbf{H} a combination $r_{p} \mathbf{r}^{p}$ of powers \mathbf{r}^{p}. \mathbf{r}-symmetry is cubic $\mathbf{r}^{3}=\mathbf{1}$, or $\mathbf{r}^{3} \mathbf{- 1}=\mathbf{0}$ and resolves to factors of $3^{\text {rd }}$ roots of unity $\rho_{m}=\mathrm{e}^{i m 2 \pi / 3}$.

$$
\mathbf{1}=\mathbf{r}^{3} \text { implies : } \mathbf{0}=\mathbf{r}^{3}-\mathbf{1}=\left(\mathbf{r}-\rho_{0} \mathbf{1}\right)\left(\mathbf{r}-\rho_{1} \mathbf{1}\right)\left(\mathbf{r}-\rho_{2} \mathbf{1}\right) \text { where : } \rho_{m}=e^{i m \frac{2 \pi}{3}}
$$

Each eigenvalue ρ_{m} of \mathbf{r}, has idempotent projector $\mathbf{P}^{(m)}$ such that $\mathbf{r} \cdot \mathbf{P}^{(m)}=\rho_{m} \mathbf{P}^{(n)}$. All three $\mathbf{P}^{(m)}$ are orthonormal $\left(\mathbf{P}^{(m)} \mathbf{P}^{(n)}=\delta_{\mathrm{mn}} \mathbf{P}^{(m)}\right.$) and complete (sum to unit 1).
$\rho_{1}=e^{i \frac{2 \pi}{3}}$
$\rho_{2}=e_{-i \frac{2 \pi}{3}} \rho_{0}=e^{i 0}=1$
$\mathbf{1}=\mathbf{P}^{(0)}+\mathbf{P}^{(1)}+\quad \mathbf{P}^{(2)}$
$\mathbf{r}=\rho_{0} \mathbf{P}^{(0)}+\rho_{1} \mathbf{P}^{(1)}+\rho_{2} \mathbf{P}^{(2)}$

C_{3} Spectral resolution: $3^{\text {rd }}$ roots of unity

We can spectrally resolve \mathbf{H} if we resolve \mathbf{r} since is \mathbf{H} a combination $r_{p} \mathbf{r}^{p}$ of powers \mathbf{r}^{p}. \mathbf{r}-symmetry is cubic $\mathbf{r}^{3}=\mathbf{1}$, or $\mathbf{r}^{3} \mathbf{- 1}=\mathbf{0}$ and resolves to factors of $3^{\text {rd }}$ roots of unity $\rho_{m}=\mathrm{e}^{i m 2 \pi / 3}$.

$$
\mathbf{1}=\mathbf{r}^{3} \text { implies : } \mathbf{0}=\mathbf{r}^{3}-\mathbf{1}=\left(\mathbf{r}-\rho_{0} \mathbf{1}\right)\left(\mathbf{r}-\rho_{1} \mathbf{1}\right)\left(\mathbf{r}-\rho_{2} \mathbf{1}\right) \text { where : } \rho_{m}=e^{i m \frac{2 \pi}{3}}
$$

Each eigenvalue ρ_{m} of \mathbf{r}, has idempotent projector $\mathbf{P}^{(m)}$ such that $\mathbf{r} \cdot \mathbf{P}^{(m)}=\rho_{m} \mathbf{P}^{(n)}$. All three $\mathbf{P}^{(m)}$ are orthonormal $\left(\mathbf{P}^{(m)} \mathbf{P}^{(n)}=\delta_{\mathrm{mn}} \mathbf{P}^{(m)}\right.$) and complete (sum to unit 1).
$\rho_{1}=e^{i \frac{2 \pi}{3}}$
$\rho_{2}=e^{-i \frac{2 \pi}{3}} \rho_{0}=e^{i 0}=1$

$$
\begin{aligned}
\mathbf{1} & =\mathbf{P}^{(0)}+\mathbf{P}^{(1)}+\mathbf{P}^{(2)} \\
\mathbf{r} & =\rho_{0} \mathbf{P}^{(0)}+\rho_{1} \mathbf{P}^{(1)}+\rho_{2} \mathbf{P}^{(2)} \\
\mathbf{r}^{2} & =\left(\rho_{0}\right)^{2} \mathbf{P}^{(0)}+\left(\rho_{1}\right)^{2} \mathbf{P}^{(1)}+\left(\rho_{2}\right)^{2} \mathbf{P}^{(2)}
\end{aligned}
$$

C_{3} Spectral resolution: $3^{\text {rd }}$ roots of unity

We can spectrally resolve \mathbf{H} if we resolve \mathbf{r} since is \mathbf{H} a combination $r_{p} \mathbf{r}^{p}$ of powers \mathbf{r}^{p}. \mathbf{r}-symmetry is cubic $\mathbf{r}^{3}=\mathbf{1}$, or $\mathbf{r}^{\mathbf{3}} \mathbf{- 1}=\mathbf{0}$ and resolves to factors of $3^{\text {rd }}$ roots of unity $\rho_{m}=\mathrm{e}^{i m 2 \pi / 3}$.

$$
\mathbf{1}=\mathbf{r}^{3} \text { implies : } \mathbf{0}=\mathbf{r}^{3}-\mathbf{1}=\left(\mathbf{r}-\rho_{0} \mathbf{1}\right)\left(\mathbf{r}-\rho_{1} \mathbf{1}\right)\left(\mathbf{r}-\rho_{2} \mathbf{1}\right) \text { where : } \rho_{m}=e^{i m \frac{2 \pi}{3}}
$$

Each eigenvalue ρ_{m} of \mathbf{r}, has idempotent projector $\mathbf{P}^{(m)}$ such that $\mathbf{r} \cdot \mathbf{P}^{(m)}=\rho_{m} \mathbf{P}^{(n)}$. All three $\mathbf{P}^{(n)}$ are orthonormal $\left(\mathbf{P}^{(m)} \mathbf{P}^{(n)}=\delta_{\mathrm{mn}} \mathbf{P}^{(n)}\right)$ and complete (sum to unit 1).

$$
\rho_{1}=e^{i \frac{2 \pi}{3}}
$$

$$
\rho_{0}=e^{i 0}=1
$$

$$
\begin{aligned}
\mathbf{1} & =\mathbf{P}^{(0)}+\mathbf{P}^{(1)}+\mathbf{P}^{(2)} \\
\mathbf{r} & =\rho_{0} \mathbf{P}^{(0)}+\rho_{1} \mathbf{P}^{(1)}+\rho_{2} \mathbf{P}^{(2)} \\
\mathbf{r}^{2} & =\left(\rho_{0}\right)^{2} \mathbf{P}^{(0)}+\left(\rho_{1}\right)^{2} \mathbf{P}^{(1)}+\left(\rho_{2}\right)^{2} \mathbf{P}^{(2)}
\end{aligned}
$$

Easy to resolve spectral projectors $\mathbf{P}^{(m)}$

$$
\begin{aligned}
& \mathbf{P}^{(0)}=\frac{1}{3}\left(\mathbf{r}^{0}+\quad \mathbf{r}^{1}+\quad \mathbf{r}^{2}\right)=\frac{1}{3}\left(\mathbf{1}+\quad \mathbf{r}^{1}+\right. \\
& \mathbf{P}^{(1)}=\frac{1}{3}\left(\mathbf{r}^{0}+\rho_{1}^{*} \mathbf{r}^{1}+\rho_{2}^{*} \mathbf{r}^{2}\right)=\frac{1}{3}\left(\mathbf{1}+e^{-i 2 \pi / 3} \mathbf{r}^{1}+e^{+i 2 \pi / 3} \mathbf{r}^{2}\right) \\
& \mathbf{P}^{(2)}=\frac{1}{3}\left(\mathbf{r}^{0}+\rho_{2}^{*} \mathbf{r}^{1}+\rho_{1}^{*} \mathbf{r}^{2}\right)=\frac{1}{3}\left(\mathbf{1}+e^{+i 2 \pi / 3} \mathbf{r}^{1}+e^{-i 2 \pi / 3} \mathbf{r}^{2}\right)
\end{aligned}
$$

