Lecture 22.

Introduction to classical oscillation and resonance

(Ch. 1 of Unit 4 11.08.12)
1D forced-damped-harmonic oscillator equations and Green's function solutions
Linear harmonic oscillator equation of motion.
Linear damped-harmonic oscillator equation of motion.
Frequency retardation and amplitude damping
Figure of oscillator merit (the 5\% solution 3/एand other numbers)
Linear forced-damped-harmonic oscillator equation of motion.
Phase lag and amplitude resonance amplification
Figure of resonance merit: Quality factor $q=\omega_{0} / 2 \Gamma$
Properties of Green's function solutions and their mathematical/physical behavior Transient solutions vs. Steady State solutions

Complete Green's Solution for the FDHO (Forced-Damped-Harmonic Oscillator) Quality factors: Beat, lifetimes, and uncertainty

Approximate Lorentz-Green's Function for high quality FDHO (Quantum propagator) Common Lorentzian (a.k.a. Witch of Agnesi)

Linear forced-damped-harmonic oscillator equation of motion.

$$
F_{\text {total }}(t)=m \frac{d^{2} z}{d t^{2}}=F_{\text {damping }}+F_{\text {restore }}+F_{\text {stimulus }}
$$

Linear

harmonic oscillator equation of motion.

$$
F_{\text {total }}(t)=m \frac{d^{2} z}{d t^{2}}=\quad F_{\text {restore }}
$$

Linear

harmonic oscillator equation of motion.

$$
F_{\text {total }}(t)=m \frac{d^{2} z}{d t^{2}}=\quad F_{\text {restore }}
$$

held back by a harmonic (linear) restoring force $\longrightarrow F_{\text {restore }}=-k z,\left(k=\omega_{0}^{2} m\right)$,

Fig. 3.2.2 Phasor z and corresponding coordinate versus time plot for $\omega_{0}=2 \pi$ and $\Gamma=0$

Linear

damped-harmonic oscillator equation of motion.

$$
F_{\text {total }}(t)=m \frac{d^{2} z}{d t^{2}}=F_{\text {damping }}+F_{\text {restore }}
$$

Linear

damped-harmonic oscillator equation of motion.

$$
F_{\text {total }}(t)=m \frac{d^{2} z}{d t^{2}}=F_{\text {damping }}+F_{\text {restore }}
$$

Linear

damped-harmonic oscillator equation of motion.

$$
F_{\text {total }}(t)=m \frac{d^{2} z}{d t^{2}}=F_{\text {damping }}+F_{\text {restore }}
$$

Linear

damped-harmonic oscillator equation of motion.

$$
F_{\text {total }}(t)=m \frac{d^{2} z}{d t^{2}}=F_{\text {damping }}+F_{\text {restore }}
$$

Linear

damped-harmonic oscillator equation of motion.

$$
F_{\text {total }}(t)=m \frac{d^{2} z}{d t^{2}}=F_{\text {damping }}+F_{\text {restore }}
$$

Trick:
Set: $z=z(t)=A e^{-i \omega t}$
$\left[(-i \omega)^{2}+2 \Gamma(-i \omega)+\omega_{0}^{2}\right] e^{-i \omega t}=0$
$\omega^{2}+2 i \Gamma \omega-\omega_{0}^{2}=0$
Solve for: $\omega=\omega_{ \pm}$
$\begin{aligned} \omega_{ \pm} & =\frac{-2 i \Gamma \pm \sqrt{-4 \Gamma^{2}+4 \omega_{0}^{2}}}{2} \\ & =-i \Gamma \pm \sqrt{\omega_{0}^{2}-\Gamma^{2}}\end{aligned}$
Solution:

$$
\begin{aligned}
z(t) & =e^{-i\left(-i \Gamma \pm \sqrt{\omega_{0}^{2}-\Gamma^{2}}\right) t} \\
& =e^{\left(-\Gamma \pm i \sqrt{\omega_{0}^{2}-\Gamma^{2}}\right) t} \\
& =e^{-\Gamma t} e^{ \pm i \sqrt{\omega_{0}^{2}-\Gamma^{2}} t}
\end{aligned}
$$

Linear

damped-harmonic oscillator equation of motion.

$$
F_{\text {total }}(t)=m \frac{d^{2} z}{d t^{2}}=F_{\text {damping }}+F_{\text {restore }}
$$

Trick:
Set: $z=z(t)=A e^{-i \omega t}$
$\left[(-i \omega)^{2}+2 \Gamma(-i \omega)+\omega_{0}^{2}\right] e^{-i \omega t}=0$
$\omega^{2}+2 i \Gamma \omega-\omega_{0}^{2}=0$
Solve for: $\omega=\omega_{ \pm}$
$\begin{aligned} \omega_{ \pm} & =\frac{-2 i \Gamma \pm \sqrt{-4 \Gamma^{2}+4 \omega_{0}^{2}}}{2} \\ & =-i \Gamma \pm \sqrt{\omega_{0}^{2}-\Gamma^{2}}\end{aligned}$
Solution:

$$
\begin{aligned}
z(t) & =e^{-i\left(-i \Gamma \pm \sqrt{\omega_{0}^{2}-\Gamma^{2}}\right) t} \\
& =e^{\left(-\Gamma \pm i \sqrt{\omega_{0}^{2}-\Gamma^{2}}\right) t} \\
& =e^{-\Gamma t} e^{ \pm i \sqrt{\omega_{0}^{2}-\Gamma^{2}} t} \\
& =e^{-\Gamma t} e^{ \pm i \omega_{\Gamma} t}
\end{aligned}
$$

Linear

damped-harmonic oscillator equation of motion.

$$
F_{\text {total }}(t)=m \frac{d^{2} z}{d t^{2}}=F_{\text {damping }}+F_{\text {restore }}
$$

Coordinate $z=z(t)$ is the response coordinate for a particle of mass m and charge e

Fig. 3.2.3 Phasor z and corresponding coordinate versus time plot for $\omega_{0}=2 \pi$ and $\Gamma=0.2$

