Geometry and Symmetry of Coulomb Orbital Dynamics I.

(Ch. 2-4 of Unit 5 12.11.14)
Rutherford scattering and differential scattering cross-sections
Parabolic "kite" and envelope geometry
Eccentricity vector ε and (ε, λ)-geometry of orbital mechanics
ε-vector and Coulomb \mathbf{r}-orbit geometry
Review and connection to standard development
$\boldsymbol{\varepsilon}$-vector and Coulomb $\mathbf{p}=m \mathbf{v}$ geometry
$\boldsymbol{\varepsilon}$-vector and Coulomb $\mathbf{p}=m \mathbf{v}$ algebra
Example with elliptical orbit
Analytic geometry derivation of ε-construction
Algebra of ε-construction geometry
Connection formulas for (a, b) and (ε, λ) with (γ, R)
\rightarrow Review and added: Rutherford scattering and differential scattering cross-sections Parabolic "kite" and envelope geometry

> Rutherford scattering of α^{+2} particles from Au ${ }^{+79}$ nucleus at O Assume "Dead-On" closest approach $2 a$. $(E=k / 2 a) \quad a \sim 10^{-11} m \gg 7 \cdot 3 \cdot 10^{-15} m$

Pick an "impact parameter" line $y=b$. Draw circle of radius a around center point $\mathrm{C}=(-a, b)$ tangent to y-axis. Draw "focus-locus" line OCF.

Pick an "impact parameter" line $y=b$. Draw circle of radius a around center point $\mathrm{C}=(-a, b)$ tangent to y-axis. Draw "focus-locus" line OCF.
Rutherford scattering of α^{+2} particles from $A u^{+79}$ nucleus at O Assume "Dead-On" closest approach $2 a$. $(E=k / 2 a) \quad a \sim 10^{-11} m \gg 7.3 \cdot 10^{-15} m$

Copy angle $\angle \mathrm{BCF}$ (equal to $\Theta / 2$) to make angle $\angle \mathrm{FCB}^{\prime}$ (also equal to $\Theta / 2$) Resulting line CB^{\prime} is outgoing asymptote at scattering angle Θ

Smaller impact b-parameter Larger Rutherford back-scattering angle Θ \}
Larger Rutherford back-scattering angle Θ \

Larger impact b-parameter
Smaller Rutherford back-scattering angle Θ

Review: Coulomb scattering geometry
Review and added: Rutherford scattering and differential scattering cross-sections \rightarrow Parabolic "Kite" and envelope geometry

Rutherford scattering geometry

Rutherford scattering geometry

"Kite" geometry of envelope parabola

Recall parabolic " kite" geometry

Rutherford scattering geometry

"Kite" geometry of envelope parabola

Rutherford scattering geometry

"Kite" geometry of envelope parabola

Recall parabolic " kite" geometry

"Kite" geometry of envelope parabola

"Kite" geometry of envelope parabola

Rutherford scattering geometry

Also: Approximate
$\Theta(b)$ model of deep-space H-atom scattering from solar wind as our Sun travels around galaxy.
Lyman- α shock wave found just inside Mars orbital radius 2a $\sim 1.2 A u$.

Fig. 5.3.2 Family of iso-energetic Rutherford scattering orbits with varying impact parameter.
Incremental window $\mathrm{d} \sigma=b \cdot d b$ normal to beam axis at $x=-\infty$ scatters to area $d A=R^{2} \sin \Theta d \Theta d \varphi=R^{2} d \Omega$ onto a sphere at $R=+\infty$ where is called the incremental solid angled $\Omega=\sin \Theta d \Theta d \varphi$
Ratio $\frac{d \sigma}{d \Omega}=\frac{b d b d \varphi}{\sin \Theta d \Theta d \varphi}=\frac{b}{\sin \Theta} \frac{d b}{d \Theta}$ is called the differential scattering crossection (DSC)
Geometry $b=a \cot \frac{\Theta}{2}=\frac{k}{2 E} \cot \frac{\Theta}{2}$ gives the Rutherford DSC. $\quad \frac{d \sigma}{d \Omega}=\frac{k^{4}}{16 E^{2}} \sin ^{-4} \frac{\Theta}{2}$
Agrees exactly with $1^{\text {st }}$ Born approximation to quantum Coulomb DSC!

Eccentricity vector ε and (ε, λ)-geometry of orbital mechanics
$\rightarrow \varepsilon$-vector and Coulomb r-orbit geometry
Review and connection to standard development
$\boldsymbol{\varepsilon}$-vector and Coulomb $\mathbf{p}=m \mathbf{v}$ geometry
ε-vector and Coulomb $\mathbf{p}=m \mathbf{v}$ algebra
Example with elliptical orbit
Analytic geometry derivation of ε-construction
Algebra of ε-construction geometry
Connection formulas for (a, b) and (ε, λ) with (γ, R)

Eccentricity vector ε and (ε, λ) geometry of orbital mechanics

Isotropic field $V=V(r)$ guarantees conservation angular momentum vector \mathbf{L}

$$
\mathbf{L}=\mathbf{r} \times \mathbf{p}=m \mathbf{r} \times \dot{\mathbf{r}}
$$

Eccentricity vector ε and (ε, λ) geometry of orbital mechanics

Isotropic field $V=V(r)$ guarantees conservation angular momentum vector \mathbf{L}

$$
\mathbf{L}=\mathbf{r} \times \mathbf{p}=m \mathbf{r} \times \dot{\mathbf{r}}
$$

Coulomb $V=-k / r$ also conserves eccentricity vector ε

$$
\varepsilon=\hat{\mathbf{r}}-\frac{\mathbf{p} \times \mathbf{L}}{k m}=\frac{\mathbf{r}}{r}-\frac{\mathbf{p} \times(\mathbf{r} \times \mathbf{p})}{k m}
$$

Isotropic field $V=V(r)$ guarantees conservation angular momentum vector \mathbf{L}

$$
\mathbf{L}=\mathbf{r} \times \mathbf{p}=m \mathbf{r} \times \dot{\mathbf{r}}
$$

Coulomb $V=-k / r$ also conserves eccentricity vector ε

$$
\varepsilon=\hat{\mathbf{r}}-\frac{\mathbf{p} \times \mathbf{L}}{k m}=\frac{\mathbf{r}}{r}-\frac{\mathbf{p} \times(\mathbf{r} \times \mathbf{p})}{k m}
$$

(...for sake of comparison ...)

IHO $V=(k / 2) r^{2}$ also conserves Stokes vector S

$$
\begin{aligned}
& S_{A}=\frac{1}{2}\left(x_{1}^{2}+p_{I}^{2}-x_{2}^{2}-p_{2}^{2}\right) \\
& S_{B}=x_{1} p_{1}+x_{2} p_{2} \\
& S_{C}=x_{I} p_{2}-x_{2} p_{1}
\end{aligned}
$$

$\mathbf{A}=k m \cdot \varepsilon$ is known as the Laplace-Hamilton-Gibbs-Runge-Lenz vector. Generate symmetry groups: $U(2) \subset U(2)$ or: $R(3) \subset R(3) \times R(3) \subset O(4)$

Isotropic field $V=V(r)$ guarantees conservation angular momentum vector \mathbf{L}

$$
\mathbf{L}=\mathbf{r} \times \mathbf{p}=m \mathbf{r} \times \dot{\mathbf{r}}
$$

Coulomb $V=-k / r$ also conserves eccentricity vector ε

$$
\varepsilon=\hat{\mathbf{r}}-\frac{\mathbf{p} \times \mathbf{L}}{k m}=\frac{\mathbf{r}}{r}-\frac{\mathbf{p} \times(\mathbf{r} \times \mathbf{p})}{k m}
$$

(...for sake of comparison...)

IHO $V=(k / 2) r^{2}$ also conserves Stokes vector S

$$
\begin{aligned}
& S_{A}=\frac{1}{2}\left(x_{1}^{2}+p_{1}^{2}-x_{2}^{2}-p_{2}^{2}\right) \\
& S_{B}=x_{1} p_{1}+x_{2} p_{2} \\
& S_{C}=x_{I} p_{2}-x_{2} p_{1}
\end{aligned}
$$

$\mathbf{A}=k m \cdot \varepsilon$ is known as the Laplace-Hamilton-Gibbs-Runge-Lenz vector. Generate symmetry groups:U(2) $\subset U(2)$
Consider dot product of ε with a radial vector \mathbf{r} :

$$
\varepsilon \bullet \mathbf{r}=\frac{\mathbf{r} \bullet \mathbf{r}}{r}-\frac{\mathbf{r} \bullet \mathbf{p} \times \mathbf{L}}{k m}=r-\frac{\mathbf{r} \times \mathbf{p} \bullet \mathbf{L}}{k m}=r-\frac{\mathbf{L} \bullet \mathbf{L}}{k m}
$$

Isotropic field $V=V(r)$ guarantees conservation angular momentum vector \mathbf{L}

$$
\mathbf{L}=\mathbf{r} \times \mathbf{p}=m \mathbf{r} \times \dot{\mathbf{r}}
$$

Coulomb $V=-k / r$ also conserves eccentricity vector ε

$$
\varepsilon=\hat{\mathbf{r}}-\frac{\mathbf{p} \times \mathbf{L}}{k m}=\frac{\mathbf{r}}{r}-\frac{\mathbf{p} \times(\mathbf{r} \times \mathbf{p})}{k m}
$$

(...for sake of comparison ...)

