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Review: Projector formulae and subgroup splitting
         Algebra and geometry of irreducible Dµjk(g) and projector Pµjk transformation
         Example of D3 transformation by matrix DEjk(r1)

Details of Mock-Mach relativity-duality for D3 groups and representations
        Lab-fixed(Extrinsic-Global) vs. Body-fixed (Intrinsic-Local)
        Compare Global vs Local ⏐g〉-basis and Global vs Local ⏐P(µ)〉-basis
                   
Hamiltonian and D3 group matrices in global and local ⏐P(µ)〉-basis      
        Hamiltonian local-symmetry eigensolution
        Molecular vibrational mode eigensolution
               Local symmetry limit
               Global symmetry limit (free or “genuine” modes) 
                            

31Friday, March 29, 2013



Details of Mock-Mach relativity-duality for D3 groups and representations

Ideas of duality/relativity go way back (...VanVleck, Casimir..., Mach, Newton, Archimedes...)

Lab-fixed(Extrinsic-Global)R,S,..vs.Body-fixed (Intrinsic-Local)R,S,..

...But how do you actually make the R and R operations?

“Give me a place to stand...
and I will move the Earth”

Archimedes 287-212 B.C.E

allR,S,..
commute with
allR,S,..

R|1〉=R-1|1〉
S|1〉=S-1|1〉
...for one state |1) only!

...

“Mock-Mach”
relativity principles
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wave packet fixed
while lab axes move

i2|1〉= |i2〉

wave packet moves
with lab axes fixed

i2|1〉=|i2〉i2

i2i3
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i3

|i2〉 (After i2 )

|1〉

Lab-fixed (Extrinsic-Global) operations&axes fixed

r

i3
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i1 D3r2

r(120°)

(-120°) or (240°) 1 r2 r i1 i2 i3
r 1 r2 i3 i1 i2
r2 r 1 i2 i3 i1
i1 i3 i2 1 r r2

i2 i1 i3 r2 1 r

i3 i2 i1 r r2 1

Details of RELATIVITY-DUALITY for D3
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Body-fixed (Intrinsic-Local) operations appear
to move their rotation axes (relative to lab)

After i1i2
(veiwed in
lab frame)

i1i2|1〉=i1 |i2〉=r |1〉=r2 |1〉

...but, THEY OBEY THE
SAME GROUP TABLE. i1i2 = r

implies:
i1i2 = r

D3-defined
local-wave
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i2

|r〉

r
r
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wave packet fixed
while lab axes move

i2|1〉= |i2〉

wave packet moves
with lab axes fixed

i2|1〉=|i2〉i2

i2i3

i1

xx

yy

i1

i3

|i2〉 (After i2 )

|1〉

Lab-fixed (Extrinsic-Global) operations&axes fixed

r

i3

i2
i1

i1 D3r2

r(120°)

(-120°) or (240°) 1 r2 r i1 i2 i3
r 1 r2 i3 i1 i2
r2 r 1 i2 i3 i1
i1 i3 i2 1 r r2

i2 i1 i3 r2 1 r

i3 i2 i1 r r2 1

Details of RELATIVITY-DUALITY for D3

|11〉
i2

i3

i1

|i3〉

|i2〉

|i1〉
|r2〉

|r〉

x

y

i1

i3

yx

i3 i1

i2

|i2
〉 (After i2 )

i3 x

y

i1

|1〉

i3

y

i1

x

|i2〉

i3
i1
i2

After i2
(veiwed in
lab frame)

Body-fixed (Intrinsic-Local) operations appear
to move their rotation axes (relative to lab)

After i1i2
(veiwed in
lab frame)

i1i2|1〉=i1 |i2〉=r |1〉=r2 |1〉

...but, THEY OBEY THE
SAME GROUP TABLE. i1i2 = r

implies:
i1i2 = r

D3-defined
local-wave
bases

i3 i1

i2

i2
i1i2|1〉=i1 |i2〉
wave packet fixed
while lab axes move

i3

y

i1

x

i2
i3

i1
i2

i2

i3

y

i1

x

i2

i3
i1

i2

After i1i2

i2 wave packet moves
with lab axes fixed

i1i2|1〉=r|1〉=|r〉
i2

x

y

i1

i3

|i2〉 (After i1i2 )
i2

|r〉

r
r
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wave packet fixed
while lab axes move

i2|1〉= |i2〉

wave packet moves
with lab axes fixed

i2|1〉=|i2〉i2

i2i3

i1

xx

yy

i1

i3

|i2〉 (After i2 )

|1〉

Lab-fixed (Extrinsic-Global) operations&axes fixed

r

i3

i2
i1

i1 D3r2

r(120°)

(-120°) or (240°) 1 r2 r i1 i2 i3
r 1 r2 i3 i1 i2
r2 r 1 i2 i3 i1
i1 i3 i2 1 r r2

i2 i1 i3 r2 1 r

i3 i2 i1 r r2 1

Details of RELATIVITY-DUALITY for D3

|11〉
i2

i3

i1

|i3〉

|i2〉

|i1〉
|r2〉

|r〉

x

y

i1

i3

yx

i3 i1

i2

|i2
〉 (After i2 )

i3 x

y

i1

|1〉

i3

y

i1

x

|i2〉

i3
i1
i2

After i2
(veiwed in
lab frame)

Body-fixed (Intrinsic-Local) operations appear
to move their rotation axes (relative to lab)

After i1i2
(veiwed in
lab frame)

i1i2|1〉=i1 |i2〉=r |1〉=r2 |1〉

...but, THEY OBEY THE
SAME GROUP TABLE. i1i2 = r

implies:
i1i2 = r

D3-defined
local-wave
bases

i3 i1

i2

i2
i1i2|1〉=i1 |i2〉
wave packet fixed
while lab axes move

i3

y

i1

x

i2
i3

i1
i2

i2

i3

y

i1

x

i2

i3
i1

i2

After i1i2

i2 wave packet moves
with lab axes fixed

i1i2|1〉=r|1〉=|r〉
i2

x

y

i1

i3

|i2〉 (After i1i2 )
i2

|r〉

r

r
r
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wave packet fixed
while lab axes move

i2|1〉= |i2〉

wave packet moves
with lab axes fixed

i2|1〉=|i2〉i2

i2i3

i1

xx

yy

i1

i3

|i2〉 (After i2 )

|1〉

Lab-fixed (Extrinsic-Global) operations&axes fixed

r

i3

i2
i1

i1 D3r2

r(120°)

(-120°) or (240°) 1 r2 r i1 i2 i3
r 1 r2 i3 i1 i2
r2 r 1 i2 i3 i1
i1 i3 i2 1 r r2

i2 i1 i3 r2 1 r

i3 i2 i1 r r2 1

Details of RELATIVITY-DUALITY for D3

|11〉
i2

i3

i1

|i3〉

|i2〉

|i1〉
|r2〉

|r〉

x

y

i1

i3

yx

i3 i1

i2

|i2
〉 (After i2 )

i3 x

y

i1

|1〉

i3

y

i1

x

|i2〉

i3
i1
i2

After i2
(veiwed in
lab frame)

Body-fixed (Intrinsic-Local) operations appear
to move their rotation axes (relative to lab)

After i1i2
(veiwed in
lab frame)

i1i2|1〉=i1 |i2〉=r |1〉=r2 |1〉

...but, THEY OBEY THE
SAME GROUP TABLE. i1i2 = r

implies:
i1i2 = r

D3-defined
local-wave
bases

i3 i1

i2

i2
i1i2|1〉=i1 |i2〉
wave packet fixed
while lab axes move

i3

y

i1

x

i2
i3

i1
i2

i2

i3

y

i1

x

i2

i3
i1

i2

After i1i2

i2 wave packet moves
with lab axes fixed

i1i2|1〉=r|1〉=|r〉
i2

x

y

i1

i3

|i2〉 (After i1i2 )
i2

|r〉

...and Mock-Mach principle g⏐1〉=g-1⏐1〉

r-1=r2

r

r
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Review: Projector formulae and subgroup splitting
         Algebra and geometry of irreducible Dµjk(g) and projector Pµjk transformation
         Example of D3 transformation by matrix DEjk(r1)

Details of Mock-Mach relativity-duality for D3 groups and representations
        Lab-fixed(Extrinsic-Global) vs. Body-fixed (Intrinsic-Local)
        Compare Global vs Local ⏐g〉-basis and Global vs Local ⏐P(µ)〉-basis
                   
Hamiltonian and D3 group matrices in global and local ⏐P(µ)〉-basis      
        Hamiltonian local-symmetry eigensolution
        Molecular vibrational mode eigensolution
               Local symmetry limit
               Global symmetry limit (free or “genuine” modes) 
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1 r r i i i
r 1 r i i i
r r 1 i i i
i i i 1 r r
i i i r 1 r
i i i r r 1

2

2
2

2
2

2

1 2 3

3 1 2

2 3 1

1 3 2

2 1 3

3 2 1

1 r r i i i
r 1 r i i i
r r 1 i i i
i i i 1 r r
i i i r 1 r
i i i r r 1

2
2

2
2

2
2

1 2 3

2 3 1

3 1 2

1 2 3

3

3 1 2

2 2

DD33 llooccaall
ggrroouupp
ttaabbllee

DD33 gglloobbaall
ggrroouupp
pprroodduucctt
ttaabbllee

CChhaannggee GGlloobbaall ttoo LLooccaall bbyy sswwiittcchhiinngg
......ccoolluummnn--gg wwiitthh ccoolluummnn--gg†

........aanndd rrooww--gg wwiitthh rrooww--gg†

JJuusstt sswwiittcchh r wwiitthh r =r2..† (all others are
self-conjugate)

Compare Global vs Local ⏐g〉-basis vs. Global vs Local ⏐P(µ)〉-basis
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PP(m)PP(n)== δmnδ PP(m)ab cd bc ad

xx yy xx xy yy

xx xx

yy

xx xx

xx

xy

xyxy

yx yx

yx

yy

yyyy

yy

yx
A A E E E

A A
A A

E E

E

E

EE

E E

E

E

EE

E1 2

1 1 ⋅ ⋅ ⋅ ⋅ ⋅

2 ⋅ 2 ⋅ ⋅ ⋅ ⋅

⋅ ⋅ 0

0

0

0⋅ ⋅

⋅ ⋅ 0

0

0

0⋅ ⋅

PP PP PP PP PP
PP PP
PP PP
PP PP

PP
PP

PPPP
PP PP

PP
PP

PPPP

PP

PP PP PP PP PP PP
PP PP
PP PP
PP PP PP
PP PP PP
PP PP PP
PP PP PP

xx
A

yy
A

xx
E

xy
E

yx
E

yy
E

xx
A

xx
A

yy
A

yy
A

xx
E

xx
E

xy
E

yx
E

yx
E

yy
E

xy
E

xx
E

xy
E

y
E

y
E

y
E

1 2

1 1 ⋅ ⋅ ⋅ ⋅ ⋅

2 ⋅ 2 ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅

D3

1 r r i i i
r 1 r i i i
r r 1 i i i
i i i 1 r r
i i i r 1 r
i i i r r 1

2

2
2

2
2

2

1 2 3

3 1 2

2 3 1

1 3 2

2 1 3

3 2 1

1 r r i i i
r 1 r i i i
r r 1 i i i
i i i 1 r r
i i i r 1 r
i i i r r 1

2
2

2
2

2
2

1 2 3

2 3 1

3 1 2

1 2 3

3

3 1 2

2 2

DD33 llooccaall
ggrroouupp
ttaabbllee

PP(m)PP(n)== δmnδ PP(m)ab cd bc ad

DD33 gglloobbaall
ggrroouupp
pprroodduucctt
ttaabbllee

CChhaannggee GGlloobbaall ttoo LLooccaall bbyy sswwiittcchhiinngg
......ccoolluummnn--PP wwiitthh ccoolluummnn--PP†

........aanndd rrooww--PP wwiitthh rrooww--PP†

JJuusstt sswwiittcchh r wwiitthh r =r2..