Trick:

$$
\frac{d^{2} z}{d t^{2}}+2 \Gamma \frac{d z}{d t}+\omega_{0}^{2} z \stackrel{\text { Set: } z=z(t)=A e^{-i \omega t}}{=0-2{ }^{-1 \omega t}}
$$

$$
\left[(-i \omega)^{2}+2 \Gamma(-i \omega)+\omega_{0}^{2}\right] e^{-i \omega t}=0
$$

$$
\omega^{2}+2 i \Gamma \omega-\omega_{0}^{2}=0
$$

Solve for: $\omega=\omega_{ \pm}$

$$
\begin{aligned}
\omega_{ \pm} & =\frac{-2 i \Gamma \pm \sqrt{-4 \Gamma^{2}+4 \omega_{0}^{2}}}{2} \\
& =-i \Gamma \pm \sqrt{\omega_{0}^{2}-\Gamma^{2}}
\end{aligned}
$$

Solution:

$$
\begin{aligned}
z(t) & =e^{-i\left(-i \Gamma \pm \sqrt{\omega_{0}^{2}-\Gamma^{2}}\right) t} \\
& =e^{\left(-\Gamma \pm i \sqrt{\omega_{0}^{2}-\Gamma^{2}}\right) t} \\
& =e^{-\Gamma t} e^{ \pm i \sqrt{\omega_{0}^{2}-\Gamma^{2}} t} \\
& =e^{-\Gamma t} e^{ \pm i \omega_{\Gamma} t}
\end{aligned}
$$

Linear

damped-harmonic oscillator equation of motion.

$$
F_{\text {total }}(t)=m \frac{d^{2} z}{d t^{2}}=F_{\text {damping }}+F_{\text {restore }}
$$

Oscillator

Figures of Merit:
Time required to to reduce amplitude to 5%

Easy-to-recall 5\% approximation:

$$
e^{-3} \cong 0.05
$$

$$
t_{5 \%}=\frac{3}{\Gamma}=\frac{3}{0.2}=15
$$

Fig. 3.2.3 Phasor z and corresponding coordinate versus time plot for $\omega_{0}=2 \pi$ and $\Gamma=0.2$

Linear

damped-harmonic oscillator equation of motion.

$$
F_{\text {total }}(t)=m \frac{d^{2} z}{d t^{2}}=F_{\text {damping }}+F_{\text {restore }}
$$

Oscillator

Figures of Merit:
Time required to to reduce amplitude to 5% (or 4.321%)

Easy-to-recall 5% approximation: More precise one:

$$
\begin{array}{rlr}
e^{-3} \cong 0.05 & e^{-\pi} \cong 0.04321 \\
t_{5 \%}=\frac{3}{\Gamma}=\frac{3}{0.2}=15 & t_{4.321 \%}=\frac{\pi}{\Gamma}=\frac{\pi}{0.2}=15.708
\end{array}
$$

Fig. 3.2.3 Phasor z and corresponding coordinate versus time plot for $\omega_{0}=2 \pi$ and $\Gamma=0.2$

Linear

damped-harmonic oscillator equation of motion.

$$
F_{\text {total }}(t)=m \frac{d^{2} z}{d t^{2}}=F_{\text {damping }}+F_{\text {restore }}
$$

Oscillator

Figures of Merit:
Number N of oscillations to reduce amplitude to 5% (or 4.321%)

Easy-to-recall 5% approximation: More precise one:

$$
\begin{gathered}
e^{-3} \cong 0.05 \quad e^{-\pi} \cong 0.04321 \\
N_{5 \%}=\frac{\omega_{\Gamma} \cdot t_{5 \%}}{2 \pi}=\frac{3 \omega_{\Gamma}}{2 \pi \Gamma} \sim \frac{\omega_{\Gamma}}{2 \Gamma} \\
t_{4.321 \%}=\frac{\pi}{\Gamma}=\frac{\pi}{0.2}=15.708
\end{gathered}
$$

Linear forced-damped-harmonic oscillator equation of motion.

$$
F_{\text {total }}(t)=m \frac{d^{2} z}{d t^{2}}=F_{\text {damping }}+F_{\text {restore }}+F_{\text {stimulus }}
$$

Linear forced-damped-harmonic oscillator equation of motion.

$$
F_{\text {total }}(t)=m \frac{d^{2} z}{d t^{2}}=F_{\text {damping }}+F_{\text {restore }}+F_{\text {stimulus }}
$$

Solving for $z_{\text {stimumus }}(t)$ given $a_{\text {stimulus }}$:

Linear forced-damped-harmonic oscillator equation of motion.

$$
F_{\text {total }}(t)=m \frac{d^{2} z}{d t^{2}}=F_{\text {damping }}+F_{\text {restore }}+F_{\text {stimulus }}
$$

Linear forced-damped-harmonic oscillator equation of motion.

$$
F_{\text {total }}(t)=m \frac{d^{2} z}{d t^{2}}=F_{\text {damping }}+F_{\text {restore }}+F_{\text {stimulus }}
$$

Linear forced-damped-harmonic oscillator equation of motion.

$$
F_{\text {total }}(t)=m \frac{d^{2} z}{d t^{2}}=F_{\text {damping }}+F_{\text {restore }}+F_{\text {stimulus }}
$$

Linear forced-damped-harmonic oscillator equation of motion.

$$
F_{\text {total }}(t)=m \frac{d^{2} z}{d t^{2}}=F_{\text {damping }}+F_{\text {restore }}+F_{\text {stimulus }}
$$

Linear forced-damped-harmonic oscillator equation of motion.

$$
F_{\text {total }}(t)=m \frac{d^{2} z}{d t^{2}}=F_{\text {damping }}+F_{\text {restore }}+F_{\text {stimulus }}
$$

Linear forced-damped-harmonic oscillator equation of motion.

$$
F_{\text {total }}(t)=m \frac{d^{2} z}{d t^{2}}=F_{\text {damping }}+F_{\text {restore }}+F_{\text {stimulus }}
$$

$$
\frac{d^{2} z}{d t^{2}}=\frac{F_{\text {damping }}}{m}+\frac{F_{\text {restore }}}{m}+\frac{F_{\text {stimulus }}}{m}
$$

$$
\frac{d^{2} z}{d t^{2}}+2 \Gamma \frac{d z}{d t}+\omega_{0}^{2} z=a_{\text {stimulus }}=\frac{e}{m} E(t)
$$

