Complex Variables, Series, and Field Coordinates II.

(*Ch.* 10 of Unit 1)

1. The Story of e (A Tale of Great \$Interest\$) *How good are those power series?*

Taylor-Maclaurin series, imaginary interest, and complex exponentials

2. What good are complex exponentials?

Easy oscillator phase analysis

1. Complex numbers provide "automatic trigonometry"

2. Complex numbers add like vectors.

- 3. Complex exponentials Ae^{-int} track position and velocity using Phasor Clock.
- 4. Complex products provide 2D rotation operations.
- 5. Complex products provide 2D "dot"(•) and "cross"(x) products.

3. Easy 2D vector calculus

Easy 2D vector analysis

Easy trig

Easy 2D vector derivatives Lecture 16 Thur. 10.16.14

Easy rotation and "dot" or "cross" products

East, 2D source free field theory starts	here 6. Complex derivative contains "divergence" $(\nabla \cdot F)$ and "curl" $(\nabla x F)$ of 2D vector field
Easy 2D source-free field theory	7. Invent source-free 2D vector fields $[\nabla \cdot \mathbf{F}=0 \text{ and } \nabla \mathbf{x}\mathbf{F}=0]$
Easy 2D vector field-potential theory	8. Complex potential ϕ contains "scalar"(F= $\nabla \Phi$) and "vector"(F= ∇xA) potentials
4. Riemann-Cauchy relations (What's analytic? What's	<i>not?</i>) The <i>half-n'-half</i> results: (Riemann-Cauchy Derivative Relations)
Easy 2D curvilinear coordinate discovery	9. Complex potentials define 2D Orthogonal Curvilinear Coordinates (OCC) of field
	10. Complex integrals ∫ f(z)dz count 2D "circulation"(∫F•dr) and "flux"(∫Fxdr)
Easy 2D circulation and flux integrals	11. Complex integrals define 2D monopole fields and potentials
Easy 2D monopole, dipole, and 2^n -pole and	alysis 12. Complex derivatives give 2D dipole fields
Easy 2^n -multipole field and potential expansion	13. More derivatives give 2D 2 ^N -pole fields
	14and 2 ^N -pole multipole expansions of fields and potentials
Easy stereo-projection visualization	15and Laurent Series
Cauchy integrals, Laurent-Maclaurin se	<i>ries</i> 16and non-analytic source analysis.
5. Mapping and Non-analytic 2D source field an	alysis

6. Complex derivative contains "divergence" ($\nabla \cdot \mathbf{F}$) and "curl" ($\nabla \mathbf{xF}$) of 2D vector field Relation of (z,z^*) to $(x=\operatorname{Rez},y=\operatorname{Imz})$ defines a z-derivative $\frac{df}{dz}$ and "star" z^* -derivative. $\frac{df}{dz^*}$ z = x + iy $x = \frac{1}{2}(z + z^*)$ $z^* = x - iy$ $y = \frac{1}{2i}(z - z^*)$ $\stackrel{Applying}{chain-rule}$ $\frac{df}{dz} = \frac{\partial x}{\partial z} \frac{\partial f}{\partial x} + \frac{\partial y}{\partial z} \frac{\partial f}{\partial y} = \frac{1}{2} \frac{\partial f}{\partial x} - \frac{i}{2} \frac{\partial f}{\partial y}$ $\frac{df}{dz^*} = \frac{\partial x}{\partial z} \frac{\partial f}{\partial x} + \frac{\partial y}{\partial z} \frac{\partial f}{\partial y} = \frac{1}{2} \frac{\partial f}{\partial x} + \frac{i}{2} \frac{\partial f}{\partial y}$

6. Complex derivative contains "divergence"($\nabla \cdot F$) and "curl"(∇xF) of 2D vector field Relation of (z,z^*) to $(x=\operatorname{Re}z,y=\operatorname{Im}z)$ defines a z-derivative $\frac{df}{dz}$ and "star" z^* -derivative. $\frac{df}{dz^*}$

$$z = x + iy \qquad x = \frac{1}{2} (z + z^*) \qquad \frac{df}{dz} = \frac{\partial x \partial f}{\partial z \partial x} + \frac{\partial y \partial f}{\partial z \partial y} = \frac{1}{2} \frac{\partial f}{\partial x} - \frac{i}{2} \frac{\partial f}{\partial y}$$
$$z^* = x - iy \qquad y = \frac{1}{2i} (z - z^*) \qquad \frac{df}{dz^*} = \frac{\partial x}{\partial z^* \partial x} + \frac{\partial y}{\partial z} \frac{\partial f}{\partial y} = \frac{1}{2} \frac{\partial f}{\partial x} + \frac{i}{2} \frac{\partial f}{\partial y}$$

Derivative chain-rule shows real part of $\frac{df}{dz}$ has 2D divergence $\nabla \cdot \mathbf{f}$ and imaginary part has curl $\nabla \times \mathbf{f}$.

$$\frac{df}{dz} = \frac{d}{dz} \left(f_x + i f_y \right) = \frac{1}{2} \left(\frac{\partial f}{\partial x} - i \frac{\partial f}{\partial y} \right) \left(f_x + i f_y \right) = \frac{1}{2} \left(\frac{\partial f_x}{\partial x} + \frac{\partial f_y}{\partial y} \right) + \frac{i}{2} \left(\frac{\partial f_y}{\partial x} - \frac{\partial f_x}{\partial y} \right) = \frac{1}{2} \nabla \bullet \mathbf{f} + \frac{i}{2} |\nabla \times \mathbf{f}|_{Z \perp (x, y)}$$

6. Complex derivative contains "divergence"($\nabla \cdot F$) and "curl"(∇xF) of 2D vector field Relation of (z,z^*) to $(x=\operatorname{Re}z,y=\operatorname{Im}z)$ defines a z-derivative $\frac{df}{dz}$ and "star" z^* -derivative. $\frac{df}{dz^*}$

$$z = x + iy \qquad x = \frac{1}{2} (z + z^*) \qquad \frac{df}{dz} = \frac{\partial x \partial f}{\partial z \partial x} + \frac{\partial y \partial f}{\partial z \partial y} = \frac{1}{2} \frac{\partial f}{\partial x} - \frac{i}{2} \frac{\partial f}{\partial y}$$
$$z^* = x - iy \qquad y = \frac{1}{2i} (z - z^*) \qquad \frac{df}{dz^*} = \frac{\partial x}{\partial z^* \partial x} + \frac{\partial y}{\partial z} \frac{\partial f}{\partial y} = \frac{1}{2} \frac{\partial f}{\partial x} + \frac{i}{2} \frac{\partial f}{\partial y}$$

Derivative chain-rule shows real part of $\frac{df}{dz}$ has 2D divergence $\nabla \cdot \mathbf{f}$ and imaginary part has curl $\nabla \times \mathbf{f}$.

$$\frac{df}{dz} = \frac{d}{dz} \left(f_x + i f_y \right) = \frac{1}{2} \left(\frac{\partial f}{\partial x} - i \frac{\partial f}{\partial y} \right) \left(f_x + i f_y \right) = \frac{1}{2} \left(\frac{\partial f_x}{\partial x} + \frac{\partial f_y}{\partial y} \right) + \frac{i}{2} \left(\frac{\partial f_y}{\partial x} - \frac{\partial f_x}{\partial y} \right) = \frac{1}{2} \nabla \bullet \mathbf{f} + \frac{i}{2} |\nabla \times \mathbf{f}|_{Z \perp (x, y)}$$

7. Invent source-free 2D vector fields $[\nabla \cdot \mathbf{F}=0 \text{ and } \nabla \mathbf{x}\mathbf{F}=0]$

We can invent *source-free 2D vector fields* that are both *zero-divergence* and *zero-curl*. Take any function f(z), conjugate it (change all *i*'s to -i) to give $f^*(z^*)$ for which $\frac{df^*}{dz} = 0$.

6. Complex derivative contains "divergence"($\nabla \cdot F$) and "curl"(∇xF) of 2D vector field Relation of (z,z^*) to $(x=\operatorname{Re}z,y=\operatorname{Im}z)$ defines a *z*-derivative $\frac{df}{dz}$ and "star" *z**-derivative. $\frac{df}{dz^*}$

$$z = x + iy \qquad x = \frac{1}{2} (z + z^*) \qquad \frac{df}{dz} = \frac{\partial x}{\partial z} \frac{\partial f}{\partial x} + \frac{\partial y}{\partial z} \frac{\partial f}{\partial y} = \frac{1}{2} \frac{\partial f}{\partial x} - \frac{i}{2} \frac{\partial f}{\partial y}$$
$$z^* = x - iy \qquad y = \frac{1}{2i} (z - z^*) \qquad \frac{df}{dz^*} = \frac{\partial x}{\partial z} \frac{\partial f}{\partial x} + \frac{\partial y}{\partial z} \frac{\partial f}{\partial y} = \frac{1}{2} \frac{\partial f}{\partial x} + \frac{i}{2} \frac{\partial f}{\partial y}$$

Derivative chain-rule shows real part of $\frac{df}{dz}$ has 2D divergence $\nabla \cdot \mathbf{f}$ and imaginary part has curl $\nabla \times \mathbf{f}$.

$$\frac{df}{dz} = \frac{d}{dz} \left(f_x + i f_y \right) = \frac{1}{2} \left(\frac{\partial f}{\partial x} - i \frac{\partial f}{\partial y} \right) \left(f_x + i f_y \right) = \frac{1}{2} \left(\frac{\partial f_x}{\partial x} + \frac{\partial f_y}{\partial y} \right) + \frac{i}{2} \left(\frac{\partial f_y}{\partial x} - \frac{\partial f_x}{\partial y} \right) = \frac{1}{2} \nabla \bullet \mathbf{f} + \frac{i}{2} |\nabla \times \mathbf{f}|_{Z \perp (x, y)}$$

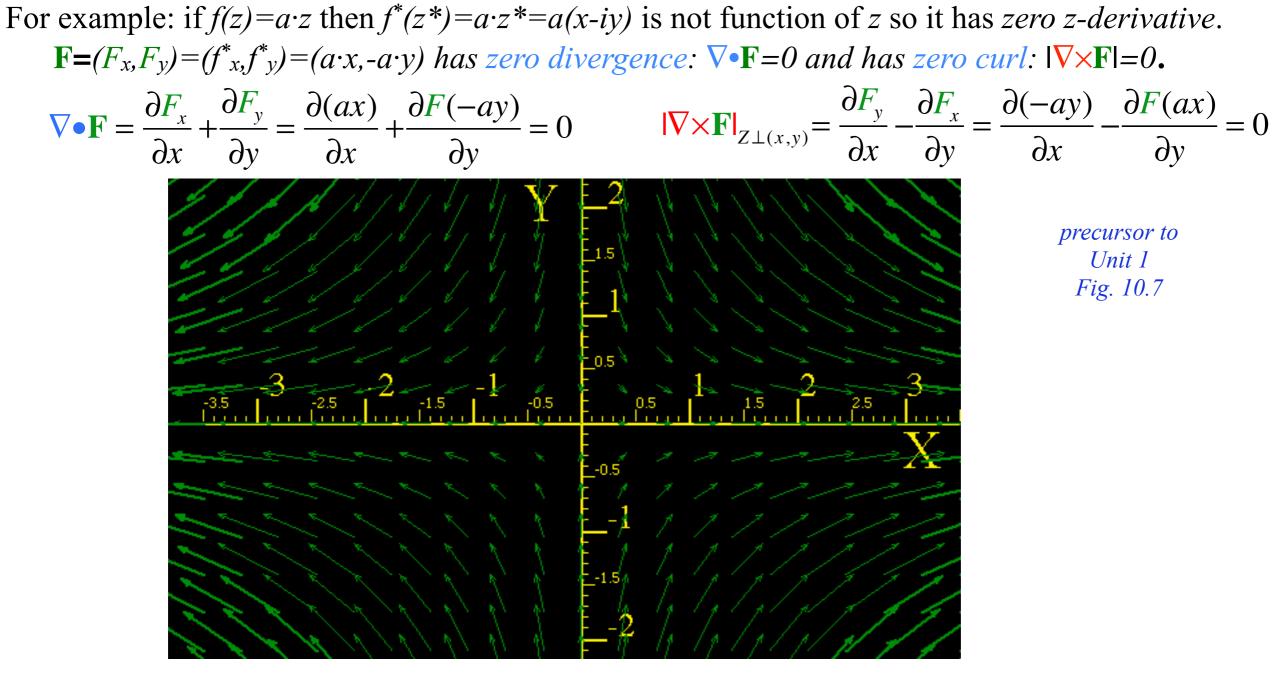
7. Invent source-free 2D vector fields $[\nabla \cdot \mathbf{F}=0 \text{ and } \nabla \mathbf{x}\mathbf{F}=0]$

We can invent *source-free 2D vector fields* that are both *zero-divergence* and *zero-curl*. Take any function f(z), conjugate it (change all *i*'s to -i) to give $f^*(z^*)$ for which $\frac{df}{dz}^* = 0$.

For example: if $f(z) = a \cdot z$ then $f^*(z^*) = a \cdot z^* = a(x - iy)$ is not function of z so it has zero z-derivative. $\mathbf{F} = (F_x, F_y) = (f^*_x, f^*_y) = (a \cdot x, -a \cdot y)$ has zero divergence: $\nabla \cdot \mathbf{F} = 0$ and has zero curl: $|\nabla \times \mathbf{F}| = 0$. $\nabla \cdot \mathbf{F} = \frac{\partial F_x}{\partial x} + \frac{\partial F_y}{\partial y} = \frac{\partial (ax)}{\partial x} + \frac{\partial F(-ay)}{\partial y} = 0$ $|\nabla \times \mathbf{F}|_{Z \perp (x, y)} = \frac{\partial F_y}{\partial x} - \frac{\partial F_x}{\partial y} = \frac{\partial (-ay)}{\partial x} - \frac{\partial F(ax)}{\partial y} = 0$ A DFL field \mathbf{F} (Divergence-Free-Laminar)

7. Invent source-free 2D vector fields [$\nabla \cdot \mathbf{F} = 0$ and $\nabla \mathbf{x} \mathbf{F} = 0$]

We can invent *source-free 2D vector fields* that are both *zero-divergence* and *zero-curl*. Take any function f(z), conjugate it (change all *i*'s to -i) to give $f^*(z^*)$ for which .



 $\mathbf{F}=(f_{x}^{*},f_{y}^{*})=(a\cdot x,-a\cdot y)$ is a *divergence-free laminar (DFL)* field.

What Good are complex variables?

Easy 2D vector calculus Easy 2D vector derivatives Easy 2D source-free field theory Easy 2D vector field-potential theory

8. Complex potential ϕ contains "scalar" (F= $\nabla \Phi$) and "vector" (F= ∇xA) potentials

Any *DFL* field **F** is a gradient of a *scalar potential field* Φ or a curl of a *vector potential field* **A**. **F**= $\nabla \Phi$ **F**= $\nabla \times \mathbf{A}$

A *complex potential* $\phi(z) = \Phi(x,y) + iA(x,y)$ exists whose *z*-derivative is $f(z) = d \phi/dz$.

Its complex conjugate $\phi^*(z^*) = \Phi(x,y) - iA(x,y)$ has z^* -derivative $f^*(z^*) = d\phi^*/dz^*$ giving *DFL* field **F**.

8. Complex potential ϕ contains "scalar" (F= $\nabla \Phi$) and "vector" (F= ∇xA) potentials

Any *DFL* field **F** is a gradient of a *scalar potential field* Φ or a curl of a *vector potential field* **A**. **F**= $\nabla \Phi$ **F**= $\nabla \times \mathbf{A}$

A *complex potential* $\phi(z) = \Phi(x,y) + iA(x,y)$ exists whose *z*-derivative is $f(z) = d \phi/dz$.

Its complex conjugate $\phi^*(z^*) = \Phi(x,y) - iA(x,y)$ has z^* -derivative $f^*(z^*) = d\phi^*/dz^*$ giving *DFL* field **F**.

To find $\phi = \Phi + iA$ integrate $f(z) = a \cdot z$ to get ϕ and isolate real (Re $\phi = \Phi$) and imaginary (Im $\phi = A$) parts.

8. Complex potential ϕ contains "scalar" (F= $\nabla \Phi$) and "vector" (F= ∇xA) potentials

Any *DFL* field **F** is a gradient of a *scalar potential field* Φ or a curl of a *vector potential field* **A**. **F**= $\nabla \Phi$ **F**= $\nabla \times \mathbf{A}$

A *complex potential* $\phi(z) = \Phi(x,y) + iA(x,y)$ exists whose *z*-derivative is $f(z) = d \phi/dz$.

Its complex conjugate $\phi^*(z^*) = \Phi(x,y) - iA(x,y)$ has z^* -derivative $f^*(z^*) = d\phi^*/dz^*$ giving *DFL* field **F**.

To find $\phi = \Phi + i\mathbf{A}$ integrate $f(z) = a \cdot z$ to get ϕ and isolate real (Re $\phi = \Phi$) and imaginary (Im $\phi = \mathbf{A}$) parts. $f(z) = \frac{d\phi}{dz} \Rightarrow \phi = \Phi + i \mathbf{A} = \int f \cdot dz = \int az \cdot dz = \frac{1}{2} az^2$

8. Complex potential ϕ contains "scalar" ($\mathbf{F}=\nabla \Phi$) and "vector" ($\mathbf{F}=\nabla x \mathbf{A}$) potentials

Any *DFL* field **F** is a gradient of a *scalar potential field* Φ or a curl of a *vector potential field* **A**. **F**= $\nabla \Phi$ **F**= $\nabla \times \mathbf{A}$

A complex potential $\phi(z) = \Phi(x,y) + iA(x,y)$ exists whose z-derivative is $f(z) = d\phi/dz$. Its complex conjugate $\phi^*(z^*) = \Phi(x,y) - iA(x,y)$ has z*-derivative $f^*(z^*) = d\phi^*/dz^*$ giving *DFL* field **F**.

To find $\phi = \Phi + i\mathbf{A}$ integrate $f(z) = a \cdot z$ to get ϕ and isolate real (Re $\phi = \Phi$) and imaginary (Im $\phi = \mathbf{A}$) parts. $f(z) = \frac{d\phi}{dz} \Rightarrow \phi = \Phi + i\mathbf{A} = \int f \cdot dz = \int az \cdot dz = \frac{1}{2}az^2 = \frac{1}{2}a(x + iy)^2$ $= \frac{1}{2}a(x^2 - y^2) + i\mathbf{A} = \int f \cdot dz = \int az \cdot dz = \frac{1}{2}az^2 = \frac{1}{2}a(x + iy)^2$

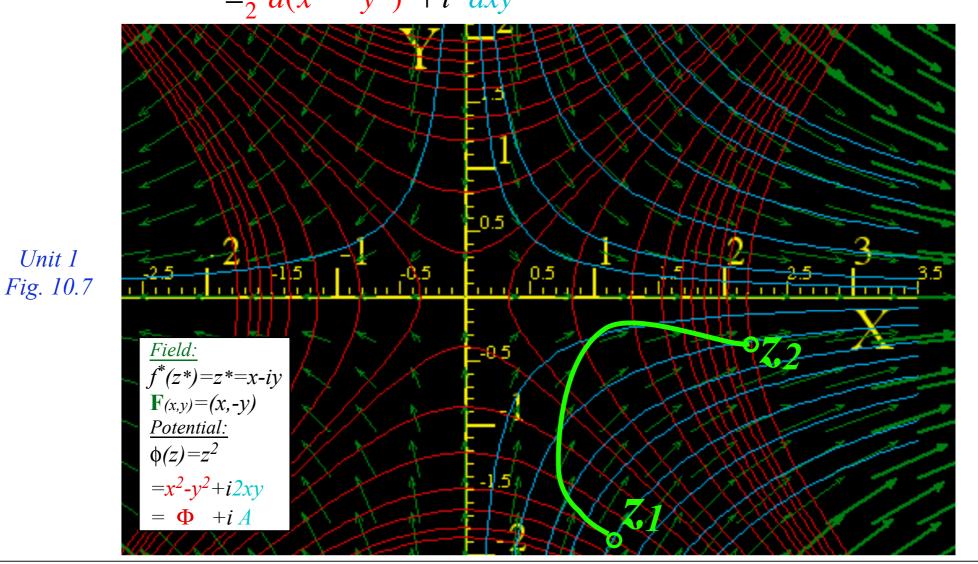
8. Complex potential ϕ contains "scalar" ($\mathbf{F}=\nabla \Phi$) and "vector" ($\mathbf{F}=\nabla x \mathbf{A}$) potentials

Any *DFL* field **F** is a gradient of a *scalar potential field* Φ or a curl of a *vector potential field* **A**. **F**= $\nabla \Phi$ **F**= $\nabla \times \mathbf{A}$

A complex potential $\phi(z) = \Phi(x,y) + i A(x,y)$ exists whose z-derivative is $f(z) = d \phi/dz$. Its complex conjugate $\phi^*(z^*) = \Phi(x,y) i A(x,y)$ has z^* derivative $f^*(z^*) = d \phi^*/dz^*$ giving

Its complex conjugate $\phi^*(z^*) = \Phi(x,y) - iA(x,y)$ has z^* -derivative $f^*(z^*) = d\phi^*/dz^*$ giving *DFL* field **F**.

