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A lot depends on one’s view. Astronomers did not tell rotation from orbit until 
Copernicus showed that the Earth did both. The Copernican relativity was a jump in 
conceptual mechanics followed by the relativity of Galileo, Newton, Mach and Einstein. 
Rotational relativity is introduced here in the simplest classical context beginning with 
two and three particles then extended to rigid and semi-rigid body rotation and ro-
vibration. Euler angles and related rotational coordinates, transformation operations, 
momentum, and equations of motion are developed.
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Unit 6. Rigid and Semi-Rigid Body Rotation

Chapter 6.1 Introduction
POP! POP! Pop! Pop! Pop!… Pop! Countless water molecules rotate furiously in tune with microwave 
radiation quickly turning H2O liquid to steam to explode corn kernels into delicious popcorn. Tri-atomic 
asymmetric molecules like ground state H2O (but not ground state CO2) are some of the simplest objects to 
exhibit full 3D rotational body mechanics that is not possible for just a single particle, a pair of particles, or even 
three particles in a line. 
 The concept of a single particle is a well-known fiction in classical mechanics. Everyone thinks they 
know what it means; a point of stuff with no life of its own beyond that it has a mass m and obeys Newton's 
equations in their simplest form F=ma. In fact, all the things we treat this way (with the possible exception of a 
single electron) appear to made of many and countless particles which themselves seem to be made of smaller 
particles, and so on.

To begin clarifying the concept of a particle we will consider a system or body consisting of just two 
particles. Two-particle mechanics is relatively easy to analyze completely. Then the problems associated with 
three or more particle systems will be discussed. Three-or-more-particle systems, in general, are not solvable 
outside of a computer. However, with certain constraints and restrictions a many-particle system may be subject 
to "exact" analysis. This includes so-called rigid bodies. It is these objects of thought that we generally have been 
calling "particles" in preceding discussions. It amounts to a kind of circular or “hoist by bootstraps” logic.

However, rigid bodies have in addition to their Cartesian coordinates of position an elegant set of 
generalized curvilinear coordinates called Euler angles to describe rotational orientation. This development was 
started in Unit 4 Chapter 4. Here, a full GCC analysis of rotational transformations and angular momentum will 
be developed. This turns out to be important for analysis of dynamics beyond that of rigid bodies.

One type of non-rigid body of interest to molecular and condensed matter physics is the so-called semi-
rigid body, roughly speaking a collection of masses held together by springs. For these objects the centrifugal and 
Coriolis forces have small but important effects on the vibrational and rotational dynamics. One technique for 
describing the phase space of semi-rigid body rotation uses an effective rotational energy (RE) surface that is 
analogous to an effective potential energy (PE) surface used many times for translation and oscillation in 
preceding Units.    
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Chapter 6.2. Two-particle systems
 Two particle theory begins with just two sets of 3-dimensional Cartesian coordinate vectors
 r1 = (x1, y1, z1) and r2 = (x2, y2, z2), as indicated in Fig. 6.2.1. To these we add a second pair of coordinate 
vectors including the relative coordinate vector r defined by 
      r = r1 − r2 ,      (6.2.1)

and the mass-weighted-average  r  or center-of-mass coordinate vector rCM defined by 

    
   
r = rCM =

m1r1 + m2r2
m1 + m2

      (6.2.2)

These are shown below with the following inverse coordinate transformation.

  
   
r1 = rCM +

m2r
m1 + m2

 ,            r2 = rCM −
m1r

m1 + m2
     (6.2.3)

 

m1r2

m2

r1
rCM

r = r1- r2 rCM= m1r1+ m2r2
m1+m2

Fig. 6.2.1 Two-particle coordinate vectors

a. Reduced mass: Ptolemetric views
Let radial inter-particle force F12 be on m1 due to m2 and F21 = -F12 be on m2 due to m1.

  F12 = F(r)er 
   
= F(r)r̂ =    F(r) r

r
=   F(r)

r
r1 − r2( ) =-F21    (6.2.4)

It acts along relative coordinate vector r= r1 - r2 and depends only upon the relative distance 
r =| r1 - r2 |. Then Newton's equations for the individual coordinates are as follows.

   

    

F12 = m1r1 =    F(r)r̂ =    F(r) r
r
=   F(r)

r
r1 − r2( )

F21 = m2r2 = −F(r)r̂ = −F(r) r
r
= − F(r)

r
r1 − r2( )

    (6.2.5a)

Sum F12+F21 yields zero because of Newton's 3rd -law action-reaction cancellation.
    (m1 +m2)rCM = m1r1 +m2r2 = 0      (6.2.5b)

Difference F12-F21 reduces to µ r = F(r) using reduced mass:µ =
m2m1
m1 +m2

 since  rCM = 0 .

