Tue. 12.10.2014

Geometry and Symmetry of Coulomb Orbital Dynamics I. (Ch. 2-4 of Unit 5 12.11.14)

Rutherford scattering and differential scattering cross-sections Parabolic "kite" and envelope geometry Eccentricity vector ε and (ε, λ) -geometry of orbital mechanics ε -vector and Coulomb **r**-orbit geometry Review and connection to standard development ε -vector and Coulomb $\mathbf{p}=m\mathbf{v}$ geometry ε -vector and Coulomb $\mathbf{p}=m\mathbf{v}$ algebra Example with elliptical orbit Analytic geometry derivation of ε -construction Algebra of ε -construction geometry Connection formulas for (a,b) and (ε,λ) with (γ,\mathbf{R})

- *Review and added: Rutherford scattering and differential scattering cross-sections* Parabolic "kite" and envelope geometry

Rutherford scattering of α^{+2} particles from Au^{+79} nucleus at O Assume "Dead-On" closest approach 2a. (E=k/2a) $a\sim 10^{-11}m >>7.3\cdot 10^{-15}m$

Pick an "impact parameter" line y = b. Draw circle of radius a around center point C=(-a,b) tangent to y-axis. Draw "focus-locus" line OCF.

Rutherford scattering of α^{+2} particles from Au^{+79} nucleus at O Assume "Dead-On" closest approach 2a. (E=k/2a) $a\sim 10^{-11}m >> 7.3 \cdot 10^{-15}m$

Pick an "impact parameter" line y = b. Draw circle of radius a around center point C=(-a,b) tangent to y-axis. Draw "focus-locus" line OCF.

Copy angle \angle BCF (equal to $\Theta/2$) to make angle \angle FCB' (also equal to $\Theta/2$) Resulting line CB' is outgoing asymptote at scattering angle Θ .

Rutherford scattering of α^{+2} particles from Au^{+79} nucleus at O Assume "Dead-On" closest approach 2a. (E=k/2a) $a\sim 10^{-11}m >> 7.3 \cdot 10^{-15}m$

Pick an "impact parameter" line y = b. Draw circle of radius a around center point C=(-a,b) tangent to y-axis. Draw "focus-locus" line OCF.

Copy angle \angle BCF (equal to $\Theta/2$) to make angle \angle FCB' (also equal to $\Theta/2$) Resulting line CB' is outgoing asymptote at scattering angle Θ .

Locate secondary focus O' by drawing circle around point C of diameter CO thru point O. Diameter O'CO is $2a\varepsilon$. Hyperbolic orbit points P now found using constant 2a=PO-PO'

Rutherford scattering of α^{+2} particles from Au^{+79} nucleus at O Assume "Dead-On" closest approach 2a. (E=k/2a) $a\sim 10^{-11}m >> 7.3\cdot 10^{-15}m$

Pick an "impact parameter" line y = b. Draw circle of radius a around center point C=(-a,b) tangent to y-axis. Draw "focus-locus" line OCF.

Copy angle \angle BCF (equal to $\Theta/2$) to make angle \angle FCB' (also equal to $\Theta/2$) Resulting line CB' is outgoing asymptote at scattering angle Θ .

Locate secondary focus O' by drawing circle around point C of diameter CO thru point O. Diameter O'CO is $2a\varepsilon$. Hyperbolic orbit points P now found using constant 2a=PO-PO'

Review: Coulomb scattering geometry

Review and added: Rutherford scattering and differential scattering cross-sections Parabolic "kite" and envelope geometry

Rutherford scattering geometry

Wednesday, December 24, 2014

Fig. 5.3.2 Family of iso-energetic Rutherford scattering orbits with varying impact parameter.

Incremental window $d\sigma = b \cdot db$ normal to beam axis at $x = -\infty$ scatters to area $dA = R^2 \sin \Theta d\Theta d\phi = R^2 d\Omega$ onto a sphere at $R = +\infty$ where is called the *incremental solid angled* $\Omega = \sin \Theta d\Theta d\phi$

Ratio
$$\frac{d\sigma}{d\Omega} = \frac{b \, db \, d\varphi}{\sin \Theta d\Theta d\varphi} = \frac{b}{\sin \Theta} \frac{db}{d\Theta}$$
 is called the *differential scattering crossection (DSC)*
Geometry $b = a \, \cot \frac{\Theta}{2} = \frac{k}{2E} \cot \frac{\Theta}{2}$ gives the *Rutherford DSC*. $\frac{d\sigma}{d\Omega} = \frac{k^4}{16E^2} \sin^{-4} \frac{\Theta}{2}$

Agrees exactly with 1st Born approximation to *quantum* Coulomb DSC!

Eccentricity vector ε and (ε, λ) -geometry of orbital mechanics ε -vector and Coulomb **r**-orbit geometry Review and connection to standard development ε -vector and Coulomb **p**=m**v** geometry ε -vector and Coulomb **p**=m**v** algebra Example with elliptical orbit Analytic geometry derivation of ε -construction Algebra of ε -construction geometry Connection formulas for (a,b) and (ε, λ) with (γ, \mathbf{R}) *Eccentricity vector* ε *and* (ε , λ) *geometry of orbital mechanics*

Isotropic field V = V(r) guarantees conservation *angular momentum vector* **L**

 $\mathbf{L} = \mathbf{r} \times \mathbf{p} = m \, \mathbf{r} \times \dot{\mathbf{r}}$

Eccentricity vector ε *and* (ε , λ) *geometry of orbital mechanics*

Isotropic field V=V(r) guarantees conservation *angular momentum vector* **L**

 $\mathbf{L} = \mathbf{r} \times \mathbf{p} = m \mathbf{r} \times \dot{\mathbf{r}}$

Coulomb V = -k/r also conserves *eccentricity vector* ε

 $\mathbf{\varepsilon} = \hat{\mathbf{r}} - \frac{\mathbf{p} \times \mathbf{L}}{km} = \frac{\mathbf{r}}{r} - \frac{\mathbf{p} \times (\mathbf{r} \times \mathbf{p})}{km}$

Eccentricity vector ε *and* (ε , λ) *geometry of orbital mechanics*

Isotropic field V=V(r) guarantees conservation *angular momentum vector* **L**

$$\mathbf{L} = \mathbf{r} \times \mathbf{p} = m\mathbf{r} \times \dot{\mathbf{r}}$$
Coulomb V=-k/r also conserves eccentricity vector ε

$$\varepsilon = \hat{\mathbf{r}} - \frac{\mathbf{p} \times \mathbf{L}}{km} = \frac{\mathbf{r}}{r} - \frac{\mathbf{p} \times (\mathbf{r} \times \mathbf{p})}{km}$$
HO $V = (k/2)r^2$ also conserves Stokes vector S
 $S_A = \frac{1}{2}(x_1^2 + p_1^2 - x_2^2 - p_2^2)$
 $S_B = x_1p_1 + x_2p_2$
 $S_C = x_1p_2 - x_2p_1$
A = km ε is known as the Laplace-Hamilton-Gibbs-Runge-Lenz vector. Generate symmetry groups: $U(2) \subset U(2)$
or: $R(3) \subset R(3) \times R(3) \subset O(4)$

Isotropic field V=V(r) guarantees conservation *angular momentum vector* **L**

 $\mathbf{L} = \mathbf{r} \times \mathbf{p} = m \mathbf{r} \times \dot{\mathbf{r}}$ Coulomb V=-k/r also conserves eccentricity vector $\boldsymbol{\varepsilon}$ $\varepsilon = \hat{\mathbf{r}} - \frac{\mathbf{p} \times \mathbf{L}}{km} = \frac{\mathbf{r}}{r} - \frac{\mathbf{p} \times (\mathbf{r} \times \mathbf{p})}{km}$ (...for sake of comparison...)
IHO V=(k/2)r^2 also conserves Stokes vector S $S_A = \frac{1}{2}(x_1^2 + p_1^2 - x_2^2 - p_2^2)$ $S_B = x_1 p_1 + x_2 p_2$ $S_C = x_1 p_2 - x_2 p_1$

 $\mathbf{A} = km \cdot \varepsilon \text{ is known as the Laplace-Hamilton-Gibbs-Runge-Lenz vector.} \overset{\text{Generate symmetry groups:}}{\to} U(2) \subset U(2) \xrightarrow{} U(2) \subset U(2) \xrightarrow{} U(3) \subset R(3) \subset R(3) \subset R(3) \subset Q(4)$

Consider dot product of ε with a radial vector **r**:

$$\mathbf{\varepsilon} \bullet \mathbf{r} = \frac{\mathbf{r} \bullet \mathbf{r}}{r} - \frac{\mathbf{r} \bullet \mathbf{p} \times \mathbf{L}}{km} = r - \frac{\mathbf{r} \times \mathbf{p} \bullet \mathbf{L}}{km} = r - \frac{\mathbf{L} \bullet \mathbf{L}}{km}$$