To find $\phi = \Phi + i\mathbf{A}$ integrate $f(z) = a \cdot z$ to get ϕ and isolate real (Re $\phi = \Phi$) and imaginary (Im $\phi = \mathbf{A}$) parts. $f(z) = \frac{d\phi}{dz} \Rightarrow \phi = \phi + i\mathbf{A} = \int f \cdot dz = \int az \cdot dz = \frac{1}{2}az^2 = \frac{1}{2}a(x + iy)^2$ $= \frac{1}{2}a(x^2 - y^2) + i\mathbf{A} = \int f \cdot dz = \int az \cdot dz = \frac{1}{2}az^2 = \frac{1}{2}a(x + iy)^2$



Friday, October 17, 2014

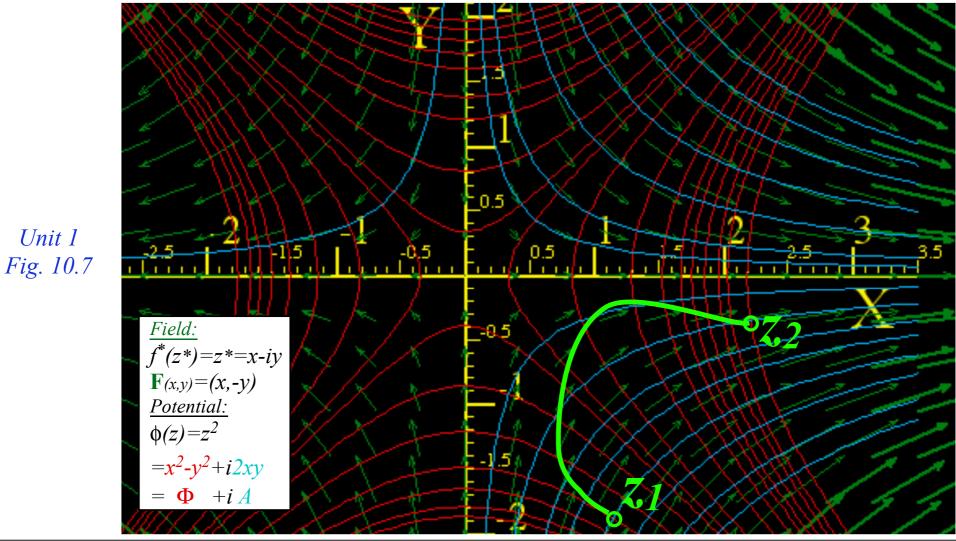
8. Complex potential ϕ contains "scalar" ($\mathbf{F}=\nabla \Phi$) and "vector" ($\mathbf{F}=\nabla x \mathbf{A}$) potentials

Any *DFL* field **F** is a gradient of a *scalar potential field* Φ or a curl of a *vector potential field* **A**. **F**= $\nabla \Phi$ **F**= $\nabla \times \mathbf{A}$

A complex potential $\phi(z) = \Phi(x,y) + i A(x,y)$ exists whose z-derivative is $f(z) = d \phi/dz$. Its complex conjugate $\phi^*(z^*) = \Phi(x,y) - i A(x,y)$ has z^* -derivative $f^*(z^*) = d \phi^*/dz^*$ giving *DFL* field **F**.

To find $\phi = \Phi + iA$ integrate $f(z) = a \cdot z$ to get ϕ and isolate real (Re $\phi = \Phi$) and imaginary (Im $\phi = A$) parts.

$$f(z) = \frac{d\phi}{dz} \implies \phi = \underbrace{\phi}_{z} + i \quad A = \int f \cdot dz = \int az \cdot dz = \frac{1}{2} az^{2} = \frac{1}{2} a(x + iy)^{2}$$
$$= \frac{1}{2} a(x^{2} - y^{2}) + i \quad axy$$



BONUS! Get a free coordinate system!

The (Φ, A) grid is a GCC coordinate system*: $q^{l} = \Phi = (x^{2}-y^{2})/2 = const.$ $q^{2} = A = (xy) = const.$

*Actually it's OCC.

What Good are complex variables?

Easy 2D vector calculus Easy 2D vector derivatives Easy 2D source-free field theory Easy 2D vector field-potential theory

The half-n'-half results: (Riemann-Cauchy Derivative Relations)

8. (contd.) Complex potential ϕ contains "scalar"($F=\nabla \Phi$) and "vector"($F=\nabla xA$) potentials ...and either one (or half-n'-half!) works just as well.

Derivative $\frac{d\phi^*}{dz^*}$ has 2D gradient $\nabla \Phi = \begin{pmatrix} \frac{\partial \Phi}{\partial x} \\ \frac{\partial \Phi}{\partial y} \end{pmatrix}$ of scalar Φ and curl $\nabla \times A = \begin{pmatrix} \frac{\partial A}{\partial y} \\ -\frac{\partial A}{\partial y} \end{pmatrix}$ of vector A (and they're <u>equal</u>!) $f(z) = \frac{d\phi}{dz} \Rightarrow$ $\frac{d}{dz^*} \phi^* = \frac{d}{dz^*} (\Phi - i\mathbf{A}) = \frac{1}{2} (\frac{\partial}{\partial x} + i\frac{\partial}{\partial y}) (\Phi - i\mathbf{A}) = \frac{1}{2} (\frac{\partial \Phi}{\partial x} + i\frac{\partial \Phi}{\partial y}) + \frac{1}{2} (\frac{\partial A}{\partial y} - i\frac{\partial A}{\partial x}) = \frac{1}{2} \nabla \Phi + \frac{1}{2} \nabla \times \mathbf{A}$

8. (contd.) Complex potential ϕ contains "scalar"($F=\nabla \Phi$) and "vector"($F=\nabla xA$) potentials ...and either one (or half-n'-half!) works just as well.

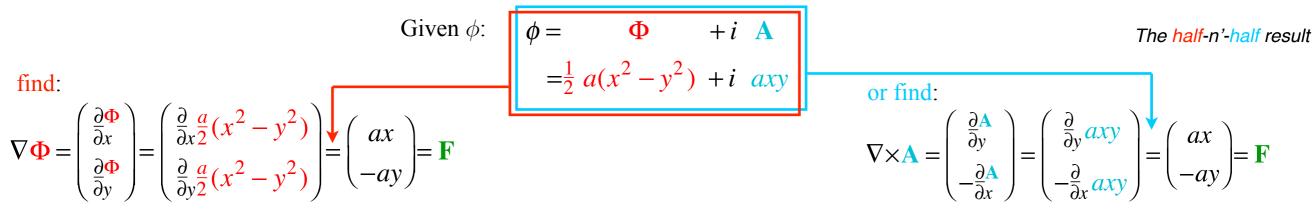
Derivative
$$\frac{d\phi^*}{dz^*}$$
 has 2D gradient $\nabla \Phi = \begin{pmatrix} \frac{\partial \Phi}{\partial x} \\ \frac{\partial \Phi}{\partial y} \end{pmatrix}$ of scalar Φ and curl $\nabla \times \mathbf{A} = \begin{pmatrix} \frac{\partial \mathbf{A}}{\partial y} \\ -\frac{\partial \mathbf{A}}{\partial y} \end{pmatrix}$ of vector \mathbf{A} (and they're equal!)
 $f(z) = \frac{d\phi}{dz} \Rightarrow$
 $\frac{d}{dz^*} \phi^* = \frac{d}{dz^*} (\Phi - i\mathbf{A}) = \frac{1}{2} (\frac{\partial}{\partial x} + i\frac{\partial}{\partial y}) (\Phi - i\mathbf{A}) = \frac{1}{2} (\frac{\partial \Phi}{\partial x} + i\frac{\partial \Phi}{\partial y}) + \frac{1}{2} (\frac{\partial \mathbf{A}}{\partial y} - i\frac{\partial \mathbf{A}}{\partial x}) = \frac{1}{2} \nabla \Phi + \frac{1}{2} \nabla \times \mathbf{A}$

Note, *mathematician definition* of force field $\mathbf{F} = +\nabla \Phi$ replaces usual physicist's definition $\mathbf{F} = -\nabla \Phi$

8. (contd.) Complex potential ϕ contains "scalar"($F=\nabla \Phi$) and "vector"($F=\nabla xA$) potentials ...and either one (or half-n'-half!) works just as well.

Derivative
$$\frac{d\phi^*}{dz^*}$$
 has 2D gradient $\nabla \Phi = \begin{pmatrix} \frac{\partial \Phi}{\partial x} \\ \frac{\partial \Phi}{\partial y} \end{pmatrix}$ of scalar Φ and curl $\nabla A = \begin{pmatrix} \frac{\partial A}{\partial y} \\ -\frac{\partial A}{\partial x} \end{pmatrix}$ of vector A (and they 're equal!)
 $f(z) = \frac{d\phi}{dz} \Rightarrow$
 $\frac{d}{dz^*} \phi^* = \frac{d}{dz^*} (\Phi - iA) = \frac{1}{2} (\frac{\partial}{\partial x} + i\frac{\partial}{\partial y}) (\Phi - iA) = \frac{1}{2} (\frac{\partial \Phi}{\partial x} + i\frac{\partial \Phi}{\partial y}) + \frac{1}{2} (\frac{\partial A}{\partial y} - i\frac{\partial A}{\partial x}) = \frac{1}{2} \nabla \Phi + \frac{1}{2} \nabla \times A$

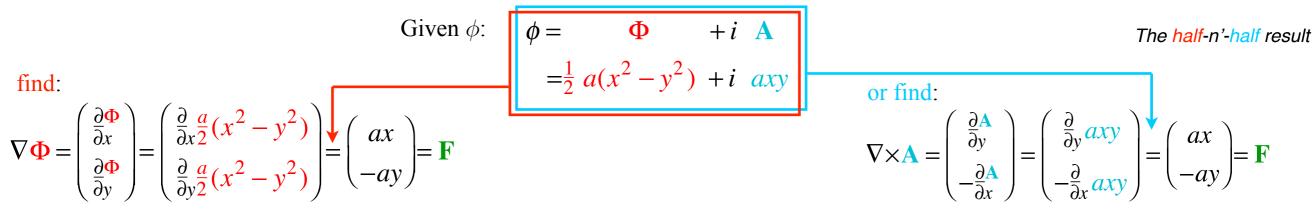
Note, *mathematician definition* of force field $\mathbf{F} = +\nabla \Phi$ replaces usual physicist's definition $\mathbf{F} = -\nabla \Phi$



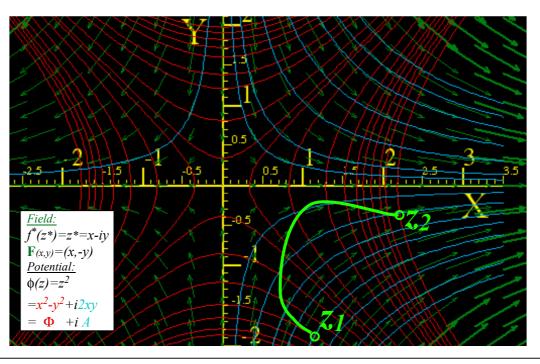
8. (contd.) Complex potential ϕ contains "scalar"($F=\nabla \Phi$) and "vector"($F=\nabla xA$) potentials ...and either one (or half-n'-half!) works just as well.

Derivative
$$\frac{d\phi^*}{dz^*}$$
 has 2D gradient $\nabla \Phi = \begin{pmatrix} \frac{\partial \Phi}{\partial x} \\ \frac{\partial \Phi}{\partial y} \end{pmatrix}$ of scalar Φ and curl $\nabla A = \begin{pmatrix} \frac{\partial A}{\partial y} \\ -\frac{\partial A}{\partial x} \end{pmatrix}$ of vector A (and they 're equal!)
 $f(z) = \frac{d\phi}{dz} \Rightarrow$
 $\frac{d}{dz^*} \phi^* = \frac{d}{dz^*} (\Phi - iA) = \frac{1}{2} (\frac{\partial}{\partial x} + i\frac{\partial}{\partial y}) (\Phi - iA) = \frac{1}{2} (\frac{\partial \Phi}{\partial x} + i\frac{\partial \Phi}{\partial y}) + \frac{1}{2} (\frac{\partial A}{\partial y} - i\frac{\partial A}{\partial x}) = \frac{1}{2} \nabla \Phi + \frac{1}{2} \nabla \times A$

Note, *mathematician definition* of force field $\mathbf{F} = +\nabla \Phi$ replaces usual physicist's definition $\mathbf{F} = -\nabla \Phi$



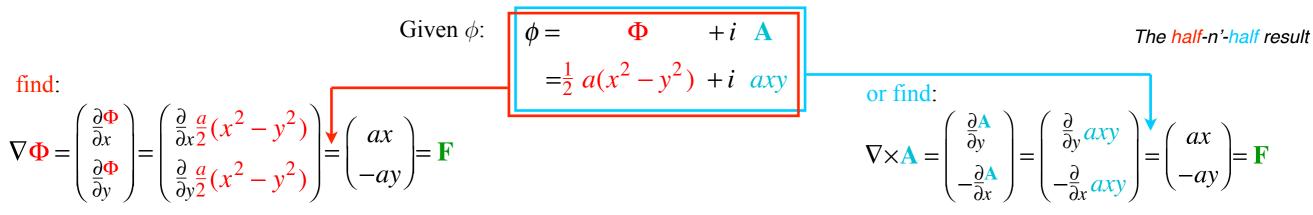
Scalar *static potential lines* Φ =*const.* and vector *flux potential lines* A=*const.* define *DFL field-net.*



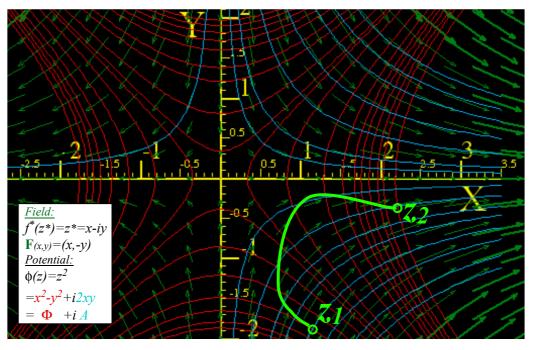
8. (contd.) Complex potential ϕ contains "scalar"($F=\nabla \Phi$) and "vector"($F=\nabla xA$) potentials ...and either one (or half-n'-half!) works just as well.

 $\begin{array}{l} \text{...and entries one (or nan-respective for equal) result} \\ \text{Derivative } \frac{d\phi^*}{dz^*} \text{ has 2D gradient } \nabla \Phi = \begin{pmatrix} \frac{\partial \Phi}{\partial x} \\ \frac{\partial \Phi}{\partial y} \end{pmatrix} \text{ of scalar } \Phi \text{ and curl } \nabla \times \mathbf{A} = \begin{pmatrix} \frac{\partial A}{\partial y} \\ -\frac{\partial A}{\partial y} \end{pmatrix} \text{ of vector } \mathbf{A} \text{ (and they 're equal!)} \\ \text{The half-n'-half result} \\ \frac{d}{dz^*} \phi^* = \frac{d}{dz^*} \left(\Phi - i\mathbf{A} \right) = \frac{1}{2} \left(\frac{\partial}{\partial x} + i\frac{\partial}{\partial y} \right) (\Phi - i\mathbf{A}) = \frac{1}{2} \left(\frac{\partial \Phi}{\partial x} + i\frac{\partial}{\partial y} \right) + \frac{1}{2} \left(\frac{\partial A}{\partial y} - i\frac{\partial A}{\partial x} \right) = \frac{1}{2} \nabla \Phi + \frac{1}{2} \nabla \times \mathbf{A} \end{array}$

Note, *mathematician definition* of force field $\mathbf{F} = +\nabla \Phi$ replaces usual physicist's definition $\mathbf{F} = -\nabla \Phi$



Scalar *static potential lines* Φ =*const.* and vector *flux potential lines* A=*const.* define *DFL field-net.*



The half-n'-half results are called Riemann-Cauchy Derivative Relations

$$\frac{\partial \Phi}{\partial x} = \frac{\partial A}{\partial y} \quad \text{is:} \quad \frac{\partial \text{Re}f(z)}{\partial x} = \quad \frac{\partial \text{Im}f(z)}{\partial y}$$
$$\frac{\partial \Phi}{\partial y} = -\frac{\partial A}{\partial x} \quad \text{is:} \quad \frac{\partial \text{Re}f(z)}{\partial y} = -\frac{\partial \text{Im}f(z)}{\partial x}$$

→ 4. Riemann-Cauchy conditions What's analytic? (...and what's <u>not</u>?)

Review (*z*,*z**) *to* (*x*,*y*) *transformation relations*

$$z = x + iy \qquad x = \frac{1}{2} (z + z^*) \qquad \frac{df}{dz} = \frac{\partial x}{\partial z} \frac{\partial f}{\partial x} + \frac{\partial y}{\partial z} \frac{\partial f}{\partial y} = \frac{1}{2} \frac{\partial f}{\partial x} + \frac{1}{2i} \frac{\partial f}{\partial y} = \frac{1}{2} \left(\frac{\partial}{\partial x} - i\frac{\partial}{\partial y}\right) f$$

$$z^* = x - iy \qquad y = \frac{1}{2i} (z - z^*) \qquad \frac{df}{dz^*} = \frac{\partial x}{\partial z^*} \frac{\partial f}{\partial x} + \frac{\partial y}{\partial z^*} \frac{\partial f}{\partial y} = \frac{1}{2} \frac{\partial f}{\partial x} - \frac{1}{2i} \frac{\partial f}{\partial y} = \frac{1}{2} \left(\frac{\partial}{\partial x} + i\frac{\partial}{\partial y}\right) f$$

Criteria for a field function $f = f_x(x,y) + i f_y(x,y)$ *to be an* **analytic function** f(z) *of* z=x+iy: First, f(z) must <u>not</u> be a function of $z^*=x-iy$, that is: $\frac{df}{dz^*}=0$ This implies f(z) satisfies differential equations known as the **Riemann-Cauchy conditions** 1(2, 2) 1(2f, 2f) i(2f, 2f)) L ٦f ٦f 11

$$\frac{df}{dz^*} = 0 = \frac{1}{2} \left(\frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \right) (f_x + i f_y) = \frac{1}{2} \left(\frac{\partial f_x}{\partial x} - \frac{\partial f_y}{\partial y} \right) + \frac{1}{2} \left(\frac{\partial f_y}{\partial x} + \frac{\partial f_x}{\partial y} \right) \text{ implies} : \left(\frac{\partial f_x}{\partial x} = \frac{\partial f_y}{\partial y} \right) \text{ and} : \frac{\partial f_y}{\partial x} = -\frac{\partial f_x}{\partial y} \right)$$
$$\frac{df}{dz} = \frac{1}{2} \left(\frac{\partial}{\partial x} - i \frac{\partial}{\partial y} \right) (f_x + i f_y) = \frac{1}{2} \left(\frac{\partial f_x}{\partial x} + \frac{\partial f_y}{\partial y} \right) + \frac{i}{2} \left(\frac{\partial f_y}{\partial x} - \frac{\partial f_x}{\partial y} \right) = \frac{\partial f_x}{\partial x} + i \frac{\partial f_y}{\partial x} = \frac{\partial f_y}{\partial y} - i \frac{\partial f_x}{\partial y} = \frac{\partial}{\partial x} (f_x + i f_y) = \frac{\partial}{\partial i y} (f_x + i f_y)$$

<u>ר</u>

Review (*z*,*z**) *to* (*x*,*y*) *transformation relations*

$$z = x + iy \qquad x = \frac{1}{2} (z + z^*) \qquad \frac{df}{dz} = \frac{\partial x}{\partial z} \frac{\partial f}{\partial x} + \frac{\partial y}{\partial z} \frac{\partial f}{\partial y} = \frac{1}{2} \frac{\partial f}{\partial x} + \frac{1}{2i} \frac{\partial f}{\partial y} = \frac{1}{2} \left(\frac{\partial}{\partial x} - i\frac{\partial}{\partial y}\right) f$$

$$z^* = x - iy \qquad y = \frac{1}{2i} (z - z^*) \qquad \frac{df}{dz^*} = \frac{\partial x}{\partial z^*} \frac{\partial f}{\partial x} + \frac{\partial y}{\partial z^*} \frac{\partial f}{\partial y} = \frac{1}{2} \frac{\partial f}{\partial x} - \frac{1}{2i} \frac{\partial f}{\partial y} = \frac{1}{2} \left(\frac{\partial}{\partial x} + i\frac{\partial}{\partial y}\right) f$$

Criteria for a field function $f = f_x(x,y) + i f_y(x,y)$ to be an **analytic function** f(z) of z=x+iy: First, f(z) must <u>not</u> be a function of $z^*=x-iy$, that is: $\frac{df}{dz^*}=0$ This implies f(z) satisfies differential equations known as the $\frac{df}{dz^*}=0=\frac{1}{2}\left(\frac{\partial}{\partial x}+i\frac{\partial}{\partial y}\right)(f_x+if_y)=\frac{1}{2}\left(\frac{\partial f_x}{\partial x}-\frac{\partial f_y}{\partial y}\right)+\frac{i}{2}\left(\frac{\partial f_y}{\partial x}+\frac{\partial f_x}{\partial y}\right)$ implies: $\frac{\partial f_x}{\partial x}=\frac{\partial f_y}{\partial y}$ and : $\frac{\partial f_y}{\partial x}=-\frac{\partial f_x}{\partial y}$ $\frac{df}{dz}=\frac{1}{2}\left(\frac{\partial}{\partial x}-i\frac{\partial}{\partial y}\right)(f_x+if_y)=\frac{1}{2}\left(\frac{\partial f_x}{\partial x}+\frac{\partial f_y}{\partial y}\right)+\frac{i}{2}\left(\frac{\partial f_y}{\partial x}-\frac{\partial f_x}{\partial y}\right)=\frac{\partial f_x}{\partial x}+i\frac{\partial f_y}{\partial x}=\frac{\partial f_y}{\partial y}-i\frac{\partial f_x}{\partial y}=\frac{\partial}{\partial x}(f_x+if_y)=\frac{\partial}{\partial iy}(f_x+if_y)$

Criteria for a field function $f = f_x(x,y) + i f_y(x,y)$ to be an **analytic function** $f(z^*)$ of $z^*=x-iy$: First, $f(z^*)$ must <u>not</u> be a function of z=x+iy, that is: $\frac{df}{dz} = 0$ This implies $f(z^*)$ satisfies differential equations we call **Anti** $\frac{df}{dz} = 0 = \frac{1}{2} \left(\frac{\partial}{\partial x} - i \frac{\partial}{\partial y} \right) (f_x + i f_y) = \frac{1}{2} \left(\frac{\partial f_x}{\partial x} + \frac{\partial f_y}{\partial y} \right) + \frac{i}{2} \left(\frac{\partial f_y}{\partial x} - \frac{\partial f_x}{\partial y} \right) = implies : \frac{\partial f_x}{\partial x} = -\frac{\partial f_y}{\partial y} \quad and : \frac{\partial f_y}{\partial x} = \frac{\partial f_x}{\partial y}$

$$\frac{df}{dz^*} = \frac{1}{2} \left(\frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \right) (f_x + i f_y) = \frac{1}{2} \left(\frac{\partial f_x}{\partial x} - \frac{\partial f_y}{\partial y} \right) + \frac{i}{2} \left(\frac{\partial f_y}{\partial x} + \frac{\partial f_x}{\partial y} \right) = \frac{\partial f_x}{\partial x} + i \frac{\partial f_y}{\partial x} = -\frac{\partial f_y}{\partial y} + i \frac{\partial f_x}{\partial y} = \frac{\partial}{\partial x} (f_x + i f_y) = -\frac{\partial}{\partial i y} (f_x + i f_y)$$

Example: Is f(x,y) = 2x + iy an analytic function of z=x+iy?

