Lecture 10 Thum: 2,18,2016 Dynamics of Potentials and Force Fields

(Ch. 6 and part of Ch. 7 of Unit 1)
Potential energy dynamics of Superballs and related things
Thales geometry and "Sagittal approximation" to superball force law Geometry and dynamics of single ball bounce
(a) Constant force $F=-k$ (linear potential $V=k x$)

Some physics of dare-devil diving 80 ft . into kidee pool
(b) Linear force $F=-k x$ (quadratic potential $V=1 / 2 k x^{2}$ (like balloon))
(c) Non-linear force (like superball-floor or ball-bearing-anvil)

Geometry and potential dynamics of 2-ball bounce

A parable of RumpCo. vs CrapCorp. (introducing 3-mass potential-driven dynamics)
A story of USC pre-meds visiting Whammo Manufacturing Co.
Geometry and dynamics of n-ball bounces
Analogy with shockwave and acoustical horn amplifier
Advantages of a geometric $m_{1}, m_{2}, m_{3}, \ldots$ series
A story of Stirling Colgate (Palmolive) and core-collapse supernovae
Many-body 1D collisions
Elastic examples: Western buckboard
Bouncing columns and Newton's cradle
Inelastic examples: "Zig-zag geometry" of freeway crashes
Super-elastic examples: This really is "Rocket-Science"

Potential energy dynamics of Superballs and related things

\longrightarrow Thales geometry and "Sagittal approximation" to force law Geometry and dynamics of single ball bounce

General Non-linear force (like superball-floor or ball-bearing-anvil)
Constant force $F=-k$ (linear potential $V=k x$)
Some physics of dare-devil-diving 80 ft. into kidee pool
Linear force $F=-k x$ (quadratic potential $V=1 / 2 k x^{2}$ (like balloon))
Geometry and potential dvnamics of 2-ball bounce A parable of RumpCo. vs CrapCorp. (introducing 3-mass potential-driven dynamics) A story of USC pre-meds visiting Whammo Manufacturing Co.
Geometry and dynamics of n-ball bounces
Analogy with shockwave and acoustical horn amplifier
Advantages of a geometric $m_{1}, m_{2}, m_{3}, \ldots$ series
A story of Stirling Colgate (Palmolive) and core-collapse supernovae
Many-body ID collisions
Elastic examples: Western buckboard
Bouncing columns and Newton's cradle
Inelastic examples: "Zig-zag geometry" of freeway crashes
Super-elastic examples. This really is "Rocket-Science"

Potential Energy Geometry of Superballs and Related things
(a)

Unit 1
Fig. 6.1
(modified)
(b)

Potential Energy Geometry of Superballs and Related things
(a)

(b)

Fig. 6.1
If superball was a balloon its bounce force law would be linear $F=-k \cdot x_{\text {(Hooke } \operatorname{caw})}$
(modified)

$$
\begin{aligned}
F_{\text {balloon }}(x)=\stackrel{\stackrel{(P \text { Praserve) (Alarea) }}{ }}{P \cdot A} & =P \cdot \pi r^{2} \\
& \approx P \cdot \pi 2 R x
\end{aligned}
$$

Potential Energy Geometry of Superballs and Related things
(a)

(b)

Fig. 6.1
If superball was a balloon its bounce force law would be linear $F=-k \cdot x_{\text {(Hooke Law) }}$
(modified)

$$
\begin{aligned}
& F_{\text {balloon }}(x)=P \cdot A=P \cdot \pi r^{2} \\
& \approx P \cdot \pi 2 R x=P \cdot 2 \pi R x_{\text {(Hoolesproping consement })} \\
& =k x
\end{aligned}
$$

Potential Energy Geometry of Superballs and Related things

(a)

Unit 1
Fig. 6.1 (modified)

If superball was a balloon its bounce force law would be linear $F=-k \cdot x_{\text {(Hooke Law) }}$

$$
F_{\text {balloon }}(x)=P \cdot A=P \cdot \pi r^{2}
$$

$$
\begin{aligned}
\approx P \cdot \pi 2 R x & =\underbrace{P \cdot 2 \pi R x}_{k x} \\
& =\underbrace{2 \pi}_{k x}
\end{aligned}
$$

Instead superball force law depends on bulk volume modulus and is non-linear $F \sim x^{p}$? + ? (Power Law?)
$\operatorname{Volume}(X)=\int_{0}^{X} \overline{\pi r^{2}} d x=\int_{0}^{X} \pi x(2 R-x) d x$

Potential Energy Geometry of Superballs and Related things
(a)

(b)

Unit 1
Fig. 6.1
(modified)

$$
\begin{aligned}
& \text { If superball was a balloon its bounce } \mathrm{f} \\
& F_{\text {balloon }}(x)=P \cdot A=P \cdot \pi r^{2}
\end{aligned}
$$

$$
\begin{aligned}
\approx P \cdot \pi 2 R x & =\underbrace{P \cdot 2 \pi R x}_{k x} \\
& =\text { HHookespring constant } k)
\end{aligned}
$$

Instead superball force law depends on bulk volume modulus and is non-linear $F \sim x^{p}$? + (Pover Law?)

$$
\operatorname{Volume}(X)=\int_{0}^{X} \pi r^{2} d x=\int_{0}^{X} \pi x(2 R-x) d x=\int_{0}^{X} 2 R \pi x d x-\int_{0}^{X} \pi x^{2} d x=R \pi X^{2}-\frac{\pi X^{3}}{3} \approx \begin{cases}R \pi X^{2} & (\text { for }: X \ll R) \\ \frac{4}{3} \pi R^{3} & (\text { for }: X=2 R)\end{cases}
$$

Potential Energy Geometry of Superballs and Related things
(a)

(b)

Unit 1
Fig. 6.1
$\underset{\text { (modified) }}{ }$

If superball was a balloon its bounce force lavy would be linear $F=-k \cdot x_{\text {(Hooke Lan) }}$

$$
\begin{aligned}
& F_{\text {balloon }}(x)=P \cdot A=P \cdot \pi r^{2} \\
& \approx P \cdot \pi 2 R x=P \cdot 2 \pi R x_{\text {(Hooke spring constant } k \text {) }} \\
& =r_{k x}
\end{aligned}
$$

Instead superball force law depends on bulk volume modulus and is non-linear $F \sim x^{p}$? + (Pover Law?)

$$
\operatorname{Volume}(X)=\int_{0}^{X} \pi r^{2} d x=\int_{0}^{X} \pi x(2 R-x) d x=\int_{0}^{X} 2 R \pi x d x-\int_{0}^{X} \pi x^{2} d x=R \pi X^{2}-\frac{\pi X^{3}}{3} \approx \begin{cases}R \pi X^{2} & (\text { for }: X \ll R) \\ \frac{4}{3} \pi R^{3} & (\text { for }: X=2 R)\end{cases}
$$

It also depends on velocity $\dot{x}=\frac{d x}{d t}$. Adiabatic differs from Isothermal as shown by "Project-Ball*"

