Group Theory in Quantum Mechanics

Local-symmetry eigensolutions and vibrational modes

(Int.J.Mol.Sci, 14, 714(2013) p.755-774, QTCA Unit 5 Ch. 15)
(PSDS-Ch. 4)
Review: Projector formulae and subgroup splitting
Algebra and geometry of irreducible $D^{\mu}{ }_{j k}(g)$ and projector $\mathbf{P}^{\mu_{j k}}$ transformation
Example of D_{3} transformation by matrix $D^{E_{j k}}\left(\mathbf{r}^{1}\right)$
Details of Mock-Mach relativity-duality for D_{3} groups and representations
Lab-fixed(Extrinsic-Global) vs. Body-fixed (Intrinsic-Local)
Compare Global vs Local $|\mathbf{g}\rangle$-basis and Global vs Local $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis
Hamiltonian and D_{3} group matrices in global and local $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis
Hamiltonian local-symmetry eigensolution
Molecular vibrational mode eigensolution
Local symmetry limit
Global symmetry limit (free or "genuine" modes)
\rightarrow Review: Projector formulae and subgroup splitting
Algebra and geometry of irreducible $D_{j k}{ }_{j k}(g)$ and projector $\mathbf{P}_{j k}{ }_{j k}$ transformation Example of D_{3} transformation by matrix $D^{E}{ }_{j k}\left(\mathbf{r}^{1}\right)$

> Details of Mock-Mach relativity-duality for D_{3} groups and representations
> Lab-fixed(Extrinsic-Global) vs. Body-fixed (Intrinsic-Local) Compare Global vs Local $|\mathbf{g}\rangle$-basis and Global vs Local $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis

Hamiltonian and D_{3} group matrices in global and local $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis
Hamiltonian local-symmetry eigensolution Molecular vibrational mode eigensolution

Local symmetry limit
Global symmetry limit (free or "genuine" modes)

Group Center: Class-sums κ_{g}, characters $\chi^{\mu}(\mathbf{g})$, and All-commuting Projectors \mathbb{P}^{μ}

$$
\mathbf{K}_{\mathbf{g}}=\sum_{\mu} \frac{{ }^{\circ} \kappa_{g} \chi_{g}^{\mu}}{\ell^{\mu}} \mathbb{P}^{\mu}
$$

$$
\mathbb{P}^{\mu}=\sum_{\text {classes } \kappa_{\mathrm{g}}} \frac{\ell^{\mu}}{{ }^{\circ} G} \chi_{g}^{\mu^{*}} \kappa_{\mathrm{g}}
$$

Group Center: Class-sums κ_{g}, characters $\chi^{\mu}(\mathbf{g})$, and All-commuting Projectors \mathbb{P}^{μ}

$$
\kappa_{\mathbf{g}}=\sum_{\mu} \frac{{ }^{\circ} \kappa_{g} \chi_{g}^{\mu}}{\ell^{\mu}} \mathbb{P}^{\mu}
$$

Characters: $\chi_{g}^{\mu} \equiv \operatorname{Tr} D^{\mu}(\mathrm{g})=\chi^{\mu}(\mathrm{g})=\chi^{\mu}\left(\mathbf{h g h}^{-1}\right)$

Group Center: Class-sums κ_{g}, characters $\chi^{\mu}(\mathbf{g})$, and All-commuting Projectors \mathbb{P}^{μ}

$$
\kappa_{\mathbf{g}}=\sum_{\mu} \frac{{ }^{\circ} \kappa_{g} \chi_{g}^{\mu}}{\ell^{\mu}} \mathbb{P}^{\mu}
$$

Characters: $\chi_{g}^{\mu} \equiv \operatorname{Tr} D^{\mu}(\mathrm{g})=\chi^{\mu}(\mathrm{g})=\chi^{\mu}\left(\mathbf{h g h}^{-1}\right)$

$$
\mathbb{P}^{\mu}=\sum_{\text {classes } \mathbf{k}_{\mathrm{g}}} \frac{\ell^{\mu}}{{ }^{\mu}} \chi_{g}^{\mu^{*}} \mathbf{\kappa}_{\mathrm{g}}
$$

Group operators \mathbf{g}, irreducible representations $D^{\mu}(\mathbf{g})$, and irreducible projectors $\mathbf{P}^{\mu}{ }_{m n}$

$$
\mathbb{P}^{\mu}=\mathbf{P}^{\mu}{ }_{11}+\mathbf{P}^{\mu}{ }_{11}+\ldots \mathbf{P}^{\mu} \ell^{\mu} \ell^{\mu}
$$

$$
\mathbf{g}=\left(\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\ell^{\mu}} \sum_{n^{\prime}}^{\ell^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\right)
$$

$$
\mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}{ }^{\circ} G}{{ }^{\circ} G} \sum_{\mathbf{g}} D_{n m}^{\mu}\left(g^{-1}\right) \mathbf{g}
$$

Group Center: Class-sums κ_{g}, characters $\chi^{\mu}(\mathbf{g})$, and All-commuting Projectors $\mathbb{P} \mu$

$$
\kappa_{\mathbf{g}}=\sum_{\mu} \frac{{ }^{\circ} \kappa_{g} \chi_{g}^{\mu}}{\ell^{\mu}} \mathbb{P}^{\mu}
$$

Characters: $\chi_{g}^{\mu} \equiv \operatorname{Tr} D^{\mu}(\mathrm{g})=\chi^{\mu}(\mathrm{g})=\chi^{\mu}\left(\mathbf{h g h}^{-1}\right)$

$$
\mathbb{P}^{\mu}=\sum_{\text {classes } \mathbf{k}_{\mathrm{g}}} \frac{\ell^{\mu}}{{ }^{\mu}} \chi_{g}^{\mu^{*}} \mathbf{\kappa}_{\mathrm{g}}
$$

Group operators \mathbf{g}, irreducible representations $D^{\mu}(\mathbf{g})$, and irreducible projectors $\mathbf{P}^{\mu}{ }_{m n}$

$$
\mathbb{P}^{\mu}=\mathbf{P}^{\mu}{ }_{11}+\mathbf{P}^{\mu}{ }_{11}+\ldots \mathbf{P}^{\mu} \ell^{\mu} \ell^{\mu}
$$

$$
\mathbf{g}=\left(\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\ell^{\mu}} \sum_{n^{\prime}}^{\ell^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\right)
$$

$$
\left.\begin{array}{l}
\mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}{ }^{\circ} G}{{ }^{\circ} G} D_{\mathrm{g}}^{\mu} D_{n m}^{\mu}\left(g^{-1}\right) \mathbf{g} \\
\left(\mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}{ }^{\circ} G}{{ }^{\circ} G} \sum_{\mathbf{g}} D_{m n}^{\mu^{*}}(g) \mathbf{g} \text { for unitary } D_{n m}^{\mu}\right.
\end{array}\right)
$$

Group Center: Class-sums κ_{g}, characters $\chi^{\mu}(\mathbf{g})$, and All-commuting Projectors \mathbb{P}^{μ}

$$
\kappa_{\mathbf{g}}=\sum_{\mu} \frac{{ }^{\circ} \kappa_{g} \chi_{g}^{\mu}}{\ell^{\mu}} \mathbb{P}^{\mu}
$$

Characters: $\chi_{g}^{\mu} \equiv \operatorname{Tr} D^{\mu}(\mathrm{g})=\chi^{\mu}(\mathrm{g})=\chi^{\mu}\left(\mathbf{h g} \mathbf{h}^{-1}\right)$

$$
\mathbb{P}^{\mu}=\sum_{\text {classes } \mathbf{\kappa}_{\mathrm{g}}} \frac{\ell^{\mu}{ }^{\mu}}{} \chi_{g}^{\mu^{*}} \boldsymbol{\kappa}_{\mathrm{g}}
$$

Group operators \mathbf{g}, irreducible representations $D^{\mu}(\mathbf{g})$, and irreducible projectors $\mathbf{P}^{\mu}{ }_{m n}$

$$
\mathbb{P}^{\mu}=\mathbf{P}_{11}^{\mu}+\mathbf{P}^{\mu}{ }_{11}+\ldots \mathbf{P}^{\mu} \ell^{\mu} \ell^{\mu}
$$

$\mathbf{g}=\left(\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\ell^{\mu}} \sum_{n^{\prime}}^{\ell^{\prime}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\right)$

$$
\begin{gathered}
\begin{array}{c}
\text { Use } \mathbf{P}_{m n}^{\mu} \text {-orthonormality } \\
\mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}} \mathbf{P}_{m n}^{\mu}=\delta^{\mu^{\prime} \mu} \delta_{n^{\prime} m} \mathbf{P}_{m^{\prime} n}^{\mu}
\end{array} \\
\begin{array}{c}
\text { Projector conjuggation } \\
(|m\rangle\langle n|)^{\dagger}=|n\rangle\langle m| \\
\left(\mathbf{P}_{m n}^{\mu}\right)^{\dagger}=\mathbf{P}_{n m}^{\mu}
\end{array}
\end{gathered}
$$

$$
\begin{aligned}
& \mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}{ }^{\circ} G}{{ }^{\circ} G} \sum_{\mathrm{g}}^{\mu} D_{n m}^{\mu}\left(g^{-1}\right) \mathrm{g} \\
& \left(\mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}{ }^{\circ} G}{{ }^{\circ} G} \sum_{\mathrm{g}} D_{m n}^{\mu^{*}}(g) \mathrm{g} \text { for unitary } D_{n m}^{\mu}\right)
\end{aligned}
$$

Group Center: Class-sums κ_{g}, characters $\chi^{\mu}(\mathbf{g})$, and All-commuting Projectors \mathbb{P}^{μ}

$$
\kappa_{\mathbf{g}}=\sum_{\mu}^{{ }^{\circ} \kappa_{g} \chi_{g}^{\mu}}{\ell^{\mu}}^{\mu}
$$

Characters: $\chi_{g}^{\mu} \equiv \operatorname{Tr} D^{\mu}(\mathrm{g})=\chi^{\mu}(\mathrm{g})=\chi^{\mu}\left(\mathbf{h} \mathbf{g h}^{-1}\right)$

$$
\mathbb{P}^{\mu}=\sum_{\text {classes } \mathbf{k}_{\mathrm{g}}} \frac{\ell^{\mu}}{{ }^{\mu}} \chi_{g}^{\mu^{*}} \mathbf{x}_{\mathrm{g}}
$$

Group operators \mathbf{g}, irreducible representations $D^{\mu}(\mathbf{g})$, and irreducible projectors $\mathbf{P}^{\mu}{ }_{m n}$

$$
\left|\begin{array}{l}
\mu \\
m n
\end{array}\right\rangle=\frac{\mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle}{n o r m}=\frac{\ell^{(\mu)}}{n o r m^{\circ} G} \sum_{\mathrm{g}}^{\circ} D_{m n}^{\mu^{*}}(g)|\mathrm{g}\rangle \text { for unitary } D_{n m}^{\mu}
$$

$$
\begin{aligned}
& \mathbb{P}^{\mu}=\mathbf{P}^{\mu}{ }_{11}+\mathbf{P}^{\mu}{ }_{22}+\ldots \mathbf{P}^{\mu} \ell^{\mu} \ell^{\mu} \\
& \begin{array}{l}
\text { Use } \mathbf{P}_{m n}^{\mu} \text {-orthonormality } \\
\mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}} \mathbf{P}_{m n}^{\mu}=\delta^{\mu^{\prime} \mu} \delta_{n^{\prime} m} \mathbf{P}_{m^{\prime} n}^{\mu}
\end{array} \\
& \text { Projector conjugation } \\
& (|m\rangle\langle n|)^{\dagger}=|n\rangle\langle m| \\
& \left(\mathbf{P}_{m n}^{\mu}\right)^{\dagger}=\mathbf{P}_{n m}^{\mu} \\
& \begin{array}{l}
\mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}{ }^{\circ} G}{{ }^{\circ} G} D_{\mathrm{g}}^{\mu} D_{n m}^{\mu}\left(g^{-1}\right) \mathrm{g} \\
\left(\mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}{ }^{\circ} G}{{ }^{\circ} G} \sum_{\mathrm{g}} D_{m n}^{\mu^{*}}(g) \mathrm{g} \text { for unitary } D_{n m}^{\mu}\right)
\end{array}
\end{aligned}
$$

Group Center: Class-sums $\kappa \mathbf{g}$, characters $\chi^{\mu}(\mathbf{g})$, and All-commuting Projectors \mathbb{P}^{μ}

$$
\kappa_{\mathbf{g}}=\sum_{\mu} \frac{{ }^{\circ} \kappa_{g} \chi_{g}^{\mu}}{\ell^{\mu}} \mathbb{P}^{\mu}
$$

Characters: $\chi_{g}^{\mu} \equiv \operatorname{Tr} D^{\mu}(\mathrm{g})=\chi^{\mu}(\mathrm{g})=\chi^{\mu}\left(\mathbf{h g h ^ { - 1 }}\right)$

$$
\mathbb{P}^{\mu}=\sum_{\text {classes } \mathbf{k}_{\mathrm{g}}} \frac{\ell^{\mu}}{{ }^{\mu}} \chi_{g}^{\mu^{*}} \mathbf{x}_{\mathrm{g}}
$$

Group operators \mathbf{g}, irreducible representations $D^{\mu}(\mathbf{g})$, and irreducible projectors $\mathbf{P}^{\mu}{ }_{m n}$

$$
\begin{aligned}
& \mathbb{P} \mu=\mathbf{P}^{\mu}{ }_{11}+\mathbf{P}^{\mu}{ }_{11}+\ldots \mathbf{P}^{\mu} \ell^{\mu} \ell^{\mu} \\
& \begin{array}{c}
\text { Use } \mathbf{P}_{m n}^{\mu} \text {-orthonormality } \\
\mathbf{P}_{m^{\prime} n^{\prime}}^{\mathbf{P}_{m n}} \mathbf{P}_{m}^{\mu}=\delta^{\mu^{\prime} \mu} \delta_{n^{\prime} m}^{\prime} \mathbf{P}_{m^{\prime} n}^{\mu}
\end{array} \\
& \begin{array}{c}
\text { Projector conjugation } \\
(|m\rangle\langle n|)^{\dagger}=|n\rangle\langle m| \\
\left(\mathbf{P}_{m n}^{\mu}\right)^{\dagger}=\mathbf{P}_{n m}^{\mu}=\frac{\ell^{(\mu)}{ }^{\circ} G}{{ }^{\circ} G} \sum_{\mathrm{g}} D_{n m}^{\mu}\left(g^{-1}\right) \mathbf{g} \\
\left.\mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}{ }^{\circ} G}{{ }^{\circ} G} \sum_{\mathrm{g}} D_{m n}^{\mu^{*}}(g) \mathrm{g} \text { for unitary } D_{n m}^{\mu}\right)
\end{array}
\end{aligned}
$$

$$
\left|\begin{array}{c}
\mu \\
m n
\end{array}\right\rangle=\frac{\mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle}{n o r m}=\frac{\ell^{(\mu)}}{n o r m}{ }^{\circ} G \sum_{\mathbf{g}}^{\circ} D_{m n}^{\mu^{*}}(g)|\mathrm{g}\rangle \text { for unitary } D_{n m}^{\mu}
$$

$$
\mathrm{g}\left|\begin{array}{c}
\mu \\
m_{n}
\end{array}\right\rangle=\sum_{m^{\prime}}^{\mu^{\mu}} D_{m^{\prime} m}^{\mu}(g)\left|\begin{array}{l}
\mu \\
m^{\prime} n
\end{array}\right\rangle
$$

irep expressions:

$$
\left\langle\begin{array}{l}
{ }_{m^{\prime} n}
\end{array}\right| \mathrm{g}\left|\begin{array}{l}
\mu n \\
m
\end{array}\right\rangle=D_{m^{\prime} m}^{\mu}(g)
$$

Group Center: Class-sums κ_{g}, characters $\chi^{\mu}(\mathbf{g})$, and All-commuting Projectors \mathbb{P}^{μ}

$$
\kappa_{\mathbf{g}}=\sum_{\mu} \frac{{ }^{\circ} \kappa_{g} \chi_{g}^{\mu}}{\ell^{\mu}} \mathbb{P}^{\mu}
$$

$$
\text { Characters: } \chi_{g}^{\mu} \equiv \operatorname{Tr} D^{\mu}(\mathrm{g})=\chi^{\mu}(\mathrm{g})=\chi^{\mu}\left(\mathbf{h} \mathrm{gh}^{-1}\right)
$$

$$
\mathbb{P}^{\mu}=\sum_{\text {classes } \mathbf{k}_{\mathrm{g}}} \frac{\ell^{\mu}}{{ }^{\mu}} \chi_{g}^{\mu^{*}} \mathbf{x}_{\mathrm{g}}
$$

Group operators \mathbf{g}, irreducible representations $D^{\mu}(\mathbf{g})$, and irreducible projectors $\mathbf{P}^{\mu}{ }_{m n}$

$$
\left|\begin{array}{l}
\mu \\
m n
\end{array}\right\rangle=\frac{\mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle}{n o r m}=\frac{\ell^{(\mu)}}{n o r m^{\circ} G} \sum_{\mathrm{g}}^{\circ} D_{m n}^{\mu^{*}}(g)|\mathrm{g}\rangle \text { for unitary } D_{n m}^{\mu}
$$

$\mathbf{g}\left|\begin{array}{l}\mu \\ m n\end{array}\right\rangle=\sum_{m^{\prime}}^{\ell^{\mu}} D_{m^{\prime} m}^{\mu}(g)\left|\begin{array}{l}\mu \\ m^{\prime} n\end{array}\right\rangle$
irep expressions:
$\left\langle\begin{array}{l}\mu \\ m^{\prime} n\end{array}\right| \mathbf{g}\left|\begin{array}{l}\mu \\ m n\end{array}\right\rangle=D_{m^{\prime} m}^{\mu}(g)$

$$
\begin{aligned}
& \left\langle\begin{array}{l}
\mu \\
m n
\end{array}\right| \mathbf{g}^{\dagger}=\left\langle\begin{array}{l}
\mu \\
m^{\prime} n
\end{array}\right| \sum_{m^{\prime}}^{\ell^{\mu}} D_{m^{\prime} m}^{\mu}\left(\mathbf{g}^{\dagger}\right) \\
& \text { pressions: }
\end{aligned}
$$

\dagger-irep expressions:

$$
\left\langle\begin{array}{l}
\mu \\
m n
\end{array}\right| \mathrm{g}^{\dagger}\left|\begin{array}{l}
\mu \\
m^{\prime} n
\end{array}\right\rangle=D_{m^{\prime} m}^{\mu}\left(g^{\dagger}\right)=D_{m m^{\prime}}^{\mu^{*}}(g)
$$

$$
\begin{aligned}
& \mathbb{P}^{\mu}=\mathbf{P}^{\mu}{ }_{11}+\mathbf{P}^{\mu}{ }_{11}+\ldots \mathbf{P}^{\mu} \ell^{\mu} \ell^{\mu} \\
& \text { Use } \mathbf{P}_{m n}^{\mu} \text {-orthonormality } \\
& \underset{m^{\prime} n^{\prime}}{\mathbf{P}_{m n}^{\mu^{\prime}} \mathbf{P}_{m n}^{\mu}=\delta^{\mu^{\prime} \mu} \delta_{n^{\prime} m} \mathbf{P}_{m^{\prime} n}^{\mu}} \mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}{ }^{\circ}{ }^{\circ} G}{{ }_{\mathrm{g}}}{ }_{\mathrm{g}} D_{n m}^{\mu}\left(g^{-1}\right) \mathbf{g} \\
& (|m\rangle\langle n|)^{\dagger}=|n\rangle\langle m| \\
& \left(\mathbf{P}_{m n}^{\mu}\right)^{\dagger}=\mathbf{P}_{n m}^{\mu} \\
& \left(\mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}{ }^{\circ} G}{{ }^{\circ} G} \sum_{\mathbf{g}} D_{m n}^{\mu^{*}}(g) \mathrm{g} \text { for unitary } D_{n m}^{\mu}\right)
\end{aligned}
$$

Group Center: Class-sums κ_{g}, characters $\chi^{\mu}(\mathbf{g})$, and All-commuting Projectors $\mathbb{P} \mu$

$$
\kappa_{\mathbf{g}}=\sum_{\mu} \frac{{ }^{\circ} \kappa_{g} \chi_{g}^{\mu}}{\ell^{\mu}} \mathbb{P}^{\mu}
$$

$$
\text { Characters: } \chi_{g}^{\mu} \equiv \operatorname{Tr} D^{\mu}(\mathrm{g})=\chi^{\mu}(\mathrm{g})=\chi^{\mu}\left(\mathbf{h} \mathbf{g} \mathbf{h}^{-1}\right)
$$

$$
\mathbb{P}^{\mu}=\sum_{\text {classes } \mathbf{k}_{g}} \frac{\ell^{\mu}}{}{ }^{\mu} \chi_{g}^{\mu^{*}} \mathbf{x}_{\mathrm{g}}
$$