DD33 gglloobbaall
pprroojjeeccttoorr
pprroodduucctt
ttaabbllee

((JJuusstt sswwiittcchh wwiitthh = ..))PPyxE PPyxE
†

†

PP yx
E

DD33 llooccaall
pprroojjeeccttoorr
pprroodduucctt
ttaabbllee

(all others are
self-conjugate)

Compare Global vs Local ⏐g〉-basis vs. Global vs Local ⏐P(µ)〉-basis
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Compare Global vs Local ⏐g〉-basis

1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

RG (1) = RG (r) = RG (r2) = RG (i1) = RG (i2) = RG (i3) =

Example of RELATIVITY-DUALITY for D3~C3v
To represent external {..T,U,V,... }switch g g† on top of group table

DD33 gglloobbaall
gggg††--ttaabbllee

|11〉

i2

i3

i1

|i3〉

|i2〉

|i1〉
|r2〉

|r〉

x

y

D
3
-defined

local-wave
bases

1 r r i i i
r 1 r i i i
r r 1 i i i
i i i 1 r r
i i i r 1 r
i i i r r 1

2

2
2

2
2

2

1 2 3

3 1 2

2 3 1

1 3 2

2 1 3

3 2 1

i1

i3
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Compare Global vs Local ⏐g〉-basis

1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

RG (1) = RG (r) = RG (r2) = RG (i1) = RG (i2) = RG (i3) =

1 r r i i i
r 1 r i i i
r r 1 i i i
i i i 1 r r
i i i r 1 r
i i i r r 1

2
2

2
2

2
2

1 2 3

2 3 1

3 1 2

1 2 3

3

3 1 2

2 2

DD33 llooccaall
gg††gg--ttaabbllee

Example of RELATIVITY-DUALITY for D3~C3v
To represent external {..T,U,V,... }switch g g† on top of group table

To represent internal {..T,U,V,... } switch g g† on side of group table

1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ ⋅ 1 ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ 1 ⋅ ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

RG (1) = RG(r) = RG (r2) = RG( i1) = RG ( i2) = RG( i3) =

RESULT:
Any R(T)
commute

with any R(U)...
(Even if T and U do not...)

...and T·U=V if & only if T·U=V.

DD33 gglloobbaall
gggg††--ttaabbllee
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i1

|i3〉
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|r〉
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Review: Projector formulae and subgroup splitting
         Algebra and geometry of irreducible Dµjk(g) and projector Pµjk transformation
         Example of D3 transformation by matrix DEjk(r1)

Details of Mock-Mach relativity-duality for D3 groups and representations
        Lab-fixed(Extrinsic-Global) vs. Body-fixed (Intrinsic-Local)
        Compare Global vs Local ⏐g〉-basis and Global vs Local ⏐P(µ)〉-basis
                   
Hamiltonian and D3 group matrices in global and local ⏐P(µ)〉-basis      
        Hamiltonian local-symmetry eigensolution
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Note how any global g-matrix commutes with any local g-matrix
a b ⋅ ⋅
c d ⋅ ⋅
⋅ ⋅ a b
⋅ ⋅ c d

⋅
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⋅ A ⋅ B
C D

C D
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A ⋅ B ⋅
⋅ A ⋅ B
C D

C D

⋅

a b ⋅ ⋅
c d ⋅ ⋅
⋅ ⋅ a b
⋅ ⋅ c d

aA bA aB bB
cA dA cB dB
aC bC aD bD
cC dC cD dD

=

Aa Ab Ba Bb
Ac Ad Bc Bd
Ca Cb Da Db
Cc Cd Dc Dd
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Review: Projector formulae and subgroup splitting
         Algebra and geometry of irreducible Dµjk(g) and projector Pµjk transformation
         Example of D3 transformation by matrix DEjk(r1)

Details of Mock-Mach relativity-duality for D3 groups and representations
        Lab-fixed(Extrinsic-Global) vs. Body-fixed (Intrinsic-Local)
        Compare Global vs Local ⏐g〉-basis and Global vs Local ⏐P(µ)〉-basis
                   
Hamiltonian and D3 group matrices in global and local ⏐P(µ)〉-basis      
        Hamiltonian local-symmetry eigensolution
        Molecular vibrational mode eigensolution
               Local symmetry limit
               Global symmetry limit (free or “genuine” modes) 
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⏐P(µ)〉-basis are projected by                                                acting on original ket ⏐1〉 
    
Pmn
µ = 

(µ )

°G
Dmn

µ*
g( )

g

°G
∑ g = Pnm

µ†
For unitary D(µ): (p.8-11 or p.33 Lect. 15)

Hamiltonian and D3 global-g and local-   group matrices in ⏐P(µ)〉-basis  g
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⏐P(µ)〉-basis are projected by                                                acting on original ket ⏐1〉 to give:
    
Pmn
µ = 

(µ )

°G
Dmn

µ*
g( )

g

°G
∑ g = Pnm

µ†
For unitary D(µ): (p.8-11)

   mn
µ = Pmn

µ 1
norm

1

Hamiltonian and D3 global-g and local-   group matrices in ⏐P(µ)〉-basis  g
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⏐P(µ)〉-basis are projected by                                                acting on original ket ⏐1〉 to give:
    
Pmn
µ = 

(µ )

°G
Dmn

µ*
g( )

g

°G
∑ g = Pnm

µ†

    
mn
µ = Pmn

µ 1
norm

1
= (µ )

°G ⋅norm
Dmn

µ*
g( )

g

°G
∑ g

Hamiltonian and D3 global-g and local-   group matrices in ⏐P(µ)〉-basis  g

For unitary D(µ): (p.8-11)
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⏐P(µ)〉-basis are projected by                                                acting on original ket ⏐1〉 to give:
    
Pmn
µ = 

(µ )

°G
Dmn

µ*
g( )

g

°G
∑ g = Pnm

µ†

    
mn
µ = Pmn

µ 1
norm

1
= (µ )

°G ⋅norm
Dmn

µ*
g( )

g

°G
∑ g subject to normalization:

   
′m ′n
′µ

mn
µ =

1 P ′n ′m
′µ Pmn

µ 1

norm2

Hamiltonian and D3 global-g and local-   group matrices in ⏐P(µ)〉-basis  g

For unitary D(µ): (p.8-11)
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⏐P(µ)〉-basis are projected by                                                acting on original ket ⏐1〉 to give:
    
Pmn
µ = 

(µ )

°G
Dmn

µ*
g( )

g

°G
∑ g = Pnm

µ†

    
mn
µ = Pmn

µ 1
norm

1
= (µ )

°G ⋅norm
Dmn

µ*
g( )

g

°G
∑ g subject to normalization:

   
′m ′n
′µ

mn
µ =

1 P ′n ′m
′µ Pmn

µ 1

norm2 = δ ′µ µδ ′m m
1 P ′n n

µ 1

norm2

Hamiltonian and D3 global-g and local-   group matrices in ⏐P(µ)〉-basis  g

For unitary D(µ): (p.8-11)
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⏐P(µ)〉-basis are projected by                                                acting on original ket ⏐1〉 to give:
    
Pmn
µ = 

(µ )

°G
Dmn

µ*
g( )

g

°G
∑ g = Pnm

µ†

    
mn
µ = Pmn

µ 1
norm

1
= (µ )

°G ⋅norm
Dmn

µ*
g( )

g

°G
∑ g subject to normalization:

   
′m ′n
′µ

mn
µ =

1 P ′n ′m
′µ Pmn

µ 1

norm2 = δ ′µ µδ ′m m
1 P ′n n

µ 1

norm2 = δ ′µ µδ ′m mδ ′n n
    
norm = 1 Pnn

µ 1 = (µ )

°G
where:

Hamiltonian and D3 global-g and local-   group matrices in ⏐P(µ)〉-basis  g

For unitary D(µ): (p.8-11)
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⏐P(µ)〉-basis are projected by                                                acting on original ket ⏐1〉 to give:

Left-action of global g on irep-ket 

   
g mn

µ = D ′m m
µ g( )

′m

µ

∑ ′m n
µ

 mn
µ

    
Pmn
µ = 

(µ )

°G
Dmn

µ*
g( )

g

°G
∑ g = Pnm

µ†

    
mn
µ = Pmn

µ 1
norm

1
= (µ )

°G ⋅norm
Dmn

µ*
g( )

g

°G
∑ g subject to normalization:

   
′m ′n
′µ

mn
µ =

1 P ′n ′m
′µ Pmn

µ 1

norm2 = δ ′µ µδ ′m m
1 P ′n n

µ 1

norm2 = δ ′µ µδ ′m mδ ′n n
    
norm = 1 Pnn

µ 1 = (µ )

°G
where:

Hamiltonian and D3 global-g and local-   group matrices in ⏐P(µ)〉-basis  g

For unitary D(µ): (p.8-11)
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⏐P(µ)〉-basis are projected by                                                acting on original ket ⏐1〉 to give:

Left-action of global g on irep-ket 

   
g mn

µ = D ′m m
µ g( )

′m

µ

∑ ′m n
µ

  ′m n
µ g mn

µ = D ′m m
µ g( )

Matrix is same as given on p.11 

 mn
µ

    
Pmn
µ = 

(µ )

°G
Dmn

µ*
g( )

g

°G
∑ g = Pnm

µ†

    
mn
µ = Pmn

µ 1
norm

1
= (µ )

°G ⋅norm
Dmn

µ*
g( )

g

°G
∑ g subject to normalization:

   
′m ′n
′µ

mn
µ =

1 P ′n ′m
′µ Pmn

µ 1

norm2 = δ ′µ µδ ′m m
1 P ′n n

µ 1

norm2 = δ ′µ µδ ′m mδ ′n n
    
norm = 1 Pnn

µ 1 = (µ )

°G
where:

Hamiltonian and D3 global-g and local-   group matrices in ⏐P(µ)〉-basis  g

For unitary D(µ): (p.8-11)
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⏐P(µ)〉-basis are projected by                                                acting on original ket ⏐1〉 to give:

Left-action of global g on irep-ket 

   
g mn

µ = D ′m m
µ g( )

′m

µ

∑ ′m n
µ

  ′m n
µ g mn

µ = D ′m m
µ g( )

 mn
µ

    
Pmn
µ = 

(µ )