  

 

[             m1r1          ]− [        m2r2              ] = 2F(r)
r

r1 − r2( )

m1rCM +
m1m2r
m1 +m2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
− m2rCM +

m2m1r
m1 +m2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= 2F(r)
r

r1 − r2( )
   (6.2.5c)

    µ r = F(r)r̂ = F(r)er = F(r)       (6.2.5d)
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 According to (6.2.5b), the CM point continues with velocity unchanged by inter particle forces. This holds 
for any inter-particle force including anistropic and (for non-relativistic velocity) time dependent ones, too. 
Meanwhile, the relative radius r= r1 - r2 behaves like the radius vector of reduced mass µ going around a force 
center fixed in an inertial frame. Anyone on mass m1 will see mass m2 orbiting at point -r according to force F21 
=-F(r)r as though they (on mass m1) were an infinitely massive center of the universe!  The same, vice-versa, 
applies for people on mass m2 who see a body orbiting at point +r according to force F12 =+F(r)r as though they 
(on mass m2) were a fixed center. Of course neither m1 nor m2 are fixed and so we will call their pictures 
Ptolemetric views after the famous astronomer who pictured the entire solar system geocentrically. (Since planets 
do not orbit the Earth, a Ptolemetric view of them is even more complicated than the simple two-particle orbits 
being described here. Fortunately, Copernicus come along to straighten this out.)
 Note that the orbiting body in either an m1-or m2-Ptolemetric view behaves as though it has the same 
reduced mass µ given by an inverse sum relation involving both of the masses.

    
  

1
µ
= 1

m1
+ 1

m2
=

m1 + m2
m1m2

      (6.2.6)

Reduced mass is approximated as follows if the masses are quite different. 

    

µ =
m

1

1 +
m

1

m
2

= m
1

1−
m

1

m
2

...
⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
 (m

2
>>m

1
) (6.2.7a)  

    

µ =
m

2

1 +
m

2

m
1

= m
2

1−
m

2

m
1

...
⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
 (m

1
>>m

2
) (6.2.7b)

The µ is called a reduced mass because it is the smaller mass (say, m1) reduced by approximately the fraction 
equal to the mass ratio of smaller over larger (m1 /m2 ). The µ is always less than either mass.

b. Re-scaled force: A Copernican view
 Instead let us set up a coordinate system with its origin fixed at the center-of-mass so the vector rCM is 
identically zero. (rCM =0) The inverse coordinate transformation (6.2.3) becomes

  
   
r1 =

m2r
m1 + m2

= µ
m1

r ,            r2 =
−m1r

m1 + m2
= −µ

m2
r      (6.2.8)

and the relative radius vector is

    
   

m1
µ

r1 = r =
−m2
µ

r2       (6.2.9)

Then Newton's equations for the individual coordinate vectors are

   

    

F12 = m1r1 =  F(
m1
µ

r1)r̂1 = −F21

F21 = m2r2 = F(
m2
µ

r2 )r̂2 = −F12

      (6.2.10)

In the inertial CM frame each orbiting particle maintains it original mass m1 or m2, but each experiences an 
individual coordinate-re-scaled force field F(m1 r1 / µ) or F(m2 r2 / µ) field, respectively. 
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 Each radial re-scaling factor m1 / µ or m2 / µ is always greater than one. It will either reduce force or 
increase it depending on the functional form of F(r). A Coulomb force F(r)=-k/r2 is scaled down so the effective 
Coulomb constants k1 or k2 for mass m1 or m2 are both reduced.

    

  

F(r) = k
r2

 becomes:  F(
m1
µ

r1) = µ2

m1
2

k
r1

2
 ,    

     k → k1 = k µ2 / m1
2  ,      k → k2 = k µ2 / m2

2

   (6.2.11)

However, a harmonic oscillator force coupling F(r)=-kr has both its constants increased.