Group operators \mathbf{g}, irreducible representations $D^{\mu}(\mathbf{g})$, and irreducible projectors $\mathbf{P}^{\mu}{ }_{m n}$

$$
\mathbb{P}^{\mu}=\mathbf{P}^{\mu}{ }_{11}+\mathbf{P}^{\mu}{ }_{11}+\ldots \mathbf{P}^{\mu} \ell^{\mu} \ell^{\mu}
$$

$$
\begin{aligned}
& \text { Use } \mathbf{P}_{m n}^{\mu} \text {-orthonormality } \\
& \mathbf{P}_{m^{\prime} n^{\prime} \mathbf{P}_{m n}^{\mu}=\delta^{\mu^{\prime} \mu} \delta_{n^{\prime} m} \mathbf{P}_{m^{\prime} n}^{\mu}}^{\mu} \\
& \begin{array}{c}
\text { Projector conjugation } \\
(|m\rangle\langle n|)^{\dagger}
\end{array}=|n\rangle\langle m| \\
& \left(\mathbf{P}_{m n}^{\mu}\right)^{\dagger}=\mathbf{P}_{n m}^{\mu}
\end{aligned}
$$

$$
\left(\mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}{ }^{\circ} G}{{ }^{\circ} G} \sum_{\mathbf{g}} D_{m n}^{\mu^{*}}(g) \mathrm{g} \text { for unitary } D_{n m}^{\mu}\right)
$$

$$
\left|\begin{array}{l}
\mu \\
m n
\end{array}\right\rangle=\frac{\mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle}{n o r m}=\frac{\ell^{(\mu)}}{n o r m^{\circ} G} \sum_{\mathbf{g}}^{\circ} D_{m n}^{\mu^{*}}(g)|\mathbf{g}\rangle \text { for unitary } D_{n m}^{\mu}
$$

$\mathbf{g}\left|\begin{array}{c}\mu \\ m n\end{array}\right\rangle=\sum_{m^{\prime}}^{\ell^{\mu}} D_{m^{\prime} m}^{\mu}(g)\left|\begin{array}{c}\mu \\ m^{\prime} n\end{array}\right\rangle$
irep expressions:
$\left\langle\begin{array}{l}\mu \\ m^{\prime} n\end{array}\right| \mathbf{g}\left|\begin{array}{l}\mu \\ m n\end{array}\right\rangle=D_{m^{\prime} m}^{\mu}(g)$
Just \dagger-conjugates

$$
\underset{\text { pressions: }}{\left\langle\begin{array}{l}
\mu \\
m n
\end{array}\right| \mathbf{g}^{\dagger}=\left\langle{ }_{m^{\prime} n}^{\mu}\right| \sum_{m^{\prime}}^{\ell^{\mu}} D_{m^{\prime} m}^{\mu}\left(\mathbf{g}^{\dagger}\right)}
$$

\dagger-irep expressions:

$$
\left\langle\begin{array}{l}
\mu \\
m n
\end{array}\right| \mathbf{g}^{\dagger}\left|\begin{array}{l}
\mu \\
m^{\prime} n
\end{array}\right\rangle=D_{m^{\prime} m}^{\mu}\left(g^{\dagger}\right)=D_{m m^{\prime}}^{\mu^{*}}(g)
$$

(if D is unitary)

Review: Projector formulae and subgroup splitting
$\boldsymbol{\rightarrow}$ Algebra and geometry of irreducible $D_{j k}^{\mu_{j k}}(g)$ and projector $\mathbf{P}_{j k}{ }_{j k}$ transformation Example of D_{3} transformation by matrix $D^{E_{j k}}\left(\mathbf{r}^{1}\right)$

Details of Mock-Mach relativity-duality for D_{3} groups and representations
Lab-fixed(Extrinsic-Global) vs. Body-fixed (Intrinsic-Local)
Compare Global vs Local $|\mathbf{g}\rangle$-basis and Global vs Local $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis
Hamiltonian and D_{3} group matrices in global and local $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis
Hamiltonian local-symmetry eigensolution
Molecular vibrational mode eigensolution
Local symmetry limit
Global symmetry limit (free or "genuine" modes)

Algebra and geometry of irreducible $D_{j k}^{\mu}(g)$ and projector $\mathbf{P}^{\mu_{k k}}$ transformation

$$
\mathbf{P}_{m^{\prime} m^{\prime}}^{\mu^{\prime}} \mathbf{P}_{n n}^{\mu}=\delta^{\mu^{\prime} \mu} D_{m^{\prime} n}^{\mu}(g) \mathbf{P}_{m^{\prime} n}^{\mu}
$$

Algebra and geometry of irreducible $D_{j k}{ }_{j k}(g)$ and projector $\mathbf{P}^{\mu_{j k}}$ transformation

$$
\mathbf{P}_{m^{\prime} m^{\prime}}^{\mu^{\prime}} \mathbf{g} \mathbf{P}_{n n}^{\mu}=\delta^{\mu^{\prime} \mu} D_{m^{\prime} n}^{\mu}(g) \mathbf{P}_{m^{\prime} n}^{\mu} \quad \mathbf{P}_{m^{\prime} m^{\prime}}^{\mu^{\prime}} \mathbf{g} \mathbf{P}_{n n}^{\mu}=\mathbf{P}_{m^{\prime} m^{\prime}}^{\mu^{\prime}} \quad \mathbf{g} \quad \mathbf{P}_{n n}^{\mu}
$$

Algebra and geometry of irreducible $D^{\mu}{ }_{j k}(g)$ and projector $\mathbf{P}^{\mu_{k k}}$ transformation
(All-commuting $\mathbb{P} \mu$)

$$
\mathbf{P}_{m^{\prime} m^{\prime}}^{\mu^{\prime}} \mathbf{\mathbf { P } _ { n n } ^ { \mu }}=\delta^{\mu^{\prime} \mu} D_{m^{\prime} n}^{\mu}(g) \mathbf{P}_{m^{\prime} n}^{\mu}
$$

$$
\begin{aligned}
& \mathbf{P}_{m^{\prime} m^{\prime}}^{\mu^{\prime}} \mathbf{g} \mathbf{P}_{n n}^{\mu}=\mathbf{P}_{m^{\prime} m^{\prime}}^{\mu^{\prime} \mathbb{P}^{\mu^{\prime}} \mathbb{P}^{\mu} \mu} \mathbf{P}_{n n}^{\mu} \\
& \text { is zero unless } \\
& \mu^{\prime}=\mu \text { since } \\
& \mathbb{P}^{\mu^{\prime}} \mathbb{D P}^{\mu}=\mathbb{P}^{\prime} \mathbb{P}^{\mu} \boldsymbol{g}
\end{aligned}
$$

Algebra and geometry of irreducible $D_{j k}{ }_{j k}(g)$ and projector $\mathbf{P}^{\mu_{j k}}$ transformation
(All-commuting \mathbb{P}^{μ})

$$
\begin{aligned}
\mathbf{P}_{m^{\prime} m^{\prime}}^{\mu^{\prime}} \mathbf{P}_{n n}^{\mu} & =\delta^{\mu^{\prime} \mu} D_{m^{\prime} n}^{\mu}(g) \mathbf{P}_{m^{\prime} n}^{\mu} \\
\mathbf{P}_{m m}^{\mu} \mathbf{g} \mathbf{P}_{n n}^{\mu} & =D_{m n}^{\mu}(g) \mathbf{P}_{m n}^{\mu}
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{P}_{m^{\prime} m^{\prime}}^{\mu^{\prime}} \mathbf{g} \mathbf{P}_{n n}^{\mu}=\mathbf{P}_{m^{\prime} m^{\prime}}^{\mu^{\prime} \mathbb{P}^{\mu_{\mathbf{g}}^{\prime}} \mathbb{P}^{\mu} \mathbf{P}_{n n}^{\mu}} \\
& \text { is zero unless } \\
& \mu^{\prime}=\mu \text { since } \\
& \mathbb{P}^{\mu^{\prime}} \mathbb{P}^{\mu}=\mathbb{P}^{\prime} \mathbb{P}^{\mu}{ }_{g}
\end{aligned}
$$

Algebra and geometry of irreducible $D^{\mu_{k}}(g)$ and projector $\mathbf{P}^{\mu_{j k}}$ transformation (All-commuting \mathbb{P}^{μ})

$$
\begin{aligned}
\mathbf{P}_{m^{\prime} \boldsymbol{\prime}^{\prime}}^{\mu^{\prime}} \mathbf{P}_{n n}^{\mu} & =\delta^{\mu^{\prime} \mu} D_{m^{\prime} n}^{\mu}(g) \mathbf{P}_{m^{\prime} n}^{\mu} \\
\mathbf{P}_{m m}^{\mu} g \mathbf{P}_{n n}^{\mu} & =D_{m n}^{\mu}(g) \mathbf{P}_{m n}^{\mu}
\end{aligned}
$$

$$
\mathbf{P}_{m^{\prime} m^{\prime}}^{\mu^{\prime}} \mathbf{\mathbf { P } _ { n n } ^ { \mu }}=\mathbf{P}_{m^{\prime} m^{\prime}}^{\mu^{\prime}} \mathbb{P}^{\prime} \mathbf{g} \mathbb{P}^{\mu} \mathbf{P}_{n n}^{\mu}
$$

is zero unless

$$
\mu^{\prime}=\mu \text { since }
$$

This gives a general $D^{\mu_{k}}(g)$ transformation matrix formula

$$
\mathbb{P}^{\prime}{ }_{g} \mathbb{P}^{\mu}=\mathbb{P}^{\prime} \mathbb{P}^{\mu}{ }_{g}
$$

$$
\left\langle\mathbf{P}_{m^{\prime} j^{\prime}}^{\mu^{\prime}}\right| \mathbf{g}\left|\mathbf{P}_{n k}^{\mu}\right\rangle=\langle\mathbf{1}| \mathbf{P}_{j^{\prime} m^{\prime}}^{\mu^{\prime}} \mathbf{g} \mathbf{P}_{n k}^{\mu}|\mathbf{1}\rangle / \text { norm }_{j^{\prime}}^{\mu^{\prime}} \text { norm }_{k}^{\mu}
$$

Algebra and geometry of irreducible $D^{\mu_{k}}(g)$ and projector $\mathbf{P}^{\mu_{j k}}$ transformation
(All-commuting \mathbb{P}^{μ})

$$
\begin{aligned}
\mathbf{P}_{m^{\prime} m^{\prime}}^{\mu^{\prime}} \mathbf{P}_{n n}^{\mu} & =\delta^{\mu^{\prime} \mu} D_{m^{\prime} n}^{\mu}(g) \mathbf{P}_{m^{\prime} n}^{\mu} \\
\mathbf{P}_{m m}^{\mu} \mathbf{g} \mathbf{P}_{n n}^{\mu} & =D_{m n}^{\mu}(g) \mathbf{P}_{m n}^{\mu}
\end{aligned}
$$

$$
\mathbf{P}_{m^{\prime} m^{\prime}}^{\mu^{\prime}} \mathbf{g} \mathbf{P}_{n n}^{\mu}=\mathbf{P}_{m^{\prime} m^{\prime}}^{\mu^{\prime}} \boldsymbol{\mu}_{\mathbf{g}}^{\prime} \mathbb{P}^{\mu} \mathbf{P}_{n n}^{\mu}
$$

is zero unless

$$
\mu^{\prime}=\mu \text { since }
$$

This gives a general $D^{\mu_{k}}(g)$ transformation matrix formula

$$
\mathbb{P} \mu_{g}^{\prime} \mathbb{P}^{\mu}=\mathbb{P}^{\prime} \mathbb{P}^{\mu}{ }_{g}
$$

$$
\begin{aligned}
\left\langle\mathbf{P}_{m^{\prime} j^{\prime}}^{\mu^{\prime}}\right| g\left|\mathbf{P}_{n k}^{\mu}\right\rangle & =\langle\mathbf{1}| \mathbf{P}_{j^{\prime} m^{\prime}}^{\mu^{\prime}} \mathbf{\mathbf { P } _ { n k }}{ }_{n k}^{\mu}|\mathbf{1}\rangle / \text { norm }_{j^{\prime}}^{\mu^{\prime}} \text { norm }_{k}^{\mu} \\
& =\langle\mathbf{1}| \mathbf{P}_{j^{\prime} m^{\prime}}^{\mu^{\prime}} \mathbf{P}_{m^{\prime} m^{\prime}}^{\mu^{\prime}} \mathbf{P}_{n n}^{\mu} \mathbf{P}_{n k}^{\mu}|\mathbf{1}\rangle / \text { norm }_{j^{\prime}}^{\mu^{\prime}} \text { norm }_{k}^{\mu}
\end{aligned}
$$

Algebra and geometry of irreducible $D^{\mu}{ }_{j k}(g)$ and projector $\mathbf{P}^{\mu_{j k}}$ transformation
(All-commuting \mathbb{P}^{μ})

$$
\begin{aligned}
\mathbf{P}_{m^{\prime} m^{\prime}}^{\mu^{\prime}} \mathbf{P}_{n n}^{\mu} & =\delta^{\mu^{\prime} \mu} D_{m^{\prime} n}^{\mu}(g) \mathbf{P}_{m^{\prime} n}^{\mu} \\
\mathbf{P}_{m m}^{\mu} \mathbf{g} \mathbf{P}_{n n}^{\mu} & =D_{m n}^{\mu}(g) \mathbf{P}_{m n}^{\mu}
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{P}_{m^{\prime} m^{\prime}}^{\mu^{\prime}} \mathbf{g} \mathbf{P}_{n n}^{\mu}=\mathbf{P}_{m^{\prime} m^{\prime}}^{\mu^{\prime} \mathbb{P}^{\mu^{\prime}} \mathbb{P}^{\mu} \mu} \mathbf{P}_{n n}^{\mu} \\
& \text { is zero unless } \\
& \mu^{\prime}=\mu \text { since } \\
& \mathbb{P}^{\mu^{\prime}} \mathbb{D P}^{\mu}=\mathbb{P} \mu^{\prime} \mathbb{P} \mu_{g}
\end{aligned}
$$

This gives a general $D^{\mu_{k}}(g)$ transformation matrix formula

$$
\begin{aligned}
& \left\langle\mathbf{P}_{m^{\prime} j^{\prime}}^{\mu^{\prime}}\right| g\left|\mathbf{P}_{n k}^{\mu}\right\rangle=\langle\mathbf{1}| \mathbf{P}_{j^{\prime} m^{\prime}}^{\mu^{\prime}} \mathbf{g} \mathbf{P}_{n k}^{\mu}|\mathbf{1}\rangle / \text { norm }_{j^{\prime}}^{\mu^{\prime}} \text { norm }_{k}^{\mu} \\
& =\langle\mathbf{1}| \mathbf{P}_{j^{\prime} m^{\prime}}^{\mu^{\prime}} \mathbf{P}_{m^{\prime} m^{\prime}}^{\mu^{\prime}} \mathbf{P}_{n n}^{\mu} \mathbf{P}_{n k}^{\mu}|\mathbf{1}\rangle / \text { norm }_{j^{\prime}}^{\mu^{\prime}} \text { norm }_{k}^{\mu} \\
& =D_{m^{\prime} n}^{\mu}(g) \delta^{\mu^{\prime} \mu_{i}^{\prime}}\langle\mathbf{1}| \mathbf{P}_{j^{\prime} m^{\prime}}^{\mu^{\prime}} \mathbf{P}_{m^{\prime} n}^{\mu^{\prime} n}{ }_{n k}^{\mu}|\mathbf{1}\rangle / \text { norm }_{j^{\prime}}^{\mu^{\prime}} \text { norm }_{k}^{\mu}
\end{aligned}
$$

Algebra and geometry of irreducible $D^{\mu}{ }_{j k}(g)$ and projector $\mathbf{P}^{\mu_{j k}}$ transformation
(All-commuting \mathbb{P}^{μ})

$$
\begin{aligned}
\mathbf{P}_{m^{\prime} m^{\prime}}^{\mu_{\mathbf{g}}} \mathbf{P}_{n n}^{\mu} & =\delta^{\mu^{\prime} \mu} D_{m^{\prime} n}^{\mu}(g) \mathbf{P}_{m^{\prime} n}^{\mu} \\
\mathbf{P}_{m m}^{\mu} \mathbf{g} \mathbf{P}_{n n}^{\mu} & =D_{m n}^{\mu}(g) \mathbf{P}_{m n}^{\mu}
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{P}_{m^{\prime} m^{\prime}}^{\mu^{\prime}} \mathbf{g} \mathbf{P}_{n n}^{\mu}=\mathbf{P}_{m^{\prime} m^{\prime}}^{\mu^{\prime}} \mathbb{P}^{\mu_{\mathbf{g}}^{\prime}} \mathbb{P}^{\mu} \mathbf{P}_{n n}^{\mu} \\
& \text { is zero unless } \\
& \mu^{\prime}=\mu \text { since } \\
& \text { la } \mathbb{P}^{\mu^{\prime}} g \mathbb{P}^{\mu}=\mathbb{P} \mathcal{P}^{\prime} \mathbb{P}^{\mu} g
\end{aligned}
$$

This gives a general $D^{\mu_{k k}}(g)$ transformation matrix formula

$$
\begin{aligned}
& \left\langle\mathbf{P}_{m^{\prime} j^{\prime}}^{\mu^{\prime}}\right| \mathrm{g}\left|\mathbf{P}_{n k}^{\mu}\right\rangle=\langle\mathbf{1}| \mathbf{P}_{j^{\prime} m^{\prime}}^{\mu^{\prime}} \mathbf{g} \mathbf{P}_{n k}^{\mu}|\mathbf{1}\rangle / \text { norm }_{j^{\prime}}^{\mu^{\prime}} \text { norm }_{k}^{\mu} \\
& =\langle\mathbf{1}| \mathbf{P}_{j^{\prime} m}^{\mu^{\prime}} \mathbf{P}_{m^{\prime} m^{\prime}}^{\mu^{\prime}} \mathbf{P}_{n n}^{\mu} \mathbf{P}_{n k}^{\mu}|\mathbf{1}\rangle / \text { norm }_{j^{\prime}}^{\mu^{\prime}} \text { norm }_{k}^{\mu} \\
& =D_{m^{\prime} n}^{\mu}(g) \delta^{\mu^{\prime} \mu^{\prime}}\langle\mathbf{1}| \mathbf{P}_{j^{\prime} m^{\prime}}^{\mu^{\prime}} \mathbf{P}_{m^{\prime} n}^{\mu^{\prime} \boldsymbol{P}_{n k}^{\prime}}{ }_{n k}^{\mu}|\mathbf{1}\rangle / \text { norm }_{j^{\prime}}^{\mu^{\prime}} \text { norm }_{k}^{\mu} \\
& =D_{m^{\prime} n}^{\mu}(g) \delta^{\mu^{\prime} \mu}\langle\mathbf{1}| \mathbf{P}_{j^{\prime} n}^{\mu^{\prime}} \mathbf{P}_{n k}^{\mu}|\mathbf{1}\rangle / \text { norm }_{j^{\prime}}^{\mu^{\prime}} \text { norm }_{k}^{\mu}
\end{aligned}
$$

Algebra and geometry of irreducible $D^{\mu}{ }_{j k}(g)$ and projector $\mathbf{P}^{\mu_{j k}}$ transformation
(All-commuting \mathbb{P}^{μ})

$$
\begin{aligned}
\mathbf{P}_{m^{\prime} m^{\prime}}^{\mu_{\mathbf{g}}} \mathbf{P}_{n n}^{\mu} & =\delta^{\mu^{\prime} \mu} D_{m^{\prime} n}^{\mu}(g) \mathbf{P}_{m^{\prime} n}^{\mu} \\
\mathbf{P}_{m m}^{\mu} \mathbf{g} \mathbf{P}_{n n}^{\mu} & =D_{m n}^{\mu}(g) \mathbf{P}_{m n}^{\mu}
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{P}_{m^{\prime} m^{\prime}}^{\mu^{\prime}} \mathbf{g} \mathbf{P}_{n n}^{\mu}=\mathbf{P}_{m^{\prime} m^{\prime}}^{\mu^{\prime}} \mathbb{P}^{\mu_{\mathbf{g}}^{\prime}} \mathbb{P}^{\mu} \mathbf{P}_{n n}^{\mu} \\
& \text { is zero unless } \\
& \mu^{\prime}=\mu \text { since } \\
& \text { la } \mathbb{P}^{\mu^{\prime}} g \mathbb{P}^{\mu}=\mathbb{P} \mathcal{P}^{\prime} \mathbb{P}^{\mu} g
\end{aligned}
$$

This gives a general $D^{\mu_{k}}(g)$ transformation matrix formula

$$
\begin{aligned}
& \left\langle\mathbf{P}_{m^{\prime} j^{\prime}}^{\mu^{\prime}}\right| \mathrm{g}\left|\mathbf{P}_{n k}^{\mu}\right\rangle=\langle\mathbf{1}| \mathbf{P}_{j^{\prime} m^{\prime}}^{\mu^{\prime}}, \mathbf{\mathbf { P } _ { n k }} \mu|\mathbf{1}\rangle / \text { norm }_{j^{\prime}}^{\mu^{\prime}} \text { norm }_{k}^{\mu} \\
& =\langle\mathbf{1}| \mathbf{P}_{j^{\prime}{ }^{\prime} m}^{\mu^{\prime}} \mathbf{P}_{m^{\prime} m^{\prime}}^{\mu^{\prime}} \mathbf{P}_{n n}^{\mu} \mathbf{P}_{n k}^{\mu}|\mathbf{1}\rangle / \text { norm }_{j^{\prime}}^{\mu^{\prime}} \text { norm }_{k}^{\mu}
\end{aligned}
$$

$$
\begin{aligned}
& =D_{m^{\prime} n}^{\mu}(g) \delta^{\mu^{\prime} \mu}\langle\mathbf{1}| \mathbf{P}_{j^{\prime} n}^{\mu^{\prime}} \mathbf{P}_{n k}^{\mu}|\mathbf{1}\rangle / \text { norm }_{j^{\prime}}^{\mu^{\prime}} \text { norm }_{k}^{\mu} \\
& =D_{m^{\prime} n}^{\mu}(g)\langle\mathbf{1}| \mathbf{P}_{j^{\prime} k}^{\mu}|\mathbf{1}\rangle / \text { norm }_{j^{\prime}}^{\mu^{\prime}} \text { norm }_{k}^{\mu}
\end{aligned}
$$