IHO $V=(k / 2) r^{2}$ also conserves Stokes vector S

$$
\begin{aligned}
& S_{A}=\frac{1}{2}\left(x_{I}^{2}+p_{1}^{2}-x_{2}^{2}-p_{2}^{2}\right) \\
& S_{B}=x_{1} p_{1}+x_{2} p_{2} \\
& S_{C}=x_{l} p_{2}-x_{2} p_{1}
\end{aligned}
$$

$\mathbf{A}=k m \cdot \varepsilon$ is known as the Laplace-Hamilton-Gibbs-Runge-Lenz vector. Generate symmetry groups: $U(2) \subset U(2)$
Consider dot product of ε with a radial vector \mathbf{r} :

$$
\varepsilon \bullet \mathbf{r}=\frac{\mathbf{r} \bullet \mathbf{r}}{r}-\frac{\mathbf{r} \bullet \mathbf{p} \times \mathbf{L}}{k m}=r-\frac{\mathbf{r} \times \mathbf{p} \bullet \mathbf{L}}{k m}=r-\frac{\mathbf{L} \bullet \mathbf{L}}{k m}
$$

...or of ε with momentum vector \mathbf{p} :
$\varepsilon \bullet \mathbf{p}=\frac{\mathbf{p} \bullet \mathbf{r}}{r}-\frac{\mathbf{p} \bullet \mathbf{p} \times \mathbf{L}}{k m}=\mathbf{p} \bullet \hat{\mathbf{r}}=p_{r}$

Isotropic field $V=V(r)$ guarantees conservation angular momentum vector \mathbf{L}

$$
\mathbf{L}=\mathbf{r} \times \mathbf{p}=m \mathbf{r} \times \dot{\mathbf{r}}
$$

Coulomb $V=-k / r$ also conserves eccentricity vector ε

$$
\varepsilon=\hat{\mathbf{r}}-\frac{\mathbf{p} \times \mathbf{L}}{k m}=\frac{\mathbf{r}}{r}-\frac{\mathbf{p} \times(\mathbf{r} \times \mathbf{p})}{k m}
$$

(...for sake of comparison...)

IHO $V=(k / 2) r^{2}$ also conserves Stokes vector S

$$
\begin{aligned}
& S_{A}=\frac{1}{2}\left(x_{1}^{2}+p_{1}^{2}-x_{2}^{2}-p_{2}^{2}\right) \\
& S_{B}=x_{1} p_{1}+x_{2} p_{2} \\
& S_{C}=x_{1} p_{2}-x_{2} p_{1}
\end{aligned}
$$

$\mathbf{A}=k m \cdot \varepsilon$ is known as the Laplace-Hamilton-Gibbs-Runge-Lenz vector. Generate symmetry groups: $U(2) \subset U(2)$
Consider dot product of ε with a radial vector \mathbf{r} :

$$
\varepsilon \bullet \mathbf{r}=\frac{\mathbf{r} \bullet \mathbf{r}}{r}-\frac{\mathbf{r} \bullet \mathbf{p} \times \mathbf{L}}{k m}=r-\frac{\mathbf{r} \times \mathbf{p} \bullet \mathbf{L}}{k m}=r-\frac{\mathbf{L} \bullet \mathbf{L}}{k m}
$$

...or of ε with momentum vector \mathbf{p} : $\varepsilon \bullet \mathbf{p}=\frac{\mathbf{p} \bullet \mathbf{r}}{r}-\frac{\mathbf{p} \bullet \mathbf{p} \times \mathbf{L}}{k m}=\mathbf{p} \bullet \hat{\mathbf{r}}=p_{r}$
Let angle ϕ be angle between ε and radial vector \mathbf{r}

$$
\varepsilon r^{\prime} \cos \phi=r-\frac{L^{2}}{k m} .
$$

Isotropic field $V=V(r)$ guarantees conservation angular momentum vector \mathbf{L}

$$
\mathbf{L}=\mathbf{r} \times \mathbf{p}=m \mathbf{r} \times \dot{\mathbf{r}}
$$

Coulomb $V=-k / r$ also conserves eccentricity vector ε

$$
\varepsilon=\hat{\mathbf{r}}-\frac{\mathbf{p} \times \mathbf{L}}{k m}=\frac{\mathbf{r}}{r}-\frac{\mathbf{p} \times(\mathbf{r} \times \mathbf{p})}{k m}
$$

(...for sake of comparison...)

IHO $V=(k / 2) r^{2}$ also conserves Stokes vector S

$$
\begin{aligned}
& S_{A}=\frac{1}{2}\left(x_{1}^{2}+p_{1}^{2}-x_{2}^{2}-p_{2}^{2}\right) \\
& S_{B}=x_{1} p_{1}+x_{2} p_{2} \\
& S_{C}=x_{1} p_{2}-x_{2} p_{1}
\end{aligned}
$$

$\mathbf{A}=k m \cdot \varepsilon$ is known as the Laplace-Hamilton-Gibbs-Runge-Lenz vector. Generate symmetry groups: $U(2) \subset U(2)$
Consider dot product of ε with a radial vector \mathbf{r} :

$$
\varepsilon \bullet \mathbf{r}=\frac{\mathbf{r} \bullet \mathbf{r}}{r}-\frac{\mathbf{r} \bullet \mathbf{p} \times \mathbf{L}}{k m}=r-\frac{\mathbf{r} \times \mathbf{p} \bullet \mathbf{L}}{k m}=r-\frac{\mathbf{L} \bullet \mathbf{L}}{k m}
$$

...or of ε with momentum vector \mathbf{p} : $\varepsilon \bullet \mathbf{p}=\frac{\mathbf{p} \bullet \mathbf{r}}{r}-\frac{\mathbf{p} \bullet \mathbf{p} \times \mathbf{L}}{k m}=\mathbf{p} \bullet \hat{\mathbf{r}}=p_{r}$
Let angle ϕ be angle between ε and radial vector \mathbf{r}

$$
\varepsilon r \cos \phi=r-\frac{\tilde{L}^{2}}{k m} \quad \text { or: } \quad r=\frac{L^{2} / k m}{1-\varepsilon \cos \phi}
$$

Isotropic field $V=V(r)$ guarantees conservation angular momentum vector \mathbf{L}

$$
\mathbf{L}=\mathbf{r} \times \mathbf{p}=m \mathbf{r} \times \dot{\mathbf{r}}
$$

Coulomb $V=-k / r$ also conserves eccentricity vector ε

$$
\varepsilon=\hat{\mathbf{r}}-\frac{\mathbf{p} \times \mathbf{L}}{k m}=\frac{\mathbf{r}}{r}-\frac{\mathbf{p} \times(\mathbf{r} \times \mathbf{p})}{k m}
$$

(...for sake of comparison...)

IHO $V=(k / 2) r^{2}$ also conserves Stokes vector S

$$
\begin{aligned}
& S_{A}=\frac{1}{2}\left(x_{1}{ }^{2}+p_{1}{ }^{2}-x_{2}{ }^{2}-p_{2}{ }^{2}\right) \\
& S_{B}=x_{1} p_{1}+x_{2} p_{2} \\
& S_{C}=x_{1} p_{2}-x_{2} p_{1}
\end{aligned}
$$

$\mathbf{A}=k m \cdot \varepsilon$ is known as the Laplace-Hamilton-Gibbs-Runge-Lenz vector. Generate symmetry groups: $U(2) \subset U(2)$
Consider dot product of ε with a radial vector \mathbf{r} :

$$
\varepsilon \bullet \mathbf{r}=\frac{\mathbf{r} \bullet \mathbf{r}}{r}-\frac{\mathbf{r} \bullet \mathbf{p} \times \mathbf{L}}{k m}=r-\frac{\mathbf{r} \times \mathbf{p} \bullet \mathbf{L}}{k m \ldots}=r-\frac{\mathbf{L} \bullet \mathbf{L}}{}
$$

...or of ε with momentum vector \mathbf{p} : $\varepsilon \bullet \mathbf{p}=\frac{\mathbf{p} \bullet \mathbf{r}}{r}-\frac{\mathbf{p} \bullet \mathbf{p} \times \mathbf{L}}{k m}=\mathbf{p} \bullet \hat{\mathbf{r}}=p_{r}$
Let angle ϕ be angle between ε and radial vector \mathbf{r}

$$
\varepsilon r \cos \phi=r-\frac{L^{2}}{k m} \quad \text { or: } \quad r=\frac{L^{2} / k m}{1-\varepsilon \cos \phi}
$$

$$
\frac{\lambda}{1-\varepsilon} \text { if: } \phi=0 \quad \text { apogee }
$$

$$
\text { For } \lambda=L^{2} / k m \text { that matches: } r=\frac{\lambda}{1-\varepsilon \cos \phi}=\{
$$

λ if: $\phi=\frac{\pi}{2} \quad$ zenith $\frac{\lambda}{1+\varepsilon}$ if: $\phi=\pi$
perigee
(attractive

Isotropic field $V=V(r)$ guarantees conservation angular momentum vector \mathbf{L}

$$
\mathbf{L}=\mathbf{r} \times \mathbf{p}=m \mathbf{r} \times \dot{\mathbf{r}}
$$

Coulomb $V=-k / r$ also conserves eccentricity vector ε

$$
\boldsymbol{\varepsilon}=\hat{\mathbf{r}}-\frac{\mathbf{p} \times \mathbf{L}}{k m}=\frac{\mathbf{r}}{r}-\frac{\mathbf{p} \times(\mathbf{r} \times \mathbf{p})}{k m}
$$