Isotropic field V=V(r) guarantees conservation *angular momentum vector* **L**

 $\mathbf{L} = \mathbf{r} \times \mathbf{p} = m\mathbf{r} \times \dot{\mathbf{r}}$ Coulomb *V*=-*k/r* also conserves *eccentricity vector* ε $\varepsilon = \dot{\mathbf{r}} - \frac{\mathbf{p} \times \mathbf{L}}{km} = \frac{\mathbf{r}}{r} - \frac{\mathbf{p} \times (\mathbf{r} \times \mathbf{p})}{km}$ HO *V*=(*k*/2)*r*² also conserves *Stokes vector S* $S_A = \frac{1}{2}(x_1^2 + p_1^2 - x_2^2 - p_2^2)$ $S_B = x_1 p_1 + x_2 p_2$ $S_C = x_1 p_2 - x_2 p_1$ A = *km* ε is known as the *Laplace-Hamilton-Gibbs-Runge-Lenz vector*. Generate symmetry groups: *U*(2) \subset *U*(2) or: *R*(3) \subset *R*(3) \subset *R*(3) \subset *O*(4)
Consider dot product of ε with a radial vector **r**:

$$\mathbf{\epsilon} \bullet \mathbf{r} = \frac{\mathbf{r} \bullet \mathbf{r}}{r} - \frac{\mathbf{r} \bullet \mathbf{p} \times \mathbf{L}}{km} = r - \frac{\mathbf{r} \times \mathbf{p} \bullet \mathbf{L}}{km} = r - \frac{\mathbf{L} \bullet \mathbf{L}}{km}$$

$$\mathbf{\epsilon} \bullet \mathbf{p} = \frac{\mathbf{p} \bullet \mathbf{r}}{r} - \frac{\mathbf{p} \bullet \mathbf{p} \times \mathbf{L}}{km} = \mathbf{p} \bullet \hat{\mathbf{r}} = p_r$$

Isotropic field V=V(r) guarantees conservation *angular momentum vector* **L**

 $\mathbf{L} = \mathbf{r} \times \mathbf{p} = m \mathbf{r} \times \dot{\mathbf{r}}$ (...for sake of comparison...) Coulomb V = -k/r also conserves *eccentricity vector* ε IHO $V = (k/2)r^2$ also conserves *Stokes vector* **S** $S_{A} = \frac{1}{2} (x_{1}^{2} + p_{1}^{2} - x_{2}^{2} - p_{2}^{2})$ $\mathbf{\varepsilon} = \hat{\mathbf{r}} - \frac{\mathbf{p} \times \mathbf{L}}{km} = \frac{\mathbf{r}}{r} - \frac{\mathbf{p} \times (\mathbf{r} \times \mathbf{p})}{km}$ $S_{B} = x_{1}p_{1} + x_{2}p_{2}$ $S_{C} = x_{1}p_{2} - x_{2}p_{1}$ $\mathbf{A} = km \cdot \varepsilon \text{ is known as the Laplace-Hamilton-Gibbs-Runge-Lenz vector.} \overset{\text{Generate symmetry groups:}}{\to} U(2) \subset U(2) \xrightarrow{\bullet} U(2) \subset U(2)$ Consider dot product of ε with a radial vector **r**: ...or of ε with momentum vector **p**: $\boldsymbol{\varepsilon} \bullet \mathbf{p} = \frac{\mathbf{p} \bullet \mathbf{r}}{r} - \frac{\mathbf{p} \bullet \mathbf{p} \times \mathbf{L}}{km} = \mathbf{p} \bullet \hat{\mathbf{r}} = p_r$ $\mathbf{\varepsilon} \bullet \mathbf{r} = \frac{\mathbf{r} \bullet \mathbf{r}}{r} - \frac{\mathbf{r} \bullet \mathbf{p} \times \mathbf{L}}{km} = r - \frac{\mathbf{r} \times \mathbf{p} \bullet \mathbf{L}}{km} = r - \frac{\mathbf{L} \bullet \mathbf{L}}{km}$ Let angle ϕ be angle between ε and radial vector \mathbf{r} $\varepsilon r \cos \phi = r - \frac{L^2}{L}$

Isotropic field V=V(r) guarantees conservation *angular momentum vector* **L**

 $\mathbf{L} = \mathbf{r} \times \mathbf{p} = m \mathbf{r} \times \dot{\mathbf{r}}$ (...for sake of comparison...) Coulomb V = -k/r also conserves *eccentricity vector* ε IHO $V = (k/2)r^2$ also conserves *Stokes vector* **S** $S_{A} = \frac{1}{2} (x_{1}^{2} + p_{1}^{2} - x_{2}^{2} - p_{2}^{2})$ $\mathbf{\varepsilon} = \hat{\mathbf{r}} - \frac{\mathbf{p} \times \mathbf{L}}{km} = \frac{\mathbf{r}}{r} - \frac{\mathbf{p} \times (\mathbf{r} \times \mathbf{p})}{km}$ $S_{B} = x_{1}p_{1} + x_{2}p_{2}$ $S_{C} = x_{1}p_{2} - x_{2}p_{1}$ $\mathbf{A} = km \cdot \varepsilon \text{ is known as the Laplace-Hamilton-Gibbs-Runge-Lenz vector.} \overset{\text{Generate symmetry groups:}}{\to} U(2) \subset U(2) \xrightarrow{} U(2) \subset U(2) \xrightarrow{} U(2) \subset U(2)$ Consider dot product of ε with a radial vector **r**: ...or of ε with momentum vector **p**: $\boldsymbol{\varepsilon} \bullet \mathbf{p} = \frac{\mathbf{p} \bullet \mathbf{r}}{r} - \frac{\mathbf{p} \bullet \mathbf{p} \times \mathbf{L}}{km} = \mathbf{p} \bullet \hat{\mathbf{r}} = p_r$ $\mathbf{\varepsilon} \bullet \mathbf{r} = \frac{\mathbf{r} \bullet \mathbf{r}}{r} - \frac{\mathbf{r} \bullet \mathbf{p} \times \mathbf{L}}{km} = r - \frac{\mathbf{r} \times \mathbf{p} \bullet \mathbf{L}}{km} = r - \frac{\mathbf{L} \bullet \mathbf{L}}{km}$ Let angle ϕ be angle between ε and radial vector \mathbf{r} $\varepsilon r \cos \phi = r - \frac{L^2}{km}$ or: $r = \frac{L^2/km}{1 - \varepsilon \cos \phi}$

Isotropic field V=V(r) guarantees conservation *angular momentum vector* **L**

 $\mathbf{L} = \mathbf{r} \times \mathbf{p} = m \mathbf{r} \times \dot{\mathbf{r}}$ (...for sake of comparison...) Coulomb V = -k/r also conserves *eccentricity vector* ε IHO $V = (k/2)r^2$ also conserves *Stokes vector* **S** $S_{A} = \frac{1}{2} (x_{1}^{2} + p_{1}^{2} - x_{2}^{2} - p_{2}^{2})$ $\boldsymbol{\varepsilon} = \hat{\mathbf{r}} - \frac{\mathbf{p} \times \mathbf{L}}{km} = \frac{\mathbf{r}}{r} - \frac{\mathbf{p} \times (\mathbf{r} \times \mathbf{p})}{km}$ $S_{B} = x_{1}p_{1} + x_{2}p_{2}$ $S_C = x_1 p_2 - x_2 p_1$ $\mathbf{A} = km \cdot \varepsilon \text{ is known as the Laplace-Hamilton-Gibbs-Runge-Lenz vector.} \overset{\text{Generate symmetry groups:}}{\to} U(2) \subset U(2) \xrightarrow{} U(2) \subset U(2)$ Consider dot product of ε with a radial vector **r**: ...or of ε with momentum vector **p**: $\boldsymbol{\varepsilon} \bullet \mathbf{p} = \frac{\mathbf{p} \bullet \mathbf{r}}{r} - \frac{\mathbf{p} \bullet \mathbf{p} \times \mathbf{L}}{km} = \mathbf{p} \bullet \hat{\mathbf{r}} = p_r$ $\mathbf{\varepsilon} \bullet \mathbf{r} = \frac{\mathbf{r} \bullet \mathbf{r}}{r} - \frac{\mathbf{r} \bullet \mathbf{p} \times \mathbf{L}}{km} = r - \frac{\mathbf{r} \times \mathbf{p} \bullet \mathbf{L}}{km} = r - \frac{\mathbf{L} \bullet \mathbf{L}}{km}$ $\left| \frac{\lambda}{1-\varepsilon} \right|$ if: $\phi = 0$ apogee Let angle ϕ be angle between ε and radial vector \mathbf{r} $\varepsilon r \cos \phi = r - \frac{L^2}{km} \quad \text{or:} \quad r = \frac{L^2/km}{1 - \varepsilon \cos \phi} \quad \text{For } \lambda = L^2/km \text{ that matches: } r = \frac{\lambda}{1 - \varepsilon \cos \phi} = \begin{cases} \lambda & \text{if: } \phi = \frac{\pi}{2} & \text{zenith} \\ \frac{\lambda}{1 + \varepsilon} & \text{if: } \phi = \pi & \text{perigee} \end{cases}$ atus (attractive radius zenith force center) aphelion perhelion $\frac{\lambda}{1-\epsilon}$ 1+ε perigee apogee