Algebra and geometry of irreducible $D^{\mu}{ }_{j k}(g)$ and projector $\mathbf{P}^{\mu_{j k}}$ transformation
(All-commuting \mathbb{P}^{μ})

$$
\begin{aligned}
\mathbf{P}_{m^{\prime} m^{\prime}}^{\mu^{\prime}} \mathbf{P _ { m } ^ { m }}{ }^{\mu} & =\delta^{\mu^{\prime} \mu} D_{m^{\prime} n}^{\mu}(g) \mathbf{P}_{m^{\prime} n}^{\mu} \\
\mathbf{P}_{m m}^{\mu} g \mathbf{P}_{n n}^{\mu} & =D_{m n}^{\mu}(g) \mathbf{P}_{m n}^{\mu}
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{P}_{m^{\prime} m^{\prime}}^{\mu^{\prime}} \mathbf{g} \mathbf{P}_{n n}^{\mu}=\mathbf{P}_{m^{\prime} m^{\prime}}^{\mu^{\prime}} \mathcal{P}^{\prime} \mathbf{g} \mathbb{P}^{\mu} \mathbf{P}_{n n}^{\mu} \\
& \text { is zero unless } \\
& \mu^{\prime}=\mu \text { since } \\
& \mathbb{P}^{\mu^{\prime}}{ }_{g} \mathbb{P}^{\mu}=\mathbb{P}^{\mu^{\prime} \mathbb{P}^{\mu} g}
\end{aligned}
$$

This gives a general $D_{j k}^{\mu_{k}}(g)$ transformation matrix formula

$$
\begin{aligned}
& \left\langle\mathbf{P}_{m^{\prime} j^{\prime}}^{\mu^{\prime}}\right| g\left|\mathbf{P}_{n k}^{\mu}\right\rangle=\langle\mathbf{1}| \mathbf{P}_{j^{\prime} m^{\prime}}^{\mu^{\prime}}, \mathbf{g} \mathbf{P}_{n k}^{\mu}|\mathbf{1}\rangle / \text { norm }_{j^{\prime}}^{\mu^{\prime}} \text { norm }_{k}^{\mu}
\end{aligned}
$$

$$
\begin{aligned}
& =D_{m^{\prime} n}^{\mu}(g) \delta^{\mu^{\prime} \mu_{i}}\langle\mathbf{1}| \mathbf{P}_{j^{\prime} m^{\prime}}^{\mu^{\prime}} \mathbf{P}_{m^{\prime} n}^{\mu^{\prime}} \mathbf{P}_{n k}^{\mu}|\mathbf{1}\rangle / \text { norm }_{j^{\prime}}^{\mu^{\prime}} \text { norm }_{k}^{\mu} \\
& =D_{m^{\prime} n}^{\mu}(g) \delta^{\mu^{\prime} \mu}\left\langle\mathbf{1} \mid \mathbf{P}_{j^{\prime} n}^{\mu^{\prime}} \mathbf{P}_{n k}^{\mu}, \mathbf{1}\right\rangle / \text { norm }_{j^{\prime}}^{\mu^{\prime}} \text { norm }_{k}^{\mu} \\
& =D_{m^{\prime} n}^{\mu}(g)\langle\mathbf{1}| \mathbf{P}_{j^{\prime} k}^{\mu}|\mathbf{1}\rangle / \text { norm }_{j^{\prime}}^{\mu^{\prime}} \text { norm }_{k}^{\mu} \\
& \left\langle\mathbf{P}_{m^{\prime} j^{\prime}}^{\mu^{\prime}}\right| g\left|\mathbf{P}_{n k}^{\mu}\right\rangle=D_{m^{\prime} n}^{\mu}(g) \dot{\delta}_{j^{\prime} k}^{\prime} \quad / \quad\left(\text { orm }_{k}^{\mu}=\sqrt{\frac{\ell^{\mu}}{{ }^{\circ} G}}\right)
\end{aligned}
$$

Review: Projector formulae and subgroup splitting
Algebra and geometry of irreducible $D_{j k} \mu_{j k}(g)$ and projector $\mathbf{P}^{\mu_{k k}}$ transformation
\rightarrow Example of D_{3} transformation by matrix $D^{E_{j k}\left(\mathbf{r}^{1}\right)}$
Details of Mock-Mach relativity-duality for D_{3} groups and representations
Lab-fixed(Extrinsic-Global) vs. Body-fixed (Intrinsic-Local)
Compare Global vs Local $|\mathbf{g}\rangle$-basis and Global vs Local $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis
Hamiltonian and D_{3} group matrices in global and local $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis
Hamiltonian local-symmetry eigensolution
Molecular vibrational mode eigensolution
Local symmetry limit
Global symmetry limit (free or "genuine" modes)

Example of D_{3} transformation by matrix $D^{E_{j k}}\left(\mathbf{r}^{1}\right)$
$\mathbf{r}^{1}\left|\mathbf{P}_{11}^{E_{1}}\right\rangle=\mathbf{r}^{1} \mathbf{P}_{11}^{E_{1}}|\mathbf{1}\rangle / \sqrt{3}=\mathbf{r}^{1}\left(\mathbf{1}-\frac{1}{2} \mathbf{r}^{1}-\frac{1}{2} \mathbf{r}^{2}-\frac{1}{2} \mathbf{i}_{1}-\frac{1}{2} \mathbf{i}_{2}+\mathbf{i}_{3}\right)|\mathbf{1}\rangle / \sqrt{3}$ given: norm${ }^{E_{1}}=\sqrt{\frac{\ell^{E_{1}}}{{ }^{\circ} G}}=\sqrt{\frac{2}{6}}=\sqrt{\frac{1}{3}}$

Example of D_{3} transformation by matrix $D_{j k}^{E_{j k}\left(\mathbf{r}^{1}\right)}$

$$
\begin{aligned}
\mathbf{r}^{1}\left|\mathbf{P}_{11}^{E_{1}}\right\rangle=\mathbf{r}^{1} \mathbf{P}_{11}^{E_{1}}|\mathbf{1}\rangle / \sqrt{3} & =\mathbf{r}^{1}\left(\mathbf{1}-\frac{1}{2} \mathbf{r}^{1}-\frac{1}{2} \mathbf{r}^{2}-\frac{1}{2} \mathbf{i}_{1}-\frac{1}{2} \mathbf{i}_{2}+\mathbf{i}_{3}\right)|\mathbf{1}\rangle / \sqrt{3} \text { given: norm}{ }^{E_{1}}=\sqrt{\frac{\ell^{E_{1}}}{\circ}}=\sqrt{\frac{2}{6}}=\sqrt{\frac{1}{3}} \\
& =\left(\mathbf{r}^{1}-\frac{1}{2} \mathbf{r}^{2}-\frac{1}{2} \mathbf{1}-\frac{1}{2} \mathbf{i}_{3}-\frac{1}{2} \mathbf{i}_{1}+\mathbf{i}_{2}\right)|\mathbf{1}\rangle / \sqrt{3}
\end{aligned}
$$

Example of D_{3} transformation by matrix $D^{E_{j k}}\left(\mathbf{r}^{1}\right)$
$\mathbf{r}^{1}\left|\mathbf{P}_{11}^{E_{1}}\right\rangle=\mathbf{r}^{1} \mathbf{P}_{11}^{E_{1}}|\mathbf{1}\rangle / \sqrt{3}=\mathbf{r}^{1}\left(\mathbf{1}-\frac{1}{2} \mathbf{r}^{1}-\frac{1}{2} \mathbf{r}^{2}-\frac{1}{2} \mathbf{i}_{1}-\frac{1}{2} \mathbf{i}_{2}+\mathbf{i}_{3}\right)|\mathbf{1}\rangle / \sqrt{3}$ given: norm ${ }^{E_{1}}=\sqrt{\frac{\ell^{E_{1}}}{{ }^{\circ} G}}=\sqrt{\frac{2}{6}}=\sqrt{\frac{1}{3}}$

$$
\left.\left.\left.=\mathbf{r}^{1}\left(\begin{array}{c}
1 \\
-\frac{1}{2} \\
-\frac{1}{2} \\
-\frac{1}{2} \\
-\frac{1}{2} \\
1
\end{array}\right) \frac{1}{\sqrt{3}}=\left(-\frac{1}{2} \mathbf{1}+\mathbf{r}^{1}-\frac{1}{2} \mathbf{r}^{2}-\frac{1}{2} \mathbf{1}-\frac{1}{2} \mathbf{r}_{3}-\frac{1}{2} \mathbf{i}_{1}+\mathbf{i}_{2}\right) \right\rvert\, \mathbf{1}\right) / \sqrt{3} \mathbf{i}_{1}+\mathbf{i}_{2}-\frac{1}{2} \mathbf{i}_{3}\right)|\mathbf{1}\rangle / \sqrt{3}=\left(\begin{array}{c}
-\frac{1}{2} \\
1 \\
-\frac{1}{2} \\
-\frac{1}{2} \\
1 \\
-\frac{1}{2}
\end{array}\right) \frac{1}{\sqrt{3}}
$$

Example of D_{3} transformation by matrix $D^{E}{ }_{j k}\left(\mathbf{r}^{1}\right)$
$\mathbf{r}^{1}\left|\mathbf{P}_{11}^{E_{1}}\right\rangle=\mathbf{r}^{1} \mathbf{P}_{11}^{E_{1}}|\mathbf{1}\rangle / \sqrt{3}=\mathbf{r}^{1}\left(\mathbf{1}-\frac{1}{2} \mathbf{r}^{1}-\frac{1}{2} \mathbf{r}^{2}-\frac{1}{2} \mathbf{i}_{1}-\frac{1}{2} \mathbf{i}_{2}+\mathbf{i}_{3}\right)|\mathbf{1}\rangle / \sqrt{3}$ given: norm ${ }^{E_{1}}=\sqrt{\frac{\ell^{E_{1}}}{{ }^{\circ} G}}=\sqrt{\frac{2}{6}}=\sqrt{\frac{1}{3}}$

$$
\left.\left.\left.\left.=\mathbf{r}^{1}\left(\begin{array}{c}
1 \\
-\frac{1}{2} \\
-\frac{1}{2} \\
-\frac{1}{2} \\
-\frac{1}{2} \\
1
\end{array}\right) \frac{1}{\sqrt{3}}=\left(-\frac{1}{2} \mathbf{1}+\mathbf{r}^{1}-\frac{1}{2} \mathbf{r}^{2}-\frac{1}{2} \mathbf{1}-\frac{1}{2} \mathbf{i}_{3}-\frac{1}{2} \mathbf{i}_{1}+\mathbf{i}_{2}\right) \right\rvert\, \mathbf{1}\right) / \sqrt{3} \mathbf{i}_{1}+\mathbf{i}_{2}-\frac{1}{2} \mathbf{i}_{3}\right) \mid \mathbf{1}\right) / \sqrt{3}=\left(\begin{array}{c}
-\frac{1}{2} \\
1 \\
-\frac{1}{2} \\
-\frac{1}{2} \\
1 \\
-\frac{1}{2}
\end{array}\right) \frac{1}{\sqrt{3}}
$$

$$
\left|\mathbf{P}_{21}^{E_{1}}\right\rangle=\mathbf{P}_{21}^{E_{1}}|\mathbf{i}\rangle \sqrt{3}=\left(0+\frac{\sqrt{3}}{2} \mathbf{r}^{1}-\frac{\sqrt{3}}{2} \mathbf{r}^{2}-\frac{\sqrt{3}}{2} \mathbf{i}_{1}+\frac{\sqrt{3}}{2} \mathbf{i}_{2}+0\right)|\mathbf{1}\rangle \sqrt{3}=\left(\begin{array}{c}
0 \\
+\frac{1}{2} \\
-\frac{1}{2} \\
-\frac{1}{2} \\
+\frac{1}{2} \\
0
\end{array}\right)
$$

Example of D_{3} transformation by matrix $D_{j k}{ }_{j k}\left(\mathbf{r}^{1}\right)$
$\mathbf{r}^{1}\left|\mathbf{P}_{11}^{E_{1}}\right\rangle=\mathbf{r}^{1} \mathbf{P}_{11}^{E_{1}}|\mathbf{1}\rangle / \sqrt{3}=\mathbf{r}^{1}\left(\mathbf{1}-\frac{1}{2} \mathbf{r}^{1}-\frac{1}{2} \mathbf{r}^{2}-\frac{1}{2} \mathbf{i}_{1}-\frac{1}{2} \mathbf{i}_{2}+\mathbf{i}_{3}\right)|\mathbf{1}\rangle / \sqrt{3}$ given: norm${ }^{E_{1}}=\sqrt{\frac{\ell^{E_{1}}}{{ }^{\circ} G}}=\sqrt{\frac{2}{6}}=\sqrt{\frac{1}{3}}$

$$
\left.=\mathbf{r}^{1}\left(\begin{array}{c}
1 \\
-\frac{1}{2} \\
-\frac{1}{2} \\
-\frac{1}{2} \\
-\frac{1}{2} \\
\vdots \\
\vdots
\end{array}\right) \frac{1}{\sqrt{3}}=\left(-\frac{1}{2} \mathbf{1}+\mathbf{r}^{1}-\frac{1}{2} \mathbf{r}^{2}-\frac{1}{2} \mathbf{1}-\frac{1}{2} \mathbf{r}_{3}^{2}-\frac{1}{2} \mathbf{i}_{1}+\mathbf{i}_{2}\right)|\mathbf{1}\rangle / \sqrt{3} \mathbf{i}_{2}-\frac{1}{2} \mathbf{i}_{3}\right)|\mathbf{1}\rangle / \sqrt{3}=\left(\begin{array}{c}
-\frac{1}{2} \\
1 \\
-\frac{1}{2} \\
-\frac{1}{2} \\
1 \\
\vdots \\
-\frac{1}{2} \vdots
\end{array}\right) \frac{1}{\sqrt{3}}
$$

- product of this \bullet thiat $=\left\langle\mathbf{P}_{11}^{E_{1}}\right| \mathbf{r}^{1}\left|\mathbf{P}_{11}^{E_{1}}\right\rangle=\left(-\frac{1}{2}-\frac{1}{2}+\frac{1}{4}+\frac{1}{4}-\frac{1}{2}-\frac{1}{2}\right) / \sqrt{3} \sqrt{3}=-\frac{3}{2} / 3=-1 / 2$

$$
\left|\mathbf{P}_{21}^{E_{1}}\right\rangle=\mathbf{P}_{21}^{E_{1}}|\mathbf{1}\rangle / \sqrt{3}=\left(0+\frac{\sqrt{3}}{2} \mathbf{r}^{1}-\frac{\sqrt{3}}{2} \mathbf{r}^{2}-\frac{\sqrt{3}}{2} \mathbf{i}_{1}+\frac{\sqrt{3}}{2} \mathbf{i}_{2}+0\right)|\mathbf{1}\rangle / \sqrt{3}=
$$

$$
\begin{gathered}
0 \\
+\frac{1}{2} \\
-\frac{1}{2} \\
-\frac{1}{2} \\
+\frac{1}{2} \\
0
\end{gathered}
$$

${ }^{\bullet}$ product of thils ${ }^{\circ}$ that $=\left\langle\mathbf{P}_{21}^{E_{1}}\right| \mathbf{r}^{1}\left|\mathbf{P}_{11}^{E_{1}}\right\rangle=\left(0+\frac{1}{2}+\frac{1}{4}+\frac{1}{4}+\frac{1}{2}+0\right) / \sqrt{3}=\frac{3}{2} / \sqrt{3}=\sqrt{3} / 2$

$$
\begin{aligned}
& \mathbf{r}^{\prime}\left|\mathbf{P}_{11}^{E_{1}}\right\rangle=\mathbf{r}^{\mathbf{1}} \mathbf{P}_{11}^{E_{1}}|\mathbf{1}\rangle \sqrt{3}=\mathbf{r}^{1}\left(\mathbf{1}-\frac{1}{2} \mathbf{r}^{1}-\frac{1}{2} \mathbf{r}^{2}-\frac{1}{2} \mathbf{i}_{1}-\frac{1}{2} \mathbf{i}_{2}+\mathbf{i}_{3}|\mathbf{1}| \sqrt{3} \quad \text { norm }{ }^{E_{1}}=\sqrt{\frac{\ell^{E_{1}}}{G} G}=\sqrt{\frac{2}{6}}=\sqrt{\frac{1}{3}}\right.
\end{aligned}
$$

- product of this othiat $\left\langle\left.\mathbf{P}_{11}^{E_{1}}\right|^{\prime} \mid \mathbf{P}_{11}^{E_{1}}\right\rangle=\left(-\frac{1}{2}-\frac{1}{2}+\frac{1}{4}+\frac{1}{4}-\frac{1}{2}-\frac{1}{2}\right) \sqrt{3} \sqrt{3}=-\frac{3}{2} / 3=-1 / 2=D_{11}^{E_{1}}\left(r^{1}\right)$

$$
\left|\mathbf{P}_{21}^{E_{1}}\right\rangle=\mathbf{P}_{21}^{E_{1}}|\mathbf{i}\rangle \sqrt{3}=\left(0+\frac{\sqrt{3}}{2} \mathbf{r}^{1}-\frac{\sqrt{3}}{2} \mathbf{r}^{2}-\frac{\sqrt{3}}{2} \mathbf{i}_{1}+\frac{\sqrt{3}}{2} \mathbf{i}_{2}+0\right)|\mathbf{i}\rangle \sqrt{3}=
$$

$\left(\begin{array}{c}2 \\ 0 \\ +\frac{1}{2} \\ \vdots \\ -\frac{1}{2} \\ \vdots \\ \\ -\frac{1}{2} \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ \vdots\end{array}\right)$

- product of this that $=\left\langle\mathbf{P}_{21}^{E_{1}}\right|{ }^{\mathbf{r}}\left|\mathbf{P}_{11}^{E_{1}}\right\rangle=\left(0+\frac{1}{2}+\frac{1}{4}+\frac{1}{4}+\frac{1}{2}+0\right) \sqrt{3}=\frac{3}{2} \sqrt{3}=\sqrt{3} / 2=D_{21}^{E_{1}}\left(r^{1}\right)$

$$
\mathbf{r}^{1}\left|\mathbf{P}_{11}^{E_{1}}\right\rangle=\mathbf{r}^{1} \mathbf{P}_{11}^{E_{1}}|\mathbf{1}\rangle / \sqrt{3}=\mathbf{r}^{1}\left(\mathbf{1}-\frac{1}{2} \mathbf{r}^{1}-\frac{1}{2} \mathbf{r}^{2}-\frac{1}{2} \mathbf{i}_{1}-\frac{1}{2} \mathbf{i}_{2}+\mathbf{i}_{3}\right)|\mathbf{1}\rangle / \sqrt{3} \quad \text { norm }{ }^{E_{1}}=\sqrt{\frac{\ell^{E_{1}}}{{ }^{\circ} G}}=\sqrt{\frac{2}{6}}=\sqrt{\frac{1}{3}}
$$

Review: Projector formulae and subgroup splitting
Algebra and geometry of irreducible $D_{j k}^{\mu}(g)$ and projector $\mathbb{P}_{j k}{ }_{j k}$ transformation Example of D_{3} transformation by matrix $D^{E}{ }_{j k}\left(\mathbf{r}^{1}\right)$
\rightarrow
Details of Mock-Mach relativity-duality for D_{3} groups and representations Lab-fixed(Extrinsic-Global) vs. Body-fixed (Intrinsic-Local)
Compare Global vs Local $|\mathbf{g}\rangle$-basis and Global vs Local $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis

```
Hamiltonian and D3 group matrices in global and local |\mathbb{P}}\mp@subsup{}{(\mu)}{
        Hamiltonian local-symmetry eigensolution
        Molecular vibrational mode eigensolution
        Local symmetry limit
            Global symmetry limit (free or "genuine" modes)
```

> "Give me a place to stand... and I will move the Earth"

Archimedes 287-212 B.C.E
Ideas of duality/relativity go way back (...vanvleck, Casimiri... Mach, Newton, Archimedes..)

Body Based Operations

...for one state |1) only!
...But how do you actually make the \mathbb{R} and $\overline{\mathbf{R}}$ operations?

