## Complex Variables, Series, and Field Coordinates II.

## (Ch. 10 of Unit 1)

1. The Story of e (A Tale of Great \$Interest $\$$ )How good are those power series?Taylor-Maclaurin series, imaginary interest, and complex exponentials
2. What good are complex exponentials?

Easy trig
Easy 2D vector analysis
Easy oscillator phase analysis Easy rotation and "dot" or "cross" products

1. Complex numbers provide "automatic trigonometry"
2. Complex numbers add like vectors.
3. Complex exponentials Ae ${ }^{-i \omega t}$ track position and velocity using Phasor Clock.
4. Complex products provide 2D rotation operations.
5. Complex products provide 2D "dot"(•) and "cross"(x) products.
6. Easy 2D vector calculus
Easy 2D vector derivatives Lecture 16 Thur. 10.16.14
Easy 2D source-free field theory $\quad$ starts here $\quad \frac{6 . \text { Complex derivative contains "divergence" }(\nabla \cdot F) \text { and "curl" }(\nabla x F) \text { of } 2 D \text { vector field }}{7 \text {. Invent source-free } 2 D \text { vector fields }[\nabla \cdot F=0 \text { and } \nabla x F=0]}$

Easy 2D vector field-potential theory
4. Riemann-Cauchy relations (What's analytic? What's not?)

Easy 2D curvilinear coordinate discovery Easy 2D circulation and flux integrals
Easy 2D monopole, dipole, and $2^{n}$-pole analysis Easy $2^{n}$-multipole field and potential expansion Easy stereo-projection visualization
Cauchy integrals, Laurent-Maclaurin series
8. Complex potential $\phi$ contains "scalar" $(\mathrm{F}=\nabla \Phi)$ and "vector" $\mathrm{F}=\nabla \times \mathrm{A})$ potentials The half-n'-half results: (Riemann-Cauchy Derivative Relations)
9. Complex potentials define 2D Orthogonal Curvilinear Coordinates (OCC) of field 10. Complex integrals $\int f(z) d z$ count $2 D$ "circulation" $\left(\int \mathrm{F} \cdot \mathrm{dr}\right)$ and "flux" $(\mathbf{F x d r})$
11. Complex integrals define $2 D$ monopole fields and potentials
12. Complex derivatives give 2D dipole fields
13. More derivatives give $2 \mathrm{D} 2^{\mathrm{N}}$-pole fields...
14. ...and $2^{\mathrm{N}}$-pole multipole expansions of fields and potentials...
15. ...and Laurent Series...
16. ...and non-analytic source analysis.

## 5. Mapping and Non-analytic 2D source field analysis

6. Complex derivative contains "divergence" $(\nabla \cdot F)$ and "curl" $(\nabla x F)$ of $2 D$ vector field Relation of $\left(z, z^{*}\right)$ to ( $x=\operatorname{Re} z, y=\operatorname{Im} z$ ) defines a $z$-derivative $\frac{d f}{d z}$ and "star" $z^{*}$-derivative. $\frac{d f}{d z *}$

$$
\begin{array}{lll}
z=x+i y & x=\frac{1}{2}\left(z+z^{*}\right) & \frac{d f}{d z}=\frac{\partial x}{\partial z} \frac{\partial f}{\partial x}+\frac{\partial y}{\partial z} \frac{\partial f}{\partial y}=\frac{1}{2} \frac{\partial f}{\partial x}-\frac{i}{2} \frac{\partial f}{\partial y} \\
z^{*}=x-i y & y=\frac{1}{2 i}\left(z-z^{*}\right) & \text { Applying } \\
\text { chain-rule } & \frac{d f}{d z *}=\frac{\partial x}{\partial z *} \frac{\partial f}{\partial x}+\frac{\partial y}{\partial z *} \frac{\partial f}{\partial y}=\frac{1}{2} \frac{\partial f}{\partial x}+\frac{i}{2} \frac{\partial f}{\partial y}
\end{array}
$$

## What Good Are Complex Exponentials? (contd.)

6. Complex derivative contains "divergence" $(\nabla \cdot F)$ and "curl" $(\nabla \times F)$ of $2 D$ vector field Relation of $\left(z, z^{*}\right)$ to ( $x=\operatorname{Re} z, y=\operatorname{Im} z$ ) defines a $z$-derivative $\frac{d f}{d z}$ and "star" $z^{*}$-derivative. $\frac{d f}{d z *}$

$$
\begin{array}{lll}
z=x+i y & x=\frac{1}{2}\left(z+z^{*}\right) & \frac{d f}{d z}=\frac{\partial x}{\partial z} \frac{\partial f}{\partial x}+\frac{\partial y}{\partial z} \frac{\partial f}{\partial y}=\frac{1}{2} \frac{\partial f}{\partial x}-\frac{i}{2} \frac{\partial f}{\partial y} \\
z^{*}=x-i y & y=\frac{1}{2 i}\left(z-z^{*}\right) & \frac{d f}{d z^{*}}=\frac{\partial x}{\partial z^{*}} \frac{\partial f}{\partial x}+\frac{\partial y}{\partial z *} \frac{\partial f}{\partial y}=\frac{1}{2} \frac{\partial f}{\partial x}+\frac{i}{2} \frac{\partial f}{\partial y}
\end{array}
$$

Derivative chain-rule shows real part of $\frac{d f}{d z}$ has 2D divergence $\nabla \cdot \mathbf{f}$ and imaginary part has curl $\nabla \times \mathbf{f}$.

$$
\frac{d f}{d z}=\frac{d}{d z}\left(f_{x}+i f_{y}\right)=\frac{1}{2}\left(\frac{\partial f}{\partial x}-i \frac{\partial f}{\partial y}\right)\left(f_{x}+i f_{y}\right)=\frac{1}{2}\left(\frac{\partial f_{x}}{\partial x}+\frac{\partial f_{y}}{\partial y}\right)+\frac{i}{2}\left(\frac{\partial f_{y}}{\partial x}-\frac{\partial f_{x}}{\partial y}\right)=\frac{1}{2} \nabla \bullet \mathbf{f}+\frac{i}{2}|\nabla \times \mathbf{f}|_{Z \perp(x, y)}
$$

6. Complex derivative contains "divergence" $(\nabla \cdot F)$ and "curl" $(\nabla \times F)$ of $2 D$ vector field Relation of $\left(z, z^{*}\right)$ to ( $x=\operatorname{Re} z, y=\operatorname{Im} z$ ) defines a $z$-derivative $\frac{d f}{d z}$ and "star" $z^{*}$-derivative. $\frac{d f}{d z^{*}}$

$$
\begin{array}{lll}
z=x+i y & x=\frac{1}{2}\left(z+z^{*}\right) & \frac{d f}{d z}=\frac{\partial x}{\partial z} \frac{\partial f}{\partial x}+\frac{\partial y}{\partial z} \frac{\partial f}{\partial y}=\frac{1}{2} \frac{\partial f}{\partial x}-\frac{i}{2} \frac{\partial f}{\partial y} \\
z^{*}=x-i y & y=\frac{1}{2 i}\left(z-z^{*}\right) & \frac{d f}{d z^{*}}=\frac{\partial x}{\partial z^{*}} \frac{\partial f}{\partial x}+\frac{\partial y}{\partial z^{*}} \frac{\partial f}{\partial y}=\frac{1}{2} \frac{\partial f}{\partial x}+\frac{i}{2} \frac{\partial f}{\partial y}
\end{array}
$$

Derivative chain-rule shows real part of $\frac{d f}{d z}$ has 2D divergence $\nabla$ •f and imaginary part has curl $\nabla \times \mathbf{f}$.

$$
\frac{d f}{d z}=\frac{d}{d z}\left(f_{x}+i f_{y}\right)=\frac{1}{2}\left(\frac{\partial f}{\partial x}-i \frac{\partial f}{\partial y}\right)\left(f_{x}+i f_{y}\right)=\frac{1}{2}\left(\frac{\partial f_{x}}{\partial x}+\frac{\partial f_{y}}{\partial y}\right)+\frac{i}{2}\left(\frac{\partial f_{y}}{\partial x}-\frac{\partial f_{x}}{\partial y}\right)=\frac{1}{2} \nabla \bullet \mathbf{f}+\frac{i}{2}|\nabla \times \mathbf{f}|_{Z \perp(x, y)}
$$

## 7. Invent source-free $2 D$ vector fields $[\nabla \cdot \mathrm{F}=0$ and $\nabla \mathrm{xF}=0$ ]

We can invent source-free $2 D$ vector fields that are both zero-divergence and zero-curl.
Take any function $f(z)$, conjugate it (change all $i$ 's to $-i$ ) to give $f^{*}\left(z^{*}\right)$ for which $\frac{d f^{*}}{d z}=0$.

## 6. Complex derivative contains "divergence" $(\nabla \cdot F)$ and "curl" $(\nabla \times F)$ of $2 D$ vector field

Relation of $\left(z, z^{*}\right)$ to ( $x=\operatorname{Re} z, y=\operatorname{Im} z$ ) defines a $z$-derivative $\frac{d f}{d z}$ and "star" $z^{*}$-derivative. $\frac{d f}{d z^{*}}$

$$
\begin{array}{lll}
z=x+i y & x=\frac{1}{2}\left(z+z^{*}\right) & \frac{d f}{d z}=\frac{\partial x}{\partial z} \frac{\partial f}{\partial x}+\frac{\partial y}{\partial z} \frac{\partial f}{\partial y}=\frac{1}{2} \frac{\partial f}{\partial x}-\frac{i}{2} \frac{\partial f}{\partial y} \\
z^{*}=x-i y & y=\frac{1}{2 i}\left(z-z^{*}\right) & \frac{d f}{d z^{*}}=\frac{\partial x}{\partial z^{*}} \frac{\partial f}{\partial x}+\frac{\partial y}{\partial z^{*}} \frac{\partial f}{\partial y}=\frac{1}{2} \frac{\partial f}{\partial x}+\frac{i}{2} \frac{\partial f}{\partial y}
\end{array}
$$

Derivative chain-rute shows real part of $\frac{d f}{d z}$ has 2D divergence $\nabla \cdot f$ and imaginary part has curl $\nabla \times \mathbf{f}$.

$$
\frac{d f}{d z}=\frac{d}{d z}\left(f_{x}+i f_{y}\right)=\frac{1}{2}\left(\frac{\partial f}{\partial x}-i \frac{\partial f}{\partial y}\right)\left(f_{x}+i f_{y}\right)=\frac{1}{2}\left(\frac{\partial f_{x}}{\partial x}+\frac{\partial f_{y}}{\partial y}\right)+\frac{i}{2}\left(\frac{\partial f_{y}}{\partial x}-\frac{\partial f_{x}}{\partial y}\right)=\frac{1}{2} \nabla \bullet \mathbf{f}+\frac{i}{2}|\nabla \times \mathbf{f}|_{Z \perp(x, y)}
$$

## 7. Invent source-free $2 D$ vector fields $[\nabla \cdot \mathrm{F}=0$ and $\nabla \mathrm{xF}=0$ ]

We can invent source-free $2 D$ vector fields that are both zero-divergence and zero-curl.
Take any function $f(z)$, conjugate it (change all $i$ 's to $-i$ ) to give $f^{*}\left(z^{*}\right)$ for which $\frac{d f^{*}}{d z}=0$
For example: if $f(z)=a \cdot z$ then $f^{*}\left(z^{*}\right)=a \cdot z^{*}=a(x-i y)$ is not function of $z$ so it has zero $z$-derivative.
$\mathbf{F}=\left(F_{x}, F_{y}\right)=\left(f_{x}^{*}, f_{y}^{*}\right)=(a \cdot x,-a \cdot y)$ has zero divergence: $\nabla \cdot \mathbf{F}=0$ and has zero curl: $|\nabla \times \mathbf{F}|=0$.

$$
\nabla \bullet \mathbf{F}=\frac{\partial F_{x}}{\partial x}+\frac{\partial F_{y}}{\partial y}=\frac{\partial(a x)}{\partial x}+\frac{\partial F(-a y)}{\partial y}=0 \quad \left\lvert\, \nabla \times \mathbb{F}_{Z \perp(x, y)}=\frac{\partial F_{y}}{\partial x}-\frac{\partial F_{x}}{\partial y}=\frac{\partial(-a y)}{\partial x}-\frac{\partial F(a x)}{\partial y}=0\right.
$$

A $D F L$ field $\mathbf{F}$ (Divergence-Free-Laminar)

## 7. Invent source-free $2 D$ vector fields [ $\nabla \cdot \mathrm{F}=0$ and $\nabla \mathrm{xF}=0$ ]

We can invent source-free $2 D$ vector fields that are both zero-divergence and zero-curl. Take any function $f(z)$, conjugate it (change all $i$ 's to $-i$ ) to give $f^{*}\left(z^{*}\right)$ for which

For example: if $f(z)=a \cdot z$ then $f^{*}\left(z^{*}\right)=a \cdot z^{*}=a(x-i y)$ is not function of $z$ so it has zero $z$-derivative.

$$
\begin{aligned}
& \mathbf{F}=\left(F_{x}, F_{y}\right)=\left(f_{x}^{*}, f_{y}^{*}\right)=(a \cdot x,-a \cdot y) \text { has zero divergence: } \nabla \cdot \mathbf{F}=0 \text { and has zero curl: }|\nabla \times \mathbf{F}|=0 . \\
& \nabla \cdot \mathbf{F}=\frac{\partial F_{x}}{\partial x}+\frac{\partial F_{y}}{\partial y}=\frac{\partial(a x)}{\partial x}+\frac{\partial F(-a y)}{\partial y}=0 \quad \left\lvert\, \nabla \times \mathbf{F}_{z \perp(x, y)}=\frac{\partial F_{y}}{\partial x}-\frac{\partial F_{x}}{\partial y}=\frac{\partial(-a y)}{\partial x}-\frac{\partial F(a x)}{\partial y}=0\right.
\end{aligned}
$$


$\mathbf{F}=\left(f_{x}^{*} x, f_{y}^{*}\right)=(a \cdot x,-a \cdot y)$ is a divergence-free laminar (DFL) field.