Isotropic field V=V(r) guarantees conservation *angular momentum vector* **L**

 $\mathbf{L} = \mathbf{r} \times \mathbf{p} = m \mathbf{r} \times \dot{\mathbf{r}}$ (...for sake of comparison...) Coulomb V = -k/r also conserves *eccentricity vector* ε IHO $V = (k/2)r^2$ also conserves *Stokes vector* **S** $S_{A} = \frac{1}{2} (x_{1}^{2} + p_{1}^{2} - x_{2}^{2} - p_{2}^{2})$ $\mathbf{\varepsilon} = \hat{\mathbf{r}} - \frac{\mathbf{p} \times \mathbf{L}}{km} = \frac{\mathbf{r}}{r} - \frac{\mathbf{p} \times (\mathbf{r} \times \mathbf{p})}{km}$ $S_{B} = x_1 p_1 + x_2 p_2 \qquad \checkmark$ $S_C = x_1 p_2 - x_2 p_1$ $\mathbf{A} = km \cdot \varepsilon \text{ is known as the Laplace-Hamilton-Gibbs-Runge-Lenz vector.} \overset{\text{Generate symmetry groups:}}{\to} U(2) \subset U(2) \xrightarrow{} U(2) \subset U(2) \xrightarrow{} U(2) \subset U(2)$ Consider dot product of ε with a radial vector **r**: ...or of ε with momentum vector **p**: $\boldsymbol{\varepsilon} \bullet \mathbf{p} = \frac{\mathbf{p} \bullet \mathbf{r}}{r} - \frac{\mathbf{p} \bullet \mathbf{p} \times \mathbf{L}}{km} = \mathbf{p} \bullet \hat{\mathbf{r}} = p_r$ $\mathbf{\varepsilon} \bullet \mathbf{r} = \frac{\mathbf{r} \bullet \mathbf{r}}{r} - \frac{\mathbf{r} \bullet \mathbf{p} \times \mathbf{L}}{km} = r - \frac{\mathbf{r} \times \mathbf{p} \bullet \mathbf{L}}{km} = r - \frac{\mathbf{L} \bullet \mathbf{L}}{km}$ $\left|\frac{\lambda}{1-\epsilon}\right|$ if: $\phi=0$ apogee Let angle ϕ be angle between ε and radial vector \mathbf{r} $\varepsilon r \cos \phi = r - \frac{L^2}{km} \quad \text{or:} \quad r = \frac{L^2/km}{1 - \varepsilon \cos \phi} \quad \text{For } \lambda = L^2/km \text{ that matches: } r = \frac{\lambda}{1 - \varepsilon \cos \phi} = \begin{cases} \lambda & \text{if: } \phi = \frac{\pi}{2} & \text{zenith} \\ \frac{\lambda}{1 + \varepsilon} & \text{if: } \phi = \pi & \text{perigee} \end{cases}$ Elliptic (E < 0)atus **px**L *(attractive* (Rotational radius zenith force center) (Nothing momentum 'here) aphelion perhelion $\mathbf{L} = \mathbf{r} \times \mathbf{p}$ is 1-ε 1+ε normal to the $\epsilon = \hat{r} - \underline{pxL}$ (attractive perigee apogee orbit plane.) *force center*)

Isotropic field V=V(r) guarantees conservation *angular momentum vector* **L**

 $\mathbf{L} = \mathbf{r} \times \mathbf{p} = m \mathbf{r} \times \dot{\mathbf{r}}$ (...for sake of comparison...) Coulomb V = -k/r also conserves *eccentricity vector* ε IHO $V = (k/2)r^2$ also conserves *Stokes vector* **S** $S_{A} = \frac{1}{2} (x_{1}^{2} + p_{1}^{2} - x_{2}^{2} - p_{2}^{2})$ $\mathbf{\varepsilon} = \hat{\mathbf{r}} - \frac{\mathbf{p} \times \mathbf{L}}{km} = \frac{\mathbf{r}}{r} - \frac{\mathbf{p} \times (\mathbf{r} \times \mathbf{p})}{km}$ $S_{B} = x_{1}p_{1} + x_{2}p_{2}$ $S_C = x_1 p_2 - x_2 p_1$ $\mathbf{A} = km \cdot \varepsilon \text{ is known as the Laplace-Hamilton-Gibbs-Runge-Lenz vector.} \overset{\text{Generate symmetry groups:}}{\to} U(2) \subset U(2) \xrightarrow{} U(2) \subset U(2) \xrightarrow{} U(2) \subset U(2)$ Consider dot product of ε with a radial vector **r**: ...or of ε with momentum vector **p**: $\boldsymbol{\varepsilon} \bullet \mathbf{p} = \frac{\mathbf{p} \bullet \mathbf{r}}{r} - \frac{\mathbf{p} \bullet \mathbf{p} \times \mathbf{L}}{km} = \mathbf{p} \bullet \hat{\mathbf{r}} = p_r$ $\mathbf{\varepsilon} \bullet \mathbf{r} = \frac{\mathbf{r} \bullet \mathbf{r}}{r} - \frac{\mathbf{r} \bullet \mathbf{p} \times \mathbf{L}}{km} = r - \frac{\mathbf{r} \times \mathbf{p} \bullet \mathbf{L}}{km} = r - \frac{\mathbf{L} \bullet \mathbf{L}}{km}$ $\left| \frac{\lambda}{1-\varepsilon} \right|$ if: $\phi = 0$ apogee Let angle ϕ be angle between ε and radial vector \mathbf{r} $\varepsilon r \cos \phi = r - \frac{L^2}{km} \quad \text{or:} \quad r = \frac{L^2/km}{1 - \varepsilon \cos \phi} \quad \text{For } \lambda = L^2/km \text{ that matches: } r = \frac{\lambda}{1 - \varepsilon \cos \phi} = \begin{cases} \lambda & \text{if: } \phi = \frac{\pi}{2} & \text{zenith} \\ \frac{\lambda}{1 + \varepsilon} & \text{if: } \phi = \pi & \text{perigee} \end{cases}$ *Elliptic* (E < 0) Hyperbolic (E>0) latus pxL **pxL** (Rotational radius zenith (Nothing momentum perhelion aphelion here) 3 $\mathbf{L} = \mathbf{r} \times \mathbf{p}$ is (Nothing 1-ε l+ε normal to the *here*) (attrative $\varepsilon = \hat{\mathbf{r}} - \mathbf{p}\mathbf{X}\mathbf{L}$ apogee perigee force (attractive orbit plane.) center) *force center*)

Isotropic field V=V(r) guarantees conservation *angular momentum vector* **L**

 $\mathbf{L} = \mathbf{r} \times \mathbf{p} = m \mathbf{r} \times \dot{\mathbf{r}}$ (...for sake of comparison...) Coulomb V = -k/r also conserves *eccentricity vector* ε IHO $V = (k/2)r^2$ also conserves *Stokes vector* **S** $S_{A} = \frac{1}{2} (x_{1}^{2} + p_{1}^{2} - x_{2}^{2} - p_{2}^{2})$ $\mathbf{\varepsilon} = \hat{\mathbf{r}} - \frac{\mathbf{p} \times \mathbf{L}}{km} = \frac{\mathbf{r}}{r} - \frac{\mathbf{p} \times (\mathbf{r} \times \mathbf{p})}{km}$ $S_{B} = x_{1}p_{1} + x_{2}p_{2}$ $S_C = x_1 p_2 - x_2 p_1$ $\mathbf{A} = km \cdot \varepsilon \text{ is known as the Laplace-Hamilton-Gibbs-Runge-Lenz vector.} \overset{\text{Generate symmetry groups:}}{\to} U(2) \subset U(2) \xrightarrow{} U(2) \subset U(2) \xrightarrow{} U(2) \subset U(2)$ Consider dot product of ε with a radial vector **r**: ...or of ε with momentum vector **p**: $\boldsymbol{\varepsilon} \bullet \mathbf{p} = \frac{\mathbf{p} \bullet \mathbf{r}}{r} - \frac{\mathbf{p} \bullet \mathbf{p} \times \mathbf{L}}{km} = \mathbf{p} \bullet \hat{\mathbf{r}} = p_r$ $\mathbf{\varepsilon} \bullet \mathbf{r} = \frac{\mathbf{r} \bullet \mathbf{r}}{r} - \frac{\mathbf{r} \bullet \mathbf{p} \times \mathbf{L}}{km} = r - \frac{\mathbf{r} \times \mathbf{p} \bullet \mathbf{L}}{km} = r - \frac{\mathbf{L} \bullet \mathbf{L}}{km}$ Let angle ϕ be angle between ε and radial vector \mathbf{r} $\frac{\lambda}{1-\epsilon}$ if: $\phi=0$ apogee $\varepsilon r \cos \phi = r - \frac{L^2}{km}$ or: $r = \frac{L^2/km}{1 - \varepsilon \cos \phi}$ For $\lambda = L^2/km$ that matches: $r = \frac{\lambda}{1 - \varepsilon \cos \phi} = \begin{cases} \lambda & \text{if: } \phi = \frac{\pi}{2} \\ zenith \end{cases}$ $\frac{\lambda}{1+\epsilon}$ if: $\phi = \pi$ perigee (b) Attractive (k>0) (c) Repulsive (k<0) (a) Attractive (k>0)Hyperbolic (E>0) *Elliptic* (E < 0) Hyperbolic (E>0)latus pxL **px**L (Rotational radius zenith pxL (Nothing momentum perhelion aphelion here) 3 $\mathbf{L} = \mathbf{r} \times \mathbf{p}$ is (Nothing 1–ε l+ε normal to the *here*) attrative (repulsive P Nothing $\hat{\mathbf{e}} = \hat{\mathbf{r}} - \hat{\mathbf{r}}$ apogee perigee force force attractive *here*) orbit plane.) center) *center*) *force center)*