Lab-fixed (Extrinsic-Global) operations\&axes fixed

Lab-fixed (Extrinsic-Global) operations\&axes fixed

Body-fixed (Intrinsic-Local) operations appear to move their rotation axes (relative to lab)

$\mathbf{1}$	\mathbf{r}^{2}	\mathbf{r}	\mathbf{i}_{1}	\mathbf{i}_{2}	\mathbf{i}_{3}
\mathbf{r}	$\mathbf{1}$	\mathbf{r}^{2}	\mathbf{i}_{3}	\mathbf{i}_{1}	\mathbf{i}_{2}
\mathbf{r}^{2}	\mathbf{r}	$\mathbf{1}$	\mathbf{i}_{2}	\mathbf{i}_{3}	\mathbf{i}_{1}
$\mathbf{r i}_{1}$	\mathbf{i}_{3}	\mathbf{i}_{2}	$\mathbf{1}$	\mathbf{r}	\mathbf{r}^{2}
\mathbf{i}_{2}	\mathbf{i}_{1}	\mathbf{i}_{3}	\mathbf{r}^{2}	$\mathbf{1}$	\mathbf{r}
\mathbf{i}_{3}	\mathbf{i}_{2}	\mathbf{i}_{1}	\mathbf{r}	\mathbf{r}^{2}	$\mathbf{1}$

$$
\mathbf{i}_{1} \mathbf{i}_{2}=\mathbf{r}
$$

Lab-fixed (Extrinsic-Global) operations\&axes fixed

Body-fixed (Intrinsic-Local) operations appear to move their rotation axes (relative to lab)

$\mathrm{i}_{1} \mathrm{i}_{2}=\mathbf{r}$

Lab-fixed (Extrinsic-Global) operations\&axes fixed

1	\mathbf{r}^{2}	\mathbf{r}	\mathbf{i}_{1}	\mathbf{i}_{2}	\mathbf{i}_{3}
\mathbf{r}	1	\mathbf{r}^{2}	\mathbf{i}_{3}	\mathbf{i}_{1}	\mathbf{i}_{2}
\mathbf{r}^{2}	\mathbf{r}	$\mathbf{1}$	\mathbf{i}_{2}	\mathbf{i}_{3}	\mathbf{i}_{1}
$\overline{\mathbf{i}_{1}}$	\mathbf{i}_{3}	\mathbf{i}_{2}	1	$\mathbf{1}$	\mathbf{r}
\mathbf{r}^{2}					
\mathbf{i}_{2}	\mathbf{i}_{1}	\mathbf{i}_{3}	\mathbf{r}^{2}	1	$\mathbf{1}$
\mathbf{i}_{3}	\mathbf{i}_{2}	\mathbf{i}_{1}	\mathbf{r}	\mathbf{r}^{2}	1

$\mathrm{i}_{1} \mathbf{i}_{2}=\mathbf{r}$
Body-fixed (Intrinsic-Local) operations appear to move their rotation axes (relative to lab)

Lab-fixed (Extrinsic-Global) operations\&axes fixed

Body-fixed (Intrinsic-Local) operations appear to move their rotation axes (relative to lab)

...but, THEY OBEY THE SAME GROUP TABLE. $\quad \mathrm{i}_{1} \mathrm{i}_{2}=\mathrm{r}$
implies: $\overline{\mathbf{i}}_{1} \overline{\mathrm{i}}_{2}=\overline{\mathbf{r}}$

Lab-fixed (Extrinsic-Global) operations\&axes fixed

Body-fixed (Intrinsic-Local) operations appear to move their rotation axes (relative to lab)

Friday, March 29, 2013

$\begin{array}{lr}\text {...but, THEY OBEY THE } & \\ \text { SAME GROUP TABLE. } & \mathbf{i}_{1} \mathbf{i}_{2}=\mathbf{r} \\ & \text { immplie }^{\text {Mock-Mach principle } \overline{\mathbf{g}}|\mathbf{1}\rangle=\mathbf{g}^{-1}|\mathbf{1}\rangle} \\ \overline{\mathrm{i}}_{1} \overline{\mathrm{i}}_{2}=\overline{\mathrm{r}}\end{array}$
$\begin{array}{ll}\text {...but, THEY OBEY THE } & \\ \text { SAME GROUP TABLE. } & \mathbf{i}_{1} \mathrm{i}_{2}=\mathbf{r} \\ & \text { implies: }^{\text {Mock-Mach principle } \overline{\mathbf{g}}|\mathbf{1}\rangle=\mathbf{g}^{-1}|\mathbf{1}\rangle} \\ \overline{\mathrm{i}}_{1} \overline{\mathrm{i}}_{2}=\overline{\mathrm{r}}\end{array}$
$\begin{array}{cr}\text {...but, THEY OBEY THE } & \\ \text { SAME GROUP TABLE. } & \boldsymbol{i}_{1} \boldsymbol{i}_{2}=r \\ \text {...and Mock-Mach principle } \overline{\mathbf{g}}|\mathbf{1}\rangle=\mathbf{g}^{-1}|\mathbf{1}\rangle & \bar{i}_{\boldsymbol{i}_{1}} \bar{i}_{2}=\overline{\mathrm{r}}\end{array}$

SAME GROUP TABLE.
...but, THEY OBEY THE
$\bar{i}_{1} \bar{i}_{2}|1\rangle=\overline{i_{1}}\left|i_{2}\right\rangle$ $\xrightarrow[\text { while lab axes move }]{\text { wave packet fixed }}$

Review: Projector formulae and subgroup splitting
Algebra and geometry of irreducible $D_{j k}^{\mu}(g)$ and projector $\mathbb{P}_{j k}{ }_{j k}$ transformation Example of D_{3} transformation by matrix $D^{E_{j k}}\left(\mathbf{r}^{1}\right)$

Details of Mock-Mach relativity-duality for D_{3} groups and representations
\rightarrow Lab-fixed(Extrinsic-Global) vs. Body-fixed (Intrinsic-Local)
Compare Global vs Local $|\mathbf{g}\rangle$-basis and Global vs Local $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis

```
Hamiltonian and D3 group matrices in global and local |\mp@subsup{\mathbb{P}}{}{(\mu)}\rangle\mathrm{ -basis}
    Hamiltonian local-symmetry eigensolution
    Molecular vibrational mode eigensolution
        Local symmetry limit
        Global symmetry limit (free or "genuine" modes)
```

Compare Global vs Local $|\mathbf{g}\rangle$-basis vs. Global vs Local $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis

D_{3} global	$\mathbf{1}$	\mathbf{r}^{2}	\mathbf{r}	\mathbf{i}_{1}	\mathbf{i}_{2}	\mathbf{i}_{3}
group	\mathbf{r}	$\mathbf{1}$	\mathbf{r}^{2}	\mathbf{i}_{3}	\mathbf{i}_{1}	\mathbf{i}_{2}
product	\mathbf{r}^{2}	\mathbf{r}	$\mathbf{1}$	\mathbf{i}_{2}	\mathbf{i}_{3}	\mathbf{i}_{1}
\mathbf{i}_{1}	\mathbf{i}_{3}	\mathbf{i}_{2}	$\mathbf{1}$	\mathbf{r}	\mathbf{r}^{2}	
table	\mathbf{i}_{2}	\mathbf{i}_{1}	\mathbf{i}_{13}	\mathbf{r}^{2}	$\mathbf{1}$	\mathbf{r}
\mathbf{i}_{13}	\mathbf{i}_{2}	\mathbf{i}_{1}	\mathbf{r}	\mathbf{r}^{2}	$\mathbf{1}$	

Change Global to Local by switching
...column-g with column-g ${ }^{\dagger}$
....and row-g with row-g ${ }^{\dagger}$

Compare Global vs Local $|\mathbf{g}\rangle$-basis vs. Global vs Local $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis

D_{3} global	1	$\mathbf{r}^{2} \mathrm{r}$	$\mathbf{i}_{1} \quad \mathbf{i}_{2} \quad\left(\mathbf{i}_{3}\right.$
group	r	$1 \mathrm{r}^{2}$	
product	\mathbf{r}^{2}	r 1	$\mathrm{i}_{2}\left(\mathrm{i}_{3} \mathrm{i}_{1} \mathbf{i}_{1}\right.$
	1 \mathbf{i}_{1} \mathbf{i}_{2} \mathbf{i}_{13}	$\begin{array}{\|ll} \hline\left(\mathbf{i}_{3}\right) & \mathbf{i}_{2} \\ \mathbf{i}_{1} & \mathbf{i}_{13} \\ \mathbf{i}_{2} & \mathbf{i}_{1} \\ \hline \end{array}$	$\begin{array}{ccc}1 & r & r^{2} \\ \mathbf{r}^{2} & 1 & r \\ r & r^{2} & 1\end{array}$

D_{3} global		${ }^{4}$		
projector	\mathbb{P}^{4}	\mathbb{P}_{4}^{4}		
product	$\mathbf{P}_{x}^{E x}$		$\mathbb{P}_{x x}^{E} \mathbf{P}_{\mathbf{P}_{y}^{E}}^{E}$	
	$\mathrm{P}^{\text {E }}$		$\mathbf{p}_{y x}^{E} \mathbf{P}_{v y}^{E}$	
table	$\mathbf{R}^{\text {E }}$			$\mathbf{P}_{x x}^{E} \mathbb{P}_{x}^{E}$
	$\mathbf{P}_{\text {E }}^{\text {E }}$			$\mathbf{P}_{y}^{E} \mathbf{P}_{y}^{E}$

$\mathbf{P}_{a b}^{(n)} \mathbf{P}_{c d}^{(n)}=\delta^{n n} \delta_{b c} \mathbf{P}_{a d}^{(m)}$

...column-P with column-P ${ }^{\dagger}$

and row-P with row-P ${ }^{\dagger}$

Compare Global vs Local |gो-basis

Example of RELATIVITY-DUALITY for $D_{3} \sim C_{3 v}$

To represent external $\left\{. . \mathbf{T}, \mathbf{U}, \mathbf{V}, \ldots\right.$. \} switch $\mathbf{g} \mathbf{g}^{\dagger}$ on top of group table

| | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1}$ | \mathbf{r}^{2} | \mathbf{r} | \mathbf{i}_{1} | \mathbf{i}_{2} | \mathbf{i}_{13} |
| \mathbf{r} | $\mathbf{1}$ | \mathbf{r}^{2} | \mathbf{i}_{3} | \mathbf{i}_{1} | \mathbf{i}_{2} |
| \mathbf{r}^{2} | \mathbf{r} | $\mathbf{1}$ | \mathbf{i}_{2} | \mathbf{i}_{3} | \mathbf{i}_{1} |
| \mathbf{i}_{1} | \mathbf{i}_{13} | \mathbf{i}_{2} | $\mathbf{1}$ | \mathbf{r} | \mathbf{r}^{2} |
| \mathbf{i}_{2} | \mathbf{i}_{1} | \mathbf{i}_{3} | \mathbf{r}^{2} | $\mathbf{1}$ | \mathbf{r} |
| \mathbf{i}_{13} | \mathbf{i}_{2} | \mathbf{i}_{1} | \mathbf{r} | \mathbf{r}^{2} | $\mathbf{1}$ |

D_{3} global
gg ${ }^{\dagger}$-table

Compare Global vs Local |gो-basis

Example of RELATIVITY-DUALITY for $D_{3} \sim C_{3 v}$

To represent external $\left\{. . \mathrm{T}, \mathbf{U}, \mathbf{V}, \ldots\right.$ \} switch $\mathbf{g} \mathbf{g}^{\dagger}$ on top of group table
$\frac{\text { RESULT T: }}{\operatorname{Any} R(\mathrm{~T})}$
commute (Even if T and U do not...)
with any $R(\mathrm{U})$..

$\left.R^{G}\left(\mathbf{i}_{1}\right)=\quad R^{G}(\mathbf{i})_{2}\right) \quad R^{G}\left(\mathbf{i} \mathbf{i}_{3}=\right.$

D_{3} global sg ${ }^{\dagger}$-table

To represent internal $\{. . \overline{\mathbf{T}}, \overline{\mathbf{U}}, \overline{\mathbf{V}}, \ldots\}$ switch $\mathbf{g} \leftrightarrows \mathbf{g}^{\dagger}$ on side of group table g † g-table

	\mathbf{r}	\mathbf{r}^{2}	\mathbf{i}_{1}	\mathbf{i}_{2}	$\left(\mathbf{i}_{3}\right)$
\mathbf{r}^{2}	$\mathbf{1}$	\mathbf{r}	\mathbf{i}_{2}	\mathbf{i}_{3}	\mathbf{i}_{1}
\mathbf{r}	\mathbf{r}^{2}	$\mathbf{1}$	\mathbf{i}_{3}	\mathbf{i}_{1}	\mathbf{i}_{2}
\mathbf{i}_{1}	\mathbf{i}_{2}	\mathbf{i}_{3}	$\mathbf{1}$	\mathbf{r}	\mathbf{r}^{2}
\mathbf{i}_{2}	\mathbf{i}_{3}	\mathbf{i}_{2}	\mathbf{r}^{2}	$\mathbf{1}$	\mathbf{r}
\mathbf{i}_{3}	\mathbf{i}_{1}	\mathbf{i}_{2}	\mathbf{r}	\mathbf{r}^{2}	$\mathbf{1}$

Review: Projector formulae and subgroup splitting
Algebra and geometry of irreducible $D_{j k}^{\mu}(g)$ and projector $\mathbb{P}_{j k}{ }_{j k}$ transformation Example of D_{3} transformation by matrix $D^{E_{j k}}\left(\mathbf{r}^{1}\right)$

Details of Mock-Mach relativity-duality for D_{3} groups and representations Lab-fixed(Extrinsic-Global) vs. Body-fixed (Intrinsic-Local)
$\boldsymbol{\lambda}$ Compare Global vs Local $|\mathbf{g}\rangle$-basis and Global vs Local $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis

```
Hamiltonian and D3 group matrices in global and local |\mathbb{P}}\mp@subsup{}{(\mu)}{
    Hamiltonian local-symmetry eigensolution
    Molecular vibrational mode eigensolution
        Local symmetry limit
        Global symmetry limit (free or "genuine" modes)
```

Compare Global $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis vs Local $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis

Matrix "Placeholders" $\mathbf{P}_{a b}^{(n)}$ for GLOBAL g operators in ${\underset{E}{3}}^{D_{3}}$

Compare Global $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis vs Local $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis

Matrix "Placeholders" $\mathbf{P}_{a b}^{(m)}$ for GLOBAL \mathbf{g} operators in ${\underset{E}{E}}^{D_{3}}$

$\overline{\mathbf{P}}_{a b}^{(n)}$...for LOCAL $\overline{\mathbf{g}}$ operators in \bar{D}_{3}

Compare Global $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis vs Local $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis

Matrix "Placeholders" $\mathbf{P}_{a b}^{(n)}$ for GLOBAL \mathbf{g} operators in D_{3}

$\overline{\mathbf{P}}_{a b b}^{(0)} .$. for LOCAL $\overline{\bar{g}}$ operators in $\overline{D_{3}}$

Note how any global g-matrix commutes with any local g-matrix

$$
\begin{aligned}
& \left|\begin{array}{cc:cc}
a \boldsymbol{A} & b \boldsymbol{A} & a \boldsymbol{B} & b \boldsymbol{B} \\
c \boldsymbol{A} & d \boldsymbol{A} & c \boldsymbol{B} & d \boldsymbol{B} \\
\hdashline a \boldsymbol{C} & b \boldsymbol{C} & a \boldsymbol{D} & b \boldsymbol{D} \\
c \boldsymbol{C} & d \boldsymbol{C} & c \boldsymbol{D} & d \boldsymbol{D}
\end{array}\right|=\left|\begin{array}{ll:ll}
\boldsymbol{A} a & \boldsymbol{A b} & \boldsymbol{B a} & \boldsymbol{B} b \\
\boldsymbol{A c} & A d & B c & B d \\
\hline \boldsymbol{C a} & \boldsymbol{C b} & \boldsymbol{D} a & \boldsymbol{D} b \\
\boldsymbol{C c} & \boldsymbol{C} d & \boldsymbol{D c} & \boldsymbol{D} d
\end{array}\right|
\end{aligned}
$$

Review: Projector formulae and subgroup splitting
Algebra and geometry of irreducible $D_{j k}^{\mu_{j k}}(g)$ and projector $\mathbb{P}_{j k}{ }_{j k}$ transformation Example of D_{3} transformation by matrix $D^{E_{j k}}\left(\mathbf{r}^{1}\right)$

Details of Mock-Mach relativity-duality for D_{3} groups and representations Lab-fixed(Extrinsic-Global) vs. Body-fixed (Intrinsic-Local) Compare Global vs Local |gो-basis and Global vs Local |P($\left.{ }^{(\mu)}\right\rangle$-basis

7
Hamiltonian and D3 group matrices in global and local $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis Hamiltonian local-symmetry eigensolution Molecular vibrational mode eigensolution

Local symmetry limit
Global symmetry limit (free or "genuine" modes)

Hamiltonian and D ${ }_{3}$ global- \mathbf{g} and local- $\overline{\mathbf{g}}$ group matrices in $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis
For unitary $D^{(\mu)}:($ p.8-11 or p. 33 Lect. 15)
$\left|\mathbf{P}^{(\mu)}\right\rangle$-basis are projected by $\mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}{ }^{\circ} G}{{ }^{\circ} G} \sum_{\mathrm{g}} D_{m n}^{\mu^{*}}(g) \mathrm{g}=\mathbf{P}_{n m}^{\mu \dagger}$ acting on original ket $|\mathbf{1}\rangle$

Hamiltonian and D ${ }_{3}$ global- \mathbf{g} and local- $\overline{\mathbf{g}}$ group matrices in $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis
For unitary $D^{(\mu)}:(p .8-11)$
$\left|\mathbf{P}^{(\mu)}\right\rangle$-basis are projected by $\mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}{ }^{\circ} G}{{ }^{\circ} G} \sum_{\mathrm{g}} D_{m n}^{\mu^{*}}(g) \mathrm{g}=\mathbf{P}_{n m}^{\mu \dagger}$ acting on original ket $|\mathbf{1}\rangle$ to give: $\left|\begin{array}{l}\mu \\ m n\end{array}\right\rangle=\mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle_{\text {norm }}$

Hamiltonian and D ${ }_{3}$ global- \mathbf{g} and local- $\overline{\mathbf{g}}$ group matrices in $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis
For unitary $D^{(\mu)}:(p .8-11)$
$\left|\mathbf{P}^{(\mu)}\right\rangle$-basis are projected by $\mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}}{{ }^{\circ} G} \sum_{\mathrm{g}}{ }^{G} D_{m n}^{\mu^{*}}(g) \mathrm{g}=\mathbf{P}_{n m}^{\mu \dagger}$ acting on original ket $|\mathbf{1}\rangle$ to give:
$\left|\begin{array}{l}\mu \\ m n\end{array}\right\rangle=\mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle \frac{1}{\text { norm }}=\frac{\ell^{(\mu)}}{{ }^{\circ} G \cdot \text { norm }} \sum_{\mathrm{g}}^{{ }^{\circ} G} D_{m n}^{\mu^{*}}(g)|\mathrm{g}\rangle$

Hamiltonian and D_{3} global-g and local- $\overline{\mathbf{g}}$ group matrices in $\left\langle\mathbf{P}^{(\mu)}\right\rangle$-basis
For unitary $D^{(\mu)}:(p .8-11)$
$\left|\mathbf{P}^{(\mu)}\right\rangle$-basis are projected by $\mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}}{{ }^{\circ} G} \sum_{\mathrm{g}}{ }^{G} D_{m n}^{\mu^{*}}(g) \mathrm{g}=\mathbf{P}_{n m}^{\mu \dagger}$ acting on original ket $|\mathbf{1}\rangle$ to give:
$\left|\begin{array}{l}\mu \\ m n\end{array}\right\rangle=\mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle \frac{1}{\text { norm }}=\frac{\ell^{(\mu)}}{{ }^{\circ} G \cdot n o r m} \sum_{\mathrm{g}}^{{ }^{G}} D_{m n}^{\mu^{*}}(\mathrm{~g})|\mathrm{g}\rangle \quad$ subject to normalization:
$\left\langle\begin{array}{l}\mu^{\prime} \\ m^{\prime} n^{\prime}\end{array}\right| m n=\frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} m^{\prime}}^{\mu^{\prime}} \mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle}{\text { norm }^{2}}$

Hamiltonian and D ${ }_{3}$ global- \mathbf{g} and local- $\overline{\mathbf{g}}$ group matrices in $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis
For unitary $D^{(\mu)}:(p .8-11)$
$\left|\mathbf{P}^{(\mu)}\right\rangle$-basis are projected by $\mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}{ }^{\circ} G}{{ }^{\circ} G} \sum_{\mathrm{g}} D_{m n}^{\mu^{*}}(g) \mathrm{g}=\mathbf{P}_{n m}^{\mu \dagger}$ acting on original ket $|\mathbf{1}\rangle$ to give:
$\left|\begin{array}{l}\mu \\ m n\end{array}\right\rangle=\mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle \frac{1}{\text { norm }}=\frac{\ell^{(\mu)}}{{ }^{\circ} G \cdot \text { norm }} \sum_{\mathrm{g}}^{{ }^{\circ} G} D_{m n}^{\mu^{*}}(g)|\mathrm{g}\rangle \quad$ subject to normalization:
$\left\langle\left.\begin{array}{l}\mu^{\prime} \\ m^{\prime} n^{\prime}\end{array} \right\rvert\, \begin{array}{c}\mu \\ m n\end{array}\right\rangle=\frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} m^{\prime}}^{\mu^{\prime}} \mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle}{\text { norm }^{2}}=\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} n}^{\mu}|\mathbf{1}\rangle}{\text { norm }^{2}}$