°G
Dmn

µ*
g( )

g

°G
∑ g = Pnm

µ†

    
mn
µ = Pmn

µ 1
norm

1
= (µ )

°G ⋅norm
Dmn

µ*
g( )

g

°G
∑ g subject to normalization:

   
′m ′n
′µ

mn
µ =

1 P ′n ′m
′µ Pmn

µ 1

norm2 = δ ′µ µδ ′m m
1 P ′n n

µ 1

norm2 = δ ′µ µδ ′m mδ ′n n
    
norm = 1 Pnn

µ 1 = (µ )

°G
where:

Left-action of local    on irep-ket        is quite different 
 mn
µ

 g

    
g mn

µ = gPmn
µ 1

(µ )

°G

    
        = Pmn

µ g 1
(µ )

°G

Use 
Mock-Mach
commutation

and

Hamiltonian and D3 global-g and local-   group matrices in ⏐P(µ)〉-basis  g

Matrix is same as given on p.11 

For unitary D(µ): (p.8-11)
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⏐P(µ)〉-basis are projected by                                                acting on original ket ⏐1〉 to give:

Left-action of global g on irep-ket 

   
g mn

µ = D ′m m
µ g( )

′m

µ

∑ ′m n
µ

  ′m n
µ g mn

µ = D ′m m
µ g( )

 mn
µ

    
Pmn
µ = 

(µ )

°G
Dmn

µ*
g( )

g

°G
∑ g = Pnm

µ†

    
mn
µ = Pmn

µ 1
norm

1
= (µ )

°G ⋅norm
Dmn

µ*
g( )

g

°G
∑ g subject to normalization:

   
′m ′n
′µ

mn
µ =

1 P ′n ′m
′µ Pmn

µ 1

norm2 = δ ′µ µδ ′m m
1 P ′n n

µ 1

norm2 = δ ′µ µδ ′m mδ ′n n
    
norm = 1 Pnn

µ 1 = (µ )

°G
where:

Left-action of local    on irep-ket        is quite different 
 mn
µ

 g

    
g mn

µ = gPmn
µ 1

(µ )

°G

    
        = Pmn

µ g−1 1
(µ )

°G
    
        = Pmn

µ g 1
(µ )

°G

Use 
Mock-Mach
commutation

and
inverse

Hamiltonian and D3 global-g and local-   group matrices in ⏐P(µ)〉-basis  g

Matrix is same as given on p.11 

For unitary D(µ): (p.8-11)
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⏐P(µ)〉-basis are projected by                                                acting on original ket ⏐1〉 to give:

Left-action of global g on irep-ket 

   
g mn

µ = D ′m m
µ g( )

′m

µ

∑ ′m n
µ

  ′m n
µ g mn

µ = D ′m m
µ g( )

 mn
µ

    
Pmn
µ = 

(µ )

°G
Dmn

µ*
g( )

g

°G
∑ g = Pnm

µ†

    
mn
µ = Pmn

µ 1
norm

1
= (µ )

°G ⋅norm
Dmn

µ*
g( )

g

°G
∑ g subject to normalization:

   
′m ′n
′µ

mn
µ =

1 P ′n ′m
′µ Pmn

µ 1

norm2 = δ ′µ µδ ′m m
1 P ′n n

µ 1

norm2 = δ ′µ µδ ′m mδ ′n n
    
norm = 1 Pnn

µ 1 = (µ )

°G
where:

Left-action of local    on irep-ket        is quite different 
 mn
µ

 g

    
g mn

µ = gPmn
µ 1

(µ )

°G

    
Pmn
µ g−1= Pmn

µ P ′m ′n
µ D ′m ′n

µ (g−1)
′n =1

µ

∑
′m =1

µ

∑
    
        = Pmn

µ g−1 1
(µ )

°G
    
        = Pmn

µ g 1
(µ )

°G
compute g-1 right action 

Use 
Mock-Mach
commutation

and
inverse

Hamiltonian and D3 global-g and local-   group matrices in ⏐P(µ)〉-basis  g

Matrix is same as given on p.11 

For unitary D(µ): (p.8-11)
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⏐P(µ)〉-basis are projected by                                                acting on original ket ⏐1〉 to give:

Left-action of global g on irep-ket 

   
g mn

µ = D ′m m
µ g( )

′m

µ

∑ ′m n
µ

  ′m n
µ g mn

µ = D ′m m
µ g( )

 mn
µ

    
Pmn
µ = 

(µ )

°G
Dmn

µ*
g( )

g

°G
∑ g = Pnm

µ†

    
mn
µ = Pmn

µ 1
norm

1
= (µ )

°G ⋅norm
Dmn

µ*
g( )

g

°G
∑ g subject to normalization:

   
′m ′n
′µ

mn
µ =

1 P ′n ′m
′µ Pmn

µ 1

norm2 = δ ′µ µδ ′m m
1 P ′n n

µ 1

norm2 = δ ′µ µδ ′m mδ ′n n
    
norm = 1 Pnn

µ 1 = (µ )

°G
where:

Left-action of local    on irep-ket        is quite different 
 mn
µ

 g

    
g mn

µ = gPmn
µ 1

(µ )

°G

    
Pmn
µ g−1= Pmn

µ P ′m ′n
µ D ′m ′n

µ (g−1)
′n =1

µ

∑
′m =1

µ

∑
    
        = Pmn

µ g−1 1
(µ )

°G
    
        = Pmn

µ g 1
(µ )

°G

    
           =         Pm ′n

µ    Dn ′n
µ (g−1)

′n =1

µ

∑

compute g-1 right action 

Use 
Mock-Mach
commutation

and
inverse

Hamiltonian and D3 global-g and local-   group matrices in ⏐P(µ)〉-basis  g

Matrix is same as given on p.11 

For unitary D(µ): (p.8-11)
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⏐P(µ)〉-basis are projected by                                                acting on original ket ⏐1〉 to give:

Left-action of global g on irep-ket 

   
g mn

µ = D ′m m
µ g( )

′m

µ

∑ ′m n
µ

  ′m n
µ g mn

µ = D ′m m
µ g( )

 mn
µ

    
Pmn
µ = 

(µ )

°G
Dmn

µ*
g( )

g

°G
∑ g = Pnm

µ†

    
mn
µ = Pmn

µ 1
norm

1
= (µ )

°G ⋅norm
Dmn

µ*
g( )

g

°G
∑ g subject to normalization:

   
′m ′n
′µ

mn
µ =

1 P ′n ′m
′µ Pmn

µ 1

norm2 = δ ′µ µδ ′m m
1 P ′n n

µ 1

norm2 = δ ′µ µδ ′m mδ ′n n
    
norm = 1 Pnn

µ 1 = (µ )

°G
where:

Left-action of local    on irep-ket        is quite different 
 mn
µ

 g

    
g mn

µ = gPmn
µ 1

(µ )

°G

    
Pmn
µ g−1= Pmn

µ P ′m ′n
µ D ′m ′n

µ (g−1)
′n =1

µ

∑
′m =1

µ

∑

    
        = Dn ′n

µ (g−1)
′n =1

µ

∑ Pm ′n
µ 1

(µ )

°G
    
        = Pmn

µ g−1 1
(µ )

°G
    
        = Pmn

µ g 1
(µ )

°G

    
           =         Pm ′n

µ    Dn ′n
µ (g−1)

′n =1

µ

∑

compute g-1 right action 

Use 
Mock-Mach
commutation

and
inverse

Hamiltonian and D3 global-g and local-   group matrices in ⏐P(µ)〉-basis  g

Matrix is same as given on p.11 

For unitary D(µ): (p.8-11)
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⏐P(µ)〉-basis are projected by                                                acting on original ket ⏐1〉 to give:

Left-action of global g on irep-ket 

   
g mn

µ = D ′m m
µ g( )

′m

µ

∑ ′m n
µ

  ′m n
µ g mn

µ = D ′m m
µ g( )

 mn
µ

    
Pmn
µ = 

(µ )

°G
Dmn

µ*
g( )

g

°G
∑ g = Pnm

µ†

    
mn
µ = Pmn

µ 1
norm

1
= (µ )

°G ⋅norm
Dmn

µ*
g( )

g

°G
∑ g subject to normalization:

   
′m ′n
′µ

mn
µ =

1 P ′n ′m
′µ Pmn

µ 1

norm2 = δ ′µ µδ ′m m
1 P ′n n

µ 1

norm2 = δ ′µ µδ ′m mδ ′n n
    
norm = 1 Pnn

µ 1 = (µ )

°G
where:

Left-action of local    on irep-ket        is quite different 
 mn
µ

 g

    
g mn

µ = gPmn
µ 1

(µ )

°G

    
Pmn
µ g−1= Pmn

µ P ′m ′n
µ D ′m ′n

µ (g−1)
′n =1

µ

∑
′m =1

µ

∑

   
        = Dn ′n

µ (g−1)
′n =1

µ

∑ m ′n
µ

    
        = Dn ′n

µ (g−1)
′n =1

µ

∑ Pm ′n
µ 1

(µ )

°G
    
        = Pmn

µ g−1 1
(µ )

°G
    
        = Pmn

µ g 1
(µ )

°G

    
           =         Pm ′n

µ    Dn ′n
µ (g−1)

′n =1

µ

∑

compute g-1 right action 

Use 
Mock-Mach
commutation

and
inverse

Hamiltonian and D3 global-g and local-   group matrices in ⏐P(µ)〉-basis  g

Matrix is same as given on p.11 

For unitary D(µ): (p.8-11)
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⏐P(µ)〉-basis are projected by                                                acting on original ket ⏐1〉 to give:

Left-action of global g on irep-ket 

   
g mn

µ = D ′m m
µ g( )

′m

µ

∑ ′m n
µ

  ′m n
µ g mn

µ = D ′m m
µ g( )

 mn
µ

    
Pmn
µ = 

(µ )

°G
Dmn

µ*
g( )

g

°G
∑ g = Pnm

µ†

    
mn
µ = Pmn

µ 1
norm

1
= (µ )

°G ⋅norm
Dmn

µ*
g( )

g

°G
∑ g subject to normalization:

   
′m ′n
′µ

mn
µ =

1 P ′n ′m
′µ Pmn

µ 1

norm2 = δ ′µ µδ ′m m
1 P ′n n

µ 1

norm2 = δ ′µ µδ ′m mδ ′n n
    
norm = 1 Pnn

µ 1 = (µ )

°G
where:

Left-action of local    on irep-ket        is quite different 
 mn
µ

 g

    
g mn

µ = gPmn
µ 1

(µ )

°G

   m ′n
µ g mn

µ = Dn ′n
µ (g−1) = D ′n n

µ* (g)

    
Pmn
µ g−1= Pmn

µ P ′m ′n
µ D ′m ′n

µ (g−1)
′n =1

µ

∑
′m =1

µ

∑

   
        = Dn ′n

µ (g−1)
′n =1

µ

∑ m ′n
µ

    
        = Dn ′n

µ (g−1)
′n =1

µ

∑ Pm ′n
µ 1

(µ )

°G
    
        = Pmn

µ g−1 1
(µ )