C_{3} Spectral resolution: $3^{\text {rd }}$ roots of unity

We can spectrally resolve \mathbf{H} if we resolve \mathbf{r} since is \mathbf{H} a combination $r_{p} \mathbf{r}^{p}$ of powers \mathbf{r}^{p}. \mathbf{r}-symmetry is cubic $\mathbf{r}^{3}=\mathbf{1}$, or $\mathbf{r}^{3} \mathbf{- 1}=\mathbf{0}$ and resolves to factors of $3^{\text {rd }}$ roots of unity $\rho_{m}=\mathrm{e}^{i m 2 \pi / 3}$.

$$
\mathbf{1}=\mathbf{r}^{3} \text { implies : } \mathbf{0}=\mathbf{r}^{3}-\mathbf{1}=\left(\mathbf{r}-\rho_{0} \mathbf{1}\right)\left(\mathbf{r}-\rho_{1} \mathbf{1}\right)\left(\mathbf{r}-\rho_{2} \mathbf{1}\right) \text { where : } \rho_{m}=e^{i m \frac{2 \pi}{3}}
$$

Each eigenvalue ρ_{m} of \mathbf{r}, has idempotent projector $\mathbf{P}^{(m)}$ such that $\mathbf{r} \cdot \mathbf{P}^{(m)}=\rho_{m} \mathbf{P}^{(n)}$. All three $\mathbf{P}^{(n)}$ are orthonormal $\left(\mathbf{P}^{(m)} \mathbf{P}^{(n)}=\delta_{\mathrm{mn}} \mathbf{P}^{(m)}\right)$ and complete (sum to unit 1).

$$
\rho_{1}=e^{i \frac{2 \pi}{5}}
$$

$$
\rho_{2}=e_{-i \frac{2 \pi}{3}} \rho_{0}=e^{i 0}=1
$$

Easy to resolve spectral projectors $\mathbf{P}^{(m)}$ and eigen-bra-vectors $\langle(m)|$

$$
\begin{array}{ll}
\mathbf{P}^{(0)}=\frac{1}{3}\left(\mathbf{r}^{0}+\mathbf{r}^{1}+\mathbf{r}^{2}\right)=\frac{1}{3}\left(\mathbf{1}+\quad \mathbf{r}^{1}+\quad \mathbf{r}^{2}\right) & \left\langle\left(0_{3}\right)\right|=\langle 0| \mathbf{P}^{(0)} \sqrt{3}=\sqrt{\frac{1}{3}}(1 \quad 1 \\
\mathbf{P}^{(1)}=\frac{1}{3}\left(\mathbf{r}^{0}+\rho_{1}^{*} \mathbf{r}^{1}+\rho_{2}^{*} \mathbf{r}^{2}\right)=\frac{1}{3}\left(\mathbf{1}+e^{-i 2 \pi / 3} \mathbf{r}^{1}+e^{+i 2 \pi / 3} \mathbf{r}^{2}\right) \\
\mathbf{P}^{(2)}=\frac{1}{3}\left(\mathbf{r}^{0}+\rho_{2}^{*} \mathbf{r}^{1}+\rho_{1}^{*} \mathbf{r}^{2}\right)=\frac{1}{3}\left(\mathbf{1}+e^{+i 2 \pi / 3} \mathbf{r}^{1}+e^{-i 2 \pi / 3} \mathbf{r}^{2}\right) & \left\langle\left(1_{3}\right)\right|=\langle 0| \mathbf{P}^{(1)} \sqrt{3}=\sqrt{\frac{1}{3}}\left(1 e^{-i 2 \pi / 3} e^{+i 2 \pi / 3}\right) \\
& \left\langle\left(2_{3}\right)\right|=\langle 0| \mathbf{P}^{(2)} \sqrt{3}=\sqrt{\frac{1}{3}}\left(1 e^{+i 2 \pi / 3} e^{-i 2 \pi / 3}\right)
\end{array}
$$

$\left(m_{3}\right)$ means: m-modulo-3 (Details follow)

Wave resonance in cyclic symmetry
Harmonic oscillator with cyclic C_{2} symmetry
C_{2} symmetric (B-type) modes
Harmonic oscillator with cyclic C_{3} symmetry
C_{3} symmetric spectral decomposition by 3 rd roots of unity
\Rightarrow Resolving C_{3} projectors and moving wave modes
Dispersion functions and standing waves
C_{6} symmetric mode model:Distant neighbor coupling
C_{6} spectra of gauge splitting by C-type symmetry(complex, chiral, coriolis, current, .. C_{N} symmetric mode models: Made-to order dispersion functions

Quadratic dispersion models: Super-beats and fractional revivals Phase arithmetic

Easy to resolve spectral projectors $\mathbf{P}^{(m)}$ and eigen-bra-vectors $\langle(m)|$

$$
\begin{aligned}
& \mathbf{P}^{(0)}=\frac{1}{3}\left(\mathbf{r}^{0}+\mathbf{r}^{1}+\mathbf{r}^{2}\right)=\frac{1}{3}(\mathbf{1}+ \\
& \mathbf{r}^{1}+ \\
& \left.\mathbf{r}^{2}\right) \\
& \left\langle\left(0_{3}\right)\right|=\langle 0| \mathbf{P}^{(0)} \sqrt{3}=\sqrt{\frac{1}{3}}\left(\begin{array}{lll}
1 & 1 & 1
\end{array}\right) \\
& \mathbf{P}^{(1)}=\frac{1}{3}\left(\mathbf{r}^{0}+\rho_{1}^{*} \mathbf{r}^{1}+\rho_{2}^{*} \mathbf{r}^{2}\right)=\frac{1}{3}\left(\mathbf{1}+e^{-i 2 \pi / 3} \mathbf{r}^{1}+e^{+i 2 \pi / 3} \mathbf{r}^{2}\right) \\
& \left\langle\left(1_{3}\right)\right|=\langle 0| \mathbf{P}^{(1)} \sqrt{3}=\sqrt{\frac{1}{3}}\left(1 e^{-i 2 \pi / 3} e^{+i 2 \pi / 3}\right) \\
& \mathbf{P}^{(2)}=\frac{1}{3}\left(\mathbf{r}^{0}+\rho_{2}^{*} \mathbf{r}^{1}+\rho_{1}^{*} \mathbf{r}^{2}\right)=\frac{1}{3}\left(\mathbf{1}+e^{+i 2 \pi / 3} \mathbf{r}^{1}+e^{-i 2 \pi / 3} \mathbf{r}^{2}\right) \\
& \left\langle\left(2_{3}\right)\right|=\langle 0| \mathbf{P}^{(2)} \sqrt{3}=\sqrt{\frac{1}{3}}\left(1 e^{+i 2 \pi / 3} e^{-i 2 \pi / 3}\right)
\end{aligned}
$$

Easy to resolve spectral projectors $\mathbf{P}^{(m)}$ and eigen-bra-vectors $\langle(m)|$

$\mathbf{P}^{(0)}=\frac{1}{3}\left(\mathbf{r}^{0}+\mathbf{r}^{1}+\mathbf{r}^{2}\right)=\frac{1}{3}(\mathbf{1}+$
\mathbf{r}^{2})
$\left\langle\left(0_{3}\right)\right|=\langle 0| \mathbf{P}^{(0)} \sqrt{3}=\sqrt{\frac{1}{3}}\left(\begin{array}{llll}1 & 1 & 1\end{array}\right)$
$\mathbf{P}^{(1)}=\frac{1}{3}\left(\mathbf{r}^{0}+\rho_{1}^{*} \mathbf{r}^{1}+\rho_{2}^{*} \mathbf{r}^{2}\right)=\frac{1}{3}\left(\mathbf{1}+e^{-i 2 \pi / 3} \mathbf{r}^{1}+e^{+i 2 \pi / 3} \mathbf{r}^{2}\right)$

$$
\left\langle\left(1_{3}\right)\right|=\langle 0| \mathbf{P}^{(1)} \sqrt{3}=\sqrt{\frac{1}{3}}\left(1 e^{-i 2 \pi / 3} e^{+i 2 \pi / 3}\right)
$$

$$
\mathbf{P}^{(2)}=\frac{1}{3}\left(\mathbf{r}^{0}+\rho_{2}^{*} \mathbf{r}^{1}+\rho_{1}^{*} \mathbf{r}^{2}\right)=\frac{1}{3}\left(\mathbf{1}+e^{+i 2 \pi / 3} \mathbf{r}^{1}+e^{-i 2 \pi / 3} \mathbf{r}^{2}\right)
$$

$$
\left\langle\left(2_{3}\right)\right|=\langle 0| \mathbf{P}^{(2)} \sqrt{3}=\sqrt{\frac{1}{3}}\left(1 e^{+i 2 \pi / 3} e^{-i 2 \pi / 3}\right)
$$