Example: Q: Is f(x,y) = 2x + i4y an analytic function of z=x+iy?

Example: Q: Is f(x,y) = 2x + i4y an analytic function of z=x+iy?

$$f(x,y) = 2x + i4y = 2(z+z^*)/2 + i4(-i(z-z^*)/2)$$

Example: Q: Is f(x,y) = 2x + i4y an analytic function of z=x+iy?

$$f(x,y) = 2x + i4y = 2 (z+z^*)/2 + i4(-i(z-z^*)/2)$$

= z+z^* + (2z-2z^*)

Example: Q: Is f(x,y) = 2x + i4y an analytic function of z=x+iy?

$$f(x,y) = 2x + i4y = 2 (z+z^*)/2 + i4(-i(z-z^*)/2)$$

= z+z^* + (2z-2z^*)
= 3z-z^*

Example: Q: Is f(x,y) = 2x + i4y an analytic function of z=x+iy?

Well, test it using definitions: z = x + iy and: $z^* = x - iy$ or: $x = (z+z^*)/2$ and: $y = -i(z-z^*)/2$

$$f(x,y) = 2x + i4y = 2 (z+z^*)/2 + i4(-i(z-z^*)/2) = z+z^* + (2z-2z^*) = 3z-z^*$$

A: NO! It's a function of $z \text{ and } z^*$ so not analytic for <u>either</u>.

Example: Q: Is f(x,y) = 2x + i4y an analytic function of z=x+iy?

Well, test it using definitions: z = x + iy and: $z^* = x - iy$ or: $x = (z+z^*)/2$ and: $y = -i(z-z^*)/2$

$$f(x,y) = 2x + i4y = 2 (z+z^*)/2 + i4(-i(z-z^*)/2) = z+z^* + (2z-2z^*) = 3z-z^*$$

A: NO! It's a function of $z \text{ and } z^*$ so not analytic for <u>either</u>.

Example 2: Q: Is $r(x,y) = x^2 + y^2$ an analytic function of z=x+iy?

A: NO! $r(xy)=z^*z$ is a function of z and z^* so not analytic for <u>either</u>.

Example: Q: Is f(x,y) = 2x + i4y an analytic function of z=x+iy?

Well, test it using definitions: z = x + iy and: $z^* = x - iy$ or: $x = (z+z^*)/2$ and: $y = -i(z-z^*)/2$

$$f(x,y) = 2x + i4y = 2 (z+z^*)/2 + i4(-i(z-z^*)/2) = z+z^* + (2z-2z^*) = 3z-z^*$$

A: NO! It's a function of z and z* so not analytic for <u>either</u>.

Example 2: Q: Is $r(x,y) = x^2 + y^2$ an analytic function of z=x+iy?

A: NO! r(xy)=z*z is a function of z and z* so not analytic for <u>either</u>.

Example 3: Q: Is $s(x,y) = x^2 - y^2 + 2ixy$ an analytic function of z = x + iy?

A: YES! $s(xy) = (x+iy)^2 = z^2$ is analytic function of z. (Yay!)

4. Riemann-Cauchy conditions What's analytic? (...and what's not?)

 Easy 2D circulation and flux integrals Easy 2D curvilinear coordinate discovery Easy 2D monopole, dipole, and 2ⁿ-pole analysis Easy 2ⁿ-multipole field and potential expansion Easy stereo-projection visualization

9. Complex integrals f (z)dz count 2D "circulation" (**F**•dr) and "flux" (**F**xdr)

Integral of f(z) between point z_1 and point z_2 is potential difference $\Delta \phi = \phi(z_2) - \phi(z_1)$ $\Delta \phi = \phi(z_2) - \phi(z_1) = \int_{z_1}^{z_2} f(z) dz = \Phi(x_2, y_2) - \Phi(x_1, y_1) + i[A(x_2, y_2) - A(x_1, y_1)]$ $\Delta \phi = \Delta \Phi + i \Delta A$

In *DFL*-field **F**, $\Delta \phi$ is independent of the integration path z(t) connecting z_1 and z_2 .

9. Complex integrals f (z)dz count 2D "circulation" (**F**•dr) and "flux" (**F**xdr)

Integral of f(z) between point z_1 and point z_2 is potential difference $\Delta \phi = \phi(z_2) - \phi(z_1)$ $\Delta \phi = \phi(z_2) - \phi(z_1) = \int_{z_1}^{z_2} f(z) dz = \Phi(x_2, y_2) - \Phi(x_1, y_1) + i[A(x_2, y_2) - A(x_1, y_1)]$ $\Delta \phi = \Delta \Phi + i \Delta A$

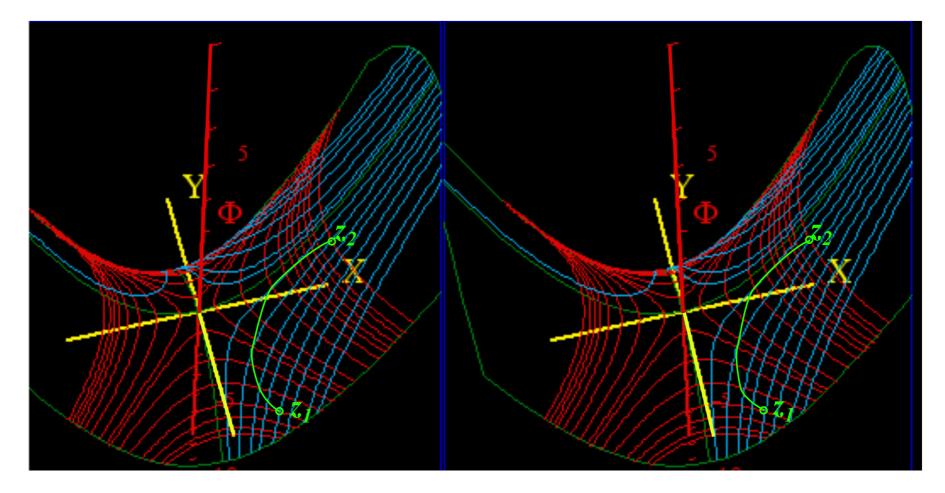
In *DFL*-field **F**, $\Delta \phi$ is independent of the integration path z(t) connecting z_1 and z_2 .

$$\int f(z)dz = \int \left(f^*(z^*)\right)^* dz = \int \left(f^*(z^*)\right)^* \left(dx + i \, dy\right) = \int \left(f_x^* + i \, f_y^*\right)^* \left(dx + i \, dy\right) = \int \left(f_x^* - i \, f_y^*\right) \left(dx + i \, dy\right)$$
$$= \int \left(f_x^* dx + f_y^* dy\right) + i \int \left(f_x^* dy - f_y^* dx\right)$$
$$= \int \mathbf{F} \cdot d\mathbf{r} + i \int \mathbf{F} \times d\mathbf{r} \cdot \hat{\mathbf{e}}_Z$$
$$= \int \mathbf{F} \cdot d\mathbf{r} + i \int \mathbf{F} \cdot d\mathbf{r} \times \hat{\mathbf{e}}_Z$$
$$= \int \mathbf{F} \cdot d\mathbf{r} + i \int \mathbf{F} \cdot d\mathbf{r} \times \hat{\mathbf{e}}_Z$$
where: $d\mathbf{S} = d\mathbf{r} \times \hat{\mathbf{e}}_Z$

9. Complex integrals f (z)dz count 2D "circulation" (**F**•dr) and "flux" (**F**xdr)

Integral of f(z) between point z_1 and point z_2 is potential difference $\Delta \phi = \phi(z_2) - \phi(z_1)$ $\Delta \phi = \phi(z_2) - \phi(z_1) = \int_{z_1}^{z_2} f(z) dz = \Phi(x_2, y_2) - \Phi(x_1, y_1) + i[\mathbf{A}(x_2, y_2) - \mathbf{A}(x_1, y_1)]$ $\Delta \phi = \Delta \Phi + i \Delta \mathbf{A}$ In *DFL*-field **F**, $\Delta \phi$ is independent of the integration path z(t) connecting z_1 and z_2 . $\int f(z)dz = \int \left(f^*(z^*) \right)^* dz = \int \left(f^*(z^*) \right)^* \left(dx + i \, dy \right) = \int \left(f^*_x + i \, f^*_y \right)^* \left(dx + i \, dy \right) = \int \left(f^*_x - i \, f^*_y \right) \left(dx + i \, dy \right)$ $= \int (f_x^* dx + f_v^* dy) + i \int (f_x^* dy - f_v^* dx)$ $= \int \mathbf{F} \cdot d\mathbf{r} + i \int \mathbf{F} \times d\mathbf{r} \cdot \hat{\mathbf{e}}_{Z}$ $= \int \mathbf{F} \cdot d\mathbf{r} + i \int \mathbf{F} \cdot d\mathbf{r} \times \hat{\mathbf{e}}_{7}$ $d\mathbf{S}$ $= \int \mathbf{F} \cdot d\mathbf{r} + i \int \mathbf{F} \cdot d\mathbf{S}$ where: $d\mathbf{S} = d\mathbf{r} \times \hat{\mathbf{e}}_Z$ drBig F•dr Imaginary part $\int_{1}^{2} \mathbf{F} \cdot d\mathbf{S} = \Delta \mathbf{A}$ Real part $\int_{1}^{2} \mathbf{F} \cdot d\mathbf{r} = \Delta \Phi$ sums **F** projection *across* path *d***r** sums F projections *along* path that is, *flux* thru surface dr that is, *circulation* on path elements $d\mathbf{S} = d\mathbf{r} \times \mathbf{e}_{\mathbf{Z}}$ normal to $d\mathbf{r}$ to get $\Delta \Phi$. to get ΔA .

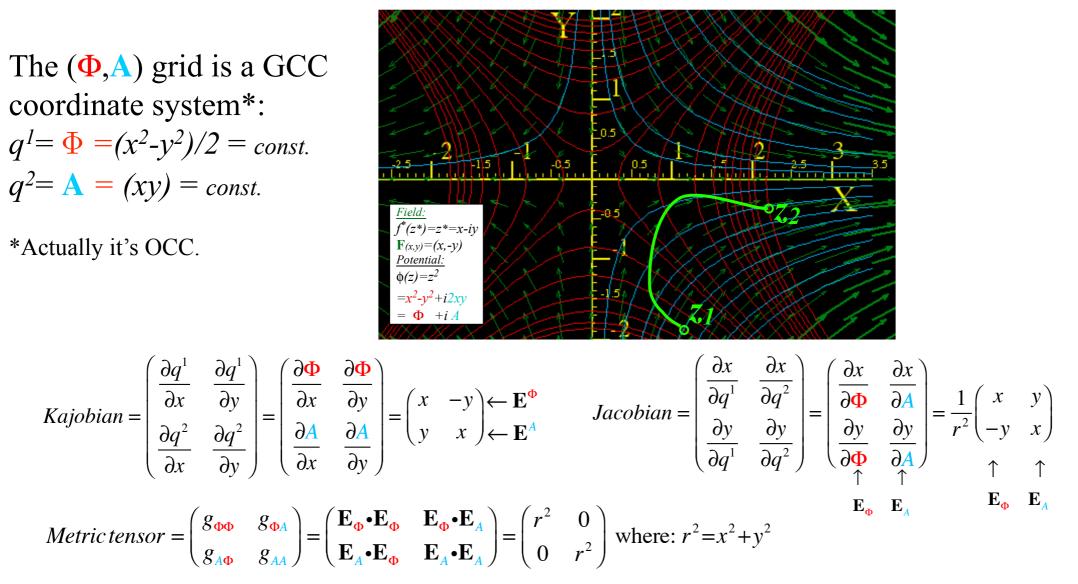
Here the scalar potential $\Phi = (x^2 - y^2)/2$ is stereo-plotted vs. (x,y)The $\Phi = (x^2 - y^2)/2 = const$. curves are topography lines The A = (xy) = const. curves are streamlines normal to topography lines



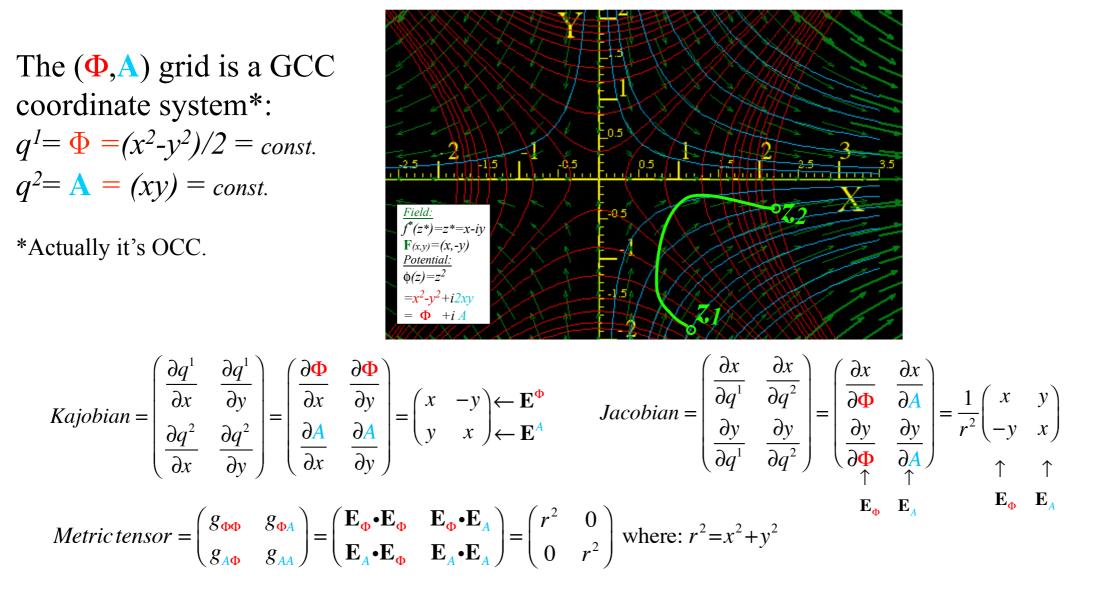
4. Riemann-Cauchy conditions What's analytic? (...and what's <u>not</u>?) Easy 2D circulation and flux integrals

Easy 2D curvilinear coordinate discovery Easy 2D monopole, dipole, and 2ⁿ-pole analysis Easy 2ⁿ-multipole field and potential expansion Easy stereo-projection visualization

10. Complex potentials define 2D Orthogonal Curvilinear Coordinates (OCC) of field



10. Complex potentials define 2D Orthogonal Curvilinear Coordinates (OCC) of field



Riemann-Cauchy Derivative Relations make coordinates orthogonal

$$\nabla \Phi = \begin{pmatrix} \frac{\partial \Phi}{\partial x} \\ \frac{\partial \Phi}{\partial y} \end{pmatrix} = \begin{pmatrix} \frac{\partial}{\partial x} \frac{a}{2} (x^2 - y^2) \\ \frac{\partial}{\partial y} \frac{a}{2} (x^2 - y^2) \end{pmatrix} = \begin{pmatrix} ax \\ -ay \end{pmatrix} = \mathbf{F}$$

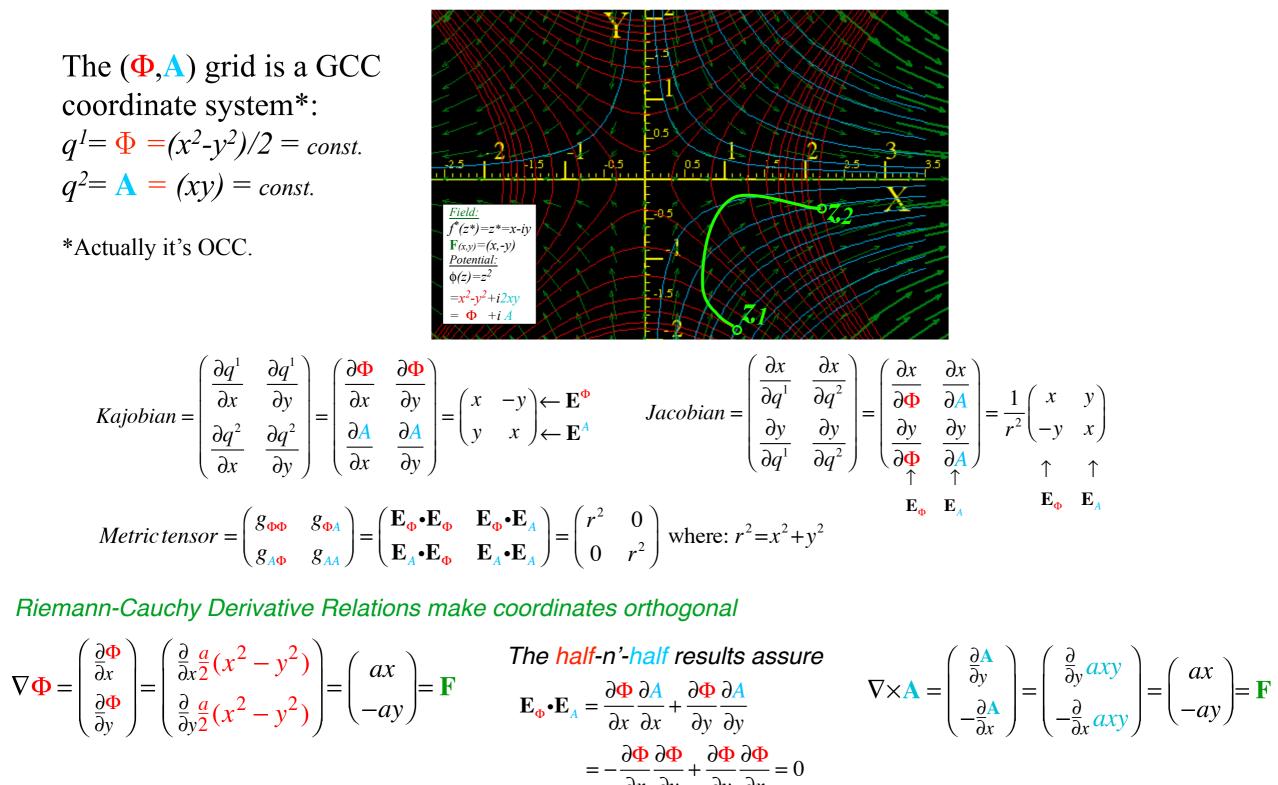
$$\mathbf{F} = \mathbf{F}$$

$$\mathbf{E}_{\Phi} \cdot \mathbf{E}_{A} = \frac{\partial \Phi}{\partial x} \frac{\partial A}{\partial x} + \frac{\partial \Phi}{\partial y} \frac{\partial A}{\partial y}$$

$$= -\frac{\partial \Phi}{\partial x} \frac{\partial \Phi}{\partial y} + \frac{\partial \Phi}{\partial y} \frac{\partial \Phi}{\partial x} = 0$$

$$\nabla \times \mathbf{A} = \begin{pmatrix} \frac{\partial \mathbf{A}}{\partial y} \\ -\frac{\partial \mathbf{A}}{\partial x} \end{pmatrix} = \begin{pmatrix} \frac{\partial}{\partial y} axy \\ -\frac{\partial}{\partial x} axy \end{pmatrix} = \begin{pmatrix} ax \\ -ay \end{pmatrix} = \mathbf{F}$$

10. Complex potentials define 2D Orthogonal Curvilinear Coordinates (OCC) of field



or Riemann-Cauchy Zero divergence requirement: $0 = \frac{\partial f_x}{\partial x} + \frac{\partial f_y}{\partial y} = \frac{\partial}{\partial x} \frac{\partial \Phi}{\partial x} + \frac{\partial}{\partial y} \frac{\partial \Phi}{\partial y} = \frac{\partial^2 \Phi}{\partial x^2} + \frac{\partial^2 \Phi}{\partial y^2} = 0$ potential Φ obeys Laplace equation

Friday, October 17, 2014

4. Riemann-Cauchy conditions What's analytic? (...and what's not?)

Easy 2D circulation and flux integrals
 Easy 2D curvilinear coordinate discovery
 Easy 2D monopole, dipole, and 2ⁿ-pole analysis
 Easy 2ⁿ-multipole field and potential expansion
 Easy stereo-projection visualization

11. Complex integrals define 2D monopole fields and potentials Of all power-law fields $f(z)=az^n$ one lacks a power-law potential $\phi(z)=\frac{a}{n+1}z^{n+1}$. It is the n=-1 case.

Unit monopole field: $f(z) = \frac{1}{z} = z^{-1}$ $f(z) = \frac{a}{z} = az^{-1}$ Source-*a* monopole

It has a *logarithmic potential* $\phi(z) = a \cdot \ln(z) = a \cdot \ln(x+iy)$.

11. Complex integrals define 2D monopole fields and potentials Of all power-law fields $f(z)=az^n$ one lacks a power-law potential $\phi(z)=\frac{a}{n+1}z^{n+1}$. It is the n=-1 case.

Unit monopole field: $f(z) = \frac{1}{z} = z^{-1}$ $f(z) = \frac{a}{z} = az^{-1}$ Source-*a* monopole

It has a *logarithmic potential* $\phi(z) = a \cdot \ln(z) = a \cdot \ln(x + iy)$.

$$\phi(z) = \Phi + i\mathbf{A} = \int f(z)dz = \int \frac{a}{z}dz = a\ln(z)$$

11. Complex integrals define 2D monopole fields and potentials Of all power-law fields $f(z)=az^n$ one lacks a power-law potential $\phi(z)=\frac{a}{n+1}z^{n+1}$. It is the n=-1 case.