°G
    
        = Pmn

µ g 1
(µ )

°G

    
           =         Pm ′n

µ    Dn ′n
µ (g−1)

′n =1

µ

∑

Local    -matrix component g

compute g-1 right action 

Use 
Mock-Mach
commutation

and
inverse

Hamiltonian and D3 global-g and local-   group matrices in ⏐P(µ)〉-basis  g

Matrix is same as given on p.11 

For unitary D(µ): (p.8-11)
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⏐P(µ)〉-basis are projected by                                                acting on original ket ⏐1〉 to give:

Left-action of global g on irep-ket 

   
g mn

µ = D ′m m
µ g( )

′m

µ

∑ ′m n
µ

  ′m n
µ g mn

µ = D ′m m
µ g( )

 mn
µ

    
Pmn
µ = 

(µ )

°G
Dmn

µ*
g( )

g

°G
∑ g = Pnm

µ†

    
mn
µ = Pmn

µ 1
norm

1
= (µ )

°G ⋅norm
Dmn

µ*
g( )

g

°G
∑ g subject to normalization:

   
′m ′n
′µ

mn
µ =

1 P ′n ′m
′µ Pmn

µ 1

norm2 = δ ′µ µδ ′m m
1 P ′n n

µ 1

norm2 = δ ′µ µδ ′m mδ ′n n
    
norm = 1 Pnn

µ 1 = (µ )

°G
where:

Left-action of local    on irep-ket        is quite different 
 mn
µ

 g

    
g mn

µ = gPmn
µ 1

(µ )

°G

    
Pmn
µ g−1= Pmn

µ P ′m ′n
µ D ′m ′n

µ (g−1)
′n =1

µ

∑
′m =1

µ

∑

   
        = Dn ′n

µ (g−1)
′n =1

µ

∑ m ′n
µ

    
        = Dn ′n

µ (g−1)
′n =1

µ

∑ Pm ′n
µ 1

(µ )

°G
    
        = Pmn

µ g−1 1
(µ )

°G
    
        = Pmn

µ g 1
(µ )

°G

    
           =         Pm ′n

µ    Dn ′n
µ (g−1)

′n =1

µ

∑

compute g-1 right action 

Use 
Mock-Mach
commutation

and
inverse

   m ′n
µ g mn

µ = Dn ′n
µ (g−1) = D ′n n

µ* (g)

Local    -matrix component g

  ′m n
µ g mn

µ = D ′m m
µ g( )

Global g-matrix component

Hamiltonian and D3 global-g and local-   group matrices in ⏐P(µ)〉-basis  g

Matrix is same as given on p.11 

For unitary D(µ): (p.8-11)
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D3 local-   group matrices in ⏐P(µ)〉-basis  g

   

RP g( ) = TRG g( )T † =                                      

  Pxx
A1        Pyy

A2        Pxx
E1     Pyx

E1    Pxy
E1     Pyy

E1     

D A1 g( ) ⋅ ⋅ ⋅ ⋅ ⋅

⋅ D A2 g( ) ⋅ ⋅ ⋅ ⋅

⋅ ⋅ Dxx
E1 g( ) Dxy

E1 ⋅ ⋅

⋅ ⋅ Dyx
E1 g( ) Dyy

E1 ⋅ ⋅

⋅ ⋅ ⋅ ⋅ Dxx
E1 g( ) Dxy

E1

⋅ ⋅ ⋅ ⋅ Dyx
E1 g( ) Dyy

E1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

   m ′n
µ g mn

µ = Dn ′n
µ (g−1) = D ′n n

µ* (g)

Local    -matrix component g

  ′m n
µ g mn

µ = D ′m m
µ g( )

Global g-matrix component

D3 global-g group matrices in ⏐P(µ)〉-basis 

⏐P(µ)〉-base
ordering to
concentrate

global-g 
D-matrices
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D3 local-   group matrices in ⏐P(µ)〉-basis  g

   

RP g( ) = TRG g( )T † =                                      

  Pxx
A1        Pyy

A2        Pxx
E1     Pyx

E1    Pxy
E1     Pyy

E1     

D A1 g( ) ⋅ ⋅ ⋅ ⋅ ⋅

⋅ D A2 g( ) ⋅ ⋅ ⋅ ⋅

⋅ ⋅ Dxx
E1 g( ) Dxy

E1 ⋅ ⋅

⋅ ⋅ Dyx
E1 g( ) Dyy

E1 ⋅ ⋅

⋅ ⋅ ⋅ ⋅ Dxx
E1 g( ) Dxy

E1

⋅ ⋅ ⋅ ⋅ Dyx
E1 g( ) Dyy

E1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

   

RP g( ) = TRG g( )T † =                                     

  Pxx
A1            Pyy

A2          Pxx
E1         Pyx

E1         Pxy
E1         Pyy

E1     

D A1* g( ) ⋅ ⋅ ⋅ ⋅ ⋅

⋅ D A2* g( ) ⋅ ⋅ ⋅ ⋅

⋅ ⋅ Dxx
E1* g( ) ⋅ Dxy

E1* g( ) ⋅

⋅ ⋅ ⋅ Dxx
E1* g( ) ⋅ Dxy

E1* g( )
⋅ ⋅ Dyx

E1* g( ) ⋅ Dyy
E1* g( ) ⋅

⋅ ⋅ ⋅ Dyx
E1* g( ) ⋅ Dyy

E1* g( )

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

   m ′n
µ g mn

µ = Dn ′n
µ (g−1) = D ′n n

µ* (g)

Local    -matrix component g

  ′m n
µ g mn

µ = D ′m m
µ g( )

Global g-matrix component

D3 global-g group matrices in ⏐P(µ)〉-basis 

⏐P(µ)〉-base
ordering to
concentrate

global-g 
D-matrices

here
Local    -matrix
is not concentrated g
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RP g( ) = TRG g( )T † =                                      

  Pxx
A1        Pyy

A2        Pxx
E1     Pxy

E1     Pyx
E1     Pyy

E1     

D A1 g( ) ⋅ ⋅ ⋅ ⋅ ⋅

⋅ D A2 g( ) ⋅ ⋅ ⋅ ⋅

⋅ ⋅ Dxx
E1 g( ) ⋅ Dxy

E1 g( ) ⋅

⋅ ⋅ ⋅ Dxx
E1 ⋅ Dxy

E1

⋅ ⋅ Dyx
E1 g( ) ⋅ Dyy

E1 g( ) ⋅

⋅ ⋅ ⋅ Dyx
E1 ⋅ Dyy

E1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

D3 local-   group matrices in ⏐P(µ)〉-basis  g

   

RP g( ) = TRG g( )T † =                                      

  Pxx
A1        Pyy

A2        Pxx
E1     Pyx

E1    Pxy
E1     Pyy

E1     

D A1 g( ) ⋅ ⋅ ⋅ ⋅ ⋅

⋅ D A2 g( ) ⋅ ⋅ ⋅ ⋅

⋅ ⋅ Dxx
E1 g( ) Dxy

E1 ⋅ ⋅

⋅ ⋅ Dyx
E1 g( ) Dyy

E1 ⋅ ⋅

⋅ ⋅ ⋅ ⋅ Dxx
E1 g( ) Dxy

E1

⋅ ⋅ ⋅ ⋅ Dyx
E1 g( ) Dyy

E1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

   

RP g( ) = TRG g( )T † =                                     

  Pxx
A1            Pyy

A2          Pxx
E1         Pyx

E1         Pxy
E1         Pyy

E1     

D A1* g( ) ⋅ ⋅ ⋅ ⋅ ⋅

⋅ D A2* g( ) ⋅ ⋅ ⋅ ⋅

⋅ ⋅ Dxx
E1* g( ) ⋅ Dxy

E1* g( ) ⋅

⋅ ⋅ ⋅ Dxx
E1* g( ) ⋅ Dxy

E1* g( )
⋅ ⋅ Dyx

E1* g( ) ⋅ Dyy
E1* g( ) ⋅

⋅ ⋅ ⋅ Dyx
E1* g( ) ⋅ Dyy

E1* g( )

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

   m ′n
µ g mn

µ = Dn ′n
µ (g−1) = D ′n n

µ* (g)

Local    -matrix component g

  ′m n
µ g mn

µ = D ′m m
µ g( )

Global g-matrix component

D3 global-g group matrices in ⏐P(µ)〉-basis 

⏐P(µ)〉-base
ordering to
concentrate

global-g 
D-matrices

here
Local    -matrix
is not concentrated g

here
global g-matrix
is not concentrated
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D3 local-   group matrices in ⏐P(µ)〉-basis  g

   

RP g( ) = TRG g( )T † =                                      

  Pxx
A1        Pyy

A2        Pxx
E1     Pyx

E1    Pxy
E1     Pyy

E1     

D A1 g( ) ⋅ ⋅ ⋅ ⋅ ⋅

⋅ D A2 g( ) ⋅ ⋅ ⋅ ⋅

⋅ ⋅ Dxx
E1 g( ) Dxy

E1 ⋅ ⋅

⋅ ⋅ Dyx
E1 g( ) Dyy

E1 ⋅ ⋅

⋅ ⋅ ⋅ ⋅ Dxx
E1 g( ) Dxy

E1

⋅ ⋅ ⋅ ⋅ Dyx
E1 g( ) Dyy

E1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

RP g( ) = TRG g( )T † =                                      

  Pxx
A1        Pyy

A2        Pxx
E1     Pxy

E1     Pyx
E1     Pyy

E1     

D A1 g( ) ⋅ ⋅ ⋅ ⋅ ⋅

⋅ D A2 g( ) ⋅ ⋅ ⋅ ⋅

⋅ ⋅ Dxx
E1 g( ) ⋅ Dxy

E1 g( ) ⋅

⋅ ⋅ ⋅ Dxx
E1 ⋅ Dxy

E1

⋅ ⋅ Dyx
E1 g( ) ⋅ Dyy

E1 g( ) ⋅

⋅ ⋅ ⋅ Dyx
E1 ⋅ Dyy

E1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

   

RP g( ) = TRG g( )T † =                                     

  Pxx
A1            Pyy

A2          Pxx
E1         Pyx

E1         Pxy
E1         Pyy

E1     

D A1* g( ) ⋅ ⋅ ⋅ ⋅ ⋅

⋅ D A2* g( ) ⋅ ⋅ ⋅ ⋅

⋅ ⋅ Dxx
E1* g( ) ⋅ Dxy

E1* g( ) ⋅

⋅ ⋅ ⋅ Dxx
E1* g( ) ⋅ Dxy

E1* g( )
⋅ ⋅ Dyx

E1* g( ) ⋅ Dyy
E1* g( ) ⋅

⋅ ⋅ ⋅ Dyx
E1* g( ) ⋅ Dyy

E1* g( )