Potential energy dynamics of Superballs and related things

Thales geometry and "Sagittal approximation" to force law
\longrightarrow Geometry and dynamics of single ball bounce
General Non-linear force (like superball-floor or ball-bearing-anvil)
Constant force $F=-k$ (linear potential $V=k x$)
Some physics of dare-devil-diving 80 ft. into kidee pool
Linear force $F=-k x$ (quadratic potential $V=1 / 2 k x^{2}$ (like balloon))
Geometry and potential dynamics of 2-ball bounce
A parable of RumpCo. vs CrapCorp. (introducing 3-mass potential-driven dynamics)
A story of USC pre-meds visiting Whammo Manufacturing Co.
Geometry and dynamics of n-ball bounces
Analogy with shockwave and acoustical horn amplifier
Advantages of a geometric $m_{1}, m_{2}, m_{3}, \ldots$ series
A story of Stirling Colgate (Palmolive) and core-collapse supernovae
Many-body 1D collisions
Elastic examples: Western buckboard
Bouncing columns and Newton's craalle
Inelastic examples: "Zig-zag geometry" of freeway crashes
Super-elastic examples: This really is "Rocket-Science"

Main Control Panel

Resume

\odot Let mouse set: $(x, y, V x, V y)$
\bigcirc Let mouse set force: $F(t)$
Pot solid paths
\odot Plot dotted paths
\bigcirc Plot no paths
○ Plot V1 vs. V2
$\bigcirc \operatorname{Plot} \mathrm{Y} 1(\mathrm{t}), \mathrm{Y} 2(\mathrm{t}), \ldots$
\odot Plot PE of m 1 vs. Y1
\bigcirc Plot Y2 vs. Y1
Number of masses

○ Plot user defined i.e - Y1 vs. Y2

- Balls initially falling
- Balls initially fixed
\odot No preset initial values
Plot V2 vs V1
Pause (once) at top
\boxtimes Constrain motion to Y -axis
\checkmark Plot v2 vs v1
\square Plot p2 vs p1
Plot EllipsesPlot Bisector LinesOld Color Scheme
\downarrow Show right panel information
∇ Show left panel information
\square Set Initial positions

This is the generic Bouncelt URL (or address): http://www.uark.edu/ua/modphys/markup/BounceltWeb.html Bouncelt Simulation: Force/Potential Plot (Force power=4)
Collision friction (Viscosity)

Initial gap between balls
$\Longrightarrow-\frac{1}{-1} \times 10^{\wedge} \rightleftharpoons\{\mathrm{g}\}$

Force Constant Usually need to decrease kfor $p=1$

Force power law exponent

Canvas Aspect Ratio - W/H i.e. 0.75 \& 1.0

(a) Drop height

(b) Maximum kinetic energy (Zero total force)

1990 BounceIt Mac simulations

Details of each case follows using newer BounceIt Web simulations

© Let mouse set: (x,y,Vx,Vy)Let mouse set force: $\mathrm{F}(\mathrm{t})$
\bigcirc Plot solid paths
© Plot dotted paths
○ Plot no paths
\bigcirc Plot V1 vs. V2Plot $\mathrm{Y} 1(\mathrm{t}), \mathrm{Y} 2(\mathrm{t}), \ldots$
© Plot PE of ml vs. Y1
○ Plot Y2 vs. Y1
○ Plot user defined i.e - Y1 vs. Y2
Balls initially falling
© Balls initially fixed
Sets gravity

O No preset initial values

Acceleration of gravity
∇
Draw force vectors
\checkmark
Pause (once) at top
\checkmark Constrain motion to Y-axis

- Plot v2 vs v1
\square Plot p2 vs p1
\square Plot V2 vs V1Plot Ellipses
Number of masses
$\Theta=1$ Balls
Plot Bisector LinesOld Color Scheme

This is the generic Bouncelt URL (or address):

Collision friction (Viscosity)
$\left.\Theta=0<0 \times 10^{\wedge}=0<\mathrm{g}\right\}$
Initial gap between balls

Force power law exponent
$\Theta=1$ ©
Force Constant
$\Theta=500$ (C)
Canvas Aspect Ratio - W/H i.e. 0.75 \& 1.0
$\Longrightarrow 0.75$ ©

Zero Gap 2-Ball Collision (m1:m2 $=1: 7)$	
Linear 2-Ball Collision (m1:m2 $=1: 7)$	
Newton's Balls (Zero gap, Nonlinear force)	
Newton's Balls (Zero gap, Linear force)	
Ne-Ball Tower	
See Simulations $)$	\longrightarrow
Potential Plot (1 Ball, Nonlinear force)	
Potential Plot (1 Ball, Linear force)	
Gravity Potential (1 Ball, Nonlinear force)	
Gravity Potential (1 Ball, Linear force)	

Display of Force vector using similar triangle constuction based on the slope of potential curve.

Display of Force vector using similar triangle constuction based on the slope of potential curve.

Bouncelt Simulation: Force/Potential Plot

Number of masses
\odot Let mouse set: ($\mathrm{x}, \mathrm{y}, \mathrm{V} \mathrm{x}, \mathrm{Vy}$)
\bigcirc Let mouse set force: $F(t)$

- Plot solid paths
© Plot dotted paths
- Plot no paths

○ Plot V1 vs. V2
$\bigcirc \operatorname{Plot} \mathrm{Y} 1(\mathrm{t}), \mathrm{Y} 2(\mathrm{t}), \ldots$

- Plot PE of m 1 vs. Y1
\bigcirc Plot Y2 vs. Y1
\bigcirc Plot user defined i.e - Y1 vs. Y2Balls initially falling
\odot Balls initially fixedNo preset initial values
Sets grazityPause (once) at topConstrain motion to Y -axis
\checkmark Plot v2 vs v1Plot p 2 vs p 1Plot V2 vs V1Plot EllipsesPlot Bisector LinesOld Color Scheme
∇ Show right panel information
∇ Show left panel informationSet Initial positions

Collision friction (Viscosity)

Force Constant Usually need to increase k for $p>1$

Canvas Aspect Ratio - W/H i.e. 0.75 \& 1.0

Potential energy dynamics of Superballs and related things

Thales geometry and "Sagittal approximation" to force law Geometry and dynamics of single ball bounce
\longrightarrow General Non-linear force (like superball-floor or ball-bearing-anvil)
Constant force $F=-k$ (linear potential $V=k x$)
Some physics of dare-devil-diving 80 ft. into kidee pool
Linear force $F=-k x$ (quadratic potential $V=1 / 2 k x^{2}$ (like balloon))
Geometry and potential dynamics of 2-ball bounce A parable of RumpCo. vs CrapCorp. (introducing 3-mass potential-driven dynamics) A story of USC pre-meds visiting Whammo Manufacturing Co.
Geometry and dynamics of n-ball bounces
Analogy with shockwave and acoustical horn amplifier
Advantages of a geometric $m_{1}, m_{2}, m_{3}, \ldots$ series
A story of Stirling Colgate (Palmolive) and core-collapse supernovae
Many-body ID collisions
Elastic examples: Western buckboard
Bouncing columns and Newton's cradle
Inelastic examples: "Zig-zag geometry" of freeway crashes
Super-elastic examples. This really is "Rocket-Science"