IHO $V=(k / 2) r^{2}$ also conserves Stokes vector S

$$
\begin{aligned}
& S_{A}=\frac{1}{2}\left(x_{1}^{2}+p_{1}^{2}-x_{2}^{2}-p_{2}^{2}\right) \\
& S_{B}=x_{1} p_{1}+x_{2} p_{2} \\
& S_{C}=x_{1} p_{2}-x_{2} p_{1}
\end{aligned}
$$

$\mathbf{A}=k m \cdot \varepsilon$ is known as the Laplace-Hamilton-Gibbs-Runge-Lenz vector. Generate symmetry groups: $U(2) \subset U(2)$
Consider dot product of ε with a radial vector \mathbf{r} :

$$
\varepsilon \bullet \mathbf{r}=\frac{\mathbf{r} \bullet \mathbf{r}}{r}-\frac{\mathbf{r} \bullet \mathbf{p} \times \mathbf{L}}{k m}=r-\frac{\mathbf{r} \times \mathbf{p} \bullet \mathbf{L}}{k m}=r-\frac{\mathbf{L} \bullet \mathbf{L}}{k m}
$$

...or of ε with momentum vector \mathbf{p} :
$\varepsilon \bullet \mathbf{p}=\frac{\mathbf{p} \bullet \mathbf{r}}{r}-\frac{\mathbf{p} \bullet \mathbf{p} \times \mathbf{L}}{k m}=\mathbf{p} \bullet \hat{\mathbf{r}}=p_{r}$
Let angle ϕ be angle between ε and radial vector \mathbf{r}

$$
\varepsilon r \cos \phi=r-\frac{L^{2}}{k m} \quad \text { or: } \quad r=\frac{L^{2} / k m}{1-\varepsilon \cos \phi}
$$

(a) Attractive $(k>0)$

Elliptic $(E<0)$
(Rotational momentum $\mathbf{L}=\mathbf{r} \times \mathbf{p}$ is normal to the

For $\lambda=L^{2} / k m$ that matches: $r=\frac{\lambda}{1-\varepsilon \cos \phi}=$
$\frac{\lambda}{1-\varepsilon}$ if: $\phi=0 \quad$ apogee orbit plane.)

Isotropic field $V=V(r)$ guarantees conservation angular momentum vector \mathbf{L}

$$
\mathbf{L}=\mathbf{r} \times \mathbf{p}=m \mathbf{r} \times \dot{\mathbf{r}}
$$

Coulomb $V=-k / r$ also conserves eccentricity vector ε

$$
\boldsymbol{\varepsilon}=\hat{\mathbf{r}}-\frac{\mathbf{p} \times \mathbf{L}}{k m}=\frac{\mathbf{r}}{r}-\frac{\mathbf{p} \times(\mathbf{r} \times \mathbf{p})}{k m}
$$

IHO $V=(k / 2) r^{2}$ also conserves Stokes vector S

$$
\begin{aligned}
& S_{A}=\frac{1}{2}\left(x_{1}{ }^{2}+p_{1}{ }^{2}-x_{2}^{2}-p_{2}{ }^{2}\right) \\
& S_{B}=x_{l} p_{l}+x_{2} p_{2} \\
& S_{C}=x_{1} p_{2}-x_{2} p_{1}
\end{aligned}
$$

$\mathbf{A}=k m \cdot \varepsilon$ is known as the Laplace-Hamilton-Gibbs-Runge-Lenz vector. Generate symmetry groups: $U(2) \subset U(2)$
Consider dot product of ε with a radial vector \mathbf{r} : ...or of ε with momentum vector \mathbf{p} :

$$
\varepsilon \bullet \mathbf{r}=\frac{\mathbf{r} \bullet \mathbf{r}}{r}-\frac{\mathbf{r} \bullet \mathbf{p} \times \mathbf{L}}{k m}=r-\frac{\mathbf{r} \times \mathbf{p} \bullet \mathbf{L}}{k m}=r-\frac{\mathbf{L} \bullet \mathbf{L}}{}
$$

$$
\varepsilon \bullet \mathbf{p}=\frac{\mathbf{p} \bullet \mathbf{r}}{r}-\frac{\mathbf{p} \bullet \mathbf{p} \times \mathbf{L}}{k m}=\mathbf{p} \bullet \hat{\mathbf{r}}=p_{r}
$$

Let angle ϕ be angle between ε and radial vector \mathbf{r}

$$
\varepsilon r \cos \phi=r-\frac{L^{2}}{k m} \quad \text { or: } r=\frac{L^{2} / k m}{1-\varepsilon \cos \phi}
$$

For $\lambda=L^{2} / \mathrm{km}$ that matches: $r=\frac{\lambda}{1-\varepsilon \cos \phi}=$

$$
\int \frac{\lambda}{1-\varepsilon} \text { if: } \phi=0 \text { apogee }
$$

(a) Attractive ($k>0$)
(Rotational momentum $\mathbf{L}=\mathbf{r} \times \mathbf{p}$ is normal to the orbit plane.)

Isotropic field $V=V(r)$ guarantees conservation angular momentum vector \mathbf{L}

$$
\mathbf{L}=\mathbf{r} \times \mathbf{p}=m \mathbf{r} \times \dot{\mathbf{r}}
$$

(...for sake of comparison...)

Coulomb $V=-k / r$ also conserves eccentricity vector ε

$$
\varepsilon=\hat{\mathbf{r}}-\frac{\mathbf{p} \times \mathbf{L}}{k m}=\frac{\mathbf{r}}{r}-\frac{\mathbf{p} \times(\mathbf{r} \times \mathbf{p})}{k m}
$$

IHO $V=(k / 2) r^{2}$ also conserves Stokes vector S

$$
\begin{aligned}
& S_{A}=\frac{1}{2}\left(x_{1}^{2}+p_{1}^{2}-x_{2}^{2}-p_{2}^{2}\right) \\
& S_{B}=x_{1} p_{1}+x_{2} p_{2} \\
& S_{C}=x_{1} p_{2}-x_{2} p_{1}
\end{aligned}
$$

$\mathbf{A}=k m \cdot \varepsilon$ is known as the Laplace-Hamilton-Gibbs-Runge-Lenz vector. Generate symmetry groups: $U(2) \subset U(2)$
or: $R(3) \subset R(3) \times R(3) \subset O(4$

Consider dot product of ε with a radial vector \mathbf{r} :

$$
\varepsilon \cdot \mathbf{r}=\frac{\mathbf{r} \bullet \mathbf{r}}{r}-\frac{\mathbf{r} \bullet \mathbf{p} \times \mathbf{L}}{k m}=r-\frac{\mathbf{r} \times \mathbf{p} \bullet \mathbf{L}}{k m}=r-\frac{\mathbf{L} \bullet \mathbf{L}}{k m}
$$

Let angle ϕ be angle between ε and radial vector \mathbf{r}

$$
\varepsilon r \cos \phi=r-\frac{L^{2}}{k m} \quad \text { or: } \quad r=\frac{L^{2} / k m}{1-\varepsilon \cos \phi}
$$

...or of ε with momentum vector \mathbf{p} :
$\varepsilon \bullet \mathbf{p}=\frac{\mathbf{p} \bullet \mathbf{r}}{r}-\frac{\mathbf{p} \bullet \mathbf{p} \times \mathbf{L}}{k m}=\mathbf{p} \bullet \hat{\mathbf{r}}=p_{r}$
(a) Attractive $(k>0)$ Elliptic $(E<0)$
(Rotational momentum $\mathbf{L}=\mathbf{r} \times \mathbf{p}$ is normal to the orbit plane.)

(b) Attractive $(k>0)$

Hyperbolic $(E>0)$

For $\lambda=L^{2} / k m$ that matches: $r=\frac{\lambda}{1-\varepsilon \cos \phi}=\{$
$\frac{\lambda}{1-\varepsilon}$ if: $\phi=0$ apogee
λ if: $\phi=\frac{\pi}{2}$ zenith $\frac{\lambda}{1+\varepsilon}$ if: $\phi=\pi \quad$ perigee

Eccentricity vector ε and (ε, λ)-geometry of orbital mechanics
ε-vector and Coulomb r-orbit geometry
\rightarrow Review and connection to standard development
$\boldsymbol{\varepsilon}$-vector and Coulomb $\mathbf{p}=m \mathbf{v}$ geometry
$\boldsymbol{\varepsilon}$-vector and Coulomb $\mathbf{p}=m \mathbf{v}$ algebra
Example with elliptical orbit
Analytic geometry derivation of ε-construction
Algebra of ε-construction geometry
Connection formulas for (a, b) and (ε, λ) with (γ, R)
(From Lecture 28 p. 64-74) Geometry of Coulomb orbits (Let: $r=\rho$ here)

All conics defined by:

Defining eccentricity ε
Distance to Focal-point $=\boldsymbol{\varepsilon} \cdot$ Distance to Directrix-line