    

  

F(r) = −k r  becomes:  F(
m1
µ

r1) = −
m1
µ

k r1 ,    

     k → k1 = k m1 / µ  ,      k → k2 = k m2 / µ
   (6.2.12)

 Examples of Coulomb and harmonic oscillator 2-particle orbits are shown in Fig. 6.2.2. The two particles 
must remain in synchronous motion balanced by their fixed CM origin. So their orbit periods are identical to each 
other and to the period of the Ptolemetric orbit. The two Copernican orbits must be mass-scaled copies with equal 
aspect ratio (a/b), eccentricity, and orientation. They differ only in size of axes (a1 , b1) and (a2 , b2) and 
placement of their center (for the Coulomb case) or foci (for the oscillator). The Cartesian axis dimensions are in 
inverse proportion to their mass values, and this applies as well to the Ptolometric orbit axes (a , b). 
      a1m1 = a2m2 = aµ  ,           and:   b1m1 = b2m2 = bµ    (6.2.13)

The relation between polar parameters follows from (5.2.25). Radii scale but ratio ε does not.
      λ1m1 = λ2m2 = λµ  ,           and:   ε1 = ε2 = ε     (6.2.14)

m2

m1

rCM= 0
r2

r1

m2

m1

r2

r1

(a) F(r) = -k/r2 (b) F(r) = -kr

Fig. 6.2.2 Two-particle orbits (m2 = 2m1) (a) Coulomb coupling force, (b) Linear H.O. coupling 

The following three harmonic oscillator orbit periods (Recall (5.2.8-11).) must then match.
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T = 2π µ

k
= 2π

m1
k1

= 2π
m2
k2

    (6.2.15a)

Indeed, they do by (6.2.12). The three Coulomb periods based on (5.2.35) match, too.

   
  
T = 2π µ a3

k
= 2π

m1a1
3

k1
= 2π

m2a2
3

k2
    (6.2.15b)

The three Coulomb orbit energy values satisfy the same proportion relation as their axes (6.2.13). 

  
  
E1m1 = E2m2 = Eµ  ,   where:   E1 =

k1
2a1

 ,   E2 =
k2

2a2
 ,   E =

k
2a

 .   (6.2.16a)

In fact the three energy values and the three axes satisfy the same sum relation.

  
  
E1 + E2 =

m1
µ

E +
m2
µ

E = E  ,   and:   a1 + a2 =
m1
µ

a +
m2
µ

a = a  (6.2.16b)

The preceding relations apply as well to the harmonic oscillator, indeed they are general ones based on the 
fundamental geometry. In particular, you should check that the dimensions of the two Copernican orbits have to 
sum up to equal those of the single Ptolemetric one.
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Chapter 6.3. Two-particle collision dynamics
 Two particle collisions benefit also from a comparison of Ptolemetric and Copernican views. Recall that a 
Ptolemetric view is one in which one of the two particles is seen to be at rest, while the Copernican view is one in 
which their center of mass is at rest. For interacting particles, only the latter Copernican view is in an inertial 
frame. The Ptolemetric frame of view is attached to an accelerating particle, and this is a serious handicap for 
most classical dynamics.
 Scattering theory employs quasi-Ptolemetric views using so-called inertial laboratory (LAB) frames in 
which one of the particles is initially at rest before the collision takes place. Since laboratory frames must be 
inertial frames their favored particle is usually knocked away by the collision. 
 Scattering theory also relaxes the Copernican view by using so-called center of momentum (COM) frames 
in which the total momentum sums to zero. The Copernican frame is a special case of a COM frame in which the 
origin is exactly at the center of mass, or using an older jargon, it is a center of gravity (COG) frame. A COM 
frame is one with origin fixed at some point in the COG frame. A COG frame is a COM frame that is convenient 
for doing classical orbit geometry.

a. Center of momentum view of collision dynamics
The Unit 5 construction of Fig. 5.3.1 for a single particle Coulomb -Rutherford scattering orbit is also applicable 
to 2-particle scattering in a COG frame. An example drawn in Fig. 6.3.1 has mass m2 is twice that of m1. Given a 
total energy E, we distribute it onto the separate particle energies E1  and E2 inversely according to their mass by 
(6.2.16). (Here, mass m1 gets twice the energy of m2.) The same applies to the semi-major and semi-minor axes 
by (6.2.13) which are the hyperbolic radii and impact parameters. (Here, radius a1 is twice a2, and impact 
parameter b1 is twice b2.) 
 The scattering angle, eccentricity, and angular dynamics are similar for each particle, but the orbit of the 
lighter and higher energy particle is (m2/m1)-times as big (twice as big here) as the heavier particle and has (m2/
m1)-times as much total energy. The lighter particle also has this many times as much angular momentum, but 
with the ±sign reversed, and conserved by each. However, the two always have the same amount of linear 
momentum, again with ±sign reversed so their total is a zero vector (p1+p2 = 0) even as both exchange 
momentum while colliding in the COM frame.