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

RP g( ) = TRG g( )T † =                                     

  Pxx
A1           Pyy

A2          Pxx
E1        Pxy

E1           Pyx
E1         Pyy

E1     

D A1* g( ) ⋅ ⋅ ⋅ ⋅ ⋅

⋅ D A2* g( ) ⋅ ⋅ ⋅ ⋅

⋅ ⋅ Dxx
E1* g( ) Dxy

E1* g( ) ⋅ ⋅

⋅ ⋅ Dyx
E1* g( ) Dyy

E1* g( ) ⋅ ⋅

⋅ ⋅ ⋅ ⋅ Dxx
E1* g( ) Dxy

E1* g( )
⋅ ⋅ ⋅ ⋅ Dyx

E1* g( ) Dyy
E1* g( )

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

   m ′n
µ g mn

µ = Dn ′n
µ (g−1) = D ′n n

µ* (g)

Local    -matrix component g

  ′m n
µ g mn

µ = D ′m m
µ g( )

Global g-matrix component

D3 global-g group matrices in ⏐P(µ)〉-basis 

⏐P(µ)〉-base
ordering to
concentrate

global-g 
D-matrices

⏐P(µ)〉-base
ordering to
concentrate

local-
D-matrices

and
H-matrices

 g
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Review: Projector formulae and subgroup splitting
         Algebra and geometry of irreducible Dµjk(g) and projector Pµjk transformation
         Example of D3 transformation by matrix DEjk(r1)

Details of Mock-Mach relativity-duality for D3 groups and representations
        Lab-fixed(Extrinsic-Global) vs. Body-fixed (Intrinsic-Local)
        Compare Global vs Local ⏐g〉-basis and Global vs Local ⏐P(µ)〉-basis
                   
Hamiltonian and D3 group matrices in global and local ⏐P(µ)〉-basis      
        Hamiltonian local-symmetry eigensolution
        Molecular vibrational mode eigensolution
               Local symmetry limit
               Global symmetry limit (free or “genuine” modes) 
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H( )G = rgg
g=1

oG
∑ =

r0 r2 r1 i1 i2 i3
r1 r0 r1 i3 i1 i2
r2 r1 r0 i2 i3 i1
ii i3 i2 r0 r1 r2

i2 i1 i3 r2 r0 r1
i3 i2 i1 r1 r2 r0

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

H matrix in
⏐g〉-basis:

H matrix in
⏐P(µ)〉-basis:

D3 Hamiltonian local- H matrices in ⏐P(µ)〉-basis 
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Hab
α

= Pma
µ H Pnb

µ

                                 Pxx
A1    Pyy

A2    Pxx
E1 Pxy

E1    Pyx
E1 Pyy

E1     

H( )P = T H( )G T † =

H A1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ H A2 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ Hxx

E1 Hxy
E1 ⋅ ⋅

⋅ ⋅ Hyx
E1 Hyy

E1 ⋅ ⋅

⋅ ⋅ ⋅ ⋅ Hxx
E1 Hxy

E1

⋅ ⋅ ⋅ ⋅ Hyx
E1 Hyy

E1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

   

H( )G = rgg
g=1

oG
∑ =

r0 r2 r1 i1 i2 i3
r1 r0 r1 i3 i1 i2
r2 r1 r0 i2 i3 i1
ii i3 i2 r0 r1 r2

i2 i1 i3 r2 r0 r1
i3 i2 i1 r1 r2 r0

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

H matrix in
⏐g〉-basis:

H matrix in
⏐P(µ)〉-basis:

D3 Hamiltonian local- H matrices in ⏐P(µ)〉-basis 
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Hab
α

= Pma
µ H Pnb

µ

                                 Pxx
A1    Pyy

A2    Pxx
E1 Pxy

E1    Pyx
E1 Pyy

E1     

H( )P = T H( )G T † =

H A1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ H A2 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ Hxx

E1 Hxy
E1 ⋅ ⋅

⋅ ⋅ Hyx
E1 Hyy

E1 ⋅ ⋅

⋅ ⋅ ⋅ ⋅ Hxx
E1 Hxy

E1

⋅ ⋅ ⋅ ⋅ Hyx
E1 Hyy

E1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

   

H( )G = rgg
g=1

oG
∑ =

r0 r2 r1 i1 i2 i3
r1 r0 r1 i3 i1 i2
r2 r1 r0 i2 i3 i1
ii i3 i2 r0 r1 r2

i2 i1 i3 r2 r0 r1
i3 i2 i1 r1 r2 r0

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

H matrix in
⏐g〉-basis:

H matrix in
⏐P(µ)〉-basis:

D3 Hamiltonian local- H matrices in ⏐P(µ)〉-basis 

    
mn
µ = Pmn

µ 1
norm

1
= (µ )

°G ⋅norm
Dmn

µ*
g( )

g

°G
∑ g

subject to normalization (from p. 11):

    
norm = 1 Pnn

µ 1 = (µ )

°G
(which will cancel out)
So, fuggettabout it!

Let:
   mn
µ ≡ Pmn

µ = Pmn
µ 1

norm
1
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Hab
α

= Pma
µ H Pnb

µ = 1 Pam
µ HPnb

µ 1

                                 Pxx
A1    Pyy

A2    Pxx
E1 Pxy

E1    Pyx
E1 Pyy

E1     

H( )P = T H( )G T † =

H A1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ H A2 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ Hxx

E1 Hxy
E1 ⋅ ⋅

⋅ ⋅ Hyx
E1 Hyy

E1 ⋅ ⋅

⋅ ⋅ ⋅ ⋅ Hxx
E1 Hxy

E1

⋅ ⋅ ⋅ ⋅ Hyx
E1 Hyy

E1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

   

H( )G = rgg
g=1

oG
∑ =

r0 r2 r1 i1 i2 i3
r1 r0 r1 i3 i1 i2
r2 r1 r0 i2 i3 i1
ii i3 i2 r0 r1 r2

i2 i1 i3 r2 r0 r1
i3 i2 i1 r1 r2 r0

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

H matrix in
⏐g〉-basis:

H matrix in
⏐P(µ)〉-basis:

D3 Hamiltonian local- H matrices in ⏐P(µ)〉-basis 

    
mn
µ = Pmn

µ 1
norm

1
= (µ )

°G ⋅norm
Dmn

µ*
g( )

g

°G
∑ g

subject to normalization (from p. 11):

    
norm = 1 Pnn

µ 1 = (µ )

°G
(which will cancel out)
So, fuggettabout it!

   

m n( )† = n m

   Pmn
µ( )† = Pnm

µ

Projector conjugation 
(norm)2
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Hab
α

= Pma
µ H Pnb

µ = 1 Pam
µ HPnb

µ 1 = 1 HPam
µ Pnb

µ 1

                                 Pxx
A1    Pyy

A2    Pxx
E1 Pxy

E1    Pyx
E1 Pyy

E1     

H( )P = T H( )G T † =

H A1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ H A2 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ Hxx

E1 Hxy
E1 ⋅ ⋅

⋅ ⋅ Hyx
E1 Hyy

E1 ⋅ ⋅

⋅ ⋅ ⋅ ⋅ Hxx
E1 Hxy

E1

⋅ ⋅ ⋅ ⋅ Hyx
E1 Hyy

E1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

   

H( )G = rgg
g=1

oG
∑ =

r0 r2 r1 i1 i2 i3
r1 r0 r1 i3 i1 i2
r2 r1 r0 i2 i3 i1
ii i3 i2 r0 r1 r2

i2 i1 i3 r2 r0 r1
i3 i2 i1 r1 r2 r0

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

H matrix in
⏐g〉-basis:

H matrix in
⏐P(µ)〉-basis:

D3 Hamiltonian local- H matrices in ⏐P(µ)〉-basis 

Mock-Mach
commutation

    
mn
µ = Pmn

µ 1
norm

1
= (µ )

°G ⋅norm
Dmn

µ*
g( )

g

°G
∑ g

subject to normalization (from p. 11):

    
norm = 1 Pnn

µ 1 = (µ )

°G
(which will cancel out)
So, fuggettabout it!

r r = r r
(p.31)

(norm)2 (norm)2
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Hab
α

= Pma
µ H Pnb

µ = 1 Pam
µ HPnb

µ 1 = 1 HPam
µ Pnb

µ 1 = δmn 1 HPab
µ 1 = 1 H g

g=1

°G

∑ Dab
α*
g( )

                                 Pxx
A1    Pyy

A2    Pxx
E1 Pxy

E1    Pyx
E1 Pyy

E1     

H( )P = T H( )G T † =

H A1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ H A2 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ Hxx

E1 Hxy
E1 ⋅ ⋅

⋅ ⋅ Hyx
E1 Hyy

E1 ⋅ ⋅

⋅ ⋅ ⋅ ⋅ Hxx
E1 Hxy

E1

⋅ ⋅ ⋅ ⋅ Hyx
E1 Hyy

E1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

   

H( )G = rgg
g=1

oG
∑ =

r0 r2 r1 i1 i2 i3
r1 r0 r1 i3 i1 i2
r2 r1 r0 i2 i3 i1
ii i3 i2 r0 r1 r2

i2 i1 i3 r2 r0 r1
i3 i2 i1 r1 r2 r0

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

H matrix in
⏐g〉-basis:

H matrix in
⏐P(µ)〉-basis:

D3 Hamiltonian local- H matrices in ⏐P(µ)〉-basis 

   

Use Pmn
µ -orthonormality

P ′m ′n
′µ Pmn

µ = δ ′µ µδ ′n mP ′m n
µ

(p.18)

(norm)2 (norm)2 (norm)2
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Hab
α

= Pma
µ H Pnb

µ = 1 Pam
µ HPnb

µ 1 = 1 HPam
µ Pnb

µ 1 = δmn 1 HPab
µ 1 = 1 H g

g=1

°G

∑ Dab
µ*

g( )

                                 Pxx
A1    Pyy

A2    Pxx
E1 Pxy

E1    Pyx
E1 Pyy

E1     

H( )P = T H( )G T † =

H A1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ H A2 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ Hxx

E1 Hxy
E1 ⋅ ⋅

⋅ ⋅ Hyx
E1 Hyy

E1 ⋅ ⋅

⋅ ⋅ ⋅ ⋅ Hxx
E1 Hxy

E1

⋅ ⋅ ⋅ ⋅ Hyx
E1 Hyy

E1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

   

H( )G = rgg
g=1

oG
∑ =

r0 r2 r1 i1 i2 i3
r1 r0 r1 i3 i1 i2
r2 r1 r0 i2 i3 i1
ii i3 i2 r0 r1 r2

i2 i1 i3 r2 r0 r1
i3 i2 i1 r1 r2 r0

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

H matrix in
⏐g〉-basis:

H matrix in
⏐P(µ)〉-basis:

D3 Hamiltonian local- H matrices in ⏐P(µ)〉-basis 

Coefficients               are irreducible representations (ireps) of g
 
Dmn

µ g( )

   

g = 1 r1 r2 i1 i2 i3

D A1 g( ) =
D A2 g( ) =
Dx,y

E1 g( ) =

1
1

1 ⋅
⋅ 1

⎛

⎝⎜
⎞

⎠⎟

1
1

−2
1 − 2

3

2
3 −2

1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
1

−2
1

2
3

− 2
3 −2

1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
−1

−2
1 − 2

3
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3

2
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⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
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−2
1

2
3

2
3

2
1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
−1
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0 −1