# What Good are complex variables? 

Easy $2 D$ vector calculus
Easy 2D vector derivatives
Easy 2D source-free field theory
Easy $2 D$ vector field-potential theory
8. Complex potential $\phi$ contains "scalar" $(\mathrm{F}=\nabla \Phi)$ and "vector" $\mathrm{F}=\nabla x \mathrm{~A})$ potentials

Any $D F L$ field $\mathbf{F}$ is a gradient of a scalar potential field $\Phi$ or a curl of a vector potential field $\mathbf{A}$.

$$
\mathbf{F}=\nabla \Phi \quad \mathbf{F}=\nabla \times \mathbf{A}
$$

A complex potential $\phi(z)=\Phi(x, y)+i \mathrm{~A}(x, y)$ exists whose $z$-derivative is $f(z)=d \phi / d z$.
Its complex conjugate $\phi^{*}\left(z^{*}\right)=\Phi(x, y)-i \mathrm{~A}(x, y)$ has $z^{*}$-derivative $f^{*}\left(z^{*}\right)=d \phi^{*} / d z^{*}$ giving $D F L$ field $\mathbf{F}$.
8. Complex potential $\phi$ contains "scalar" $(\mathrm{F}=\nabla \Phi)$ and "vector" $\mathrm{F}=\nabla x \mathrm{~A})$ potentials Any $D F L$ field $\mathbf{F}$ is a gradient of a scalar potential field $\Phi$ or a curl of a vector potential field $\mathbf{A}$.

$$
\mathbf{F}=\nabla \Phi \quad \mathbf{F}=\nabla \times \mathbf{A}
$$

A complex potential $\phi(z)=\Phi(x, y)+i \mathrm{~A}(x, y)$ exists whose $z$-derivative is $f(z)=d \phi / d z$.
Its complex conjugate $\phi^{*}\left(z^{*}\right)=\Phi(x, y)-i \mathrm{~A}(x, y)$ has $z^{*}$-derivative $f^{*}\left(z^{*}\right)=d \phi^{*} / d z^{*}$ giving $D F L$ field $\mathbf{F}$.
To find $\phi=\Phi+i \mathrm{~A}$ integrate $f(z)=a \cdot z$ to get $\phi$ and isolate real $(\operatorname{Re} \phi=\Phi)$ and imaginary ( $\operatorname{lm} \phi=\mathrm{A})$ parts.
8. Complex potential $\phi$ contains "scalar" $(\mathrm{F}=\nabla \Phi)$ and "vector" $(\mathrm{F}=\nabla x \mathrm{~A})$ potentials

Any $D F L$ field $\mathbf{F}$ is a gradient of a scalar potential field $\Phi$ or a curl of a vector potential field $\mathbf{A}$.

$$
\mathbf{F}=\nabla \Phi \quad \mathbf{F}=\nabla \times \mathbf{A}
$$

A complex potential $\phi(z)=\Phi(x, y)+i \mathrm{~A}(x, y)$ exists whose $z$-derivative is $f(z)=d \phi / d z$.
Its complex conjugate $\phi^{*}\left(z^{*}\right)=\Phi(x, y)-i \mathrm{~A}(x, y)$ has $z^{*}$-derivative $f^{*}\left(z^{*}\right)=d \phi^{*} / d z^{*}$ giving $D F L$ field $\mathbf{F}$.
To find $\phi=\Phi+i \mathrm{~A}$ integrate $f(z)=a \cdot z$ to get $\phi$ and isolate real $(\operatorname{Re} \phi=\Phi)$ and imaginary ( $\operatorname{lm} \phi=\mathrm{A})$ parts.
$f(z)=\frac{d \phi}{d z} \Rightarrow \quad \phi=\quad \Phi \quad+i \quad \mathrm{~A}=\int f \cdot d z=\int a z \cdot d z=\frac{1}{2} a z^{2}$
8. Complex potential $\phi$ contains "scalar" $(\mathrm{F}=\nabla \Phi)$ and "vector" $(\mathrm{F}=\nabla x \mathrm{~A})$ potentials

Any $D F L$ field $\mathbf{F}$ is a gradient of a scalar potential field $\Phi$ or a curl of a vector potential field $\mathbf{A}$.

$$
\mathbf{F}=\nabla \Phi \quad \mathbf{F}=\nabla \times \mathbf{A}
$$

A complex potential $\phi(z)=\Phi(x, y)+i \mathrm{~A}(x, y)$ exists whose $z$-derivative is $f(z)=d \phi / d z$.
Its complex conjugate $\phi^{*}\left(z^{*}\right)=\Phi(x, y)-i \mathbf{A}(x, y)$ has $z^{*}$-derivative $f^{*}\left(z^{*}\right)=d \phi^{*} / d z^{*}$ giving $D F L$ field $\mathbf{F}$.
To find $\phi=\Phi+i \mathrm{~A}$ integrate $f(z)=a \cdot z$ to get $\phi$ and isolate real $(\operatorname{Re} \phi=\Phi)$ and imaginary ( $\operatorname{lm} \phi=\mathrm{A}$ ) parts.
$f(z)=\frac{d \phi}{d z} \Rightarrow \quad \phi=\overbrace{}^{\Phi}+i \quad \underbrace{\mathbf{A}}=\int f \cdot d z=\int a z \cdot d z=\frac{1}{2} a z^{2}=\frac{1}{2} a(x+i y)^{2}$
$=\overbrace{\frac{1}{2}}^{a\left(x^{2}-y^{2}\right)}+i \overbrace{a x y}$

## 8. Complex potential $\phi$ contains "scalar" $(\mathrm{F}=\nabla \Phi)$ and "vector" $(\mathrm{F}=\nabla x \mathrm{~A})$ potentials

Any DFL field $\mathbf{F}$ is a gradient of a scalar potential field $\Phi$ or a curl of a vector potential field $\mathbf{A}$.

$$
\mathbf{F}=\nabla \Phi \quad \mathbf{F}=\nabla \times \mathbf{A}
$$

A complex potential $\phi(z)=\Phi(x, y)+i \mathrm{~A}(x, y)$ exists whose $z$-derivative is $f(z)=d \phi / d z$.
Its complex conjugate $\phi^{*}\left(z^{*}\right)=\Phi(x, y)-i \mathrm{~A}(x, y)$ has $z^{*}$-derivative $f^{*}\left(z^{*}\right)=d \phi^{*} / d z^{*}$ giving $D F L$ field $\mathbf{F}$.
To find $\phi=\Phi+i \mathrm{~A}$ integrate $f(z)=a \cdot z$ to get $\phi$ and isolate real $(\operatorname{Re} \phi=\Phi)$ and imaginary ( $\operatorname{lm} \phi=\mathrm{A}$ ) parts.

$$
\begin{aligned}
f(z)=\frac{d \phi}{d z} \Rightarrow \quad \phi & =\overbrace{a_{a\left(x^{2}-y^{2}\right)}^{\Phi}}^{\Phi}+i \overbrace{\text { axy }} \\
& \mathbf{A}=\int f \cdot d z=\int a z \cdot d z=\frac{1}{2} a z^{2}=\frac{1}{2} a(x+i y)^{2}
\end{aligned}
$$

Unit 1
Fig. 10.7


## 8. Complex potential $\phi$ contains "scalar" $(\mathrm{F}=\nabla \Phi)$ and "vector" $(\mathrm{F}=\nabla x \mathrm{~A})$ potentials

Any DFL field $\mathbf{F}$ is a gradient of a scalar potential field $\Phi$ or a curl of a vector potential field $\mathbf{A}$.

$$
\mathbf{F}=\nabla \Phi \quad \mathbf{F}=\nabla \times \mathbf{A}
$$

A complex potential $\phi(z)=\Phi(x, y)+i \mathrm{~A}(x, y)$ exists whose $z$-derivative is $f(z)=d \phi / d z$.
Its complex conjugate $\phi^{*}\left(z^{*}\right)=\Phi(x, y)-i \mathrm{~A}(x, y)$ has $z^{*}$-derivative $f^{*}\left(z^{*}\right)=d \phi^{*} / d z^{*}$ giving $D F L$ field $\mathbf{F}$.
To find $\phi=\Phi+i \mathrm{~A}$ integrate $f(z)=a \cdot z$ to get $\phi$ and isolate real $(\operatorname{Re} \phi=\Phi)$ and imaginary ( $\operatorname{lm} \phi=\mathrm{A}$ ) parts.

$$
\begin{aligned}
f(z)=\frac{d \phi}{d z} \Rightarrow \quad \phi & =\overbrace{=\frac{1}{2} a\left(x^{2}-y^{2}\right)}^{\Phi}+i \overbrace{\text { axy }}^{A}=\int f \cdot d z=\int a z \cdot d z=\frac{1}{2} a z^{2}=\frac{1}{2} a(x+i y)^{2}
\end{aligned}
$$

Unit 1
Fig. 10.7


BONUS! Get a free coordinate system!

The ( $\Phi, \mathbf{A}$ ) grid is a GCC coordinate system*:
$q^{l}=\Phi=\left(x^{2}-y^{2}\right) / 2=$ const.
$q^{2}=\mathrm{A}=(x y)=$ const.
*Actually it's OCC.

# What Good are complex variables? <br> Easy 2D vector calculus <br> Easy 2D vector derivatives <br> Easy 2D source-free field theory <br> Easy 2D vector field-potential theory 

## What Good Are Complex Exponentials? (contd.)

8. (contd.) Complex potential $\phi$ contains "scalar" $\mathrm{F}=\nabla \Phi$ ) and "vector"( $\mathrm{F}=\nabla \mathrm{xA}$ ) potentials ...and either one (or half-n'-half!) works just as well.
Derivative $\frac{d \phi^{*}}{d z^{*}}$ has 2D gradient $\nabla \Phi=\binom{\frac{\partial \Phi}{\partial x}}{\frac{\partial \Phi}{\partial y}}$ of scalar $\Phi$ and curl $\nabla \times A=\binom{\frac{\partial A}{\partial y}}{-\frac{\partial A}{\partial y}}$ of vector A (and they're equal!')
$f(z)=\frac{d \phi}{\partial y}$

$$
\left.\begin{array}{rl}
f(z)=\frac{d y}{d z} & \Rightarrow \\
\frac{d}{d z^{*}} \phi^{*} & =\frac{d}{d z^{*}}(\Phi-i \mathrm{~A})=\frac{1}{2}\left(\frac{\partial}{\partial x}+i \frac{\partial}{\partial y}\right)(\Phi-i \mathrm{~A})=\frac{1}{2}(\left(\frac{\partial \Phi}{\partial x}+i \frac{\partial \Phi}{\partial y}\right)+\frac{1}{2}(\overbrace{\frac{\partial \mathrm{~A}}{\partial y}}^{\partial y}-i \frac{\partial \mathrm{~A}}{\partial x})
\end{array}\right)=\frac{1}{2} \nabla \Phi+\frac{1}{2} \nabla \times \mathrm{A}
$$

## What Good Are Complex Exponentials? (contd.)

8. (contd.) Complex potential $\phi$ contains "scalar" $\mathrm{F}=\nabla \Phi$ ) and "vector"( $\mathrm{F}=\nabla \mathrm{xA}$ ) potentials ...and either one (or half-n'-half!) works just as well.

Note, mathematician definition of force field $\mathbf{F}=+\nabla \Phi$ replaces usual physicist's definition $\mathbf{F}=-\nabla \Phi$

## What Good Are Complex Exponentials? (contd.)

8. (contd.) Complex potential $\phi$ contains "scalar" $\mathrm{F}=\nabla \Phi$ ) and "vector"( $\mathrm{F}=\nabla \mathrm{xA}$ ) potentials ...and either one (or half-n'-half!) works just as well.
$\left.\begin{array}{l}\text { Derivative } \frac{d \phi^{*}}{d z^{*}} \text { has 2D gradient } \nabla \Phi=\binom{\frac{\partial \Phi}{\partial x}}{\frac{\partial \Phi}{\partial y}} \text { of scalar } \Phi \text { and } \operatorname{curl}_{\nabla \times \mathrm{A}}=\left(\begin{array}{c}\frac{\partial A}{\partial y} \\ f(z)=\frac{d \phi}{d z} \Rightarrow\end{array} \text { of vector } \mathrm{A} \text { (and they're equal!') }\right. \\ -\frac{\partial A}{\partial x}\end{array}\right)$

$$
\frac{d}{d z^{*}} \phi^{*}=\frac{d}{d z^{*}}(\Phi-i \mathrm{~A})=\frac{1}{2}\left(\frac{\partial}{\partial x}+i \frac{\partial}{\partial y}\right)(\Phi-i \mathrm{~A})=\frac{1}{2}(\overbrace{\left.\left.\frac{\partial \Phi}{\partial x}+i \frac{\partial \Phi}{\partial y}\right)+\frac{1}{2}\left(\frac{\partial \mathrm{~A}}{\partial y}-i \frac{\partial \mathrm{~A}}{\partial x}\right)=\frac{1}{2} \nabla \Phi+\frac{1}{2} \nabla \times \mathrm{A},{ }^{2}\right)}
$$

Note, mathematician definition of force field $\mathbf{F}=+\nabla \Phi$ replaces usual physicist's definition $\mathbf{F}=-\nabla \Phi$


## What Good Are Complex Exponentials? (contd.)

8. (contd.) Complex potential $\phi$ contains "scalar" $\mathrm{F}=\nabla \Phi$ ) and "vector"( $\mathrm{F}=\nabla \mathrm{xA}$ ) potentials ...and either one (or half-n'-half!) works just as well.

Note, mathematician definition of force field $\mathbf{F}=+\nabla \Phi$ replaces usual physicist's definition $\mathbf{F}=-\nabla \Phi$


Scalar static potential lines $\Phi=$ const. and vector flux potential lines $\mathbf{A}=$ const. define $D F L$ field-net.


## What Good Are Complex Exponentials? (contd.)

8. (contd.) Complex potential $\phi$ contains "scalar" $\mathrm{F}=\nabla \Phi$ ) and "vector"( $\mathrm{F}=\nabla \mathrm{xA}$ ) potentials ...and either one (or half-n'-half!) works just as well.
Derivative $\frac{d \phi^{*}}{d z^{*}}$ has 2D gradient $\nabla \Phi=\binom{\frac{\partial \Phi}{\partial x}}{\frac{\partial \Phi}{\partial y}}$ of scalar $\Phi$ and $\operatorname{curl} \nabla \times \mathrm{A}=\binom{\frac{\partial A}{\partial y}}{-\frac{\partial \Delta}{\partial y}}$ of vector A (and they're equal!')

$$
\frac{d}{d z^{*}} \phi^{*}=\frac{d}{d z^{*}}(\Phi-i \mathrm{~A})=\frac{1}{2}\left(\frac{\partial}{\partial x}+i \frac{\partial}{\partial y}\right)(\Phi-i \mathrm{~A})=\frac{1}{2}(\overbrace{\left.\left.\frac{\partial \Phi}{\partial x}+i \frac{\partial \Phi}{\partial y}\right)+\frac{1}{2}\left(\frac{\partial \mathrm{~A}}{\partial y}-i \frac{\partial \mathrm{~A}}{\partial x}\right)=\frac{1}{2} \nabla \Phi+\frac{1}{2} \nabla \times \mathrm{A},{ }^{2}\right)}
$$

Note, mathematician definition of force field $\mathbf{F}=+\nabla \Phi$ replaces usual physicist's definition $\mathbf{F}=-\nabla \Phi$


Scalar static potential lines $\Phi=$ const. and vector flux potential lines $\mathbf{A}=$ const. define $D F L$ field-net.