Force F(x) and
Potential $U(x)$ for soft heavy non-linear superball

Unit 1
Fig. 6.5

$$
\begin{aligned}
& F(x)=-\frac{d U(x)}{d x}
\end{aligned}
$$

Potential $U(x)$ for soft heavy non-linear superball

Unit 1
Fig. 6.5

$$
U^{\operatorname{total}\left(y_{\max }\right)=\int_{y_{\text {static }}}^{y_{\max }} F^{\text {tatotal }}(y) d y+\int_{y=h}^{y_{\text {static }}} F^{\text {ctotal }}(y) d y+U(h)=U(h)=E}
$$

$$
U^{\text {total }}(y)=-M g x+U^{b a l l}(y)
$$

$$
U^{\operatorname{total}\left(y_{\max }\right)=\int_{y_{\text {static }}}^{y_{\text {max }}} F^{\text {Fatal }}(y) d y+\int_{y=h}^{y_{\text {static }}} F^{\text {total }}(y) d y+U(h)=U(h)=E}
$$

Work $=W=\int F(x) d x=$ Energy acquired $=$ Area of $F(x)=-U(x)$

$$
F(x)=-\frac{d U(x)}{d x}
$$

Impulse $=P=\int F(t) d t=$ Momentum acquired $=$ Area of $F(t)=P(t) \quad F(t)=\frac{d P(t)}{d t}$

Potential energy dynamics of Superballs and related things

Thales geometry and "Sagittal approximation" to force law
Geometry and dynamics of single ball bounce
General Non-linear force (like superball-floor or ball-bearing-anvil)
\longrightarrow Constant force $F=-k$ (linear potential $V=k x$)
Some physics of dare-devil-diving 80 ft. into kidee pool
Linear force $F=-k x$ (quadratic potential $V=1 / 2 k x^{2}$ (like balloon))
Geometry and potential dunamics of 2-ball bounce A parable of RumpCo. vs CrapCorp. (introducing 3-mass potential-driven dynamics)
A story of USC pre-meds visiting Whammo Manufacturing Co.
Geometry and dynamics of n-ball bounces
Analogy with shockwave and acoustical horn amplifier
Advantages of a geometric $m_{1}, m_{2}, m_{3}, \ldots$ series
A story of Stirling Colgate (Palmolive) and core-collapse supernovae
Many-body 1D collisions
Elastic examples: Western buckboard
Bouncing columns and Newton's cradle
Inelastic examples: "Zig-zag geometry" of freeway crashes
Super-elastic examples: This really is "Rocket-Science"
© Let mouse set: ($\mathrm{x}, \mathrm{y}, \mathrm{Vx}, \mathrm{V} \mathrm{y}$)
\bigcirc Let mouse set force: $\mathrm{F}(\mathrm{t})$
\bigcirc Plot solid paths
© Plot dotted paths
\bigcirc Plot no paths
○ Plot V1 vs. V2Plot Y1(t), Y2(t), ...
© Plot PE of ml vs. Y1
○ Plot Y2 vs. Y1
○ Plot user defined i.e - Y1 vs. Y2
Balls initially falling
© Balls initially fixed
Sets gravity
Acceleration of gravity ∇

Draw force vectors
\checkmark Pause (once) at top
V Constrain motion to Y-axis
\checkmark Plot v 2 vs v 1
\square Plot p2 vs p1
\square Plot V2 vs V1
\square Plot Ellipses

O No preset initial values
Number of masses
Θ
1 (6)
Balls

Start Resume

Collision friction (Viscosity)
$\left.\Theta=0<0 \times 10^{\wedge}=0<\mathrm{g}\right\}$
$100 x\left\{\mathrm{~cm} / \mathrm{s}^{\wedge} 2\right\}$ Initial gap between balls
5.45 ($-10^{\wedge}-\bigcirc=-1$ (g $\}$

Force power law exponent
$\Theta 1$
Force Constant
$\theta=500$ (-)
Canvas Aspect Ratio - W/H i.e. 0.75 \& 1.0
$\longrightarrow 0.75$ (

Zero Gap 2-Ball Collision (m1:m2 $=1: 7$)	
Linear 2-Ball Collision (m1:m2 $=1: 7$)	
Newton's Balls (Zero gap, Nonlinear force)	
Newton's Balls (Zero gap, Linear force)	
3-Ball Tower	
Potential Plot (1 Ball, Nonlinear force)	
Potential Plot (1 Ball, Linear force)	
Gravity Potential (1 Ball, Nonlinear force)	
Gravity Potential (1 Ball, Linear force)	

Force
$F(x)$
(Units
of $M g$
Newtons)

Constant Force Linear Potential

Unit 1
Fig. 6.3
Work $=W=\int F(x) d x=$ Energy acquired $=$ Area of $F(x)=-U(x)$

$$
\begin{aligned}
& F(x)=-\frac{d U(x)}{d x} \\
& F(t)=\frac{d P(t)}{d t}
\end{aligned}
$$

Potential energy dynamics of Superballs and related things

Thales geometry and "Sagittal approximation" to force law
Geometry and dynamics of single ball bounce
General Non-linear force (like superball-floor or ball-bearing-anvil)
Constant force $F=-k$ (linear potential $V=k x$)
Some physics of dare-devil-diving 80 ft. into kidee pool
\longrightarrow Linear force $F=-k x$ (quadratic potential $V=1 / 2 k x^{2}$ (like balloon))
Geometry
and potential dynamics of 2-ball bounce
A parable of RumpCo. vs CrapCorp. (introducing 3-mass potential-driven dynamics)
A story of USC pre-meds visiting Whammo Manufacturing Co.
Geometry and dynamics of n-ball bounces
Analogy with shockwave and acoustical horn amplifier
Advantages of a geometric $m_{1}, m_{2}, m_{3}, \ldots$ series
A story of Stirling Colgate (Palmolive) and core-collapse supernovae
Many-body 1D collisions
Elastic examples: Western buckboard
Bouncing columns and Newton's craale
Inelastic examples: "Zig-zag geometry" of freeway crashes
Super-elastic examples: This really is "Rocket-Science"
(a)Force F(Y) Units Mg (N)

(b)Rotential U(Y)Units of $M g \bigvee(J)$

(c)Force F(Y) Units Mg (N)
(e) Geometry of Linear Force with Constant Mg and Quadratic Potential

Potential energy dynamics of Superballs and related things

Thales geometry and "Sagittal approximation" to force law Geometry and dynamics of single ball bounce
\longrightarrow General Non-linear force (like superball-floor or ball-bearing-anvil) Constant force $F=-k$ (linear potential $V=k x$)

Some physics of dare-devil-diving 80 ft. into kidee pool
\longrightarrow Linear force $F=-k x$ (quadratic potential $V=1 / 2 k x^{2} \quad$ (like balloon))
Geometry and potential dynamics of 2-ball bounce
A parable of RumpCo. vs CrapCorp. (introducing 3-mass potential-driven dynamics)
A story of USC pre-meds visiting Whammo Manufacturing Co.
Geometry and dynamics of n-ball bounces
Analogy with shockwave and acoustical horn amplifier
Advantages of a geometric $m_{1}, m_{2}, m_{3}, \ldots$ series
A story of Stirling Colgate (Palmolive) and core-collapse supernovae
Many-body 1D collisions
Elastic examples: Western buckboard
Bouncing columns and Newton's craale
Inelastic examples: "Zig-zag geometry" of freeway crashes
Super-elastic examples. This really is "Rocket-Science"

Unit 1
Fig. 6.5

Work $=W=\int F(x) d x=$ Energy acquired $=$ Area of $F(x)=-U(x)$

$$
F(x)=-\frac{d U(x)}{d x}
$$

Impulse $=P=\int F(t) d t=$ Momentum acquired $=$ Area of $F(t)=P(t)$

$$
F(t)=\frac{d P(t)}{d t}
$$

Geometry and potential dynamics of 2-ball bounce
A parable of RumpCo. vs CrapCorp. (introducing 3-mass potential-driven dynamics)