Wednesday, December 24, 2014
Eccentricity vector ε and (ε, λ) -geometry of orbital mechanics ε -vector and Coulomb **r**-orbit geometry \checkmark Review and connection to standard development ε -vector and Coulomb **p**=m**v** geometry ε -vector and Coulomb **p**=m**v** algebra Example with elliptical orbit Analytic geometry derivation of ε -construction Algebra of ε -construction geometry Connection formulas for (a,b) and (ε, λ) with (γ, \mathbf{R})

Eccentricity vector ε and (ε, λ) -geometry of orbital mechanics ε -vector and Coulomb **r**-orbit geometry Review and connection to standard development ε -vector and Coulomb **p**=m**v** geometry ε -vector and Coulomb **p**=m**v** algebra Example with elliptical orbit Analytic geometry derivation of ε -construction Algebra of ε -construction geometry Connection formulas for (a,b) and (ε, λ) with (γ, \mathbf{R})

Eccentricity vector ε and (ε,λ)-geometry of orbital mechanics
ε-vector and Coulomb r-orbit geometry
Review and connection to standard development
ε-vector and Coulomb p=mv geometry
ε-vector and Coulomb p=mv algebra
Example with elliptical orbit
Analytic geometry derivation of ε-construction
Algebra of ε-construction geometry
Connection formulas for (a,b) and (ε,λ) with (γ, R)

Radius r:

$$r = \frac{\lambda}{1 - \varepsilon \cos \phi} = \frac{L^2 / km}{1 - \varepsilon \cos \phi}$$

Polar angle
$$\phi$$
 using: $L = mr^2 \frac{d\phi}{dt} = mr^2 \dot{\phi}$

Finding time derivatives of orbital coordinates r, ϕ , x, y, and eventually velocity **v** or momentum **p**=m**v**

Radius r:

adius r:

$$r = \frac{\lambda}{1 - \varepsilon \cos \phi} = \frac{L^2 / km}{1 - \varepsilon \cos \phi}$$
Polar angle ϕ using: $L = mr^2 \frac{d\phi}{dt} = mr^2 \dot{\phi}$
 $\dot{\phi} = \frac{L}{mr^2} = \frac{L}{m} \frac{1}{r^2}$

Finding time derivatives of orbital coordinates r, ϕ , x, y, and eventually velocity **v** or momentum **p**=m**v**

Radius r:

$$r = \frac{\lambda}{1 - \varepsilon \cos \phi} = \frac{L^2 / km}{1 - \varepsilon \cos \phi}$$
Polar angle ϕ using: $L = mr^2 \frac{d\phi}{dt} = mr^2 \dot{\phi}$
 $\dot{\phi} = \frac{L}{mr^2} = \frac{L}{m} \frac{1}{r^2} = \frac{L}{m} \left(\frac{km}{L^2}\right)^2 (1 - \varepsilon \cos \phi)^2$

using:
$$\frac{1}{r^2} = \left(\frac{km}{L^2}\right)^2 (1 - \varepsilon \cos\phi)^2$$

1 1

Finding time derivatives of orbital coordinates r, ϕ , x, y, and eventually velocity **v** or momentum **p**=m**v**

Radius r:

$$r = \frac{\lambda}{1 - \varepsilon \cos \phi} = \frac{L^2 / km}{1 - \varepsilon \cos \phi}$$
$$\dot{r} = \frac{dr}{dt} = \frac{L^2}{km} \frac{-\frac{d}{dt}(-\varepsilon \cos \phi)}{(1 - \varepsilon \cos \phi)^2}$$

Polar angle
$$\phi$$
 using: $L = mr^2 \frac{d\phi}{dt} = mr^2 \dot{\phi}$
 $\dot{\phi} = \frac{L}{mr^2} = \frac{L}{m} \frac{1}{r^2} = \frac{L}{m} \left(\frac{km}{L^2}\right)^2 (1 - \varepsilon \cos \phi)^2$

using:
$$\frac{1}{r^2} = \left(\frac{km}{L^2}\right)^2 (1 - \varepsilon \cos\phi)^2$$

Finding time derivatives of orbital coordinates r, ϕ , x, y, and eventually velocity **v** or momentum **p**=m**v**

Radius r: $r = \frac{\lambda}{1 - \varepsilon \cos \phi} = \frac{L^2 / km}{1 - \varepsilon \cos \phi}$ $\dot{r} = \frac{dr}{dt} = \frac{L^2}{km} \frac{-\frac{d}{dt}(-\varepsilon \cos \phi)}{(1 - \varepsilon \cos \phi)^2}$

Polar angle
$$\phi$$
 using: $L = mr^2 \frac{d\phi}{dt} = mr^2 \dot{\phi}$
 $\dot{\phi} = \frac{L}{mr^2} = \frac{L}{m} \frac{1}{r^2} = \frac{L}{m} \left(\frac{km}{L^2}\right)^2 (1 - \epsilon \cos \phi)^2$
 $r\dot{\phi} = \frac{L}{mr}$

using: $\frac{1}{r^2} = \left(\frac{\kappa m}{L^2}\right) (1 - \varepsilon \cos \phi)^2$

Finding time derivatives of orbital coordinates r, ϕ , x, y, and eventually velocity **v** or momentum **p**=m**v**

Radius r:

$$r = \frac{\lambda}{1 - \varepsilon \cos \phi} = \frac{L^2 / km}{1 - \varepsilon \cos \phi}$$
$$\dot{r} = \frac{dr}{dt} = \frac{L^2}{km} \frac{-\frac{d}{dt}(-\varepsilon \cos \phi)}{(1 - \varepsilon \cos \phi)^2}$$

Polar angle
$$\phi$$
 using: $L = mr^2 \frac{d\phi}{dt} = mr^2 \dot{\phi}$
 $\dot{\phi} = \frac{L}{mr^2} = \frac{L}{m} \frac{1}{r^2} = \frac{L}{m} \left(\frac{km}{L^2}\right)^2 (1 - \varepsilon \cos \phi)^2$
 $r\dot{\phi} = \frac{L}{mr} = \frac{L}{m} \frac{1}{r} = \frac{L}{m} \left(\frac{km}{L^2}\right) (1 - \varepsilon \cos \phi) = \frac{k}{L} (1 - \varepsilon \cos \phi)$
 $using: \frac{1}{r} = \left(\frac{km}{L^2}\right) (1 - \varepsilon \cos \phi)$

Finding time derivatives of orbital coordinates r, ϕ , x, y, and eventually velocity **v** or momentum **p**=m**v**

Radius r:

$$r = \frac{\lambda}{1 - \varepsilon \cos \phi} = \frac{L^2 / km}{1 - \varepsilon \cos \phi}$$
$$\dot{r} = \frac{dr}{dt} = \frac{L^2}{km} \frac{-\frac{d}{dt}(-\varepsilon \cos \phi)}{(1 - \varepsilon \cos \phi)^2}$$
$$\dot{r} = \frac{L^2}{km} \frac{-\varepsilon \sin \phi \dot{\phi}}{(1 - \varepsilon \cos \phi)^2}$$

Polar angle
$$\phi$$
 using: $L = mr^2 \frac{d\phi}{dt} = mr^2 \dot{\phi}$
 $\dot{\phi} = \frac{L}{mr^2} = \frac{L}{m} \frac{1}{r^2} = \frac{L}{m} \left(\frac{km}{L^2}\right)^2 (1 - \varepsilon \cos \phi)^2$
 $r\dot{\phi} = \frac{L}{mr} = \frac{L}{m} \frac{1}{r} = \frac{L}{m} \left(\frac{km}{L^2}\right) (1 - \varepsilon \cos \phi) = \frac{k}{L} (1 - \varepsilon \cos \phi)$
 $using: \frac{1}{r^2} = \left(\frac{km}{L^2}\right)^2 (1 - \varepsilon \cos \phi)^2$