Solving for $z_{\text {stimulus }}(t)$ given $a_{\text {stimunus }}: \quad\left(\frac{d^{2}}{d t^{2}}+2 \Gamma \frac{d}{d t}+\omega_{0}^{2}\right) z=a_{\text {stimulus }}$
Pretty crazy? But not so crazy if $a_{\text {stinumus }}(\mathrm{t})=\left|a_{\text {stinumus }}\right| \mathrm{e}^{-i \omega_{s \text { stinumust }}}=\left|a_{s}\right| \mathrm{e}^{-i \omega_{s} t}$

$$
\begin{aligned}
& z_{\text {stimulus }}=\frac{1}{-\omega_{s}^{2}-i 2 \Gamma \omega_{s}+\omega_{0}^{2}} a_{s} e^{-i \omega_{s} t} \\
& z_{s} e^{-i \omega_{s} t}=\frac{1}{\omega_{0}^{2}-\omega_{s}^{2}-i 2 \Gamma \omega_{s}} a_{s} e^{-i \omega_{s} t} \\
& G_{\omega_{0}}\left(\omega_{s}\right) \cdot a_{s}
\end{aligned}
$$

Green's Function for the F-D-H Oscillator (FDHO)

Green's Function for the FDHO (Forced-Damped-Harmonic Oscillator)

Fig. 3.2.4 Black-box diagram of oscillator response to monochromatic stimulus

$$
G_{\omega_{0}}\left(\omega_{s}\right)=\frac{1}{\omega_{0}^{2}-\omega_{s}^{2}-i 2 \Gamma \omega_{s}}=\operatorname{Re} G_{\omega_{0}}\left(\omega_{s}\right)+i \operatorname{Im} G_{\omega_{0}}\left(\omega_{s}\right)
$$

Real and imaginary parts of the rectangular form of G :

Green's Function for the FDHO (Forced-Damped-Harmonic Oscillator)

Fig. 3.2.4 Black-box diagram of oscillator response to monochromatic stimulus

$$
G_{\omega_{0}}\left(\omega_{s}\right)=\frac{1}{\omega_{0}^{2}-\omega_{s}^{2}-i 2 \Gamma \omega_{s}}=\operatorname{Re} G_{\omega_{0}}\left(\omega_{s}\right)+i \operatorname{Im} G_{\omega_{0}}\left(\omega_{s}\right)
$$

Real and imaginary parts of the rectangular form of $G: \quad \frac{1}{x-i y}=\frac{1}{x-i y} \frac{x+i y}{x+i y}=\frac{x+i y}{x^{2}+y^{2}}$

Green's Function for the FDHO (Forced-Damped-Harmonic Oscillator)

Fig. 3.2.4 Black-box diagram of oscillator response to monochromatic stimulus

$$
G_{\omega_{0}}\left(\omega_{s}\right)=\frac{1}{\omega_{0}^{2}-\omega_{s}^{2}-i 2 \Gamma \omega_{s}}=\operatorname{Re} G_{\omega_{0}}\left(\omega_{s}\right)+i \operatorname{Im} G_{\omega_{0}}\left(\omega_{s}\right)
$$

Real and imaginary parts of the rectangular form of $G: \frac{1}{x-i y}=\frac{1}{x-i y} \frac{x+i y}{x+i y}=\frac{x+i y}{x^{2}+y^{2}}=\frac{x}{x^{2}+y^{2}}+i \frac{y}{x^{2}+y^{2}}$

$$
\begin{aligned}
& \operatorname{Re} G_{\omega_{0}}\left(\omega_{s}\right)=\frac{\omega_{0}^{2}-\omega_{s}^{2}}{\left(\omega_{0}^{2}-\omega_{s}^{2}\right)^{2}+\left(2 \Gamma \omega_{s}\right)^{2}} \\
& \operatorname{Im} G_{\omega_{0}}\left(\omega_{s}\right)=\frac{2 \Gamma \omega_{s}}{\left(\omega_{0}^{2}-\omega_{s}^{2}\right)^{2}+\left(2 \Gamma \omega_{s}\right)^{2}}
\end{aligned}
$$

Green's Function for the FDHO (Forced-Damped-Harmonic Oscillator)

Fig. 3.2.4 Black-box diagram of oscillator response to monochromatic stimulus

$$
G_{\omega_{0}}\left(\omega_{s}\right)=\frac{1}{\omega_{0}^{2}-\omega_{s}^{2}-i 2 \Gamma \omega_{s}}=\operatorname{Re} G_{\omega_{0}}\left(\omega_{s}\right)+i \operatorname{Im} G_{\omega_{0}}\left(\omega_{s}\right)=\left|G_{\omega_{0}}\left(\omega_{s}\right)\right| e^{i \rho}
$$

Real and imaginary parts of the rectangular form of G :

$$
\begin{aligned}
& \operatorname{Re} G_{\omega_{0}}\left(\omega_{s}\right)=\frac{\omega_{0}^{2}-\omega_{s}^{2}}{\left(\omega_{0}^{2}-\omega_{s}^{2}\right)^{2}+\left(2 \Gamma \omega_{s}\right)^{2}} \\
& \operatorname{Im} G_{\omega_{0}}\left(\omega_{s}\right)=\frac{2 \Gamma \omega_{s}}{\left(\omega_{0}^{2}-\omega_{s}^{2}\right)^{2}+\left(2 \Gamma \omega_{s}\right)^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \left|G_{\omega_{0}}\left(\omega_{s}\right)\right|=\frac{1}{\sqrt{\left(\omega_{0}^{2}-\omega_{s}^{2}\right)^{2}+\left(2 \Gamma \omega_{s}\right)^{2}}} \\
& \rho=\tan ^{-1}\left(\frac{2 \Gamma \omega_{s}}{\omega_{0}^{2}-\omega_{s}^{2}}\right)
\end{aligned}
$$

Green's Function for the FDHO (Forced-Damped-Harmonic Oscillator)