The half-n'-half results are called
Riemann-Cauchy
Derivative Relations

$$
\begin{aligned}
& \frac{\partial \Phi}{\partial x}=\frac{\partial \mathrm{A}}{\partial y} \quad \text { is: } \\
& \frac{\partial \Phi}{\partial} y=-\frac{\partial \mathrm{Re} f(z)}{\partial x}=\frac{\partial \operatorname{Im} f(z)}{\partial y} \text { is: } \\
& \frac{\partial \operatorname{Re} f(z)}{\partial y}=-\frac{\partial \operatorname{Im} f(z)}{\partial x}
\end{aligned}
$$

## $\longrightarrow 4$. Riemann-Cauchy conditions What's analytic? (...and what's not?)

Review $\left(z, z^{*}\right)$ to $(x, y)$ transformation relations

$$
\begin{array}{lll}
z=x+i y & x=\frac{1}{2}\left(z+z^{*}\right) & \frac{d f}{d z}=\frac{\partial x}{\partial z} \frac{\partial f}{\partial x}+\frac{\partial y}{\partial z} \frac{\partial f}{\partial y}=\frac{1}{2} \frac{\partial f}{\partial x}+\frac{1}{2 i} \frac{\partial f}{\partial y}=\frac{1}{2}\left(\frac{\partial}{\partial x}-i \frac{\partial}{\partial y}\right) f \\
z^{*}=x-i y & y=\frac{1}{2 i}\left(z-z^{*}\right) & \frac{d f}{d z^{*}}=\frac{\partial x}{\partial z^{*}} \frac{\partial f}{\partial x}+\frac{\partial y}{\partial z^{*}} \frac{\partial f}{\partial y}=\frac{1}{2} \frac{\partial f}{\partial x}-\frac{1}{2 i} \frac{\partial f}{\partial y}=\frac{1}{2}\left(\frac{\partial}{\partial x}+i \frac{\partial}{\partial y}\right) f
\end{array}
$$

Criteria for a field function $f=f_{x}(x, y)+i f_{y}(x, y)$ to be an analytic function $\boldsymbol{f}(z)$ of $z=x+i y$ :
First, $f(z)$ must not be a function of $z^{*}=x-i y$, that is: $\frac{d f}{d z^{*}}=0$
This implies $f(z)$ satisfies differential equations known as the Riemann-Cauchy conditions
$\frac{d f}{d z^{*}}=0=\frac{1}{2}\left(\frac{\partial}{\partial x}+i \frac{\partial}{\partial y}\right)\left(f_{x}+i f_{y}\right)=\frac{1}{2}\left(\frac{\partial f_{x}}{\partial x}-\frac{\partial f_{y}}{\partial y}\right)+\frac{i}{2}\left(\frac{\partial f_{y}}{\partial x}+\frac{\partial f_{x}}{\partial y}\right)$ implies: $\frac{\partial f_{x}}{\partial x}=\frac{\partial f_{y}}{\partial y} \quad$ and $\left.: \quad \frac{\partial f_{y}}{\partial x}=-\frac{\partial f_{x}}{\partial y}\right)$
$\frac{d f}{d z}=\frac{1}{2}\left(\frac{\partial}{\partial x}-i \frac{\partial}{\partial y}\right)\left(f_{x}+i f_{y}\right)=\frac{1}{2}\left(\frac{\partial f_{x}}{\partial x}+\frac{\partial f_{y}}{\partial y}\right)+\frac{i}{2}\left(\frac{\partial f_{y}}{\partial x}-\frac{\partial f_{x}}{\partial y}\right)=\frac{\partial f_{x}}{\partial x}+i \frac{\partial f_{y}}{\partial x}=\frac{\partial f_{y}}{\partial y}-i \frac{\partial f_{x}}{\partial y}=\frac{\partial}{\partial x}\left(f_{x}+i f_{y}\right)=\frac{\partial}{\partial i y}\left(f_{x}+i f_{y}\right)$

Review $\left(z, z^{*}\right)$ to $(x, y)$ transformation relations

$$
\begin{array}{lll}
z=x+i y & x=\frac{1}{2}\left(z+z^{*}\right) & \frac{d f}{d z}=\frac{\partial x}{\partial z} \frac{\partial f}{\partial x}+\frac{\partial y}{\partial z} \frac{\partial f}{\partial y}=\frac{1}{2} \frac{\partial f}{\partial x}+\frac{1}{2 i} \frac{\partial f}{\partial y}=\frac{1}{2}\left(\frac{\partial}{\partial x}-i \frac{\partial}{\partial y}\right) f \\
z^{*}=x-i y & y=\frac{1}{2 i}\left(z-z^{*}\right) & \frac{d f}{d z^{*}}=\frac{\partial x}{\partial z^{*}} \frac{\partial f}{\partial x}+\frac{\partial y}{\partial z^{*}} \frac{\partial f}{\partial y}=\frac{1}{2} \frac{\partial f}{\partial x}-\frac{1}{2 i} \frac{\partial f}{\partial y}=\frac{1}{2}\left(\frac{\partial}{\partial x}+i \frac{\partial}{\partial y}\right) f
\end{array}
$$

Criteria for a field function $f=f_{x}(x, y)+i f_{y}(x, y)$ to be an analytic function $\boldsymbol{f}(z)$ of $z=x+i y$ :
First, $f(z)$ must not be a function of $z^{*}=x-i y$, that is: $\frac{d f}{d z}=0$
This implies $f(z)$ satisfies differential equations known as the Riemann-Cauchy conditions $\frac{d f}{d z^{*}}=0=\frac{1}{2}\left(\frac{\partial}{\partial x}+i \frac{\partial}{\partial y}\right)\left(f_{x}+i f_{y}\right)=\frac{1}{2}\left(\frac{\partial f_{x}}{\partial x}-\frac{\partial f_{y}}{\partial y}\right)+\frac{i}{2}\left(\frac{\partial f_{y}}{\partial x}+\frac{\partial f_{x}}{\partial y}\right)$ implies: $\frac{\partial f_{x}}{\partial x}=\frac{\partial f_{y}}{\partial y} \quad$ and $\left.: \quad \frac{\partial f_{y}}{\partial x}=-\frac{\partial f_{x}}{\partial y}\right)$ $\frac{d f}{d z}=\frac{1}{2}\left(\frac{\partial}{\partial x}-i \frac{\partial}{\partial y}\right)\left(f_{x}+i f_{y}\right)=\frac{1}{2}\left(\frac{\partial f_{x}}{\partial x}+\frac{\partial f_{y}}{\partial y}\right)+\frac{i}{2}\left(\frac{\partial f_{y}}{\partial x}-\frac{\partial f_{x}}{\partial y}\right)=\frac{\partial f_{x}}{\partial x}+i \frac{\partial f_{y}}{\partial x}=\frac{\partial f_{y}}{\partial y}-i \frac{\partial f_{x}}{\partial y}=\frac{\partial}{\partial x}\left(f_{x}+i f_{y}\right)=\frac{\partial}{\partial i y}\left(f_{x}+i f_{y}\right)$

Criteria for a field function $f=f_{x}(x, y)+i f_{y}(x, y)$ to be an analytic function $\boldsymbol{f}\left(z^{*}\right)$ of $z^{*}=x$-iy:
First, $f\left(z^{*}\right)$ must not be a function of $z=x+i y$, that is: $\frac{d f}{d z}=0$
This implies $f\left(z^{*}\right)$ satisfies differential equations we call Anti-Riemann-Cauchy conditions
$\frac{d f}{d z}=0=\frac{1}{2}\left(\frac{\partial}{\partial x}-i \frac{\partial}{\partial y}\right)\left(f_{x}+i f_{y}\right)=\frac{1}{2}\left(\frac{\partial f_{x}}{\partial x}+\frac{\partial f_{y}}{\partial y}\right)+\frac{i}{2}\left(\frac{\partial f_{y}}{\partial x}-\frac{\partial f_{x}}{\partial y}\right)=$ implies: $\frac{\partial f_{x}}{\partial x}=-\frac{\partial f_{y}}{\partial y} \quad$ and $\left.: \quad \frac{\partial f_{y}}{\partial x}=\frac{\partial f_{x}}{\partial y}\right)$
$\frac{d f}{d z^{*}}=\frac{1}{2}\left(\frac{\partial}{\partial x}+i \frac{\partial}{\partial y}\right)\left(f_{x}+i f_{y}\right)=\frac{1}{2}\left(\frac{\partial f_{x}}{\partial x}-\frac{\partial f_{y}}{\partial y}\right)+\frac{i}{2}\left(\frac{\partial f_{y}}{\partial x}+\frac{\partial f_{x}}{\partial y}\right)=\frac{\partial f_{x}}{\partial x}+i \frac{\partial f_{y}}{\partial x}=-\frac{\partial f_{y}}{\partial y}+i \frac{\partial f_{x}}{\partial y}=\frac{\partial}{\partial x}\left(f_{x}+i f_{y}\right)=-\frac{\partial}{\partial i y}\left(f_{x}+i f_{y}\right)$

## What's analytic? (... and what's not?)

Example: Is $f(x, y)=2 x+i y$ an analytic function of $z=x+i y$ ?

What's analytic? (...and what's not?)
Example: Q: Is $f(x, y)=2 x+i 4 y$ an analytic function of $z=x+i y$ ?
Well, test it using definitions: $z=x+i y \quad$ and: $\quad z^{*}=x-i y$

$$
\text { or: } \quad x=\left(z+z^{*}\right) / 2 \quad \text { and: } \quad y=-i\left(z-z^{*}\right) / 2
$$

## What's analytic? (... and what's not?)

Example: Q: Is $f(x, y)=2 x+i 4 y$ an analytic function of $z=x+i y$ ?
Well, test it using definitions: $z=x+i y \quad$ and: $\quad z^{*}=x-i y$

$$
\text { or: } x=\left(z+z^{*}\right) / 2 \quad \text { and: } \quad y=-i\left(z-z^{*}\right) / 2
$$

$$
f(x, y)=2 x+i 4 y=2\left(z+z^{*}\right) / 2+i 4\left(-i\left(z-z^{*}\right) / 2\right)
$$

## What's analytic? (... and what's not?)

Example: Q: Is $f(x, y)=2 x+i 4 y$ an analytic function of $z=x+i y$ ?
Well, test it using definitions: $z=x+i y \quad$ and: $\quad z^{*}=x-i y$

$$
\begin{aligned}
\text { or: } & x=\left(z+z^{*}\right) / 2 \quad \text { and: } \quad y=-i\left(z-z^{*}\right) / 2 \\
f(x, y)=2 x+i 4 y & =2\left(z+z^{*}\right) / 2+i 4\left(-i\left(z-z^{*}\right) / 2\right) \\
& =z+z^{*}+\left(2 z-2 z^{*}\right)
\end{aligned}
$$

## What's analytic? (... and what's not?)

Example: Q: Is $f(x, y)=2 x+i 4 y$ an analytic function of $z=x+i y$ ?
Well, test it using definitions: $z=x+i y \quad$ and: $\quad z^{*}=x-i y$

$$
\begin{aligned}
\text { or: } & x=\left(z+z^{*}\right) / 2 \quad \text { and: } \quad y=-i\left(z-z^{*}\right) / 2 \\
f(x, y)=2 x+i 4 y & =2\left(z+z^{*}\right) / 2+i 4\left(-i\left(z-z^{*}\right) / 2\right) \\
& =z+z^{*}+\left(2 z-2 z^{*}\right) \\
& =3 z-z^{*}
\end{aligned}
$$

## What's analytic? (... and what's not?)

Example: Q: Is $f(x, y)=2 x+i 4 y$ an analytic function of $z=x+i y$ ?
Well, test it using definitions: $z=x+i y \quad$ and: $\quad z^{*}=x-i y$

$$
\text { or: } x=\left(z+z^{*}\right) / 2 \quad \text { and: } \quad y=-i\left(z-z^{*}\right) / 2
$$

$$
\begin{aligned}
f(x, y)=2 x+i 4 y & =2\left(z+z^{*}\right) / 2+i 4\left(-i\left(z-z^{*}\right) / 2\right) \\
& =z+z^{*}+\left(2 z-2 z^{*}\right) \\
& =3 z-z^{*}
\end{aligned}
$$

A: NO! It's a function of $z$ and $z$ * so not analytic for either.

## What's analytic? (... and what's not?)

Example: Q: Is $f(x, y)=2 x+i 4 y$ an analytic function of $z=x+i y$ ?
Well, test it using definitions: $z=x+i y \quad$ and: $\quad z^{*}=x-i y$

$$
\text { or: } \quad x=\left(z+z^{*}\right) / 2 \quad \text { and: } \quad y=-i\left(z-z^{*}\right) / 2
$$

$$
\begin{aligned}
f(x, y)=2 x+i 4 y & =2\left(z+z^{*}\right) / 2+i 4\left(-i\left(z-z^{*}\right) / 2\right) \\
& =z+z^{*}+\left(2 z-2 z^{*}\right) \\
& =3 z-z^{*}
\end{aligned}
$$

A: NO! It's a function of $z$ and $z$ * so not analytic for either.

Example 2: Q: Is $r(x, y)=x^{2}+y^{2}$ an analytic function of $z=x+i y$ ?

A: NO! $r(x y)=z^{*} z$ is a function of $z$ and $z^{*}$ so not analytic for either.

## What's analytic? (... and what's not?)

Example: Q: Is $f(x, y)=2 x+i 4 y$ an analytic function of $z=x+i y$ ?
Well, test it using definitions: $z=x+i y \quad$ and: $\quad z^{*}=x-i y$

$$
\text { or: } \quad x=\left(z+z^{*}\right) / 2 \quad \text { and: } \quad y=-i\left(z-z^{*}\right) / 2
$$

$$
\begin{aligned}
f(x, y)=2 x+i 4 y & =2\left(z+z^{*}\right) / 2+i 4\left(-i\left(z-z^{*}\right) / 2\right) \\
& =z+z^{*}+\left(2 z-2 z^{*}\right) \\
& =3 z-z^{*}
\end{aligned}
$$

A: NO! It's a function of $z$ and $z *$ so not analytic for either.

Example 2: Q: Is $r(x, y)=x^{2}+y^{2}$ an analytic function of $z=x+i y$ ?

A: NO! $\quad r(x y)=z^{*} z$ is a function of $z$ and $z^{*}$ so not analytic for either.
Example 3: Q: Is $s(x, y)=x^{2}-y^{2}+2 i x y$ an analytic function of $z=x+i y$ ?

$$
\text { A: YES! } s(x y)=(x+i y)^{2}=z^{2} \text { is analytic function of } z \text {. (ray) }
$$

4. Riemann-Cauchy conditions What's analytic? (...and what's not?)
$\longrightarrow$ Easy 2D circulation and flux integrals
Easy 2D curvilinear coordinate discovery
Easy 2D monopole, dipole, and $2^{n}$-pole analysis
Easy $2^{n}$-multipole field and potential expansion
Easy stereo-projection visualization
5. Complex integrals $\int f(z) d z$ count $2 D$ "circulation"( $\int \mathrm{F} \cdot \mathrm{dr}$ ) and "flux"( $(\mathrm{F} \mathbf{F d r})$

Integral of $f(z)$ between point $z_{1}$ and point $z_{2}$ is potential difference $\Delta \phi=\phi\left(z_{2}\right)-\phi\left(z_{1}\right)$

$$
\Delta \phi=\phi\left(z_{2}\right)-\phi\left(z_{1}\right)=\int_{z_{1}}^{z_{2}} f(z) d z=\underbrace{\Phi\left(x_{2}, y_{2}\right)-\Phi\left(x_{1}, y_{1}\right)}_{\Delta \phi=}+i[\underbrace{i\left[\mathrm{~A}\left(x_{2}, y_{2}\right)-\mathrm{A}\left(x_{1}, y_{1}\right)\right.}_{\Delta \Phi})]
$$

In $D F L$-field $\mathbf{F}, \Delta \phi$ is independent of the integration path $z(t)$ connecting $z_{1}$ and $z_{2}$.