Radius r:Polar angle
$$\phi$$
 using: $L = mr^2 \frac{d\phi}{dt} = mr^2 \dot{\phi}$ $r = \frac{\lambda}{1 - \varepsilon \cos \phi} = \frac{L^2/km}{1 - \varepsilon \cos \phi}$ $\dot{\phi} = \frac{L}{mr^2} = \frac{L}{m} \frac{1}{r^2} = \frac{L}{m} \left(\frac{km}{L^2}\right)^2 (1 - \varepsilon \cos \phi)^2$ $\dot{r} = \frac{dr}{dt} = \frac{L^2}{km} \frac{-\frac{d}{dt}(-\varepsilon \cos \phi)^2}{(1 - \varepsilon \cos \phi)^2}$ $\dot{\phi} = \frac{L}{mr^2} = \frac{L}{m} \frac{1}{r^2} = \frac{L}{m} \left(\frac{km}{L^2}\right)^2 (1 - \varepsilon \cos \phi)^2$ $\dot{r} = \frac{L^2}{km} \frac{-\varepsilon \sin \phi \dot{\phi}}{(1 - \varepsilon \cos \phi)^2}$ $using: \frac{1}{r^2} = \left(\frac{km}{L^2}\right)^2 (1 - \varepsilon \cos \phi)^2$ $\dot{r} = -\frac{L^2}{km} \left(\frac{km}{L^2}\right)^2 r^2 \dot{\phi} \varepsilon \sin \phi$ $using: \frac{1}{(1 - \varepsilon \cos \phi)^2} = \left(\frac{km}{L^2}\right)^2 r^2$

$$\begin{aligned} \text{Radius r:} \\ r &= \frac{\lambda}{1 - \varepsilon \cos \phi} = \frac{L^2 / km}{1 - \varepsilon \cos \phi} \\ \dot{r} &= \frac{dr}{dt} = \frac{L^2}{km} \frac{-\frac{d}{dt}(-\varepsilon \cos \phi)}{(1 - \varepsilon \cos \phi)^2} \\ \dot{r} &= \frac{dr}{dt} = \frac{L^2}{km} \frac{-\frac{d}{dt}(-\varepsilon \cos \phi)}{(1 - \varepsilon \cos \phi)^2} \\ \dot{r} &= \frac{L^2}{km} \frac{-\varepsilon \sin \phi \dot{\phi}}{(1 - \varepsilon \cos \phi)^2} \\ \dot{r} &= -\frac{L^2}{km} \left(\frac{km}{L^2}\right)^2 r^2 \dot{\phi} \varepsilon \sin \phi \\ \dot{r} &= -\frac{k}{L^2} mr^2 \dot{\phi} \varepsilon \sin \phi = -\frac{k}{L} \varepsilon \sin \phi \end{aligned}$$

Radius r:
$$r = \frac{\lambda}{1 - \varepsilon \cos \phi} = \frac{L^2/km}{1 - \varepsilon \cos \phi}$$
Polar angle ϕ using: $L = mr^2 \frac{d\phi}{dt} = mr^2 \dot{\phi}$ $\dot{r} = \frac{\lambda}{1 - \varepsilon \cos \phi} = \frac{L^2/km}{1 - \varepsilon \cos \phi}$ $\dot{\phi} = \frac{L}{mr^2} = \frac{L}{m} \frac{1}{r^2} = \frac{L}{m} \left(\frac{km}{L^2}\right)^2 (1 - \varepsilon \cos \phi)^2$ $\dot{r} = \frac{dr}{dt} = \frac{L^2}{km} \frac{-\frac{d}{dt}(-\varepsilon \cos \phi)^2}{(1 - \varepsilon \cos \phi)^2}$ $r\dot{\phi} = \frac{L}{mr} = \frac{L}{m} \frac{1}{r^2} = \frac{L}{m} \left(\frac{km}{L^2}\right)^2 (1 - \varepsilon \cos \phi) = \frac{k}{L} (1 - \varepsilon \cos \phi)^2$ $\dot{r} = \frac{L^2}{km} \frac{-\varepsilon \sin \phi \dot{\phi}}{(1 - \varepsilon \cos \phi)^2}$ $using: \frac{1}{mr} = \frac{L}{m} \frac{1}{r^2} = \left(\frac{km}{L^2}\right)^2 (1 - \varepsilon \cos \phi)^2$ $\dot{r} = -\frac{L^2}{km} \frac{km}{L^2}^2 r^2 \dot{\phi} \varepsilon \sin \phi$ $using: \frac{1}{(1 - \varepsilon \cos \phi)^2} = \left(\frac{km}{L^2}\right)^2 r^2$ $\dot{r} = -\frac{k}{L^2} mr^2 \dot{\phi} \varepsilon \sin \phi = -\frac{k}{L} \varepsilon \sin \phi$ $using: \frac{1}{(1 - \varepsilon \cos \phi)^2} = \left(\frac{km}{L^2}\right)^2 r^2$ $\dot{r} = -\frac{k}{L^2} mr^2 \dot{\phi} \varepsilon \sin \phi = -\frac{k}{L} \varepsilon \sin \phi$ $using: \frac{1}{(1 - \varepsilon \cos \phi)^2} = \left(\frac{km}{L^2}\right)^2 r^2$ $\dot{r} = -\frac{k}{L^2} mr^2 \dot{\phi} \varepsilon \sin \phi = -\frac{k}{L} \varepsilon \sin \phi$ $using: L = mr^2 \dot{\phi}$ Cartesian $x = r \cos \phi:$ $\dot{y} = \frac{dy}{dt} = r \sin \phi:$ $\dot{y} = \frac{dy}{dt} = r \sin \phi + \cos \phi r \dot{\phi}$