Parable allegory for Los Alamos Cheap\&practical "seat-of-the pants" approach

Parable allegory for Livermore
Fancy\&overpriced "political" approach

Advantages of a geometric $m_{1}, m_{2}, m_{3}, \ldots$ series
A story of Stirling Colgate (Palmolive) and core-collapse supernovae
Manv-bodv 1 collisions
Elastic examples: Western buckboard
Bouncing columns and Newton's cradle
Inelastic examples: "Zig-zag geometry" of freeway crashes
Super-elastic examples: This really is "Rocket-Science"

Parable allegory for Los Alamos
Cheap\&practical "seat-of-the pants" approach

Velocity amplification
or "throw" factor $=2.5$
Unit 1
Fig. 6.6

Parable allegory for Los Alamos
Cheap\&practical "seat-of-the pants" approach

Velocity amplification
or "throw" factor $=2.5$

Parable allegory for Livermore
Fancy\&overpriced "political" approach
(20) $92=2.291412855$

Velocity amplification
or "throw" factor $=2.3$
(about equal to RumpCo
finite gap experiment)
Unit 1

Fig. 6.6

Number of masses

\odot Let mouse set: $(\mathrm{x}, \mathrm{y}, \mathrm{V} \mathrm{x}, \mathrm{Vy})$Let mouse set force: $F(t)$Plot solid pathsPlot dotted pathsPlot no pathsPlot V1 vs. V2Plot Y1(t$), \mathrm{Y} 2(\mathrm{t}), \ldots$Plot PE of m 1 vs . Y1Plot Y2 vs. Y1Plot user defined i.e - Y1 vs. Y2Balls initially fallingBalls initially fixedNo preset initial values

Acceleration of gravity

Collision friction (Viscosity)
$0-0 \times 10^{\wedge}=0=0 \quad 0\{g\}$
\checkmark Draw force vectors
\checkmark Pause (once) at top
\downarrow Constrain motion to Y -axis
\checkmark Plot v 2 vs v 1
\square Plot p 2 vs p 1
\square Plot V2 vs V1
\square Plot Ellipses
∇ Plot Bisector LinesOld Color Scheme
\checkmark Show right panel information
\checkmark Show left panel information
\square Set Initial positions

Force Constant Usually need to increase k for $p>1$

Force power law exponent $\begin{aligned} & \text { This is linear } F=-k x^{l} \\ & \text { (increase } p>1 \\ & \left.\text { for non-linear } F=-k x^{p}\right)\end{aligned}$
Canvas Aspect Ratio - W/H i.e. 0.75 \& 1.0
$\rightleftharpoons 0.75$ ©

Cooperation between Los Alamos and Livermore yields insight to answer "What's going on?'

Gra Rumpany Std 3
$02=1.03$
$9 /=0.996$

Unit 1
Fig. 6.7

Cooperation between Los Alamos and Livermore yields insight to answer "What's going on?'

Cooperation between Los Alamos and Livermore yields insight to answer "What's going on?'

Gra Rumpany Oftd 3
$92=1.03$
$9 /=0.996$
Qham Sam sin

Quadratic $F(y)=y^{2}$

Qimulation flat part of non-linear force "explosive" effect

Unit 1
Fig. 6.7

Velocity amplification
or "throw" factor $=1.03$
(practically "no-throw")
for linear force $F(y)=k y$

Lesson: Fasten your seatbelt

Cooperation between Los Alamos and Livermore yields insight to answer "What's going on?'

Gra Rumpany Oftd 3
$92=1.03$
$9 /=0.996$
Qimulation flat part of non-linear force "explosive" effect

Unit 1
Fig. 6.7

Lesson: Fasten your seatbelt TIGHTLY!

Velocity amplification
or "throw" factor $=1.03$
(practically "no-throw")
for linear force $F(y)=k y$

Potential energy dynamics of Superballs and related things
Thales geometry and "Sagittal approximation" to force law
Geometry, and dynamics of single ball bounce
(a) Constant force $F=-k$ (linear potential $V=k x$)

Some physics of dare-devil-diving 80 ft . into kidee pool
(b) Linear force $F=-k x$ (quadratic potential $V=1 / 2 k x^{2}$ (like balloon))
(c) Non-linear force (like superball-floor or ball-bearing-anvil)

Geometry and potential dynamics of 2-ball bounce

A parable of RumpCo. vs CrapCorp. (introducing 3-mass potential-driven dynamics)
A story of USC pre-meds visiting Whammo Manufacturing Co.
(Leads to Sagittal
Geometry and dynamics of n-ball bounces potential analysis of 2, 3, and 4 body towers)
Analogy with shockwave and acoustical horn amplifier
Advantages of a geometric $m_{1}, m_{2}, m_{3}, \ldots$ series
A story of Stirling Colgate (Palmolive) and core-collapse supernovae
Many-body ID collisions
Elastic examples: Western buckboard
Bouncing columns and Newton's cradle
Inelastic examples: "Zig-zag geometry" of freeway crashes
Super-elastic examples: This really is "Rocket-Science"

Velocity Amplification in Collision Experiments ... and some results of "Project-Ball" Involving Superballs

CLASS OF WILLIAM G. HARTER*
University of Southern California
Los Angeles, California 90007
(Received 25 September 1969; revised 25 September 1970)

If a pen is stuck in a hard rubber ball and dropped from a certain height, the pen may bounce to several times that height. The results of two such experiments, which can easily be duplicated in any undergraduate physics laboratory, are plotted for a range of mass ratios. A simple theoretical discussion which provides a qualitative understanding of the phenomenon is presented. A more complicated formulation which agrees very well with one of the experiments is also presented. The latter involves a simple analog computer program. Finally, an intriguing generalization of the phenomenon is considered.

* The members of the class of Dr. William G. Harter included: Calvin W. Gray, Jr., Robert C. Frickman, Brian P. Harney, Steven H. Hendrickson, Scott T. Jacks, David F. Judy, William D. Koltun, Sam C. Kaplan, Morton J. Kern, Edmund H. Kwan, Wayne E. Long, Michael E. Mason, William D. Moore, Willard W. Mosier, Gary P. Rudolf, Henry G. Rosenthal, William F. Skinner, Jay L. Stearn, Michael Weinberg, Mark Weiner, Frank J. Wilkinson, and David Willner.

ACKNOWLEDGMENT

We would like to thank John C. Fakan, John E. Heighway, and John H. Marburger for help during the initial and final stages of this project.

INTRODUCTION ${ }^{1}$ Trade name of product by Whammo Manufacturing
Shortly after the well-known Superball ${ }^{1}$ appeared on the market, one of the authors quite accidentally discovered a surprising effect. ${ }^{2}$ The point of a ball point pen is imbedded in the surface of a $3-\mathrm{in}$. diam Superball, and the pen and ball are dropped from a height of 4 or 5 ft so that the pen remains above the ball and perpendicular to a hard floor below. As the ball strikes the floor, the pen may be ejected so violently that it will strike the ceiling of the average room with considerable force. Furthermore, one can adjust the mass of the pen so that the ball remains completely at rest on the floor after ejecting the pen.