Easy to resolve spectral projectors $\mathbf{P}^{(m)}$ and eigen-bra-vectors $\langle(m)|$

$$
\begin{aligned}
& \mathbf{P}^{(0)}=\frac{1}{3}\left(\mathbf{r}^{0}+\mathbf{r}^{1}+\mathbf{r}^{2}\right)=\frac{1}{3}(\mathbf{1}+ \\
& \mathbf{r}^{1}+ \\
& \mathbf{r}^{2} \text {) } \\
& \mathbf{P}^{(1)}=\frac{1}{3}\left(\mathbf{r}^{0}+\rho_{1}^{*} \mathbf{r}^{1}+\rho_{2}^{*} \mathbf{r}^{2}\right)=\frac{1}{3}\left(\mathbf{1}+e^{-i 2 \pi / 3} \mathbf{r}^{1}+e^{+i 2 \pi / 3} \mathbf{r}^{2}\right) \\
& \mathbf{P}^{(2)}=\frac{1}{3}\left(\mathbf{r}^{0}+\rho_{2}^{*} \mathbf{r}^{1}+\rho_{1}^{*} \mathbf{r}^{2}\right)=\frac{1}{3}\left(\mathbf{1}+e^{+i 2 \pi / 3} \mathbf{r}^{1}+e^{-i 2 \pi / 3} \mathbf{r}^{2}\right) \\
& \rho_{0}=\underbrace{+\mathrm{i} 2 \pi / 3}_{i=1} \underbrace{2}_{i} \\
& C_{3} \text { mode phase character tables }
\end{aligned}
$$

$$
\begin{aligned}
& \left.\left.\begin{array}{l}
\left\langle\left(0_{3}\right)\right|=\langle 0| \mathbf{P}^{(0)} \sqrt{3}=\sqrt{\frac{1}{3}}\left(\begin{array}{ccc}
1 & 1 & 1
\end{array}\right) \\
\left\langle\left(1_{3}\right)\right|=\langle 0| \mathbf{P}^{(1)} \sqrt{3}=\sqrt{\frac{1}{3}}\left(1 e^{-i 2 \pi / 3}\right. \\
e^{+i 2 \pi / 3}
\end{array}\right), ~ \begin{array}{lll}
\\
\left\langle\left(2_{3}\right)\right|=\langle 0| \mathbf{P}^{(2)} \sqrt{3}=\sqrt{\frac{1}{3}}\left(1 e^{+i 2 \pi / 3}\right. & e^{-i 2 \pi / 3}
\end{array}\right) . \\
& \text { (} m_{3} \text {) means: } m \text {-modulo-3 (Details follow) } \\
& \text { - } L=\text { lattice length }(=3 \text { here }) \\
& N=\text { symmetry (}=3 \text { here) } \\
& a=\text { lattice spacing }=1 \text { here }) \\
& \text { Two distinct types of "quantum" numbers. } \\
& p=0,1, \text { or } 2 \text { is power } p \text { of operator } \mathbf{r}^{p} \text { and defines each oscillator's position point } p \text {. } \\
& m=0,1, \text { or } 2 \text { is mode momentum } m \text { of the waves or wavevector } k_{m}=2 \pi / \lambda_{m}=2 \pi m / L . \quad(L=N a=3) \\
& \text { wavelength } \lambda_{m}=2 \pi / k_{m}=L / m
\end{aligned}
$$

Easy to resolve spectral projectors $\mathbf{P}^{(m)}$ and eigen-bra-vectors $\langle(m)|$

$\mathbf{P}^{(0)}=\frac{1}{3}\left(\mathbf{r}^{0}+\mathbf{r}^{1}+\mathbf{r}^{2}\right)=\frac{1}{3}(\mathbf{1}+$
\mathbf{r}^{2})
$\left\langle\left(0_{3}\right)\right|=\langle 0| \mathbf{P}^{(0)} \sqrt{3}=\sqrt{\frac{1}{3}}\left(\begin{array}{llll}1 & 1 & 1\end{array}\right)$
$\mathbf{P}^{(1)}=\frac{1}{3}\left(\mathbf{r}^{0}+\rho_{1}^{*} \mathbf{r}^{1}+\rho_{2}^{*} \mathbf{r}^{2}\right)=\frac{1}{3}\left(\mathbf{1}+e^{-i 2 \pi / 3} \mathbf{r}^{1}+e^{+i 2 \pi / 3} \mathbf{r}^{2}\right)$
$\left\langle\left(1_{3}\right)\right|=\langle 0| \mathbf{P}^{(1)} \sqrt{3}=\sqrt{\frac{1}{3}}\left(1 e^{-i 2 \pi / 3} e^{+i 2 \pi / 3}\right)$
$\mathbf{P}^{(2)}=\frac{1}{3}\left(\mathbf{r}^{0}+\rho_{2}^{*} \mathbf{r}^{1}+\rho_{1}^{*} \mathbf{r}^{2}\right)=\frac{1}{3}\left(\mathbf{1}+e^{+i 2 \pi / 3} \mathbf{r}^{1}+e^{-i 2 \pi / 3} \mathbf{r}^{2}\right)$ $\left\langle\left(2_{3}\right)\right|=\langle 0| \mathbf{P}^{(2)} \sqrt{3}=\sqrt{\frac{1}{3}}\left(1 e^{+i 2 \pi / 3} e^{-i 2 \pi / 3}\right)$

(m_{3}) means: m-modulo-3 (Details follow)

- L =lattice length $(=3$ here $)$ $N=$ symmetry ($=3$ here) $a=$ lattice spacing $=1$ here $)$

Two distinct types of "quantum" numbers.
$p=0,1$, or 2 is power p of operator \mathbf{r}^{p} and defines each oscillator's position point p.
$m=0,1$, or 2 is mode momentum m of the waves or wavevector $k_{m}=2 \pi / \lambda_{m}=2 \pi m / L . \quad(L=N a=3)$ wavelength $\lambda_{m}=2 \pi / k_{m}=L / m$
Each quantum number follows modular arithmetic: sums or products are an integer-modulo-3, that is, always 0,1, or 2 , or else $-1,0$, or 1 , or else $-2,-1$, or 0 , etc., depending on choice of origin.

Easy to resolve spectral projectors $\mathbf{P}^{(m)}$ and eigen-bra-vectors $\langle(m)|$

$\mathbf{P}^{(0)}=\frac{1}{3}\left(\mathbf{r}^{0}+\mathbf{r}^{1}+\mathbf{r}^{2}\right)=\frac{1}{3}(\mathbf{1}+$
\mathbf{r}^{2})
$\left\langle\left(0_{3}\right)\right|=\langle 0| \mathbf{P}^{(0)} \sqrt{3}=\sqrt{\frac{1}{3}}\left(\begin{array}{llll}1 & 1 & 1\end{array}\right)$
$\mathbf{P}^{(1)}=\frac{1}{3}\left(\mathbf{r}^{0}+\rho_{1}^{*} \mathbf{r}^{1}+\rho_{2}^{*} \mathbf{r}^{2}\right)=\frac{1}{3}\left(\mathbf{1}+e^{-i 2 \pi / 3} \mathbf{r}^{1}+e^{+i 2 \pi / 3} \mathbf{r}^{2}\right)$ $\left\langle\left(1_{3}\right)\right|=\langle 0| \mathbf{P}^{(1)} \sqrt{3}=\sqrt{\frac{1}{3}}\left(1 e^{-i 2 \pi / 3} e^{+i 2 \pi / 3}\right)$
$\mathbf{P}^{(2)}=\frac{1}{3}\left(\mathbf{r}^{0}+\rho_{2}^{*} \mathbf{r}^{1}+\rho_{1}^{*} \mathbf{r}^{2}\right)=\frac{1}{3}\left(\mathbf{1}+e^{+i 2 \pi / 3} \mathbf{r}^{1}+e^{-i 2 \pi / 3} \mathbf{r}^{2}\right)$ $\left\langle\left(2_{3}\right)\right|=\langle 0| \mathbf{P}^{(2)} \sqrt{3}=\sqrt{\frac{1}{3}}\left(1 e^{+i 2 \pi / 3} e^{-i 2 \pi / 3}\right)$

(m_{3}) means: m-modulo-3 (Details follow)

Two distinct types of "quantum" numbers.
$p=0,1$, or 2 is power p of operator \mathbf{r}^{p} and defines each oscillator's position point p. $m=0,1$, or 2 is mode momentum m of the waves or wavevector $k_{m}=2 \pi / \lambda_{m}=2 \pi m / L . \quad(L=N a=3)$ wavelength $\lambda_{m}=2 \pi / k_{m}=L / m$
Each quantum number follows modular arithmetic: sums or products are an integer-modulo-3, that is, always 0,1, or 2 , or else $-1,0$, or 1 , or else $-2,-1$, or 0 , etc., depending on choice of origin.
 That is, $(2$-times- 2$) \bmod 3$ is not 4 but $1(4 \bmod 3=1$, the remainder of 4 divided by 3 .)