⎛

⎝⎜
⎞

⎠⎟

    
mn
µ = Pmn

µ 1
norm

1
= (µ )

°G ⋅norm
Dmn

µ*
g( )

g

°G
∑ g

subject to normalization (from p. 11):

    
norm = 1 Pnn

µ 1 = (µ )

°G
(which will cancel out)
So, fuggettabout it!
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Hab
α

= Pma
µ H Pnb

µ = 1 Pam
µ HPnb

µ 1 = 1 HPam
µ Pnb

µ 1 = δmn 1 HPab
µ 1 = 1 H g

g=1

°G

∑ Dab
µ*

g( ) = rg
g=1

°G

∑ Dab
µ*

g( )

                                 Pxx
A1    Pyy

A2    Pxx
E1 Pxy

E1    Pyx
E1 Pyy

E1     

H( )P = T H( )G T † =

H A1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ H A2 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ Hxx

E1 Hxy
E1 ⋅ ⋅

⋅ ⋅ Hyx
E1 Hyy

E1 ⋅ ⋅

⋅ ⋅ ⋅ ⋅ Hxx
E1 Hxy

E1

⋅ ⋅ ⋅ ⋅ Hyx
E1 Hyy

E1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

   

H( )G = rgg
g=1

oG
∑ =

r0 r2 r1 i1 i2 i3
r1 r0 r1 i3 i1 i2
r2 r1 r0 i2 i3 i1
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⎛
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⎜
⎜
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⎜
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⎟
⎟
⎟
⎟
⎟
⎟
⎟

H matrix in
⏐g〉-basis:

H matrix in
⏐P(µ)〉-basis:

D3 Hamiltonian local- H matrices in ⏐P(µ)〉-basis 

Coefficients               are irreducible representations (ireps) of g
 
Dmn

µ g( )

   

g = 1 r1 r2 i1 i2 i3

D A1 g( ) =
D A2 g( ) =
Dx,y

E1 g( ) =

1
1

1 ⋅
⋅ 1

⎛

⎝⎜
⎞

⎠⎟

1
1

−2
1 − 2

3

2
3 −2
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⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
1

−2
1

2
3
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3 −2

1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
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−2
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1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
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2
3

2
1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
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0 −1

⎛

⎝⎜
⎞

⎠⎟
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µ = Pmn

µ 1
norm

1
= (µ )

°G ⋅norm
Dmn

µ*
g( )

g

°G
∑ g

subject to normalization (from p. 11):

    
norm = 1 Pnn

µ 1 = (µ )

°G
(which will cancel out)
So, fuggettabout it!
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Hab
α

= Pma
µ H Pnb

µ = 1 Pam
µ HPnb

µ 1 = 1 HPam
µ Pnb

µ 1 = δmn 1 HPab
µ 1 = 1 H g

g=1

°G

∑ Dab
α*
g( ) = rg

g=1

°G

∑ Dab
α*
g( )

                                 Pxx
A1    Pyy

A2    Pxx
E1 Pxy

E1    Pyx
E1 Pyy

E1     

H( )P = T H( )G T † =

H A1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ H A2 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ Hxx

E1 Hxy
E1 ⋅ ⋅

⋅ ⋅ Hyx
E1 Hyy

E1 ⋅ ⋅

⋅ ⋅ ⋅ ⋅ Hxx
E1 Hxy

E1

⋅ ⋅ ⋅ ⋅ Hyx
E1 Hyy

E1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

H A1 = r0D
A1*(1)+ r1D

A1*(r1)+ r1
*DA1*(r2)+ i1D

A1*(i1)+ i2D
A1*(i2)+ i3D

A1*(i3)=r0 +r1+r1
*+i1+i2 +i3   

   

H( )G = rgg
g=1

oG
∑ =

r0 r2 r1 i1 i2 i3
r1 r0 r1 i3 i1 i2
r2 r1 r0 i2 i3 i1
ii i3 i2 r0 r1 r2

i2 i1 i3 r2 r0 r1
i3 i2 i1 r1 r2 r0

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

H matrix in
⏐g〉-basis:

H matrix in
⏐P(µ)〉-basis:

D3 Hamiltonian local- H matrices in ⏐P(µ)〉-basis 

Coefficients               are irreducible representations (ireps) of g
 
Dmn

µ g( )

   

g = 1 r1 r2 i1 i2 i3

D A1 g( ) =
D A2 g( ) =
Dx,y

E1 g( ) =

1
1

1 ⋅
⋅ 1

⎛

⎝⎜
⎞

⎠⎟

1
1

−2
1 − 2

3

2
3 −2

1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
1

−2
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2
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1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
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3

− 2
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2
1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
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⎛

⎝

⎜
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⎜

⎞

⎠
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⎟
⎟
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Hab
α

= Pma
µ H Pnb

µ = 1 Pam
µ HPnb

µ 1 = 1 HPam
µ Pnb

µ 1 = δmn 1 HPab
µ 1 = 1 H g

g=1

°G

∑ Dab
α*
g( ) = rg

g=1

°G

∑ Dab
α*
g( )

                                 Pxx
A1    Pyy

A2    Pxx
E1 Pxy

E1    Pyx
E1 Pyy

E1     

H( )P = T H( )G T † =

H A1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ H A2 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ Hxx

E1 Hxy
E1 ⋅ ⋅

⋅ ⋅ Hyx
E1 Hyy

E1 ⋅ ⋅

⋅ ⋅ ⋅ ⋅ Hxx
E1 Hxy

E1

⋅ ⋅ ⋅ ⋅ Hyx
E1 Hyy

E1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

H A1 = r0D
A1*(1)+ r1D

A1*(r1)+ r1
*DA1*(r2)+ i1D

A1*(i1)+ i2D
A1*(i2)+ i3D

A1*(i3)  =r0 +r1+r1
*+i1+i2 +i3              

H A2 = r0D
A2*(1)+ r1D

A2*(r1)+ r1
*DA2*(r2)+ i1D

A2*(i1)+i2D
A2*(i2)+i3D

A2*(i3) =r0 +r1+r1
*-i1-i2 -i3   

   

H( )G = rgg
g=1

oG
∑ =

r0 r2 r1 i1 i2 i3
r1 r0 r1 i3 i1 i2
r2 r1 r0 i2 i3 i1
ii i3 i2 r0 r1 r2

i2 i1 i3 r2 r0 r1
i3 i2 i1 r1 r2 r0

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

H matrix in
⏐g〉-basis:

H matrix in
⏐P(µ)〉-basis:

D3 Hamiltonian local- H matrices in ⏐P(µ)〉-basis 

Coefficients               are irreducible representations (ireps) of g
 
Dmn

µ g( )

   

g = 1 r1 r2 i1 i2 i3

D A1 g( ) =
D A2 g( ) =
Dx,y

E1 g( ) =

1
1

1 ⋅
⋅ 1

⎛

⎝⎜
⎞

⎠⎟

1
1

−2
1 − 2

3

2
3 −2

1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
1

−2
1

2
3

− 2
3 −2

1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
−1

−2
1 − 2

3

− 2
3

2
1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
−1

−2
1

2
3

2
3

2
1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
−1

1 0
0 −1

⎛

⎝⎜
⎞

⎠⎟
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Hab
α

= Pma
µ H Pnb

µ = 1 Pam
µ HPnb

µ 1 = 1 HPam
µ Pnb

µ 1 = δmn 1 HPab
µ 1 = 1 H g

g=1

°G

∑ Dab
α*
g( ) = rg

g=1

°G

∑ Dab
α*
g( )

                                 Pxx
A1    Pyy

A2    Pxx
E1 Pxy

E1    Pyx
E1 Pyy

E1     

H( )P = T H( )G T † =

H A1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ H A2 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ Hxx

E1 Hxy
E1 ⋅ ⋅

⋅ ⋅ Hyx
E1 Hyy

E1 ⋅ ⋅

⋅ ⋅ ⋅ ⋅ Hxx
E1 Hxy

E1

⋅ ⋅ ⋅ ⋅ Hyx
E1 Hyy

E1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

H A1 = r0D
A1*(1)+ r1D

A1*(r1)+ r1
*DA1*(r2)+ i1D

A1*(i1)+ i2D
A1*(i2)+ i3D

A1*(i3)  =r0 +r1+r1
*+i1+i2 +i3              

H A2 = r0D
A2*(1)+ r1D

A2*(r1)+ r1
*DA2*(r2)+ i1D

A2*(i1)+i2D
A2*(i2)+i3D

A2*(i3) =r0 +r1+r1
*-i1-i2 -i3                

Hxx
E1 = r0Dxx

E*
(1)+ r1Dxx

E*
(r1)+ r1

*Dxx
E*

(r2)+ i1Dxx
E*

(i1)+ i2Dxx
E*

(i2)+ i3Dxx
E*

(i3)  =(2r0 -r1-r1
*-i1-i2 +2i3)/2 

   

H( )G = rgg
g=1

oG
∑ =

r0 r2 r1 i1 i2 i3
r1 r0 r1 i3 i1 i2
r2 r1 r0 i2 i3 i1
ii i3 i2 r0 r1 r2

i2 i1 i3 r2 r0 r1
i3 i2 i1 r1 r2 r0

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

H matrix in
⏐g〉-basis:

H matrix in
⏐P(µ)〉-basis:

D3 Hamiltonian local- H matrices in ⏐P(µ)〉-basis 

Coefficients               are irreducible representations (ireps) of g
 
Dmn

µ g( )

   

g = 1 r1 r2 i1 i2 i3

D A1 g( ) =
D A2 g( ) =
Dx,y

E1 g( ) =

1
1

1 ⋅
⋅ 1

⎛

⎝⎜
⎞

⎠⎟

1
1

−2
1 − 2

3

2
3 −2

1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
1

−2
1

2
3

− 2
3 −2

1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
−1

−2
1 − 2

3

− 2
3

2
1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
−1

−2
1

2
3

2
3

2
1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
−1

1 0
0 −1

⎛

⎝⎜
⎞

⎠⎟
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Hab
α

= Pma
µ H Pnb

µ = 1 Pam
µ HPnb

µ 1 = 1 HPam
µ Pnb

µ 1 = δmn 1 HPab
µ 1 = 1 H g

g=1

°G

∑ Dab
α*
g( ) = rg

g=1

°G

∑ Dab
α*
g( )

                                 Pxx
A1    Pyy

A2    Pxx
E1 Pxy

E1    Pyx
E1 Pyy

E1     

H( )P = T H( )G T † =

H A1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ H A2 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ Hxx