Unit monopole field: $f(z) = \frac{1}{z} = z^{-1}$ $f(z) = \frac{a}{z} = az^{-1}$ Source-*a* monopole

It has a *logarithmic potential* $\phi(z) = a \cdot \ln(z) = a \cdot \ln(x + iy)$. Note: $\ln(a \cdot b) = \ln(a) + \ln(b)$, $\ln(e^{i\theta}) = i\theta$, and $z = re^{i\theta}$.

$$\phi(z) = \Phi + iA = \int f(z)dz = \int \frac{a}{z}dz = a\ln(z) = a\ln(re^{i\theta})$$
$$= a\ln(r) + ia\theta$$

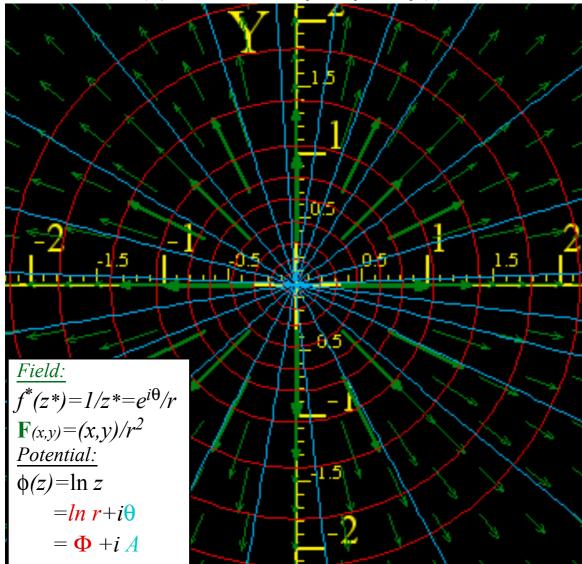
11. Complex integrals define 2D monopole fields and potentials Of all power-law fields $f(z)=az^n$ one lacks a power-law potential $\phi(z)=\frac{a}{n+1}z^{n+1}$. It is the n=-1 case.

Unit monopole field: $f(z) = \frac{1}{z} = z^{-1}$ $f(z) = \frac{a}{z} = az^{-1}$ Source-*a* monopole

It has a *logarithmic potential* $\phi(z) = a \cdot \ln(z) = a \cdot \ln(x + iy)$. Note: $\ln(a \cdot b) = \ln(a) + \ln(b)$, $\ln(e^{i\theta}) = i\theta$, and $z = re^{i\theta}$.

$$\phi(z) = \Phi + i\mathbf{A} = \int f(z)dz = \int \frac{a}{z}dz = a\ln(z) = a\ln(re^{i\theta})$$
$$= a\ln(r) + ia\theta$$

(a) Unit Z-line-flux field f(z)=1/z



Lecture 14 Thur. 10.9 ends here

11. Complex integrals define 2D monopole fields and potentials Of all power-law fields $f(z)=az^n$ one lacks a power-law potential $\phi(z)=\frac{a}{n+1}z^{n+1}$. It is the n=-1 case.

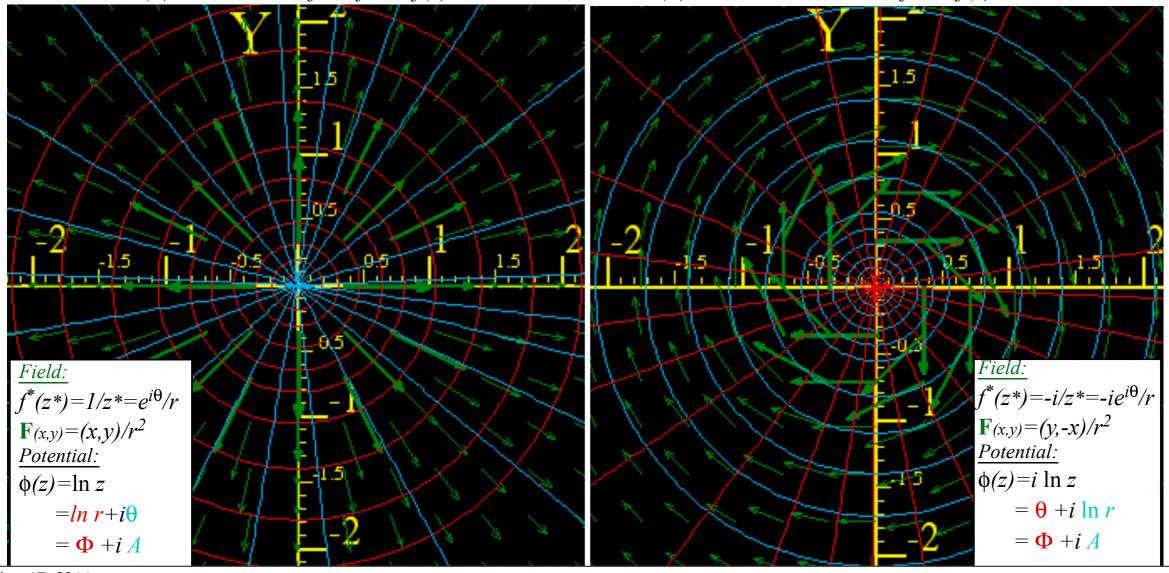
Unit monopole field: $f(z) = \frac{1}{z} = z^{-1}$ $f(z) = \frac{a}{z} = az^{-1}$ Source-*a* monopole

It has a *logarithmic potential* $\phi(z) = a \cdot \ln(z) = a \cdot \ln(x + iy)$. Note: $\ln(a \cdot b) = \ln(a) + \ln(b)$, $\ln(e^{i\theta}) = i\theta$, and $z = re^{i\theta}$.

$$\phi(z) = \Phi + i\mathbf{A} = \int f(z)dz = \int \frac{a}{z}dz = a\ln(z) = a\ln(re^{i\theta})$$
$$= a\ln(r) + ia\theta$$

(a) Unit Z-line-flux field f(z)=1/z

(b) Unit Z-line-vortex field f(z)=i/z



11. Complex integrals define 2D monopole fields and potentials Of all power-law fields $f(z)=az^n$ one lacks a power-law potential $\phi(z)=\frac{a}{n+1}z^{n+1}$. It is the n=-1 case.

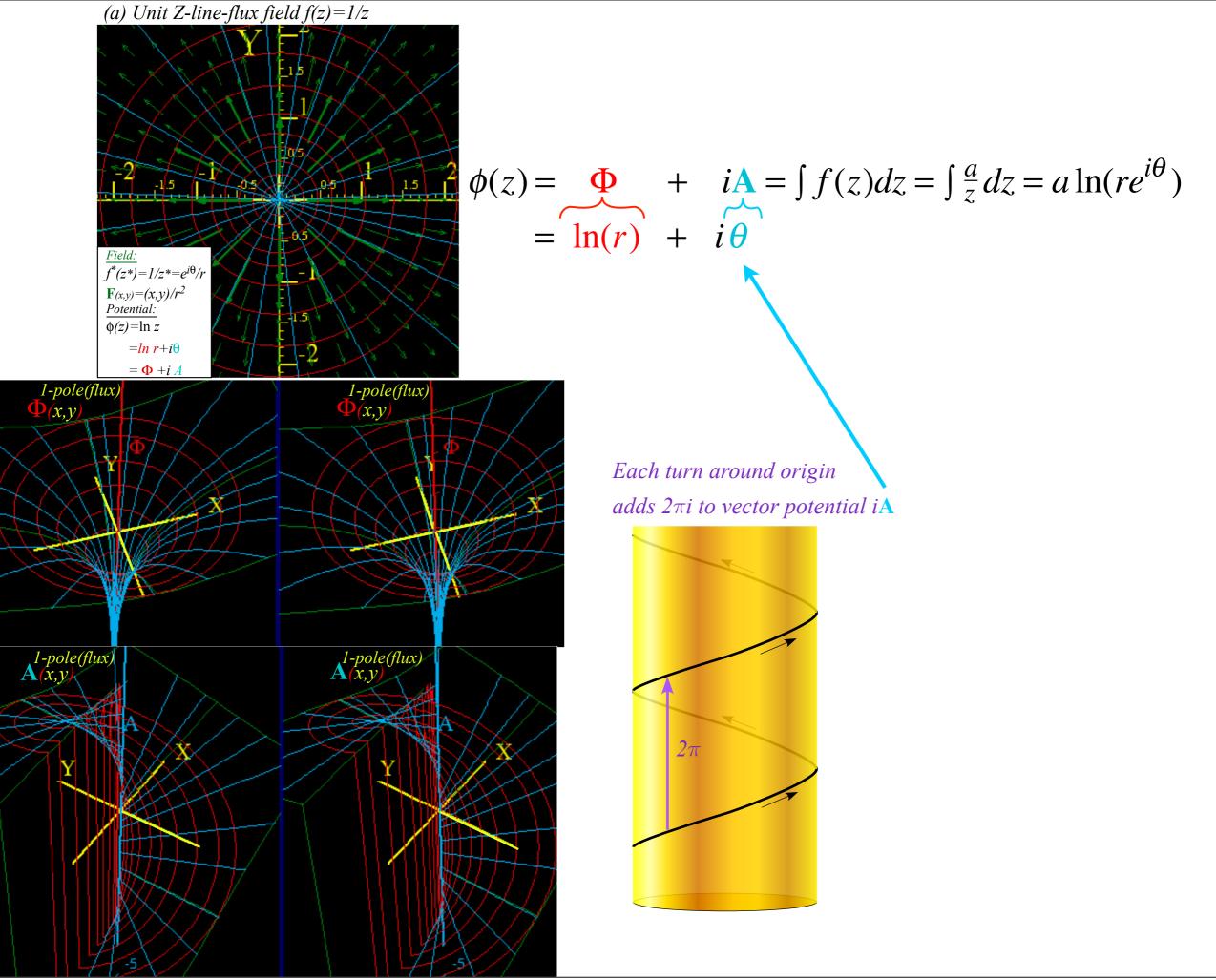
Unit monopole field: $f(z) = \frac{1}{z} = z^{-1}$ $f(z) = \frac{a}{z} = az^{-1}$ Source-*a* monopole

It has a *logarithmic potential* $\phi(z) = a \cdot \ln(z) = a \cdot \ln(x + iy)$. Note: $\ln(a \cdot b) = \ln(a) + \ln(b)$, $\ln(e^{i\theta}) = i\theta$, and $z = re^{i\theta}$.

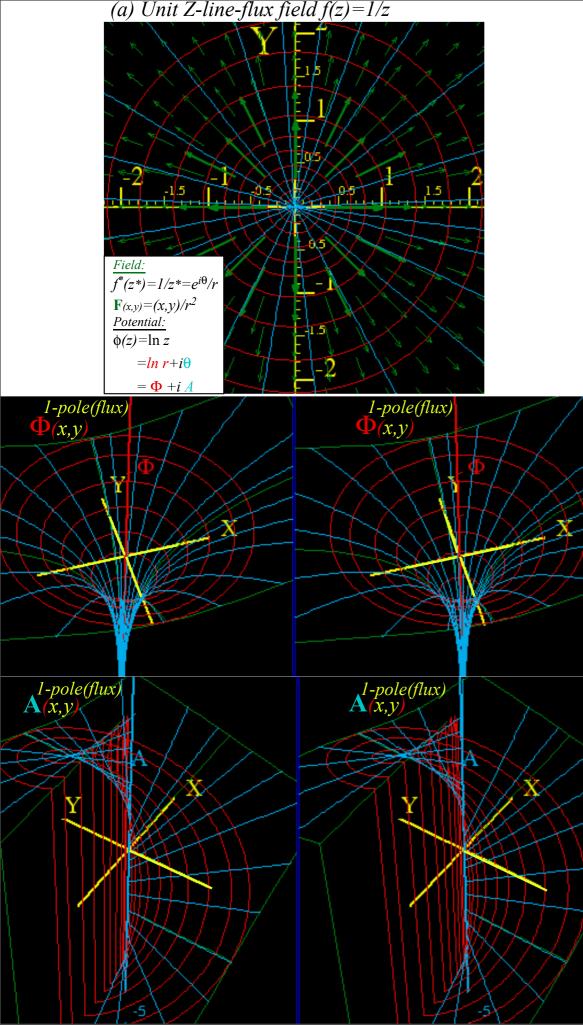
$$\phi(z) = \Phi + iA = \int f(z)dz = \int \frac{a}{z}dz = a\ln(z) = a\ln(re^{i\theta})$$
$$= a\ln(r) + ia\theta$$

A monopole field is the only power-law field whose integral (potential) depends on path of integration.

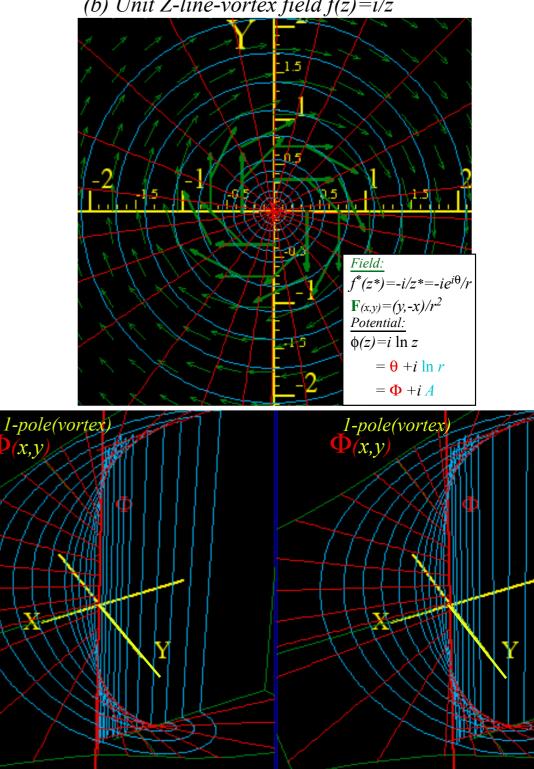
$$\Delta \phi = \oint f(z)dz = a \oint \frac{dz}{z} = a \oint_{\theta=0}^{\theta=2\pi N} \frac{d(Re^{i\theta})}{Re^{i\theta}} = a \oint_{\theta=0}^{\theta=2\pi N} \frac{d\theta=2\pi N}{\theta=0} id\theta = ai \theta \Big|_{0}^{2\pi N} = 2a\pi iN$$

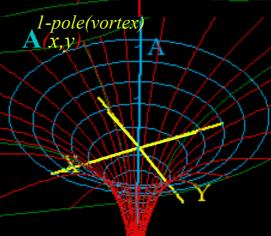


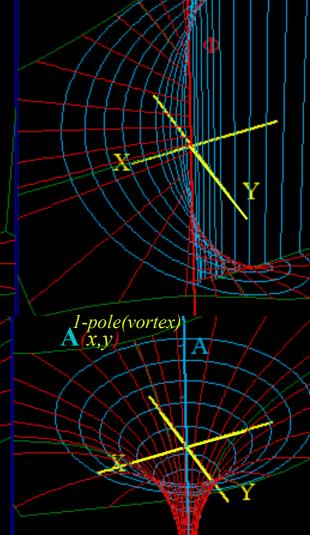
Friday, October 17, 2014



(b) Unit Z-line-vortex field f(z)=i/z







Friday, October 17, 2014

What Good Are Complex Exponentials? (contd.)

 $f(z) = (0.5 + i0.5)/z = e^{i\pi/4}/z\sqrt{2}$



4. Riemann-Cauchy conditions What's analytic? (...and what's not?)

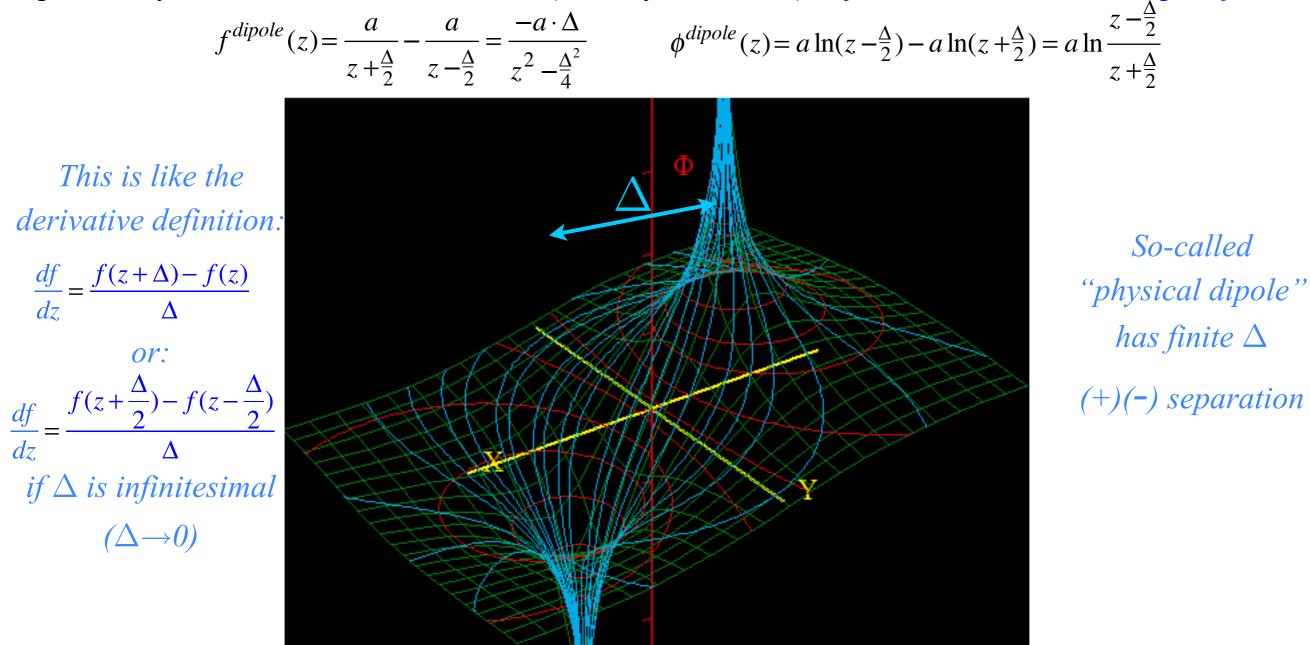
Easy 2D circulation and flux integrals
 Easy 2D curvilinear coordinate discovery
 Easy 2D monopole, dipole, and 2ⁿ-pole analysis
 Easy 2ⁿ-multipole field and potential expansion
 Easy stereo-projection visualization

What Good Are Complex Exponentials? (2D monopole, dipole, and 2ⁿ-pole analysis)

12. Complex derivatives give 2D dipole fields

Start with $f(z) = az^{-1}$: 2D line *monopole field* and is its *monopole potential* $\phi(z) = a \ln z$ of source strength a. $f^{1-pole}(z) = \frac{a}{z} = \frac{d\phi^{1-pole}}{dz}$ $\phi^{1-pole}(z) = a \ln z$

Now let these two line-sources of equal but opposite source constants +a and -a be located at $z=\pm\Delta/2$ separated by a small interval Δ . This sum (actually difference) of f^{1-pole} -fields is called a *dipole field*.



What Good Are Complex Exponentials? (2D monopole, dipole, and 2ⁿ-pole analysis)

12. Complex derivatives give 2D dipole fields

Start with $f(z) = az^{-1}$: 2D line *monopole field* and is its *monopole potential* $\phi(z) = a \ln z$ of source strength a. $f^{1-pole}(z) = \frac{a}{z} = \frac{d\phi^{1-pole}}{dz}$ $\phi^{1-pole}(z) = a \ln z$

Now let these two line-sources of equal but opposite source constants +a and -a be located at $z=\pm\Delta/2$ separated by a small interval Δ . This sum (actually difference) of f^{1-pole} -fields is called a *dipole field*.

$$f^{dipole}(z) = \frac{a}{z + \frac{\Delta}{2}} - \frac{a}{z - \frac{\Delta}{2}} = \frac{-a \cdot \Delta}{z^2 - \frac{\Delta^2}{4}} \qquad \phi^{dipole}(z) = a \ln(z - \frac{\Delta}{2}) - a \ln(z + \frac{\Delta}{2}) = a \ln \frac{z - \frac{\Delta}{2}}{z + \frac{\Delta}{2}}$$

If interval Δ is *tiny* and is divided out we get a *point-dipole field* f^{2-pole} that is the *z*-derivative of f^{1-pole} .

$$f^{2-pole} = \frac{-a}{z^2} = \frac{df^{1-pole}}{dz} = \frac{d\phi^{2-pole}}{dz} \qquad \phi^{2-pole} = \frac{a}{z} = \frac{d\phi^{1-pole}}{dz}$$

What Good Are Complex Exponentials? (2D monopole, dipole, and 2ⁿ-pole analysis)

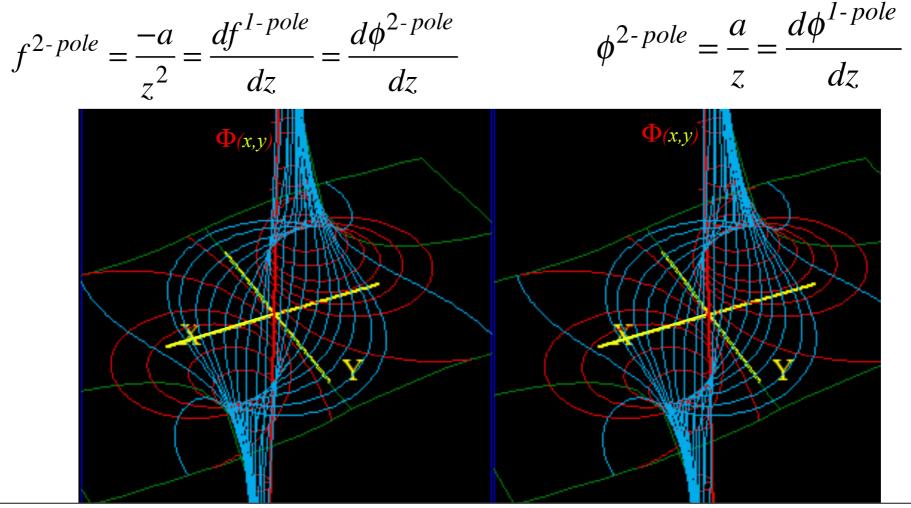
12. Complex derivatives give 2D dipole fields

Start with $f(z) = az^{-1}$: 2D line *monopole field* and is its *monopole potential* $\phi(z) = a \ln z$ of source strength a. $f^{1-pole}(z) = \frac{a}{z} = \frac{d\phi^{1-pole}}{dz}$ $\phi^{1-pole}(z) = a \ln z$

Now let these two line-sources of equal but opposite source constants +a and -a be located at $z=\pm\Delta/2$ separated by a small interval Δ . This sum (actually difference) of f^{1-pole} -fields is called a *dipole field*.

$$f^{dipole}(z) = \frac{a}{z + \frac{\Delta}{2}} - \frac{a}{z - \frac{\Delta}{2}} = \frac{-a \cdot \Delta}{z^2 - \frac{\Delta^2}{4}} \qquad \phi^{dipole}(z) = a \ln(z - \frac{\Delta}{2}) - a \ln(z + \frac{\Delta}{2}) = a \ln \frac{z - \frac{\Delta}{2}}{z + \frac{\Delta}{2}}$$

If interval Δ is *tiny* and is divided out we get a *point-dipole field* f^{2-pole} that is the *z*-derivative of f^{1-pole} .