Hamiltonian and D_{3} global-g and local- $\overline{\mathbf{g}}$ group matrices in $\left\langle\mathbf{P}^{(\mu)}\right\rangle$-basis
For unitary $D^{(\mu)}:(p .8-11)$
$\left|\mathbf{P}^{(\mu)}\right\rangle$-basis are projected by $\mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}{ }^{\circ} G}{{ }^{\circ} G} \sum_{\mathrm{g}} D_{m n}^{\mu^{*}}(g) \mathrm{g}=\mathbf{P}_{n m}^{\mu \dagger}$ acting on original ket $|\mathbf{1}\rangle$ to give:
$\left|\begin{array}{l}\mu \\ m n\end{array}\right\rangle=\mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle \frac{1}{\text { norm }}=\frac{\ell^{(\mu)}}{{ }^{\circ} G \cdot \text { norm }} \sum_{\mathrm{g}}^{{ }^{\circ} G} D_{m n}^{\mu^{*}}(\mathrm{~g})|\mathrm{g}\rangle \quad$ subject to normalization:
$\left\langle\left.\begin{array}{l}\mu^{\prime} \\ m^{\prime} n^{\prime} \mid\end{array} \right\rvert\, \begin{array}{c}\mu \\ m n\end{array}\right\rangle=\frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} m^{\prime}}^{\mu^{\prime}} \mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle}{\text { norm }^{2}}=\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} n}^{\mu}|\mathbf{1}\rangle}{\text { norm }^{2}}=\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n} \quad$ where: norm $=\sqrt{\langle\mathbf{1}| \mathbf{P}_{n n}^{\mu}|\mathbf{1}\rangle}=\sqrt{\frac{\ell^{(\mu)}}{{ }^{\circ} G}}$

Hamiltonian and D_{3} global-g and local- $\overline{\mathbf{g}}$ group matrices in $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis
For unitary $D^{(\mu)}:(p .8-11)$
$\left|\mathbf{P}^{(\mu)}\right\rangle$-basis are projected by $\mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}{ }^{\circ} G}{} \sum_{\mathrm{g}} D_{m n}^{\mu^{*}}(g) \mathrm{g}=\mathbf{P}_{n m}^{\mu \dagger}$ acting on original ket $|\mathbf{1}\rangle$ to give:
$\left|\begin{array}{l}\mu \\ m n\end{array}\right\rangle=\mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle \frac{1}{\text { norm }}=\frac{\ell^{(\mu)}}{{ }^{\circ} G \cdot \text { norm }} \sum_{\mathrm{g}}^{{ }^{\circ} G} D_{m n}^{\mu^{*}}(g)|\mathrm{g}\rangle \quad$ subject to normalization:
$\left\langle\left.\begin{array}{l}\mu^{\prime} \\ m^{\prime} n^{\prime}\end{array} \right\rvert\, \begin{array}{c}\mu \\ m n\end{array}\right\rangle=\frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} m^{\prime}}^{\mu^{\prime}} \mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle}{\text { norm }^{2}}=\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} n}^{\mu}|\mathbf{1}\rangle}{\text { norm }^{2}}=\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n} \quad$ where: norm $=\sqrt{\langle\mathbf{1}| \mathbf{P}_{n n}^{\mu}|\mathbf{1}\rangle}=\sqrt{\frac{\ell^{(\mu)}}{{ }^{\circ} G}}$
Left-action of global \mathbf{g} on irep-ket $\left|\begin{array}{c}\mu \\ m n\end{array}\right\rangle$
$\mathrm{g}\left|\begin{array}{c}\mu \\ m\end{array}\right\rangle=\sum_{m^{\prime}}^{\ell^{\mu}} D_{m^{\prime} m}^{\mu}(g)\left|\begin{array}{c}\mu \\ m^{\prime} n\end{array}\right\rangle$

Hamiltonian and D_{3} global-g and local- $\overline{\mathbf{g}}$ group matrices in $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis
For unitary $D^{(\mu)}:(p .8-11)$
$\left|\mathbf{P}^{(\mu)}\right\rangle$-basis are projected by $\mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}{ }^{\circ} G}{} \sum_{\mathrm{g}} D_{m n}^{\mu^{*}}(g) \mathrm{g}=\mathbf{P}_{n m}^{\mu \dagger}$ acting on original ket $|\mathbf{1}\rangle$ to give:
$\left|\begin{array}{l}\mu \\ m n\end{array}\right\rangle=\mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle \frac{1}{n o r m}=\frac{\ell^{(\mu)}}{{ }^{\circ} G \cdot \text { norm }} \sum_{\mathrm{g}}^{{ }^{\circ} G} D_{m n}^{\mu^{*}}(g)|\mathrm{g}\rangle \quad$ subject to normalization:
$\left\langle\left.\begin{array}{c}\mu^{\prime} \\ m^{\prime} n^{\prime}\end{array} \right\rvert\, \begin{array}{c}\mu \\ \mu n\end{array}\right\rangle=\frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} m^{\prime}}^{\mu^{\prime}} \mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle}{\text { norm }^{2}}=\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} n}^{\mu}|\mathbf{1}\rangle}{\text { norm }^{2}}=\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n} \quad$ where: norm $=\sqrt{\langle\mathbf{1}| \mathbf{P}_{n n}^{\mu}|\mathbf{1}\rangle}=\sqrt{\frac{\ell^{(\mu)}}{{ }^{\circ} G}}$
Left-action of global \mathbf{g} on irep-ket $\left|\begin{array}{c}\mu \\ m n\end{array}\right\rangle$
$\mathrm{g}\left|\begin{array}{c}\mu \\ m\end{array}\right\rangle=\sum_{m^{\prime}}^{\ell^{\mu}} D_{m^{\prime} m}^{\mu}(g)\left|\begin{array}{c}\mu \\ m^{\prime} n\end{array}\right\rangle$
Matrix is same as given on p. 11
$\left\langle\begin{array}{l}\mu \\ m^{\prime} n\end{array}\right| \mathbf{g}\left|\begin{array}{l}\mu \\ m n\end{array}\right\rangle=D_{m^{\prime} m}^{\mu}(g)$

Hamiltonian and D_{3} global- \mathbf{g} and local- $\overline{\mathbf{g}}$ group matrices in $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis
For unitary $D^{(\mu)}:(p .8-11)$
$\left|\mathbf{P}^{(\mu)}\right\rangle$-basis are projected by $\mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}}{{ }^{\circ} G} \sum_{\mathrm{g}}{ }^{G} D_{m n}^{\mu^{*}}(g) \mathrm{g}=\mathbf{P}_{n m}^{\mu \dagger}$ acting on original ket $|\mathbf{1}\rangle$ to give:
$\left|\begin{array}{l}\mu \\ m n\end{array}\right\rangle=\mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle \frac{1}{n o r m}=\frac{\ell^{(\mu)}}{{ }^{\circ} G \cdot n o r m} \sum_{\mathrm{g}}^{{ }^{\circ} G} D_{m n}^{\mu^{*}}(\mathrm{~g})|\mathrm{g}\rangle \quad$ subject to normalization:
$\left\langle\left.\begin{array}{l}\mu^{\prime} \\ m^{\prime} n^{\prime} \mid\end{array} \right\rvert\, \begin{array}{c}\mu \\ m n\end{array}\right\rangle=\frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} m^{\prime}}^{\mu^{\prime}} \mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle}{\text { norm }^{2}}=\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} n}^{\mu}|\mathbf{1}\rangle}{\text { norm }^{2}}=\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n} \quad$ where: norm $=\sqrt{\langle\mathbf{1}| \mathbf{P}_{n n}^{\mu}|\mathbf{1}\rangle}=\sqrt{\frac{\ell^{(\mu)}}{{ }^{\circ} G}}$

Left-action of global \mathbf{g} on irep-ket $\left|\begin{array}{c}\mu \\ m n\end{array}\right\rangle$
$\mathrm{g}\left|\begin{array}{c}\mu \\ m\end{array}\right\rangle=\sum_{m^{\prime}}^{\ell^{\mu}} D_{m^{\prime} m}^{\mu}(g)\left|\begin{array}{|c}\mu \\ m^{\prime} n\end{array}\right\rangle$
Matrix is same as given on p. 11
$\left\langle{ }_{m^{\prime} n}^{\mu}\right| \mathbf{g}\left|\begin{array}{l}\mu n \\ m n\end{array}\right\rangle=D_{m^{\prime} m}^{\mu}(g)$

Left-action of local $\overline{\mathbf{g}}$ on irep-ket $\left.\left.\right|_{m n} ^{\mu}\right\rangle$ is quite different

$$
\begin{aligned}
& \overline{\mathbf{g}}\left|\begin{array}{l}
\mu \\
m n
\end{array}\right\rangle=\overline{\mathbf{g}} \mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle \sqrt{\frac{{ }^{\circ} G}{\ell^{(\mu)}}} \\
& =\mathbf{P}_{m n}^{\mu} \overline{\mathbf{g}}|\mathbf{1}\rangle \sqrt{\frac{{ }^{\circ} G}{\ell^{(\mu)}}} \quad \begin{array}{c}
\text { Mock-Mach } \\
\stackrel{\text { commutation }}{ }
\end{array}
\end{aligned}
$$

Hamiltonian and D_{3} global- \mathbf{g} and local- $\overline{\mathbf{g}}$ group matrices in $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis
For unitary $D^{(\mu)}:(p .8-11)$
$\left|\mathbf{P}^{(\mu)}\right\rangle$-basis are projected by $\mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}}{{ }^{\circ} G} \sum_{\mathrm{g}}{ }^{G} D_{m n}^{\mu^{*}}(g) \mathrm{g}=\mathbf{P}_{n m}^{\mu \dagger}$ acting on original ket $|\mathbf{1}\rangle$ to give:
$\left|\begin{array}{l}\mu \\ m n\end{array}\right\rangle=\mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle \frac{1}{\text { norm }}=\frac{\ell^{(\mu)}}{{ }^{\circ} G \cdot \text { norm }} \sum_{\mathrm{g}}^{{ }^{\circ} G} D_{m n}^{\mu^{*}}(g)|\mathrm{g}\rangle \quad$ subject to normalization:
$\left\langle\left.\begin{array}{l}\mu^{\prime} \\ m^{\prime} n^{\prime} \mid\end{array} \right\rvert\, \begin{array}{c}\mu \\ m n\end{array}\right\rangle=\frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} m^{\prime}}^{\mu^{\prime}} \mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle}{\text { norm }^{2}}=\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} n}^{\mu}|\mathbf{1}\rangle}{\text { norm }^{2}}=\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n} \quad$ where: norm $=\sqrt{\langle\mathbf{1}| \mathbf{P}_{n n}^{\mu}|\mathbf{1}\rangle}=\sqrt{\frac{\ell^{(\mu)}}{{ }^{\circ} G}}$

Left-action of global \mathbf{g} on irep-ket $\left|\begin{array}{c}\mu \\ m n\end{array}\right\rangle$
$\mathrm{g}\left|\begin{array}{c}\mu \\ m\end{array}\right\rangle=\sum_{m^{\prime}}^{\ell^{\mu}} D_{m^{\prime} m}^{\mu}(g)\left|\begin{array}{|c}\mu \\ m^{\prime} n\end{array}\right\rangle$
Matrix is same as given on p. 11
$\left\langle\begin{array}{l}\mu \\ m^{\prime} n\end{array}\right| \mathbf{g}\left|\begin{array}{l}\mu \\ m n\end{array}\right\rangle=D_{m^{\prime} m}^{\mu}(g)$

Left-action of local $\overline{\mathbf{g}}$ on irep-ket $\left.\left.\right|_{m n} ^{\mu}\right\rangle$ is quite different

$$
\begin{aligned}
\overline{\mathbf{g}}\left|\begin{array}{c}
\mu \\
\mu n
\end{array}\right\rangle & =\overline{\mathbf{g}} \mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle \sqrt{\frac{{ }^{\circ} G}{\ell(\mu)}} \\
& =\mathbf{P}_{m n}^{\mu} \overline{\mathbf{g}}|\mathbf{1}\rangle \sqrt{\frac{{ }^{\circ} G}{\ell(\mu)}} \quad \begin{array}{c}
\text { Mock-Mach } \\
\text { commutation }
\end{array} \\
& =\mathbf{P}_{m^{\prime} n^{\prime}}^{\mu} \mathbf{\sigma}^{-1}|\mathbf{1}\rangle \sqrt{\frac{{ }^{\circ} G}{\ell(\mu)}}
\end{aligned}
$$

Hamiltonian and D_{3} global-g and local- $\overline{\mathbf{g}}$ group matrices in $\left\langle\mathbf{P}^{(\mu)}\right\rangle$-basis
For unitary $D^{(\mu)}:(p .8-11)$
$\left|\mathbf{P}^{(\mu)}\right\rangle$-basis are projected by $\mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}{ }^{\circ} G}{} \sum_{\mathrm{g}} D_{m n}^{\mu^{*}}(g) \mathrm{g}=\mathbf{P}_{n m}^{\mu \dagger}$ acting on original ket $|\mathbf{1}\rangle$ to give:
$\left|\begin{array}{l}\mu \\ m n\end{array}\right\rangle=\mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle \frac{1}{\text { norm }}=\frac{\ell^{(\mu)}}{{ }^{\circ} G \cdot \text { norm }} \sum_{\mathrm{g}}^{{ }^{\circ} G} D_{m n}^{\mu^{*}}(g)|\mathrm{g}\rangle \quad$ subject to normalization:
$\left\langle\left.\begin{array}{l}\mu^{\prime} \\ m^{\prime} n^{\prime} \mid\end{array} \right\rvert\, \begin{array}{c}\mu \\ m n\end{array}\right\rangle=\frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} m^{\prime}}^{\mu^{\prime}} \mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle}{\text { norm }^{2}}=\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} n}^{\mu}|\mathbf{1}\rangle}{\text { norm }^{2}}=\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n} \quad$ where: norm $=\sqrt{\langle\mathbf{1}| \mathbf{P}_{n n}^{\mu}|\mathbf{1}\rangle}=\sqrt{\frac{\ell^{(\mu)}}{{ }^{\circ} G}}$

Left-action of global \mathbf{g} on irep-ket $\left|\begin{array}{c}\mu \\ m\end{array}\right\rangle$
$\mathrm{g}\left|\begin{array}{c}\mu \\ m n\end{array}\right\rangle=\sum_{m^{\prime}}^{\ell^{\mu}} D_{m^{\prime} m}^{\mu}(g)\left|\begin{array}{c}\mu \\ m^{\prime} n\end{array}\right\rangle$
Matrix is same as given on p. 11
$\left\langle\begin{array}{l}\mu \\ m^{\prime} n\end{array}\right| \mathbf{g}\left|\begin{array}{l}\mu \\ m n\end{array}\right\rangle=D_{m^{\prime} m}^{\mu}(g)$

Left-action of local $\overline{\mathbf{g}}$ on irep-ket $\left.\left.\right|_{m n} ^{\mu}\right\rangle$ is quite different
$\mathbf{P}_{m n}^{\mu} \mathbf{g}^{-1}=\sum_{m^{\prime}=1}^{\ell^{\mu}} \sum_{n^{\prime}=1}^{\ell^{\mu}} \mathbf{P}_{m n}^{\mu} \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu} D_{m^{\prime} n^{\prime}}^{\mu}\left(g^{-1}\right)$

$$
\begin{aligned}
& \overline{\mathbf{g}}\left|\begin{array}{c}
\mu \\
m n
\end{array}\right\rangle=\overline{\mathbf{g}} \mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle \sqrt{\frac{{ }^{\frac{G_{G}}{\ell^{(\mu)}}}}{}}
\end{aligned}
$$

Hamiltonian and D_{3} global-g and local- $\overline{\mathbf{g}}$ group matrices in $\left\langle\mathbf{P}^{(\mu)}\right\rangle$-basis
For unitary $D^{(\mu)}:(p .8-11)$
$\left|\mathbf{P}^{(\mu)}\right\rangle$-basis are projected by $\mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}{ }^{\circ} G}{{ }^{\circ} G} \sum_{\mathrm{g}} D_{m n}^{\mu^{*}}(g) \mathrm{g}=\mathbf{P}_{n m}^{\mu \dagger}$ acting on original get $|\mathbf{1}\rangle$ to give:
$\left|\begin{array}{l}\mu \\ m n\end{array}\right\rangle=\mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle \frac{1}{\text { norm }}=\frac{\ell^{(\mu)}}{{ }^{\circ} G \cdot \text { norm }} \sum_{\mathrm{g}}^{{ }^{\circ} G} D_{m n}^{\mu^{*}}(g)|\mathrm{g}\rangle \quad$ subject to normalization:
$\left\langle\left.\begin{array}{l}\mu^{\prime} \\ m^{\prime} n^{\prime} \mid\end{array} \right\rvert\, \begin{array}{c}\mu \\ m\end{array}\right\rangle=\frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} m^{\prime}}^{\mu^{\prime}} \mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle}{\text { norm }^{2}}=\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} n}^{\mu}|\mathbf{1}\rangle}{\text { norm }^{2}}=\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n} \quad$ where: norm $=\sqrt{\langle\mathbf{1}| \mathbf{P}_{n n}^{\mu}|\mathbf{1}\rangle}=\sqrt{\frac{\ell^{(\mu)}}{{ }^{\circ} G}}$

Left-action of global \mathbf{g} on irep-ket $\left|\begin{array}{c}\mu \\ m n\end{array}\right\rangle$
$\mathrm{g}\left|\begin{array}{c}\mu \\ m\end{array}\right\rangle=\sum_{m^{\prime}}^{\ell^{\mu}} D_{m^{\prime} m}^{\mu}(g)\left|\begin{array}{|c}\mu \\ m^{\prime} n\end{array}\right\rangle$
Matrix is same as given on p. 11
$\left\langle\begin{array}{l}\mu \\ m^{\prime} n\end{array}\right| \mathbf{g}\left|\begin{array}{l}\mu \\ m n\end{array}\right\rangle=D_{m^{\prime} m}^{\mu}(g)$

Left-action of local $\overline{\mathbf{g}}$ on irep-ket $\left.\left.\right|_{m n} ^{\mu}\right\rangle$ is quite different

$$
\left.\begin{array}{rl}
\mathbf{P}_{m n}^{\mu} \mathbf{g}^{-1} & =\sum_{m^{\prime}=1}^{\ell^{\mu}} \sum_{n^{\prime}=1}^{\ell^{\mu}} \mathbf{P}_{m n}^{\mu} \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu} D_{m^{\prime} n^{\prime}}^{\mu}\left(g^{-1}\right) \\
& =\sum_{n^{\prime}=1}^{\ell^{\mu}} \mathbf{P}_{m n^{\prime}}^{\mu} D_{n n^{\prime}}^{\mu} \\
x^{\prime}
\end{array} g^{-1}\right)
$$

$$
\begin{aligned}
& =\mathbf{P}_{m n}^{\mu} \overline{\mathbf{g}}|\mathbf{1}\rangle \sqrt{\frac{{ }^{\circ} G}{\ell^{(\mu)}}} \quad \begin{array}{c}
\text { Mock-Mach } \\
\text { commutation }
\end{array} \\
& =\mathbf{P}_{m n}^{\mu} \ddot{\mathbf{g}}^{-1}|\mathbf{1}\rangle \sqrt{\frac{{ }^{\circ} G}{\ell^{(\mu)}}} \stackrel{\text { inverse }}{ }
\end{aligned}
$$

Hamiltonian and D ${ }_{3}$ global- \mathbf{g} and local- $\overline{\mathbf{g}}$ group matrices in $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis
For unitary $D^{(\mu)}:(p .8-11)$
$\left|\mathbf{P}^{(\mu)}\right\rangle$-basis are projected by $\mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}{ }^{\circ} G}{} \sum_{\mathrm{g}} D_{m n}^{\mu^{*}}(g) \mathrm{g}=\mathbf{P}_{n m}^{\mu \dagger}$ acting on original ket $|\mathbf{1}\rangle$ to give:
$\left|\begin{array}{l}\mu \\ m n\end{array}\right\rangle=\mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle \frac{1}{\text { norm }}=\frac{\ell^{(\mu)}}{{ }^{\circ} G \cdot \text { norm }} \sum_{\mathrm{g}}^{{ }^{\circ} G} D_{m n}^{\mu^{*}}(\mathrm{~g})|\mathrm{g}\rangle \quad$ subject to normalization:
$\left\langle\left.\begin{array}{l}\mu^{\prime} \\ m^{\prime} n^{\prime}\end{array} \right\rvert\, \begin{array}{c}\mu \\ \mu\end{array}\right\rangle=\frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} m^{\prime}}^{\mu^{\prime}} \mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle}{\text { norm }^{2}}=\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} n}^{\mu}|\mathbf{1}\rangle}{\text { norm }^{2}}=\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n} \quad$ where: norm $=\sqrt{\langle\mathbf{1}| \mathbf{P}_{n n}^{\mu}|\mathbf{1}\rangle}=\sqrt{\frac{\ell^{(\mu)}}{{ }^{(\mu)} G}}$