## 9. Complex integrals $\int f(z) d z$ count $2 D$ "circulation"( $(\mathrm{F} \cdot \mathrm{dr})$ and "flux"( $(\mathrm{F} \mathrm{Fx} \mathbf{r})$

Integral of $f(z)$ between point $z_{1}$ and point $z_{2}$ is potential difference $\Delta \phi=\phi\left(z_{2}\right)-\phi\left(z_{1}\right)$

$$
\Delta \phi=\phi\left(z_{2}\right)-\phi\left(z_{1}\right)=\int_{z_{1}}^{z_{2}} f(z) d z=\underbrace{\Phi\left(x_{2}, y_{2}\right)-\Phi\left(x_{1}, y_{1}\right)}_{\Delta \phi=}+i \underbrace{i[\underbrace{\mathbf{A}\left(x_{2}, y_{2}\right)-\mathbf{A}\left(x_{1}, y_{1}\right)}_{\Delta \mathbf{A}})]}_{\Delta \Phi}
$$

In $D F L$-field $\mathbf{F}, \Delta \phi$ is independent of the integration path $z(t)$ connecting $z_{1}$ and $z_{2}$.

$$
\begin{aligned}
\int f(z) d z & =\int\left(f^{*}\left(z^{*}\right)\right)^{*} d z=\int\left(f^{*}\left(z^{*}\right)\right)^{*}(d x+i d y)=\int\left(f_{x}^{*}+i f_{y}^{*}\right)^{*}(d x+i d y)=\int\left(f_{x}^{*}-i f_{y}^{*}\right)(d x+i d y) \\
& =\int\left(f_{x}^{*} d x+f_{y}^{*} d y\right)+i \int\left(f_{x}^{*} d y-f_{y}^{*} d x\right) \\
& =\int \mathbf{F} \cdot d \mathbf{r}+i \int \mathbf{F} \times d \mathbf{r} \cdot \hat{\mathbf{e}}_{Z} \\
& =\int \mathbf{F} \cdot d \mathbf{r}+i \int \mathbf{F} \cdot d \mathbf{r} \times \hat{\mathbf{e}}_{Z} \\
& =\int \mathbf{F} \cdot d \mathbf{r} \quad+i \int \mathbf{F} \cdot d \mathrm{~S} \quad \text { where: } \quad d \mathrm{~S}=d \mathbf{r} \times \hat{\mathbf{e}}_{Z} \quad
\end{aligned}
$$

## 9. Complex integrals $\int f(z) d z$ count $2 D$ "circulation" ( $\int \mathrm{F} \cdot \mathrm{dr}$ ) and "flux" ( $(\mathrm{F} \mathbf{F d r})$

Integral of $f(z)$ between point $z_{1}$ and point $z_{2}$ is potential difference $\Delta \phi=\phi\left(z_{2}\right)-\phi\left(z_{1}\right)$

$$
\Delta \phi=\phi\left(z_{2}\right)-\phi\left(z_{1}\right)=\int_{z_{1}}^{z_{2}} f(z) d z=\underbrace{\Phi\left(x_{2}, y_{2}\right)-\Phi\left(x_{1}, y_{1}\right)}_{\Delta \phi=}+i \underbrace{i[\underbrace{\mathbf{A}\left(x_{2}, y_{2}\right)-\mathbf{A}\left(x_{1}, y_{1}\right)}_{\Delta \mathbf{A}})]}_{\Delta \Phi}
$$

In $D F L$-field $\mathrm{F}, \Delta \phi$ is independent of the integration path $z(t)$ connecting $z_{1}$ and $z_{2}$.
$\int f(z) d z=\int\left(f^{*}\left(z^{*}\right)\right)^{*} d z=\int\left(f^{*}\left(z^{*}\right)\right)^{*}(d x+i d y)=\int\left(f_{x}^{*}+i f_{y}^{*}\right)^{*}(d x+i d y)=\int\left(f_{x}^{*}-i f_{y}^{*}\right)(d x+i d y)$

$$
=\int\left(f_{x}^{*} d x+f_{y}^{*} d y\right)+i \int\left(f_{x}^{*} d y-f_{y}^{*} d x\right)
$$

$$
=\quad \int \mathbf{F} \cdot d \mathbf{r} \quad+i \int \mathbf{F} \times d \mathbf{r} \cdot \hat{\mathbf{e}}_{Z}
$$

$$
=\quad \int \mathbf{F} \cdot d \mathbf{r} \quad+i \int \mathbf{F} \cdot d \mathbf{r} \times \hat{\mathbf{e}}_{Z}
$$

$$
=\quad \int \mathbf{F} \cdot d \mathbf{r} \quad+i \int \mathbf{F} \cdot d \mathrm{~S} \quad \text { where: } \quad d \mathrm{~S}=d \mathbf{r} \times \hat{\mathbf{e}}_{Z}
$$



Real part $\quad \int_{1}^{2} \mathbf{F} \bullet d \mathbf{r}=\Delta \Phi$ sums $\mathbf{F}$ projections along path $d \mathbf{r}$ that is, circulation on path to get $\Delta \Phi$.

Here the scalar potential $\Phi=\left(x^{2}-y^{2}\right) / 2$ is stereo-plotted vs. $(x, y)$ The $\Phi=\left(x^{2}-y^{2}\right) / 2=$ const. curves are topography lines
The $A=(x y)=$ const. curves are streamlines normal to topography lines

4. Riemann-Cauchy conditions What's analytic? (...and what's not?)

Easy 2D circulation and flux integrals
$\longrightarrow$ Easy 2D curvilinear coordinate discovery
Easy 2D monopole, dipole, and $2^{n}$-pole analysis Easy $2^{n}$-multipole field and potential expansion Easy stereo-projection visualization

## What Good Are Complex Exponentials? (contd.)

## 10. Complex potentials define 2D Orthogonal Curvilinear Coordinates (OCC) of field

The $(\Phi, \mathrm{A})$ grid is a GCC coordinate system*:
$q^{l}=\Phi=\left(x^{2}-y^{2}\right) / 2=$ const.
$q^{2}=\mathrm{A}=(x y)=$ const.
*Actually it's OCC.


Kajobian $=\left(\begin{array}{cc}\frac{\partial q^{1}}{\partial x} & \frac{\partial q^{1}}{\partial y} \\ \frac{\partial q^{2}}{\partial x} & \frac{\partial q^{2}}{\partial y}\end{array}\right)=\left(\begin{array}{cc}\frac{\partial \Phi}{\partial x} & \frac{\partial \Phi}{\partial y} \\ \frac{\partial A}{\partial x} & \frac{\partial A}{\partial y}\end{array}\right)=\left(\begin{array}{cc}x & -y \\ y & x\end{array}\right) \leftarrow \mathbf{E}^{\Phi} \quad \leftarrow \mathbf{E}^{A} \quad$ Jacobian $\left.=\left(\begin{array}{cc}\frac{\partial x}{\partial q^{1}} & \frac{\partial x}{\partial q^{2}} \\ \frac{\partial y}{\partial q^{1}} & \frac{\partial y}{\partial q^{2}}\end{array}\right)=\left(\begin{array}{cc}\frac{\partial x}{\partial \Phi} & \frac{\partial x}{\partial A} \\ \frac{\partial y}{\partial \Phi} & \frac{\partial y}{\partial A}\end{array}\right)=\frac{1}{r^{2}} \begin{array}{cc}x & y \\ -y & x\end{array}\right)$ Metrictensor $=\left(\begin{array}{ll}g_{\Phi \Phi} & g_{\Phi A} \\ g_{A \Phi} & g_{A A}\end{array}\right)=\left(\begin{array}{ll}\mathbf{E}_{\Phi} \cdot \mathbf{E}_{\Phi} & \mathbf{E}_{\Phi} \cdot \mathbf{E}_{A} \\ \mathbf{E}_{A} \cdot \mathbf{E}_{\Phi} & \mathbf{E}_{A} \cdot \mathbf{E}_{A}\end{array}\right)=\left(\begin{array}{cc}r^{2} & 0 \\ 0 & r^{2}\end{array}\right)$ where: $r^{2}=x^{2}+y^{2}$

## What Good Are Complex Exponentials? (contd.)

## 10. Complex potentials define 2D Orthogonal Curvilinear Coordinates (OCC) of field

The $(\Phi, A)$ grid is a GCC coordinate system*:
$q^{1}=\Phi=\left(x^{2}-y^{2}\right) / 2=$ const.
$q^{2}=\mathrm{A}=(x y)=$ const .
*Actually it's OCC.


Kajobian $=\left(\begin{array}{cc}\frac{\partial q^{1}}{\partial x} & \frac{\partial q^{1}}{\partial y} \\ \frac{\partial q^{2}}{\partial x} & \frac{\partial q^{2}}{\partial y}\end{array}\right)=\left(\begin{array}{cc}\frac{\partial \Phi}{\partial x} & \frac{\partial \Phi}{\partial y} \\ \frac{\partial A}{\partial x} & \frac{\partial A}{\partial y}\end{array}\right)=\left(\begin{array}{cc}x & -y \\ y & x\end{array}\right) \leftarrow \mathbf{E}^{\Phi} \quad$ Jacobian $\left.=\left(\begin{array}{cc}\frac{\partial x}{\partial q^{1}} & \frac{\partial x}{\partial q^{2}} \\ \frac{\partial y}{\partial q^{1}} & \frac{\partial y}{\partial q^{2}}\end{array}\right)=\left(\begin{array}{cc}\frac{\partial x}{\partial \Phi} & \frac{\partial x}{\partial A} \\ \frac{\partial y}{\partial \Phi} & \frac{\partial y}{\partial A}\end{array}\right)=\frac{1}{r^{2}} \begin{array}{cc}x & y \\ -y & x\end{array}\right)$ Metrictensor $=\left(\begin{array}{ll}g_{\Phi \Phi} & g_{\Phi A} \\ g_{A \Phi} & g_{A A}\end{array}\right)=\left(\begin{array}{ll}\mathbf{E}_{\Phi} \cdot \mathbf{E}_{\Phi} & \mathbf{E}_{\Phi} \cdot \mathbf{E}_{A} \\ \mathbf{E}_{A} \cdot \mathbf{E}_{\Phi} & \mathbf{E}_{A} \cdot \mathbf{E}_{A}\end{array}\right)=\left(\begin{array}{cc}r^{2} & 0 \\ 0 & r^{2}\end{array}\right)$ where: $r^{2}=x^{2}+y^{2}$

Riemann-Cauchy Derivative Relations make coordinates orthogonal
$\nabla \Phi=\binom{\frac{\partial \Phi}{\partial x}}{\frac{\partial \Phi}{\partial y}}=\binom{\frac{\partial}{\partial} x \frac{a}{2}\left(x^{2}-y^{2}\right)}{\frac{\partial}{\partial y} \frac{a}{2}\left(x^{2}-y^{2}\right)}=\binom{a x}{-a y}=\mathbf{F}$

The half-n'-half results assure

$$
\begin{aligned}
\mathbf{E}_{\Phi} \cdot \mathbf{E}_{A} & =\frac{\partial \Phi}{\partial x} \frac{\partial A}{\partial x}+\frac{\partial \Phi}{\partial y} \frac{\partial A}{\partial y} \\
& =-\frac{\partial \Phi}{\partial x} \frac{\partial \Phi}{\partial y}+\frac{\partial \Phi}{\partial y} \frac{\partial \Phi}{\partial x}=0
\end{aligned}
$$

## 10. Complex potentials define 2D Orthogonal Curvilinear Coordinates (OCC) of field

The $(\Phi, \mathrm{A})$ grid is a GCC coordinate system*:
$q^{1}=\Phi=\left(x^{2}-y^{2}\right) / 2=$ const.
$q^{2}=\mathrm{A}=(x y)=$ const .
*Actually it's OCC.


Kajobian $=\left(\begin{array}{cc}\frac{\partial q^{1}}{\partial x} & \frac{\partial q^{1}}{\partial y} \\ \frac{\partial q^{2}}{\partial x} & \frac{\partial q^{2}}{\partial y}\end{array}\right)=\left(\begin{array}{ll}\frac{\partial \Phi}{\partial x} & \frac{\partial \Phi}{\partial y} \\ \frac{\partial A}{\partial x} & \frac{\partial A}{\partial y}\end{array}\right)=\left(\begin{array}{cc}x & -y \\ y & x\end{array}\right) \leftarrow \mathbf{E}^{\Phi} \quad \leftarrow \mathbf{E}^{\Lambda} \quad$ Jacobian $\left.=\left(\begin{array}{cc}\frac{\partial x}{\partial q^{1}} & \frac{\partial x}{\partial q^{2}} \\ \frac{\partial y}{\partial q^{1}} & \frac{\partial y}{\partial q^{2}}\end{array}\right)=\left(\begin{array}{cc}\frac{\partial x}{\partial \Phi} & \frac{\partial x}{\partial A} \\ \frac{\partial y}{\partial \Phi} & \frac{\partial y}{\partial A}\end{array}\right)=\frac{1}{r^{2}} \begin{array}{cc}x & y \\ -y & x\end{array}\right)$ Metrictensor $=\left(\begin{array}{ll}g_{\Phi \Phi} & g_{\Phi A} \\ g_{A \Phi} & g_{A A}\end{array}\right)=\left(\begin{array}{ll}\mathbf{E}_{\Phi} \cdot \mathbf{E}_{\Phi} & \mathbf{E}_{\Phi} \cdot \mathbf{E}_{A} \\ \mathbf{E}_{A} \cdot \mathbf{E}_{\Phi} & \mathbf{E}_{A} \cdot \mathbf{E}_{A}\end{array}\right)=\left(\begin{array}{cc}r^{2} & 0 \\ 0 & r^{2}\end{array}\right)$ where: $r^{2}=x^{2}+y^{2}$

Riemann-Cauchy Derivative Relations make coordinates orthogonal
$\nabla \Phi=\binom{\frac{\partial \Phi}{\partial x}}{\frac{\partial \Phi}{\partial y}}=\binom{\frac{\partial}{\partial x} \frac{a}{2}\left(x^{2}-y^{2}\right)}{\frac{\partial}{\partial y} \frac{a}{2}\left(x^{2}-y^{2}\right)}=\binom{a x}{-a y}=\mathbf{F}$
The half-n'-half results assure

$$
\begin{aligned}
\mathbf{E}_{\oplus} \cdot \mathbf{E}_{A} & =\frac{\partial \Phi}{\partial x} \frac{\partial A}{\partial x}+\frac{\partial \Phi}{\partial y} \frac{\partial A}{\partial y} \\
& =-\frac{\partial \Phi}{\partial x} \frac{\partial \Phi}{\partial y}+\frac{\partial \Phi}{\partial y} \frac{\partial \Phi}{\partial x}=0
\end{aligned}
$$

or Riemann-Cauchy
Zero divergence requirement: $0=\frac{\partial f_{x}}{\partial x}+\frac{\partial f_{y}}{\partial y}=\frac{\partial}{\partial x} \frac{\partial \Phi}{\partial x}+\frac{\partial}{\partial y} \frac{\partial \Phi}{\partial y}=\frac{\partial^{2} \Phi}{\partial x^{2}}+\frac{\partial^{2} \Phi}{\partial y^{2}}=0$ potential $\Phi$ obeys. Laplace equation
4. Riemann-Cauchy conditions What's analytic? (...and what's not?)

Easy 2D circulation and flux integrals
Easy 2D curvilinear coordinate discovery
$\longrightarrow$ Easy 2D monopole, dipole, and $2^{n}$-pole analysis
Easy $2^{n}$-multipole field and potential expansion Easy stereo-projection visualization

## 11. Complex integrals define 2D monopole fields and potentials

 Of all power-law fields $f(z)=a z^{n}$ one lacks a power-law potential $\phi(z)=\frac{a}{n+1} z^{n+1}$. It is the $n=-l$ case.Unit monopole field: $f(z)={ }_{z}^{1}=z^{-1}$
$f(z)=\frac{a}{z}=a z^{-1} \quad$ Source- $a$ monopole
It has a logarithmic potential $\phi(z)=a \cdot \ln (z)=a \cdot \ln (x+i y)$.