What Good Are Complex Exponentials? (2D monopole, dipole, and 2^{<i>n}-pole analysis)

12. Complex derivatives give 2D dipole fields

Start with $f(z) = az^{-1}$: 2D line *monopole field* and is its *monopole potential* $\phi(z) = a \ln z$ of source strength a. $f^{1-pole}(z) = \frac{a}{z} = \frac{d\phi^{1-pole}}{dz}$ $\phi^{1-pole}(z) = a \ln z$

Now let these two line-sources of equal but opposite source constants +a and -a be located at $z=\pm\Delta/2$ separated by a small interval Δ . This sum (actually difference) of f^{1-pole} -fields is called a *dipole field*.

$$f^{dipole}(z) = \frac{a}{z + \frac{\Delta}{2}} - \frac{a}{z - \frac{\Delta}{2}} = \frac{-a \cdot \Delta}{z^2 - \frac{\Delta^2}{4}} \qquad \phi^{dipole}(z) = a \ln(z - \frac{\Delta}{2}) - a \ln(z + \frac{\Delta}{2}) = a \ln \frac{z - \frac{\Delta}{2}}{z + \frac{\Delta}{2}}$$

If interval Δ is *tiny* and is divided out we get a *point-dipole field* f^{2-pole} that is the *z*-derivative of f^{1-pole} .

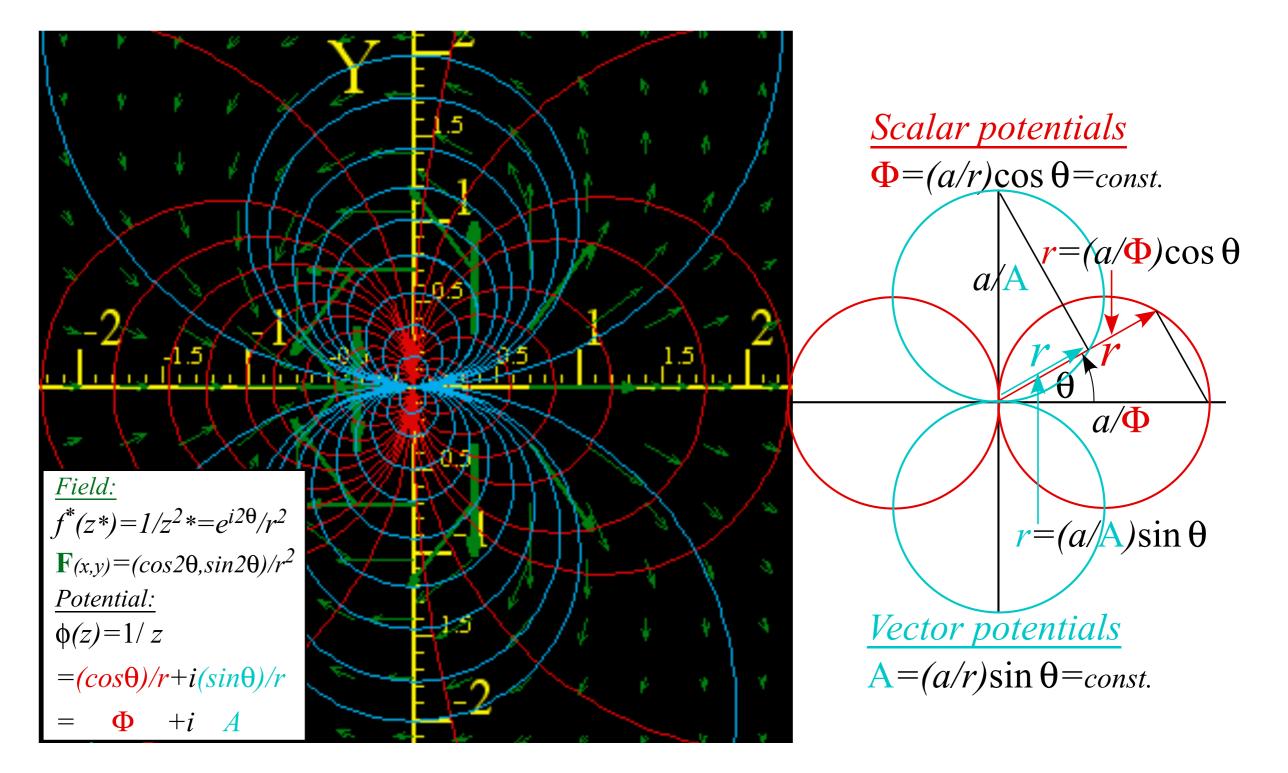
$$f^{2-pole} = \frac{-a}{z^2} = \frac{df^{1-pole}}{dz} = \frac{d\phi^{2-pole}}{dz} \qquad \phi^{2-pole} = \frac{a}{z} = \frac{d\phi^{1-pole}}{dz}$$

A *point-dipole potential* ϕ^{2-pole} (whose *z*-derivative is f^{2-pole}) is a *z*-derivative of ϕ^{1-pole} .

$$\phi^{2-pole} = \frac{a}{z} = \frac{a}{x+iy} = \frac{a}{x+iy} \frac{x-iy}{x-iy} = \frac{ax}{x^2+y^2} + i\frac{-ay}{x^2+y^2} = \frac{a}{r}\cos\theta - i\frac{a}{r}\sin\theta$$
$$= \Phi^{2-pole} + iA^{2-pole}$$

A *point-dipole potential* ϕ^{2-pole} (whose *z*-derivative is f^{2-pole}) is a *z*-derivative of ϕ^{1-pole} .

$$\phi^{2-pole} = \frac{a}{z} = \frac{a}{x+iy} = \frac{a}{x+iy} \frac{x-iy}{x-iy} = \frac{ax}{x^2+y^2} + i\frac{-ay}{x^2+y^2} = \frac{a}{r}\cos\theta - i\frac{a}{r}\sin\theta$$
$$= \Phi^{2-pole} + i\mathbf{A}^{2-pole}$$



2ⁿ-pole analysis (quadrupole:2²=4-pole, octapole:2³=8-pole,..., pole dancer,

What if we put a (-)copy of a 2-pole near its original?

Well, the result is 4-pole or quadrupole field f^{4-pole} and potential ϕ^{4-pole} .

Each a *z*-derivative of f^{2-pole} and ϕ^{2-pole} .

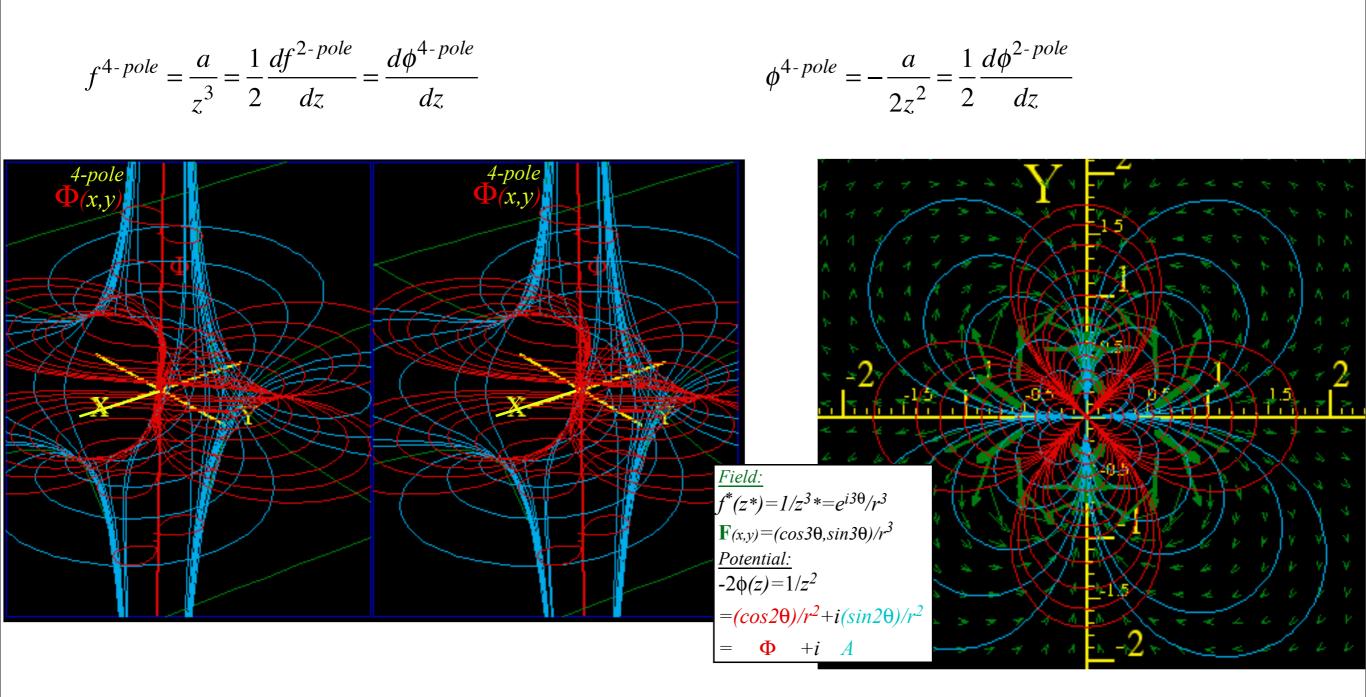
$$f^{4-pole} = \frac{a}{z^3} = \frac{1}{2} \frac{df^{2-pole}}{dz} = \frac{d\phi^{4-pole}}{dz} \qquad \qquad \phi^{4-pole} = -\frac{a}{2z^2} = \frac{1}{2} \frac{d\phi^{2-pole}}{dz}$$

2ⁿ-pole analysis (quadrupole:2²=4-pole, octapole:2³=8-pole,..., pole dancer,

What if we put a (-)copy of a 2-pole near its original?

Well, the result is 4-pole or quadrupole field f^{4-pole} and potential ϕ^{4-pole} .

Each a *z*-derivative of f^{2-pole} and ϕ^{2-pole} .



4. Riemann-Cauchy conditions What's analytic? (...and what's not?)

Easy 2D circulation and flux integrals Easy 2D curvilinear coordinate discovery Easy 2D monopole, dipole, and 2ⁿ-pole analysis Easy 2ⁿ-multipole field and potential expansion Easy stereo-projection visualization

2ⁿ-pole analysis: Laurent series (Generalization of Maclaurin-Taylor series)

Laurent series or *multipole expansion* of a given complex field function f(z) around z=0. $\frac{d\phi}{dz} = f(z) = \dots a_{-3}z^{-3} + a_{-2}z^{-2} + a_{-1}z^{-1} + a_0 + a_1z + a_2z^2 + a_3z^3 + a_4z^4 + a_5z^5 + \dots$ $\dots 2^2 \text{-pole} \qquad 2^1 \text{-pole} \qquad 2^0 \text{-pole} \qquad 2^1 \text{-pole} \qquad 2^2 \text{-pole} \qquad 2^3 \text{-pole} \qquad 2^4 \text{-pole} \qquad 2^5 \text{-pole} \qquad 2^6 \text{-pole} \cdots$ $(a_{ijole}) \qquad (a_{ijole}) \qquad (a_{ijol$

All field terms $a_{m-1}z^{m-1}$ except 1-pole $\frac{a}{z}$ have potential term $a_{m-1}z^m/m$ of a 2^m-pole. These are located at z=0 for m<0 and at $z=\infty$ for m>0.

 $\phi(z) = \dots \frac{a_{-4}}{-3} z^{-3} + \frac{a_{-3}}{-2} z^{-2} + \frac{a_{-2}}{-1} z^{-1} + a_{-1} \ln z + a_0 z + \frac{a_1}{2} z^2 + \frac{a_2}{3} z^3 + \dots$

2ⁿ-pole analysis: Laurent series (Generalization of Maclaurin-Taylor series)

Laurent series or *multipole expansion* of a given complex field function f(z) around z=0.

 $\frac{d\phi}{dz} = f(z) = \dots a_{-3}z^{-3} + a_{-2}z^{-2} + a_{-1}z^{-1} + a_0 + a_1z + a_2z^2 + a_3z^3 + a_4z^4 + a_5z^5 + \dots$ $\frac{(2^2 - pole}{at z = 0} = 2^1 - pole = 2^0 - pole = 2^1 - pole = 2^2 - pole = 2^3 - pole = 2^4 - pole = 2^5 - pole = 2^6 - pole \cdots$ $\frac{(quadrupole)}{at z = 0} = a_1z = 0 = a_1z = 0 = a_1z + a_0z + a_1z + a_2z^2 + a_2z^3 + a_3z^3 + a_4z^4 + a_5z^5 + \dots$

All field terms $a_{m-1}z^{m-1}$ except 1-pole $\frac{a_{-1}}{\overline{z}}$ have potential term $a_{m-1}z^m/m$ of a 2^m-pole. These are located at z=0 for m<0 and at $z=\infty$ for m>0.

 $(octapole)_{0} \quad (quadrupole)_{0} \quad (dipole)_{0} \quad (monopole) \quad (dipole)_{\infty} \quad (quadrupole)_{\infty} \quad (octapole)_{\infty}$ $\phi(z) = \dots \frac{a_{-3}}{-2} z^{-2} + \frac{a_{-3}}{-2} z^{-2} + \frac{a_{-2}}{-1} z^{-1} + a_{-1} \ln z + a_{0} z + \frac{a_{1}}{2} z^{2} + \frac{a_{2}}{3} z^{3} + \dots$

$$\phi(w) = \dots \frac{a_{-4}}{-3} w^{-3} + \frac{a_{-3}}{-2} w^{-2} + \frac{a_{-2}}{-1} w^{-1} + a_{-1} \ln w + a_0 w + \frac{a_1}{2} w^2 + \frac{a_2}{3} w^3 + \dots$$
(with $z = w^{-1}$)

2ⁿ-pole analysis: Laurent series (Generalization of Maclaurin-Taylor series)

 $\begin{array}{l} Laurent \ series \ {\rm or} \ multipole \ expansion \ {\rm of} \ {\rm a} \ {\rm given \ complex \ field \ function \ f(z) \ {\rm around \ } z=0.} \\ \hline \frac{d\phi}{dz} = f(z) = \dots a_{-3}z^{-3} \ + \ a_{-2}z^{-2} \ + \ a_{-1}z^{-1} \ + \ a_0 \ + \ a_1z \ + \ a_2z^2 \ + \ a_3z^3 \ + \ a_4z^4 \ + \ a_5z^5 \ + \dots \\ \hline \dots \ 2^2 \ {\rm pole} \ ({\rm audrupole}) \ {\rm at \ } z=0 \ {\rm at \ } z=0 \ {\rm at \ } z=\infty \ z=\infty \ {\rm at \ } z=\infty \ {\rm at \ } z=\infty \ {\rm$

All field terms $a_{m-1}z^{m-1}$ except 1-pole $\frac{a}{z}$ have potential term $a_{m-1}z^m/m$ of a 2^m-pole. These are located at z=0 for m<0 and at $z=\infty$ for m>0.

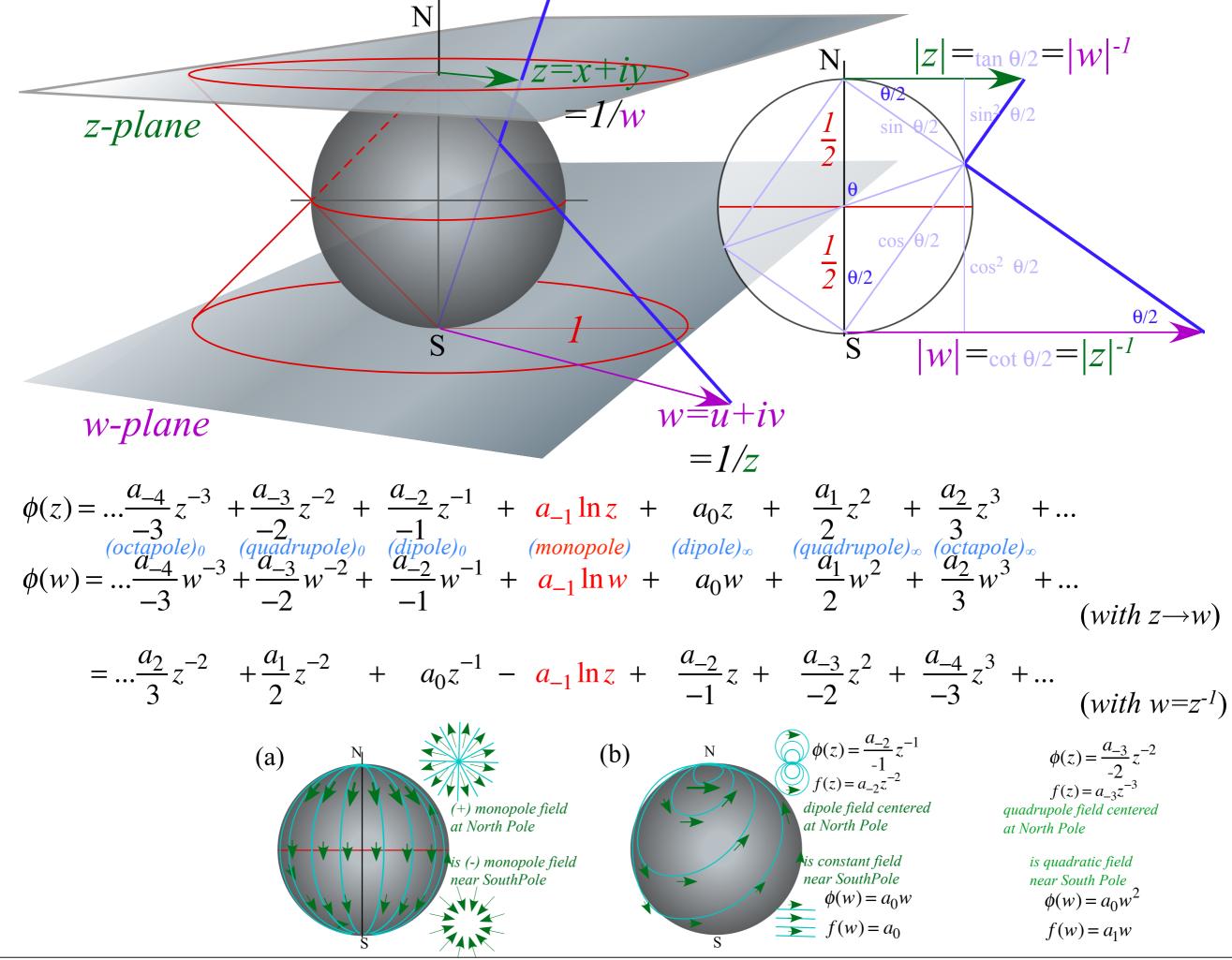
 $\phi(z) = \dots \frac{a_{-4}}{-3} z^{-3} + \frac{a_{-3}}{-2} z^{-2} + \frac{a_{-2}}{-1} z^{-1} + a_{-1} \ln z + a_0 z + \frac{a_1}{2} z^2 + \frac{a_2}{3} z^3 + \dots$

$$\phi(w) = \dots \frac{a_{-4}}{-3} w^{-3} + \frac{a_{-3}}{-2} w^{-2} + \frac{a_{-2}}{-1} w^{-1} + a_{-1} \ln w + a_0 w + \frac{a_1}{2} w^2 + \frac{a_2}{3} w^3 + \dots$$

$$(with \ z \to w)$$

$$= \dots \frac{a_2}{3} z^{-3} + \frac{a_1}{2} z^{-2} + a_0 z^{-1} - a_{-1} \ln z + \frac{a_{-2}}{-1} z + \frac{a_{-3}}{-2} z^2 + \frac{a_{-4}}{-3} z^3 + \dots$$

$$(with \ w = z^{-1})$$



 $f(z) = \dots a_{-3}z^{-3} + a_{-2}z^{-2} + a_{-1}z^{-1} + a_0 + a_1z + a_2z^2 + a_3z^3 + a_4z^4 + a_5z^5 + \dots$ Of all 2^m-pole field terms $a_{m-1}z^{m-1}$, only the m=0 monopole $a_{-1}z^{-1}$ has a non-zero loop integral (10.39). $\oint f(z)dz = \oint a_{-1}z^{-1}dz = 2\pi i a_{-1}$ $a_{-1} = \frac{1}{2\pi i} \oint f(z)dz$

Of all 2^{m} -pole field terms $a_{m-1}z^{m-1}$, only the m=0 monopole $a_{-1}z^{-1}$ has a non-zero loop integral (10.39).

$$\oint f(z)dz = \oint a_{-1}z^{-1}dz = 2\pi i a_{-1} \qquad a_{-1} = \frac{1}{2\pi i} \oint f(z)dz$$

This m=1-pole constant- a_{-1} formula is just the first in a series of Laurent coefficient expressions.

$$\cdots a_{-3} = \frac{1}{2\pi i} \oint z^2 f(z) dz \ , \ a_{-2} = \frac{1}{2\pi i} \oint z^1 f(z) dz \ , \ a_{-1} = \frac{1}{2\pi i} \oint f(z) dz \ , \ a_0 = \frac{1}{2\pi i} \oint \frac{f(z)}{z} dz \ , \ a_1 = \frac{1}{2\pi i} \oint \frac{f(z)}{z^2} dz \ , \ \cdots$$

Of all 2^{m} -pole field terms $a_{m-1}z^{m-1}$, only the m=0 monopole $a_{-1}z^{-1}$ has a non-zero loop integral (10.39).

$$\oint f(z)dz = \oint a_{-1}z^{-1}dz = 2\pi i a_{-1} \qquad a_{-1} = \frac{1}{2\pi i} \oint f(z)dz$$

This m=1-pole constant- a_{-1} formula is just the first in a series of *Laurent coefficient expressions*.

$$\cdots a_{-3} = \frac{1}{2\pi i} \oint z^2 f(z) dz \ , \ a_{-2} = \frac{1}{2\pi i} \oint z^1 f(z) dz \ , \ a_{-1} = \frac{1}{2\pi i} \oint f(z) dz \ , \ a_0 = \frac{1}{2\pi i} \oint \frac{f(z)}{z} dz \ , \ a_1 = \frac{1}{2\pi i} \oint \frac{f(z)}{z^2} dz \ , \ a_1 = \frac{1}{2\pi i} \oint \frac{f(z)}{z^2} dz \ , \ a_2 = \frac{1}{2\pi i} \oint \frac{f(z)}{z^2} dz \ , \ a_3 = \frac{1}{2\pi i} \oint \frac{f(z)}{z^2} dz \ , \ a_4 = \frac{1}{2\pi i} \oint \frac{f(z)}{z^2} dz \ , \ a_5 = \frac{1}{2\pi i} \oint \frac{f(z)}{z^2} dz \ , \ a_6 = \frac{1}{2\pi i} \oint \frac{f(z)}{z} dz \ , \ a_7 = \frac{1}{2\pi i} \oint \frac{f(z)}{z^2} dz \ , \ a_8$$

Source analysis starts with 1-pole loop integrals $\oint z^{-1} dz = 2\pi i$ or, with origin shifted $\oint (z-a)^{-1} dz = 2\pi i$.