Left-action of global \mathbf{g} on irep-ket $\left|\begin{array}{c}\mu \\ m n\end{array}\right\rangle$
$\mathrm{g}\left|\begin{array}{c}\mu \\ m n\end{array}\right\rangle=\sum_{m^{\prime}}^{\ell^{\mu}} D_{m^{\prime} m}^{\mu}(g)\left|\begin{array}{c}\mu \\ m^{\prime} n\end{array}\right\rangle$
Matrix is same as given on p. 11
$\left\langle\begin{array}{l}\mu \\ m^{\prime} n\end{array}\right| \mathbf{g}\left|\begin{array}{l}\mu \\ m n\end{array}\right\rangle=D_{m^{\prime} m}^{\mu}(g)$

Left-action of local $\overline{\mathbf{g}}$ on irep-ket $\left|\begin{array}{c}\mu \\ m n\end{array}\right\rangle$ is quite different

$$
\overline{\mathbf{g}}\left|\begin{array}{l}
\mu \\
m n
\end{array}\right\rangle=\overline{\mathbf{g}} \mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle \sqrt{\frac{{ }^{\circ} G}{\ell(\mu)}}
$$

$$
=\mathbf{P}_{m n}^{\mu} \overline{\mathbf{g}}|\mathbf{1}\rangle \sqrt{\frac{{ }_{G}}{\ell^{(\mu)}}} \begin{gathered}
\begin{array}{c}
\text { Mock-Mach } \\
\text { commutation }
\end{array} \\
\text { and }
\end{gathered}
$$

$$
\begin{aligned}
\mathbf{P}_{m n}^{\mu} \mathbf{g}^{-1} & =\sum_{m^{\prime}=1}^{\ell_{1}^{\mu}} \sum_{n^{\prime}=1}^{\ell^{\mu}} \mathbf{P}_{m n_{n}}^{\mu} \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu} D_{m^{\prime} n^{\prime}}^{\mu}\left(g^{-1}\right) \\
& =\sum_{n^{\prime}=1}^{\ell^{\mu}} \mathbf{P}_{m n^{\prime}}^{\mu}{ }^{\prime} D_{n n^{\prime}}^{\mu}\left(g^{-1}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\mathbf{P}_{m n}^{\mu^{\mu}} \mathbf{g}^{-1}|\mathbf{1}\rangle \sqrt{\frac{{ }^{\circ}{ }^{G}}{\ell^{(\mu)}}} \longleftarrow \\
& =\sum_{n^{\prime}=1}^{\ell^{\mu}} D_{n n^{\prime}}^{\mu}\left(g^{-1}\right) \mathbf{P}_{m n^{\mu}}^{\mu}|\mathbf{1}\rangle \sqrt{\frac{{ }_{G}^{G}}{\ell^{(\mu)}}}
\end{aligned}
$$

Hamiltonian and D ${ }_{3}$ global- \mathbf{g} and local- $\overline{\mathbf{g}}$ group matrices in $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis
For unitary $D^{(\mu)}:(p .8-11)$
$\left|\mathbf{P}^{(\mu)}\right\rangle$-basis are projected by $\mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}{ }^{\circ} G}{} \sum_{\mathrm{g}} D_{m n}^{\mu^{*}}(g) \mathrm{g}=\mathbf{P}_{n m}^{\mu \dagger}$ acting on original ket $|\mathbf{1}\rangle$ to give:
$\left|\begin{array}{l}\mu \\ m n\end{array}\right\rangle=\mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle \frac{1}{\text { norm }}=\frac{\ell^{(\mu)}}{{ }^{\circ} G \cdot \text { norm }} \sum_{\mathrm{g}}^{{ }^{\circ} G} D_{m n}^{\mu^{*}}(\mathrm{~g})|\mathrm{g}\rangle \quad$ subject to normalization:
$\left\langle\left.\begin{array}{l}\mu^{\prime} \\ m^{\prime} n^{\prime}\end{array} \right\rvert\, \begin{array}{c}\mu \\ \mu\end{array}\right\rangle=\frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} m^{\prime}}^{\mu^{\prime}} \mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle}{\text { norm }^{2}}=\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} n}^{\mu}|\mathbf{1}\rangle}{\text { norm }^{2}}=\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n} \quad$ where: norm $=\sqrt{\langle\mathbf{1}| \mathbf{P}_{n n}^{\mu}|\mathbf{1}\rangle}=\sqrt{\frac{\ell^{(\mu)}}{{ }^{(\mu)} G}}$

Left-action of global \mathbf{g} on irep-ket $\left|\begin{array}{c}\mu n \\ m\end{array}\right\rangle$
$\mathbf{g}\left|\begin{array}{c}\mu \\ m n\end{array}\right\rangle=\sum_{m^{\prime}}^{\ell^{\mu}} D_{m^{\prime} m}^{\mu}(g)\left|\begin{array}{c}\mu \\ m^{\prime} n\end{array}\right\rangle$
Matrix is same as given on p. 11
$\left\langle\begin{array}{l}\mu \\ m^{\prime} n\end{array}\right| \mathbf{g}\left|\begin{array}{l}\mu \\ m n\end{array}\right\rangle=D_{m^{\prime} m}^{\mu}(g)$

Left-action of local $\overline{\mathbf{g}}$ on irep-ket $\left|\begin{array}{l}\mu \\ m\end{array}\right\rangle$ is quite different

$$
\overline{\mathbf{g}}\left|\begin{array}{l}
\mu \\
m n
\end{array}\right\rangle=\overline{\mathbf{g}} \mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle \sqrt{\frac{{ }^{\circ} G}{\ell^{(\mu)}}}
$$

$$
=\mathbf{P}_{m n}^{\mu} \overline{\mathbf{g}}|\mathbf{1}\rangle \sqrt{\frac{{ }^{\circ}{ }^{G}}{\ell(\mu)}} \begin{gathered}
\begin{array}{c}
\text { Mock-Mach } \\
\text { commutation }
\end{array} \\
\text { and }
\end{gathered}
$$

$$
\begin{aligned}
& =\mathbf{P}_{m n}^{\mu_{n}} \mathbf{g}^{-1}|\mathbf{1}\rangle \sqrt{\frac{{ }^{\circ}}{\ell^{(\mu)}}} \longleftrightarrow{ }^{\ell^{\mu}} \\
& =\sum_{n^{\prime}=1} D_{n n^{\prime}}^{\mu}\left(g^{-1}\right) \mathbf{P}_{m n^{\prime}}^{\mu}|\mathbf{1}\rangle \sqrt{\frac{{ }^{G}}{\ell^{(\mu)}}}
\end{aligned}
$$

$$
=\sum_{n^{\prime}=1}^{\ell^{\mu}} D_{n n^{\prime}}^{\mu}\left(g^{-1}\right)\left|\begin{array}{l}
\mu n^{\prime}
\end{array}\right\rangle
$$

Hamiltonian and D ${ }_{3}$ global- \mathbf{g} and local- $\overline{\mathbf{g}}$ group matrices in $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis
For unitary $D^{(\mu)}:(p .8-11)$
$\left|\mathbf{P}^{(\mu)}\right\rangle$-basis are projected by $\mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}{ }^{\circ} G}{} \sum_{\mathrm{g}} D_{m n}^{\mu^{*}}(g) \mathrm{g}=\mathbf{P}_{n m}^{\mu \dagger}$ acting on original ket $|\mathbf{1}\rangle$ to give:
$\left|\begin{array}{l}\mu \\ m n\end{array}\right\rangle=\mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle \frac{1}{\text { norm }}=\frac{\ell^{(\mu)}}{{ }^{\circ} G \cdot \text { norm }} \sum_{\mathrm{g}}^{{ }^{\circ} G} D_{m n}^{\mu^{*}}(\mathrm{~g})|\mathrm{g}\rangle \quad$ subject to normalization:
$\left\langle\left.\begin{array}{l}\mu^{\prime}, \\ m^{\prime} n^{\prime}\end{array} \right\rvert\, \begin{array}{c}\mu \\ n_{n}\end{array}\right\rangle=\frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} m^{\prime}}^{\mu^{\prime}} \mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle}{n o r m^{2}}=\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} n}^{\mu}|\mathbf{1}\rangle}{\text { norm }^{2}}=\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n} \quad$ where: norm $=\sqrt{\langle\mathbf{1}| \mathbf{P}_{n n}^{\mu}|\mathbf{1}\rangle}=\sqrt{\frac{\ell^{(\mu)}}{{ }^{(\mu)} G}}$

Left-action of global \mathbf{g} on irep-ket $\left|\begin{array}{c}\mu n \\ m\end{array}\right\rangle$
$\mathbf{g}\left|\begin{array}{c}\mu \\ m n\end{array}\right\rangle=\sum_{m^{\prime}}^{\ell^{\mu}} D_{m^{\prime} m}^{\mu}(g)\left|\begin{array}{c}\mu \\ m^{\prime} n\end{array}\right\rangle$
Matrix is same as given on p. 11
$\left\langle\begin{array}{l}\mu \\ m^{\prime} n\end{array}\right| \mathbf{g}\left|\begin{array}{l}\mu \\ m n\end{array}\right\rangle=D_{m^{\prime} m}^{\mu}(g)$

Left-action of local $\overline{\mathbf{g}}$ on irep-ket $\left|\begin{array}{l}\mu \\ m\end{array}\right\rangle$ is quite different

$$
\overline{\mathbf{g}}\left|\begin{array}{l}
\mu \\
m n
\end{array}\right\rangle=\overline{\mathbf{g}} \mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle \sqrt{\frac{{ }^{\circ} G}{\ell^{(\mu)}}}
$$

$$
=\mathbf{P}_{m n}^{\mu} \overline{\mathbf{g}}|\mathbf{1}\rangle \sqrt{\frac{{ }_{G}}{\ell(\mu)}} \begin{gathered}
\begin{array}{c}
\text { Mock-Mach } \\
\text { commutation }
\end{array} \\
\text { and }^{(\mu)}
\end{gathered}
$$

$$
=\underset{\mathbf{P}^{\mu}}{\mu_{n}^{\mu} \mathbf{g}^{-1}}|\mathbf{1}\rangle \sqrt{\frac{{ }^{G}}{\ell^{(\mu)}}} \longleftarrow \text { inverse }
$$

$$
=\sum_{n^{\prime}=1}^{\ell^{\mu}} D_{n n^{\prime}}^{\mu}\left(g^{-1}\right) \mathbf{P}_{m n^{\prime}}^{\mu}|\mathbf{1}\rangle \sqrt{\frac{{ }^{\circ} G}{\ell^{(\mu)}}}
$$

$$
=\sum_{n^{\prime}=1}^{\ell^{\mu}} D_{n n^{\prime}}^{\mu}\left(g^{-1}\right)\left|\begin{array}{l}
\mu n^{\prime}
\end{array}\right\rangle
$$

Local $\overline{\mathbf{g}}$-matrix component

$$
\left\langle\begin{array}{l}
\mu \\
m n^{\prime}
\end{array}\right| \overline{\mathbf{g}}\left|\begin{array}{c}
\mu \\
m n
\end{array}\right\rangle=D_{n n^{\prime}}^{\mu}\left(g^{-1}\right)=D_{n^{\prime} n}^{\mu^{*}}(g)
$$

Hamiltonian and D ${ }_{3}$ global- \mathbf{g} and local- $\overline{\mathbf{g}}$ group matrices in $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis
For unitary $D^{(\mu)}:(p .8-11)$
$\left|\mathbf{P}^{(\mu)}\right\rangle$-basis are projected by $\mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}{ }^{\circ} G}{{ }^{\circ} G} D_{\mathrm{g}}^{\mu^{*}}{ }_{m n}(g) \mathrm{g}=\mathbf{P}_{n m}^{\mu \dagger}$ acting on original ket $|\mathbf{1}\rangle$ to give:
$\left|\begin{array}{l}\mu \\ m n\end{array}\right\rangle=\mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle \frac{1}{n o r m}=\frac{\ell^{(\mu)}}{{ }^{\circ} G \cdot \text { norm }} \sum_{\mathrm{g}}^{{ }^{\circ} G} D_{m n}^{\mu^{*}}(g)|\mathbf{g}\rangle \quad$ subject to normalization:
$\left\langle\left.\begin{array}{l}\mu^{\prime}, \\ m^{\prime} n^{\prime}\end{array} \right\rvert\, \begin{array}{c}\mu \\ n_{n}\end{array}\right\rangle=\frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} m^{\prime}}^{\mu^{\prime}} \mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle}{n o r m^{2}}=\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} n}^{\mu}|\mathbf{1}\rangle}{\text { norm }^{2}}=\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n} \quad$ where: norm $=\sqrt{\langle\mathbf{1}| \mathbf{P}_{n n}^{\mu}|\mathbf{1}\rangle}=\sqrt{\frac{\ell^{(\mu)}}{{ }^{(\mu)} G}}$

Left-action of global \mathbf{g} on irep-ket $\left|\begin{array}{|c}\mu \\ m n\end{array}\right\rangle$

$$
\mathbf{g}\left|\begin{array}{c}
\mu \\
m n
\end{array}\right\rangle=\sum_{m^{\prime}}^{\ell^{\mu}} D_{m^{\prime} m}^{\mu}(g)\left|\begin{array}{c}
\mu \\
m^{\prime} n
\end{array}\right\rangle
$$

Matrix is same as given on p. 11
$\left\langle\begin{array}{l}\mu \\ m^{\prime} n\end{array}\right| \mathbf{g}\left|\begin{array}{l}\mu \\ m n\end{array}\right\rangle=D_{m^{\prime} m}^{\mu}(g)$

Left-action of local $\overline{\mathbf{g}}$ on irep-ket $\left.\left.\right|_{m n} ^{\mu}\right\rangle$ is quite different

$$
\overline{\mathbf{g}}\left|\begin{array}{l}
\mu \\
m n
\end{array}\right\rangle=\overline{\mathbf{g}} \mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle \sqrt{\frac{{ }^{\circ} G}{\ell^{(\mu)}}}
$$

$$
=\mathbf{P}_{m n}^{\mu} \overline{\mathbf{g}}|\mathbf{1}\rangle \sqrt{\frac{{ }^{\circ} G}{\ell^{(\mu)}}} \stackrel{\begin{array}{c}
\text { Mock-Mach } \\
\text { commutation }
\end{array}}{\text { and }}
$$

$$
=\underset{P^{\mu}}{ } \mathbf{P}^{\mu} \mathrm{g}^{-1}|\mathbf{1}\rangle \sqrt{\frac{{ }^{\frac{G}{}} \ell^{(\mu)}}{}} \longleftarrow
$$

$$
=\sum_{n^{\prime}=1}^{\ell^{\mu}} D_{n n^{\prime}}^{\mu}\left(g^{-1}\right) \mathbf{P}_{m n^{\prime}}^{\mu}|\mathbf{1}\rangle \sqrt{\frac{{ }^{G} \ell^{(\mu)}}{\ell^{(\mu)}}}
$$

$$
=\sum_{n^{\prime}=1}^{\ell^{\mu}} D_{n n^{\prime}}^{\mu}\left(g^{-1}\right)\left|\begin{array}{l}
\mu n^{\prime}
\end{array}\right\rangle
$$

Local $\overline{\mathbf{g}}$-matrix component

$$
\left\langle\begin{array}{l}
\mu \\
m n^{\prime}
\end{array}\right| \overline{\mathbf{g}}\left|\begin{array}{c}
\mu \\
m n
\end{array}\right\rangle=D_{n n^{\prime}}^{\mu}\left(g^{-1}\right)=D_{n^{\prime} n}^{\mu^{*}}(g)
$$

$R^{P}(\mathrm{~g})=T R^{G}(\mathrm{~g}) T^{\dagger}=$				
$\left\|\mathbf{P}_{x x}^{A_{1}}\right\rangle$	$\left\|\mathbf{P}_{y y}{ }^{\text {d }}\right\rangle$	$\left\|\mathbf{P}_{x x}^{E_{1}}\right\rangle \quad\left\|\mathbf{P}_{y x}^{E_{1}}\right\rangle$	$\left\|\mathbf{P}_{x y}^{E_{1}}\right\rangle \quad\left\|\mathbf{P}_{y y}^{E_{1}}\right\rangle$	
$\int D^{A_{1}}(\mathbf{g})$				$\left\|\mathbf{P}^{(\mu)}\right\rangle$-base ordering to concentrate
	$D^{A_{2}}(\mathbf{g})$.		
		$\begin{aligned} & D_{x x}^{E_{1}}(\mathbf{g}) \quad D_{x y}^{E_{1}} \\ & D_{y x}^{E_{1}}(\mathbf{g}) \end{aligned} D_{y y}^{E_{1}}$.	
			$\begin{array}{ccc}D_{x x}^{E_{1}}(\mathbf{g}) & D_{x y}^{E_{1}} \\ D_{y x}^{E_{1}}(\mathbf{g}) & D_{y y}^{E_{1}}\end{array}$	D-matrices

Global g-matrix component

$$
\left\langle\begin{array}{l}
\mu \\
m^{\prime} n
\end{array}\right| \mathbf{g}\left|\begin{array}{l}
\mu \\
m n
\end{array}\right\rangle=D_{m^{\prime} m}^{\mu}(g)
$$

Local $\overline{\mathbf{g}}$-matrix component
$\left\langle\begin{array}{l}\mu \\ m n^{\prime}\end{array}\right| \overline{\mathbf{g}}\left|\begin{array}{l}\mu \\ m n\end{array}\right\rangle=D_{n n^{\prime}}^{\mu}\left(g^{-1}\right)=D_{n^{\prime} n}^{\mu^{*}}(g)$
D_{3} global-g group matrices in $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis
$R^{P}(\mathbf{g})=T R^{G}(\mathbf{g}) T^{\dagger}=$

$\left\lvert\,$| $\left.\mathbf{P}_{x x}^{A_{1}}\right\rangle$ | $\left\|\mathbf{P}_{y y}^{A_{2}}\right\rangle$ | $\left\|\mathbf{P}_{x x}^{E_{1}}\right\rangle$ | $\left\|\mathbf{P}_{y x}^{E_{1}}\right\rangle$ | $\left\|\mathbf{P}_{x y}^{E_{1}}\right\rangle$ | $\left\|\mathbf{P}_{y y}^{E_{1}}\right\rangle$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\left(\begin{array}{c\|c\|cc\|ccc}D^{A_{1}}(\mathbf{g}) & \cdot & \cdot & \cdot & \cdot & \cdot \\ \hline \cdot & D^{A_{2}}(\mathbf{g}) & \cdot & \cdot & \cdot & \cdot \\ \hline \cdot & \cdot & D_{x x}^{E_{1}}(\mathbf{g}) & D_{x y}^{E_{1}} & \cdot & \cdot \\ \cdot & \cdot & D_{y x}^{E_{1}}(\mathbf{g}) & D_{y y}^{E_{1}} & \cdot & \cdot \\ \hline \cdot & \cdot & \cdot & \cdot & D_{x x}^{E_{1}}(\mathbf{g}) & D_{x y}^{E_{1}} \\ \cdot & \cdot & \cdot & \cdot & D_{y x}^{E_{1}}(\mathbf{g}) & D_{y y}^{E_{1}}\end{array}\right)$ | | | | | | | $\left\|\mathbf{P}^{(\mu)}\right\rangle$-base |
| :---: |
| ordering to |
| concentrate |\right.

global- \mathbf{g}
D-matrices

$$
R^{P}(\mathrm{~g})=T R^{\mathrm{G}}(\mathrm{~g}) T^{1}=
$$

$$
\left.\right|_{x x} \mid \text { | }\left.\right|_{y y} /\left.\left.\right|_{x x}| |\right|_{y x} /\left.\left.\right|_{x y}| |\right|_{y y} \mid
$$

D_{3} local- $\overline{\mathbf{g}}$ group matrices in $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis $R^{P}(\overline{\mathrm{~g}})=T R^{G}(\overline{\mathrm{~g}}) T^{\dagger}=$
$\left(\begin{array}{c|c|cc|cc}D^{A_{1}{ }^{*}}(\mathbf{g}) & \cdot & \cdot & \cdot & \cdot & \cdot \\ \hline \cdot & D^{A_{2}{ }^{*}}(\mathbf{g}) & \cdot & \cdot & \cdot & \cdot \\ \hline \cdot & \cdot & D_{x x}^{E_{1}{ }^{*}}(\mathbf{g}) & \cdot & D_{x y}^{E_{1}{ }^{*}}(\mathbf{g}) & \cdot \\ \cdot & \cdot & \cdot & D_{x x}^{E_{1}{ }^{*}}(\mathbf{g}) & \cdot & D_{x y}^{E_{1}{ }^{*}}(\mathbf{g}) \\ \hline \cdot & \cdot & D_{y x}^{E_{1}{ }^{*}}(\mathbf{g}) & \cdot & D_{y y}^{E_{1}{ }^{*}}(\mathbf{g}) & \cdot \\ \cdot & \cdot & \cdot & D_{y x}^{E_{1}{ }^{*}}(\mathbf{g}) & \cdot & D_{y y}^{E_{1}{ }^{*}}(\mathbf{g})\end{array}\right)$
here
Local $\overline{\mathbf{g}}$-matrix
is not concentrated