Wave resonance in cyclic symmetry
Harmonic oscillator with cyclic C_{2} symmetry
C_{2} symmetric (B-type) modes
Harmonic oscillator with cyclic C_{3} symmetry
C_{3} symmetric spectral decomposition by 3 rd roots of unity
Resolving C_{3} projectors and moving wave modes
\rightarrow Dispersion functions and standing waves
C6 symmetric mode model:Distant neighbor coupling
C_{6} spectra of gauge splitting by C-type symmetry(complex, chiral, coriolis, current, .. C_{N} symmetric mode models: Made-to order dispersion functions

Quadratic dispersion models: Super-beats and fractional revivals Phase arithmetic

Easy to resolve spectral projectors $\mathbf{P}^{(m)}$ and eigenvalues ω_{m} or dispersion functions $\omega\left(k_{m}\right)$

$$
\begin{aligned}
& \langle m| \mathbf{H}|m\rangle=\langle m| r_{0} \mathbf{r}^{0}+r_{1} \mathbf{r}^{1}+r_{2} \mathbf{r}^{2}|m\rangle=r_{0} e^{i m \cdot 0 \frac{2 \pi}{3}}+r_{1} e^{i m \cdot 1 \frac{2 \pi}{3} \pi}+r_{2} e^{i m \cdot 2 \frac{2}{3} \pi} \\
& m^{\text {th }} \text { Eigenvalue of } \mathbf{r}^{p} \\
& \langle m| \mathbf{r}^{p}|m\rangle=e^{i m \cdot p 2 \pi / 3}
\end{aligned}
$$

Easy to resolve spectral projectors $\mathbf{P}^{(m)}$ and eigenvalues ω_{m} or dispersion functions $\omega\left(k_{m}\right)$

$$
\begin{aligned}
& \langle m| \mathbf{H}|m\rangle=\langle m| r_{0} \mathbf{r}^{0}+r_{1} \mathbf{r}^{1}+r_{2} \mathbf{r}^{2}|m\rangle=r_{0} e^{i m \cdot 0 \frac{2}{3} \pi}+r_{1} e^{i m \cdot-\cdots \frac{2}{3} \pi}+r_{2} e^{i m \cdot 2 \frac{2}{3} \pi} \\
& m^{\text {th }} \text { Eigenvalue of } \mathbf{r}^{p} \\
& \langle m| \mathbf{r}^{p}|m\rangle=e^{i m \cdot p 2 \pi / 3}
\end{aligned}
$$

Easy to resolve spectral projectors $\mathbf{P}^{(m)}$ and eigenvalues ω_{m} or dispersion functions $\omega\left(k_{m}\right)$

Easy to resolve spectral projectors $\mathbf{P}^{(m)}$ and eigenvalues ω_{m} or dispersion functions $\omega\left(k_{m}\right)$

$$
\begin{aligned}
& \langle m| \mathbf{H}|m\rangle=\langle m| r_{0} \mathbf{r}^{0}+r_{1} \mathbf{r}^{1}+r_{2} \mathbf{r}^{2}|m\rangle=r_{0} e^{i m \cdot 0 \frac{2 \pi}{3}}+r_{1} e^{i m \cdot 1 \frac{2 \pi}{3}}+r_{2} e^{i m \cdot-\cdots-\cdots}
\end{aligned}
$$

Easy to resolve spectral projectors $\mathbf{P}^{(m)}$ and eigenvalues ω_{m} or dispersion functions $\omega\left(k_{m}\right)$

$$
\begin{aligned}
& \langle m| \mathbf{H}|m\rangle=\langle m| r_{0} \mathbf{r}^{0}+r_{1} \mathbf{r}^{1}+r_{2} \mathbf{r}^{2}|m\rangle=r_{0} e^{i m \cdot 0 \frac{2 \pi}{3}}+r_{1} e^{i m \cdot 1 \frac{2 \pi}{3}}+r_{2} e^{i m \cdot-\cdots-\cdots}
\end{aligned}
$$

H-eigenvalues:

$$
\left(\begin{array}{lll}
r_{0} & r & r \\
r & r_{0} & r \\
r & r & r_{0}
\end{array}\right)\left(\begin{array}{c}
1 \\
e^{i^{2 m} \frac{m}{3}} \\
e^{-i^{2} \frac{m \pi}{3}}
\end{array}\right)=\left(r_{0}+2 r \cos \left(\frac{2 m \pi}{\overline{3}}\right)\right)\left(\begin{array}{c}
1 \\
e^{i^{2 m \pi} \overline{3}} \\
e^{-i^{2} \frac{m \pi}{3}}
\end{array}\right)
$$

Easy to resolve spectral projectors $\mathbf{P}^{(m)}$ and eigenvalues ω_{m} or dispersion functions $\omega\left(k_{m}\right)$

$$
\begin{aligned}
& \langle m| \mathbf{H}|m\rangle=\langle m| r_{0} \mathbf{r}^{0}+r_{1} \mathbf{r}^{1}+r_{2} \mathbf{r}^{2}|m\rangle=r_{0} e^{i m \cdot 0 \frac{2 \pi}{3}}+r_{1} e^{i m \cdot 1 \frac{2 \pi}{3}}+r_{2} e^{i m \cdot-\cdots \frac{2 \pi}{3}}
\end{aligned}
$$

\mathbf{H}-eigenvalues:

$$
\left(\begin{array}{lll}
r_{0} & r & r \\
r & r_{0} & r \\
r & r & r_{0}
\end{array}\right)\left(\begin{array}{c}
1 \\
e^{i-\frac{m \pi}{3}} \\
e^{-i^{2} \frac{m \pi}{3}}
\end{array}\right)=\left(r_{0}+2 r \cos \left(\frac{2 m \pi}{3}\right)\right)\left(\begin{array}{c}
1 \\
e^{i^{2 m \pi} \frac{\overline{3}}{}} \\
e^{-i^{2} \frac{m \pi}{3}}
\end{array}\right)
$$

\mathbf{K}-eigenvalues:

$$
\left(\begin{array}{ccc}
K & -k & -k \\
-k & K & -k \\
-k & -k & K
\end{array}\right)\left(\begin{array}{c}
1 \\
i^{i \frac{m}{3}} \\
e^{-i^{2} \frac{m \pi}{3}}
\end{array}\right)=\left(K-2 k \cos \left(\frac{2 m \pi}{3}\right)\right)\left(\begin{array}{c}
1 \\
e^{i^{2} \frac{m \pi}{3}} \\
e^{-i^{2} \frac{m \pi}{3}}
\end{array}\right)
$$

Easy to resolve spectral projectors $\mathbf{P}^{(m)}$ and eigenvalues ω_{m} or dispersion functions $\omega\left(k_{m}\right)$

$$
\langle m| \mathbf{H}|m\rangle=\langle m| r_{0} \mathbf{r}^{0}+r_{1} \mathbf{r}^{1}+r_{2} \mathbf{r}^{2}|m\rangle=r_{0} e^{i m \cdot 0 \frac{2 \pi}{3}}+r_{1} e^{i m \cdot \cdots \cdot-\cdots}+r_{2} e^{i m \cdot \cdots} \frac{2 \pi}{3}
$$