Fig. 3.2.4 Black-box diagram of oscillator response to monochromatic stimulus

$$
G_{\omega_{0}}\left(\omega_{s}\right)=\frac{1}{\omega_{0}^{2}-\omega_{s}^{2}-i 2 \Gamma \omega_{s}}=\operatorname{Re} G_{\omega_{0}}\left(\omega_{s}\right)+i \operatorname{Im} G_{\omega_{0}}\left(\omega_{s}\right)=\left|G_{\omega_{0}}\left(\omega_{s}\right)\right| e^{i \rho}
$$

Real and imaginary parts of the rectangular form of G :
Magnitude $\left|G_{\omega_{0}}\left(\omega_{s}\right)\right|$ and polar angle ρ of the polar form of G :

$$
\begin{aligned}
& \operatorname{Re} G_{\omega_{0}}\left(\omega_{s}\right)=\frac{\omega_{0}^{2}-\omega_{s}^{2}}{\left(\omega_{0}^{2}-\omega_{s}^{2}\right)^{2}+\left(2 \Gamma \omega_{s}\right)^{2}} \\
& \operatorname{Im} G_{\omega_{0}}\left(\omega_{s}\right)=\frac{2 \Gamma \omega_{s}}{\left(\omega_{0}^{2}-\omega_{s}^{2}\right)^{2}+\left(2 \Gamma \omega_{s}\right)^{2}}
\end{aligned}
$$

$$
\left|G_{\omega_{0}}\left(\omega_{s}\right)\right|=\frac{1}{\sqrt{\left(\omega_{0}^{2}-\omega_{s}^{2}\right)^{2}+\left(2 \Gamma \omega_{s}\right)^{2}}}
$$

$$
\rho=\tan ^{-1}\left(\frac{2 \Gamma \omega_{s}}{\omega_{0}^{2}-\omega_{s}^{2}}\right)
$$

Initial time $t=0$

Imaginary
Axis
Stimulus

Fig. 3.2.5 Oscillator response and stimulus phasors rotate rigidly at angular rate ω_{s}.

Green's Function for the FDHO (Forced-Damped-Harmonic Oscillator)

Fig. 3.2.4 Black-box diagram of oscillator response to monochromatic stimulus

$$
\left.G_{\omega_{0}}\left(\omega_{s}\right)=\frac{1}{\omega_{0}^{2}-\omega_{s}^{2}-i 2 \Gamma \omega_{s}}=\operatorname{Re} G_{\omega_{0}}\left(\omega_{s}\right)+i \operatorname{Im} G_{\omega_{0}}\left(\omega_{s}\right)=\left|G_{\omega_{0}}\left(\omega_{s}\right)\right| e^{i \rho} \right\rvert\,
$$

Real and imaginary parts of the rectangular form of G :
Magnitude $\left|G_{\omega_{0}}\left(\omega_{s}\right)\right|$ and polar angle ρ of the polar form of G :

$$
\begin{aligned}
& \operatorname{Re} G_{\omega_{0}}\left(\omega_{s}\right)=\frac{\omega_{0}^{2}-\omega_{s}^{2}}{\left(\omega_{0}^{2}-\omega_{s}^{2}\right)^{2}+\left(2 \Gamma \omega_{s}\right)^{2}} \\
& \operatorname{Im} G_{\omega_{0}}\left(\omega_{s}\right)=\frac{2 \Gamma \omega_{s}}{\left(\omega_{0}^{2}-\omega_{s}^{2}\right)^{2}+\left(2 \Gamma \omega_{s}\right)^{2}}
\end{aligned}
$$

$$
\left|G_{\omega_{0}}\left(\omega_{s}\right)\right|=\frac{1}{\sqrt{\left(\omega_{0}^{2}-\omega_{s}^{2}\right)^{2}+\left(2 \Gamma \omega_{s}\right)^{2}}}
$$

$$
\rho=\tan ^{-1}\left(\frac{2 \Gamma \omega_{s}}{\omega_{0}^{2}-\omega_{s}^{2}}\right)
$$

Fig. 3.2.5 Oscillator response and stimulus phasors rotate rigidly at angular rate ω_{s}.

$$
\left.A A F=\frac{\text { Resonant response }}{\text { DC response }}=\frac{\left|G_{\omega_{0}}\left(\omega_{s}=\omega_{0}\right)\right|}{\left|G_{\omega_{0}}(0)\right|}=\frac{1 /\left(2 \Gamma \omega_{0}\right)}{1 / \omega_{0}^{2}}=\frac{\omega_{0}}{2 \Gamma} \equiv q \quad \text { (angular quality factor }\right)
$$

$A A F=\frac{\text { Resonant response }}{\text { DC response }}=\frac{\left|G_{\omega_{0}}\left(\omega_{s}=\omega_{0}\right)\right|}{\left|G_{\omega_{0}}(0)\right|}=\frac{1 /\left(2 \Gamma \omega_{0}\right)}{1 / \omega_{0}^{2}}=\frac{\omega_{0}}{2 \Gamma} \equiv q \quad$ (angular quality factor)

Fig. 3.2.7 Comparing Lorentz-Green resonance region for (a) $\Gamma=0.2$ and (b) $\Gamma=0.1$.
Maximum and minimum points of $\operatorname{Re} G(\omega)$ and inflection points of $\operatorname{Im} G(\omega)$ are near region boundaries $\omega^{F W H M}(\pm)=\omega_{0} \pm \Gamma$.

Complete Green's Solution for the FDHO (Forced-Damped-Harmonic Oscillator)

$$
\begin{aligned}
& z(t)=z_{\text {transient }}(t)+z_{\text {response }}(t) \equiv z_{\text {decaying }}(t)+z_{\text {steady state }}(t) \\
& =A e^{-\Gamma t} e^{-i \omega_{\Gamma} t}+G_{\omega_{0}}\left(\omega_{s}\right) a(0) e^{-i \omega_{s} t} \\
& =A e^{-\Gamma t} e^{-i \omega_{\Gamma} t}+\left|G_{\omega_{0}}\left(\omega_{s}\right)\right| a(0) e^{-i\left(\omega_{s} t-\rho\right)} \\
& \text { Known as "inhomogeneous" solution } \\
& \text { Not function of initial values. Marches to stimulus only. }
\end{aligned}
$$

Complete Green's Solution for the FDHO (Forced-Damped-Harmonic Oscillator)

$$
\begin{aligned}
z(t) & =z_{\text {transient }}(t)+z_{\text {response }}(t) \equiv z_{\text {decaying }}(t)+z_{\text {steady state }}(t) \\
& =A e^{-\Gamma t} e^{-i \omega_{\Gamma} t}+G_{\omega_{0}}\left(\omega_{s}\right) a(0) e^{-i \omega_{s} t} \\
& =A e^{-\Gamma t} e^{-i \omega_{\Gamma} t}+\left|G_{\omega_{0}}\left(\omega_{s}\right)\right| a(0) e^{-i\left(\omega_{s} t-\rho\right)}
\end{aligned}
$$

Known as "homogeneous" solution (no force)
Let's you set initial values or boundary conditions
Known as Transient solution since it dies-off as time advances past initial conditions

Known as "inhomogeneous" solution
Not function of initial values. Marches to stimulus only.
Known as Steady State solution since it is present as long as stimulus is.