E1 Hxy
E1 ⋅ ⋅

⋅ ⋅ Hyx
E1 Hyy

E1 ⋅ ⋅

⋅ ⋅ ⋅ ⋅ Hxx
E1 Hxy

E1

⋅ ⋅ ⋅ ⋅ Hyx
E1 Hyy

E1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

H A1 = r0D
A1*(1)+ r1D

A1*(r1)+ r1
*DA1*(r2)+ i1D

A1*(i1)+ i2D
A1*(i2)+ i3D

A1*(i3)  =r0 +r1+r1
*+i1+i2 +i3              

H A2 = r0D
A2*(1)+ r1D

A2*(r1)+ r1
*DA2*(r2)+ i1D

A2*(i1)+i2D
A2*(i2)+i3D

A2*(i3) =r0 +r1+r1
*-i1-i2 -i3                

Hxx
E1 = r0Dxx

E*
(1)+ r1Dxx

E*
(r1)+ r1

*Dxx
E*

(r2)+ i1Dxx
E*

(i1)+ i2Dxx
E*

(i2)+ i3Dxx
E*

(i3)  =(2r0 -r1-r1
*-i1-i2 +2i3)/2      

Hxy
E1 = r0Dxy

E*
(1)+ r1Dxy

E*
(r1)+ r1

*Dxy
E*

(r2)+ i1Dxy
E*

(i1)+ i2Dxy
E*

(i2)+ i3Dxy
E*

(i3)  = 3(-r1+r1
*-i1+i2 )/2 =Hyx

E*  

   

H( )G = rgg
g=1

oG
∑ =

r0 r2 r1 i1 i2 i3
r1 r0 r1 i3 i1 i2
r2 r1 r0 i2 i3 i1
ii i3 i2 r0 r1 r2

i2 i1 i3 r2 r0 r1
i3 i2 i1 r1 r2 r0

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

H matrix in
⏐g〉-basis:

H matrix in
⏐P(µ)〉-basis:

D3 Hamiltonian local- H matrices in ⏐P(µ)〉-basis 

Coefficients               are irreducible representations (ireps) of g
 
Dmn

µ g( )

   

g = 1 r1 r2 i1 i2 i3

D A1 g( ) =
D A2 g( ) =
Dx,y

E1 g( ) =

1
1

1 ⋅
⋅ 1

⎛

⎝⎜
⎞

⎠⎟

1
1

−2
1 − 2

3

2
3 −2

1

⎛
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⎜
⎜
⎜
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⎠

⎟
⎟
⎟

1
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⎛
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⎜
⎜
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⎟
⎟

1
−1

−2
1 − 2

3

− 2
3

2
1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
−1

−2
1

2
3

2
3

2
1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
−1

1 0
0 −1

⎛

⎝⎜
⎞

⎠⎟

(norm)2 (norm)2 (norm)2

84Friday, March 29, 2013



Hab
α

= Pma
µ H Pnb

µ = 1 Pam
µ HPnb

µ 1 = 1 HPam
µ Pnb

µ 1 = δmn 1 HPab
µ 1 = 1 H g

g=1

°G

∑ Dab
α*
g( ) = rg

g=1

°G

∑ Dab
α*
g( )

                                 Pxx
A1    Pyy

A2    Pxx
E1 Pxy

E1    Pyx
E1 Pyy

E1     

H( )P = T H( )G T † =

H A1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ H A2 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ Hxx

E1 Hxy
E1 ⋅ ⋅

⋅ ⋅ Hyx
E1 Hyy

E1 ⋅ ⋅

⋅ ⋅ ⋅ ⋅ Hxx
E1 Hxy

E1

⋅ ⋅ ⋅ ⋅ Hyx
E1 Hyy

E1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

H A1 = r0D
A1*(1)+ r1D

A1*(r1)+ r1
*DA1*(r2)+ i1D

A1*(i1)+ i2D
A1*(i2)+ i3D

A1*(i3)  =r0 +r1+r1
*+i1+i2 +i3              

H A2 = r0D
A2*(1)+ r1D

A2*(r1)+ r1
*DA2*(r2)+ i1D

A2*(i1)+i2D
A2*(i2)+i3D

A2*(i3) =r0 +r1+r1
*-i1-i2 -i3                

Hxx
E1 = r0Dxx

E*
(1)+ r1Dxx

E*
(r1)+ r1

*Dxx
E*

(r2)+ i1Dxx
E*

(i1)+ i2Dxx
E*

(i2)+ i3Dxx
E*

(i3)  =(2r0 -r1-r1
*-i1-i2 +2i3)/2      

Hxy
E1 = r0Dxy

E*
(1)+ r1Dxy

E*
(r1)+ r1

*Dxy
E*

(r2)+ i1Dxy
E*

(i1)+ i2Dxy
E*

(i2)+ i3Dxy
E*

(i3)  = 3(-r1+r1
*-i1+i2 )/2 =Hyx

E*  

Hyy
E1 = r0Dyy

E*
(1)+ r1Dyy

E*
(r1)+ r1

*Dyy
E*

(r2)+ i1Dyy
E*

(i1)+ i2Dyy
E*

(i2)+ i3Dyy
E*

(i3)  =(2r0 -r1-r1
*+i1+i2 -2i3)/2     

   

H( )G = rgg
g=1

oG
∑ =

r0 r2 r1 i1 i2 i3
r1 r0 r1 i3 i1 i2
r2 r1 r0 i2 i3 i1
ii i3 i2 r0 r1 r2

i2 i1 i3 r2 r0 r1
i3 i2 i1 r1 r2 r0

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

H matrix in
⏐g〉-basis:

H matrix in
⏐P(µ)〉-basis:

D3 Hamiltonian local- H matrices in ⏐P(µ)〉-basis 

Coefficients               are irreducible representations (ireps) of g
 
Dmn

µ g( )

   

g = 1 r1 r2 i1 i2 i3

D A1 g( ) =
D A2 g( ) =
Dx,y

E1 g( ) =

1
1

1 ⋅
⋅ 1

⎛

⎝⎜
⎞

⎠⎟

1
1

−2
1 − 2

3

2
3 −2

1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
1

−2
1

2
3

− 2
3 −2

1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
−1

−2
1 − 2

3

− 2
3

2
1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
−1

−2
1

2
3

2
3

2
1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
−1

1 0
0 −1

⎛

⎝⎜
⎞

⎠⎟
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Hab
α

= Pma
µ H Pnb

µ = 1 Pam
µ HPnb

µ 1 = 1 HPam
µ Pnb

µ 1 = δmn 1 HPab
µ 1 = 1 H g

g=1

°G

∑ Dab
α*
g( ) = rg

g=1

°G

∑ Dab
α*
g( )

                                 Pxx
A1    Pyy

A2    Pxx
E1 Pxy

E1    Pyx
E1 Pyy

E1     

H( )P = T H( )G T † =

H A1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ H A2 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ Hxx

E1 Hxy
E1 ⋅ ⋅

⋅ ⋅ Hyx
E1 Hyy

E1 ⋅ ⋅

⋅ ⋅ ⋅ ⋅ Hxx
E1 Hxy

E1

⋅ ⋅ ⋅ ⋅ Hyx
E1 Hyy

E1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

H A1 = r0D
A1*(1)+ r1D

A1*(r1)+ r1
*DA1*(r2)+ i1D

A1*(i1)+ i2D
A1*(i2)+ i3D

A1*(i3)  =r0 +r1+r1
*+i1+i2 +i3              

H A2 = r0D
A2*(1)+ r1D

A2*(r1)+ r1
*DA2*(r2)+ i1D

A2*(i1)+i2D
A2*(i2)+i3D

A2*(i3) =r0 +r1+r1
*-i1-i2 -i3                

Hxx
E1 = r0Dxx

E*
(1)+ r1Dxx

E*
(r1)+ r1

*Dxx
E*

(r2)+ i1Dxx
E*

(i1)+ i2Dxx
E*

(i2)+ i3Dxx
E*

(i3)  =(2r0 -r1-r1
*-i1-i2 +2i3)/2      

Hxy
E1 = r0Dxy

E*
(1)+ r1Dxy

E*
(r1)+ r1

*Dxy
E*

(r2)+ i1Dxy
E*

(i1)+ i2Dxy
E*

(i2)+ i3Dxy
E*

(i3)  = 3(-r1+r1
*-i1+i2 )/2 =Hyx

E*  

Hyy
E1 = r0Dyy

E*
(1)+ r1Dyy

E*
(r1)+ r1

*Dyy
E*

(r2)+ i1Dyy
E*

(i1)+ i2Dyy
E*

(i2)+ i3Dyy
E*

(i3)  =(2r0 -r1-r1
*+i1+i2 -2i3)/2     

Hxx
E1 Hxy

E1

Hyx
E1 Hyy

E1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
= 1
2

2r0 -r1-r1
*-i1-i2+2i3 3(-r1+r1

*-i1+i2 )

3(−r1
*+r1-i1+i2 ) 2r0 -r1-r1

*+i1+i2 -2i3

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

   

H( )G = rgg
g=1

oG
∑ =

r0 r2 r1 i1 i2 i3
r1 r0 r1 i3 i1 i2
r2 r1 r0 i2 i3 i1
ii i3 i2 r0 r1 r2

i2 i1 i3 r2 r0 r1
i3 i2 i1 r1 r2 r0

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

H matrix in
⏐g〉-basis:

H matrix in
⏐P(µ)〉-basis:

D3 Hamiltonian local- H matrices in ⏐P(µ)〉-basis 
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Hab
α

= Pma
µ H Pnb

µ = 1 Pam
µ HPnb

µ 1 = 1 HPam
µ Pnb

µ 1 = δmn 1 HPab
µ 1 = 1 H g

g=1

°G

∑ Dab
α*
g( ) = rg

g=1

°G

∑ Dab
α*
g( )

                                 Pxx
A1    Pyy

A2    Pxx
E1 Pxy

E1    Pyx
E1 Pyy

E1     

H( )P = T H( )G T † =

H A1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ H A2 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ Hxx

E1 Hxy
E1 ⋅ ⋅

⋅ ⋅ Hyx
E1 Hyy

E1 ⋅ ⋅

⋅ ⋅ ⋅ ⋅ Hxx
E1 Hxy

E1

⋅ ⋅ ⋅ ⋅ Hyx
E1 Hyy

E1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

H A1 = r0D
A1*(1)+ r1D

A1*(r1)+ r1
*DA1*(r2)+ i1D

A1*(i1)+ i2D
A1*(i2)+ i3D

A1*(i3)  =r0 +r1+r1
*+i1+i2 +i3              =r0 +2r1+2i12 +i3

H A2 = r0D
A2*(1)+ r1D

A2*(r1)+ r1
*DA2*(r2)+ i1D

A2*(i1)+i2D
A2*(i2)+i3D

A2*(i3) =r0 +r1+r1
*-i1-i2 -i3                =r0 +2r1 -2i12 -i3

Hxx
E1 = r0Dxx

E*
(1)+ r1Dxx

E*
(r1)+ r1

*Dxx
E*

(r2)+ i1Dxx
E*

(i1)+ i2Dxx
E*

(i2)+ i3Dxx
E*

(i3)  =(2r0 -r1-r1
*-i1-i2 +2i3)/2      =r0 -r1 -i12 +i3

Hxy
E1 = r0Dxy

E*
(1)+ r1Dxy

E*
(r1)+ r1

*Dxy
E*

(r2)+ i1Dxy
E*

(i1)+ i2Dxy
E*

(i2)+ i3Dxy
E*

(i3)  = 3(-r1+r1
*-i1+i2 )/2 =Hyx

E*  =0

Hyy
E1 = r0Dyy

E*
(1)+ r1Dyy

E*
(r1)+ r1

*Dyy
E*

(r2)+ i1Dyy
E*

(i1)+ i2Dyy
E*

(i2)+ i3Dyy
E*

(i3)  =(2r0 -r1-r1
*+i1+i2 -2i3)/2     =r0 -r1 +i12 -i3

Hxx
E1 Hxy

E1

Hyx
E1 Hyy

E1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
= 1

2
2r0 -r1-r1

*-i1-i2 +2i3 3(-r1+r1
*-i1+i2 )