\mathbf{H}-eigenvalues:
$\left(\begin{array}{lll}r_{0} & r & r \\ r & r_{0} & r \\ r & r & r_{0}\end{array}\right)\left(\begin{array}{c}1 \\ e^{i^{2} \frac{m}{3}} \\ e^{-i^{2} \frac{m \pi}{3}}\end{array}\right)=\left(r_{0}+2 r \cos \left(\frac{2 m \pi}{3}\right)\right)\left(\begin{array}{c}1 \\ e^{i^{2 m} \frac{\pi}{3}} \\ e^{-i^{2 m} \frac{\overline{3}}{3}}\end{array}\right)$

K-eigenvalues:

Moving eigenwave	Standing eigenwaves	\mathbf{H} - eigenfrequencies	\mathbf{K} - eigenfrequencies
$\begin{aligned} & \left\|(+1)_{3}\right\rangle=\frac{1}{\sqrt{3}}\binom{e^{+i 2 \pi / 3}}{e^{-i 2 \pi / 3}} \\ & \left\|(-1)_{3}\right\rangle=\frac{1}{\sqrt{3}}\left(\begin{array}{c} 1 \\ e^{-i 2 \pi / 3} \\ e^{+i 2 \pi / 3} \end{array}\right) \end{aligned}$	$\left\|c_{3}\right\rangle=\frac{\left\|(+1)_{3}\right\rangle+\left\|(-1)_{3}\right\rangle}{\sqrt{2}}=\frac{1}{\sqrt{6}}\left(\begin{array}{c}2 \\ -1 \\ -1\end{array}\right)$	$\begin{aligned} & r_{0}+2 r \cos \left(\frac{2 m \pi}{3}\right) \\ & =r_{0}-r \end{aligned}$	$\begin{aligned} & \sqrt{k_{0}-2 k \cos \left(\frac{2 m \pi}{3}\right)} \\ & =\sqrt{k_{0}+k} \end{aligned}$
	$\left\|s_{3}\right\rangle=\frac{\left\|(+1)_{3}\right\rangle-\left\|(-1)_{3}\right\rangle}{i \sqrt{2}}=\frac{1}{\sqrt{2}}\left(\begin{array}{c}0 \\ +1 \\ -1\end{array}\right)$	$\begin{aligned} & r_{0}+2 r \cos \left(-\frac{2 m \pi}{3}\right) \\ & =r_{0}-r \end{aligned}$	$\begin{aligned} & \sqrt{k_{0}-2 k \cos \left(\frac{2 m \pi}{3}\right)} \\ & =\sqrt{k_{0}+k} \end{aligned}$
	$\left\|(0)_{3}\right\rangle=\frac{1}{\sqrt{3}}\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$	$r_{0}+2 r$	$\sqrt{k_{0}-2 k}$

Easy to resolve spectral projectors $\mathbf{P}^{(m)}$ and eigenvalues ω_{m} or dispersion functions $\omega\left(k_{m}\right)$

$$
\langle m| \mathbf{H}|m\rangle=\langle m| r_{0} \mathbf{r}^{0}+r_{1} \mathbf{r}^{1}+r_{2} \mathbf{r}^{2}|m\rangle=r_{0} e^{i m \cdot 0 \frac{2 \pi}{3}}+r_{1} e^{i m \cdot \cdots \cdot-\cdots}+r_{2} e^{i m \cdot-\cdots} \frac{2 \pi}{3}
$$

$\begin{aligned} & m^{\text {th }} \text { Eigenvalue of } \mathbf{r}^{p} \\ & \langle m\| \mathbf{r}^{p}\|m\rangle=e^{\text {impp } 2 \pi / 3} \end{aligned}$	$=r_{0} e^{i m \cdot 0 \frac{2 \pi}{3}}+r\left(e^{i^{2 \pi m}}+e^{-i \frac{2 \pi m}{3}}\right)=r_{0}+2 r \cos \left(\frac{2 \pi m}{3}\right)=$	$\begin{gathered} r_{0}+2 r(\text { for } m=0) \\ r_{0}-r \quad(\text { for } m= \pm 1) \end{gathered}$

H-eigenvalues: K-eigenvalues:

$$
\left(\begin{array}{lll}
r_{0} & r & r \\
r & r_{0} & r \\
r & r & r_{0}
\end{array}\right)\left(\begin{array}{c}
1 \\
e^{i^{2 m \pi} \frac{\overline{3}}{}} \\
e^{-i^{2} \frac{m}{3}}
\end{array}\right)=\left(r_{0}+2 r \cos \left(\frac{2 m \pi}{3}\right)\right)\left(\begin{array}{c}
1 \\
e^{i^{2 m \pi} \frac{\overline{3}}{}} \\
e^{-i^{2 \frac{m}{3}}}
\end{array}\right)
$$

$$
\left(\begin{array}{lll}
K & -k & -k \\
-k & K & -k \\
-k & -k & K
\end{array}\right)\left(\begin{array}{c}
1 \\
e^{i^{2} \frac{m \pi}{3}} \\
e^{-i^{2 m} \frac{m}{3}}
\end{array}\right)=\left(K-2 k \cos \left(\frac{2 m \pi}{3}\right)\right)\left(\begin{array}{c}
1 \\
e^{i^{2 m} \frac{\overline{3}}{}} \\
e^{-i^{2 m} \frac{m}{3}}
\end{array}\right)
$$

Moving eigenwave	Standing eigenwaves	\mathbf{H} - eigenfrequencies	\mathbf{K} - eigenfrequencies
$\begin{aligned} & \left\|(+1)_{3}\right\rangle=\frac{1}{\sqrt{3}}\binom{e^{+i 2 \pi / 3}}{e^{-i 2 \pi / 3}} \\ & \left\|(-1)_{3}\right\rangle=\frac{1}{\sqrt{3}}\left(\begin{array}{c} 1 \\ e^{-i 2 \pi / 3} \\ e^{+i 2 \pi / 3} \end{array}\right) \end{aligned}$	$\left\|c_{3}\right\rangle=\frac{\left\|(+1)_{3}\right\rangle+\left\|(-1)_{3}\right\rangle}{\sqrt{2}}=\frac{1}{\sqrt{6}}\left(\begin{array}{c}2 \\ -1 \\ -1\end{array}\right)$	$\begin{aligned} & r_{0}+2 r \cos \left(\frac{2 m \pi}{3}\right) \\ & =r_{0}-r \end{aligned}$	$\begin{aligned} & \sqrt{k_{0}-2 k \cos \left({ }^{2 m \pi} \frac{3}{3}\right)} \\ & =\sqrt{k_{0}+k} \end{aligned}$
	$\left\|s_{3}\right\rangle=\frac{\left\|(+1)_{3}\right\rangle-\left\|(-1)_{3}\right\rangle}{i \sqrt{2}}=\frac{1}{\sqrt{2}}\left(\begin{array}{c}0 \\ +1 \\ -1\end{array}\right)$	$\begin{aligned} & r_{0}+2 r \cos \left(-\frac{2 m \pi}{3}\right) \\ & =r_{0}-r \end{aligned}$	$\begin{aligned} & \sqrt{k_{0}-2 k \cos \left({ }^{2 m \pi} \frac{3}{3}\right)} \\ & =\sqrt{k_{0}+k} \end{aligned}$
	$\left\|(0)_{3}\right\rangle=\frac{1}{\sqrt{3}}\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$	$r_{0}+2 r$	$\sqrt{k_{0}-2 k}$

Easy to resolve spectral projectors $\mathbf{P}^{(m)}$ and eigenvalues ω_{m} or dispersion functions $\omega\left(k_{m}\right)$

$$
\langle m| \mathbf{H}|m\rangle=\langle m| r_{0} \mathbf{r}^{0}+r_{1} \mathbf{r}^{1}+r_{2} \mathbf{r}^{2}|m\rangle=r_{0} e^{i m \cdot 0 \frac{2 \pi}{3}}+r_{1} e^{i m \cdot-\cdots}+r_{2} e^{i m \cdot-\cdots} \frac{2}{3}-\cdots
$$

H-eigenvalues:

$$
\left(\begin{array}{lll}
r_{0} & r & r \\
r & r_{0} & r \\
r & r & r_{0}
\end{array}\right)\left(\begin{array}{c}
1 \\
e^{i^{2 \frac{m}{3}}} \\
e^{-i^{2} \frac{m}{3}}
\end{array}\right)=\left(r_{0}+2 r \cos \left(\frac{2 m \pi}{3}\right)\right)\left(\begin{array}{c}
1 \\
e^{i^{2 m} \overline{3}} \\
e^{-i^{2 m} \frac{\overline{3}}{3}}
\end{array}\right)
$$