Complete Green's Solution for the FDHO (Forced-Damped-Harmonic Oscillator)

$$
\begin{aligned}
z(t) & =z_{\text {transient }}(t)+z_{\text {response }}(t) \equiv z_{\text {decaying }}(t)+z_{\text {steady state }}(t) \\
& =A e^{-\Gamma t} e^{-i \omega_{\Gamma} t}+G_{\omega_{0}}\left(\omega_{s}\right) a(0) e^{-i \omega_{s} t} \\
& =A e^{-\Gamma t} e^{-i \omega_{\Gamma} t}+\left|G_{\omega_{0}}\left(\omega_{s}\right)\right| a(0) e^{-i\left(\omega_{s} t-\rho\right)}
\end{aligned}
$$

Known as "homogeneous" solution (no force) Let's you set initial values or boundary conditions

Known as Transient solution since it dies-off as time advances past initial conditions
Stimulus: $A s=0.5000 \quad 0=6.2832$
Response: $R=0.1989 \rho=1.5708$

$$
\begin{aligned}
& \text { Response: } \mathrm{R}=0.1989 p=1.5708 \\
& (\mathrm{a})
\end{aligned}
$$

Known as "inhomogeneous" solution
Not function of initial values. Marches to stimulus only.
Known as Steady State solution since it is present as long as stimulus is.

Fig. 3.2.8 On Resonance (a) Response z-phasor lags $\rho=90^{\circ}$ behind stimulus F-phasor. $\left(\omega_{\mathrm{s}}=\omega_{0}=2 \pi, \omega_{0}=2 \pi\right.$, and $\Gamma=0.2$). (b) Time plots of $\operatorname{Re} z(t)$ and $\operatorname{Re} F(t)$

Fig. 3.2.8 Below Resonance (c)Response z-phasor lags $\rho=8.05^{\circ}$ behind stimulus F-phasor. $\left(\omega_{\mathrm{s}}=5.03, \omega_{0}=2 \pi\right.$, and $\left.\Gamma=0.2\right) . \quad$ (d) Time plots of $\operatorname{Re} z(t)$ and $\operatorname{Re} F(t)$. Beats are barely visible.
(c)

Stimulus: As $=1.0000 \quad \omega=7.5265$

$$
\Gamma=0.2
$$

Stimulus: As $=1.0000 \omega=5.0265$ Response: $R=0.0697 \rho=0.1405$

Stimulus: As $=1.0000 \quad \omega=7.5265$

Stimulus: As $=1.0000 \omega=5.0265$ Response: $\mathrm{R}=0.0697 \rho=0.1405$

$\Gamma \sim 0$
(a) Above Resonance
$\Gamma \sim 0$

Tim

Oscillator figures of merit: quality factors Q and $q=2 \pi Q$

$$
\left.A A F=\frac{\text { Resonant response }}{\text { DC response }}=\frac{\left|G_{\omega_{0}}\left(\omega_{s}=\omega_{0}\right)\right|}{\left|G_{\omega_{0}}(0)\right|}=\frac{1 /\left(2 \Gamma \omega_{0}\right)}{1 / \omega_{0}^{2}}=\frac{\omega_{0}}{2 \Gamma} \equiv q \quad \text { (angular quality factor }\right)
$$

Amplification factor $q=\omega_{0} / 2 \Gamma$
Natural oscillation frequency is approximately $v_{0}=\omega_{0} / 2 \pi$ (for $\omega_{0} \gg \Gamma$ we have $\omega_{0} \sim \omega_{\Gamma}$).

Oscillator figures of merit: quality factors Q and $q=2 \pi Q$

$$
\left.A A F=\frac{\text { Resonant response }}{\text { DC response }}=\frac{\left|G_{\omega_{0}}\left(\omega_{s}=\omega_{0}\right)\right|}{\left|G_{\omega_{0}}(0)\right|}=\frac{1 /\left(2 \Gamma \omega_{0}\right)}{1 / \omega_{0}^{2}}=\frac{\omega_{0}}{2 \Gamma} \equiv q \quad \text { (angular quality factor }\right)
$$

Amplification factor $q=\omega_{0} / 2 \Gamma$
Natural oscillation frequency is approximately $v_{0}=\omega_{0} / 2 \pi$ (for $\omega_{0} \gg \Gamma$ we have $\omega_{0} \sim \omega_{\Gamma}$).
$\left(\begin{array}{c}t_{5 \%}=3 / \Gamma=\text { Lifetime } \\ \text { for decaying oscillator } \\ \text { to lose } 95 \% \text { of }\end{array}\right)$ times $\left(v_{0}=\frac{\omega_{0}}{2 \pi}\right)=\begin{gathered}\text { number } n_{5 \%} \\ \text { of oscillations } \\ \text { in a } t_{5 \%} \text { Lifetime }\end{gathered}$ amplitude

Oscillator figures of merit: quality factors Q and $q=2 \pi Q$

$$
A A F=\frac{\text { Resonant response }}{\text { DC response }}=\frac{\left|G_{\omega_{0}}\left(\omega_{s}=\omega_{0}\right)\right|}{\left|G_{\omega_{0}}(0)\right|}=\frac{1 /\left(2 \Gamma \omega_{0}\right)}{1 / \omega_{0}^{2}}=\frac{\omega_{0}}{2 \Gamma} \equiv q \quad(\text { angular quality factor })
$$