## 11. Complex integrals define 2D monopole fields and potentials

 Of all power-law fields $f(z)=a z^{n}$ one lacks a power-law potential $\phi(z)=\frac{a}{n+1} z^{n+1}$. It is the $n=-l$ case.Unit monopole field: $f(z)={ }_{z}^{1}=z^{-1} \quad f(z)=\frac{a}{z}=a z^{-1}$ Source- $a$ monopole
It has a logarithmic potential $\phi(z)=a \cdot \ln (z)=a \cdot \ln (x+i y)$.

$$
\phi(z)=\Phi+i \mathbf{A}=\int f(z) d z=\int \frac{a}{z} d z=a \ln (z)
$$

## What Good Are Complex Exponentials? (contd.)

## 11. Complex integrals define 2D monopole fields and potentials

 Of all power-law fields $f(z)=a z^{n}$ one lacks a power-law potential $\phi(z)=\frac{a}{n+1} z^{n+1}$. It is the $n=-1$ case.Unit monopole field: $f(z)={ }_{z}^{1}=z^{-1}$

$$
f(z)=\frac{a}{z}=a z^{-1} \text { Source- } a \text { monopole }
$$

It has a logarithmic potential $\phi(z)=a \cdot \ln (z)=a \cdot \ln (x+i y)$. Note: $\ln (a \cdot b)=\ln (a)+\ln (b), \ln \left(e^{i \theta}\right)=i \theta$, and $z=r e^{i \theta}$.

$$
\begin{aligned}
\phi(z) & =\overbrace{a \ln (r)}^{\Phi}+\overbrace{i a \theta}^{i \mathrm{~A}}=\int f(z) d z=\int \frac{a}{z} d z=a \ln (z)=a \ln \left(r e^{i \theta}\right) \\
& =\overbrace{i=})
\end{aligned}
$$

## 11. Complex integrals define 2D monopole fields and potentials

Of all power-law fields $f(z)=a z^{n}$ one lacks a power-law potential $\phi(z)=\frac{a}{n+1} z^{n+1}$. It is the $n=-1$ case.
Unit monopole field: $f(z)={ }_{z}^{1}=z^{-1}$

$$
f(z)=\frac{a}{z}=a z^{-1} \text { Source- } a \text { monopole }
$$

It has a logarithmic potential $\phi(z)=a \cdot \ln (z)=a \cdot \ln (x+i y)$. Note: $\ln (a \cdot b)=\ln (a)+\ln (b), \ln \left(e^{i \theta}\right)=i \theta$, and $z=r e^{i \theta}$.

$$
\begin{aligned}
& \phi(z)=\Phi+i \mathrm{~A}=\int f(z) d z=\int \frac{a}{z} d z=a \ln (z)=a \ln \left(r e^{i \theta}\right) \\
& =\overbrace{a \ln (r)}+i \overbrace{a \theta} \\
& \text { (a) Unit Z-line-flux field } f(z)=1 / z
\end{aligned}
$$



## 11. Complex integrals define 2D monopole fields and potentials

Of all power-law fields $f(z)=a z^{n}$ one lacks a power-law potential $\phi(z)=\frac{a}{n+1} z^{n+1}$. It is the $n=-1$ case.
Unit monopole field: $f(z)={ }_{z}^{1}=z^{-1}$

$$
f(z)=\frac{a}{z}=a z^{-1} \text { Source- } a \text { monopole }
$$

It has a logarithmic potential $\phi(z)=a \cdot \ln (z)=a \cdot \ln (x+i y)$. Note: $\ln (a \cdot b)=\ln (a)+\ln (b), \ln \left(e^{i \theta}\right)=i \theta$, and $z=r e^{i \theta}$.

$$
\begin{aligned}
\phi(z) & =\overbrace{\ln (r)}^{\Phi}+i \overbrace{i A}=\int f(z) d z=\int \frac{a}{z} d z=a \ln (z)=a \ln \left(r e^{i \theta}\right) \\
& =\overbrace{a})
\end{aligned}
$$

(b) Unit Z-line-vortex field $f(z)=i / z$


## What Good Are Complex Exponentials? (contd.)

## 11. Complex integrals define 2D monopole fields and potentials

Of all power-law fields $f(z)=a z^{n}$ one lacks a power-law potential $\phi(z)=\frac{a}{n+1} z^{n+1}$. It is the $n=-1$ case.
Unit monopole field: $f(z)={ }_{z}^{1}=z^{-1}$

$$
f(z)=\frac{a}{z}=a z^{-1} \text { Source- } a \text { monopole }
$$

It has a logarithmic potential $\phi(z)=a \cdot \ln (z)=a \cdot \ln (x+i y)$. Note: $\ln (a \cdot b)=\ln (a)+\ln (b), \ln \left(e^{i \theta}\right)=i \theta$, and $z=r e^{i \theta}$.

$$
\begin{aligned}
\phi(z) & =\overbrace{a \ln (r)}^{\Phi}+\overbrace{i a \theta}^{i \mathrm{~A}}=\int f(z) d z=\int \frac{a}{z} d z=a \ln (z)=a \ln \left(r e^{i \theta}\right) \\
& =\overbrace{i})
\end{aligned}
$$

A monopole field is the only power-law field whose integral (potential) depends on path of integration.

$$
\Delta \phi=\oint f(z) d z=a \oint \frac{d z}{z}=a \int_{\theta=0}^{\theta=2 \pi N} \frac{d\left(R^{i \theta}\right)}{R e^{i \theta}}=a \int_{\theta=0}^{\theta=2 \pi N} i d \theta=\left.a i \theta\right|_{0} ^{2 \pi N}=2 a \pi i N
$$



Each turn around origin
adds $2 \pi i$ to vector potential $i \mathrm{~A}$




What Good Are Complex Exponentials? (contd.)

$$
f(z)=(0.5+i 0.5) / z=e^{i \pi / 4 / z \sqrt{ } 2}
$$

"Vortex"
"Hurricane"

$$
f(z)=(0.75+i 0.25) / z=e^{i 18^{\circ}} / z \sqrt{ } n
$$

$x=-0.82 \quad y=-4.8$



4. Riemann-Cauchy conditions What's analytic? (...and what's not?)

Easy 2D circulation and flux integrals
Easy 2D curvilinear coordinate discovery
$\longrightarrow$ Easy 2D monopole, dipole, and $2^{n}$-pole analysis
Easy $2^{n}$-multipole field and potential expansion Easy stereo-projection visualization
12. Complex derivatives give 2D dipole fields Start with $f(z)=a z^{-1}: 2 \mathrm{D}$ line monopole field and is its monopole potential $(z)=a \ln z$ of source strength $a$.

$$
f^{l-\text { pole }}(z)=\frac{a}{z}=\frac{d \phi^{1-\text { pole }}}{d z} \quad \phi^{1-\text { pole }}(z)=a \ln z
$$

Now let these two line-sources of equal but opposite source constants $+a$ and $-a$ be located at $z= \pm \Delta / 2$ separated by a small interval $\Delta$. This sum (actually difference) of $f^{1-\text {-pole }}$-fields is called a dipole field.

$$
f^{\text {dipole }}(z)=\frac{a}{z+\frac{\Delta}{2}}-\frac{a}{z-\frac{\Delta}{2}}=\frac{-a \cdot \Delta}{z^{2}-\frac{\Delta}{4}^{2}} \quad \phi^{\text {dipole }}(z)=a \ln \left(z-\frac{\Delta}{2}\right)-a \ln \left(z+\frac{\Delta}{2}\right)=a \ln \frac{z-\frac{\Delta}{2}}{z+\frac{\Delta}{2}}
$$

This is like the derivative definition

$$
\frac{d f}{d z}=\frac{f(z+\Delta)-f(z)}{\Delta}
$$

if $\Delta$ is infinitesimal
$(\Delta \rightarrow 0)$


So-called
"physical dipole"

$$
\frac{d f}{d z}=\frac{f\left(z+\frac{\Delta}{2}\right)-f\left(z-\frac{\Delta}{2}\right)}{\Delta}
$$ has finite $\Delta$ (+)(-) separation

12. Complex derivatives give 2D dipole fields

Start with $f(z)=a z^{-1}: 2 \mathrm{D}$ line monopole field and is its monopole potential $\phi(z)=a \ln z$ of source strength $a$.

$$
f^{1-\text { pole }}(z)=\frac{a}{z}=\frac{d \phi^{1-\text { pole }}}{d z} \quad \phi^{1-\text { pole }}(z)=a \ln z
$$

Now let these two line-sources of equal but opposite source constants $+a$ and $-a$ be located at $z= \pm \Delta / 2$ separated by a small interval $\Delta$. This sum (actually difference) of $f^{1-\text {-pole }}$-fields is called a dipole field.

$$
f^{\text {dipole }}(z)=\frac{a}{z+\frac{\Delta}{2}}-\frac{a}{z-\frac{\Delta}{2}}=\frac{-a \cdot \Delta}{z^{2}-\frac{\Delta^{2}}{4}} \quad \phi^{\text {dipole }}(z)=a \ln \left(z-\frac{\Delta}{2}\right)-a \ln \left(z+\frac{\Delta}{2}\right)=a \ln \frac{z-\frac{\Delta^{1}}{2}}{z+\frac{\Delta}{2}}
$$

If interval $\Delta$ is tiny and is divided out we get a point-dipole field $f^{2 \text {-pole }}$ that is the $z$-derivative of $f^{1 \text {-pole }}$.

$$
f^{2-\text { pole }}=\frac{-a}{z^{2}}=\frac{d f^{1-\text { pole }}}{d z}=\frac{d \phi^{2-p o l e}}{d z} \quad \phi^{2-\text { pole }}=\frac{a}{z}=\frac{d \phi^{1-\text { pole }}}{d z}
$$

12. Complex derivatives give 2D dipole fields

Start with $f(z)=a z^{-1}: 2 \mathrm{D}$ line monopole field and is its monopole potential $(z)=a \ln z$ of source strength $a$.

$$
f^{1-\text { pole }}(z)=\frac{a}{z}=\frac{d \phi^{1-\text { pole }}}{d z} \quad \phi^{1-\text { pole }}(z)=a \ln z
$$

Now let these two line-sources of equal but opposite source constants $+a$ and $-a$ be located at $z= \pm \Delta / 2$ separated by a small interval $\Delta$. This sum (actually difference) of $f^{1-\text {-pole }}$-fields is called a dipole field.

$$
f^{\text {dipole }}(z)=\frac{a}{z+\frac{\Delta}{2}}-\frac{a}{z-\frac{\Delta}{2}}=\frac{-a \cdot \Delta}{z^{2}-\frac{\Lambda^{2}}{4}} \quad \phi^{\text {dipole }}(z)=a \ln \left(z-\frac{\Delta}{2}\right)-a \ln \left(z+\frac{\Delta}{2}\right)=a \ln \frac{z-\frac{\Delta}{2}}{z+\frac{\Delta}{2}}
$$

If interval $\Delta$ is tiny and is divided out we get a point-dipole field $f^{2 \text {-pole }}$ that is the $z$-derivative of $f^{1 \text {-pole }}$.

$$
\begin{aligned}
& f^{2-\text { pole }}= \frac{-a}{z^{2}}=\frac{d f^{1-\text { pole }}}{d z}=\frac{d \phi^{2-p o l e}}{d z} \quad \phi^{2-\text { pole }}=\frac{a}{z}=\frac{d \phi^{1-p o l e}}{d z} \\
& \Phi(x, y)
\end{aligned}
$$

## What Good Are Complex Exponentials? (2D monopole, dipole, and $2^{n}$-pole analysis)

12. Complex derivatives give 2D dipole fields

Start with $f(z)=a z^{-1}: 2 \mathrm{D}$ line monopole field and is its monopole potential $(z)=a \ln z$ of source strength $a$.

$$
f^{1-\text { pole }}(z)=\frac{a}{z}=\frac{d \phi^{1-\text { pole }}}{d z} \quad \phi^{1-\text { pole }}(z)=a \ln z
$$

Now let these two line-sources of equal but opposite source constants $+a$ and $-a$ be located at $z= \pm \Delta / 2$ separated by a small interval $\Delta$. This sum (actually difference) of $f^{f-\text { pole }}$-fields is called a dipole field.

$$
f^{\text {dipole }}(z)=\frac{a}{z+\frac{\Delta}{2}}-\frac{a}{z-\frac{\Delta}{2}}=\frac{-a \cdot \Delta}{z^{2}-\frac{\Lambda^{2}}{4}} \quad \phi^{\text {dipole }}(z)=a \ln \left(z-\frac{\Delta}{2}\right)-a \ln \left(z+\frac{\Delta}{2}\right)=a \ln \frac{z-\frac{\Lambda^{1}}{2}}{z+\frac{\Delta}{2}}
$$

If interval $\Delta$ is tiny and is divided out we get a point-dipole field $f^{2 \text {-pole }}$ that is the $z$-derivative of $f^{l \text {-pole }}$.

$$
f^{2-\text { pole }}=\frac{-a}{z^{2}}=\frac{d f^{1-p o l e}}{d z}=\frac{d \phi^{2-p o l e}}{d z} \quad \phi^{2-p o l e}=\frac{a}{z}=\frac{d \phi^{1-\text { pole }}}{d z}
$$

A point-dipole potential $\phi^{2-\text {-pole }}$ (whose $z$-derivative is $f^{2 \text {-pole }}$ ) is a $z$-derivative of $\phi^{1 \text {-pole }}$.

$$
\begin{aligned}
\phi^{2-p o l e}=\frac{a}{z}=\frac{a}{x+i y}=\frac{a}{x+i y} \frac{x-i y}{x-i y} & =\frac{a x}{x^{2}+y^{2}}+i \frac{-a y}{x^{2}+y^{2}}=\frac{a}{r} \cos \theta-i \frac{a}{r} \sin \theta \\
& =\Phi^{2-p o l e}+i \mathrm{~A}^{2-p o l e}
\end{aligned}
$$

A point-dipole potential $\phi^{2-\text { pole }}$ (whose $z$-derivative is $f^{2-\text { pole }}$ ) is a $z$-derivative of $\phi^{l-\text { pole }}$.

$$
\begin{aligned}
\phi^{2-p o l e}=\frac{a}{z}=\frac{a}{x+i y}=\frac{a}{x+i y} \frac{x-i y}{x-i y} & =\frac{a x}{x^{2}+y^{2}}+i \frac{-a y}{x^{2}+y^{2}}=\frac{a}{r} \cos \theta-i \frac{a}{r} \sin \theta \\
& =\Phi^{2-p o l e}+i \mathrm{~A}^{2-p o l e}
\end{aligned}
$$


$2^{n}$-pole analysis (quadrupole: $2^{2}=4$-pole, octapole: $2^{3}=8$-pole, ..., pole dennere,
What if we put a (-)copy of a 2 -pole near its original?
Well, the result is 4 -pole or quadrupole field $f^{4 \text {-pole }}$ and potential $\phi^{4 \text {-pole }}$.
Each a $z$-derivative of $f^{2 \text {-pole }}$ and $\phi^{2 \text {-pole }}$.

$$
f^{4-\text { pole }}=\frac{a}{z^{3}}=\frac{1}{2} \frac{d f^{2-p o l e}}{d z}=\frac{d \phi^{4-p o l e}}{d z}
$$

$$
\phi^{4-\text { pole }}=-\frac{a}{2 z^{2}}=\frac{1}{2} \frac{d \phi^{2-p o l e}}{d z}
$$

$2^{n}$-pole analysis (quadrupole: $2^{2}=4$-pole, octapole: $2^{3}=8$-pole, $\ldots$, , pole dancer,
What if we put a (-)copy of a 2-pole near its original?
Well, the result is 4-pole or quadrupole field $f^{4-\text {-pole }}$ and potential $\phi^{4-\text { pole }}$.
Each a $z$-derivative of $f^{2 \text {-pole }}$ and $\phi^{2 \text {-pole }}$.

$$
f^{4-\text { pole }}=\frac{a}{z^{3}}=\frac{1}{2} \frac{d f^{2-\text { pole }}}{d z}=\frac{d \phi^{4-\text { pole }}}{d z} \quad \phi^{4-\text { pole }}=-\frac{a}{2 z^{2}}=\frac{1}{2} \frac{d \phi^{2-\text { pole }}}{d z}
$$


4. Riemann-Cauchy conditions What's analytic? (...and what's not?)

Easy 2D circulation and flux integrals
Easy 2D curvilinear coordinate discovery
Easy 2D monopole, dipole, and $2^{n}$-pole analysis
Easy $2^{n}$-multipole field and potential expansion
Easy stereo-projection visualization