$$\begin{aligned} \text{Radius } r: \\ r &= \frac{\lambda}{1 - \varepsilon \cos \phi} = \frac{L^2 / km}{1 - \varepsilon \cos \phi} \\ \dot{r} &= \frac{dr}{dt} = \frac{L^2}{km} - \frac{d}{(1 - \varepsilon \cos \phi)^2} \\ \dot{r} &= \frac{dr}{dt} = \frac{L^2}{km} - \frac{d}{(1 - \varepsilon \cos \phi)^2} \\ \dot{r} &= \frac{dr}{dt} = \frac{L^2}{km} - \frac{d}{(1 - \varepsilon \cos \phi)^2} \\ \dot{r} &= \frac{L^2}{km} - \frac{1}{(1 - \varepsilon \cos \phi)^2} \\ \dot{r} &= \frac{L^2}{km} - \frac{1}{(1 - \varepsilon \cos \phi)^2} \\ \dot{r} &= -\frac{L^2}{km} - \frac{k}{L^2} - \frac{k}{2} \sin \phi \\ \dot{r} &= -\frac{k}{L^2} - \frac{k}{2} \sin \phi = -\frac{k}{L} \varepsilon \sin \phi \\ \dot{r} &= -\frac{k}{L^2} \sin \phi \cos \phi - \sin \phi \frac{k}{L} (1 - \varepsilon \cos \phi) \\ \dot{r} &= -\frac{k}{L} \varepsilon \sin \phi \cos \phi - \sin \phi \frac{k}{L} (1 - \varepsilon \cos \phi) \\ \dot{r} &= -\frac{k}{L} \varepsilon \sin \phi \cos \phi - \sin \phi \frac{k}{L} (1 - \varepsilon \cos \phi) \\ \dot{r} &= -\frac{k}{L} \varepsilon \sin \phi \cos \phi - \sin \phi \frac{k}{L} (1 - \varepsilon \cos \phi) \\ \dot{r} &= -\frac{k}{L} \varepsilon \sin \phi \sin \phi + \cos \phi \frac{k}{L} (1 - \varepsilon \cos \phi) \\ \dot{r} &= -\frac{k}{L} \varepsilon \sin \phi \sin \phi + \cos \phi \frac{k}{L} (1 - \varepsilon \cos \phi) \\ \dot{r} &= -\frac{k}{L} \varepsilon \sin \phi \sin \phi + \cos \phi \frac{k}{L} (1 - \varepsilon \cos \phi) \\ \dot{r} &= -\frac{k}{L} \varepsilon \sin \phi \sin \phi + \cos \phi \frac{k}{L} (1 - \varepsilon \cos \phi) \\ \dot{r} &= -\frac{k}{L} \varepsilon \sin \phi \sin \phi + \cos \phi \frac{k}{L} (1 - \varepsilon \cos \phi) \\ \dot{r} &= -\frac{k}{L} \varepsilon \sin \phi \sin \phi + \cos \phi \frac{k}{L} (1 - \varepsilon \cos \phi) \\ \dot{r} &= -\frac{k}{L} \varepsilon \sin \phi \sin \phi + \cos \phi \frac{k}{L} (1 - \varepsilon \cos \phi) \\ \dot{r} &= -\frac{k}{L} \varepsilon \sin \phi \sin \phi + \cos \phi \frac{k}{L} (1 - \varepsilon \cos \phi) \\ \dot{r} &= -\frac{k}{L} \varepsilon \sin \phi \sin \phi + \cos \phi \frac{k}{L} (1 - \varepsilon \cos \phi) \\ \dot{r} &= -\frac{k}{L} \varepsilon \sin \phi \sin \phi + \cos \phi \frac{k}{L} (1 - \varepsilon \cos \phi) \\ \dot{r} &= -\frac{k}{L} \varepsilon \sin \phi \sin \phi + \cos \phi \frac{k}{L} (1 - \varepsilon \cos \phi) \\ \dot{r} &= -\frac{k}{L} \varepsilon \sin \phi \sin \phi + \cos \phi \frac{k}{L} (1 - \varepsilon \cos \phi) \\ \dot{r} &= -\frac{k}{L} \varepsilon \sin \phi \sin \phi + \cos \phi \frac{k}{L} (1 - \varepsilon \cos \phi) \\ \dot{r} &= -\frac{k}{L} \varepsilon \sin \phi \sin \phi + \cos \phi \frac{k}{L} (1 - \varepsilon \cos \phi) \\ \dot{r} &= -\frac{k}{L} \varepsilon \sin \phi \sin \phi + \cos \phi \frac{k}{L} (1 - \varepsilon \cos \phi) \\ \dot{r} &= -\frac{k}{L} \varepsilon \sin \phi \sin \phi + \cos \phi \frac{k}{L} (1 - \varepsilon \cos \phi) \\ \dot{r} &= -\frac{k}{L} \varepsilon \sin \phi \sin \phi + \cos \phi \frac{k}{L} (1 - \varepsilon \cos \phi) \\ \dot{r} &= -\frac{k}{L} \varepsilon \sin \phi \sin \phi + \cos \phi \frac{k}{L} (1 - \varepsilon \cos \phi) \\ \dot{r} &= -\frac{k}{L} \varepsilon \sin \phi \sin \phi + \cos \phi \frac{k}{L} (1 - \varepsilon \cos \phi) \\ \dot{r} &= -\frac{k}{L} \varepsilon \sin \phi \sin \phi + \cos \phi \frac{k}{L} (1 - \varepsilon \cos \phi) \\ \dot{r} &= -\frac{k}{L} \varepsilon \sin \phi \sin \phi + \cos \phi \frac{k}{L} (1 - \varepsilon \cos \phi) \\ \dot{r} &= -\frac{k}{L} \varepsilon \sin \phi \sin \phi + \cos \phi \frac{k}{L} (1 - \varepsilon \cos \phi) \\ \dot{r} &= -\frac{k}{L} \varepsilon \sin \phi \sin \phi + \cos \phi \frac{k}{L} (1 - \varepsilon \cos \phi) \\ \dot{r} &= -\frac{k}{L} \varepsilon \sin \phi \sin \phi + \cos \phi \frac{k}{L} (1 - \varepsilon \cos \phi) \\ \dot{r} &= -\frac{k}{L} \varepsilon \sin \phi \sin \phi + \cos \phi \frac{k}{L} (1 - \varepsilon \cos \phi) \\ \dot{r} &= -\frac{k}{L} \varepsilon \sin \phi \sin \phi + \cos \phi$$

Radius r:Polar angle
$$\phi$$
 using: $L = mr^2 \frac{d\phi}{dt} = mr^2 \dot{\phi}$ $r = \frac{\lambda}{1 - \varepsilon \cos \phi} = \frac{L^2/km}{1 - \varepsilon \cos \phi}$ $\dot{\phi} = \frac{L}{mr^2} = \frac{L}{m} \frac{1}{r^2} = \frac{L}{m} \left(\frac{km}{L^2}\right)^2 (1 - \varepsilon \cos \phi)^2$ $\dot{r} = \frac{dr}{dt} = \frac{L^2}{km} \frac{-\frac{d}{dt}(-\varepsilon \cos \phi)}{(1 - \varepsilon \cos \phi)^2}$ $r\dot{\phi} = \frac{L}{mr} = \frac{L}{m} \frac{1}{r} = \frac{L}{m} \left(\frac{km}{L^2}\right)^2 (1 - \varepsilon \cos \phi)^2$ $\dot{r} = \frac{L^2}{km} \frac{-\varepsilon \sin \phi \dot{\phi}}{(1 - \varepsilon \cos \phi)^2}$ $using: \frac{1}{mr} = \frac{L}{m} \frac{1}{r} = \frac{L}{m} \left(\frac{km}{L^2}\right)^2 (1 - \varepsilon \cos \phi) = \frac{k}{L} (1 - \varepsilon \cos \phi)^2$ $\dot{r} = -\frac{L^2}{km} \left(\frac{km}{L^2}\right)^2 r^2 \dot{\phi} \varepsilon \sin \phi$ $using: \frac{1}{(1 - \varepsilon \cos \phi)^2} = \left(\frac{km}{L^2}\right)^2 r^2$ $\dot{r} = -\frac{k}{L^2} mr^2 \dot{\phi} \varepsilon \sin \phi = -\frac{k}{L} \varepsilon \sin \phi$ $again using: L = mr^2 \dot{\phi}$ Cartesian $x = r \cos \phi$: $Cartesian y = r \sin \phi$: $\dot{x} = \frac{dx}{dt} = -r \cos \phi - \sin \phi r \dot{\phi}$ $\dot{y} = \frac{dy}{dt} = -r \sin \phi + \cos \phi r \dot{\phi}$ $= -\frac{k}{L} \varepsilon \sin \phi \cos \phi - \sin \phi \frac{k}{L} (1 - \varepsilon \cos \phi)$ $= -\frac{k}{L} \varepsilon \sin \phi \sin \phi + \cos \phi \frac{k}{L} (1 - \varepsilon \cos \phi)$ $= -\frac{k}{L} \sin \phi$ $= -\frac{k}{L} \cos \phi - \varepsilon$

Finding time derivatives of orbital coordinates r, ϕ , x, y, and eventually velocity **v** or momentum **p**=m**v**

$$\begin{aligned} \text{Radius } r: & \text{Polar angle ϕ using: $L = mr^2 \frac{d\phi}{dt} = mr^2 \dot{\phi} \\ r = \frac{\lambda}{1 - \varepsilon \cos\phi} = \frac{L^2/km}{1 - \varepsilon \cos\phi} & \phi = \frac{L}{mr^2} = \frac{L}{m} \frac{1}{r^2} = \frac{L}{m} \left(\frac{km}{L^2}\right)^2 (1 - \varepsilon \cos\phi)^2 \\ \dot{r} = \frac{dr}{dt} = \frac{L^2}{km} \frac{-\frac{d}{dt}(-\varepsilon \cos\phi)}{(1 - \varepsilon \cos\phi)^2} & r\phi = \frac{L}{mr} = \frac{L}{m} \frac{1}{r} = \frac{L}{m} \left(\frac{km}{L^2}\right)^2 (1 - \varepsilon \cos\phi)^2 \\ r\dot{r} = \frac{L^2}{km} \frac{-\varepsilon \sin\phi \dot{\phi}}{(1 - \varepsilon \cos\phi)^2} & using: \frac{1}{mr} = \frac{L}{m} \frac{1}{r} = \frac{L}{m} \left(\frac{km}{L^2}\right)^2 (1 - \varepsilon \cos\phi) = \frac{k}{L} (1 - \varepsilon \cos\phi)^2 \\ \dot{r} = -\frac{L^2}{km} \left(\frac{km}{L^2}\right)^2 r^2 \dot{\phi} \varepsilon \sin\phi & using: \frac{1}{(1 - \varepsilon \cos\phi)^2} = \left(\frac{km}{L^2}\right)^2 r^2 \\ \dot{r} = -\frac{k}{L^2} mr^2 \dot{\phi} \varepsilon \sin\phi = -\frac{k}{L} \varepsilon \sin\phi & again using: L = mr^2 \dot{\phi} \\ \end{aligned}$$

$$\begin{aligned} \text{Cartesian $x = r \cos\phi$:} & \text{Cartesian $y = r \sin\phi$:} \\ \dot{x} = \frac{dx}{dt} = -r \cos\phi - \sin\phi r \phi & y = \frac{dy}{dt} = -r \sin\phi + \cos\phi r \phi \\ &= -\frac{k}{L} \sin\phi & \text{(Velocity:} & = \frac{k}{L} (\cos\phi - \varepsilon) \\ \hline p_x = m\dot{x} = -\frac{mk}{L} \sin\phi & \text{(Momentum)} \\ \hline p_y = m\dot{y} = \frac{mk}{L} (\cos\phi - \varepsilon) \end{aligned}$$