K-eigenvalues:

	$p=0$	$p=1$	$p=2$
c_{3}	$2 / \sqrt{ } 6$	$-1 / \sqrt{ } 6$	$-1 / \sqrt{ } 6$
s_{3}	0	$1 / \sqrt{ } 2$	$-1 / \sqrt{ } 2$
$m=0_{3}$	$1 / \sqrt{ } 3$	$1 / \sqrt{ } 3$	$1 / \sqrt{ } 3$

C_{3} standing wave modes and eigenfrequencies:of \mathbf{K}

Easy to resolve spectral projectors $\mathbf{P}^{(m)}$ and eigenvalues ω_{m} or dispersion functions $\omega\left(k_{m}\right)$

$$
\langle m| \mathbf{H}|m\rangle=\langle m| r_{0} \mathbf{r}^{0}+r_{1} \mathbf{r}^{1}+r_{2} \mathbf{r}^{2}|m\rangle=r_{0} e^{i m \cdot 0 \frac{2 \pi}{3}}+r_{1} e^{i m \cdot-\cdots}+r_{2} e^{i m \cdot-\cdots} \frac{2}{3}-\cdots
$$

\mathbf{H}-eigenvalues:

$$
\left(\begin{array}{lll}
r_{0} & r & r \\
r & r_{0} & r \\
r & r & r_{0}
\end{array}\right)\left(\begin{array}{c}
1 \\
e^{i^{2 \frac{m}{3}}} \\
e^{-i^{2} \frac{\overline{3}}{3}}
\end{array}\right)=\left(r_{0}+2 r \cos \left(\frac{2 m \pi}{3}\right)\right)\left(\begin{array}{c}
1 \\
e^{i^{2 m} \overline{3}} \\
e^{-i^{2 m} \frac{\overline{3}}{3}}
\end{array}\right)
$$

K-eigenvalues:

$$
\left(\begin{array}{ccc}
K & -k & -k \\
-k & K & -k \\
-k & -k & K
\end{array}\right)\left(\begin{array}{c}
1 \\
i^{2 \frac{m \pi}{3}} \\
e^{-i^{2} \frac{m}{3}}
\end{array}\right)=\left(K-2 k \cos \left(2 \frac{m \pi}{3}\right)\right)\left(\begin{array}{c}
1 \\
e^{i \frac{m \pi}{3}} \\
e^{-i^{2} \frac{m \pi}{3}}
\end{array}\right)
$$

Longitudinal (to k) Waves

Wave resonance in cyclic symmetry
Harmonic oscillator with cyclic C_{2} symmetry
C_{2} symmetric (B-type) modes
Harmonic oscillator with cyclic C_{3} symmetry
C_{3} symmetric spectral decomposition by 3 rd roots of unity
Resolving C_{3} projectors and moving wave modes
Dispersion functions and standing waves
\rightarrow C6 symmetric mode model:Distant neighbor coupling
C_{6} spectra of gauge splitting by C-type symmetry(complex, chiral, coriolis, current, .. C_{N} symmetric mode models: Made-to order dispersion functions

Quadratic dispersion models: Super-beats and fractional revivals
Phase arithmetic

C_{6} Symmetric Mode Model: Distant neighbor coupling

(b) $2^{\text {nd }}$ Neighbor C_{6}

Fig. 12 International Journal of Molecular Science 14, 749 (2013)

C_{6} Spectral resolution: $6^{\text {th }}$ roots of unity

Fig. 13 International Journal of Molecular Science 14, 752 (2013)
C_{6} Spectral resolution of $\mathrm{n}^{\text {th }}$ Neighbor H : Same modes but different dispersion
(a)
(b)

(c)

1st Neighbor H

$2^{\text {nd }}$ Neighbor H

3rd Neighbor H

Fig. 14 International Journal of Molecular Science 14, 754 (2013)

Wave resonance in cyclic symmetry
Harmonic oscillator with cyclic C_{2} symmetry
C_{2} symmetric (B-type) modes
Harmonic oscillator with cyclic C_{3} symmetry
C_{3} symmetric spectral decomposition by 3 rd roots of unity
Resolving C_{3} projectors and moving wave modes
Dispersion functions and standing waves
C_{6} symmetric mode model:Distant neighbor coupling
$\rightarrow C_{6}$ spectra of gauge splitting by C-type symmetry (complex, chiral, coriolis, current, C_{N} symmetric mode models: Made-to order dispersion functions

Quadratic dispersion models: Super-beats and fractional revivals Phase arithmetic

C_{6} Spectra of $1^{\text {st }}$ neighbor gauge splitting by C-type (Chiral, Coriolis,...,

1st ${ }^{\text {st }}$ Neighbor H

Fig. 15 International Journal of Molecular Science 14, 755 (2013)

Wave resonance in cyclic symmetry
Harmonic oscillator with cyclic C_{2} symmetry
C_{2} symmetric (B-type) modes
Harmonic oscillator with cyclic C_{3} symmetry
C_{3} symmetric spectral decomposition by 3 rd roots of unity
Resolving C_{3} projectors and moving wave modes
Dispersion functions and standing waves
C6 symmetric mode model:Distant neighbor coupling
C_{6} spectra of gauge splitting by C-type symmetry(complex, chiral, coriolis, current, ..
$\Rightarrow C_{N}$ symmetric mode models: Made-to order dispersion functions
Quadratic dispersion models: Super-beats and fractional revivals
Phase arithmetic

C_{N} Symmetric Mode Models:

Fig. 4.8.4

Fig. 4.8.4

$$
-\left(\begin{array}{c}
F_{0} \\
F_{1} \\
F_{2} \\
F_{3} \\
F_{4} \\
\vdots \\
F_{N-1}
\end{array}\right)=\left(\begin{array}{ccccccc}
K & -k_{12} & \cdot & \cdot & \cdot & \cdots & -k_{12} \\
-k_{12} & K & -k_{12} & \cdot & \cdot & \cdots & \cdot \\
\cdot & -k_{12} & K & -k_{12} & \cdot & \cdots & \cdot \\
\cdot & \cdot & -k_{12} & K & -k_{12} & \cdots & \cdot \\
\cdot & \cdot & \cdot & -k_{12} & K & \cdots & \cdot \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots & -k_{12} \\
-k_{12} & \cdot & \cdot & \cdot & \cdot & -k_{12} & K
\end{array}\right) \cdot\left(\begin{array}{c}
x_{0} \\
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
\vdots \\
x_{N-1}
\end{array}\right) \quad \begin{gathered}
K=k+2 k_{12} \\
\text { where: } \\
k=\frac{M g}{\ell} \\
(\cdot)=0 \\
\end{gathered}
$$

C_{N} Symmetric Mode Models:

$1^{\text {st }}$ Neighbor K-matrix
$-\left(\begin{array}{c}F_{0} \\ F_{1} \\ F_{2} \\ F_{3} \\ F_{4} \\ \vdots \\ F_{N-1}\end{array}\right)=\left(\begin{array}{ccccccc}K & -k_{12} & \cdot & \cdot & \cdot & \cdots & -k_{12} \\ -k_{12} & K & -k_{12} & \cdot & \cdot & \cdots & \cdot \\ \cdot & -k_{12} & K & -k_{12} & \cdot & \cdots & \cdot \\ \cdot & \cdot & -k_{12} & K & -k_{12} & \cdots & \cdot \\ \cdot & \cdot & \cdot & -k_{12} & K & \cdots & \cdot \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & -k_{12} \\ -k_{12} & \cdot & \cdot & \cdot & \cdot & -k_{12} & K\end{array}\right) \bullet\left(\begin{array}{c}x_{0} \\ x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \\ \vdots \\ x_{N-1}\end{array}\right)$ where: $\quad k=\frac{M g}{\ell}$
$\mathbf{N}^{\text {th }}$ roots of $1 e^{i m p 2 \pi / N}=\langle m| \mathbf{r}^{p}|m\rangle$ serving as e-values, eigenfunctions, transformation matrices, dispersion relations, Group reps. etc.