Class of W. G. Harter

> Much later....
> Lots of profs try this out... ...including the unfortunate Harvard professor M. Tinkham...
> (Still trying to find the video of the Tinkham incident...)

(a)

(b)

Fig. 14. Two designs for a multiple stage tower of balls. (a) Large number of balls can slide on a shaft. (b) Balls connected by small pins stand to lose appreciable amounts of binding energy.

Basketball and Tennis Ball

Dropping a tennis ball on top of a basketball causes the tennis ball to bounce very high.
Source: 8.01 Physics 1: Classical Mechanics, Fall 1999
Prof Walter Lewin
http:///ocw.mit.edu/high-school/physics/exam-prep/systems-of-particles-I Course Material Related to This Topic:

- Watch video clip from Lecture 17 (21:30-24:08)
http://videolectures.net/mit80If99 lewin lecl7/

A story of USC pre-meds visiting Whammo Manufacturing Co.
...and some results of "Project-Ball"
After initial big NBC splash (Ray Dunkin Reports) in Fall 1968, USC mechanical engineers kindly measured super-ball force curves $F(y)$ with their precision tension meter and let us use their analog computer to calculate precise bounce heights.

A story of USC pre-meds visiting Whammo Manufacturing Co.
...and some results of "Project-Ball"
After initial big NBC splash (Ray Dunkin Reports) in Fall 1968, USC mechanical engineers kindly measured super-ball force curves $F(y)$ with their precision tensometer and let us use their analog computer to calculate precise bounce heights.

After this things began deteriorating in Old-Physics-Rm 69 (The Project-Ball-Room)

1. The fancy-pants computer theory did not jive with the fine drop-tower experiments.
2. USC B\&G decided Rm 69 needed painting and kicked us out for a week.

A story of USC pre-meds visiting Whammo Manufacturing Co.
...and some results of "Project-Ball"
After initial big NBC splash (Ray Dunkin Reports) in Fall 1968, USC mechanical engineers kindly measured super-ball force curves $F(y)$ with their precision tensometer and let us use their analog computer to calculate precise bounce heights.

After this things began deteriorating in Old-Physics-Rm 69 (The Project-Ball-Room)

1. The fancy-pants computer theory did not jive with the fine drop-tower experiments.
2. USC B\&G decided Rm 69 needed painting and kicked us out for a week.

A call to Whammo Co. elicited interest in a big \$\$\$\$ product. Invited us to visit. Yay! \$\$\$

A story of USC pre-meds visiting Whammo Manufacturing Co.
...and some results of "Project-Ball"
After initial big NBC splash (Ray Dunkin Reports) in Fall 1968, USC mechanical engineers kindly measured super-ball force curves $F(y)$ with their precision tensometer and let us use their analog computer to calculate precise bounce heights.

After this things began deteriorating in Old-Physics-Rm 69 (The Project-Ball-Room)

1. The fancy-pants computer theory did not jive with the fine drop-tower experiments.
2. USC B\&G decided Rm 69 needed painting and kicked us out for a week.

A call to Whammo Co. elicited interest in a big \$\$\$\$ product. Invited us to visit. Yay! \$\$\$
Days later, finally, got a car convoy together so we all could visit San Gabriel plant.

A story of USC pre-meds visiting Whammo Manufacturing Co.
... and some results of "Project-Ball"
After initial big NBC splash (Ray Dunkin Reports) in Fall 1968, USC mechanical engineers kindly measured super-ball force curves $F(y)$ with their precision tensometer and let us use their analog computer to calculate precise bounce heights.

After this things began deteriorating in Old-Physics-Rm 69 (The Project-Ball-Room)

1. The fancy-pants computer theory did not jive with the fine drop-tower experiments.
2. USC B\&G decided Rm 69 needed painting and kicked us out for a week.

A call to Whammo Co. elicited interest in a big \$\$\$\$ product. Invited us to visit. Yay! \$\$\$
Days later, finally, got a car convoy together so we all could visit San Gabriel plant.
But, that was "Alpha-Wave" day for inventors at San Gabriel plant. So we end up talking to Whammo lawyer/owner.

A story of USC pre-meds visiting Whammo Manufacturing Co.
... and some results of "Project-Ball"
After initial big NBC splash (Ray Dunkin Reports) in Fall 1968, USC mechanical engineers kindly measured super-ball force curves $F(y)$ with their precision tensometer and let us use their analog computer to calculate precise bounce heights.

After this things began deteriorating in Old-Physics-Rm 69 (The Project-Ball-Room)

1. The fancy-pants computer theory did not jive with the fine drop-tower experiments.
2. USC B\&G decided Rm 69 needed painting and kicked us out for a week.

A call to Whammo Co. elicited interest in a big \$\$\$\$ product. Invited us to visit. Yay! \$\$\$
Days later, finally, got a car convoy together so we all could visit San Gabriel plant.
But, that was "Alpha-Wave" day for inventors at San Gabriel plant.
So we end up talking to Whammo lawyer/owner.
He says invention too dangerous. Bummmer! No\$\$! (Forget Feynman's suggestion for Ceiling Dartboard.) Seeing us looking sad he offers us boxes of super-balls of many sizes (and other shapes).

A story of USC pre-meds visiting Whammo Manufacturing Co.
...and some results of "Project-Ball"
After initial big NBC splash (Ray Dunkin Reports) in Fall 1968, USC mechanical engineers kindly measured super-ball force curves $F(y)$ with their precision tensometer and let us use their analog computer to calculate precise bounce heights.

After this things began deteriorating in Old-Physics-Rm 69 (The Project-Ball-Room)

1. The fancy-pants computer theory did not jive with the fine drop-tower experiments.
2. USC B\&G decided Rm 69 needed painting and kicked us out for a week.

A call to Whammo Co. elicited interest in a big \$\$\$\$ product. Invited us to visit. Yay! \$\$\$
Days later, finally, got a car convoy together so we all could visit San Gabriel plant.
But, that was "Alpha-Wave" day for inventors at San Gabriel plant.
So we end up talking to Whammo lawyer/owner.
He says invention too dangerous. Bummmer! No\$\$! (Forget Feynman's suggestion of Ceiling Dartboard.) Seeing us looking sad he offers us boxes of super-balls of many sizes (and other shapes).

Still a little sad, we return to Rm 69.
Somebody drops a box of balls that immediately bounce into the wet paint.

A story of USC pre-meds visiting Whammo Manufacturing Co.
...and some results of "Project-Ball"
After initial big NBC splash (Ray Dunkin Reports) in Fall 1968, USC mechanical engineers kindly measured super-ball force curves $F(y)$ with their precision tensometer and let us use their analog computer to calculate precise bounce heights.

After this things began deteriorating in Old-Physics-Rm 69 (The Project-Ball-Room)

1. The fancy-pants computer theory did not jive with the fine drop-tower experiments.
2. USC B\&G decided Rm 69 needed painting and kicked us out for a week.

A call to Whammo Co. elicited interest in a big \$\$\$\$ product. Invited us to visit. Yay! \$\$\$
Days later, finally, got a car convoy together so we all could visit San Gabriel plant.
But, that was "Alpha-Wave" day for inventors at San Gabriel plant.
So we end up talking to Whammo lawyer/owner.
He says invention too dangerous. Bummmer! No\$\$! (Forget Feynman's suggestion of Ceiling Dartboard.) Seeing us looking sad he offers us boxes of super-balls of many sizes (and other shapes).