3(−r1
*+r1-i1+i2 ) 2r0 -r1-r1

*+i1+i2 -2i3

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

                       =
r0 -r1-i12 +i3 0

0 r0 -r1-i12 -i3

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
For:r1 =r1

*and: i1 =i2

   

H( )G = rgg
g=1

oG
∑ =

r0 r2 r1 i1 i2 i3
r1 r0 r1 i3 i1 i2
r2 r1 r0 i2 i3 i1
ii i3 i2 r0 r1 r2

i2 i1 i3 r2 r0 r1
i3 i2 i1 r1 r2 r0

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

H matrix in
⏐g〉-basis:

H matrix in
⏐P(µ)〉-basis:

D3 Hamiltonian local- H matrices in ⏐P(µ)〉-basis 

Choosing local C2={1,i3} symmetry with
local constraints r1=r1*=r2 and i1=i2  
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Hab
α

= Pma
µ H Pnb

µ = 1 Pam
µ HPnb

µ 1 = 1 HPam
µ Pnb

µ 1 = δmn 1 HPab
µ 1 = 1 H g

g=1

°G

∑ Dab
α*
g( ) = rg

g=1

°G

∑ Dab
α*
g( )

                                 Pxx
A1    Pyy

A2    Pxx
E1 Pxy

E1    Pyx
E1 Pyy

E1     

H( )P = T H( )G T † =

H A1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ H A2 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ Hxx

E1 Hxy
E1 ⋅ ⋅

⋅ ⋅ Hyx
E1 Hyy

E1 ⋅ ⋅

⋅ ⋅ ⋅ ⋅ Hxx
E1 Hxy

E1

⋅ ⋅ ⋅ ⋅ Hyx
E1 Hyy

E1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

H A1 = r0D
A1*(1)+ r1D

A1*(r1)+ r1
*DA1*(r2)+ i1D

A1*(i1)+ i2D
A1*(i2)+ i3D

A1*(i3)  =r0 +r1+r1
*+i1+i2 +i3              =r0 +2r1+2i12 +i3

H A2 = r0D
A2*(1)+ r1D

A2*(r1)+ r1
*DA2*(r2)+ i1D

A2*(i1)+i2D
A2*(i2)+i3D

A2*(i3) =r0 +r1+r1
*-i1-i2 -i3                =r0 +2r1 -2i12 -i3

Hxx
E1 = r0Dxx

E*
(1)+ r1Dxx

E*
(r1)+ r1

*Dxx
E*

(r2)+ i1Dxx
E*

(i1)+ i2Dxx
E*

(i2)+ i3Dxx
E*

(i3)  =(2r0 -r1-r1
*-i1-i2 +2i3)/2      =r0 -r1 -i12 +i3

Hxy
E1 = r0Dxy

E*
(1)+ r1Dxy

E*
(r1)+ r1

*Dxy
E*

(r2)+ i1Dxy
E*

(i1)+ i2Dxy
E*

(i2)+ i3Dxy
E*

(i3)  = 3(-r1+r1
*-i1+i2 )/2 =Hyx

E*  =0

Hyy
E1 = r0Dyy

E*
(1)+ r1Dyy

E*
(r1)+ r1

*Dyy
E*

(r2)+ i1Dyy
E*

(i1)+ i2Dyy
E*

(i2)+ i3Dyy
E*

(i3)  =(2r0 -r1-r1
*+i1+i2 -2i3)/2     =r0 -r1 +i12 -i3

Hxx
E1 Hxy

E1

Hyx
E1 Hyy

E1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
= 1

2
2r0 -r1-r1

*-i1-i2 +2i3 3(-r1+r1
*-i1+i2 )

3(−r1
*+r1-i1+i2 ) 2r0 -r1-r1

*+i1+i2 -2i3

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

                       =
r0 -r1-i12 +i3 0

0 r0 -r1-i12 -i3

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
For:r1 =r1

*and: i1 =i2

   

H( )G = rgg
g=1

oG
∑ =

r0 r2 r1 i1 i2 i3
r1 r0 r1 i3 i1 i2
r2 r1 r0 i2 i3 i1
ii i3 i2 r0 r1 r2

i2 i1 i3 r2 r0 r1
i3 i2 i1 r1 r2 r0

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

H matrix in
⏐g〉-basis:

H matrix in
⏐P(µ)〉-basis:

D3 Hamiltonian local- H matrices in ⏐P(µ)〉-basis 

Choosing local C2={1,i3} symmetry with
local constraints r1=r1*=r2 and i1=i2  

C2={1,i3} 
Local symmetry
determines all levels
and eigenvectors with
just 4 real parameters
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PE =( 2 -1 -1 -1 -1 +2)/6
PE =( 0 1 -1 -1 +1 0)/√3/2

x,x

y,x

PA1= ( 1 1 1 1 1 1)/6x,x

PA2= ( 1 1 1 -1 -1 -1)/6y,y

1 r1 r2 i
1
i
2
i
3

PE =( 0 -1 1 -1 +1 0)/√3/2

PE =( 2 -1 -1+1 +1 -2)/6
x,y

y,y

1 r1 r2 i
1
i
2
i
3

1 r1 r2 i
1
i
2
i
3

SSppeeccttrraall EEffffiicciieennccyy:: SSaammee DD((aa))
mmnn
pprroojjeeccttoorrss ggiivvee aa lloott!!

••EEiiggeennssttaatteess ((sshhoowwnn bbeeffoorree))

••CCoommpplleettee HHaammiillttoonniiaann

••LLooccaall ssyymmmmeetteerryy eeiiggeennvvaalluuee ffoorrmmuullaaee

H r r i i i1 2 1 2 3
− − − − +H r r i i i1 2 1 2 3
1
2

1
2

1
2

1
2

√3
2
( + − +r r i i1 2 1 2 )−

√3
2
( − − +r r i i1 2 1 2 )+ − − + + −H r r i i i1 2 1 2 3

1
2

1
2

1
2

1
2

A
1
-block

A
2
-block

(L.S.=> off-diagonal zero.)

H r r i i i1 2 1 2 3⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

3

r1= r2= r1*= r, i1= i2= i1*= i

+ + +r i i2 2 3HA
1
-level:

+ − −r i i2 2 3HA
1
-level:

− − +r i i3HE
x
-level:

− + −r iHE
y
-level: i

gives:

mn
(g)

(µ)

°G mn
PP(µ)= ΣgD

(µ)* g

C2={1,i3} 
Local symmetry
determines all levels
and eigenvectors with
just 4 real parameters
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i2

i3

i1

++
++

+
+

-
+

-
+

-
+

+
+

+

+

- -

-- +
+

- -

-
+

-

-

+

-
+

-

| 〉A1
xx

| 〉A2
yy

| 〉E
xy | 〉E

yy

| 〉E
xx | 〉E

yx

| 〉E1
xy

| 〉E1
xx

| 〉

| 〉A1
xx

| 〉A2
yy

E1
yx

| 〉E1
yy

D
3
>C

2
i
3
projector states

|(m)〉 =P(m)|1〉eb eb

ii
3
global (y)

anti-symmetry

ii
3
global (y)

anti-symmetry

ii
3
global

(x) symmetry

ii
3
local

(x) symmetry

ii
3
local (y)

anti-symmetry

eb eb

Global (LAB) symmetry

ii
3
|(m)〉 = ii

3
P(m)|1〉

=(-1)e |(m)〉
eb eb eb

eb

Local (BOD) symmetry

ii
3
|(m)〉 = ii

3
P(m)|1〉= P(m)ii

3
|1〉

= P(m)ii
3

†|1〉=(-1)b |(m)〉
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i2

i3

i1

++
++

+
+

-
+

-
+

-
+

+
+

+

+

- -

-- +
+

- -

-
+

-

-

+

-
+

-

| 〉A1
xx

| 〉A2
yy

| 〉E
xy | 〉E

yy

| 〉E
xx | 〉E

yx

| 〉E1
xy

| 〉E1
xx

| 〉

| 〉A1
xx

| 〉A2
yy

E1
yx

| 〉E1
yy

When there is no there, there...

ii3 global (y)
anti-symmetry

ii3 global (y)
anti-symmetry

ii3 global
(x) symmetry

ii3 local
(x) symmetry

ii3 local (y)
anti-symmetry

Nobody Home
where LOCAL
and GLOBAL

clash!clash!!

clash!clash!!

clash!clash!!

clash!clash!!
clash!clash!!
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Review: Projector formulae and subgroup splitting
         Algebra and geometry of irreducible Dµjk(g) and projector Pµjk transformation
         Example of D3 transformation by matrix DEjk(r1)

Details of Mock-Mach relativity-duality for D3 groups and representations
        Lab-fixed(Extrinsic-Global) vs. Body-fixed (Intrinsic-Local)
        Compare Global vs Local ⏐g〉-basis and Global vs Local ⏐P(µ)〉-basis
                   
Hamiltonian and D3 group matrices in global and local ⏐P(µ)〉-basis      
        Hamiltonian local-symmetry eigensolution
        Molecular vibrational mode eigensolution
               Local symmetry limit
               Global symmetry limit (free or “genuine” modes) 
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Vector Right polarized
E1
R(-)

1
√2

Vector Left-polarized
E1
L(-)

Right circular-translation
E1
L(+)

1
√2

Left circular-translation
E1
R(+)

1
√3

Scalar mode
A1
xx

Psuedo- rotation
A2
yy

Genuine vibration modes

Low-frequency modes

Strong
C3 coupling
limit
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i1

i3

i2

i3|1>

|1>
r1|1>

r2|1>

i2|1>

i1|1>

1
√3

1
√3

1
√3

Scalar mode
A1
xx

+1
+1
+1
+1
+1
+1
/√6

√6P1
xx
|1>= =|

xx
>

1
r1
r2
i1
i2
i3

A1

+1
+1
+1
-1
-1
-1
/√6

√6P2
yy
|1>= =|

yy
>

1
√3

1
√3

1
√3

A2
Psuedo-scalar mode

A2
yy

+2
-1
-1
+1
+1
-2
/√12

√3P3
yy
|1>= =|

yy
>E

0
+1
-1
-1
+1
0
/2

√3P3
yx
|1> = =|

yx
>

2
√6

1
√6

1
√6

1
√2

1
√2

Vector mode
E1
yy

Vector mode
E1
yx

E

√3P3
xy
|1> = =|

xy
>

0
-1
+1
-1
+1
0
/2

E

+2
-1
-1
-1
-1
+2
/√12

√3P3
xx
|1> = =|

xx
>E

1
√2

1
√2

2
√61

√6

1
√6

Vector mode
E1
xy

Vector mode
E1
xx

local
C2(1,i3)
limit
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