Major axis: $\rho_{+}+\rho_{-}=2 a$

$$
\rho_{+}+\rho_{-}=[\lambda(1+\varepsilon)+\lambda(1-\varepsilon)] /\left(1-\varepsilon^{2}\right)=2 \lambda /\left|1-\varepsilon^{2}\right|
$$

$$
\text { Focal axis: } \rho_{+}-\rho_{-}=2 a \varepsilon
$$

$$
\rho_{+-} \rho_{-}=[\lambda(1+\varepsilon)-\lambda(1-\varepsilon)] /\left(1-\varepsilon^{2}\right)=2 \lambda \varepsilon /\left|1-\varepsilon^{2}\right|
$$

$$
\text { Minor radius: } b=\sqrt{ }\left(a^{2}-a^{2} \varepsilon^{2}\right)=\sqrt{ }(a \lambda)(\text { ellipse }: \varepsilon<1)
$$

$$
\text { Minor radius: } \left.b=\sqrt{ }\left(a^{2} \varepsilon^{2}-a^{2}\right)=\sqrt{ }(\lambda a) \text { (hyperb }: \varepsilon>1\right)
$$

$$
\begin{aligned}
& \varepsilon^{2}=-\frac{b^{2}}{a^{2}} \quad(\text { ellipse: } \varepsilon<1) \frac{b^{2}}{a^{2}}=\sqrt{1-\varepsilon^{2}} \\
& \varepsilon^{2}=1+\frac{b^{2}}{a^{2}} \quad(\text { hyperbola: } \varepsilon>1) \frac{b^{2}}{a^{2}}=\sqrt{\varepsilon^{2}-1}
\end{aligned}
$$

$$
\left.\lambda=a\left(1-\varepsilon^{2}\right) \quad \text { (ellipse }: \varepsilon<1\right)
$$

$$
\left.\lambda=a\left(\varepsilon^{2}-1\right) \quad \text { (hyperb: } \varepsilon>1\right)
$$

Eccentricity vector ε and (ε, λ)-geometry of orbital mechanics
ε-vector and Coulomb \mathbf{r}-orbit geometry
Review and connection to standard development
$\Rightarrow \varepsilon$-vector and Coulomb $\mathbf{p}=m \mathbf{v}$ geometry
ε-vector and Coulomb $\mathbf{p}=m \mathbf{v}$ algebra
Example with elliptical orbit
Analytic geometry derivation of ε-construction
Algebra of ε-construction geometry
Connection formulas for (a, b) and (ε, λ) with (γ, R)

Dot product of ε with momentum vector p :
$\varepsilon \bullet \mathrm{p}=\frac{\mathrm{p} \bullet \mathbf{r}}{r}-\frac{\mathrm{p} \bullet \mathrm{p} \times \mathbf{L}}{k m}$
$=\mathrm{p} \bullet \hat{\mathbf{r}}=p_{r}=\varepsilon p_{x}$

This says:
"Projection of \mathbf{p} onto \mathbf{r} is eccentricity ε times projection of \mathbf{p} onto $\hat{\mathbf{x}}$-axis"
$(\hat{\mathbf{x}}=\hat{\boldsymbol{\varepsilon}})$

Hyperbola has eccentricity $\varepsilon>1$
(Here : $\varepsilon=5 / 4=1.25$)

Eccentricity vector ε and (ε, λ)-geometry of orbital mechanics
ε-vector and Coulomb r-orbit geometry
Review and connection to standard development
$\boldsymbol{\varepsilon}$-vector and Coulomb $\mathbf{p}=m \mathbf{v}$ geometry
$\rightarrow \varepsilon$-vector and Coulomb $\mathbf{p}=m \mathbf{v}$ algebra
Example with elliptical orbit
Analytic geometry derivation of ε-construction
Algebra of ε-construction geometry
Connection formulas for (a, b) and (ε, λ) with (γ, R)

$\boldsymbol{\varepsilon}$-vector and Coulomb $\mathbf{p}=m \mathbf{v}$ algebra

Finding time derivatives of orbital coordinates r, ϕ, x, y, and eventually velocity \mathbf{v} or momentum $\mathbf{p}=m \mathbf{v}$
Radius r:

$$
r=\frac{\lambda}{1-\varepsilon \cos \phi}=\frac{L^{2} / k m}{1-\varepsilon \cos \phi}
$$

Polar angle ϕ using: $L=m r^{2} \frac{d \phi}{d t}=m r^{2} \dot{\phi}$

$\boldsymbol{\varepsilon}$-vector and Coulomb $\mathbf{p}=m \mathbf{v}$ algebra

Finding time derivatives of orbital coordinates r, ϕ, x, y, and eventually velocity \mathbf{v} or momentum $\mathbf{p}=m \mathbf{v}$

Radius r:

$$
r=\frac{\lambda}{1-\varepsilon \cos \phi}=\frac{L^{2} / \mathrm{km}}{1-\varepsilon \cos \phi}
$$

Polar angle ϕ using: $L=m r^{2} \frac{d \phi}{d t}=m r^{2} \dot{\phi}$

$$
\dot{\phi}=\frac{L}{m r^{2}}=\frac{L}{m} \frac{1}{r^{2}}
$$

ε-vector and Coulomb $\mathbf{p}=m \mathbf{v}$ algebra

Finding time derivatives of orbital coordinates r, ϕ, x, y, and eventually velocity \mathbf{v} or momentum $\mathbf{p}=m \mathbf{v}$

Radius r:
$r=\frac{\lambda}{1-\varepsilon \cos \phi}=\frac{L^{2} / k m}{1-\varepsilon \cos \phi}$

Polar angle ϕ using: $L=m r^{2} \frac{d \phi}{d t}=m r^{2} \dot{\phi}$

$$
\dot{\phi}=\frac{L}{m r^{2}}=\frac{L}{m} \frac{1}{r^{2}}=\frac{L}{m}\left(\frac{k m}{L^{2}}\right)^{2}(1-\varepsilon \cos \phi)^{2}
$$

$$
\text { using: } \frac{1}{r^{2}}=\left(\frac{k m}{L^{2}}\right)^{2}(1-\varepsilon \cos \phi)^{2}
$$

ε-vector and Coulomb $\mathbf{p}=m \mathbf{v}$ algebra

Finding time derivatives of orbital coordinates r, ϕ, x, y, and eventually velocity \mathbf{v} or momentum $\mathbf{p}=m \mathbf{v}$

Radius r:

$$
\begin{aligned}
& r=\frac{\lambda}{1-\varepsilon \cos \phi}=\frac{L^{2} / k m}{1-\varepsilon \cos \phi} \\
& \dot{r}=\frac{d r}{d t}=\frac{L^{2}}{k m} \frac{-\frac{d}{d t}(-\varepsilon \cos \phi)}{(1-\varepsilon \cos \phi)^{2}}
\end{aligned}
$$

Polar angle ϕ using: $L=m r^{2} \frac{d \phi}{d t}=m r^{2} \dot{\phi}$

$$
\dot{\phi}=\frac{L}{m r^{2}}=\frac{L}{m} \frac{1}{r^{2}}=\frac{L}{m}\left(\frac{k m}{L^{2}}\right)^{2}(1-\varepsilon \cos \phi)^{2}
$$

$$
\text { using: } \frac{1}{r^{2}}=\left(\frac{k m}{L^{2}}\right)^{2}(1-\varepsilon \cos \phi)^{2}
$$

ε-vector and Coulomb $\mathbf{p}=m \mathbf{v}$ algebra

Finding time derivatives of orbital coordinates r, ϕ, x, y, and eventually velocity \mathbf{v} or momentum $\mathbf{p}=m \mathbf{v}$

Radius r:

$$
\begin{aligned}
& r=\frac{\lambda}{1-\varepsilon \cos \phi}=\frac{L^{2} / k m}{1-\varepsilon \cos \phi} \\
& \dot{r}=\frac{d r}{d t}=\frac{L^{2}}{k m} \frac{-\frac{d}{d t}(-\varepsilon \cos \phi)}{(1-\varepsilon \cos \phi)^{2}}
\end{aligned}
$$

Polar angle ϕ using: $L=m r^{2} \frac{d \phi}{d t}=m r^{2} \dot{\phi}$

$$
\begin{aligned}
& \dot{\phi}=\frac{L}{m r^{2}}=\frac{L}{m} \frac{1}{r^{2}}=\frac{L}{m}\left(\frac{k m}{L^{2}}\right)^{2}(1-\varepsilon \cos \phi)^{2} \\
& r \dot{\phi}=\frac{L}{m r}
\end{aligned}
$$

$$
\text { using: } \frac{1}{r^{2}}=\left(\frac{k m}{L^{2}}\right)^{2}(1-\varepsilon \cos \phi)^{2}
$$

ε-vector and Coulomb $\mathbf{p}=m \mathbf{v}$ algebra

Finding time derivatives of orbital coordinates r, ϕ, x, y, and eventually velocity \mathbf{v} or momentum $\mathbf{p}=m \mathbf{v}$

Radius r:

$$
\begin{aligned}
& r=\frac{\lambda}{1-\varepsilon \cos \phi}=\frac{L^{2} / k m}{1-\varepsilon \cos \phi} \\
& \dot{r}=\frac{d r}{d t}=\frac{L^{2}}{k m} \frac{-\frac{d}{d t}(-\varepsilon \cos \phi)}{(1-\varepsilon \cos \phi)^{2}}
\end{aligned}
$$

Polar angle ϕ using: $L=m r^{2} \frac{d \phi}{d t}=m r^{2} \dot{\phi}$

$$
\begin{aligned}
& \dot{\phi}=\frac{L}{m r^{2}}=\frac{L}{m} \frac{1}{r^{2}}=\frac{L}{m}\left(\frac{k m}{L^{2}}\right)^{2}(1-\varepsilon \cos \phi)^{2} \\
& r \dot{\phi}=\frac{L}{m r}=\frac{L}{m} \frac{1}{r}=\frac{L}{m}\left(\frac{k m}{L^{2}}\right)(1-\varepsilon \cos \phi)=\frac{k}{L}(1-\varepsilon \cos \phi)
\end{aligned}
$$

$$
\text { using: } \frac{1}{r}=\left(\frac{k m}{L^{2}}\right)(1-\varepsilon \cos \phi)
$$