Amplification factor $q=\omega_{0} / 2 \Gamma$
Natural oscillation frequency is approximately $v_{0}=\omega_{0} / 2 \pi$ (for $\omega_{0} \gg \Gamma$ we have $\omega_{0} \sim \omega_{\Gamma}$).

$$
\begin{gathered}
\left(\begin{array}{c}
t_{5 \%}=3 / \Gamma=\text { Lifetime } \\
\text { for decaying oscillator } \\
\text { to lose } 95 \% \text { of } \\
\text { amplitude }
\end{array}\right) \\
\qquad \mathrm{n}_{5 \%}=t_{5 \%} v_{0}=\frac{3}{\Gamma} \cdot \frac{\omega_{0}}{2 \pi} \cong \frac{\omega_{0}}{2 \Gamma}=q
\end{gathered}
$$

The "Heartbeat Count" measure of lifetime

Oscillator figures of merit: quality factors Q and $q=2 \pi Q$

$$
\left.A A F=\frac{\text { Resonant response }}{\text { DC response }}=\frac{\left|G_{\omega_{0}}\left(\omega_{s}=\omega_{0}\right)\right|}{\left|G_{\omega_{0}}(0)\right|}=\frac{1 /\left(2 \Gamma \omega_{0}\right)}{1 / \omega_{0}^{2}}=\frac{\omega_{0}}{2 \Gamma} \equiv q \quad \text { (angular quality factor }\right)
$$

Amplification factor $q=\omega_{0} / 2 \Gamma$
Natural oscillation frequency is approximately $v_{0}=\omega_{0} / 2 \pi$ (for $\omega_{0} \gg \Gamma$ we have $\omega_{0} \sim \omega_{\Gamma}$).

Energy decay
(proportional to the square of oscillator amplitude): $\quad\left(e^{\Gamma t}\right)^{2}=e^{-2 \Gamma t} \quad d E=-2 \Gamma E$

Oscillator figures of merit: quality factors Q and $q=2 \pi Q$

$$
A A F=\frac{\text { Resonant response }}{\text { DC response }}=\frac{\left|G_{\omega_{0}}\left(\omega_{s}=\omega_{0}\right)\right|}{\left|G_{\omega_{0}}(0)\right|}=\frac{1 /\left(2 \Gamma \omega_{0}\right)}{1 / \omega_{0}^{2}}=\frac{\omega_{0}}{2 \Gamma} \equiv q \quad \text { (angular quality factor) }
$$

Amplification factor $q=\omega_{0} / 2 \Gamma$
Natural oscillation frequency is approximately $v_{0}=\omega_{0} / 2 \pi$ (for $\omega_{0} \gg \Gamma$ we have $\omega_{0} \sim \omega_{\Gamma}$).

$$
\begin{aligned}
& t_{5 \%}^{t_{5}=3 / \Gamma=\text { Lifetime }} \\
& \left(\begin{array}{c}
\text { for decaying oscillator } \\
\text { to lose 95\% of } \\
\text { amplitude }
\end{array}\right)
\end{aligned} \text { times }\left(v_{0}=\frac{\omega_{0}}{2 \pi}\right)=\begin{gathered}
\text { number } n_{5 \%} \\
\text { of oscillations } \\
\text { in a } t_{5 \%} \text { Lifetime }
\end{gathered}
$$

Energy decay
(proportional to the square of oscillator amplitude): $\quad\left(e^{\Gamma t}\right)^{2}=e^{-2 \Gamma t} \quad d E=-2 \Gamma E$
Relative amount
of energy lost
each cycle period $=\tau_{0}\left(\frac{-d E}{E}\right)=\frac{2 \Gamma}{v_{0}} \equiv \frac{1}{Q}=\frac{2 \pi}{q} \quad Q=($ Standard angular quality factor $)=\frac{q}{2 \pi}, ~$

$$
\left(\tau_{0}=\frac{1}{v_{0}}\right)
$$

Oscillator figures of merit: Uncertainty $1 / \mathbf{q}$

To see a beat we need $\tau_{\text {half-beat }}$ to be less than $\tau_{5 \%}$ or $3 / \Gamma$. (Here we approximate $\pi \sim 3.0$, again.)

$$
\pi /\left|\omega_{s}-\omega_{0}\right|<3 / \Gamma \quad\left|\omega_{s}-\omega_{0}\right|>\Gamma
$$

This means ω-detuning error is greater than or equal to the decay rate Γ.

Any detuning less than Γ is virtually undetectable. Total ω uncertainty is $\pm \Gamma$ or twice Γ (that is: FWHM $\Delta \omega=2 \Gamma$). Linear frequency uncertainty is:
The relative frequency uncertainty $\quad \frac{2 \Gamma}{\omega_{0}}=\frac{\Delta \omega}{\omega_{0}}=\frac{1}{q}=\frac{\Delta v}{v_{0}}$

$$
\Delta v=\Delta \omega / 2 \pi=\Gamma / \pi
$$

is the inverse of the angular quality factor q.

If we think of the 5% or 4.321% lifetime of a musical note as its time uncertainty $\Delta \mathrm{t}$, then:

$$
\Delta t \Delta v=3 / \pi \approx 1
$$

$$
\Delta t=t_{5 \%}=3 / \Gamma \quad \Delta t=t_{4.321 \%}=\pi / \Gamma
$$

Approximate Lorentz-Green's Function for high quality FDHO (Quantum propagator)
$G_{\omega_{0}}\left(\omega_{s}\right)=\frac{1}{\omega_{0}^{2}-\omega_{s}^{2}-i 2 \Gamma \omega_{s}} \xrightarrow[\omega_{s} \rightarrow \omega_{0}]{ } \frac{1}{2 \omega_{s}} \frac{1}{\omega_{0}-\omega_{s}-i \Gamma} \approx \frac{1}{2 \omega_{0}} \frac{1}{\Delta-i \Gamma}=\frac{1}{2 \omega_{0}} L(\Delta-i \Gamma)$
Complex detuning-decay $\delta=\Delta-i \Gamma$ variable δ is defined with the real detuning $\quad \Delta=\omega_{0}-\omega_{S}$