Fig. 4.8.5
Unit 4
CMwBang

C_{N} Symmetric Mode Models:

$\mathbf{N}^{\text {th }}$ roots of $1 e^{i m p 2 \pi / N}=\langle m| \mathbf{r}^{p}|m\rangle$ serving as e-values, eigenfunctions, transformation matrices, dispersion relations, Group reps. etc.

$$
C_{12} \quad r^{0} r^{1} r^{2} r^{3} r^{4} r^{5} r^{6} r^{7} r^{8} r^{9} r^{10} r^{11}
$$

0_{12}
1
$1{ }_{12}$

WaveIt C_{12} Web Simulation
Fig. 4.8.6-7
Unit 4
CMwBang

Fourier
transformation matrices

WaveIt C ${ }_{12}$ Character Phasors Web Simulation

phasor

 character table
$\chi_{p}^{m}=e^{i k_{m} r^{p}}$

$2 \pi i m p$
$=e^{16}$

WaveIt C ${ }_{16}$ Character Phasors Web Simulation
position point $p=0,1,2 \ldots$

character
table
$2 \pi i m p$
$=e^{32}$
WaveIt C ${ }_{32}$ Character Phasors
Web Simulation 40echntsio

 V cisuensu ensu ensuensu ensu nsu en ousuensuensuensuensuensuensuens

 undo

 uncueses 9 ono 000 uoun

 0月0.3000.300300.

 53pecusheaspo

Uuspponcecuuspon
 40
 position point $p=0,1,2 \ldots$

$$
\begin{gathered}
C_{64} \\
\begin{array}{c}
\text { phasor } \\
\text { character } \\
\text { table }
\end{array} \\
\chi_{p}^{m}=e^{i k_{m} r^{p}} \\
=e^{\frac{2 \pi i m p}{64}}
\end{gathered}
$$

Invariant phase
"Uncertainty" hyperbolas:
$m \cdot p=c o n s t$.

Wave resonance in cyclic symmetry
Harmonic oscillator with cyclic C_{2} symmetry
C_{2} symmetric (B-type) modes
Harmonic oscillator with cyclic C_{3} symmetry
C_{3} symmetric spectral decomposition by 3 rd roots of unity
Resolving C_{3} projectors and moving wave modes
Dispersion functions and standing waves
C_{6} symmetric mode model:Distant neighbor coupling
C_{6} spectra of gauge splitting by C-type symmetry(complex, chiral, coriolis, current, ..
C_{N} symmetric mode models: Made-to order dispersion functions
$\boldsymbol{\rightarrow}$ Quadratic dispersion models: Super-beats and fractional revivals Phase arithmetic

\mathbf{C}_{N} Symmetric Mode Models: Made-to-Order Dispersion (and wave dynamics)

(Making pure linear $\omega=c k$, quadratic $\omega=c k^{2}$, etc. ?)

Archetypical Examples of Dispersion Functions

Reading Wave Velocity From Dispersion Function by (k, ω) Vectors

$$
\begin{aligned}
& a=k_{a} \cdot x-\omega_{a} \cdot t \\
& \frac{b=k_{b} \cdot x-\omega_{b} \cdot t}{2}=e^{i \frac{a+b}{2}}\left(\frac{e^{i \frac{a-b}{2}}+e^{-i \frac{a-b}{2}}}{2}\right) \\
& =e^{i \frac{a+b}{2}} \cos \left(\frac{a-b}{2}\right)
\end{aligned}
$$

Things determined by
Dispersion $\omega=\omega(k)$

Individual phase velocity:
$V_{\text {phase- }}=\frac{\omega(k)}{k}$
Pairwise phase velocity:

$$
V_{\text {phase- } 2}=\frac{\omega\left(k_{a}\right)+\omega\left(k_{b}\right)}{k_{a}+k_{b}}
$$

Pairwise group velocity:

$$
V_{\text {group }-2}=\frac{\omega\left(k_{a}\right)-\omega\left(k_{b}\right)}{k_{a}-k_{b}}
$$

With Simpler Ones

Wave resonance in cyclic symmetry
Harmonic oscillator with cyclic C_{2} symmetry
C_{2} symmetric (B-type) modes
Harmonic oscillator with cyclic C_{3} symmetry
C_{3} symmetric spectral decomposition by 3 rd roots of unity
Resolving C_{3} projectors and moving wave modes
Dispersion functions and standing waves
C_{6} symmetric mode model:Distant neighbor coupling
C_{6} spectra of gauge splitting by C-type symmetry(complex, chiral, coriolis, current, .. C_{N} symmetric mode models: Made-to order dispersion functions

Quadratic dispersion models: Super-beats and fractional revivals \rightarrow Phase arithmetic

2-level-system and C_{2} symmetry phase dynamics

C_{2} Character Table describes eigenstates
symmetric A_{1}

Phasor C_{2} Characters describe local state beats

2-level-system and C_{2} symmetry phase dynamics

2-level-system and C_{2} symmetry phase dynamics

C_{2} Phasor-Character Table

C_{3} symmetry phase in 1,(2) or 3-level-systems

C3 Eigenstate Characters

"quantum-Hall-like"
systems deserve special treatment

C_{4} symmetry phase in $1,2,3,0 r 4$ level-systems

 C_{4} Eigenstate Characters

Non - chiral
$\mathrm{C}_{4 v}$ system

C_{5} symmetry phase in $1,2, \ldots 5$ level-systems

 C_{5} Eigenstate Characters
C_{5} Revivals

C_{6} symmetry phase in $1, \ldots .6$ level-systems

C_{6} Eigenstate Characters

C_{m} algebra of revival-phase dynamics

Discrete 3-State or Trigonal System (Tesla's 3-Phase AC)

Discrete 6-State or Hexagonal System (6-Phase AC)
C_{6} Eigenstate Characters

C_{m} algebra of revival-phase dynamics

Quantum rotor fractional take turns at Cn symmetry $1 / 1$

Algebra and geometry of resonant revivals: Farey Sums and Ford Circles

Time t (units of fundamental period τ_{1})

N-level-rotor system revival-beat wave dynamics (Just 2-levels $(0, \pm 1)$ (and some $\pm 2)$ excited)

N -level-rotor system revival-beat wave dynamics

 (Just 2-levels $(0, \pm 1)$ (and some ± 2) excited)

Simplest fractional quantum revivals: 3,4,5-level systems

N-level-rotor system revival-beat wave dynamics

 (9 or10-levels $(0, \pm 1, \pm 2, \pm 3, \pm 4, \ldots, \pm 9, \pm 10, \pm 11 .$.$) excited)$
fractional quantum revivals: in $3,4, \ldots, \mathrm{~N}$-level systems
Number increases rapidly with number of levels and/or bandwidth
of excitation

N -level-rotor system revival-beat wave dynamics Zeros (clearly) and "particle-packets" (faintly) have paths

 labeled by fraction sequences like: $\frac{0}{7}, \frac{1}{7}, \frac{2}{7}, \frac{3}{7}, \frac{4}{7}, \frac{5}{7}, \frac{6}{7}, \frac{1}{1}$

(9 or10-levels $(0, \pm 1, \pm 2, \pm 3, \pm 4, \ldots, \pm 9, \pm 10, \pm 11 .$.$) excited)$

Time t (units of τ_{1})

0/1

Zeras

Lect. 5 (9.11.14)
The Classical "Monster Mash"

Classical introduction to
Heisenberg "Uncertainty" Relations
$v_{2}=\frac{\text { const } .}{Y} \quad$ or: $\quad Y \cdot v_{2}=$ const.
is analogous to: $\Delta x \cdot \Delta p=N \cdot \hbar$

Recall classical "Monster Mash" in Lecture 5
with small-ball trajectory paths having same geometry as revival beat wave-zero paths

Farey-Sum arithmetic of revival wave-zero paths (How Rational Fractions N/D occupy real space-time)

Farey Sum algebra of revival-beat wave dynamics

Label by numerators N and denominators D of rational fractions N / D

Farey Sum algebra of revival-beat wave dynamics

Label by numerators N and denominators D of rational fractions N / D

Farey Sum algebra of revival-beat wave dynamics

Label by numerators N and denominators D of rational fractions N / D

Farey Sum algebra of revival-beat wave dynamics

 Label by numerators N and denominators D of rational fractions N / D

Farey Sum algebra of revival-beat wave dynamics

Label by numerators N and denominators D of rational fractions N / D

Harter, J. Mol. Spec. 210, 166-182 (2001) and ISMS (2013)
[John Farey, Phil. Mag.(1816)]