Eccentricity vector ε and (ε, λ) -geometry of orbital mechanics ε -vector and Coulomb **r**-orbit geometry Review and connection to standard development ε -vector and Coulomb **p**=m**v** geometry ε -vector and Coulomb **p**=m**v** algebra \blacktriangleright Example with elliptical orbit Analytic geometry derivation of ε -construction Algebra of ε -construction geometry Connection formulas for (a,b) and (ε, λ) with (γ, \mathbf{R})

Eccentricity vector ε and (ε, λ) -geometry of orbital mechanics ε -vector and Coulomb **r**-orbit geometry Review and connection to standard development ε -vector and Coulomb **p**=m**v** geometry ε -vector and Coulomb **p**=m**v** algebra Example with elliptical orbit \bullet Analytic geometry derivation of ε -construction Algebra of ε -construction geometry Connection formulas for (a,b) and (ε, λ) with (γ, \mathbf{R})

Next several pages give *step-by-step constructions* of ε -vector and Coulomb orbit and trajectory physics

ε -vector and Coulomb orbit construction steps

Pick launch point P (radius vector \mathbf{r}) and elevation angle γ from radius (momentum initial \mathbf{p} direction)

Next several pages give step-by-step constructions of ε -vector and Coulomb orbit and trajectory physics

ε -vector and Coulomb orbit construction steps

Copy F-center circle around launch point P Pick launch point P *Copy elevation angle* γ (\angle FPP') *onto* \angle P'PQ (radius vector **r**) and elevation angle γ from radius Extend resulting line QPQ' to make focus locus (momentum initial **p** direction) inital momentum *wpied* elevation angle γ D inital momentum elevation angle γ Reason for focus loc Line **r** from 1st focus **F**/"reflects line **p** (or **P'P**) toward 2nd focus **F** somewhere so incident-angle γ equals reflected-angle γ

Next several pages give step-by-step constructions of ε -vector and Coulomb orbit and trajectory physics

Eccentricity vector ε and (ε,λ)-geometry of orbital mechanics
ε-vector and Coulomb r-orbit geometry
Review and connection to standard development
ε-vector and Coulomb p=mv geometry
ε-vector and Coulomb p=mv algebra
Example with elliptical orbit
Analytic geometry derivation of ε-construction
Algebra of ε-construction geometry
Connection formulas for (a,b) and (ε,λ) with (γ, R)

Eccentricity vector ε and (ε, λ) -geometry of orbital mechanics ε -vector and Coulomb **r**-orbit geometry Review and connection to standard development ε -vector and Coulomb **p**=m**v** geometry ε -vector and Coulomb **p**=m**v** algebra Example with elliptical orbit Analytic geometry derivation of ε -construction Algebra of ε -construction geometry \checkmark Connection formulas for (a,b) and (ε, λ) with (γ, \mathbf{R}) Algebra of ε -construction geometry The eccentricty parameter relates ratios $R = \frac{KE}{PE}$ and $\frac{b^2}{a^2}$

$$\varepsilon^{2} = 1 + 4R(R+1)\sin^{2}\gamma$$
$$= 1 - \frac{b^{2}}{a^{2}} \quad \text{for ellipse} \quad (\varepsilon < 1)$$
$$= 1 + \frac{b^{2}}{a^{2}} \quad \text{for hyperbola} \ (\varepsilon > 1)$$

Three pairs of parameters for Coulomb orbits: 1.Cartesian (a,b), 2.Physics (E,L), 3.Polar (ε, λ) Now we relate a 4th pair: 4.Initial (γ, \mathbf{R}) Algebra of ε -construction geometry The eccentricty parameter relates ratios $R = \frac{KE}{PE}$ and $\frac{b^2}{a^2}$

$$\varepsilon^{2} = 1 + 4R(R+1)\sin^{2}\gamma$$

$$= 1 - \frac{b^{2}}{a^{2}} \quad \text{for ellipse} \quad (\varepsilon < 1) \quad \text{where:} \quad 4R(R+1)\sin^{2}\gamma = -\frac{b^{2}}{a^{2}} = \varepsilon^{2} - 1$$

$$= 1 + \frac{b^{2}}{a^{2}} \quad \text{for hyperbola} \ (\varepsilon > 1) \quad \text{where:} \quad 4R(R+1)\sin^{2}\gamma = +\frac{b^{2}}{a^{2}} = \varepsilon^{2} - 1$$

Three pairs of parameters for Coulomb orbits: 1.Cartesian (a,b), 2.Physics (E,L), 3.Polar (ε, λ) Now we relate a 4th pair: 4.Initial (γ, \mathbf{R}) Algebra of ε -construction geometry The eccentricty parameter relates ratios $R = \frac{KE}{PE}$ and $\frac{b^2}{a^2}$ Three pairs of parameters for Coulomb orbits: 1.Cartesian (a,b), 2.Physics (E,L), 3.Polar (ε , λ) Now we relate a 4th pair: 4.Initial (γ ,**R**)

$$\varepsilon^{2} = 1 + 4R(R+1)\sin^{2}\gamma$$

$$= 1 - \frac{b^{2}}{a^{2}} \text{ for ellipse } (\varepsilon < 1) \text{ where: } 4R(R+1)\sin^{2}\gamma = -\frac{b^{2}}{a^{2}} = \varepsilon^{2} - 1 \text{ implying: } R(R+1) < 0$$

$$= 1 + \frac{b^{2}}{a^{2}} \text{ for hyperbola } (\varepsilon > 1) \text{ where: } 4R(R+1)\sin^{2}\gamma = +\frac{b^{2}}{a^{2}} = \varepsilon^{2} - 1 \text{ implying: } R(R+1) > 0$$

Algebra of ε -construction geometryThree pairs of parameters for Coulomb orbits:
1. Cartesian (a,b), 2. Physics (E,L), 3. Polar (ε , λ)
Now we relate a 4th pair: 4. Initial (γ , R)The eccentricty parameter relates ratios $R = \frac{KE}{PE}$ and $\frac{b^2}{a^2}$ Three pairs of parameters for Coulomb orbits:
1. Cartesian (a,b), 2. Physics (E,L), 3. Polar (ε , λ)
Now we relate a 4th pair: 4. Initial (γ , R) $\varepsilon^2 = 1+4R(R+1)\sin^2\gamma$
 $= 1-\frac{b^2}{a^2}$ for ellipse ($\varepsilon < 1$) where: $4R(R+1)\sin^2\gamma = -\frac{b^2}{a^2} = \varepsilon^2 - 1$ implying: R(R+1) < 0 (or: $-R^2 > R$)
(or: 0 > R > -1)
 $= 1+\frac{b^2}{a^2}$ for hyperbola ($\varepsilon > 1$) where: $4R(R+1)\sin^2\gamma = +\frac{b^2}{a^2} = \varepsilon^2 - 1$ implying: R(R+1) > 0 (or: $-R^2 < R$)
(or: 0 < R < -1)

Algebra of ε -construction geometry The eccentricity parameter relates ratios $R = \frac{KE}{PE}$ and $\frac{b^2}{a^2}$ Three pairs of parameters for Coulomb orbits: 1. Cartesian (a,b), 2. Physics (E,L), 3. Polar (ε,λ) Now we relate a 4th pair: 4. Initial (γ, R) $\varepsilon^2 = 1+4R(R+1)\sin^2\gamma$ $= 1 - \frac{b^2}{a^2}$ for ellipse $(\varepsilon < 1)$ where: $4R(R+1)\sin^2\gamma = -\frac{b^2}{a^2} = \varepsilon^2 - 1$ implying: R(R+1) < 0 (or: $-R^2 > R$) (or: 0 > R > -1) $= 1 + \frac{b^2}{a^2}$ for hyperbola $(\varepsilon > 1)$ where: $4R(R+1)\sin^2\gamma = +\frac{b^2}{a^2} = \varepsilon^2 - 1$ implying: R(R+1) > 0 (or: $-R^2 < R$) (or: 0 < R < -1)Total $\frac{-k}{2a} = \varepsilon = energy = KE + PE$ relates ratio $R = \frac{KE}{PE}$ to individual radii $a, b, \text{ and } \lambda$. $\frac{-k}{2a} = E = KE + PE = R \cdot PE + PE = (R+1)PE = (R+1)\frac{-k}{r}$ or: $\frac{1}{2a} = (R+1)\frac{1}{r} = (R+1)$