Of all 2^{m} -pole field terms $a_{m-1}z^{m-1}$, only the m=0 monopole $a_{-1}z^{-1}$ has a non-zero loop integral (10.39).

$$\oint f(z)dz = \oint a_{-1}z^{-1}dz = 2\pi i a_{-1} \qquad a_{-1} = \frac{1}{2\pi i} \oint f(z)dz$$

This m=1-pole constant- a_{-1} formula is just the first in a series of Laurent coefficient expressions.

$$\cdots a_{-3} = \frac{1}{2\pi i} \oint z^2 f(z) dz \ , \ a_{-2} = \frac{1}{2\pi i} \oint z^1 f(z) dz \ , \ a_{-1} = \frac{1}{2\pi i} \oint f(z) dz \ , \ a_0 = \frac{1}{2\pi i} \oint \frac{f(z)}{z} dz \ , \ a_1 = \frac{1}{2\pi i} \oint \frac{f(z)}{z^2} dz \ , \ a_1 = \frac{1}{2\pi i} \oint \frac{f(z)}{z^2} dz \ , \ a_2 = \frac{1}{2\pi i} \oint \frac{f(z)}{z^2} dz \ , \ a_3 = \frac{1}{2\pi i} \oint \frac{f(z)}{z^2} dz \ , \ a_4 = \frac{1}{2\pi i} \oint \frac{f(z)}{z^2} dz \ , \ a_5 = \frac{1}{2\pi i} \oint \frac{f(z)}{z^2} dz \ , \ a_6 = \frac{1}{2\pi i} \oint \frac{f(z)}{z} dz \ , \ a_7 = \frac{1}{2\pi i} \oint \frac{f(z)}{z^2} dz \ , \ a_8$$

Source analysis starts with 1-pole loop integrals $\oint z^{-1}dz = 2\pi i$ or, with origin shifted $\oint (z-a)^{-1}dz = 2\pi i$. They hold for any loop about point-*a*. Function f(z) is just f(a) on a *tiny* circle around point-*a*.

(assume tiny circle around z=a) $\oint \frac{f(z)}{z-a} dz = \oint \frac{f(a)}{z-a} dz = f(a) \oint \frac{1}{z-a} dz = 2\pi i f(a)$ (but any contour that doesn't "touch a gives same answer)

Of all 2^{m} -pole field terms $a_{m-1}z^{m-1}$, only the m=0 monopole $a_{-1}z^{-1}$ has a non-zero loop integral (10.39).

$$\oint f(z)dz = \oint a_{-1}z^{-1}dz = 2\pi i a_{-1} \qquad a_{-1} = \frac{1}{2\pi i} \oint f(z)dz$$

This m=1-pole constant- a_{-1} formula is just the first in a series of Laurent coefficient expressions.

$$\cdots a_{-3} = \frac{1}{2\pi i} \oint z^2 f(z) dz \ , \ a_{-2} = \frac{1}{2\pi i} \oint z^1 f(z) dz \ , \ a_{-1} = \frac{1}{2\pi i} \oint f(z) dz \ , \ a_0 = \frac{1}{2\pi i} \oint \frac{f(z)}{z} dz \ , \ a_1 = \frac{1}{2\pi i} \oint \frac{f(z)}{z^2} dz \ , \cdots$$

Source analysis starts with 1-pole loop integrals $\oint z^{-1}dz = 2\pi i$ or, with origin shifted $\oint (z-a)^{-1}dz = 2\pi i$. They hold for any loop about point-*a*. Function f(z) is just f(a) on a *tiny* circle around point-*a*.

(assume *tiny* circle around
$$z=a$$
)

$$\oint \frac{f(z)}{z-a} dz = \oint \frac{f(a)}{z-a} dz = f(a) \oint \frac{1}{z-a} dz = 2\pi i f(a)$$
(but any contour that doesn't "touch *a* gives same answer)

$$f(a) = \frac{1}{2\pi i} \oint \frac{f(z)}{z - a} dz$$

The *f*(*a*) result is called a *Cauchy integral*.

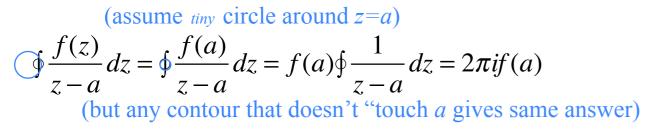
Of all 2^{m} -pole field terms $a_{m-1}z^{m-1}$, only the m=0 monopole $a_{-1}z^{-1}$ has a non-zero loop integral (10.39).

$$\oint f(z)dz = \oint a_{-1}z^{-1}dz = 2\pi i a_{-1} \qquad a_{-1} = \frac{1}{2\pi i} \oint f(z)dz$$

This m=1-pole constant- a_{-1} formula is just the first in a series of Laurent coefficient expressions.

$$\cdots a_{-3} = \frac{1}{2\pi i} \oint z^2 f(z) dz \ , \ a_{-2} = \frac{1}{2\pi i} \oint z^1 f(z) dz \ , \ a_{-1} = \frac{1}{2\pi i} \oint f(z) dz \ , \ a_0 = \frac{1}{2\pi i} \oint \frac{f(z)}{z} dz \ , \ a_1 = \frac{1}{2\pi i} \oint \frac{f(z)}{z^2} dz \ , \cdots$$

Source analysis starts with 1-pole loop integrals $\oint z^{-1}dz = 2\pi i$ or, with origin shifted $\oint (z-a)^{-1}dz = 2\pi i$. They hold for any loop about point-*a*. Function f(z) is just f(a) on a *tiny* circle around point-*a*.



$$f(a) = \frac{1}{2\pi i} \oint \frac{f(z)}{z - a} dz$$

$$\frac{df(a)}{da} = \frac{1}{2\pi i} \oint \frac{f(z)}{(z-a)^2} dz$$

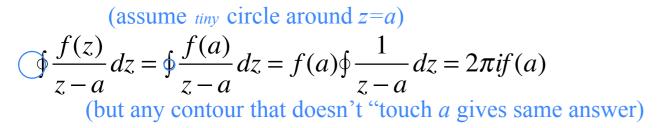
Of all 2^{m} -pole field terms $a_{m-1}z^{m-1}$, only the m=0 monopole $a_{-1}z^{-1}$ has a non-zero loop integral (10.39).

$$\oint f(z)dz = \oint a_{-1}z^{-1}dz = 2\pi i a_{-1} \qquad a_{-1} = \frac{1}{2\pi i} \oint f(z)dz$$

This m=1-pole constant- a_{-1} formula is just the first in a series of Laurent coefficient expressions.

$$\cdots a_{-3} = \frac{1}{2\pi i} \oint z^2 f(z) dz \ , \ a_{-2} = \frac{1}{2\pi i} \oint z^1 f(z) dz \ , \ a_{-1} = \frac{1}{2\pi i} \oint f(z) dz \ , \ a_0 = \frac{1}{2\pi i} \oint \frac{f(z)}{z} dz \ , \ a_1 = \frac{1}{2\pi i} \oint \frac{f(z)}{z^2} dz \ , \cdots$$

Source analysis starts with 1-pole loop integrals $\oint z^{-1}dz = 2\pi i$ or, with origin shifted $\oint (z-a)^{-1}dz = 2\pi i$. They hold for any loop about point-*a*. Function f(z) is just f(a) on a *tiny* circle around point-*a*.



$$f(a) = \frac{1}{2\pi i} \oint \frac{f(z)}{z - a} dz$$

$$\frac{df(a)}{da} = \frac{1}{2\pi i} \oint \frac{f(z)}{(z-a)^2} dz , \ \frac{d^2 f(a)}{da^2} = \frac{2}{2\pi i} \oint \frac{f(z)}{(z-a)^3} dz$$

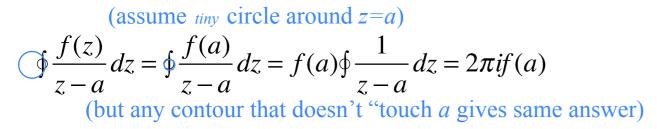
Of all 2^{m} -pole field terms $a_{m-1}z^{m-1}$, only the m=0 monopole $a_{-1}z^{-1}$ has a non-zero loop integral (10.39).

$$\oint f(z)dz = \oint a_{-1}z^{-1}dz = 2\pi i a_{-1} \qquad a_{-1} = \frac{1}{2\pi i} \oint f(z)dz$$

This m=1-pole constant- a_{-1} formula is just the first in a series of Laurent coefficient expressions.

$$\cdots a_{-3} = \frac{1}{2\pi i} \oint z^2 f(z) dz \ , \ a_{-2} = \frac{1}{2\pi i} \oint z^1 f(z) dz \ , \ a_{-1} = \frac{1}{2\pi i} \oint f(z) dz \ , \ a_0 = \frac{1}{2\pi i} \oint \frac{f(z)}{z} dz \ , \ a_1 = \frac{1}{2\pi i} \oint \frac{f(z)}{z^2} dz \ , \cdots$$

Source analysis starts with 1-pole loop integrals $\oint z^{-1}dz = 2\pi i$ or, with origin shifted $\oint (z-a)^{-1}dz = 2\pi i$. They hold for any loop about point-*a*. Function f(z) is just f(a) on a *tiny* circle around point-*a*.



$$f(a) = \frac{1}{2\pi i} \oint \frac{f(z)}{z - a} dz$$

$$\frac{df(a)}{da} = \frac{1}{2\pi i} \oint \frac{f(z)}{(z-a)^2} dz , \quad \frac{d^2 f(a)}{da^2} = \frac{2}{2\pi i} \oint \frac{f(z)}{(z-a)^3} dz , \quad \frac{d^3 f(a)}{da^3} = \frac{3!}{2\pi i} \oint \frac{f(z)}{(z-a)^4} dz$$

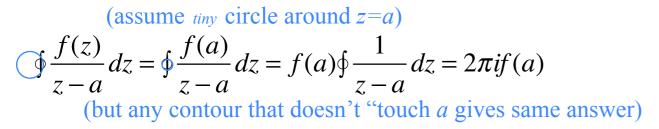
Of all 2^{m} -pole field terms $a_{m-1}z^{m-1}$, only the m=0 monopole $a_{-1}z^{-1}$ has a non-zero loop integral (10.39).

$$\oint f(z)dz = \oint a_{-1}z^{-1}dz = 2\pi i a_{-1} \qquad a_{-1} = \frac{1}{2\pi i} \oint f(z)dz$$

This m=1-pole constant- a_{-1} formula is just the first in a series of Laurent coefficient expressions.

$$\cdots a_{-3} = \frac{1}{2\pi i} \oint z^2 f(z) dz \ , \ a_{-2} = \frac{1}{2\pi i} \oint z^1 f(z) dz \ , \ a_{-1} = \frac{1}{2\pi i} \oint f(z) dz \ , \ a_0 = \frac{1}{2\pi i} \oint \frac{f(z)}{z} dz \ , \ a_1 = \frac{1}{2\pi i} \oint \frac{f(z)}{z^2} dz \ , \cdots$$

Source analysis starts with 1-pole loop integrals $\oint z^{-1}dz = 2\pi i$ or, with origin shifted $\oint (z-a)^{-1}dz = 2\pi i$. They hold for any loop about point-*a*. Function f(z) is just f(a) on a *tiny* circle around point-*a*.



$$f(a) = \frac{1}{2\pi i} \oint \frac{f(z)}{z - a} dz$$

$$\frac{df(a)}{da} = \frac{1}{2\pi i} \oint \frac{f(z)}{(z-a)^2} dz , \quad \frac{d^2 f(a)}{da^2} = \frac{2}{2\pi i} \oint \frac{f(z)}{(z-a)^3} dz , \quad \frac{d^3 f(a)}{da^3} = \frac{3!}{2\pi i} \oint \frac{f(z)}{(z-a)^4} dz , \quad \dots, \\ \frac{d^n f(a)}{da^n} = \frac{n!}{2\pi i} \oint \frac{f(z)}{(z-a)^{n+1}} dz$$

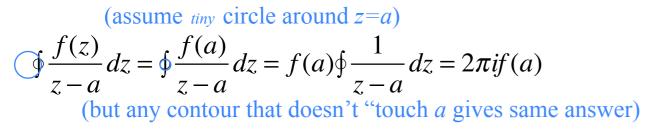
Of all 2^{m} -pole field terms $a_{m-1}z^{m-1}$, only the m=0 monopole $a_{-1}z^{-1}$ has a non-zero loop integral (10.39).

$$\oint f(z)dz = \oint a_{-1}z^{-1}dz = 2\pi i a_{-1} \qquad a_{-1} = \frac{1}{2\pi i} \oint f(z)dz$$

This m=1-pole constant- a_{-1} formula is just the first in a series of Laurent coefficient expressions.

$$\cdots a_{-3} = \frac{1}{2\pi i} \oint z^2 f(z) dz \ , \ a_{-2} = \frac{1}{2\pi i} \oint z^1 f(z) dz \ , \ a_{-1} = \frac{1}{2\pi i} \oint f(z) dz \ , \ a_0 = \frac{1}{2\pi i} \oint \frac{f(z)}{z} dz \ , \ a_1 = \frac{1}{2\pi i} \oint \frac{f(z)}{z^2} dz \ , \cdots$$

Source analysis starts with 1-pole loop integrals $\oint z^{-1}dz = 2\pi i$ or, with origin shifted $\oint (z-a)^{-1}dz = 2\pi i$. They hold for any loop about point-*a*. Function f(z) is just f(a) on a *tiny* circle around point-*a*.



$$f(a) = \frac{1}{2\pi i} \oint \frac{f(z)}{z - a} dz$$

The f(a) result is called a *Cauchy integral*. Then repeated *a*-derivatives gives a sequence of them.

$$\frac{df(a)}{da} = \frac{1}{2\pi i} \oint \frac{f(z)}{(z-a)^2} dz , \quad \frac{d^2 f(a)}{da^2} = \frac{2}{2\pi i} \oint \frac{f(z)}{(z-a)^3} dz , \quad \frac{d^3 f(a)}{da^3} = \frac{3!}{2\pi i} \oint \frac{f(z)}{(z-a)^4} dz , \quad \dots, \\ \frac{d^n f(a)}{da^n} = \frac{n!}{2\pi i} \oint \frac{f(z)}{(z-a)^{n+1}} dz , \quad \dots, \\ \frac{d^n f(a)}{da^n} = \frac{n!}{2\pi i} \oint \frac{f(z)}{(z-a)^{n+1}} dz , \quad \dots, \\ \frac{d^n f(a)}{da^n} = \frac{n!}{2\pi i} \oint \frac{f(z)}{(z-a)^{n+1}} dz , \quad \dots, \\ \frac{d^n f(a)}{da^n} = \frac{n!}{2\pi i} \oint \frac{f(z)}{(z-a)^{n+1}} dz , \quad \dots, \\ \frac{d^n f(a)}{da^n} = \frac{n!}{2\pi i} \oint \frac{f(z)}{(z-a)^{n+1}} dz , \quad \dots, \\ \frac{d^n f(a)}{da^n} = \frac{n!}{2\pi i} \oint \frac{f(z)}{(z-a)^{n+1}} dz , \quad \dots, \\ \frac{d^n f(a)}{da^n} = \frac{n!}{2\pi i} \oint \frac{f(z)}{(z-a)^{n+1}} dz , \quad \dots, \\ \frac{d^n f(a)}{da^n} = \frac{n!}{2\pi i} \oint \frac{f(z)}{(z-a)^{n+1}} dz , \quad \dots, \\ \frac{d^n f(a)}{da^n} = \frac{n!}{2\pi i} \oint \frac{f(z)}{(z-a)^{n+1}} dz , \quad \dots, \\ \frac{d^n f(a)}{da^n} = \frac{n!}{2\pi i} \oint \frac{f(z)}{(z-a)^{n+1}} dz , \quad \dots, \\ \frac{d^n f(a)}{da^n} = \frac{n!}{2\pi i} \oint \frac{f(z)}{(z-a)^{n+1}} dz , \quad \dots, \\ \frac{d^n f(a)}{da^n} = \frac{n!}{2\pi i} \oint \frac{f(z)}{(z-a)^{n+1}} dz , \quad \dots, \\ \frac{d^n f(a)}{da^n} = \frac{n!}{2\pi i} \oint \frac{f(z)}{(z-a)^{n+1}} dz , \quad \dots, \\ \frac{d^n f(a)}{da^n} = \frac{n!}{2\pi i} \oint \frac{f(z)}{(z-a)^{n+1}} dz , \quad \dots, \\ \frac{d^n f(a)}{da^n} = \frac{n!}{2\pi i} \oint \frac{f(z)}{(z-a)^{n+1}} dz , \quad \dots, \\ \frac{d^n f(a)}{da^n} = \frac{n!}{2\pi i} \oint \frac{f(z)}{(z-a)^{n+1}} dz , \quad \dots, \\ \frac{d^n f(a)}{da^n} = \frac{n!}{2\pi i} \oint \frac{f(z)}{(z-a)^{n+1}} dz , \quad \dots, \\ \frac{d^n f(a)}{da^n} = \frac{n!}{2\pi i} \oint \frac{f(z)}{(z-a)^{n+1}} dz , \quad \dots, \\ \frac{d^n f(a)}{da^n} = \frac{n!}{2\pi i} \oint \frac{f(z)}{(z-a)^{n+1}} dz , \quad \dots, \\ \frac{d^n f(a)}{da^n} = \frac{n!}{2\pi i} \oint \frac{f(z)}{da^n} dz , \quad \dots, \\ \frac{d^n f(a)}{da^n} = \frac{n!}{2\pi i} \oint \frac{f(z)}{da^n} dz , \quad \dots, \\ \frac{d^n f(a)}{da^n} = \frac{n!}{2\pi i} \oint \frac{f(z)}{da^n} dz , \quad \dots, \\ \frac{d^n f(a)}{da^n} = \frac{n!}{2\pi i} \oint \frac{f(z)}{da^n} dz , \quad \dots, \\ \frac{d^n f(a)}{da^n} = \frac{n!}{2\pi i} \oint \frac{f(z)}{da^n} dz , \quad \dots, \\ \frac{d^n f(a)}{da^n} = \frac{n!}{2\pi i} \oint \frac{f(z)}{da^n} dz , \quad \dots, \\ \frac{d^n f(a)}{da^n} = \frac{n!}{2\pi i} \oint \frac{f(z)}{da^n} dz , \quad \dots, \\ \frac{d^n f(a)}{da^n} = \frac{n!}{2\pi i} \oint \frac{f(z)}{da^n} dz , \quad \dots, \\ \frac{d^n f(a)}{da^n} = \frac{n!}{2\pi i} \oint \frac{f(z)}{da^n} dz , \quad \dots, \\ \frac{d^n f(a)}{da^n} = \frac{n!}{2\pi i} \oint \frac{f(z)}{da^n} dz , \quad \dots, \\$$

This leads to a general *Taylor-Laurent* power series expansion of function f(z) around point-*a*.

 $f(z) = \dots a_{-3}z^{-3} + a_{-2}z^{-2} + a_{-1}z^{-1} + a_0 + a_1z + a_2z^2 + a_3z^3 + a_4z^4 + a_5z^5 + \dots$

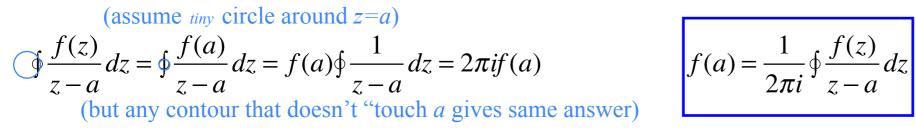
Of all 2^{m} -pole field terms $a_{m-1}z^{m-1}$, only the m=0 monopole $a_{-1}z^{-1}$ has a non-zero loop integral (10.39).

$$\oint f(z)dz = \oint a_{-1}z^{-1}dz = 2\pi i a_{-1} \qquad a_{-1} = \frac{1}{2\pi i} \oint f(z)dz$$

This m=1-pole constant- a_{-1} formula is just the first in a series of Laurent coefficient expressions.

$$\cdots a_{-3} = \frac{1}{2\pi i} \oint z^2 f(z) dz \ , \ a_{-2} = \frac{1}{2\pi i} \oint z^1 f(z) dz \ , \ a_{-1} = \frac{1}{2\pi i} \oint f(z) dz \ , \ a_0 = \frac{1}{2\pi i} \oint \frac{f(z)}{z} dz \ , \ a_1 = \frac{1}{2\pi i} \oint \frac{f(z)}{z^2} dz \ , \cdots$$

Source analysis starts with 1-pole loop integrals $\oint z^{-1}dz = 2\pi i$ or, with origin shifted $\oint (z-a)^{-1}dz = 2\pi i$. They hold for any loop about point-*a*. Function f(z) is just f(a) on a *tiny* circle around point-*a*.