## $2^{n}$-pole analysis: Laurent series (Generalization of Maclaurin-Taylor series)

Laurent series or multipole expansion of a given complex field function $f(z)$ around $z=0$.

$$
\begin{aligned}
& \frac{d \phi}{d z}=f(z)=\ldots a_{-3} z^{-3}+a_{-2} z^{-2}+a_{-1} z^{-1}+a_{0}+a_{1} z+a_{2} z^{2}+a_{3} z^{3}+a_{4} z^{4}+a_{5} z^{5}+\ldots
\end{aligned}
$$

$$
\begin{aligned}
& \int f d z= \\
& \phi(z)=\ldots \frac{a_{-3}}{-2} z^{-2}+\frac{a_{-2}}{-1} z^{-1}+a_{-1} \ln z+a_{0} z+\frac{a_{1}}{2} z^{2}+\frac{a_{2}}{3} z^{3}+\frac{a_{3}}{4} z^{4}+\frac{a_{4}}{5} z^{5}+\frac{a_{5}}{6} z^{6}+\ldots
\end{aligned}
$$

All field terms $a_{m-1} z^{m-1}$ except 1 -pole ${ }_{\frac{a}{z}}-1$ have potential term $a_{m-1} z^{m} / m$ of a $2^{m}$-pole.
These are located at $z=0$ for $m<0$ and at $z=\infty$ for $m>0$.

$$
\begin{aligned}
& \text { (octapole) } \left.\left._{0} \text { (quadrupole) } \text { (dipole) }_{0} \text { (monopole) (dipole) } \infty_{\infty} \text { (quadrupole) }\right)_{\infty} \text { (octapole) }\right)_{\infty} \\
& \phi(z)=\ldots \frac{a_{-4}}{-3} z^{-3}+\frac{a_{-3}}{-2} z^{-2}+\frac{a_{-2}}{-1} z^{-1}+a_{-1} \ln z+a_{0} z+\frac{a_{1}}{2} z^{2}+\frac{a_{2}}{3} z^{3}+\ldots
\end{aligned}
$$

## $2^{n}$-pole analysis: Laurent series (Generalization of Maclaurin-Taylor series)

Laurent series or multipole expansion of a given complex field function $f(z)$ around $z=0$.

$$
\phi(z)=\ldots \frac{a_{-3}}{-2} z^{-2}+\frac{a_{-2}}{-1} z^{-1}+a_{-1} \ln z+a_{0} z+\frac{a_{1}}{2} z^{2}+\frac{a_{2}}{3} z^{3}+\frac{a_{3}}{4} z^{4}+\frac{a_{4}}{5} z^{5}+\frac{a_{5}}{6} z^{6}+\ldots
$$

All field terms $a_{m-1} z^{m-1}$ except 1 -pole ${ }_{\bar{z}}^{a}-1$ have potential term $a_{m-1} z^{m} / m$ of a $2^{m}$-pole.
These are located at $z=0$ for $m<0$ and at $z=\infty$ for $m>0$.

$$
\begin{aligned}
& \text { (octapole) } \left.\left.\left.\left.)_{0} \text { (quadrupole) }\right)_{0} \text { (dipole) } \text { (monopole) }_{0} \text { (dipole) }\right)_{\infty} \quad \text { (quadrupole) }\right)_{\infty} \text { (octapole) }\right)_{\infty} \\
& \phi(z)=\ldots \frac{a_{-3}}{-2} z^{-2}+\frac{a_{-3}}{-2} z^{-2}+\frac{a_{-2}}{-1} z^{-1}+a_{-1} \ln z+a_{0} z+\frac{a_{1}}{2} z^{2}+\frac{a_{2}}{3} z^{3}+\ldots \\
& \phi(w)=\ldots \frac{a_{-4}}{-3} w^{-3}+\frac{a_{-3}}{-2} w^{-2}+\frac{a_{-2}}{-1} w^{-1}+a_{-1} \ln w+a_{0} w+\frac{a_{1}}{2} w^{2}+\frac{a_{2}}{3} w^{3}+\ldots
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d \phi}{d z}=f(z)=\ldots a_{-3} z^{-3}+a_{-2} z^{-2}+a_{-1} z^{-1}+a_{0}+a_{1} z+a_{2} z^{2}+a_{3} z^{3}+a_{4} z^{4}+a_{5} z^{5}+\ldots \\
& \begin{array}{ccccccc}
\cdots 2^{2} \text {-pole } & 2^{1} \text {-pole } & 2^{0} \text {-pole } & 2^{1} \text {-pole } & 2^{2} \text {-pole } & 2^{3} \text {-pole } & 2^{4} \text {-pole } 2^{5} \text {-pole } 2^{6} \text {-pole } \cdots \\
\begin{array}{c}
\text { (quadruple) } \\
\text { at } z=0
\end{array} & \begin{array}{c}
\text { (dipole) } \\
\text { at } z=0
\end{array} & \begin{array}{c}
\text { (monopole) } \\
\text { at } z=0
\end{array} & \begin{array}{c}
\text { (dipole) } \\
\text { at } z=\infty
\end{array} & \begin{array}{c}
\text { (quadrupole) } \\
\text { at } z=\infty
\end{array} & \text { (octapole) } \\
\text { (hexadecapole) } z=\infty & \text { at } z=\infty & \text { at } z=\infty & \text { at } z=\infty
\end{array}
\end{aligned}
$$

## $2^{n}$-pole analysis: Laurent series (Generalization of Maclaurin-Taylor series)

Laurent series or multipole expansion of a given complex field function $f(z)$ around $z=0$.

$$
\begin{aligned}
& \frac{d \phi}{d z}=f(z)=\ldots a_{-3} z^{-3}+a_{-2} z^{-2}+a_{-1} z^{-1}+a_{0}+a_{1} z+a_{2} z^{2}+a_{3} z^{3}+a_{4} z^{4}+a_{5} z^{5}+\ldots
\end{aligned}
$$

$$
\begin{aligned}
& \phi(z)=\ldots \frac{a_{-3}}{-2} z^{-2}+\frac{a_{-2}}{-1} z^{-1}+a_{-1} \ln z+a_{0} z+\frac{a_{1}}{2} z^{2}+\frac{a_{2}}{3} z^{3}+\frac{a_{3}}{4} z^{4}+\frac{a_{4}}{5} z^{5}+\frac{a_{5}}{6} z^{6}+\ldots
\end{aligned}
$$

All field terms $a_{m-1} z^{m-1}$ except 1 -pole ${ }_{\bar{z}}^{a_{-1}}$ have potential term $a_{m-1} z^{m} / m$ of a $2^{m}$-pole.
These are located at $z=0$ for $m<0$ and at $z=\infty$ for $m>0$.

$$
\begin{aligned}
& \phi(z)=\ldots \frac{a_{-4}}{-3} z^{-3}+\frac{a_{-3}}{-2} z^{-2}+\frac{a_{-2}}{-1} z^{-1}+a_{-1} \ln z+a_{0} z+\frac{a_{1}}{2} z^{2}+\frac{a_{2}}{3} z^{3}+\ldots \\
& \begin{aligned}
\phi(w) & =\ldots \frac{a_{-4}}{-3} w^{-3}+\frac{a_{-3}}{-2} w^{-2}+\frac{a_{-2}}{-1} w^{-1}+a_{-1} \ln w+a_{0} w+\frac{a_{1}}{2} w^{2}+\frac{a_{2}}{3} w^{3}+\ldots \\
& =\ldots \frac{a_{2}}{3} z^{-3}+\frac{a_{1}}{2} z^{-2 \stackrel{4}{4} a_{0} z^{-1}-a_{-1} \ln z+\frac{a_{-2}}{-1} z+\frac{a_{-3}}{-2} z^{2}+\frac{a_{-4}}{-3} z^{3}+\ldots}
\end{aligned} \\
& (\text { with } z \longrightarrow w) \\
& \text { ( with } w=z^{-1} \text { ) }
\end{aligned}
$$


$f(z)=\ldots a_{-3} z^{-3}+a_{-2} z^{-2}+a_{-1} z^{-1}+a_{0}+a_{1} z+a_{2} z^{2}+a_{3} z^{3}+a_{4} z^{4}+a_{5} z^{5}+\ldots$
Of all $2^{m}$-pole field terms $a_{m-1} z^{m-1}$, only the $m=0$ monopole $a_{-I} z^{-1}$ has a non-zero loop integral (10.39).

$$
\oint f(z) d z=\oint a_{-1} z^{-1} d z=2 \pi i a_{-1} \quad a_{-1}=\frac{1}{2 \pi i} \oint f(z) d z
$$

$$
f(z)=\ldots a_{-3} z^{-3}+a_{-2} z^{-2}+a_{-1} z^{-1}+a_{0}+a_{1} z+a_{2} z^{2}+a_{3} z^{3}+a_{4} z^{4}+a_{5} z^{5}+\ldots
$$

Of all $2^{m}$-pole field terms $a_{m-1} z^{m-1}$, only the $m=0$ monopole $a_{-I} z^{-1}$ has a non-zero loop integral (10.39).

$$
\oint f(z) d z=\oint a_{-1} z^{-1} d z=2 \pi i a_{-1} \quad a_{-1}=\frac{1}{2 \pi i} \oint f(z) d z
$$

This $m=1$-pole constant- $a_{-1}$ formula is just the first in a series of Laurent coefficient expressions.

$$
\cdots a_{-3}=\frac{1}{2 \pi i} \phi z^{2} f(z) d z, a_{-2}=\frac{1}{2 \pi i} \phi z^{1} f(z) d z, a_{-1}=\frac{1}{2 \pi i} \phi f(z) d z, a_{0}=\frac{1}{2 \pi i} \phi \frac{f(z)}{z} d z, a_{1}=\frac{1}{2 \pi i} \phi \frac{f(z)}{z^{2}} d z, \cdots
$$

$$
f(z)=\ldots a_{-3} z^{-3}+a_{-2} z^{-2}+a_{-1} z^{-1}+a_{0}+a_{1} z+a_{2} z^{2}+a_{3} z^{3}+a_{4} z^{4}+a_{5} z^{5}+\ldots
$$

Of all $2^{m}$-pole field terms $a_{m-1} z^{m-1}$, only the $m=0$ monopole $a_{-1} z^{-1}$ has a non-zero loop integral (10.39).

$$
\oint f(z) d z=\oint a_{-1} z^{-1} d z=2 \pi i a_{-1} \quad a_{-1}=\frac{1}{2 \pi i} \oint f(z) d z
$$

This $m=1$-pole constant- $a_{-1}$ formula is just the first in a series of Laurent coefficient expressions.

$$
\cdots a_{-3}=\frac{1}{2 \pi i} \phi z^{2} f(z) d z, a_{-2}=\frac{1}{2 \pi i} \phi z^{1} f(z) d z, a_{-1}=\frac{1}{2 \pi i} \phi f(z) d z, a_{0}=\frac{1}{2 \pi i} \phi \frac{f(z)}{z} d z, a_{1}=\frac{1}{2 \pi i} \phi \frac{f(z)}{z^{2}} d z, \cdots
$$

Source analysis starts with 1-pole loop integrals $\oint z^{-1} d z=2 \pi i$ or, with origin shifted $\oint(z-a)^{-1} d z=2 \pi i$.

$$
f(z)=\ldots a_{-3} z^{-3}+a_{-2} z^{-2}+a_{-1} z^{-1}+a_{0}+a_{1} z+a_{2} z^{2}+a_{3} z^{3}+a_{4} z^{4}+a_{5} z^{5}+\ldots
$$

Of all $2^{m}$-pole field terms $a_{m-1} z^{m-1}$, only the $m=0$ monopole $a_{-1} z^{-1}$ has a non-zero loop integral (10.39).

$$
\oint f(z) d z=\oint a_{-1} z^{-1} d z=2 \pi i a_{-1} \quad a_{-1}=\frac{1}{2 \pi i} \oint f(z) d z
$$

This $m=1$-pole constant- $a_{-1}$ formula is just the first in a series of Laurent coefficient expressions.

$$
\cdots a_{-3}=\frac{1}{2 \pi i} \phi z^{2} f(z) d z, a_{-2}=\frac{1}{2 \pi i} \phi z^{1} f(z) d z, a_{-1}=\frac{1}{2 \pi i} \phi f(z) d z, a_{0}=\frac{1}{2 \pi i} \phi \frac{f(z)}{z} d z, a_{1}=\frac{1}{2 \pi i} \phi \frac{f(z)}{z^{2}} d z, \cdots
$$

Source analysis starts with 1-pole loop integrals $\oint z^{-1} d z=2 \pi i$ or, with origin shifted $f(z-a)^{-1} d z=2 \pi i$. They hold for any loop about point- $a$. Function $f(z)$ is just $f(a)$ on a ${ }_{\text {tiny }}$ circle around point- $a$.

$$
\oint \frac{f(z)}{z-a} d z=\oint \frac{f(a)}{z-a} d z=f(a) \oint \frac{1}{z-a} d z=2 \pi i f(a)
$$

(but any contour that doesn't "touch $a$ gives same answer)

$$
f(z)=\ldots a_{-3} z^{-3}+a_{-2} z^{-2}+a_{-1} z^{-1}+a_{0}+a_{1} z+a_{2} z^{2}+a_{3} z^{3}+a_{4} z^{4}+a_{5} z^{5}+\ldots
$$

Of all $2^{m}$-pole field terms $a_{m-1} z^{m-1}$, only the $m=0$ monopole $a_{-I} z^{-1}$ has a non-zero loop integral (10.39).

$$
\oint f(z) d z=\oint a_{-1} z^{-1} d z=2 \pi i a_{-1} \quad a_{-1}=\frac{1}{2 \pi i} \oint f(z) d z
$$

This $m=1$-pole constant- $a_{-1}$ formula is just the first in a series of Laurent coefficient expressions.

$$
\cdots a_{-3}=\frac{1}{2 \pi i} \oint z^{2} f(z) d z, a_{-2}=\frac{1}{2 \pi i} \phi z^{1} f(z) d z, a_{-1}=\frac{1}{2 \pi i} \oint f(z) d z, a_{0}=\frac{1}{2 \pi i} \oint \frac{f(z)}{z} d z, a_{1}=\frac{1}{2 \pi i} \oint \frac{f(z)}{z^{2}} d z, \cdots
$$

Source analysis starts with 1-pole loop integrals $\phi z^{-1} d z=2 \pi i$ or, with origin shifted $\oint(z-a)^{-1} d z=2 \pi i$. They hold for any loop about point- $a$. Function $f(z)$ is just $f(a)$ on a ${ }_{\text {tiny }}$ circle around point- $a$.

$$
\oint \frac{f(z)}{z-a} d z=\oint \frac{f(a)}{z-a} d z=f(a) \oint \frac{1}{z-a} d z=2 \pi i f(a) \quad f(a)=\frac{1}{2 \pi i} \oint \frac{f(z)}{z-a} d z
$$

The $f(a)$ result is called a Cauchy integral.

$$
f(z)=\ldots a_{-3} z^{-3}+a_{-2} z^{-2}+a_{-1} z^{-1}+a_{0}+a_{1} z+a_{2} z^{2}+a_{3} z^{3}+a_{4} z^{4}+a_{5} z^{5}+\ldots
$$

Of all $2^{m}$-pole field terms $a_{m-1} z^{m-1}$, only the $m=0$ monopole $a_{-1} \mid z^{-1}$ has a non-zero loop integral (10.39).

$$
\oint f(z) d z=\oint a_{-1} z^{-1} d z=2 \pi i a_{-1} \quad a_{-1}=\frac{1}{2 \pi i} \oint f(z) d z
$$

This $m=1$-pole constant- $a_{-1}$ formula is just the first in a series of Laurent coefficient expressions.