$\boldsymbol{\varepsilon}$-vector and Coulomb $\mathbf{p}=m \mathbf{v}$ algebra

Finding time derivatives of orbital coordinates r, ϕ, x, y, and eventually velocity \mathbf{v} or momentum $\mathbf{p}=m \mathbf{v}$

Radius r:

$$
\begin{gathered}
r=\frac{\lambda}{1-\varepsilon \cos \phi}=\frac{L^{2} / k m}{1-\varepsilon \cos \phi} \\
\dot{r}=\frac{d r}{d t}=\frac{L^{2}}{k m} \frac{-\frac{d}{d t}(-\varepsilon \cos \phi)}{(1-\varepsilon \cos \phi)^{2}} \\
\dot{r}=\frac{L^{2}}{k m} \frac{-\varepsilon \sin \phi \dot{\phi}}{(1-\varepsilon \cos \phi)^{2}}
\end{gathered}
$$

$$
\begin{aligned}
& \dot{\phi}=\frac{L}{m r^{2}}=\frac{L}{m} \frac{1}{r^{2}}=\frac{L}{m}\left(\frac{k m}{L^{2}}\right)^{2}(1-\varepsilon \cos \phi)^{2} \\
& r \dot{\phi}=\frac{L}{m r}=\frac{L}{m} \frac{1}{r}=\frac{L}{m}\left(\frac{k m}{L^{2}}\right)(1-\varepsilon \cos \phi)=\frac{k}{L}(1-\varepsilon \cos \phi)
\end{aligned}
$$

$$
\text { using: } \frac{1}{r^{2}}=\left(\frac{k m}{L^{2}}\right)^{2}(1-\varepsilon \cos \phi)^{2}
$$

$\boldsymbol{\varepsilon}$-vector and Coulomb $\mathbf{p}=m \mathbf{v}$ algebra

Finding time derivatives of orbital coordinates r, ϕ, x, y, and eventually velocity \mathbf{v} or momentum $\mathbf{p}=m \mathbf{v}$

Radius r :

$$
\begin{gathered}
r=\frac{\lambda}{1-\varepsilon \cos \phi}=\frac{L^{2} / k m}{1-\varepsilon \cos \phi} \\
\dot{r}=\frac{d r}{d t}=\frac{L^{2}}{k m} \frac{-\frac{d}{d t}(-\varepsilon \cos \phi)}{(1-\varepsilon \cos \phi)^{2}} \\
\dot{r}=\frac{L^{2}}{k m} \frac{-\varepsilon \sin \phi \dot{\phi}}{(1-\varepsilon \cos \phi)^{2}} \\
\dot{r}=-\frac{L^{2}}{k m}\left(\frac{k m}{L^{2}}\right)^{2} r^{2} \dot{\phi} \varepsilon \sin \phi
\end{gathered}
$$

Polar angle ϕ using: $L=m r^{2} \frac{d \phi}{d t}=m r^{2} \dot{\phi}$

$$
\dot{\phi}=\frac{L}{m r^{2}}=\frac{L}{m} \frac{1}{r^{2}}=\frac{L}{m}\left(\frac{k m}{L^{2}}\right)^{2}(1-\varepsilon \cos \phi)^{2}
$$

$$
r \dot{\phi}=\frac{L}{m r}=\frac{L}{m} \frac{1}{r}=\frac{L}{m}\left(\frac{k m}{L^{2}}\right)(1-\varepsilon \cos \phi)=\frac{k}{L}(1-\varepsilon \cos \phi)
$$

$$
\text { using: } \frac{1}{r^{2}}=\left(\frac{k m}{L^{2}}\right)^{2}(1-\varepsilon \cos \phi)^{2}
$$

using: $\frac{1}{(1-\varepsilon \cos \phi)^{2}}=\left(\frac{\mathrm{km}}{L^{2}}\right)^{2} r^{2}$

ε-vector and Coulomb $\mathbf{p}=m \mathbf{v}$ algebra

Finding time derivatives of orbital coordinates r, ϕ, x, y, and eventually velocity \mathbf{v} or momentum $\mathbf{p}=m \mathbf{v}$ Radius r:

$$
\begin{gathered}
r=\frac{\lambda}{1-\varepsilon \cos \phi}=\frac{L^{2} / k m}{1-\varepsilon \cos \phi} \\
\dot{r}=\frac{d r}{d t}=\frac{L^{2}}{k m} \frac{-\frac{d}{d t}(-\varepsilon \cos \phi)}{(1-\varepsilon \cos \phi)^{2}} \\
\dot{r}=\frac{L^{2}}{k m} \frac{-\varepsilon \sin \phi \dot{\phi}}{(1-\varepsilon \cos \phi)^{2}} \\
\dot{r}=-\frac{L^{2}}{k m}\left(\frac{k m}{L^{2}}\right)^{2} r^{2} \dot{\phi} \varepsilon \sin \phi \\
\dot{r}=-\frac{k}{L^{2}} m r^{2} \dot{\phi} \dot{\sin \phi=-\frac{k}{L} \varepsilon \sin \phi}
\end{gathered}
$$

ε-vector and Coulomb $\mathbf{p}=m \mathbf{v}$ algebra

Finding time derivatives of orbital coordinates r, ϕ, x, y, and eventually velocity \mathbf{v} or momentum $\mathbf{p}=m \mathbf{v}$ Radius r :

$$
\text { Polar angle } \phi \text { using: } L=m r^{2} \frac{d \phi}{d t}=m r^{2} \dot{\phi}
$$

$$
\begin{array}{cl}
r=\frac{\lambda}{1-\varepsilon \cos \phi}=\frac{L^{2} / k m}{1-\varepsilon \cos \phi} & \dot{\phi}=\frac{L}{m r^{2}}=\frac{L}{m} \frac{1}{r^{2}}=\frac{L}{m}\left(\frac{k m}{L^{2}}\right)^{2}(1-\varepsilon \cos \phi)^{2} \\
\dot{r}=\frac{d r}{d t}=\frac{L^{2}}{k m} \frac{-\frac{d}{d t}(-\varepsilon \cos \phi)}{(1-\varepsilon \cos \phi)^{2}} & r \dot{\phi}=\frac{L}{m r}=\frac{L}{m} \frac{1}{r}=\frac{L}{m}\left(\frac{k m}{L^{2}}\right)(1-\varepsilon \cos \phi)=\frac{k}{L}(1-\varepsilon \cos \phi) \\
\dot{r}=\frac{L^{2}}{k m} \frac{-\varepsilon \sin \phi \dot{\phi}}{(1-\varepsilon \cos \phi)^{2}} & \quad u \operatorname{sing}: \frac{1}{r^{2}}=\left(\frac{k m}{L^{2}}\right)^{2}(1-\varepsilon \cos \phi)^{2} \\
\dot{r}=-\frac{L^{2}}{k m}\left(\frac{k m}{L^{2}}\right)^{2} r^{2} \dot{\phi} \varepsilon \sin \phi \quad \text { using: } \frac{1}{(1-\varepsilon \cos \phi)^{2}}=\left(\frac{k m}{L^{2}}\right)^{2} r^{2} \\
\dot{r}=-\frac{k}{L^{2}} m r^{2} \dot{\phi} \varepsilon \sin \phi=-\frac{k}{L} \varepsilon \sin \phi \quad \text { again using: } L=m r^{2} \dot{\phi}
\end{array}
$$

Cartesian $x=r \cos \phi$:

$$
\dot{x}=\frac{d x}{d t}=\quad \dot{r} \cos \phi-\sin \phi r \dot{\phi}
$$

Cartesian $y=r \sin \phi$:

$$
\dot{y}=\frac{d y}{d t}=\quad \dot{r} \sin \phi+\cos \phi r \dot{\phi}
$$

ε-vector and Coulomb $\mathbf{p}=m \mathbf{v}$ algebra

Finding time derivatives of orbital coordinates r, ϕ, x, y, and eventually velocity \mathbf{v} or momentum $\mathbf{p}=m \mathbf{v}$ Radius r :

$$
\text { Polar angle } \phi \text { using: } L=m r^{2} \frac{d \phi}{d t}=m r^{2} \dot{\phi}
$$

$$
\begin{array}{cl}
r=\frac{\lambda}{1-\varepsilon \cos \phi}=\frac{L^{2} / k m}{1-\varepsilon \cos \phi} & \dot{\phi}=\frac{L}{m r^{2}}=\frac{L}{m} \frac{1}{r^{2}}=\frac{L}{m}\left(\frac{k m}{L^{2}}\right)^{2}(1-\varepsilon \cos \phi)^{2} \\
\dot{r}=\frac{d r}{d t}=\frac{L^{2}}{k m} \frac{-\frac{d}{d t}(-\varepsilon \cos \phi)}{(1-\varepsilon \cos \phi)^{2}} & r \dot{\phi}=\frac{L}{m r}=\frac{L}{m} \frac{1}{r}=\frac{L}{m}\left(\frac{k m}{L^{2}}\right)(1-\varepsilon \cos \phi)=\frac{k}{L}(1-\varepsilon \cos \phi) \\
\dot{r}=\frac{L^{2}}{k m} \frac{-\varepsilon \sin \phi \dot{\phi}}{(1-\varepsilon \cos \phi)^{2}} & \quad u \operatorname{sing}: \frac{1}{r^{2}}=\left(\frac{k m}{L^{2}}\right)^{2}(1-\varepsilon \cos \phi)^{2} \\
\dot{r}=-\frac{L^{2}}{k m}\left(\frac{k m}{L^{2}}\right)^{2} r^{2} \dot{\phi} \varepsilon \sin \phi \quad \text { using: } \frac{1}{(1-\varepsilon \cos \phi)^{2}}=\left(\frac{k m}{L^{2}}\right)^{2} r^{2} \\
\dot{r}=-\frac{k}{L^{2}} m r^{2} \dot{\phi} \varepsilon \sin \phi=-\frac{k}{L} \varepsilon \sin \phi \quad \text { again using: } L=m r^{2} \dot{\phi}
\end{array}
$$