The f(a) result is called a *Cauchy integral*. Then repeated *a*-derivatives gives a sequence of them.

$$\frac{df(a)}{da} = \frac{1}{2\pi i} \oint \frac{f(z)}{(z-a)^2} dz , \quad \frac{d^2 f(a)}{da^2} = \frac{2}{2\pi i} \oint \frac{f(z)}{(z-a)^3} dz , \quad \frac{d^3 f(a)}{da^3} = \frac{3!}{2\pi i} \oint \frac{f(z)}{(z-a)^4} dz , \quad \dots, \\ \frac{d^n f(a)}{da^n} = \frac{n!}{2\pi i} \oint \frac{f(z)}{(z-a)^{n+1}} dz$$

This leads to a general *Taylor-Laurent* power series expansion of function f(z) around point-*a*.

$$f(z) = \sum_{n = -\infty}^{\infty} a_n (z - a)^n \qquad \text{where : } a_n = \frac{1}{2\pi i} \oint \frac{f(z)}{(z - a)^{n+1}} dz \left(= \frac{1}{n!} \frac{d^n f(a)}{da^n} \quad \text{for : } n \ge 0 \right)$$

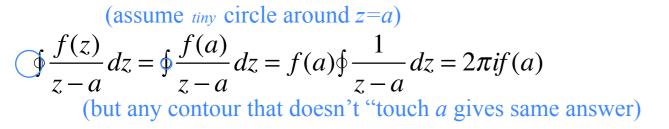
Of all 2^{m} -pole field terms $a_{m-1}z^{m-1}$, only the m=0 monopole $a_{-1}z^{-1}$ has a non-zero loop integral (10.39).

$$\oint f(z)dz = \oint a_{-1}z^{-1}dz = 2\pi i a_{-1} \qquad a_{-1} = \frac{1}{2\pi i} \oint f(z)dz$$

This m=1-pole constant- a_{-1} formula is just the first in a series of Laurent coefficient expressions.

$$\cdots a_{-3} = \frac{1}{2\pi i} \oint z^2 f(z) dz \ , \ a_{-2} = \frac{1}{2\pi i} \oint z^1 f(z) dz \ , \ a_{-1} = \frac{1}{2\pi i} \oint f(z) dz \ , \ a_0 = \frac{1}{2\pi i} \oint \frac{f(z)}{z} dz \ , \ a_1 = \frac{1}{2\pi i} \oint \frac{f(z)}{z^2} dz \ , \cdots$$

Source analysis starts with 1-pole loop integrals $\oint z^{-1}dz = 2\pi i$ or, with origin shifted $\oint (z-a)^{-1}dz = 2\pi i$. They hold for any loop about point-*a*. Function f(z) is just f(a) on a *tiny* circle around point-*a*.



$$f(a) = \frac{1}{2\pi i} \oint \frac{f(z)}{z - a} dz$$

The f(a) result is called a *Cauchy integral*. Then repeated *a*-derivatives gives a sequence of them.

$$\frac{df(a)}{da} = \frac{1}{2\pi i} \oint \frac{f(z)}{(z-a)^2} dz , \quad \frac{d^2 f(a)}{da^2} = \frac{2}{2\pi i} \oint \frac{f(z)}{(z-a)^3} dz , \quad \frac{d^3 f(a)}{da^3} = \frac{3!}{2\pi i} \oint \frac{f(z)}{(z-a)^4} dz , \quad \dots, \\ \frac{d^n f(a)}{da^n} = \frac{n!}{2\pi i} \oint \frac{f(z)}{(z-a)^{n+1}} dz$$

This leads to a general *Taylor-Laurent* power series expansion of function f(z) around point-*a*.

$$f(z) = \sum_{n = -\infty}^{\infty} a_n (z - a)^n \qquad \text{where : } a_n = \frac{1}{2\pi i} \oint \frac{f(z)}{(z - a)^{n+1}} dz \left(= \frac{1}{n!} \frac{d^n f(a)}{da^n} \quad \text{for : } n \ge 0 \right)$$

 $(quadrupole)_{\emptyset} \quad (dipole)_{\emptyset} \quad (monopole) \quad (dipole)_{\infty} \quad (quadrupole)_{\infty} \quad (octapole)_{\infty} \quad (hexadecapole)_{\infty} \quad \dots$ $f(z) = \dots a_{-3}z^{-3} + a_{-2}z^{-2} + a_{-1}z^{-1} + a_{0} + a_{1}z + a_{2}z^{2} + a_{3}z^{3} + a_{4}z^{4} + a_{5}z^{5} + \dots$ $monopole \quad monopole \quad moment$

5. Mapping and Non-analytic 2D source field analysis

The half-n'-half results

are called

Riemann-Cauchy

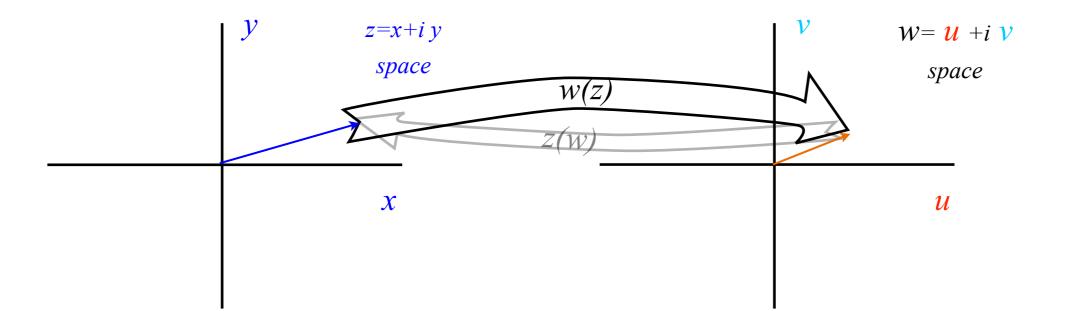
Derivative Relations

$$\frac{\partial \Phi}{\partial x} = \frac{\partial A}{\partial y} \text{ is: } \frac{\partial \text{Re}\phi(z)}{\partial x} = -\frac{\partial \text{Im}\phi(z)}{\partial y} \text{ or: } \frac{\partial \text{Re}f(z)}{\partial x} = -\frac{\partial \text{Im}f(z)}{\partial y} \text{ is: } \frac{\partial f_x(z)}{\partial x} = -\frac{\partial f_y(z)}{\partial y} \text{ is: } \frac{\partial f_x(z)}{\partial y} = -\frac{\partial f_y(z)}{\partial y} \text{ or: } \frac{\partial \text{Re}f(z)}{\partial y} = -\frac{\partial \text{Im}f(z)}{\partial x} \text{ is: } \frac{\partial f_x(z)}{\partial y} = -\frac{\partial f_y(z)}{\partial x} \text{ or: } \frac{\partial \text{Re}f(z)}{\partial y} = -\frac{\partial \text{Im}f(z)}{\partial x} \text{ is: } \frac{\partial f_x(z)}{\partial y} = -\frac{\partial f_y(z)}{\partial x} \text{ or: } \frac{\partial \text{Re}f(z)}{\partial y} = -\frac{\partial \text{Im}f(z)}{\partial x} \text{ or: } \frac{\partial \text{Re}f(z)}{\partial y} = -\frac{\partial \text{Im}f(z)}{\partial x} \text{ or: } \frac{\partial f_x(z)}{\partial y} = -\frac{\partial \text{Im}f(z)}{\partial x} \text{ or: } \frac{\partial f_y(z)}{\partial y} \text{ or: } \frac{\partial \text{Re}f(z)}{\partial y} = -\frac{\partial \text{Im}f(z)}{\partial x} \text{ or: } \frac{\partial f_y(z)}{\partial y} \text{ or: } \frac{\partial \text{Re}f(z)}{\partial y} = -\frac{\partial \text{Im}f(z)}{\partial x} \text{ or: } \frac{\partial f_y(z)}{\partial y} \text{ or: } \frac{\partial \text{Re}f(z)}{\partial y} = -\frac{\partial \text{Im}f(z)}{\partial x} \text{ or: } \frac{\partial f_y(z)}{\partial y} \text{ or: } \frac{\partial \text{Re}f(z)}{\partial y} = -\frac{\partial \text{Im}f(z)}{\partial x} \text{ or: } \frac{\partial f_y(z)}{\partial y} \text{ or: } \frac{\partial \text{Im}f(z)}{\partial y} \text{ o$$

RC applies to analytic potential $\phi(z) = \Phi + iA$ and analytic field $f(z) = f_x + if_y$ and any analytic function

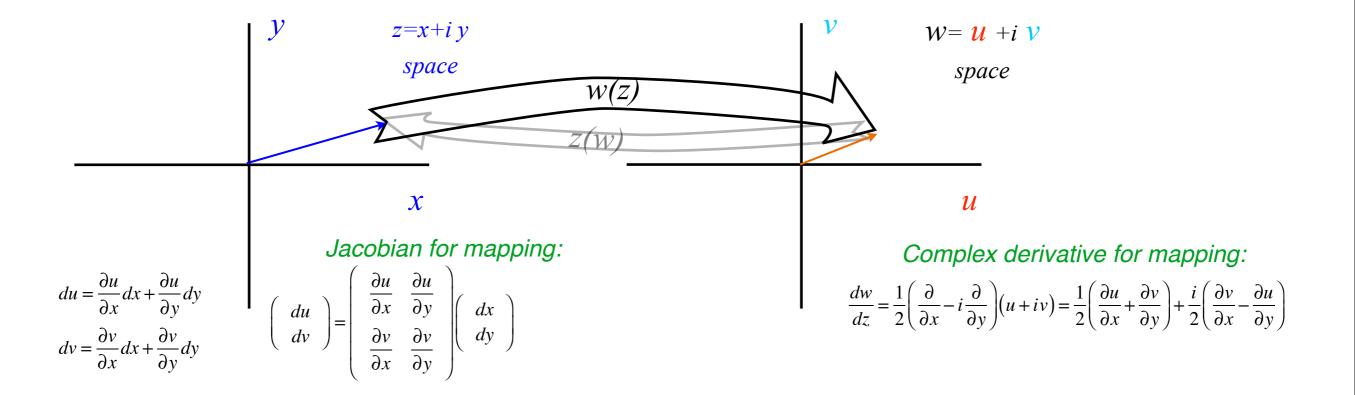
Derivative Relations

$$\frac{\partial \Phi}{\partial x} = \frac{\partial A}{\partial y} \quad \text{is:} \quad \frac{\partial \text{Re}\phi(z)}{\partial x} = \quad \frac{\partial \text{Im}\phi(z)}{\partial y} \quad \text{or:} \quad \frac{\partial \text{Re}f(z)}{\partial x} = \quad \frac{\partial \text{Im}f(z)}{\partial y} \quad \text{is:} \quad \frac{\partial f_x(z)}{\partial x} = \quad \frac{\partial f_y(z)}{\partial y} \\ \frac{\partial \Phi}{\partial y} = -\frac{\partial A}{\partial x} \quad \text{is:} \quad \frac{\partial \text{Re}\phi(z)}{\partial y} = -\frac{\partial \text{Im}\phi(z)}{\partial x} \quad \text{or:} \quad \frac{\partial \text{Re}f(z)}{\partial y} = -\frac{\partial \text{Im}f(z)}{\partial x} \quad \text{is:} \quad \frac{\partial f_x(z)}{\partial y} = -\frac{\partial f_y(z)}{\partial x} \\ \frac{\partial f_x(z)}{\partial y} = -\frac{\partial f_y(z)}{\partial x} \\ \frac{\partial f_y(z)}{\partial y} = -\frac{\partial f_y(z)}{\partial y} \\ \frac{\partial f_y(z)}{\partial y} = -\frac{\partial f_y(z)}{\partial$$



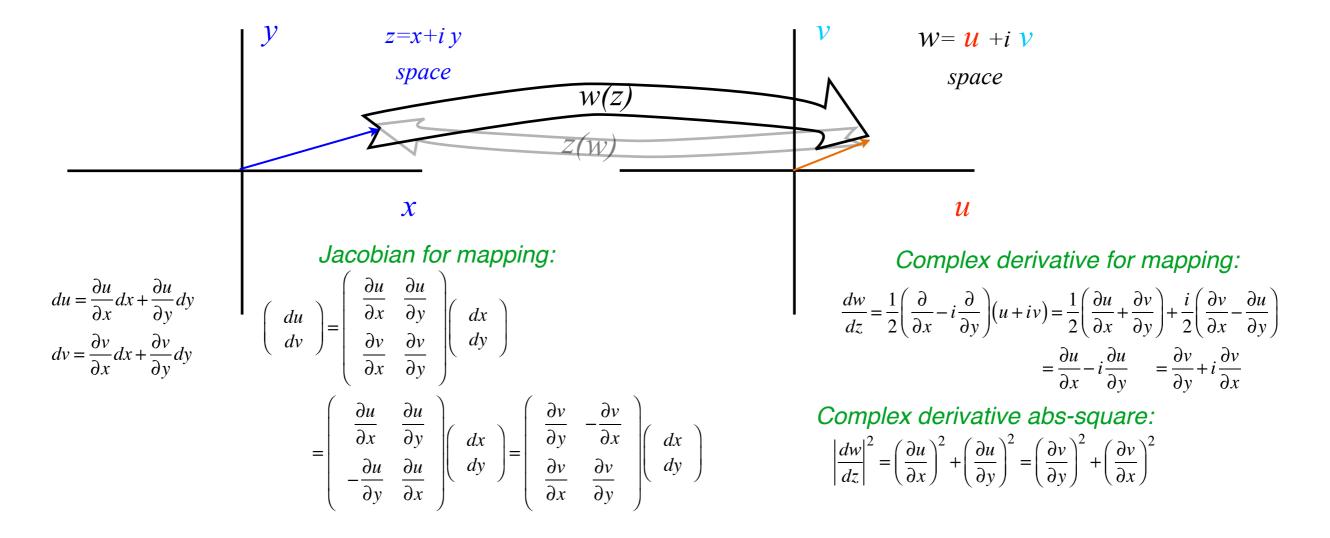
Derivative Relations

$$\frac{\partial \Phi}{\partial x} = \frac{\partial A}{\partial y} \quad \text{is:} \quad \frac{\partial \text{Re}\phi(z)}{\partial x} = -\frac{\partial \text{Im}\phi(z)}{\partial y} \quad \text{or:} \quad \frac{\partial \text{Re}f(z)}{\partial x} = -\frac{\partial \text{Im}f(z)}{\partial y} \quad \text{is:} \quad \frac{\partial f_x(z)}{\partial x} = -\frac{\partial f_y(z)}{\partial y} \\ \frac{\partial \Phi}{\partial y} = -\frac{\partial A}{\partial x} \quad \text{is:} \quad \frac{\partial \text{Re}\phi(z)}{\partial y} = -\frac{\partial \text{Im}\phi(z)}{\partial x} \quad \text{or:} \quad \frac{\partial \text{Re}f(z)}{\partial y} = -\frac{\partial \text{Im}f(z)}{\partial x} \quad \text{is:} \quad \frac{\partial f_x(z)}{\partial y} = -\frac{\partial f_y(z)}{\partial x} \\ \frac{\partial F_x(z)}{\partial y} = -\frac{\partial F_y(z)}{\partial x} \\ \frac{\partial F_y(z)}{\partial y} = -\frac{\partial F_y(z)}{\partial y} \\ \frac{\partial F_y(z)}{\partial y} = -\frac{\partial F_y(z)}{\partial y}$$



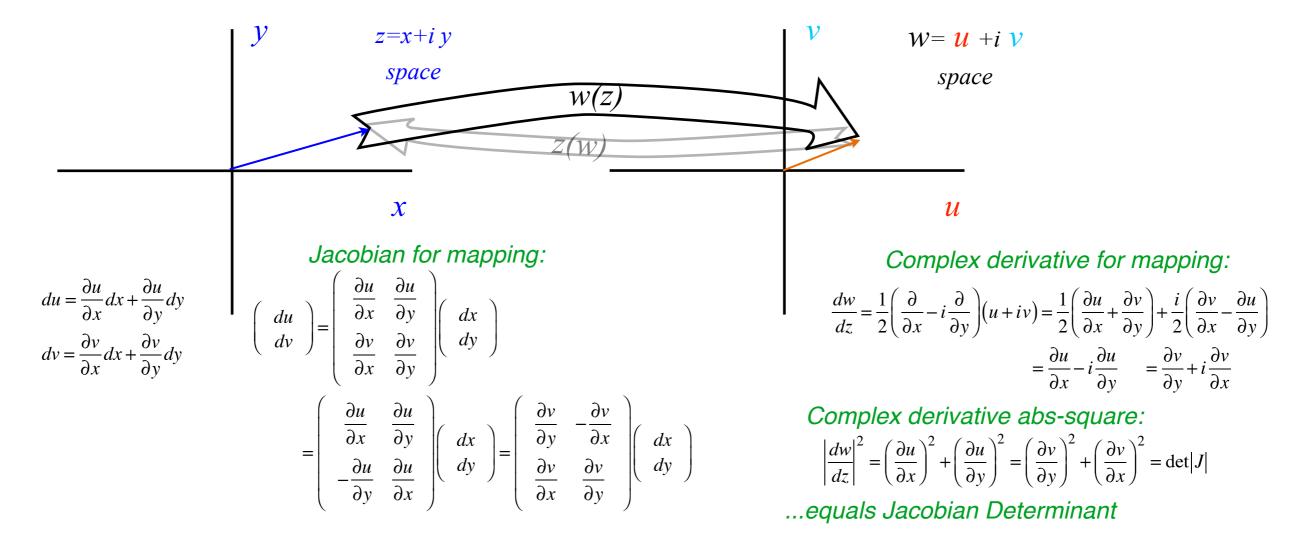
Derivative Relations

$$\frac{\partial \Phi}{\partial x} = \frac{\partial A}{\partial y} \quad \text{is:} \quad \frac{\partial \text{Re}\phi(z)}{\partial x} = -\frac{\partial \text{Im}\phi(z)}{\partial y} \quad \text{or:} \quad \frac{\partial \text{Re}f(z)}{\partial x} = -\frac{\partial \text{Im}f(z)}{\partial y} \quad \text{is:} \quad \frac{\partial f_x(z)}{\partial x} = -\frac{\partial f_y(z)}{\partial y} \\ \frac{\partial \Phi}{\partial y} = -\frac{\partial A}{\partial x} \quad \text{is:} \quad \frac{\partial \text{Re}\phi(z)}{\partial y} = -\frac{\partial \text{Im}\phi(z)}{\partial x} \quad \text{or:} \quad \frac{\partial \text{Re}f(z)}{\partial y} = -\frac{\partial \text{Im}f(z)}{\partial x} \quad \text{is:} \quad \frac{\partial f_x(z)}{\partial y} = -\frac{\partial f_y(z)}{\partial x} \\ \frac{\partial F_x(z)}{\partial y} = -\frac{\partial F_y(z)}{\partial x} \\ \frac{\partial F_y(z)}{\partial y} = -\frac{\partial F_y(z)}{\partial y} \\ \frac{\partial F_y(z)}{\partial y} = -\frac{\partial F_y(z)}{\partial y}$$