$$
\cdots a_{-3}=\frac{1}{2 \pi i} \oint z^{2} f(z) d z, a_{-2}=\frac{1}{2 \pi i} \phi z^{1} f(z) d z, a_{-1}=\frac{1}{2 \pi i} \oint f(z) d z, a_{0}=\frac{1}{2 \pi i} \oint \frac{f(z)}{z} d z, a_{1}=\frac{1}{2 \pi i} \oint \frac{f(z)}{z^{2}} d z, \cdots
$$

Source analysis starts with 1-pole loop integrals $\phi z^{-1} d z=2 \pi i$ or, with origin shifted $\oint(z-a)^{-1} d z=2 \pi i$. They hold for any loop about point- $a$. Function $f(z)$ is just $f(a)$ on a ${ }_{\text {tiny }}$ circle around point- $a$.

$$
\oint \frac{f(z)}{z-a} d z=\oint \frac{f(a)}{z-a} d z=f(a) \oint \frac{1}{z-a} d z=2 \pi i f(a) \quad f(a)=\frac{1}{2 \pi i} \oint \frac{f(z)}{z-a} d z
$$

The $f(a)$ result is called a Cauchy integral. Then repeated $a$-derivatives gives a sequence of them.

$$
\frac{d f(a)}{d a}=\frac{1}{2 \pi i} \oint \frac{f(z)}{(z-a)^{2}} d z
$$

$$
f(z)=\ldots a_{-3} z^{-3}+a_{-2} z^{-2}+a_{-1} z^{-1}+a_{0}+a_{1} z+a_{2} z^{2}+a_{3} z^{3}+a_{4} z^{4}+a_{5} z^{5}+\ldots
$$

Of all $2^{m}$-pole field terms $a_{m-1} z^{m-1}$, only the $m=0$ monopole $a_{-1} \mid z^{-1}$ has a non-zero loop integral (10.39).

$$
\oint f(z) d z=\oint a_{-1} z^{-1} d z=2 \pi i a_{-1} \quad a_{-1}=\frac{1}{2 \pi i} \oint f(z) d z
$$

This $m=1$-pole constant- $a_{-1}$ formula is just the first in a series of Laurent coefficient expressions.

$$
\cdots a_{-3}=\frac{1}{2 \pi i} \phi z^{2} f(z) d z, a_{-2}=\frac{1}{2 \pi i} \phi z^{1} f(z) d z, a_{-1}=\frac{1}{2 \pi i} \phi f(z) d z, a_{0}=\frac{1}{2 \pi i} \phi \frac{f(z)}{z} d z, a_{1}=\frac{1}{2 \pi i} \phi \frac{f(z)}{z^{2}} d z, \cdots
$$

Source analysis starts with 1-pole loop integrals $\phi z^{-1} d z=2 \pi i$ or, with origin shifted $\oint(z-a)^{-1} d z=2 \pi i$. They hold for any loop about point- $a$. Function $f(z)$ is just $f(a)$ on a ${ }_{\text {tiny }}$ circle around point- $a$.

$$
\oint \frac{f(z)}{z-a} d z=\oint \frac{f(a)}{z-a} d z=f(a) \oint \frac{1}{z-a} d z=2 \pi i f(a) \quad f(a)=\frac{1}{2 \pi i} \oint \frac{f(z)}{z-a} d z
$$

The $f(a)$ result is called a Cauchy integral. Then repeated $a$-derivatives gives a sequence of them.

$$
\frac{d f(a)}{d a}=\frac{1}{2 \pi i} \oint \frac{f(z)}{(z-a)^{2}} d z, \frac{d^{2} f(a)}{d a^{2}}=\frac{2}{2 \pi i} \oint \frac{f(z)}{(z-a)^{3}} d z
$$

$$
f(z)=\ldots a_{-3} z^{-3}+a_{-2} z^{-2}+a_{-1} z^{-1}+a_{0}+a_{1} z+a_{2} z^{2}+a_{3} z^{3}+a_{4} z^{4}+a_{5} z^{5}+\ldots
$$

Of all $2^{m}$-pole field terms $a_{m-1} z^{m-1}$, only the $m=0$ monopole $a_{-I} z^{-1}$ has a non-zero loop integral (10.39).

$$
\oint f(z) d z=\oint a_{-1} z^{-1} d z=2 \pi i a_{-1} \quad a_{-1}=\frac{1}{2 \pi i} \oint f(z) d z
$$

This $m=1$-pole constant- $a_{-1}$ formula is just the first in a series of Laurent coefficient expressions.

$$
\cdots a_{-3}=\frac{1}{2 \pi i} \phi z^{2} f(z) d z, a_{-2}=\frac{1}{2 \pi i} \phi z^{1} f(z) d z, a_{-1}=\frac{1}{2 \pi i} \phi f(z) d z, a_{0}=\frac{1}{2 \pi i} \phi \frac{f(z)}{z} d z, a_{1}=\frac{1}{2 \pi i} \phi \frac{f(z)}{z^{2}} d z, \cdots
$$

Source analysis starts with 1-pole loop integrals $\oint z^{-1} d z=2 \pi i$ or, with origin shifted $\oint(z-a)^{-1} d z=2 \pi i$ They hold for any loop about point- $a$. Function $f(z)$ is just $f(a)$ on a ${ }_{\text {tiny }}$ circle around point- $a$.

$$
\oint \frac{f(z)}{z-a} d z=\oint \frac{f(a)}{z-a} d z=f(a) \oint \frac{1}{z-a} d z=2 \pi i f(a) \quad f(a)=\frac{1}{2 \pi i} \oint \frac{f(z)}{z-a} d z
$$

The $f(a)$ result is called a Cauchy integral. Then repeated $a$-derivatives gives a sequence of them.

$$
\frac{d f(a)}{d a}=\frac{1}{2 \pi i} \oint \frac{f(z)}{(z-a)^{2}} d z, \frac{d^{2} f(a)}{d a^{2}}=\frac{2}{2 \pi i} \oint \frac{f(z)}{(z-a)^{3}} d z, \frac{d^{3} f(a)}{d a^{3}}=\frac{3!}{2 \pi i} \oint \frac{f(z)}{(z-a)^{4}} d z
$$

$$
f(z)=\ldots a_{-3} z^{-3}+a_{-2} z^{-2}+a_{-1} z^{-1}+a_{0}+a_{1} z+a_{2} z^{2}+a_{3} z^{3}+a_{4} z^{4}+a_{5} z^{5}+\ldots
$$

Of all $2^{m}$-pole field terms $a_{m-1} z^{m-1}$, only the $m=0$ monopole $a_{-I} z^{-1}$ has a non-zero loop integral (10.39).

$$
\oint f(z) d z=\oint a_{-1} z^{-1} d z=2 \pi i a_{-1} \quad a_{-1}=\frac{1}{2 \pi i} \oint f(z) d z
$$

This $m=1$-pole constant- $a_{-1}$ formula is just the first in a series of Laurent coefficient expressions.

$$
\cdots a_{-3}=\frac{1}{2 \pi i} \phi z^{2} f(z) d z, a_{-2}=\frac{1}{2 \pi i} \phi z^{1} f(z) d z, a_{-1}=\frac{1}{2 \pi i} \phi f(z) d z, a_{0}=\frac{1}{2 \pi i} \phi \frac{f(z)}{z} d z, a_{1}=\frac{1}{2 \pi i} \phi \frac{f(z)}{z^{2}} d z, \cdots
$$

Source analysis starts with 1-pole loop integrals $\oint z^{-1} d z=2 \pi i$ or, with origin shifted $\oint(z-a)^{-1} d z=2 \pi i$ They hold for any loop about point- $a$. Function $f(z)$ is just $f(a)$ on a ${ }_{\text {tiny }}$ circle around point- $a$.

$$
\oint \frac{f(z)}{z-a} d z=\oint \frac{f(a)}{z-a} d z=f(a) \oint \frac{1}{z-a} d z=2 \pi i f(a) \quad f(a)=\frac{1}{2 \pi i} \oint \frac{f(z)}{z-a} d z
$$

The $f(a)$ result is called a Cauchy integral. Then repeated $a$-derivatives gives a sequence of them.

$$
\frac{d f(a)}{d a}=\frac{1}{2 \pi i} \oint \frac{f(z)}{(z-a)^{2}} d z, \frac{d^{2} f(a)}{d a^{2}}=\frac{2}{2 \pi i} \oint \frac{f(z)}{(z-a)^{3}} d z, \frac{d^{3} f(a)}{d a^{3}}=\frac{3!}{2 \pi i} \oint \frac{f(z)}{(z-a)^{4}} d z, \ldots, \frac{d^{n} f(a)}{d a^{n}}=\frac{n!}{2 \pi i} \oint \frac{f(z)}{(z-a)^{n+1}} d z
$$

$$
f(z)=\ldots a_{-3} z^{-3}+a_{-2} z^{-2}+a_{-1} z^{-1}+a_{0}+a_{1} z+a_{2} z^{2}+a_{3} z^{3}+a_{4} z^{4}+a_{5} z^{5}+\ldots
$$

Of all $2^{m}$-pole field terms $a_{m-1} z^{m-1}$, only the $m=0$ monopole $a_{-I} z^{-1}$ has a non-zero loop integral (10.39).

$$
\oint f(z) d z=\oint a_{-1} z^{-1} d z=2 \pi i a_{-1} \quad a_{-1}=\frac{1}{2 \pi i} \oint f(z) d z
$$

This $m=1$-pole constant- $a_{-1}$ formula is just the first in a series of Laurent coefficient expressions.

$$
\cdots a_{-3}=\frac{1}{2 \pi i} \phi z^{2} f(z) d z, a_{-2}=\frac{1}{2 \pi i} \phi z^{1} f(z) d z, a_{-1}=\frac{1}{2 \pi i} \phi f(z) d z, a_{0}=\frac{1}{2 \pi i} \phi \frac{f(z)}{z} d z, a_{1}=\frac{1}{2 \pi i} \phi \frac{f(z)}{z^{2}} d z, \cdots
$$

Source analysis starts with 1-pole loop integrals $\oint z^{-1} d z=2 \pi i$ or, with origin shifted $\oint(z-a)^{-1} d z=2 \pi i$ They hold for any loop about point- $a$. Function $f(z)$ is just $f(a)$ on a ${ }_{\text {tiny }}$ circle around point- $a$.

$$
\oint \frac{f(z)}{z-a} d z=\oint \frac{f(a)}{z-a} d z=f(a) \oint \frac{1}{z-a} d z=2 \pi i f(a) \quad f(a)=\frac{1}{2 \pi i} \oint \frac{f(z)}{z-a} d z
$$

The $f(a)$ result is called a Cauchy integral. Then repeated $a$-derivatives gives a sequence of them.

$$
\frac{d f(a)}{d a}=\frac{1}{2 \pi i} \oint \frac{f(z)}{(z-a)^{2}} d z, \frac{d^{2} f(a)}{d a^{2}}=\frac{2}{2 \pi i} \oint \frac{f(z)}{(z-a)^{3}} d z, \frac{d^{3} f(a)}{d a^{3}}=\frac{3!}{2 \pi i} \oint \frac{f(z)}{(z-a)^{4}} d z, \ldots, \frac{d^{n} f(a)}{d a^{n}}=\frac{n!}{2 \pi i} \oint \frac{f(z)}{(z-a)^{n+1}} d z
$$

This leads to a general Taylor-Laurent power series expansion of function $f(z)$ around point- $a$.

$$
f(z)=\ldots a_{-3} z^{-3}+a_{-2} z^{-2}+a_{-1} z^{-1}+a_{0}+a_{1} z+a_{2} z^{2}+a_{3} z^{3}+a_{4} z^{4}+a_{5} z^{5}+\ldots
$$

Of all $2^{m}$-pole field terms $a_{m-1} z^{m-1}$, only the $m=0$ monopole $a_{-1} z^{-1}$ has a non-zero loop integral (10.39).

$$
\oint f(z) d z=\oint a_{-1} z^{-1} d z=2 \pi i a_{-1} \quad a_{-1}=\frac{1}{2 \pi i} \oint f(z) d z
$$

This $m=1$-pole constant- $a_{-1}$ formula is just the first in a series of Laurent coefficient expressions.

$$
\cdots a_{-3}=\frac{1}{2 \pi i} \phi z^{2} f(z) d z, a_{-2}=\frac{1}{2 \pi i} \phi z^{1} f(z) d z, a_{-1}=\frac{1}{2 \pi i} \phi f(z) d z, a_{0}=\frac{1}{2 \pi i} \phi \frac{f(z)}{z} d z, a_{1}=\frac{1}{2 \pi i} \phi \frac{f(z)}{z^{2}} d z, \cdots
$$

Source analysis starts with 1-pole loop integrals $\oint z^{-1} d z=2 \pi i$ or, with origin shifted $\oint(z-a)^{-1} d z=2 \pi i$
They hold for any loop about point- $a$. Function $f(z)$ is just $f(a)$ on a ${ }_{\text {tiny }}$ circle around point- $a$.

$$
\oint \frac{f(z)}{z-a} d z=\oint \frac{f(a)}{z-a} d z=f(a) \oint \frac{1}{z-a} d z=2 \pi i f(a) \quad f(a)=\frac{1}{2 \pi i} \oint \frac{f(z)}{z-a} d z
$$

The $f(a)$ result is called a Cauchy integral. Then repeated $a$-derivatives gives a sequence of them.

$$
\frac{d f(a)}{d a}=\frac{1}{2 \pi i} \oint \frac{f(z)}{(z-a)^{2}} d z, \frac{d^{2} f(a)}{d a^{2}}=\frac{2}{2 \pi i} \oint \frac{f(z)}{(z-a)^{3}} d z, \frac{d^{3} f(a)}{d a^{3}}=\frac{3!}{2 \pi i} \oint \frac{f(z)}{(z-a)^{4}} d z, \cdots, \frac{d^{n} f(a)}{d a^{n}}=\frac{n!}{2 \pi i} \oint \frac{f(z)}{(z-a)^{n+1}} d z
$$

This leads to a general Taylor-Laurent power series expansion of function $f(z)$ around point- $a$.

$$
f(z)=\sum_{n=-\infty}^{\infty} a_{n}(z-a)^{n} \quad \text { where }: a_{n}=\frac{1}{2 \pi i} \oint \frac{f(z)}{(z-a)^{n+1}} d z\left(=\frac{1}{n!} \frac{d^{n} f(a)}{d a^{n}} \quad \text { for }: n \geq 0\right)
$$

Of all $2^{m}$-pole field terms $a_{m-1} z^{m-1}$, only the $m=0$ monopole $a_{-1} z^{-1}$ has a non-zero loop integral (10.39).

$$
\oint f(z) d z=\oint a_{-1} z^{-1} d z=2 \pi i a_{-1} \quad a_{-1}=\frac{1}{2 \pi i} \oint f(z) d z
$$

This $m=1$-pole constant- $a_{-1}$ formula is just the first in a series of Laurent coefficient expressions.

$$
\cdots a_{-3}=\frac{1}{2 \pi i} \phi z^{2} f(z) d z, a_{-2}=\frac{1}{2 \pi i} \phi z^{1} f(z) d z, a_{-1}=\frac{1}{2 \pi i} \phi f(z) d z, a_{0}=\frac{1}{2 \pi i} \phi \frac{f(z)}{z} d z, a_{1}=\frac{1}{2 \pi i} \phi \frac{f(z)}{z^{2}} d z, \cdots
$$

Source analysis starts with 1-pole loop integrals $\oint z^{-1} d z=2 \pi i$ or, with origin shifted $\oint(z-a)^{-1} d z=2 \pi i$
They hold for any loop about point- $a$. Function $f(z)$ is just $f(a)$ on a ${ }_{\text {tiny }}$ circle around point- $a$.