Cartesian $x=r \cos \phi$:

$$
\begin{aligned}
\dot{x} & =\frac{d x}{d t}=\begin{array}{c}
\dot{r} \cos \phi-\sin \phi r \dot{\phi}
\end{array} & \dot{y}=\frac{d y}{d t}=\quad \dot{r} \sin \phi+\cos \phi r \dot{\phi} \\
& =-\frac{k}{L} \varepsilon \sin \phi \cos \phi-\sin \phi \frac{k}{L}(1-\varepsilon \cos \phi) & =-\frac{k}{L} \varepsilon \sin \phi \sin \phi+\cos \phi \frac{k}{L}(1-\varepsilon \cos \phi)
\end{aligned}
$$

ε-vector and Coulomb $\mathbf{p}=m \mathbf{v}$ algebra

Finding time derivatives of orbital coordinates r, ϕ, x, y, and eventually velocity \mathbf{v} or momentum $\mathbf{p}=m \mathbf{v}$
Radius r :

$$
\begin{array}{cr}
r=\frac{\lambda}{1-\varepsilon \cos \phi}=\frac{L^{2} / k m}{1-\varepsilon \cos \phi} & \text { Polar angle } \phi \text { using: } L=m r^{2} \frac{d \phi}{d t}=m r^{2} \dot{\phi} \\
\dot{r}=\frac{d r}{d t}=\frac{L^{2}}{k m} \frac{-\frac{d}{d t}(-\varepsilon \cos \phi)}{(1-\varepsilon \cos \phi)^{2}} & \dot{\phi}=\frac{L}{m r^{2}}=\frac{L}{m} \frac{1}{r^{2}}=\frac{L}{m}\left(\frac{k m}{L^{2}}\right)^{2}(1-\varepsilon \cos \phi)^{2} \\
\dot{r}=\frac{L^{2}}{k m} \frac{-\varepsilon \sin \phi \dot{\phi}}{(1-\varepsilon \cos \phi)^{2}} & r \dot{L}=\frac{L}{m r} \frac{1}{r}=\frac{L}{m}\left(\frac{k m}{L^{2}}\right)(1-\varepsilon \cos \phi)=\frac{k}{L}(1-\varepsilon \cos \phi) \\
\dot{r}=-\frac{L^{2}}{k m}\left(\frac{k m}{L^{2}}\right)^{2} r^{2} \dot{\phi} \varepsilon \sin \phi & \text { using: } \frac{1}{(1-\varepsilon \cos \phi)^{2}}=\left(\frac{k m}{L^{2}}\right)^{2} r^{2} \\
\dot{r}=-\frac{k}{L^{2}} m r^{2} \dot{\phi} \varepsilon \sin \phi=-\frac{k}{L} \varepsilon \sin \phi & \text { again using: } L=m r^{2} \dot{\phi}
\end{array}
$$

Cartesian $x=r \cos \phi$:

$$
\begin{aligned}
\dot{x} & =\frac{d x}{d t}=\dot{r} \cos \phi-\sin \phi r \dot{\phi} & \dot{y} & =\frac{d y}{d t}=\dot{r} \sin \\
& =-\frac{k}{L} \varepsilon \sin \phi \cos \phi-\sin \phi \frac{k}{L}(1-\varepsilon \cos \phi) & & =-\frac{k}{L} \varepsilon \sin \phi \sin \\
& =-\frac{k}{L} \sin \phi & & =\frac{k}{L}(\cos \phi-\varepsilon)
\end{aligned}
$$

ε-vector and Coulomb $\mathbf{p}=m \mathbf{v}$ algebra

Finding time derivatives of orbital coordinates r, ϕ, x, y, and eventually velocity \mathbf{v} or momentum $\mathbf{p}=m \mathbf{v}$ Radius r:

$$
\text { Polar angle } \phi \text { using: } L=m r^{2} \frac{d \phi}{d t}=m r^{2} \dot{\phi}
$$

$$
\begin{array}{cc}
r=\frac{\lambda}{1-\varepsilon \cos \phi}=\frac{L^{2} / k m}{1-\varepsilon \cos \phi} & \dot{\phi}=\frac{L}{m r^{2}}=\frac{L}{m} \frac{1}{r^{2}}=\frac{L}{m}\left(\frac{k m}{L^{2}}\right)^{2}(1-\varepsilon \cos \phi)^{2} \\
\dot{r}=\frac{d r}{d t}=\frac{L^{2}}{k m} \frac{-\frac{d}{d t}(-\varepsilon \cos \phi)}{(1-\varepsilon \cos \phi)^{2}} & r \dot{\phi}=\frac{L}{m r}=\frac{L}{m} \frac{1}{r}=\frac{L}{m}\left(\frac{k m}{L^{2}}\right)(1-\varepsilon \cos \phi)=\frac{k}{L}(1-\varepsilon \cos \phi) \\
\dot{r}=\frac{L^{2}}{k m} \frac{-\varepsilon \sin \phi \dot{\phi}}{(1-\varepsilon \cos \phi)^{2}} & \text { using: } \frac{1}{r^{2}}=\left(\frac{k m}{L^{2}}\right)^{2}(1-\varepsilon \cos \phi)^{2} \\
\dot{r}=-\frac{L^{2}}{k m}\left(\frac{k m}{L^{2}}\right)^{2} r^{2} \dot{\phi} \varepsilon \sin \phi & \text { using: } \frac{1}{(1-\varepsilon \cos \phi)^{2}}=\left(\frac{k m}{L^{2}}\right)^{2} r^{2} \\
\dot{r}=-\frac{k}{L^{2}} m r^{2} \dot{\phi} \varepsilon \sin \phi=-\frac{k}{L} \varepsilon \sin \phi \quad \text { again using: } L=m r^{2} \dot{\phi}
\end{array}
$$

$$
\begin{array}{ccc}
\text { Cartesian } x=r \cos \phi: & \text { Cartesian } y=r \sin \phi: \\
\qquad \begin{array}{ll}
\dot{x}=\frac{d x}{d t}=\quad \dot{r} \cos \phi-\sin \phi r \dot{\phi} & \frac{d y}{d t}=\quad \dot{r} \sin \phi+\cos \phi r \dot{\phi} \\
=-\frac{k}{L} \sin \phi & \\
p_{x}=m \dot{x}=-\frac{m k}{L} \sin \phi & =\frac{k}{L}(\cos \phi-\varepsilon)
\end{array} & \text { Velocity: } & p_{y}=m \dot{y}=\frac{m k}{L}(\cos \phi-\varepsilon)
\end{array}
$$

Eccentricity vector ε and (ε, λ)-geometry of orbital mechanics ε-vector and Coulomb \mathbf{r}-orbit geometry

Review and connection to standard development
$\boldsymbol{\varepsilon}$-vector and Coulomb $\mathbf{p}=m \mathbf{v}$ geometry
ε-vector and Coulomb $\mathbf{p}=m \mathbf{v}$ algebra
$\rightarrow \quad$ Example with elliptical orbit
Analytic geometry derivation of ε-construction
Algebra of ε-construction geometry
Connection formulas for (a, b) and (ε, λ) with (γ, R)

Wednesday, December 24, 2014

Wednesday, December 24, 2014

Wednesday, December 24, 2014

Wednesday, December 24, 2014

Wednesday, December 24, 2014

ε-vector and Coulomb orbit construction steps

Pick launch point P

(radius vector \mathbf{r})
and elevation angle γ from radius (momentum initial \mathbf{p} direction)

Copy F-center circle around launch point P Copy elevation angle $\gamma\left(\angle \mathrm{FPP}^{\prime}\right)$ onto $\angle \mathrm{P}^{\prime} \mathrm{PQ}$ Extend resulting line QPQ^{\prime} to make focus locus

Copy double angle $2 \gamma(\angle \mathrm{FPQ})$ onto $\angle \mathrm{PFT}$ Extend $\angle \mathrm{PFT}$ chord PT to make R-ratio scale line Label chord PT with $R=0$ at P and $R=-1.0$ at T .
Mark R-line fractions $R=0,+1 / 4,+1 / 2 \ldots$ above P and $R=0,-1 / 8,-1 / 4,-1 / 2, \ldots,-3 / 4$ below P and $-5 / 4,-3 / 2, \ldots$ below T .