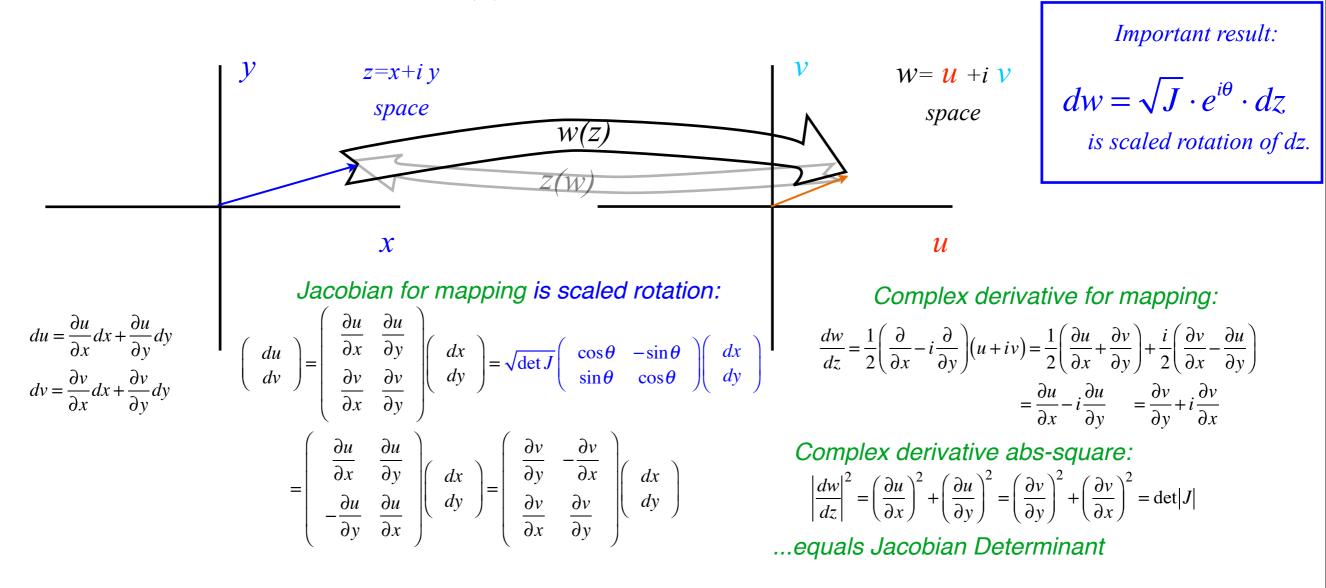
Derivative Relations

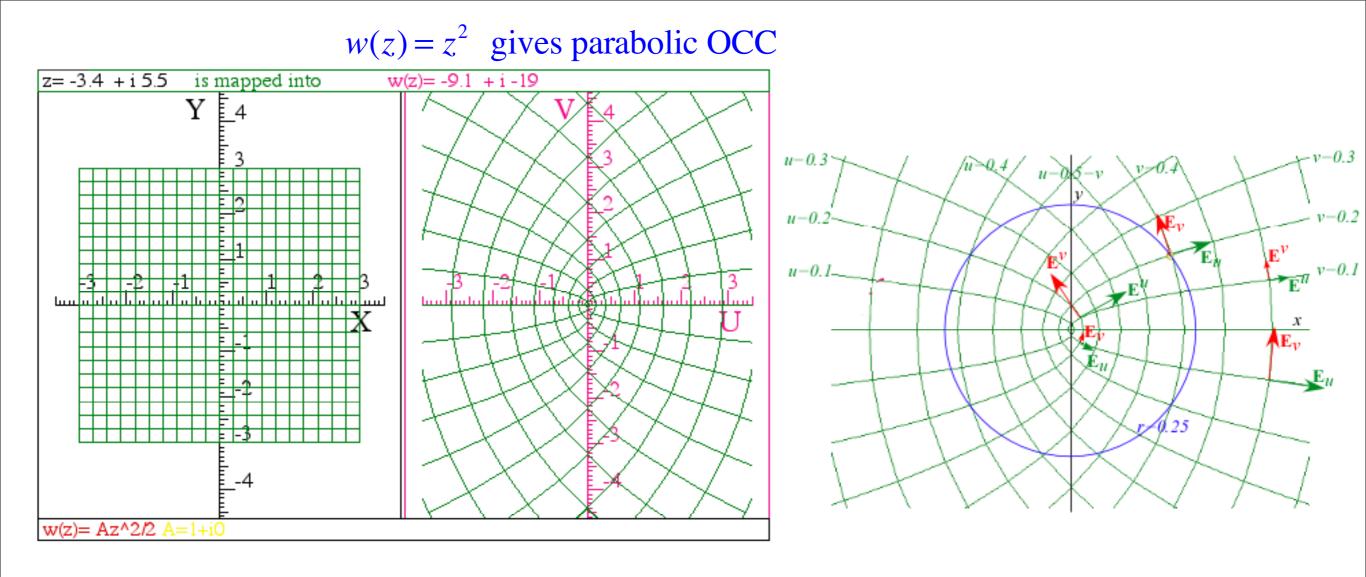
$$\frac{\partial \Phi}{\partial x} = \frac{\partial A}{\partial y} \text{ is: } \frac{\partial \text{Re}\phi(z)}{\partial x} = -\frac{\partial \text{Im}\phi(z)}{\partial y} \text{ or: } \frac{\partial \text{Re}f(z)}{\partial x} = -\frac{\partial \text{Im}f(z)}{\partial y} \text{ is: } \frac{\partial f_x(z)}{\partial x} = -\frac{\partial f_y(z)}{\partial y} \text{ is: } \frac{\partial f_x(z)}{\partial y} = -\frac{\partial f_y(z)}{\partial x} \text{ or: } \frac{\partial \text{Re}f(z)}{\partial y} = -\frac{\partial \text{Im}f(z)}{\partial x} \text{ is: } \frac{\partial f_x(z)}{\partial y} = -\frac{\partial f_y(z)}{\partial x} \text{ or: } \frac{\partial \text{Re}f(z)}{\partial y} = -\frac{\partial \text{Im}f(z)}{\partial x} \text{ is: } \frac{\partial f_x(z)}{\partial y} = -\frac{\partial f_y(z)}{\partial x} \text{ or: } \frac{\partial \text{Re}f(z)}{\partial y} = -\frac{\partial \text{Im}f(z)}{\partial x} \text{ or: } \frac{\partial \text{Re}f(z)}{\partial y} = -\frac{\partial \text{Im}f(z)}{\partial x} \text{ or: } \frac{\partial f_x(z)}{\partial y} = -\frac{\partial \text{Im}f(z)}{\partial x} \text{ or: } \frac{\partial f_y(z)}{\partial y} \text{ or: } \frac{\partial \text{Re}f(z)}{\partial y} = -\frac{\partial \text{Im}f(z)}{\partial x} \text{ or: } \frac{\partial f_y(z)}{\partial y} \text{ or: } \frac{\partial \text{Re}f(z)}{\partial y} = -\frac{\partial \text{Im}f(z)}{\partial x} \text{ or: } \frac{\partial f_y(z)}{\partial y} \text{ or: } \frac{\partial \text{Re}f(z)}{\partial y} = -\frac{\partial \text{Im}f(z)}{\partial x} \text{ or: } \frac{\partial f_y(z)}{\partial y} \text{ or: } \frac{\partial \text{Re}f(z)}{\partial y} = -\frac{\partial \text{Im}f(z)}{\partial x} \text{ or: } \frac{\partial f_y(z)}{\partial y} \text{ or: } \frac{\partial \text{Re}f(z)}{\partial y} = -\frac{\partial \text{Im}f(z)}{\partial x} \text{ or: } \frac{\partial f_y(z)}{\partial y} \text{ or: } \frac{\partial \text{Re}f(z)}{\partial y} = -\frac{\partial \text{Im}f(z)}{\partial x} \text{ or: } \frac{\partial \text{Im}f(z)}{\partial y} \text{ or: } \frac{\partial \text{Im}f$$

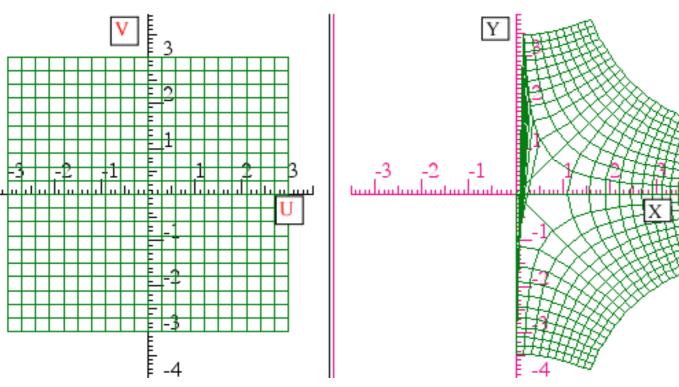


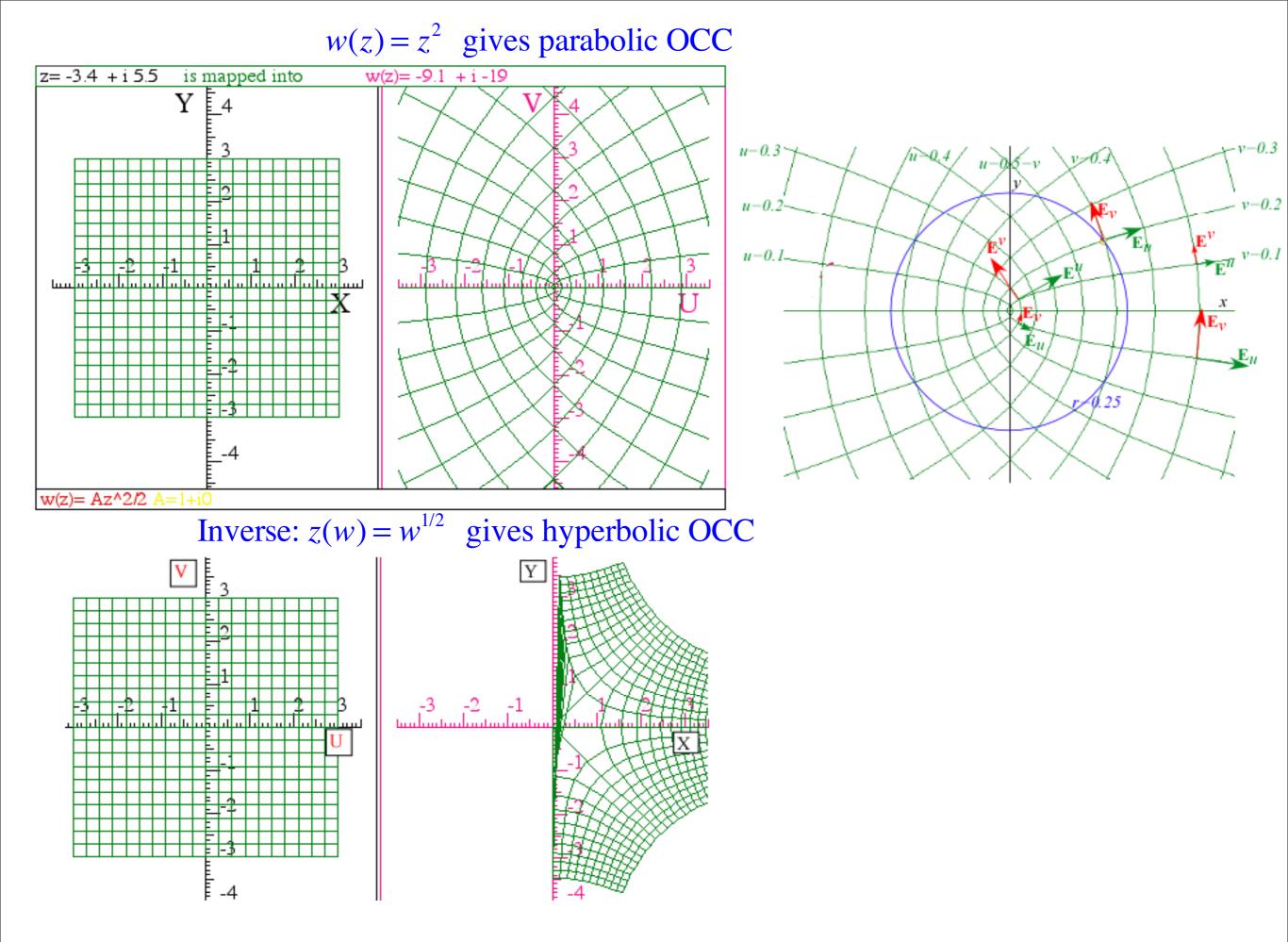
The half-n'-half results are called Riemann-Cauchy Derivative Relations

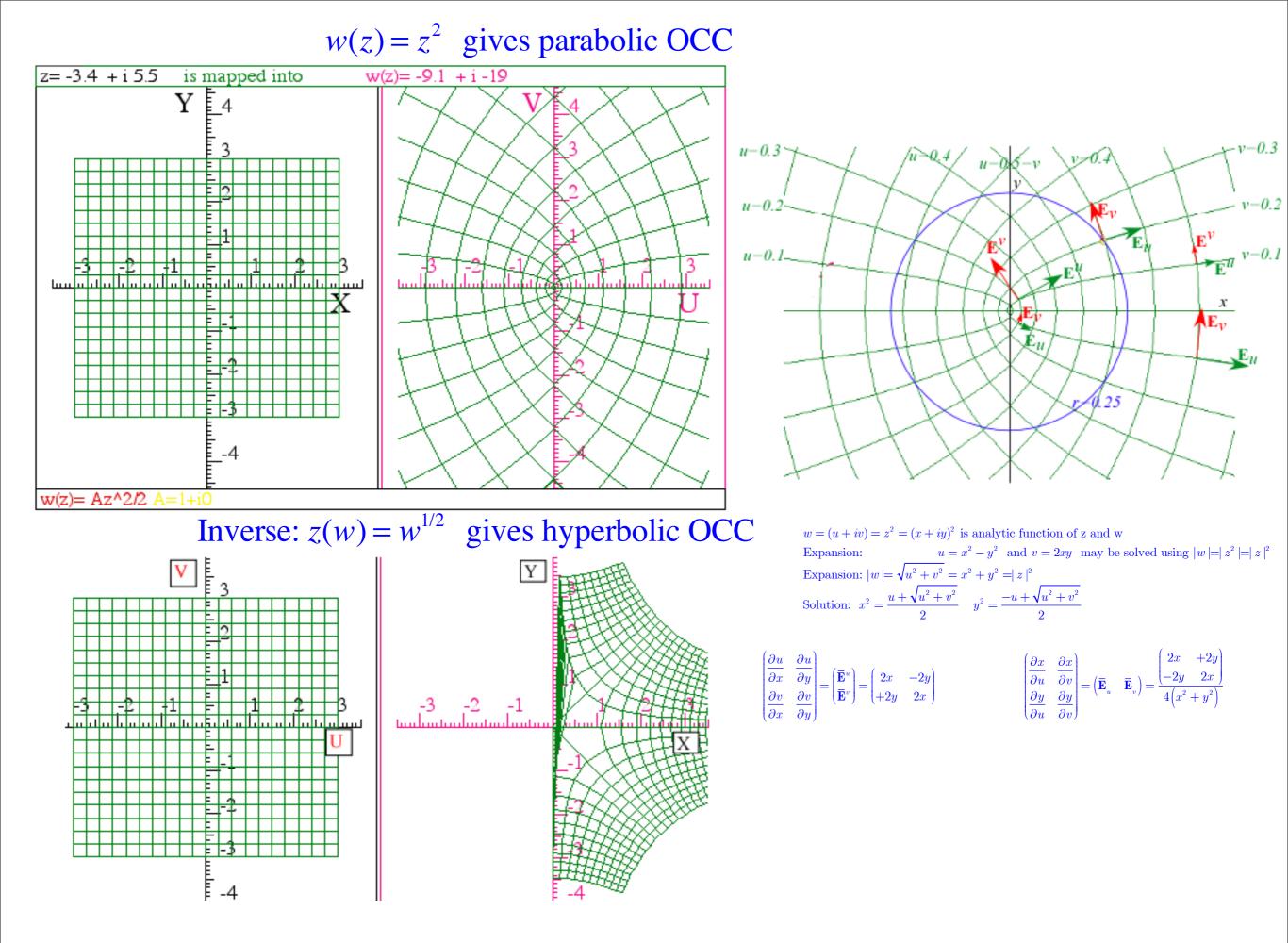
$$\frac{\partial \Phi}{\partial x} = \frac{\partial A}{\partial y} \text{ is: } \frac{\partial \text{Re}\phi(z)}{\partial x} = -\frac{\partial \text{Im}\phi(z)}{\partial y} \text{ or: } \frac{\partial \text{Re}f(z)}{\partial x} = -\frac{\partial \text{Im}f(z)}{\partial y} \text{ is: } \frac{\partial f_x(z)}{\partial x} = -\frac{\partial f_y(z)}{\partial y} \text{ is: } \frac{\partial f_x(z)}{\partial x} = -\frac{\partial f_y(z)}{\partial y} \text{ or: } \frac{\partial \text{Re}f(z)}{\partial y} = -\frac{\partial \text{Im}f(z)}{\partial x} \text{ is: } \frac{\partial f_x(z)}{\partial y} = -\frac{\partial f_y(z)}{\partial x} \text{ or: } \frac{\partial \text{Re}f(z)}{\partial y} = -\frac{\partial \text{Im}f(z)}{\partial x} \text{ is: } \frac{\partial f_x(z)}{\partial y} = -\frac{\partial f_y(z)}{\partial x} \text{ or: } \frac{\partial \text{Re}f(z)}{\partial y} = -\frac{\partial \text{Im}f(z)}{\partial x} \text{ or: } \frac{\partial \text{Re}f(z)}{\partial y} = -\frac{\partial \text{Im}f(z)}{\partial x} \text{ or: } \frac{\partial f_y(z)}{\partial y} \text{ or: } \frac{\partial \text{Re}f(z)}{\partial y} = -\frac{\partial \text{Im}f(z)}{\partial x} \text{ or: } \frac{\partial f_y(z)}{\partial y} \text{ or: } \frac{\partial \text{Re}f(z)}{\partial y} = -\frac{\partial \text{Im}f(z)}{\partial x} \text{ or: } \frac{\partial f_y(z)}{\partial y} \text{ or: } \frac{\partial \text{Re}f(z)}{\partial y} = -\frac{\partial \text{Im}f(z)}{\partial x} \text{ or: } \frac{\partial f_y(z)}{\partial y} \text{ or: } \frac{\partial \text{Re}f(z)}{\partial y} = -\frac{\partial \text{Im}f(z)}{\partial x} \text{ or: } \frac{\partial f_y(z)}{\partial y} \text{ or: } \frac{\partial \text{Im}f(z)}{\partial y} \text{ or: } \frac{\partial \text{Im}f(z)}{$$











Non-analytic potential, force, and source field functions

A general 2D complex field may have:

- 1. non-analytic *potential field function* $\phi(z,z^*) = \Phi(x,y) + iA(x,y)$,
- 2. non-analytic *force field function* $f(z,z^*) = f_x(x,y) + if_y(x,y)$,
- 3. non-analytic *source distribution function* $s(z,z^*) = \rho(x,y) + i I(x,y)$.

Source definitions are made to generalize the f^* field equations (10.33) based on relations (10.31) and (10.32).

$$2\frac{df^*}{dz} = s^*(z, z^*) \qquad \qquad 2\frac{df}{dz^*} = s(z, z^*)$$

Field equations for the potentials are like (10.33) with an extra factor of 2.

$$2\frac{d\phi}{dz} = f(z, z^*) \qquad \qquad 2\frac{d\phi^*}{dz^*} = f^*(z, z^*)$$

Source equations (10.46) expand like (10.32) into a real and imaginary parts of divergence and curl terms.

$$s^{*}(z,z^{*}) = 2\frac{df^{*}}{dz} = \left[\frac{\partial}{\partial x} - i\frac{\partial}{\partial y}\right] \left[f_{x}^{*}(x,y) + if_{y}^{*}(x,y)\right] = \rho - iI, \quad \text{where:} f_{x}^{*} = f_{x}, \text{ and:} f_{y}^{*} = -f_{y}$$
$$= \left[\frac{\partial}{\partial x} + \frac{\partial}{\partial y} + i\left[\frac{\partial}{\partial x} + \frac{\partial}{\partial y} + \frac{\partial}{\partial y} + i\left[\frac{\partial}{\partial x} + \frac{\partial}{\partial y} + i\left[\frac{\partial}{\partial y} + i\left[\frac{\partial}{\partial y} + \frac{\partial}{\partial y} + i\left[\frac{\partial}{\partial y} + \frac{\partial}{\partial y} + i\left[\frac{\partial}{\partial y}$$

Real part: Poisson scalar source equation (charge density ρ). Imaginary part: Biot-Savart vector source equation(current density I) $\nabla \bullet \mathbf{f}^* = \rho$ $\nabla \times \mathbf{f}^* = -I$

Field equations (10.47) expand into Re and Im parts; x and y components of grad Φ and curlA_Z from potential $\phi = \Phi + iA$ or $\phi^* = \Phi - iA$.

$$f^{*}(z,z^{*}) = 2\frac{d\phi^{*}}{dz^{*}} = \left[\frac{\partial}{\partial x} + i\frac{\partial}{\partial y}\right] (\Phi - iA) = f_{x}^{*} + if_{y}^{*}$$
$$= \left[\frac{\partial\Phi}{\partial x} + i\frac{\partial\Phi}{\partial y}\right] + \left[\frac{\partial A}{\partial y} - i\frac{\partial A}{\partial x}\right] = \left[\nabla\Phi\right] + \left[\nabla \times \mathbf{A}_{Z}\right]$$

Two parts: gradient of scalar potential called the *longitudinal field* \mathbf{f}_{L}^{*} and curl of a vector potential called the *transverse field* \mathbf{f}_{T}^{*} . $\mathbf{f}^{*} = \mathbf{f}_{L}^{*} + \mathbf{f}_{T}^{*}$ $\mathbf{f}_{L}^{*} = \nabla \Phi$ $\mathbf{f}_{L}^{*} = \nabla \times \mathbf{A}$

(For source-free analytic functions these two fields are identical.)



Potential and source field theory reduced to sophomore mechanics of motion!

Example 1 Consider a non-analytic field $f(z) = (z^*)^2$ or $f^*(z) = z^2$.

The non-analytic potential function follows by integrating

$$s^{*}(z,z^{*}) = 2\frac{df^{*}}{dz} = 4z = 4x + i4y,$$

or: $\rho = 4x, \quad and: \quad I = -4y.$
 $\phi(z,z^{*}) = \frac{1}{2} \int f(z) dz = \frac{1}{2} \int (z^{*})^{2} dz = \frac{z(z^{*})^{2}}{2} = \frac{(x+iy)(x^{2}-y^{2}-i2xy)}{2},$
or: $\Phi = \frac{x^{3}+xy^{2}}{2}, \quad and: \quad A = \frac{-y^{3}-yx^{2}}{2}.$

The longitudinal field f_T^* is quite different from the transverse field f_L^* .

$$\mathbf{f}_{\mathbf{L}}^{*} = \nabla \Phi = \nabla \left(\frac{x^{3} + xy^{2}}{2}\right) = \begin{pmatrix} \frac{3x^{2} + y^{2}}{2} \\ xy \end{pmatrix}, \quad \mathbf{f}_{\mathbf{T}}^{*} = \nabla \times \mathbf{A} = \nabla \times \left(\frac{-y^{3} - yx^{2}}{2}\mathbf{e}_{\mathbf{z}}\right) = \begin{pmatrix} \frac{\partial A}{\partial y} \\ -\frac{\partial A}{\partial x} \\ -\frac{\partial A}{\partial x} \end{pmatrix} = \begin{pmatrix} \frac{-3y^{2} - x^{2}}{2} \\ xy \end{pmatrix}.$$

The longitudinal field $\mathbf{f}_{\mathbf{L}}^*$ has no curl and the transverse field $\mathbf{f}_{\mathbf{T}}^*$ has no divergence. The sum field has both making a violent storm, indeed, as shown by a plot of in Fig. 10.17.

$$\mathbf{f}^* = \mathbf{f}_{\mathbf{L}}^* + \mathbf{f}_{\mathbf{T}}^* = \begin{pmatrix} \frac{3x^2 + y^2}{2} \\ xy \end{pmatrix} + \begin{pmatrix} \frac{-3y^2 - x^2}{2} \\ xy \end{pmatrix} = \begin{pmatrix} x^2 - y^2 \\ 2xy \end{pmatrix}, \quad \nabla \cdot \mathbf{f}^* = \nabla \cdot \mathbf{f}_{\mathbf{L}}^* = 4x = \rho, \quad \nabla \times \mathbf{f}^* = \nabla \times \mathbf{f}_{\mathbf{T}}^* = 4y = -I.$$