$$
\oint \frac{f(z)}{z-a} d z=\oint \frac{f(a)}{z-a} d z=f(a) \oint \frac{1}{z-a} d z=2 \pi i f(a) \quad f(a)=\frac{1}{2 \pi i} \oint \frac{f(z)}{z-a} d z
$$

The $f(a)$ result is called a Cauchy integral. Then repeated $a$-derivatives gives a sequence of them.

$$
\frac{d f(a)}{d a}=\frac{1}{2 \pi i} \oint \frac{f(z)}{(z-a)^{2}} d z, \frac{d^{2} f(a)}{d a^{2}}=\frac{2}{2 \pi i} \oint \frac{f(z)}{(z-a)^{3}} d z, \frac{d^{3} f(a)}{d a^{3}}=\frac{3!}{2 \pi i} \oint \frac{f(z)}{(z-a)^{4}} d z, \cdots, \frac{d^{n} f(a)}{d a^{n}}=\frac{n!}{2 \pi i} \oint \frac{f(z)}{(z-a)^{n+1}} d z
$$

This leads to a general Taylor-Laurent power series expansion of function $f(z)$ around point- $a$.

$$
f(z)=\sum_{n=-\infty}^{\infty} a_{n}(z-a)^{n} \quad \text { where }: a_{n}=\frac{1}{2 \pi i} \oint \frac{f(z)}{(z-a)^{n+1}} d z\left(=\frac{1}{n!} \frac{d^{n} f(a)}{d a^{n}} \quad \text { for }: n \geq 0\right)
$$

(quadrupole) (dipole) $_{0}$ (monopole) (dipole) $)_{\infty}$ (quadrupole) $)_{\infty}$ (octapole) $)_{\infty}$ (hexadecapole) $)_{\infty}$...

$$
f(z)=\ldots a_{-3} z^{-3}+\underset{\substack{\text { dipole } \\ \text { moment }}}{a_{-2} z^{-2}+\underset{\substack{\text { monopole } \\ \text { moment }}}{a_{-1}} z^{-1}+a_{0}+a_{1} z+a_{2} z^{2}+a_{3} z^{3}+a_{4} z^{4}+a_{5} z^{5}+\ldots .}
$$

## 5. Mapping and Non-analytic 2D source field analysis

The hall-n'-half results

## are called

Riemann-Cauchy
Derivative Relations


RC applies to analytic potential $\phi(z)=\Phi+i \mathrm{~A}$ and analytic field $f(z)=f_{x}+i f_{y}$ and any analytic function

The half-n'-half results are called

Riemann-Cauchy
Derivative Relations


RC applies to analytic potential $\phi(z)=\Phi+i \mathbf{A}$ and analytic field $f(z)=f_{x}+i f_{y}$ and any analytic function
Common notation for mapping: $w(z)=u+i v$


The half-n'-half results are called
Riemann-Cauchy
Derivative Relations

RC applies to analytic potential $\phi(z)=\Phi+i \mathrm{~A}$ and analytic field $f(z)=f_{x}+i f_{y}$ and any analytic function
Common notation for mapping: $w(z)=u+i v$


## The half-n'-half results

are called
Riemann-Cauchy

## Derivative Relations

RC applies to analytic potential $\phi(z)=\Phi+i \mathbf{A}$ and analytic field $f(z)=f_{x}+i f_{y}$ and any analytic function
Common notation for mapping: $w(z)=u+i v$


## The half-n'-half results

are called
Riemann-Cauchy

## Derivative Relations

RC applies to analytic potential $\phi(z)=\Phi+i \mathbf{A}$ and analytic field $f(z)=f_{x}+i f_{y}$ and any analytic function
Common notation for mapping: $w(z)=u+i v$


$$
=\left(\begin{array}{cc}
\frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\
-\frac{\partial u}{\partial y} & \frac{\partial u}{\partial x}
\end{array}\right)\binom{d x}{d y}=\left(\begin{array}{cc}
\frac{\partial v}{\partial y} & -\frac{\partial v}{\partial x} \\
\frac{\partial v}{\partial x} & \frac{\partial v}{\partial y}
\end{array}\right)\binom{d x}{d y}
$$

Complex derivative abs-square:

$$
\left|\frac{d w}{d z}\right|^{2}=\left(\frac{\partial u}{\partial x}\right)^{2}+\left(\frac{\partial u}{\partial y}\right)^{2}=\left(\frac{\partial v}{\partial y}\right)^{2}+\left(\frac{\partial v}{\partial x}\right)^{2}=\operatorname{det}|J|
$$

...equals Jacobian Determinant

The half-n'-half results
are called
Riemann-Cauchy
Derivative Relations

RC applies to analytic potential $\phi(z)=\Phi+i \mathbf{A}$ and analytic field $f(z)=f_{x}+i f_{y}$ and any analytic function
Common notation for mapping: $w(z)=u+i v$


$$
=\left(\begin{array}{cc}
\frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\
-\frac{\partial u}{\partial y} & \frac{\partial u}{\partial x}
\end{array}\right)\binom{d x}{d y}=\left(\begin{array}{cc}
\frac{\partial v}{\partial y} & -\frac{\partial v}{\partial x} \\
\frac{\partial v}{\partial x} & \frac{\partial v}{\partial y}
\end{array}\right)\binom{d x}{d y}
$$

$$
\begin{aligned}
& d u=\frac{\partial u}{\partial x} d x+\frac{\partial u}{\partial y} d y \\
& d v=\frac{\partial v}{\partial x} d x+\frac{\partial v}{\partial y} d y
\end{aligned} \quad\binom{d u}{d v}=\left(\begin{array}{ll}
\frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\
\frac{\partial v}{\partial x} & \frac{\partial v}{\partial y}
\end{array}\right)\binom{d x}{d y}=\sqrt{\operatorname{det} J}\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)\binom{d x}{d y}
$$

Important result:

$$
d w=\sqrt{J} \cdot e^{i \theta} \cdot d z
$$

$$
\text { is scaled rotation of } d z \text {. }
$$

$$
w=u+i v
$$

space
$u$
Complex derivative for mapping:

$$
\begin{array}{r}
\frac{d w}{d z}=\frac{1}{2}\left(\frac{\partial}{\partial x}-i \frac{\partial}{\partial y}\right)(u+i v)=\frac{1}{2}\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)+\frac{i}{2}\left(\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}\right) \\
=\frac{\partial u}{\partial x}-i \frac{\partial u}{\partial y}=\frac{\partial v}{\partial y}+i \frac{\partial v}{\partial x}
\end{array}
$$

Complex derivative abs-square:

$$
\left|\frac{d w}{d z}\right|^{2}=\left(\frac{\partial u}{\partial x}\right)^{2}+\left(\frac{\partial u}{\partial y}\right)^{2}=\left(\frac{\partial v}{\partial y}\right)^{2}+\left(\frac{\partial v}{\partial x}\right)^{2}=\operatorname{det}|J|
$$

...equals Jacobian Determinant

$$
w(z)=z^{2} \text { gives parabolic } \mathrm{OCC}
$$



$$
w(z)=z^{2} \text { gives parabolic } \mathrm{OCC}
$$



## $\mathrm{w}(\mathrm{z})=\mathrm{Az}^{\wedge} 2 / 2$

Inverse: $z(w)=w^{1 / 2}$ gives hyperbolic OCC

$\begin{array}{lll}-3 & -2 & -1\end{array}$


$$
w(z)=z^{2} \quad \text { gives parabolic } \mathrm{OCC}
$$



Inverse: $z(w)=w^{1 / 2}$ gives hyperbolic OCC

$w=(u+i v)=z^{2}=(x+i y)^{2}$ is analytic function of z and w
Expansion: $\quad u=x^{2}-y^{2}$ and $v=2 x y$ may be solved using $|w|=\left|z^{2}\right|=|z|^{2}$
Expansion: $|w|=\sqrt{u^{2}+v^{2}}=x^{2}+y^{2}=|z|^{2}$
Solution: $x^{2}=\frac{u+\sqrt{u^{2}+v^{2}}}{2} \quad y^{2}=\frac{-u+\sqrt{u^{2}+v^{2}}}{2}$

$$
\left(\begin{array}{ll}
\frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\
\frac{\partial v}{\partial x} & \frac{\partial v}{\partial y}
\end{array}\right)=\binom{\overline{\mathbf{E}}^{u}}{\overline{\mathbf{E}}^{v}}=\left(\begin{array}{cc}
2 x & -2 y \\
+2 y & 2 x
\end{array}\right) \quad\left(\begin{array}{ll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{array}\right)=\left(\begin{array}{ll}
\overline{\mathbf{E}}_{u} & \overline{\mathbf{E}}_{v}
\end{array}\right)=\frac{\left(\begin{array}{cc}
2 x & +2 y \\
-2 y & 2 x
\end{array}\right)}{4\left(x^{2}+y^{2}\right)}
$$

Non-analytic potential, force, and source field functions

## A general 2D complex field may have:

1. non-analytic potential field function $\phi\left(z, z^{*}\right)=\Phi(x, y)+i A(x, y)$,
2. non-analytic force field function $f\left(z, z^{*}\right)=f_{x}(x, y)+i f y(x, y)$,
3. non-analytic source distribution function $s\left(z, z^{*}\right)=\rho(x, y)+i I(x, y)$.

Source definitions are made to generalize the $\mathbf{f}^{*}$ field equations (10.33) based on relations (10.31) and (10.32).

$$
2 \frac{d f^{*}}{d z}=s^{*}\left(z, z^{*}\right) \quad 2 \frac{d f}{d z^{*}}=s\left(z, z^{*}\right)
$$

Field equations for the potentials are like (10.33) with an extra factor of 2 .

$$
2 \frac{d \phi}{d z}=f\left(z, z^{*}\right) \quad 2 \frac{d \phi^{*}}{d z^{*}}=f^{*}\left(z, z^{*}\right)
$$

Source equations (10.46) expand like (10.32) into a real and imaginary parts of divergence and curl terms.

$$
\begin{aligned}
s^{*}\left(z, z^{*}\right)=2 \frac{d f^{*}}{d z} & =\left[\frac{\partial}{\partial x}-i \frac{\partial}{\partial y}\right]\left[f_{x}^{*}(x, y)+i f_{y}^{*}(x, y)\right]=\rho-i I, \quad \text { where: } f_{x}^{*}=f_{x}, \text { and: } f_{y}^{*}=-f_{y} \\
& =\left[\frac{\partial f_{x}^{*}}{\partial x}+\frac{\partial f_{y}^{*}}{\partial y}\right]+i\left[\frac{\partial f_{y}^{*}}{\partial x}-\frac{\partial f_{x}^{*}}{\partial y}\right]=\left[\nabla \bullet \mathbf{f}^{*}\right]+i\left[\nabla \times \mathbf{f}^{*}\right]_{Z}
\end{aligned}
$$

Real part: Poisson scalar source equation (charge density $\rho$ ). Imaginary part: Biot-Savart vector source equation(current density $I$ )

$$
\nabla \bullet \mathbf{f}^{*}=\rho \quad \nabla \times \mathbf{f}^{*}=-I
$$

Field equations (10.47) expand into Re and Im parts; $x$ and $y$ components of grad $\Phi$ and $\operatorname{curl} A_{Z}$ from potential $\phi=\Phi+i A$ or $\phi^{*}=\Phi-i A$.

$$
\begin{aligned}
f^{*}\left(z, z^{*}\right)= & 2 \frac{d \phi^{*}}{d z^{*}}=\left[\frac{\partial}{\partial x}+i \frac{\partial}{\partial y}\right](\Phi-i A)=f_{x}^{*}+i f_{y}^{*} \\
& =\left[\frac{\partial \Phi}{\partial x}+i \frac{\partial \Phi}{\partial y}\right]+\left[\frac{\partial A}{\partial y}-i \frac{\partial A}{\partial x}\right]=[\nabla \Phi]+\left[\nabla \times \mathbf{A}_{z}\right]
\end{aligned}
$$

Two parts: gradient of scalar potential called the longitudinal field $\mathbf{f}_{\mathbf{L}}^{*}$ and curl of a vector potential called the transverse field $\mathbf{f}_{\mathbf{T}}^{*}$.

$$
\mathbf{f}^{*}=\mathbf{f}_{\mathbf{L}}^{*}+\mathbf{f}_{\mathbf{T}}^{*} \quad \mathbf{f}_{\mathrm{L}}^{*}=\nabla \Phi \quad \mathbf{f}_{\mathrm{T}}^{*}=\nabla \times \mathbf{A}
$$

(For source-free analytic functions these two fields are identical.)
vs. position, velocity, and acceleration equations

Field equations


Newton equations


Potential and source field theory reduced to sophomore mechanics of motion!

## Example 1

Consider a non-analytic field $f(z)=\left(z^{*}\right)^{2}$ or $f^{*}(z)=z^{2}$.
The non-analytic potential function follows by integrating

$$
\begin{aligned}
& s^{*}\left(z, z^{*}\right)=2 \frac{d f^{*}}{d z}=4 z=4 x+i 4 y, \\
& \text { or: } \quad \rho=4 x, \quad \text { and }: \quad I=-4 y . \\
& \phi\left(z, z^{*}\right)=\frac{1}{2} \int f(z) d z=\frac{1}{2} \int\left(z^{*}\right)^{2} d z=\frac{z\left(z^{*}\right)^{2}}{2}=\frac{(x+i y)\left(x^{2}-y^{2}-i 2 x y\right)}{2}, \\
& \text { or: } \quad \Phi=\frac{x^{3}+x y^{2}}{2}, \quad \text { and }: A=\frac{-y^{3}-y x^{2}}{2} .
\end{aligned}
$$

The longitudinal field $\mathbf{f}_{\mathbf{T}}^{*}$ is quite different from the transverse field $\mathbf{f}_{\mathbf{L}}^{*}$.

$$
\mathbf{f}_{\mathbf{L}}^{*}=\nabla \Phi=\nabla\left(\frac{x^{3}+x y^{2}}{2}\right)=\left(\begin{array}{c}
\mathbf{f}_{\mathbf{L}}^{*}+\mathbf{f}_{\mathbf{T}}^{*} \\
\frac{3 x^{2}+y^{2}}{2} \\
x y
\end{array}\right), \quad \mathbf{f}_{\mathbf{T}}^{*}=\nabla \times \mathbf{A}=\nabla \times\left(\frac{-y^{3}-y x^{2}}{2} \mathbf{e}_{\mathbf{z}}\right)=\binom{\frac{\partial A}{\partial y}}{-\frac{\partial A}{\partial x}}=\binom{\frac{-3 y^{2}-x^{2}}{2}}{x y} .
$$

The longitudinal field $f_{\mathrm{L}}^{*}$ has no curl and the transverse field $\mathbf{f}_{\mathrm{T}}^{*}$ has no divergence. The sum field has both making a violent storm, indeed, as shown by a plot of in Fig. 10.17 .

$$
\mathbf{f}^{*}=\mathbf{f}_{\mathbf{L}}^{*}+\mathbf{f}_{\mathbf{T}}^{*}=\binom{\frac{3 x^{2}+y^{2}}{2}}{x y}+\binom{\frac{-3 y^{2}-x^{2}}{2}}{x y}=\binom{x^{2}-y^{2}}{2 x y}, \quad \nabla \cdot \mathbf{f}^{*}=\nabla \cdot \mathbf{f}_{\mathrm{L}}^{*}=4 x=\rho, \quad \nabla \times \mathbf{f}^{*}=\nabla \times \mathbf{f}_{\mathbf{T}}^{*}=4 y=-I .
$$