Still a little sad, we return to Rm 69.
Somebody drops a box of balls that immediately bounce into the wet paint.
The rest is history.
Little paint spots on floor show what was wrong with our fancy-pants computer theory

A story of USC pre-meds visiting Whammo Manufacturing Co.
...and some results of "Project-Ball"
The rest is history.
Little paint spots on floor show what was wrong with our fancy-pants computer theory.
The engineering curves were isothermal not adiabatic.
Need latter. Can do latter by dropping dyed balls and measuring spot-size.
Collisions Involving Superballs

Frg. 10. Sagittal formula.

A story of USC pre-meds visiting Whammo Manufacturing Co.
...and some results of "Project-Ball"
The rest is history.
Little paint spots on floor show what was wrong with our fancy-pants computer theory.
The engineering curves were isothermal not adiabatic.
Need latter. Can do latter by dropping dyed balls and measuring spot-size.

Measuring spot-size d gives energy vs. height. Slope of $E(x)$ gives force $F(x)$ and $G(x)$.

Frg. 10. Sagittal formula.

If $F(x)$ and $G(x)$ were linear for all x, then the

Fig. 12. Adiabatic force function $G(x)$.

Fig. 11. Adiabatic force $F(x)$ and energy curves fc Superball.

A story of USC pre-meds visiting Whammo Manufacturing Co.
...and some results of "Project-Ball"
The rest is history.
Little paint spots on floor show what was wrong with our fancy-pants computer theory.
The engineering curves were isothermal not adiabatic.
Need latter. Can do latter by dropping dyed balls and measuring spot-size.

Measuring spot-size d gives energy vs. height. Slope of $E(x)$ gives force $F(x)$ and $G(x)$.

Fig. 10. Sagittal formula.

If $F(x)$ and $G(x)$ were linear for all x, then the

Fic. 12. Adiabatic force function $G(x)$.

Functions $F(x)$ and $G(x)$ were then placed on the function generators of the analog computer.

FIG. 13. Comparison between analog computer gain curves and second experiment.

Then fancy-pants computer theory can predict N-ball tower bounces

Fig. 11. Adiabatic force $F(x)$ and energy curves for Superball.

Here are some 3-ball tower bounce predictions

Class of W. G. Harter

(a)

Fig. 14. Two designs for a multiple stage tower of balls. (a) Large number of balls can slide on a shaft. (b) Balls connected by small pins stand to lose appreciable amounts of binding energy.

Functions $F(x)$ and $G(x)$ were then placed on the function generators of the analog computer.

Fig. 13. Comparison between analog computer gain curves and second experiment.

Fig. 15. (a)-(d) Analog computer output for velocity gains of three-ball system.

Potential energy dynamics of Superballs and related things
Thales geometry and "Sagittal approximation" to force law
Geometm, and dynamics of single ball bounce
(a) Constant force $F=-k$ (linear potential $V=k x$)

Some physics of dare-devil-diving 80 ft . into kidee pool
(b) Linear force $F=-k x$ (quadratic potential $V=1 / 2 k x^{2}$ (like balloon))
(c) Non-linear force (like superball-floor or ball-bearing-anvil)

Geometry and potential dynamics of 2-ball bounce
A parable of RumpCo.vs CrapCorp. (introducing 3-mass potential-driven dynamics)

A story of USC pre-meds visiting Whammo Manufacturing Co.
Geometry and dynamics of n-ball bounces

Advantages of a geometric $m_{1}, m_{2}, m_{3}, \ldots$ series

```
    A story of Stirling Colgate (Palmolive) and core-collapse supernovae
Mlanv-bodv ID collisions
    Elastic examples: Western buckboard
    Bouncing columns and Newton's cradle
    Inelastic examples: "Zig-zag geometry" of freeway crashes
    Super-elastic examples:This really is "Rocket-Science"
```


Number of masses

\odot Let mouse set: ($\mathrm{x}, \mathrm{y}, \mathrm{V} \mathrm{x}, \mathrm{Vy}$)
\bigcirc Let mouse set force: $F(t)$Plot solid paths
\odot Plot dotted paths

- Plot no paths
© Plot V1 vs. V2Plot Y1(t$), \mathrm{Y} 2(\mathrm{t}), \ldots$
\bigcirc Plot PE of m 1 vs. Y 1
\bigcirc Plot Y2 vs. Y1Plot user defined i.e - Y1 vs. Y2Balls initially fallingBalls initially fixedNo preset initial values

Acceleration of gravity

$100 x\left\{\mathrm{~cm} / \mathrm{s}^{\wedge} 2\right\}$
\checkmark Draw force vectors
\downarrow Pause (once) at top
\checkmark Constrain motion to Y-axis

- Plot v2 vs v1Plot p2 vs p1Plot V2 vs V1Plot Ellipses
\checkmark Plot Bisector LinesOld Color Scheme
\checkmark Show right panel information
∇ Show left panel informationSet Initial positions

Collision friction (Viscosity)
$0=0<10^{\wedge} \rightleftharpoons 0 \quad$ © $\{g\}$
Initial gap between balls
$0-0 \times 10^{\wedge} \rightleftharpoons 0=0 \quad 0\{g\}$
Force Constant

$$
\bigodot=-5 \times 10^{\wedge} \rightleftharpoons-\frac{\square}{4}\{g\}
$$

Force power law exponent

Canvas Aspect Ratio - W/H i.e. 0.75 \& 1.0

Potential energy dynamics of Superballs and related things
Thales geometry and "Sagittal approximation" to force law
Geometry and dymamics of single ball bounce
(a) Constant force $F=-k$ (linear potential $V=k x$)

Some physics of dare-devil-diving 80 ft . into kidee pool
(b) Linear force $F=-k x$ (quadratic potential $V=1 / 2 k x^{2}$ (like balloon))
(c) Non-linear force (like superball-floor or ball-bearing-anvil)

Geometry and potential dynamics of 2-ball bounce
A parable of RumpCo. vs CrapCorp. (introducing 3-mass potential-driven dynamics)
A story of USC pre-meds visiting Whammo Manufacturing Co.
Geometry and dynamics of n-ball bounces Analogy with shockwave and acoustical horn amplifier

Advantages of a geometric $m_{1}, m_{2}, m_{3}, \ldots$ series
A story of Stirling Colgate (Palmolive) and core-collapse supernovae
Many-body 1D collisions
Elastic examples: Western buckboard
Bouncing columns and Newton's cradle
Inelastic examples: "Zig-zag geometry" of freeway crashes
Super-elastic examples: This really is "Rocket-Science"

${ }^{6}$ J. B. Hart and R. B. Herrmann, Amer. J. Phys. 36, 46 (1968).

1.7.3 The optimal idler (An algebra/calculus problem)

To get highest final v_{3} of mass m_{3} find optimum mass m_{2} in terms of masses m_{l} and m_{3} that does that.