Pick initial $R=$ KETPE value (here $R=-3 / 8$) Draw ε-vector from focus F to R-point and beyond to $2^{\text {nd }}$ focu F^{\prime}

Eccentricity vector ε and (ε, λ)-geometry of orbital mechanics
ε-vector and Coulomb r-orbit geometry
Review and connection to standard development
$\boldsymbol{\varepsilon}$-vector and Coulomb $\mathbf{p}=m \mathbf{v}$ geometry
ε-vector and Coulomb $\mathbf{p}=m \mathbf{v}$ algebra
Example with elliptical orbit
\rightarrow Analytic geometry derivation of $\boldsymbol{\varepsilon}$-construction
Algebra of ε-construction geometry
Connection formulas for (a, b) and (ε, λ) with (γ, R)

ε-vector and Coulomb orbit construction steps

Pick launch point P
(radius vector \mathbf{r})
and elevation angle γ from radius
(momentum initial \mathbf{p} direction)

Next several pages give step-by-step constructions of ε-vector and Coulomb orbit and trajectory physics

ε-vector and Coulomb orbit construction steps

Next several pages give step-by-step constructions of ε-vector and Coulomb orbit and trajectory physics

ε-vector and Coulomb orbit construction steps

Pick launch point P

(radius vector \mathbf{r})
and elevation angle γ from radius
(momentum initial \mathbf{p} direction)

Copy F-center circle around launch point P Copy elevation angle $\gamma\left(\angle \mathrm{FPP}^{\prime}\right)$ onto $\angle \mathrm{P}^{\prime} \mathrm{PQ}$ Extend resulting line QPQ^{\prime} to make focus locus

Copy double angle $2 \gamma(\angle \mathrm{FPQ})$ onto $\angle \mathrm{PFT}$ Extend $\angle \mathrm{PFT}$ chord PT to make R-ratio scale line Label chord PT with $R=0$ at P and $R=-1.0$ at T .
Mark R-line fractions $R=0,+1 / 4,+1 / 2, \ldots$ above P and $R=0,-1 / 8,-1 / 4,-1 / 2, \ldots,-3 / 4$ below P and $-5 / 4,-3 / 2, \ldots$ below T . $\mathrm{R}=$ KE/PE

ε-vector and Coulomb orbit construction steps

Pick launch point P

(radius vector \mathbf{r})
and elevation angle γ from radius

Copy F-center circle around launch point P Copy elevation angle $\gamma\left(\angle \mathrm{FPP}^{\prime}\right)$ onto $\angle \mathrm{P}^{\prime} \mathrm{PQ}$

Copy double angle $2 \gamma(\angle \mathrm{FPQ})$ onto $\angle \mathrm{PFT}$ Extend $\angle \mathrm{PFT}$ chord PT to make R-ratio scale line Label chord PT with $R=0$ at P and $R=-1.0$ at T .
Mark R-line fractions $R=0,+1 / 4,+1 / 2, \ldots$ above P and $R=0,-1 / 8,-1 / 4,-1 / 2, \ldots,-3 / 4$ below P and $-5 / 4,-3 / 2, \ldots$ below T .

KE/PE

ε-vector and Coulomb orbit construction steps

Pick launch point P

(radius vector \mathbf{r})
and elevation angle γ from radius (momentum initial \mathbf{p} direction)

Copy F-center circle around launch point P Copy elevation angle $\gamma\left(\angle \mathrm{FPP}^{\prime}\right)$ onto $\angle \mathrm{P}^{\prime} \mathrm{PQ}$ Extend resulting line QPQ^{\prime} to make focus locus

Copy double angle $2 \gamma(\angle \mathrm{FPQ})$ onto $\angle \mathrm{PFT}$ Extend $\angle \mathrm{PFT}$ chord PT to make R-ratio scale line Label chord PT with $R=0$ at P and $R=-1.0$ at T .
Mark R-line fractions $R=0,+1 / 4,+1 / 2 \ldots$ above P and $R=0,-1 / 8,-1 / 4,-1 / 2, \ldots,-3 / 4$ below P and $-5 / 4,-3 / 2, \ldots$ below T .

Pick initial $R=$ KETPE value (here $R=-3 / 8$) Draw ε-vector from focus F to R-point and beyond to $2^{\text {nd }}$ focu F^{\prime}

ε-vector and Coulomb orbit construction steps

Pick launch point P
(radius vector \mathbf{r})
and elevation angle γ from radius (momentum initial \mathbf{p} direction)

Copy F-center circle around launch point P Copy elevation angle $\gamma\left(\angle \mathrm{FPP}^{\prime}\right)$ onto $\angle \mathrm{P}^{\prime} \mathrm{PQ}$ Extend resulting line QPQ^{\prime} to make focus locus

Copy double angle $2 \gamma(\angle \mathrm{FPQ})$ onto $\angle \mathrm{PFT}$ Extend $\angle \mathrm{PFT}$ chord PT to make R-ratio scale line Label chord PT with $R=0$ at P and $R=-1.0$ at T .
Mark R-line fractions $R=0,+1 / 4,+1 / 2 \ldots$ above P and $R=0,-1 / 8,-1 / 4,-1 / 2, \ldots,-3 / 4$ below P and $-5 / 4,-3 / 2, \ldots$ below T .

Pick initial $R=K E / P E$ value (here $R=+1 / 2$) Draw ε-vector from focus F to R-point
(Here it intersects $2^{\text {nd }}$ focus F^{\prime}

$$
R=\frac{\text { Initial } K E}{\text { Initial } P E}=\frac{m v^{2}(0) / 2}{-k / r(0)}
$$ focus F and $2^{\text {nd }}$ focus F^{\prime} allow final construction of orbital trajectory. Here it is an $R=+1 / 2$ hyperbola.

Eccentricity vector ε and (ε, λ)-geometry of orbital mechanics
ε-vector and Coulomb \mathbf{r}-orbit geometry
Review and connection to standard development
$\boldsymbol{\varepsilon}$-vector and Coulomb $\mathbf{p}=m \mathbf{v}$ geometry
$\boldsymbol{\varepsilon}$-vector and Coulomb $\mathbf{p}=m \mathbf{v}$ algebra
Example with elliptical orbit
Analytic geometry derivation of ε-construction
\rightarrow Algebra of ε-construction geometry Connection formulas for (a, b) and (ε, λ) with (γ, R)

Eccentricity vector ε and (ε, λ)-geometry of orbital mechanics ε-vector and Coulomb \mathbf{r}-orbit geometry

Review and connection to standard development $\boldsymbol{\varepsilon}$-vector and Coulomb $\mathbf{p}=m \mathbf{v}$ geometry $\boldsymbol{\varepsilon}$-vector and Coulomb $\mathbf{p}=m \mathbf{v}$ algebra

Example with elliptical orbit
Analytic geometry derivation of ε-construction
Algebra of ε-construction geometry
\rightarrow Connection formulas for (a, b) and (ε, λ) with (γ, R)

Algebra of ε-construction geometry
The eccentricty parameter relates ratios $R=\frac{K E}{P E}$ and $\frac{b^{2}}{a^{2}}$

$$
\begin{aligned}
\varepsilon^{2} & =1+4 R(R+1) \sin ^{2} \gamma \\
& =1-\frac{b^{2}}{a^{2}} \text { for ellipse } \quad(\varepsilon<1) \\
& =1+\frac{b^{2}}{a^{2}} \text { for hyperbola }(\varepsilon>1)
\end{aligned}
$$

Algebra of ε-construction geometry
The eccentricty parameter relates ratios $R=\frac{K E}{P E}$ and $\frac{b^{2}}{a^{2}}$

Three pairs of parameters for Coulomb orbits: 1.Cartesian (a,b), 2.Physics (E,L), 3.Polar (ε, λ) Now we relate a 4th pair: 4.Initial (γ, R)
$\varepsilon^{2}=1+4 R(R+1) \sin ^{2} \gamma$
$=1-\frac{b^{2}}{a^{2}}$ for ellipse $\quad(\varepsilon<1)$ where: $4 R(R+1) \sin ^{2} \gamma=-\frac{b^{2}}{a^{2}}=\varepsilon^{2}-1$
$=1+\frac{b^{2}}{a^{2}}$ for hyperbola $(\varepsilon>1)$ where: $\quad 4 R(R+1) \sin ^{2} \gamma=+\frac{b^{2}}{a^{2}}=\varepsilon^{2}-1$

Algebra of ε-construction geometry
The eccentricty parameter relates ratios $R=\frac{K E}{P E}$ and $\frac{b^{2}}{a^{2}}$
$\varepsilon^{2}=1+4 R(R+1) \sin ^{2} \gamma$
$=1-\frac{b^{2}}{a^{2}}$ for ellipse $\quad(\varepsilon<1)$ where: $\quad 4 R(R+1) \sin ^{2} \gamma=-\frac{b^{2}}{a^{2}}=\varepsilon^{2}-1$ implying: $R(R+1)<0$
$=1+\frac{b^{2}}{a^{2}}$ for hyperbola $(\varepsilon>1)$ where: $4 R(R+1) \sin ^{2} \gamma=+\frac{b^{2}}{a^{2}}=\varepsilon^{2}-1$ implying: $R(R+1)>0$

Algebra of ε-construction geometry
The eccentricty parameter relates ratios $R=\frac{K E}{P E}$ and $\frac{b^{2}}{a^{2}}$
Three pairs of parameters for Coulomb orbits: 1.Cartesian (a,b), 2.Physics (E,L), 3.Polar (ε, λ) Now we relate a 4th pair: 4.Initial (γ, R)

$$
\varepsilon^{2}=1+4 R(R+1) \sin ^{2} \gamma
$$

$=1-\frac{b^{2}}{a^{2}}$ for ellipse $\quad(\varepsilon<1)$ where: $\quad 4 R(R+1) \sin ^{2} \gamma=-\frac{b^{2}}{a^{2}}=\varepsilon^{2}-1$ implying: $R(R+1)<0$
$=1+\frac{b^{2}}{a^{2}}$ for hyperbola $(\varepsilon>1)$ where: $\quad 4 R(R+1) \sin ^{2} \gamma=+\frac{b^{2}}{a^{2}}=\varepsilon^{2}-1$ implying: $R(R+1)>0$
(or: $-R^{2}<R$)
(or: $0<R<-1$)