Approximate Lorentz-Green's Function for high quality FDHO
(Quantum propagator)
$G_{\omega_{0}}\left(\omega_{s}\right)=\frac{1}{\omega_{0}^{2}-\omega_{s}^{2}-i 2 \Gamma \omega_{s}} \xrightarrow[\omega_{s} \rightarrow \omega_{0}]{ } \frac{1}{2 \omega_{s}} \frac{1}{\omega_{0}-\omega_{s}-i \Gamma} \approx \frac{1}{2 \omega_{0}} \frac{1}{\Delta-i \Gamma}=\frac{1}{2 \omega_{0}} L(\Delta-i \Gamma)$
Complex detuning-decay $\delta=\Delta-i \Gamma$ variable δ is defined with the real detuning $\quad \Delta=\omega_{0}-\omega_{s}$

$$
L(\Delta-i \Gamma)=\frac{1}{\Delta-i \Gamma}=\operatorname{Re} L \quad+i \operatorname{Im} L \quad=\frac{\Delta}{\Delta^{2}+\Gamma^{2}}+i \frac{\Gamma}{\Delta^{2}+\Gamma^{2}}=|L|^{2} \Delta+i|L|^{2} \Gamma
$$

Approximate Lorentz-Green's Function for high quality FDHO
(Quantum propagator)

$$
G_{\omega_{0}}\left(\omega_{s}\right)=\frac{1}{\omega_{0}^{2}-\omega_{s}^{2}-i 2 \Gamma \omega_{s}} \xrightarrow[\omega_{s} \rightarrow \omega_{0}]{ } \frac{1}{2 \omega_{s}} \frac{1}{\omega_{0}-\omega_{s}-i \Gamma} \approx \frac{1}{2 \omega_{0}} \frac{1}{\Delta-i \Gamma}=\frac{1}{2 \omega_{0}} L(\Delta-i \Gamma)
$$

Complex detuning-decay $\delta=\Delta-i \Gamma$ variable δ is defined with the real detuning $\quad \Delta=\omega_{0}-\omega_{s}$

$$
\begin{aligned}
L(\Delta-i \Gamma) & =\frac{1}{\Delta-i \Gamma}=\operatorname{Re} L \quad+i \operatorname{Im} L \quad=\frac{\Delta}{\Delta^{2}+\Gamma^{2}}+i \frac{\Gamma}{\Delta^{2}+\Gamma^{2}}=|L|^{2} \Delta+i|L|^{2} \Gamma \\
& =|L| e^{i \rho}=|L| \cos \rho+i|L| \sin \rho=\frac{\cos \rho}{\sqrt{\Delta^{2}+\Gamma^{2}}}+i \frac{\sin \rho}{\sqrt{\Delta^{2}+\Gamma^{2}}} \text { where: }|L|=\frac{1}{\sqrt{\Delta^{2}+\Gamma^{2}}}
\end{aligned}
$$

Approximate Lorentz-Green's Function for high quality FDHO (Quantum propagator)
$G_{\omega_{0}}\left(\omega_{s}\right)=\frac{1}{\omega_{0}^{2}-\omega_{s}^{2}-i 2 \Gamma \omega_{s}} \xrightarrow[\omega_{s} \rightarrow \omega_{0}]{ } \frac{1}{2 \omega_{s}} \frac{1}{\omega_{0}-\omega_{s}-i \Gamma} \approx \frac{1}{2 \omega_{0}} \frac{1}{\Delta-i \Gamma}=\frac{1}{2 \omega_{0}} L(\Delta-i \Gamma)$
Complex detuning-decay $\delta=\Delta-i \Gamma$ variable δ is defined with the real detuning $\quad \Delta=\omega_{0}-\omega_{S}$

$$
\begin{aligned}
L(\Delta-i \Gamma) & =\frac{1}{\Delta-i \Gamma}=\operatorname{Re} L \quad+i \operatorname{Im} L \quad=\frac{\Delta}{\Delta^{2}+\Gamma^{2}}+i \frac{\Gamma}{\Delta^{2}+\Gamma^{2}}=|L|^{2} \Delta+i|L|^{2} \Gamma \\
& =|L| e^{i \rho}=|L| \cos \rho+i|L| \sin \rho=\frac{\cos \rho}{\sqrt{\Delta^{2}+\Gamma^{2}}}+i \frac{\sin \rho}{\sqrt{\Delta^{2}+\Gamma^{2}}} \text { where: }|L|=\frac{1}{\sqrt{\Delta^{2}+\Gamma^{2}}}
\end{aligned}
$$

Ideal Lorentz-Green's functions
$|L|=\frac{1}{\Gamma} \sin \rho$
$|L|=\frac{1}{\Delta} \cos \rho$

Approximate Lorentz-Green's Function for high quality FDHO (Quantum propagator)

$$
G_{\omega_{0}}\left(\omega_{s}\right)=\frac{1}{\omega_{0}^{2}-\omega_{s}^{2}-i 2 \Gamma \omega_{s}} \xrightarrow[\omega_{s} \rightarrow \omega_{0}]{ } \frac{1}{2 \omega_{s}} \frac{1}{\omega_{0}-\omega_{s}-i \Gamma} \approx \frac{1}{2 \omega_{0}} \frac{1}{\Delta-i \Gamma}=\frac{1}{2 \omega_{0}} L(\Delta-i \Gamma)
$$

Complex detuning-decay $\delta=\Delta-i \Gamma$ variable δ is defined with the real detuning $\quad \Delta=\omega_{0}-\omega_{S}$

$$
\begin{aligned}
L(\Delta-i \Gamma) & =\frac{1}{\Delta-i \Gamma}=\operatorname{Re} L \quad+i \operatorname{Im} L \quad=\frac{\Delta}{\Delta^{2}+\Gamma^{2}}+i \frac{\Gamma}{\Delta^{2}+\Gamma^{2}}=|L|^{2} \Delta+i|L|^{2} \Gamma \\
& =|L| e^{i \rho}=|L| \cos \rho+i|L| \sin \rho=\frac{\cos \rho}{\sqrt{\Delta^{2}+\Gamma^{2}}}+i \frac{\sin \rho}{\sqrt{\Delta^{2}+\Gamma^{2}}} \text { where: }|L|=\frac{1}{\sqrt{\Delta^{2}+\Gamma^{2}}}
\end{aligned}
$$

Ideal Lorentz-Green's functions
$|L|=\frac{1}{\Gamma} \sin \rho$
$|L|=\frac{1}{\Delta} \cos \rho$

Fig. 3.2.13 Ideal Lorentzian in inverse rate space. (Smith life-time $1 / \Gamma$ vs. beat-period $1 / \Delta$ coordinates)
Constant Δ and Γ curves in Fig. 3.2.13 are orthogonal circles of $1 / z$-dipolar coordinates. Recall Fig. 1.10.11.