Farey Sum algebra of revival-beat wave dynamics

Label by numerators N and denominators D of rational fractions N / D

Ford-Circle geometry of revival paths (How Rational Fractions N/D occupy real space-time)

Farey Sum related to vector sum and Ford Circles 1/1-circle has diameter 1

Farey Sum related to vector sum and
Ford Circles

1/2-circle has
diameter $1 / 2^{2}=1 / 4$
$1 / 3$-circles have diameter $1 / 3^{2}=1 / 9$

Farey Sum related to vector sum and Ford Circles

1/2-circle has diameter $1 / 2^{2}=1 / 4$

1/3-circles have diameter $1 / 3^{2}=1 / 9$
n / d-circles have diameter $1 / d^{2}$

Thales Rectangles provide analytic geometry of
fractal structure OSU Columbus (2013)

"Quantized"
Thales
Rectangles provide analytic geometry of
fractal structure OSU Columbus (2013)

Relating C_{N} symmetric H and K matrices to differential wave operators

Relating C_{N} symmetric H and K matrices to wave differential operators

The $1^{\text {st }}$ neighbor \mathbf{K} matrix relates to a $2^{\text {nd }}$ finite-difference matrix of $2^{\text {nd }} x$-derivative for high C_{N}.

$$
\mathbf{K}=k\left(2 \mathbf{1}-\mathbf{r}-\mathbf{r}^{-1}\right) \text { analogous to: }-k \frac{\partial^{2}}{\partial x^{2}}
$$

$$
\text { 2nd derivative KE: } 2 m E=-\hbar^{2} \frac{\partial^{2} y}{\partial x^{2}} \approx \frac{y(x+\Delta x)-2 y(x)+y(x-\Delta x)}{(\Delta x)^{2}}
$$

$$
\frac{\hbar}{i}\left(\begin{array}{cccccc}
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & 1 & -1 & \cdot & \cdot & \cdot \\
\cdot & \cdot & 1 & -1 & \cdot & \cdot \\
\cdot & \cdot & \cdot & 1 & -1 & \cdot \\
\cdot & \cdot & \cdot & \cdot & 1 & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot
\end{array}\right)\left(\begin{array}{c}
\cdot \\
y_{1} \\
y_{2} \\
y_{3} \\
y_{4} \\
\cdot
\end{array}\right)=\frac{\hbar}{i}\left(\begin{array}{c}
\cdot \\
y_{1}-y_{0} \\
y_{2}-y_{1} \\
y_{3}-y_{2} \\
y_{4}-y_{3} \\
\cdot
\end{array}\right)
$$

$$
-\hbar^{2}\left(\begin{array}{cccccc}
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
-1 & 2 & -1 & \cdot & \cdot & \cdot \\
\cdot & -1 & 2 & -1 & \cdot & \cdot \\
\cdot & \cdot & -1 & 2 & -1 & \cdot \\
\cdot & \cdot & \cdot & -1 & 2 & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot
\end{array}\right)\left(\begin{array}{c}
\cdot \\
y_{1} \\
y_{2} \\
y_{3} \\
y_{4} \\
\cdot
\end{array}\right)=\hbar^{2}\left(\begin{array}{c}
\cdot \\
y_{0}-2 y_{1}+y_{2} \\
y_{1}-2 y_{2}+y_{3} \\
y_{2}-2 y_{3}+y_{4} \\
y_{3}-2 y_{4}+y_{5} \\
\cdot
\end{array}\right)
$$

\mathbf{H} and \mathbf{K} matrix equations are finite-difference versions of quantum and classical wave equations.

$$
\begin{array}{llrl}
i \hbar \frac{\partial}{\partial t}|\psi\rangle=\mathbf{H}|\psi\rangle & \text { (H-matrix equation) } & -\frac{\partial^{2}}{\partial t^{2}}|y\rangle=\mathbf{K}|y\rangle & \text { (K-matrix equation) } \\
i \hbar \frac{\partial}{\partial t}|\psi\rangle=\left(-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}}+V\right)|\psi\rangle & \text { (Scrodinger equation) } & -\frac{\partial^{2}}{\partial t^{2}}|y\rangle=-k \frac{\partial^{2}}{\partial x^{2}}|y\rangle & \text { (Classical wave equation) }
\end{array}
$$

Square p^{2} gives $1^{\text {st }}$ neighbor \mathbf{K} matrix. Higher order $p^{3}, p^{4}, .$. involve $2^{\text {nd }}, 3{ }^{\text {rd }}, 4^{\text {th }}$. .neighbor \mathbf{H} $\frac{\hbar}{i}\left(\begin{array}{cccccc}\cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & 1 & -1 & \cdot & \cdot & \cdot \\ \cdot & \cdot & 1 & -1 & \cdot & \cdot \\ \cdot & \cdot & \cdot & 1 & -1 & \cdot \\ \cdot & \cdot & \cdot & \cdot & 1 & \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdot & \cdot\end{array}\right)\left(\begin{array}{cccccc}\cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & 1 & -1 & \cdot & \cdot & \cdot \\ \cdot & \cdot & 1 & -1 & \cdot & \cdot \\ \cdot & \cdot & \cdot & 1 & -1 & \cdot \\ \cdot & \cdot & \cdot & \cdot & 1 & \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdot & \cdot\end{array}\right)=\hbar^{2}\left(\begin{array}{cccccc}\cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\ -1 & 2 & -1 & \cdot & \cdot & \cdot \\ \cdot & -1 & 2 & -1 & \cdot & \cdot \\ \cdot & \cdot & -1 & 2 & -1 & \cdot \\ \cdot & \cdot & \cdot & -1 & 2 & \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdot & \cdot\end{array}\right)$

$$
p^{4} \cong\left(\begin{array}{cccccc}
\ddots & \vdots & 1 & . & . & . \\
\cdots & 6 & -4 & 1 & . & \cdot \\
1 & -4 & 6 & -4 & 1 & \cdot \\
\cdot & 1 & -4 & 6 & -4 & 1 \\
\cdot & \cdot & 1 & -4 & 6 & -4 \\
\cdot & \cdot & \cdot & 1 & -4 & 6
\end{array}\right)
$$

Symmetrized finite-difference operators

$$
\begin{aligned}
& \bar{\Delta}=\frac{1}{2}\left(\begin{array}{cccccc}
\ddots & \vdots & & & & \\
\cdots & 0 & 1 & & & \\
& -1 & 0 & 1 & & \\
& & -1 & 0 & 1 & \\
& & & -1 & 0 & 1 \\
& & & & -1 & 0
\end{array}\right), \bar{\Delta}^{3}=\frac{1}{2^{3}}\left(\begin{array}{cccccc}
\ddots & \vdots & 0 & -1 & \\
\cdots & 0 & 3 & 0 & -1 & \\
0 & -3 & 0 & 3 & 0 & -1 \\
1 & 0 & -3 & 0 & 3 & 0 \\
& 1 & 0 & -3 & 0 & 3 \\
& & 1 & 0 & -3 & 0
\end{array}\right) \\
& \bar{\Delta}^{2}=\frac{1}{2^{2}}\left(\begin{array}{ccccc}
\ddots & \vdots & 1 & & \\
\cdots \cdots & -2 & 0 & 1 & \\
\hdashline 1 & 0 & -2 & 0 & 1 \\
& 1 & 0 & -2 & 0 \\
& & 1 & 0 & -2 \\
& & & 1 & 0 \\
\hline
\end{array}\right), \bar{\Delta}^{4}=\frac{1}{2^{4}}\left(\begin{array}{cccccc}
\ddots & \vdots & -4 & 0 & 1 & \\
\cdots & 6 & 0 & -4 & 0 & 1 \\
-4 & 0 & 6 & 0 & -4 & 0 \\
0 & -4 & 0 & 6 & 0 & -4 \\
1 & 0 & -4 & 0 & 6 & 0 \\
& 1 & 0 & -4 & 0 & 6
\end{array}\right)
\end{aligned}
$$

[^0]: Matrix eigenvalue equation

[^1]: JerkIt Simulation: 0+ A1 Mode