Algebra of ε-construction geometry
The eccentricty parameter relates ratios $R=\frac{K E}{P E}$ and $\frac{b^{2}}{a^{2}}$

$$
\varepsilon^{2}=1+4 R(R+1) \sin ^{2} \gamma
$$

$$
=1-\frac{b^{2}}{a^{2}} \text { for ellipse } \quad(\varepsilon<1) \text { where: } \quad 4 R(R+1) \sin ^{2} \gamma=-\frac{b^{2}}{a^{2}}=\varepsilon^{2}-1 \text { implying: } R(R+1)<0
$$

$$
\begin{aligned}
& \text { (or: }-R^{2}>R \text {) } \\
& \text { (or: } 0>R>-1 \text {) }
\end{aligned}
$$

$$
=1+\frac{b^{2}}{a^{2}} \text { for hyperbola }(\varepsilon>1) \text { where: } 4 R(R+1) \sin ^{2} \gamma=+\frac{b^{2}}{a^{2}}=\varepsilon^{2}-1 \text { implying: } R(R+1)>0
$$

$$
\begin{aligned}
& \text { (or: }-R^{2}<R \text {) } \\
& \text { (or: } 0<R<-1 \text {) }
\end{aligned}
$$

Total $\frac{-k}{2 a}=E=$ energy $=K E+P E$ relates ratio $R=\frac{K E}{P E}$ to individual radii a, b, and λ.

$$
\frac{-k}{2 a}=E=K E+P E=R \cdot P E+P E=(R+1) P E=(R+1) \frac{-k}{r} \text { or: } \frac{1}{2 a}=(R+1) \frac{1}{r}=(R+1)
$$

Algebra of ε-construction geometry
The eccentricty parameter relates ratios $R=\frac{K E}{P E}$ and $\frac{b^{2}}{a^{2}}$

Three pairs of parameters for Coulomb orbits:

 1.Cartesian (a,b), 2.Physics (E,L), 3.Polar (ε, λ) Now we relate a 4th pair: 4.Initial $(\gamma, R)$$$
\varepsilon^{2}=1+4 R(R+1) \sin ^{2} \gamma
$$

$$
=1-\frac{b^{2}}{a^{2}} \text { for ellipse } \quad(\varepsilon<1) \text { where: } \quad 4 R(R+1) \sin ^{2} \gamma=-\frac{b^{2}}{a^{2}}=\varepsilon^{2}-1 \text { implying: } R(R+1)<0
$$

$$
\begin{aligned}
& \text { (or: }-R^{2}>R \text {) } \\
& \text { (or: } 0>R>-1 \text {) }
\end{aligned}
$$

$$
=1+\frac{b^{2}}{a^{2}} \text { for hyperbola }(\varepsilon>1) \text { where: } 4 R(R+1) \sin ^{2} \gamma=+\frac{b^{2}}{a^{2}}=\varepsilon^{2}-1 \text { implying: } R(R+1)>0
$$

$$
\begin{aligned}
& \text { (or: }-R^{2}<R \text {) } \\
& \text { (or: } 0<R<-1 \text {) }
\end{aligned}
$$

Total $\frac{-k}{2 a}=E=$ energy $=K E+P E$ relates ratio $R=\frac{K E}{P E}$ to individual radii a, b, and λ.
$\frac{-k}{2 a}=E=K E+P E=R \cdot P E+P E=(R+1) P E=(R+1) \frac{-k}{r}$ or: $\frac{1}{2 a}=(R+1) \frac{1}{r}=(R+1)$
$a=\frac{r}{2(R+1)}=\left(\frac{1}{2(R+1)}\right.$ assuming unit initial radius $(r \equiv 1)$.

Algebra of ε-construction geometry
The eccentricty parameter relates ratios $R=\frac{K E}{P E}$ and $\frac{b^{2}}{a^{2}}$

$$
\varepsilon^{2}=1+4 R(R+1) \sin ^{2} \gamma
$$

$$
=1-\frac{b^{2}}{a^{2}} \text { for ellipse } \quad(\varepsilon<1) \text { where: } \quad 4 R(R+1) \sin ^{2} \gamma=-\frac{b^{2}}{a^{2}}=\varepsilon^{2}-1 \text { implying: } R(R+1)<0
$$

$$
\begin{aligned}
& \text { (or: }-R^{2}>R \text {) } \\
& \text { (or: } 0>R>-1 \text {) }
\end{aligned}
$$

$$
=1+\frac{b^{2}}{a^{2}} \text { for hyperbola }(\varepsilon>1) \text { where: } 4 R(R+1) \sin ^{2} \gamma=+\frac{b^{2}}{a^{2}}=\varepsilon^{2}-1 \text { implying: } R(R+1)>0
$$

$$
\text { (or: }-R^{2}<R \text {) }
$$

$$
\text { (or: } 0<R<-1 \text {) }
$$

Total $\frac{-k}{2 a}=E=$ energy $=K E+P E$ relates ratio $R=\frac{K E}{P E}$ to individual radii a, b, and λ.
$\frac{-k}{2 a}=E=K E+P E=R \cdot P E+P E=(R+1) P E=(R+1) \frac{-k}{r}$ or: $\frac{1}{2 a}=(R+1) \frac{1}{r}=(R+1)$
$a=\frac{r}{2(R+1)}=\left(\frac{1}{2(R+1)}\right.$ assuming unit initial radius $(r \equiv 1)$.
$4 R(R+1) \sin ^{2} \gamma=\mp \frac{b^{2}}{a^{2}}$ implies: $\quad 2 \sqrt{\mp R(R+1)} \sin \gamma=\frac{b}{a}$ or: $\quad b=2 a \sqrt{\mp R(R+1)} \sin \gamma$
$b=r \sqrt{\frac{\mp R}{R+1}} \sin \gamma\left(=\sqrt{\frac{\mp R}{R+1}} \sin \gamma\right.$ assuming unit initial radius $(r \equiv 1)$

Algebra of ε-construction geometry
The eccentricty parameter relates ratios $R=\frac{K E}{P E}$ and $\frac{b^{2}}{a^{2}}$

$$
\varepsilon^{2}=1+4 R(R+1) \sin ^{2} \gamma
$$

$$
=1-\frac{b^{2}}{a^{2}} \text { for ellipse } \quad(\varepsilon<1) \text { where: } \quad 4 R(R+1) \sin ^{2} \gamma=-\frac{b^{2}}{a^{2}}=\varepsilon^{2}-1 \text { implying: } R(R+1)<0
$$

$$
\begin{aligned}
& \text { (or: }-R^{2}>R \text {) } \\
& \text { (or: } 0>R>-1 \text {) }
\end{aligned}
$$

$$
=1+\frac{b^{2}}{a^{2}} \text { for hyperbola }(\varepsilon>1) \text { where: } 4 R(R+1) \sin ^{2} \gamma=+\frac{b^{2}}{a^{2}}=\varepsilon^{2}-1 \text { implying: } R(R+1)>0
$$

$$
\text { (or: }-R^{2}<R \text {) }
$$

$$
\text { (or: } 0<R<-1 \text {) }
$$

Total $\frac{-k}{2 a}=E=$ energy $=K E+P E$ relates ratio $R=\frac{K E}{P E}$ to individual radii a, b, and λ.
$\frac{-k}{2 a}=E=K E+P E=R \cdot P E+P E=(R+1) P E=(R+1) \frac{-k}{r}$ or: $\frac{1}{2 a}=(R+1) \frac{1}{r}=(R+1)$
$a=\frac{r}{2(R+1)}=\left(\frac{1}{2(R+1)}\right.$ assuming unit initial radius $(r \equiv 1)$.
$4 R(R+1) \sin ^{2} \gamma=\mp \frac{b^{2}}{a^{2}}$ implies: $\quad 2 \sqrt{\mp R(R+1)} \sin \gamma=\frac{b}{a}$ or: $\quad b=2 a \sqrt{\mp R(R+1)} \sin \gamma$
$b=r \sqrt{\frac{\mp R}{R+1}} \sin \gamma\left(=\sqrt{\frac{\mp R}{R+1}} \sin \gamma\right.$ assuming unit initial radius $(r \equiv 1)$
Latus radius is similarly related:

$$
\lambda=\frac{b^{2}}{a}=\mp 2 r R \sin ^{2} \gamma
$$

Algebra of ε-construction geometry
The eccentricty parameter relates ratios $R=\frac{K E}{P E}$ and $\frac{b^{2}}{a^{2}}$

$$
\begin{aligned}
\varepsilon^{2} & =1+4 R(R+1) \sin ^{2} \gamma \\
& =1-\frac{b^{2}}{a^{2}} \operatorname{ellipse}(\varepsilon<1) \quad 4 R(R+1) \sin ^{2} \gamma=-\frac{b^{2}}{a^{2}} \\
& =1+\frac{b^{2}}{a^{2}} \text { hyperbola }(\varepsilon>1) 4 R(R+1) \sin ^{2} \gamma=+\frac{b^{2}}{a^{2}}
\end{aligned}
$$

$a=\frac{r}{2(R+1)}=\left(\frac{1}{2(R+1)}\right.$ assuming unit initial radius $\left.(r \equiv 1).\right)$
$b=r \sqrt{\frac{\mp R}{R+1}} \sin \gamma\left(=\sqrt{\frac{\mp R}{R+1}} \sin \gamma\right.$ assuming unit initial radius $\left.(r \equiv 1)\right)$

Latus radius is similarly related:

$$
\lambda=\frac{b^{2}}{a}=\mp 2 r R \sin ^{2} \gamma
$$

From ε^{2} result (at top):
$\frac{b}{a}=2 \sqrt{\mp R(R+1)} \sin \gamma=\sqrt{ \pm\left(1-\varepsilon^{2}\right)}$