The Common Lorentzian (a.k.a. The QUich of Oflgnesi)

$x^{2}=b^{2} \cot ^{2} \theta=b^{2} \quad \frac{\cos ^{2} \theta}{\sin ^{2} \theta}=b^{2} \quad \frac{1-\sin ^{2} \theta}{\sin ^{2} \theta}=\frac{b^{2}}{\sin ^{2} \theta} b^{2}$
$x^{2}+b^{2}=\frac{b^{2}}{\sin ^{2} \theta}=\frac{b}{y} \begin{gathered}y=\frac{b}{x^{2}+b^{2}} \\ \begin{array}{c}\text { Common Lorentzian function I. } \\ \text { (imaginary" "absorbtive" part) }\end{array}\end{gathered}$

Italy
Italy
Mathematics

The Common Lorentzian (a.k.a. The ()Wich of OHgnesi)

$x^{2}=b^{2} \cot ^{2} \theta=b^{2} \quad \frac{\cos ^{2} \theta}{\sin ^{2} \theta}=b^{2} \quad \frac{1-\sin ^{2} \theta}{\sin ^{2} \theta}=\frac{b^{2}}{\sin ^{2} \theta} b^{2}$

$x^{2}+b^{2}=\frac{b^{2}}{\sin ^{2} \theta}=\frac{b}{y} \begin{gathered}y=\frac{b}{x^{2}+b^{2}} \\ \begin{array}{l}\text { Common Lorentzian function I. } \\ \text { (imaginary "absorbtive" part) }\end{array}\end{gathered}$

$$
x^{2}+b^{2}=\frac{b^{2}}{\sin ^{2} \theta}=\frac{x}{y} \begin{gathered}
y=\frac{x}{x^{2}+b^{2}} \\
\begin{array}{c}
\text { Common Lorentzian function II. } \\
\text { (real "refractory" part) }
\end{array} \\
\hline
\end{gathered}
$$

Born

The Common Lorentzian (a.k.a. The OVich of OSgnesi)

$x^{2}=b^{2} \cot ^{2} \theta=b^{2} \quad \frac{\cos ^{2} \theta}{\sin ^{2} \theta}=b^{2} \quad \frac{1-\sin ^{2} \theta}{\sin ^{2} \theta}=\frac{b^{2}}{\sin ^{2} \theta} b^{2}$

$x^{2}+b^{2}=\frac{b^{2}}{\sin ^{2} \theta}=\frac{b}{y} \begin{gathered}y=\frac{b}{x^{2}+b^{2}} \\ \begin{array}{c}\text { Common Lorentzian function } I \text {. } \\ \text { (imaginary "absorbtive" part) }\end{array}\end{gathered}$

$$
x^{2}+b^{2}=\frac{b^{2}}{\sin ^{2} \theta}=\frac{x}{y} \begin{gathered}
y=\frac{x}{x^{2}+b^{2}} \\
\begin{array}{c}
\text { Common Lorentzian function II. } \\
\text { (real "refractory" part) }
\end{array} \\
\hline
\end{gathered}
$$

Maria Gaetana Agnesi

Born
Died Residence

Nationality
Fields January 9, 1799 (aged 80) Italy

Italy
Mathematics

The Common Lorentzian (a.k.a. The Qvich of OStmesi)

$x^{2}=b^{2} \cot ^{2} \theta=b^{2} \quad \frac{\cos ^{2} \theta}{\sin ^{2} \theta}=b^{2} \quad \frac{1-\sin ^{2} \theta}{\sin ^{2} \theta}=\frac{b^{2}}{\sin ^{2} \theta} b^{2}$
$x^{2}+b^{2}=\frac{b^{2}}{\sin ^{2} \theta}=\frac{b}{y} \begin{gathered}y=\frac{b}{x^{2}+b^{2}} \\ \begin{array}{c}\text { Common Lorentzian function I. } \\ \text { (imaginary "absorbtive" part) }\end{array}\end{gathered}$

Compare ideal Lorentzians ($\Gamma=0.2$) with a very non-ideal one ($\Gamma=2$)

The Common Lorentzian (a.k.a. The OWitch of Olgnesi)

$x^{2}=b^{2} \cot ^{2} \theta=b^{2} \quad \frac{\cos ^{2} \theta}{\sin ^{2} \theta}=b^{2} \quad \frac{1-\sin ^{2} \theta}{\sin ^{2} \theta}=\frac{b^{2}}{\sin ^{2} \theta} b^{2}$
$x^{2}+b^{2}=\frac{b^{2}}{\sin ^{2} \theta}=\frac{b}{y} \begin{gathered}y=\frac{b}{x^{2}+b^{2}} \\ \begin{array}{c}\text { Common Lorentzian function I. } \\ \text { (imaginary "absorbtive" part) }\end{array}\end{gathered}$

Born

From: Fig. 1.10.12

From: Fig. 1.10.12

From: Fig. 1.10.12

$$
\begin{aligned}
& x^{2}=b^{2} \cot ^{2} \theta=b^{2} \frac{\cos ^{2} \theta}{\sin ^{2} \theta}=b^{2} \frac{1-\sin ^{2} \theta}{\sin ^{2} \theta}=\frac{b^{2}}{\sin ^{2} \theta} b^{2} \\
& x^{2}+b^{2}=\frac{b^{2}}{\sin ^{2} \theta}=\frac{b}{y} \begin{array}{c}
y=\frac{b}{x^{2}+b^{2}} \\
\begin{array}{c}
\text { Common Lorentzian function I. } \\
\text { (imaginary "absorbtive" part) }
\end{array}
\end{array}
\end{aligned}
$$