Three pairs of parameters for Coulomb orbits: Algebra of ε -construction geometry 1. Cartesian (a,b), 2. Physics (E,L), 3. Polar (ε , λ) The *eccentricty* parameter relates ratios $R = \frac{KE}{PE}$ and $\frac{b^2}{a^2}$ Now we relate a 4th pair: 4. Initial (γ, \mathbf{R}) $\varepsilon^2 = 1 + 4R(R+1)\sin^2\gamma$ $=1-\frac{b^2}{a^2} \quad \text{for ellipse} \quad (\varepsilon < 1) \text{ where: } 4R(R+1)\sin^2\gamma = -\frac{b^2}{a^2} = \varepsilon^2 - 1 \text{ implying: } R(R+1) < 0 \quad (\text{or: } -R^2 > R) \\ (\text{or: } 0 > R > -1) \quad (\text{or: } 0 > R > =1+\frac{b^2}{a^2} \text{ for hyperbola } (\varepsilon > 1) \text{ where: } 4R(R+1)\sin^2\gamma = +\frac{b^2}{a^2} = \varepsilon^2 - 1 \text{ implying: } R(R+1) > 0 \quad (\text{or: } -R^2 < R) \text{ (or: } 0 < R < -1)$ Total $\frac{-k}{2a} = E = energy = KE + PE$ relates ratio $R = \frac{KE}{PE}$ to individual radii a, b, and λ . $\frac{-k}{2a} = E = KE + PE = \mathbf{R} \cdot PE + PE = (\mathbf{R}+1)PE = (\mathbf{R}+1)\frac{-k}{r} \text{ or: } \frac{1}{2a} = (\mathbf{R}+1)\frac{1}{r} = (\mathbf{R}+1)$ $a = \frac{r}{2(\mathbf{R}+1)} = \left(\frac{1}{2(\mathbf{R}+1)} \text{ assuming unit initial radius } (r \equiv 1).\right)$

Three pairs of parameters for Coulomb orbits: Algebra of ε -construction geometry 1. Cartesian (a,b), 2. Physics (E,L), 3. Polar (ε , λ) The *eccentricty* parameter relates ratios $R = \frac{KE}{PE}$ and $\frac{b^2}{a^2}$ Now we relate a 4th pair: 4. Initial (γ, \mathbf{R}) $\varepsilon^2 = 1 + 4R(R+1)\sin^2\gamma$ $=1-\frac{b^2}{r^2} \quad \text{for ellipse} \quad (\varepsilon < 1) \text{ where:} \quad 4R(R+1)\sin^2\gamma = -\frac{b^2}{r^2} = \varepsilon^2 - 1 \text{ implying: } R(R+1) < 0 \quad (\text{or: } -R^2 > R) \\ (\text{or: } 0 > R > -1) \quad (\text{or: } 0 > R >$ $= 1 + \frac{b^2}{a^2} \text{ for hyperbola } (\varepsilon > 1) \text{ where: } 4R(R+1)\sin^2\gamma = + \frac{b^2}{a^2} = \varepsilon^2 - 1 \text{ implying: } R(R+1) > 0 \quad (\text{or: } -R^2 < R) \text{ (or: } 0 < R < -1) \text{ (or: } 0 < -1) \text{ (or: } 0$ Total $\frac{-k}{2a} = E = energy = KE + PE$ relates ratio $R = \frac{KE}{PE}$ to individual radii a, b, and λ . $\frac{-k}{2a} = E = KE + PE = R \cdot PE + PE = (R+1)PE = (R+1)\frac{-k}{r} \text{ or: } \frac{1}{2a} = (R+1)\frac{1}{r} = (R+1)$ $a = \frac{r}{2(R+1)} = \left(\frac{1}{2(R+1)} \text{ assuming unit initial radius } (r=1).\right)$ $4R(R+1)\sin^2\gamma = \mp \frac{b^2}{a^2} \text{ implies: } 2\sqrt{\mp R(R+1)}\sin\gamma = \frac{b}{a} \text{ or: } b = 2a\sqrt{\mp R(R+1)}\sin\gamma$ $b = r \sqrt{\frac{\mp R}{R+1}} \sin \gamma \left(= \sqrt{\frac{\mp R}{R+1}} \sin \gamma \text{ assuming unit initial radius } (r \equiv 1) \right)$

Three pairs of parameters for Coulomb orbits: Algebra of ε -construction geometry 1. Cartesian (a,b), 2. Physics (E,L), 3. Polar (ε , λ) The *eccentricty* parameter relates ratios $R = \frac{KE}{PE}$ and $\frac{b^2}{a^2}$ Now we relate a 4th pair: 4. Initial (γ, \mathbf{R}) $\varepsilon^2 = 1 + 4R(R+1)\sin^2\gamma$ $=1-\frac{b^2}{c^2} \quad \text{for ellipse} \quad (\varepsilon < 1) \text{ where:} \quad 4R(R+1)\sin^2\gamma = -\frac{b^2}{c^2} = \varepsilon^2 - 1 \text{ implying: } R(R+1) < 0 \quad (\text{or: } -R^2 > R) \\ (\text{or: } 0 > R > -1) \text{ or: } 0 > R > -1 \text{$ $=1+\frac{b^2}{a^2} \text{ for hyperbola } (\varepsilon > 1) \text{ where: } 4R(R+1)\sin^2\gamma = +\frac{b^2}{a^2} = \varepsilon^2 - 1 \text{ implying: } R(R+1) > 0 \quad (\text{or: } -R^2 < R) \text{ (or: } 0 < R < -1)$ Total $\frac{-k}{2a} = E = energy = KE + PE$ relates ratio $R = \frac{KE}{PE}$ to individual radii a, b, and λ . $\frac{-k}{2a} = E = KE + PE = R \cdot PE + PE = (R+1)PE = (R+1)\frac{-k}{r} \text{ or: } \frac{1}{2a} = (R+1)\frac{1}{r} = (R+1)$ $a = \frac{r}{2(R+1)} = \left(\frac{1}{2(R+1)} \text{ assuming unit initial radius } (r=1).\right)$ $4R(R+1)\sin^2\gamma = \pm \frac{b^2}{a^2} \text{ implies: } 2\sqrt{\pm R(R+1)}\sin\gamma = \frac{b}{a} \text{ or: } b = 2a\sqrt{\pm R(R+1)}\sin\gamma$ $b = r \sqrt{\frac{\mp R}{R+1}} \sin \gamma \left(= \sqrt{\frac{\mp R}{R+1}} \sin \gamma \text{ assuming unit initial radius } (r \equiv 1) \right)$

Latus radius is similarly related:

$$\lambda = \frac{b^2}{a} = \mp 2r R \sin^2 \gamma$$

Algebra of
$$\varepsilon$$
-construction geometry
The eccentricity parameter relates ratios $R = \frac{KE}{PE}$ and $\frac{b^2}{a^2}$
 $\varepsilon^2 = 1+4R(R+1)\sin^2\gamma$
 $= 1 - \frac{b^2}{a^2}$ ellipse($\varepsilon < 1$) $4R(R+1)\sin^2\gamma = -\frac{b^2}{a^2}$
 $= 1 + \frac{b^2}{a^2}$ hyperbola ($\varepsilon > 1$) $4R(R+1)\sin^2\gamma = +\frac{b^2}{a^2}$
 $= 1 + \frac{b^2}{a^2}$ hyperbola ($\varepsilon > 1$) $4R(R+1)\sin^2\gamma = +\frac{b^2}{a^2}$
 $= 1 + \frac{b^2}{a^2}$ hyperbola ($\varepsilon > 1$) $4R(R+1)\sin^2\gamma = +\frac{b^2}{a^2}$
 $= 1 + \frac{b^2}{a^2}$ hyperbola ($\varepsilon > 1$) $4R(R+1)\sin^2\gamma = +\frac{b^2}{a^2}$
 $= 1 + \frac{b^2}{a^2}$ hyperbola ($\varepsilon > 1$) $4R(R+1)\sin^2\gamma = +\frac{b^2}{a^2}$
 $= 1 + \frac{b^2}{a^2}$ hyperbola ($\varepsilon > 1$) $4R(R+1)\sin^2\gamma = +\frac{b^2}{a^2}$
 $= 1 + \frac{b^2}{a^2}$ hyperbola ($\varepsilon > 1$) $4R(R+1)\sin^2\gamma = +\frac{b^2}{a^2}$
 $= 1 + \frac{b^2}{a^2}$ hyperbola ($\varepsilon > 1$) $4R(R+1)\sin^2\gamma = +\frac{b^2}{a^2}$
 $= 1 + \frac{b^2}{a^2} + \frac{b^2}{a^2}$ hyperbola ($\varepsilon > 1$) $4R(R+1)\sin^2\gamma = +\frac{b^2}{a^2}$
 $= 1 + \frac{b^2}{a^2} + \frac{b^2}{a^2} + \frac{b^2}{a^2}$
 $= 1 + \frac{b^2}{a^2} + \frac{b^2}{a^2} + \frac{b^2}{a^2}$
 $= 1 + \frac{b^2}{a^2} + \frac{b^2}{a^2} + \frac{b^2}{a^2} + \frac{b^2}{a^2}$
 $= 1 + \frac{b^2}{a^2} + \frac{b^2}{a^2} + \frac{b^2}{a^2} + \frac{b^2}{a^2}$
From ε^2 result (at top):
 $\frac{b}{a} = 2\sqrt{+R(R+1)}\sin\gamma = \sqrt{\pm(1-\varepsilon^2)}$

•