Global g-matrix component

$$
\left\langle\begin{array}{c|c}
\mu \\
m^{\prime} n
\end{array}\right| \mathbf{g}\left|\begin{array}{l}
\mu \\
m n
\end{array}\right\rangle=D_{m^{\prime} m}^{\mu}(g)
$$

$$
\left\langle\begin{array}{l}
\mu \\
m n^{\prime}
\end{array}\right| \overline{\mathbf{g}}\left|\begin{array}{l}
\mu \\
m n
\end{array}\right\rangle=D_{n n^{\prime}}^{\mu}\left(g^{-1}\right)=D_{n^{\prime} n}^{\mu^{*}}(g)
$$

D_{3} global-g group matrices in $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis

$$
\left(\begin{array}{c|c|cc|cc}
D^{A_{1}}(\mathbf{g}) & \cdot & \cdot & \cdot & \cdot & \cdot \\
\hline \cdot & D^{A_{2}}(\mathbf{g}) & \cdot & \cdot & \cdot & \cdot \\
\hline \cdot & \cdot & D_{x x}^{E_{1}}(\mathbf{g}) & \cdot & D_{x y}^{E_{1}}(\mathbf{g}) & \cdot \\
\cdot & \cdot & \cdot & D_{x x}^{E_{1}} & \cdot & D_{x y}^{E_{1}} \\
\hline \cdot & \cdot & D_{y x}^{E_{1}}(\mathbf{g}) & \cdot & D_{y y}^{E_{1}}(\mathbf{g}) & \cdot \\
\cdot & \cdot & \cdot & D_{y x}^{E_{1}} & \cdot & D_{y y}^{E_{1}}
\end{array}\right)
$$

here
global g-matrix
\longleftarrow is not concentrated

$$
\begin{aligned}
& R^{P}(\mathrm{~g})=T R^{G}(\mathrm{~g}) T^{\dagger}= \\
& \left|\begin{array}{|l|l|l|}
\left.\mathbf{P}_{x x}^{A_{1}}\right\rangle
\end{array}\right| \begin{array}{l}
\left.\mathbf{P}_{y y}^{A_{2}}\right\rangle
\end{array}\left|\mathbf{P}_{x x}^{E_{1}}\right\rangle \quad\left|\mathbf{P}_{y x}^{E_{1}}\right\rangle\left|\mathbf{P}_{x y}^{E_{1}}\right\rangle \quad\left|\mathbf{P}_{y y}^{E_{1}}\right\rangle \\
& \left(\begin{array}{c|c|cc|cc}
D^{A_{1}}(\mathbf{g}) & \cdot & \cdot & \cdot & \cdot & \cdot \\
\hline \cdot & D^{A_{2}}(\mathbf{g}) & \cdot & \cdot & \cdot & \cdot \\
\hline \cdot & \cdot & D_{x x}^{E_{1}}(\mathbf{g}) & D_{x y}^{E_{1}} & \cdot & \cdot \\
\cdot & \cdot & D_{y x}^{E_{1}}(\mathbf{g}) & D_{y y}^{E_{1}} & \cdot & \cdot \\
\hline \cdot & \cdot & \cdot & \cdot & D_{x x}^{E_{1}}(\mathbf{g}) & D_{x y}^{E_{1}} \\
\cdot & \cdot & \cdot & \cdot & D_{y x}^{E_{1}}(\mathbf{g}) & D_{y y}^{E_{1}}
\end{array}\right) \\
& \bar{R}^{P}(\mathbf{g})=\bar{T} R^{G}(\mathbf{g}) \bar{T}^{\dagger}= \\
& R^{P}(\overline{\mathbf{g}})=T R^{G}(\overline{\mathbf{g}}) T^{\dagger}= \\
& \left.\begin{array}{|c|c|c|}
\left.\hline \mathbf{P}_{x x}^{A_{1}}\right\rangle
\end{array}\left|\begin{array}{c}
\left.\mathbf{P}_{y y}^{A_{2}}\right\rangle
\end{array}\right| \begin{array}{l}
\left.\mathbf{P}_{x x}^{E_{1}}\right\rangle
\end{array}\left|\begin{array}{l}
\left.\mathbf{P}_{y x}^{E_{1}}\right\rangle
\end{array}\right| \begin{array}{l}
\left.\mathbf{P}_{x y}^{E_{1}}\right\rangle
\end{array} \right\rvert\, \begin{array}{|l}
\left.\mathbf{P}_{y y}^{E_{1}}\right\rangle
\end{array} \\
& \text { here }
\end{aligned}
$$

Global g-matrix component

$$
\left\langle\begin{array}{l|l}
\mu & m^{\prime} n
\end{array}\right| \mathbf{g}\left|\begin{array}{l}
\mu \\
m n
\end{array}\right\rangle=D_{m^{\prime} m}^{\mu}(g)
$$

Local $\overline{\mathbf{g}}$-matrix component

$$
\left\langle\begin{array}{l}
\mu \\
m n^{\prime}
\end{array}\right| \overline{\mathbf{g}}\left|\begin{array}{l}
\mu \\
m n
\end{array}\right\rangle=D_{n n^{\prime}}^{\mu}\left(g^{-1}\right)=D_{n^{\prime} n}^{\mu^{*}}(g)
$$

D_{3} global-g group matrices in $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis

Global g-matrix component

$$
\left\langle\begin{array}{c|c}
\mu \\
m^{\prime} n
\end{array}\right| \mathbf{g}\left|\begin{array}{l}
\mu \\
m n
\end{array}\right\rangle=D_{m^{\prime} m}^{\mu}(g)
$$

D_{3} local- $\overline{\mathbf{g}}$ group matrices in $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis

$$
R^{P}(\overline{\mathrm{~g}})=T R^{G}(\overline{\mathrm{~g}}) T^{\dagger}=
$$

$$
\left|\begin{array}{lllll}
\left|\mathbf{P}_{x x}^{A_{1}}\right\rangle & \left|\mathbf{P}_{y y}^{A_{2}}\right\rangle & \left|\mathbf{P}_{x x}^{E_{1}}\right\rangle & \left|\mathbf{P}_{y x}^{E_{1}}\right\rangle & \left|\mathbf{P}_{x y}^{E_{1}}\right\rangle
\end{array}\right| \begin{array}{|l}
\left.\mathbf{P}_{y y}^{E_{1}}\right\rangle
\end{array}
$$

$$
-\left(\begin{array}{c|c|ccccc}
D^{A_{1}{ }^{*}}(\mathbf{g}) & \cdot & \cdot & \cdot & \cdot & \cdot \\
\hline \cdot & D^{A_{2}{ }^{*}}(\mathbf{g}) & \cdot & \cdot & \cdot & \cdot \\
\hline \cdot & \cdot & D_{x x}^{E_{1}{ }^{*}}(\mathbf{g}) & \cdot & D_{x y}^{E_{1}{ }^{*}}(\mathbf{g}) & \cdot \\
\cdot & \cdot & \cdot & D_{x x}^{E_{1}{ }^{*}}(\mathbf{g}) & \cdot & D_{x y}^{E_{1}{ }^{*}}(\mathbf{g}) \\
\hline \cdot & \cdot & D_{y x}^{E_{1}{ }^{*}}(\mathbf{g}) & \cdot & D_{y y}^{E_{1}{ }^{*}}(\mathbf{g}) & \cdot \\
\cdot & \cdot & \cdot & D_{y x}^{E_{1}{ }^{*}}(\mathbf{g}) & \cdot & D_{y y}^{E_{1}{ }^{*}}(\mathbf{g})
\end{array}\right)
$$

$$
\bar{R}^{P}(\overline{\mathbf{g}})=\bar{T} R^{G}(\overline{\mathbf{g}}) \bar{T}^{\dagger}=
$$

$$
\left|\mathbf{P}_{x x}^{A_{1}}\right\rangle \quad\left|\mathbf{P}_{y y}^{A_{2}}\right\rangle
$$

$\left(\begin{array}{c|c|cc|cc}D^{A_{1}{ }^{*}}(\mathbf{g}) & \cdot & \cdot & \cdot & \cdot & \cdot \\ \hline \cdot & D^{A_{2}{ }^{*}}(\mathbf{g}) & \cdot & \cdot & \cdot & \cdot \\ \hline \cdot & \cdot & D_{x x}^{E_{1}{ }^{*}}(\mathbf{g}) & D_{x y}^{E_{1}{ }^{*}}(\mathbf{g}) & \cdot & \cdot \\ \cdot & \cdot & D_{y x}^{E_{1}{ }^{*}}(\mathbf{g}) & D_{y y}^{E_{1}{ }^{*}}(\mathbf{g}) & \cdot & \cdot \\ \hline \cdot & \cdot & \cdot & \cdot & D_{x x}^{E_{1}{ }^{*}}(\mathbf{g}) & D_{x y}^{E_{1}{ }^{*}}(\mathbf{g}) \\ \cdot & \cdot & \cdot & \cdot & D_{y x}^{E_{1}{ }^{*}}(\mathbf{g}) & D_{y y}^{E_{1}{ }^{*}}(\mathbf{g})\end{array}\right)$

Local $\overline{\mathbf{g}}$-matrix component

$$
\left\langle\begin{array}{l}
\mu \\
m n^{\prime}
\end{array}\right| \overline{\mathbf{g}}\left|\begin{array}{l}
\mu \\
m n
\end{array}\right\rangle=D_{n n^{\prime}}^{\mu}\left(g^{-1}\right)=D_{n^{\prime} n}^{\mu^{*}}(g)
$$

Review: Projector formulae and subgroup splitting
Algebra and geometry of irreducible $D_{j k}^{\mu}(g)$ and projector $\mathbb{P}_{j k}{ }_{j k}$ transformation Example of D_{3} transformation by matrix $D^{E_{j k}}\left(\mathbf{r}^{1}\right)$

Details of Mock-Mach relativity-duality for D_{3} groups and representations Lab-fixed(Extrinsic-Global) vs. Body-fixed (Intrinsic-Local) Compare Global vs Local |gो-basis and Global vs Local $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis

Hamiltonian and D_{3} group matrices in global and local $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis Hamilton local-symmetry eigensolution
Molecular vibrational mode eigensolution
Local symmetry limit
Global symmetry limit (free or "genuine" modes)
D_{3} Hamiltonian local- \mathbf{H} matrices in $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis

$$
\left.\left.\left|\mathbf{P}_{x x}^{4}\right\rangle\left|\mathbf{P}_{y y}^{b}\right\rangle\left|\mathbf{P}_{x x}^{E_{x}}\right\rangle\left|\mathbf{P}_{x y}^{E_{y}}\right\rangle\left|\mathbf{P}_{x y}^{E}\right\rangle\right\rangle \mathbf{P}_{y y}^{E_{y}}\right\rangle
$$

\mathbf{H} matrix in
$|\mathbf{P}(\mu)\rangle$-basis:
$(\mathbf{H})_{P}=\bar{T}(\mathbf{H})_{G} \bar{T}^{\dagger}=\left(\begin{array}{c|c|cc|cc}H^{A_{1}} & \cdot & \cdot & \cdot & \cdot & \cdot \\ \hline \cdot & H^{A_{2}} & \cdot & \cdot & \cdot & \cdot \\ \hline \cdot & \cdot & H_{x x}^{E_{1}} & H_{x y}^{E_{1}} & \cdot & \cdot \\ \cdot & \cdot & H_{y x}^{E_{1}} & H_{y y}^{E_{1}} & \cdot & \cdot \\ \hline \cdot & \cdot & \cdot & \cdot & H_{x x}^{E_{1}} & H_{x y}^{E_{1}} \\ \cdot & \cdot & \cdot & \cdot & H_{y x}^{E_{1}} & H_{y y}^{E_{1}}\end{array}\right), ~\left(\begin{array}{llll} \\ \cdot & \cdot & & \\ \hline\end{array}\right)$

$$
H_{a b}^{\alpha}=\left\langle\mathbf{P}_{m a}^{\mu}\right| \mathbf{H}\left|\mathbf{P}_{n b}^{\mu}\right\rangle
$$

$$
\left.\left.\left|\mathbf{P}_{x x}^{4}\right\rangle\left|\mathbf{P}_{y y}^{b}\right\rangle\left|\mathbf{P}_{x x}^{E_{x}}\right\rangle\left|\mathbf{P}_{x y}^{E_{y}}\right\rangle\left|\mathbf{P}_{x y}^{E}\right\rangle\right\rangle \mathbf{P}_{y y}^{E_{y}}\right\rangle
$$

$\underset{|\mathbf{g}\rangle \text {-basis: }}{\mathbf{(H})_{G}=\sum_{g=1}^{o_{G}} r_{g} \bar{g}=\left(\begin{array}{cccccc}r_{0} & r_{2} & r_{1} & i_{1} & i_{2} & i_{3} \\ r_{1} & r_{0} & r_{1} & i_{3} & i_{1} & i_{2} \\ r_{2} & r_{1} & r_{0} & i_{2} & i_{3} & i_{1} \\ i_{i} & i_{3} & i_{2} & r_{0} & r_{1} & r_{2} \\ i_{2} & i_{1} & i_{3} & r_{2} & r_{0} & r_{1} \\ i_{3} & i_{2} & i_{1} & r_{1} & r_{2} & r_{0}\end{array}\right)}$

$H_{a b}^{\alpha}=\left\langle\mathbf{P}_{m a}^{\mu}\right| \mathbf{H}\left|\mathbf{P}_{n b}^{\mu}\right\rangle$

Let: $\left|{ }_{m n}^{\mu}\right\rangle \equiv\left|\mathbf{P}_{m n}^{\mu}\right\rangle=\mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle \frac{1}{\text { norm }}$
$\left|{ }_{m n}^{\mu}\right\rangle=\mathbf{P}_{m n}^{\mu} \left\lvert\, \mathbf{1} \frac{1}{\text { norm }}=\frac{\ell^{(\mu)}}{{ }_{\mathrm{G}} \mathrm{G} \cdot \text { norm }^{\circ} \sum_{\mathrm{g}} \sum_{m n}^{\mu^{*}}(\mathrm{~g})|\mathrm{g}\rangle}\right.$
subject to normalization (from p. 11):

$$
\left|\mathbf{P}_{x x}^{A_{1}}\right\rangle\left|\mathbf{P}_{y y}^{b_{y}}\right\rangle\left|\mathbf{P}_{x x}^{E_{x}}\right\rangle\left|\mathbf{P}_{x y}^{E_{i}}\right\rangle\left|\mathbf{P}_{y x}^{E_{i}}\right\rangle\left|\mathbf{P}_{y y}^{E_{i}}\right\rangle
$$

$\underset{\mid \mathbf{g}) \text {-basis: }}{(\mathbf{H})_{G}=\sum_{g=1}^{o_{G}} r_{g} \bar{g}=\left(\begin{array}{llllll}r_{0} & r_{2} & r_{1} & i_{1} & i_{2} & i_{3} \\ r_{1} & r_{0} & r_{1} & i_{3} & i_{1} & i_{2} \\ r_{2} & r_{1} & r_{0} & i_{2} & i_{3} & i_{1} \\ i_{i} & i_{3} & i_{2} & r_{0} & r_{1} & r_{2} \\ i_{2} & i_{1} & i_{3} & r_{2} & r_{0} & r_{1} \\ i_{3} & i_{2} & i_{1} & r_{1} & r_{2} & r_{0}\end{array}\right)}$

$$
\begin{gathered}
\text { Projector conjugation } \\
\begin{array}{c}
|m\rangle\langle n|)^{\dagger}=|n\rangle\langle m| \\
\left(\mathbf{P}_{m n}^{\mu}\right)^{\dagger}= \\
=\mathbf{P}_{n m}^{\mu}
\end{array}
\end{gathered}
$$

$\left|\begin{array}{l}\mu \\ m n\end{array}\right\rangle=\mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle \frac{1}{\text { norm }}=\frac{\ell^{(\mu)}}{{ }^{\circ} G \cdot \text { norm }} \sum_{\mathrm{g}}^{{ }^{\circ} G} D_{m n}^{\mu^{*}}(g)|\mathbf{g}\rangle$
subject to normalization (from p. 11):
norm $=\sqrt{\langle\mathbf{1}| \mathbf{P}_{n n}^{\mu}|\mathbf{1}\rangle}=\sqrt{\frac{\ell^{(\mu)}}{{ }^{\circ} G}}$ (So, fuggettabout it! will cancel out)

$$
\left|\mathbf{P}_{x x}^{A_{1}}\right\rangle\left|\mathbf{P}_{y y}^{b_{y}}\right\rangle\left|\mathbf{P}_{x x}^{E_{x}}\right\rangle\left|\mathbf{P}_{x y}^{E_{i}}\right\rangle\left|\mathbf{P}_{y x}^{E_{i}}\right\rangle\left|\mathbf{P}_{y y}^{E_{i}}\right\rangle
$$

\mathbf{H} matrix in
$|\mathbf{g}\rangle$-basis:
\((\mathbf{H})_{G}=\sum_{g=1}^{o} \sum_{G} r_{g} \overline{\mathbf{g}}=\left(\begin{array}{cccccc}r_{0} \& r_{2} \& r_{1} \& i_{1} \& i_{2} \& i_{3}

r_{1} \& r_{0} \& r_{1} \& i_{3} \& i_{1} \& i_{2}

r_{2} \& r_{1} \& r_{0} \& i_{2} \& i_{3} \& i_{1}

i_{1} \& i_{3} \& i_{2} \& r_{0} \& r_{1} \& r_{2}

i_{2} \& i_{1} \& i_{3} \& r_{2} \& r_{0} \& r_{1}

i_{3} \& i_{2} \& i_{1} \& r_{1} \& r_{2} \& r_{0}\end{array}\right) \quad\)| \mathbf{H} matrix in |
| :--- |
| $\left\|\mathbf{P}^{(\mu)}\right\rangle$-basis: |\(\quad(\mathbf{H})_{P}=\bar{T}(\mathbf{H})_{G} \bar{T}^{\dagger}=\left(\begin{array}{c|c|cc|cc}H^{A_{1}} \& \cdot \& \cdot \& \cdot \& \cdot \& \cdot

\hline \cdot \& H^{A_{2}} \& \cdot \& \cdot \& \cdot \& \cdot

\hline \cdot \& \cdot \& H_{x x}^{E_{1}} \& H_{x y}^{E_{1}} \& \cdot \& \cdot

\cdot \& \cdot \& H_{y x}^{E_{1}} \& H_{y y}^{E_{1}} \& \cdot \& \cdot

\hline \cdot \& \cdot \& \cdot \& \cdot \& H_{x x}^{E_{1}} \& H_{x y}^{E_{1}}

\cdot \& \cdot \& \cdot \& \cdot \& H_{y x}^{E_{1}} \& H_{y y}^{E_{1}}\end{array}\right)\)

$$
\begin{aligned}
& \left.H_{a b}^{\alpha}=\left\langle\mathbf{P}_{m a}^{\mu}\right| \mathbf{H}\left|\mathbf{P}_{n b}^{\mu}\right\rangle=\langle\mathbf{1}| \mathbf{P}_{a, ~}^{\mu} \mathbf{(n o r m) ^ { 2 }} \mathbf{H} \mathbf{P}_{n b}^{\mu}|\mathbf{1}\rangle=\langle\mathbf{1}| \mathbf{H} \mathbf{P}_{a m}^{\mu} \mathbf{P}_{n h}^{\mu}|\mathbf{1}\rangle\right\rangle \\
& \text { Mock-Mach } \\
& \text { commutation } \\
& \mathbf{r} \overline{\mathbf{r}}=\overline{\mathbf{r}} \mathbf{r} \\
& \text { (p.31) }
\end{aligned}
$$

