Assignment 1 Read Unit 1 Chapters 1 thru 5. Ex. 1.4.2 and 1.5.1 are due Thursday Sept. 1

Geometry of $\left(M_{1}=70, M_{2}=10\right)$ collision sequence to "game-over"
Exercise 1.4.2: Continue the $\left(v_{1}, v_{2}\right),\left(y_{l}, y_{2}\right)$, and $\left(y_{j}(t)\right)$ collision plots begun in class. See Figs. 4.7, 4.11, and 4.12. See also Lecture 2. These collisions involve ($M_{l}=70, M_{2}=10$) super-balls confined by frictionless gravity-free track between $y=0$ and $y=7.0$ with initial positions $\left(y_{1}(0)=1, y_{2}(0)=3\right)$ and velocities $\left(v_{l}(0)=1=v_{2}(0)=-1\right)$.
Continue until you reach the "game-over" point of last possible $M_{1}-M_{2}$ collision assuming the floor is open after Bang-1 so both masses can fall thru indefinitely. Indicate where on your graph would be this last last collision.

Use the $\left(v_{l}, v_{2}\right),\left(y_{l}, y_{2}\right)$, and $\left(y_{j}(t)\right)$ multi-graph paper provided in class. (Also available at end of Lecture 2.)

Matrix algebra of $\left(M_{1}=70, M_{2}=10\right)$ collision sequence to "game-over"
Exercise 1.5.1: Check numerical values of velocities in Exercise 1.4.2 using matrix algebra methods described in Ch. 5 and Lecture 3. Use this to derive numerical values of positions up to "game-over" point.