Potential energy dynamics of Superballs and related things
Thales geometry and "Sagittal approximation" to force law
Geometm, and dynamics of single ball bounce
(a) Constant force $F=-k$ (linear potential $V=k x$)

Some physics of dare-devil-diving 80 ft . into kidee pool
(b) Linear force $F=-k x$ (quadratic potential $V=1 / 2 k x^{2}$ (like balloon))
(c) Non-linear force (like superball-floor or ball-bearing-anvil)

Geometry and potential dynamics of 2-ball bounce
A parable of RumpCo. vs CrapCorp. (introducing 3-mass potential-driven dynamics) A story of USC pre-meds visiting Whammo Manufacturing Co. (Leads to Sagittal
Geometry and dynamics of n-ball bounces potential analysis of Analogy with shockwave and acoustical horn amplifier

Advantages of a geometric $m_{1}, m_{2}, m_{3}, \ldots$ series
$\longrightarrow A$ story of Stirling Colgate (Palmolive) and core-collapse supernovae

```
Many-body ID collisions
Elastic examples: Western buckboard
    Bouncing columns and Newton's craale
Inelastic examples: "Zig-zag geometry" of freeway crashes
Super-elastic examples: This really is "Rocket-Science"
```


http://hubblesite.org/newscenter/archive/releases/2007/10/image/a/

Core-burning nuclear fusion stages for a 25 -solar mass star

Process	Main fuel	Main products	$25 \mathrm{M}_{\odot} \operatorname{star}^{[6]}$		
			Temperature (Kelvin)	Density ($\mathrm{g} / \mathrm{cm}^{3}$)	Duration
hydrogen burning	hydrogen	helium	7×10^{7}	10	10^{7} years
triple-alpha process	helium	carbon, oxygen	2×10^{8}	2000	10^{6} years
carbon burning process	carbon	$\mathrm{Ne}, \mathrm{Na}, \mathrm{Mg}, \mathrm{Al}$	8×10^{8}	10^{6}	10^{3} years
neon burning process	neon	O, Mg	1.6×10^{9}	10^{7}	3 years
oxygen burning process	oxygen	Si, S, Ar, Ca	1.8×10^{9}	10^{7}	0.3 years
silicon burning process	silicon	nickel (decays into iron)	2.5×10^{9}	10^{8}	5 days

Source http://hubblesite.org/newscenter/archive/releases/2007/10/image/a/

Author NASA. ESA. P. Challis. and R. Kirshner (Harvard-Smithsonian Center for Astrovhvsics)

Within a massive, evolved star (a) the onion-layered shells of elements undergo fusion, forming a nickel-iron core (b) that reaches Chandrasekhar-mass and starts to collapse. The inner part of the core is compressed into neutrons (c), causing infaling material to bounce (d) and form an outward-propagating shock front (red). The shock starts to stall (e), but it is re-invigorated by neutrino interaction. The surrounding material is blasted away (f), leaving only a degenerate remnant.

Core-burning nuclear fusion stages for a 25-solar mass star

Process	Main fuel	Main products	$25 \mathrm{M}_{\odot} \mathbf{s t a r}^{[6]}$		
			Temperature (Kelvin)	Density $\left(\mathrm{g} / \mathrm{cm}^{3}\right)$	Duration
hydrogen burning	hydrogen	helium	7×10^{7}	10	10^{7} years
triple-alpha process	helium	carbon, oxygen	2×10^{8}	2000	10^{6} years
carbon burning process	carbon	$\mathrm{Ne}, \mathrm{Na}, \mathrm{Mg}, \mathrm{Al}$	8×10^{8}	10^{6}	10^{3} years
neon burning process	neon	O, Mg	1.6×10^{9}	10^{7}	3 years
oxygen burning process	oxygen	$\mathrm{Si}, \mathrm{S}, \mathrm{Ar}, \mathrm{Ca}$	1.8×10^{9}	10^{7}	0.3 years
silicon burning process	silicon	nickel (decays into iron)	2.5×10^{9}	10^{8}	5 days

Supernova 1987A•1994-2006
 Hubble Space Telescope • WFPC2 • ACS

Stirling Colgate

From Wikipedia, the free encyclopedia

 open literature including physics education and astrophysics. ${ }^{[3]}$ He was born in New York City in 1925, to Henry Auchincloss and Jeanette Thurber (née Pruyn) Colgate. ${ }^{[4]}$

.. an amusing off-color aside
story of Stirling Colgate's NMIMT resignation...

Quote

- "I was always enamored with explosives, and eventually I graduated to dynamite and then nuclear bombs."

Multiple-collision accelerator assembly
 US 5256071 A

ABSTRACT

A device comprising several highly elastic objects is presented whose purpose is to demonstrate an unobvious consequence of fundamental laws of physics--the acceleration of an object to high speed by multiple collisions among a series of heavier objects moving at slower speed. The objects, each of different mass, are arrayed in close proximity in order of decreasing mass with their centers lying along a straight line. This arrangement of the assembly of objects is maintained by a constraining element which permits the assembly axis to be oriented in any desired direction and permits the assembly to be moved or manipulated as a unit in any desired way without destroying the arrangement of objects. In the preferred embodiment the elastic objects are polybutadiene balls (12), the constraining element is an interior guide-pin (10)

Publication number	US5256071 A
Publication type	Grant
Application number	US 07/748,804
Publication date	Oct 26, 1993
Filing date	Aug 22, 1991
Priority date ?	Aug 22, 1991
Fee status ?	Paid
Inventors	Edward W. Hones, William G. Hones, Stirling
	A. Colgate
Original Assignee	Hones Edward W, Hones William G, Colgate Stirling A
Export Citation	BiBTeX, EndNote, RefMan

Patent Citations (3), Referenced by (4), Classifications (7), Legal Events (7)

External Links: USPTO, USPTO Assignment, Espacenet
(Point allowing patent over previous 1973 proposal (4))

 ball, through the assembly, causing the littlest ball to be projected to a height many times that from which the assembly was dropped.

1st publication describing theory and experiment of this device 20 years before.

Velocity Amplification in Collision Experiments Involving Superballs

William G. Harter ${ }^{1}$ (class of WGH)

- hide affiliations
${ }^{1}$ University of Southem California, Los Angeles, California 90007
View the Scitation page for University of Southern California (USC).

Am. J. Phys. 39, 656 (1971); http://dx.doi.org/10.1119/1.1986253[Z

AstroBlaster
Product Code: AstroBlaster
Our Price: $\$ 9.95$
Potential energy dynamics of Superballs and related things
Thales geometry and "Sagittal approximation" to force lawGeometry and dimamios of single ball bounce(a) Constant force $F=-k$ (linear potential $V=k x$)Some physics of dare-devil-diving 80 ft . into kidee pool
(b) Linear force $F=-k x$ (quadratic potential $V=1 / 2 k x^{2}$ (like balloon))(c) Non-linear force (like superball-floor or ball-bearing-anvil)
Geometry and potential dynamics of 2-ball bounceA parable of RumpCo. vs CrapCorp. (introducing 3-mass potential-driven dynamics)

A story of USC pre-meds visiting Whammo Manufacturing Co.

> Geometry and dvnamics of n-ball bounces Analogy with shockwave and acoustical horn amplifier

Advantages of a geometric $m_{1}, m_{2}, m_{3}, \ldots$ series
Many-body 1D collisions
\longrightarrow Elastic examples: Western buckboard
Bouncing columns and Newton's cradle
Inelastic examples: "Zig-zag geometry" of freeway crashes Super-elastic examples: This really is "Rocket-Science"

Western buckboard = ?????

Western buckboard = ?????

Western buckboard = 3-ball analogy Disaster!