$\left|\begin{array}{c}\mu \\ m n\end{array}\right\rangle=\mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle \frac{1}{\text { norm }}=\frac{\ell^{(\mu)}}{{ }^{\circ} G \cdot n o r m} \sum_{\mathrm{g}}^{{ }^{\circ} G} D_{m n}^{\mu^{*}}(g)|\mathrm{g}\rangle$
subject to normalization (from p. 11):
norm $=\sqrt{\langle\mathbf{1}| \mathbf{P}_{n n}^{\mu}|\mathbf{1}\rangle}=\sqrt{\frac{\ell^{(\mu)}}{{ }^{\circ} G}}$ (whin, fuggetatabout tit cancel out)

$$
\left.\left.\left|\mathbf{P}_{x x}^{4}\right\rangle\left|\mathbf{P}_{y y}^{b}\right\rangle\left|\mathbf{P}_{x x}^{E_{x}}\right\rangle\left|\mathbf{P}_{x y}^{E_{y}}\right\rangle\left|\mathbf{P}_{x y}^{E}\right\rangle\right\rangle \mathbf{P}_{y y}^{E_{y}}\right\rangle
$$

$$
\begin{aligned}
& \text { Use } \mathbf{P}_{m n}^{\mu} \text {-orthonormality } \\
& \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}} \mathbf{P}_{m n}^{\mu}=\delta^{\mu^{\prime} \mu} \delta_{n^{\prime} m} \mathbf{P}_{m^{\prime} n}^{\mu} \\
& \text { (p.18) }
\end{aligned}
$$

$$
\left.\left|\begin{array}{l}
\mu n \\
\mu
\end{array}\right|=\mathbf{P}_{m n}^{\mu}\left|\mathbf{1} \frac{1}{n o r m}=\frac{\ell^{(\mu)}}{{ }^{(\mu)} \cdot n o r m} \sum_{\mathrm{g}}^{\circ} \sum_{m n}^{\mu^{*}}(\mathrm{~g})\right| \mathrm{g}\right\rangle
$$

subject to normalization (from p. 11):
norm $=\sqrt{|1| \mathbf{P}_{n n}^{\mu}|\mathbf{1}\rangle}=\sqrt{\frac{\ell^{(\mu)}}{{ }^{G}}}$ (which will cancel out)

$$
\left|\mathbf{P}_{x x}^{A_{1}}\right\rangle\left|\mathbf{P}_{y y}^{b_{y}}\right\rangle\left|\mathbf{P}_{x x}^{E_{x}}\right\rangle\left|\mathbf{P}_{x y}^{E_{i}}\right\rangle\left|\mathbf{P}_{y x}^{E_{i}}\right\rangle\left|\mathbf{P}_{y y}^{E_{i}}\right\rangle
$$

$$
\left.\left|\begin{array}{l}
\mu n \\
\mu
\end{array}\right|=\mathbf{P}_{m n}^{\mu}\left|\mathbf{1} \frac{1}{n o r m}=\frac{\ell^{(\mu)}}{{ }^{(\mu)} \cdot n o r m} \sum_{\mathrm{g}}^{\circ} \sum_{m n}^{\mu^{*}}(\mathrm{~g})\right| \mathrm{g}\right\rangle
$$

subject to normalization (from p. 11):
norm $=\sqrt{|1| \mathbf{P}_{n n}^{\mu}|\mathbf{1}\rangle}=\sqrt{\frac{\ell^{(\mu)}}{{ }^{G}}}$ (which will cancel out)

$$
\left|\mathbf{P}_{x x}^{A_{1}}\right\rangle\left|\mathbf{P}_{y y}^{b_{y}}\right\rangle\left|\mathbf{P}_{x x}^{E_{x}}\right\rangle\left|\mathbf{P}_{x y}^{E_{i}}\right\rangle\left|\mathbf{P}_{y x}^{E_{i}}\right\rangle\left|\mathbf{P}_{y y}^{E_{i}}\right\rangle
$$

$H^{A_{1}}=r_{0} D^{A_{1}^{*}}(1)+r_{1} D^{A_{1}^{*}}\left(r^{1}\right)+r_{1}^{*} D^{A_{1}^{*}}\left(r^{2}\right)+i_{1} D^{A_{1}^{*}}\left(i_{1}\right)+i_{2} D^{A_{1}^{*}}\left(i_{2}\right)+i_{3} D^{A_{1}{ }^{*}}\left(i_{3}\right)=r_{0}+r_{1}+r_{1}^{*}+i_{1}+i_{2}+i_{3}$
$\underset{\mathbf{g}=}{\text { Coefficients }} D_{m n}^{\mu}(g)_{\mathbf{r}^{1}}$ are irreducible representations (ireps) of $\mathbf{\mathbf { i } _ { \mathbf { 1 } }} \mathbf{g}$

$$
\left|\mathbf{P}_{x x}^{4}\right\rangle\left|\mathbf{P}_{y y}^{b}\right\rangle\left|\mathbf{P}_{x x}^{E_{x}}\right\rangle\left|\mathbf{P}_{x y}^{E_{y}}\right\rangle\left|\mathbf{P}_{x y}^{E}\right\rangle\left|\mathbf{P}_{y y}^{E_{y}}\right\rangle
$$

$$
\begin{aligned}
& H^{A_{1}}=r_{0} D^{A_{1}{ }^{*}}(1)+r_{1} D^{A_{1}{ }^{*}}\left(r^{1}\right)+r_{1}^{*} D^{A_{1}{ }^{*}}\left(r^{2}\right)+i_{1} D^{A_{1}{ }^{*}}\left(i_{1}\right)+i_{2} D^{A_{1}{ }^{*}}\left(i_{2}\right)+i_{3} D^{A_{1}{ }^{*}}\left(i_{3}\right)=r_{0}+r_{1}+r_{1}^{*}+i_{1}+i_{2}+i_{3} \\
& H^{A_{2}}=r_{0} D^{A_{2}{ }^{*}}(1)+r_{1} D^{A_{2}{ }^{*}}\left(r^{1}\right)+r_{1}^{*} D^{A_{2} *}\left(r^{2}\right)+i_{1} D^{A_{2}{ }^{*}}\left(i_{1}\right)+i_{2} D^{A_{2}{ }^{*}}\left(i_{2}\right)+i_{3} D^{A_{2}{ }^{*}}\left(i_{3}\right)=r_{0}+r_{1}+r_{1}^{*}-i_{1}-i_{2}-i_{3} \\
& H_{x x}^{E_{1}}=r_{0} D_{x x}^{E^{*}}(1)+r_{1} D_{x x}^{E^{*}}\left(r^{1}\right)+r_{1}^{*} D_{x x}^{E^{*}}\left(r^{2}\right)+i_{1} D_{x x}^{E^{*}}\left(i_{1}\right)+i_{2} D_{x x}^{E^{*}}\left(i_{2}\right)+i_{3} D_{x x}^{E^{*}}\left(i_{3}\right)=\left(2 r_{0}-r_{1}-r_{1}^{*}-i_{1}-i_{2}+2 i_{3}\right) / 2
\end{aligned}
$$

$$
\left.\left.\left|\mathbf{P}_{x x}^{4}\right\rangle\left|\mathbf{P}_{y y}^{b}\right\rangle\left|\mathbf{P}_{x x}^{E_{x}}\right\rangle\left|\mathbf{P}_{x y}^{E_{y}}\right\rangle\left|\mathbf{P}_{x y}^{E}\right\rangle\right\rangle \mathbf{P}_{y y}^{E_{y}}\right\rangle
$$

$$
\begin{aligned}
& (\mathbf{H})_{G}={ }_{g=1}^{{ }^{o} G} r_{g} \overline{\mathbf{g}}=\left(\begin{array}{cccccc}
\because r_{0} \\
r_{0} & r_{2} & r_{1} & i_{1} & i_{2} & i_{3} \\
r_{1} & r_{0} & r_{1} & i_{3} & i_{1} & i_{2} \\
r_{2} & r_{1} & r_{0} & i_{2} & i_{3} & i_{1} \\
i_{i} & i_{3} & i_{2} & r_{0} & r_{1} & r_{2} \\
i_{2} & i_{1} & i_{3} & r_{2} & r_{0} & r_{1} \\
i_{3} & i_{2} & i_{1} & r_{1} & r_{2} & r_{0}
\end{array}\right) . \\
& \begin{array}{l}
\mathbf{H} \text { matrix in } \\
\left|\mathbf{P}^{(\mu)}\right\rangle \text {-basis: }
\end{array} \\
& (\mathbf{H})_{P}=\bar{T}(\mathbf{H})_{G} \bar{T}^{\dagger}=
\end{aligned}
$$

$$
\begin{aligned}
& H^{A_{1}}=r_{0} D^{A_{1}{ }^{*}}(1)+r_{1} D^{A_{1}{ }^{*}}\left(r^{1}\right)+r_{1}^{*} D^{A_{1}{ }^{*}}\left(r^{2}\right)+i_{1} D^{A_{1}}{ }^{*}\left(i_{1}\right)+i_{2} D^{A_{1}{ }^{*}}\left(i_{2}\right)+i_{3} D^{A_{1}{ }^{*}}\left(i_{3}\right)=r_{0}+r_{1}+r_{1}^{*}+i_{1}+i_{2}+i_{3} \\
& H^{A_{2}}=r_{0} D^{A_{2}{ }^{*}}(1)+r_{1} D^{A_{2}{ }^{*}}\left(r^{1}\right)+r_{1}^{*} D^{A_{2}{ }^{*}}\left(r^{2}\right)+i_{1} D^{A_{2}{ }^{*}}\left(i_{1}\right)+i_{2} D^{A_{2}{ }^{*}}\left(i_{2}\right)+i_{3} D^{A_{2}{ }^{*}}\left(i_{3}\right)=r_{0}+r_{1}+r_{1}^{*}-i_{1}-i_{2}-i_{3} \\
& H_{x x}^{E_{1}}=r_{0} D_{x x}^{E^{*}}(1)+r_{1} D_{x x}^{E^{*}}\left(r^{1}\right)+r_{1}^{*} D_{x x}^{E^{*}}\left(r^{2}\right)+i_{1} D_{x x}^{E^{*}}\left(i_{1}\right)+i_{2} D_{x x}^{E^{*}}\left(i_{2}\right)+i_{3} D_{x x}^{E^{*}}\left(i_{3}\right)=\left(2 r_{0}-r_{1}-r_{1}^{*}-i_{1}-i_{2}+2 i_{3}\right) / 2 \\
& H_{x y}^{E_{1}}=r_{0} D_{x y}^{E^{*}}(1)+r_{1} D_{x y}^{E^{*}}\left(r^{1}\right)+r_{1}^{*} D_{x y}^{E^{*}}\left(r^{2}\right)+i_{1} D_{x y}^{E^{*}}\left(i_{1}\right)+i_{2} D_{x y}^{E^{*}}\left(i_{2}\right)+i_{3} D_{x y}^{E^{*}}\left(i_{3}\right)=\sqrt{3}\left(-r_{1}+r_{1}^{*}-i_{1}+i_{2}\right) / 2=H_{y x}^{E^{*}}
\end{aligned}
$$

$\underset{\mathbf{g}=}{\text { Coefficients }} D_{\mathbf{1}}^{\mu}(g)_{\mathbf{r}^{1}}$ are irreducible representations (ireps) of $\underset{\mathbf{i}_{\mathbf{i}}}{\mathbf{g}}$

$\mathrm{g}=$	1	${ }^{\mathbf{r}}$	\mathbf{r}^{2}	i_{1}	i_{2}	i_{3}
$D^{A_{1}}(\mathbf{g})=$	1	1		$\begin{gathered} 1 \\ -1 \end{gathered}$	$\begin{gathered} 1 \\ -1 \end{gathered}$	1
$\begin{aligned} & D^{A_{2}}(\mathbf{g})= \\ & D_{x, y}^{E_{1}}(\mathbf{g})= \end{aligned}$	$\left(\begin{array}{ll}1 & . \\ \cdot & 1\end{array}\right)$	$\left(\begin{array}{cc}-\frac{1}{2} & -\left(\frac{\sqrt{3}}{2}\right. \\ \frac{\sqrt{3}}{2} & -\frac{1}{2}\end{array}\right)$	$\left(\begin{array}{cc} -\frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} \end{array}\right)$	$\left(\begin{array}{cc}-\frac{1}{2} & -\left(\frac{\sqrt{3}}{2}\right. \\ -\frac{\sqrt{3}}{2} & \frac{1}{2}\end{array}\right)$	$\left(\begin{array}{cc}-\frac{1}{2} & \sqrt{3} \\ \frac{\sqrt{3}}{2} \\ \frac{3}{2} & \frac{1}{2}\end{array}\right)$	$\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$

$$
\begin{aligned}
& (\mathbf{H})_{G}=\sum_{g=1}^{o} r_{g} \overline{\mathbf{g}}=\left(\begin{array}{cccccc}
\ldots \ldots \ldots \ldots \ldots \\
r_{0} & r_{2} & r_{1} & i_{1} & i_{2} & i_{3} \\
r_{1} & r_{0} & r_{1} & i_{3} & i_{1} & i_{2} \\
r_{2} & r_{1} & r_{0} & i_{2} & i_{3} & i_{1} \\
i_{i} & i_{3} & i_{2} & r_{0} & r_{1} & r_{2} \\
i_{2} & i_{1} & i_{3} & r_{2} & r_{0} & r_{1} \\
i_{3} & i_{2} & i_{1} & r_{1} & r_{2} & r_{0}
\end{array}\right) . \\
& \begin{array}{l}
\mathbf{H} \text { matrix in } \\
\left|\mathbf{P}^{(\mu)}\right\rangle \text {-basis: }
\end{array} \\
& (\mathbf{H})_{P}=\bar{T}(\mathbf{H})_{G} \bar{T}^{\dagger}= \\
& H_{a b}^{\alpha}=\left\langle\mathbf{P}_{m a}^{\mu}\right| \mathbf{H}\left|\mathbf{P}_{n b}^{\mu}\right\rangle=\langle\mathbf{l}| \mathbf{P}_{a m}^{\mu} \mathbf{H} \mathbf{P}_{n b}^{\mu}|\mathbf{1}\rangle=\langle\mathbf{1}| \mathbf{H P}_{a m}^{\mu} \mathbf{P}_{\frac{n}{(n o r m)^{2}}}^{\mu}|\mathbf{1}\rangle=\delta_{m n}\langle\mathbf{1}| \mathbf{H} \underset{\frac{a b}{(n o r m)^{2}}}{\mu}|\mathbf{1}\rangle=\sum_{g=1}^{{ }^{\circ} G}\langle\mathbf{1}| \mathbf{H}|\mathbf{g}\rangle_{a b}^{a^{a^{*}}}(g)=\sum_{g=1}^{{ }^{\circ} G} r_{g} D_{a b}^{a^{*}}(g) \\
& H^{A_{1}}=r_{0} D^{A_{1}{ }^{*}}(1)+r_{1} D^{A_{1}{ }^{*}}\left(r^{1}\right)+r_{1}^{*} D^{A_{1}{ }^{*}}\left(r^{2}\right)+i_{1} D^{A_{1}{ }^{*}}\left(i_{1}\right)+i_{2} D^{A_{1}{ }^{*}}\left(i_{2}\right)+i_{3} D^{A_{1}{ }^{*}}\left(i_{3}\right)=r_{0}+r_{1}+r_{1}^{*}+i_{1}+i_{2}+i_{3} \\
& H^{A_{2}}=r_{0} D^{A_{2}{ }^{*}}(1)+r_{1} D^{A_{2}{ }^{*}}\left(r^{1}\right)+r_{1}^{*} D^{A_{2}{ }^{*}}\left(r^{2}\right)+i_{1} D^{A_{2}{ }^{*}}\left(i_{1}\right)+i_{2} D^{A_{2}{ }^{*}}\left(i_{2}\right)+i_{3} D^{A_{2}{ }^{*}}\left(i_{3}\right)=r_{0}+r_{1}+r_{1}^{*}-i_{1}-i_{2}-i_{3} \\
& H_{x x}^{E_{1}}=r_{0} D_{x x}^{E^{*}}(1)+r_{1} D_{x x}^{E^{*}}\left(r^{1}\right)+r_{1}^{*} D_{x x}^{E^{*}}\left(r^{2}\right)+i_{1} D_{x x}^{E^{*}}\left(i_{1}\right)+i_{2} D_{x x}^{E^{*}}\left(i_{2}\right)+i_{3} D_{x x}^{E^{*}}\left(i_{3}\right)=\left(2 r_{0}-r_{1}-r_{1}^{*}-i_{1}-i_{2}+2 i_{3}\right) / 2 \\
& H_{x y}^{E_{1}}=r_{0} D_{x y}^{E^{E^{*}}}(1)+r_{1} D_{x y}^{E^{*}}\left(r^{1}\right)+r_{1}^{*} D_{x y}^{E^{*}}\left(r^{2}\right)+i_{1} D_{x y}^{E^{*}}\left(i_{1}\right)+i_{2} D_{x y}^{E^{*}}\left(i_{2}\right)+i_{3} D_{x y}^{E^{*}}\left(i_{3}\right)=\sqrt{3}\left(-r_{1}+r_{1}^{*}-i_{1}+i_{2}\right) / 2=H_{y x}^{E^{*}} \\
& H_{y y}^{E_{1}}=r_{0} D_{y y}^{E^{*}}(1)+r_{1} D_{y y}^{E^{*}}\left(r^{1}\right)+r_{1}^{*} D_{y y}^{E^{*}}\left(r^{2}\right)+i_{1} D_{y y}^{E^{*}}\left(i_{1}\right)+i_{2} D_{y y}^{E^{*}}\left(i_{2}\right)+i_{3} D_{y y}^{E^{*}}\left(i_{3}\right)=\left(2 r_{0}-r_{1}-r_{1}^{*}+i_{1}+i_{2}-2 i_{3}\right) / 2 \\
& \underset{\mathbf{g}=}{\text { Coefficients }} D_{m n}^{\mu}(g)_{\mathbf{r}^{1}} \text { are irreducible representations (ireps) of } \mathbf{\mathbf { r } ^ { 2 }} \mathbf{g}
\end{aligned}
$$

$$
\left|\mathbf{P}_{x x}^{\mathbf{P}_{1}}\right\rangle\left|\mathbf{P}_{y y}^{b}\right\rangle\left|\mathbf{P}_{x x}^{E_{x}}\right\rangle\left|\mathbf{P}_{p_{y}}^{E_{i}}\right\rangle\left|\mathbf{P}_{x y}^{E_{1}}\right\rangle \mid \mathbf{P}_{x y}^{E_{i}}
$$

$$
\left(\begin{array}{ll}
H_{x x}^{E_{1}} & H_{x y}^{E_{1}} \\
H_{y x}^{E_{1}} & H_{y y}^{E_{1}}
\end{array}\right)=\frac{1}{2}\left(\begin{array}{cc}
2 r_{0}-r_{1}-r_{1}^{*}-i_{1}-i_{2}+2 i_{3} & \sqrt{3}\left(-r_{1}+r_{1}^{*}-i_{1}+i_{2}\right) \\
\sqrt{3}\left(-r_{1}^{*}+r_{1}-i_{1}+i_{2}\right) & 2 r_{0}-r_{1}-r_{1}^{*}+i_{1}+i_{2}-2 i_{3}
\end{array}\right)
$$

$$
\left|\mathbf{P}_{x x}^{4}\right\rangle\left|\mathbf{P}_{y y}^{b}\right\rangle\left|\mathbf{P}_{x x}^{E_{x}}\right\rangle\left|\mathbf{P}_{x y}^{E_{y}}\right\rangle\left|\mathbf{P}_{x y}^{E}\right\rangle\left|\mathbf{P}_{x y}^{E_{y}}\right\rangle
$$

$$
\mathbf{P}_{m n}^{(\mu)}=\frac{\ell^{(\mu)}}{{ }^{\circ}} \sum_{\mathrm{g}} D_{m n}^{(\mu)^{*}}(\mathrm{~g}) \mathrm{g}
$$

Spectral Efficiency: Same $D(a)_{m n}$ projectors give a lot!

-Local symmetery eigenvalue formulae (L.S. $=>$ off-diagonal zero.)
$C_{2}=\left\{\mathbf{1}, \mathbf{i}_{3}\right\}$
Local symmetry
determines all levels and eigenvectors with just 4 real parameters

$$
\begin{aligned}
r_{1}=r_{2}=r_{1} *= & \quad i_{1}=i_{2}=i_{1} *=i \\
& A_{1} \text {-level: } H+2 r+2 i+\dot{i}_{3} \\
\text { gives: } & A_{1} \text {-level: } H+2 r-2 i-\dot{\zeta}_{3} \\
& E_{x} \text {-level: } H-r-i+\dot{i}_{3} \\
& E_{y} \text {-level: } H-r+i-i_{3}
\end{aligned}
$$

Global (LAB) symmetry $\quad D_{3}>C_{2} \mathbf{i}_{3}$ projector states

$$
\begin{aligned}
\dot{\mathbf{i}}_{3}|(m)\rangle= & =\dot{\mathbf{i}}_{3} \mathbf{P}_{e b}^{(m)}|1\rangle \\
& \left.=\left.(-1)^{e}\right|^{(m)}\right\rangle
\end{aligned}
$$

$$
\left|{ }_{e b}^{(m)}\right\rangle=\mathbf{P}_{e b}^{(m)}|1\rangle
$$

Local (BOD) symmetry

$$
\begin{aligned}
& \overline{\overline{\mathbf{i}}_{3}} \mid e b \\
& =(m)\rangle=\overline{\mathbf{i}}_{3} \mathbf{P}_{e b}^{(m)}|1\rangle=\mathbf{P}_{e b}^{(m)} \overline{\mathbf{i}_{3}}|1\rangle \\
& =\mathbf{P}_{e b}^{(m)}{ }^{\boldsymbol{i}}{ }_{3}^{\dagger}|1\rangle=(-1)^{b}|(m)\rangle
\end{aligned}
$$

When there is no there, there...

Nobody Home
where LOCAL and GLOBAL


```
Review: Projector formulae and subgroup splitting
    Algebra and geometry of irreducible D }\mp@subsup{|}{jk}{}(g)\mathrm{ and projector }\mp@subsup{\mathbb{P}}{jkk}{\mu}\mathrm{ transformation
    Example of D D transformation by matrix D D Ejk(r
Details of Mock-Mach relativity-duality for D3 groups and representations
    Lab-fixed(Extrinsic-Global) vs. Body-fixed (Intrinsic-Local)
    Compare Global vs Local |g\rangle-basis and Global vs Local |P}\mp@subsup{}{}{(\mu)}\rangle\mathrm{ -basis
```

Hamiltonian and D_{3} group matrices in global and local $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis Hamiltonian local-symmetry eigensolution Molecular vibrational mode eigensolution

Local symmetry limit
Global symmetry limit (free or "genuine" modes)

(a) Local $D_{3} \supset C_{2}\left(i_{3}\right)$ model

Weak
local C_{2} coupling
limit

Mixed local symmetry D_{3} model

Strong C_{3} coupling limit

Mixed local symmetry D_{3} model ,