Potential energy dynamics of Superballs and related things
Thales geometry and "Sagittal approximation" to force lawGeometmy, and dymamies of single ball bounce(a) Constant force $F=-k$ (linear potential $V=k x$)Some physics of dare-devil-diving 80 ft . into kidee pool
(b) Linear force $F=-k x$ (quadratic potential $V=1 / 2 k x^{2}$ (like balloon))(c) Non-linear force (like superball-floor or ball-bearing-anvil)
Geometry and potential dynamics of 2-ball bounceA parable of RumpCo. vs CrapCorp. (introducing 3-mass potential-driven dynamics)
A story of USC pre-meds visiting Whammo Manufacturing Co.

Analogy with shockwave and acoustical horn amplifier
Advantages of a geometric $m_{1}, m_{2}, m_{3}, \ldots$ series
A story of Stirling Colgate (Palmolive) and core-collapse supernovae

Many-body 1D collisions

Elastic examples: Western buckboard
\longrightarrow Bouncing columns and Newton's cradle
Inelastic examples: "Zig-zag geometry" of freeway crashes Super-elastic examples: This really is "Rocket-Science"

Unit 1
Fig. 7.2a-b
4-Body IBM Geometry
Fig. 7.2c-d
4-Equal-Body Geometry

4-Equal-Body
"Shockwave" or pulse wave
Dynamics
Opposite of continuous wave dynamics introduced in Unit 2 or Lect. 6-9
Potential energy dynamics of Superballs and related thingsThales geometry and "Sagittal approximation" to force law
Geometry and dynamics of single ball bounce(a) Constant force $F=-k$ (linear potential $V=k x$)Some physics of dare-devil-diving 80 ft . into kidee pool
(b) Linear force $F=-k x$ (quadratic potential $V=1 / 2 k x^{2}$ (like balloon))(c) Non-linear force (like superball-floor or ball-bearing-anvil)
Geometry and potential dynamics of 2-ball bounceA parable of RumpCo. vs CrapCorp. (introducing 3-mass potential-driven dynamics)
A story of USC pre-meds visiting Whammo Manufacturing Co. (Leads to SagittalGeometry and dvnamics of n-ball bouncespotential analysis of

Analogy with shockwave and acoustical horn amplifier
Advantages of a geometric $m_{1}, m_{2}, m_{3}, \ldots$ series

Many-body 1D collisions

Elastic examples: Western buckboard
Bouncing columns and Newton's cradle
\longrightarrow Inelastic examples:" Zig-zag geometry" of freeway crashes Super-elastic examples: This really is "Rocket-Science"

Inelastic examples: "Zig-zag geometry" of freeway crashes

 First recall "zig-zag" fractions of "Monster Mash" in Lect. 4-5

Unit 1

Fig. 7.5
Pile-up:
One 60 mph car hits
five standing cars
Speeding car and five stationary cars

Unit 1

Fig. 7.5
Pile-up:
One 60 mph car hits
five standing cars

Fig. 7.6
Pile-up:
Five 60 mph cars
hit
one standing cars

Unit 1

Fig. 7.5
Pile-up:
One 60 mph car hits
five standing cars

Fig. 7.6
Pile-up:
Five 60 mph cars
hit
one standing cars

Fig. 7.7
Pile-up:
Five 60 mph cars hit
five standing cars

Potential energy dynamics of Superballs and related things
Thales geometry and "Sagittal approximation" to force law
Geometry and dynamics of single ball bounce
(a) Constant force $F=-k$ (linear potential $V=k x$)

Some physics of dare-devil-diving 80 ft. into kidee pool
(b) Linear force $F=-k x$ (quadratic potential $V=1 / 2 k x^{2}$ (like balloon))
(c) Non-linear force (like superball-floor or ball-bearing-anvil)

Geometry and potential dynamics of 2-ball bounce
A parable of RumpCo.vs CrapCorp. (introducing 3-mass potential-driven dynamics)
A story of USC pre-meds visiting Whammo Manufacturing Co. (Leads to Sagittal
Geometry and dynamics of n-ball bounces potential analysis of

Analogy with shockwave and acoustical horn amplifier
2, 3, and 4 body towers)
Advantages of a geometric $m_{1}, m_{2}, m_{3}, \ldots$ series
A story of Stirling Colgate (Palmolive) and core-collapse supernovae
Many-body 1D collisions
Elastic examples: Western buckboard
Bouncing columns and Newton's cradle
Inelastic examples:"Zig-zag geometry" of freeway crashes
\longrightarrow Super-elastic examples: This really is "Rocket-Science"

$$
\begin{array}{lll}
0^{\text {th }}: V(0)=1 / 10=0.1 & 1^{\text {st }}: V(1)=1 / 10+1 / 9=0.211 & 2^{\text {nd }}: V(2)=1 / 10+1 / 9+1 / 8=0.336 \\
3^{\text {rd }}: V(3)=V(2)+1 / 7=0.478 & 4^{\text {th }}: V(4)=V(3)+1 / 6=0.646 & 5^{\text {th }}: V(5)=V(4)+1 / 5=0.846 \\
6^{\text {th }}: V(6)=V(5)+1 / 4=1.096 & 7^{\text {th }}: V(7)=V(6)+1 / 3=1.429 & 8^{\text {th }}: V(8)=V(7)+1 / 2=1.929
\end{array}
$$

Unit 1

Fig. 7.8a-b
Rocket Science!

$0^{\text {th }}: V(0)=1 / 10=0.1$	$1^{s t}: V(1)=1 / 10+1 / 9=0.211$	$2^{\text {nd }}: V(2)=1 / 10+1 / 9+1 / 8=0.336$	ve known as
$3^{r d}: V(3)=V(2)+1 / 7=0.478$	$4^{\text {th }}: V(4)=V(3)+1 / 6=0.646$	$5^{\text {th }}: V(5)=V(4)+1 / 5=0.846$	
$6^{\text {th }}: V(6)=V(5)+1 / 4=1.096$	$7^{\text {th }}: V(7)=V(6)+1 / 3=1.429$	$8^{\text {th }}: V(8)=V(7)+1 / 2=1.929$	speciflc impulse

By calculus: $M \cdot \Delta V=-v_{e} \cdot \Delta M \quad$ or: $d V=-v_{e} \frac{d M}{M}$ Integrate: $\int_{V_{I N}}^{V_{F I N}} d V=-v_{e} \int_{M_{I N}}^{M_{F I N} d M}$
The Rocket Equation: $\quad V_{F I N}-V_{I N}=-v_{e}\left[\ln M_{F I N}-\ln M_{I N}\right]=v_{e}\left[\ln \bar{M}_{F I N}^{M_{I N}}\right]$

A Thales construction for momentum-energy

(Made obsolete by Estrangian scaling to circular $\left(\mathrm{V}_{1}, \mathrm{~V}_{2}\right)$ plots. Still, one has to construct $V_{m_{1}} / /_{m_{2}} \backslash$ slopes.)

Unit 1

Fig. 7.4a-d
This is a detailed construction of the energy ellipse in a Largangian (v_{1}, v_{2}) plot given the initial $\left(v_{1}, v_{2}\right)$.

The Estrangian (V_{1}, V_{2}) plot makes the (v_{1}, v_{2}) plot and this construction obsolete.
(Easier to just draw circle through initial (V_{1}, V_{2}).)