b. LAB view of collision dynamics and kinematics
 The COG or COM (abbreviated to CM ) frame view of Coulomb scattering is geometrically precise and 
constructable as shown in Fig. 6.3.1. The LAB frame is not so easy to construct or visualize. In fact, the 
coordinate LAB frame does not even exist at all! The picture shown in Fig. 6.3.2 is more of a cartoon, though the 
paths are valid computer plots of an approximate LAB picture. By demanding that one particle (m2 in this case) 
be a stationary (v2LAB(0)= 0) "target" particle we run afoul of the logarithmic time behavior discussed after 
equation (5.3.5).
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m1

m2

r1

r2

ΘCM

 a1

 a2

 b1
 b2

ΘCM

rCM= 0

Fig. 6.3.1 Two-particle Coulomb scattering (m2 = 2m1) viewed in the COG frame

 The final LAB velocities v1LAB(∞) and v2LAB(∞) and LAB scattering angles Θ1LAB and Θ2LAB are easily 
constructed for both the "projectile" particle m1 and the "stationary target" particle m2 as shown in Fig. 6.3.3. 
First the CM angle ΘCM constructed in Fig. 6.3.1 is used to graph the final CM velocities v1CM(∞) and v2CM(∞) 
on the left hand side of Fig. 6.3.3. Then these are re drawn on the right hand side of the figure relative to an origin 
shifted by velocity v2CM(0) that makes the m2 target initially stationary. This is the kinematic (velocity) part of 
the problem.
 The dynamic (space-time) part of the problem is impossible. Neither the initial target starting point nor the 
final asymptotes for either particle exist. Supposing it only takes m1 a few seconds for m1 to cross Fig. 6.3.1 or 2, 
it will take m2 literally years to "creep" logarithmically up to the scattering origin where it gets kicked off to the 
lower right very quickly. Then the tangent lines for both particles begin their "logarithmic creep" to the right hand 
side of Fig. 6.3.2. It will take these "LAB asymptotes" several years to creep off the page, and they will keep on 
moving ever so slowly, forever and ever.
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Fig. 6.3.2 Two-particle scattering (m2 = 2m1) viewed in the LAB frame

v2CM(0)
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v1CM(∞) ΘCM

v2CM(0)

v2CM(∞)

v1CM(∞)

v2LAB(∞)
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QCM
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LAB view
vCM= -v2CM(0)
v2LAB(0)=0

CM view
vCM=0

v2LAB(0)=0
QCM

Fig. 6.3.3 Two-particle scattering (m2 = 2m1) velocities viewed in the CM and LAB frames.
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c. Ideal pool shot
 No mechanics book is complete without showing the simplest, yet surprising, analysis of the common 
pool or billiards shot. By adapting the general construction in the previous Figs. 6.3.2 and 6.3.3 to a pair of equal 
masses (m2 = m1) it should be noticed in Fig. 6.3.4 that the particles always come out at exactly 90° to each other 
at speeds which vary with the CM angle. To avoid sinking the white ("cue") ball while aiming the other requires 
this mechanics knowledge. Clearly, this analysis ignores ball spin or "English" that will be discussed later.

Θ1LAB

Θ2LAB

8

8

90°

v2CM(∞)

v1CM(∞)

v2LAB(∞)

QCM

Θ1LAB

Θ2LAB

v1CM(0)

LAB view
vCM= -v2CM(0)
v2LAB(0)=0

CM view
vCM=0

v2LAB(0)=0

v2CM(0)

v2CM(∞)

v1CM(∞)
ΘCM

v1CM(0)v2CM(0)

v1LAB(∞)

90°

Fig. 6.3.4 Magic 90° pool ball scattering (m2 = m1) velocities viewed in the LAB frame.
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d. Super-elastic bounce
 A discussion of super-elastic bounce (SEB) was given in Unit 1 using a plot of vertical velocity of one 
ball against the other as in Fig. 6.3.5. (Recall Fig. 1.4.1 thru Fig. 1.5.1 in Unit 1.)  

Start
m1-m2
collision

Fin
ish

m1:m2
= 7:1

m1:m2
= 3:1

<- m1 turn - around ->

m1
first hits
ground

Fig. 6.3.5 Super-elastic bounce and momentum analysis.

The conservation of momentum for the m1-m2  collision requires m1v1+m2v2=const. and results in a straight line 
of slope equal the negative of the mass ratio m1 / m2. (The collision indicated by dots in Fig. 6.3.5 has mass ratio 
m1:m2 =7:1.) A 45° line (slope 1:1) intersects the momentum conservation line at exactly the point that is the final 
velocity in the event of totally inelastic collision with two masses stuck together into one mass m1 + m2. This 
intersection is the center of momentum (COM) point for that collision. For a totally elastic collision the initial and 
final velocities (These are labeled "Start" and "Finish" in the Fig. 6.3.4) must balance on the COM point. It is a 
simple (but little-known) geometric construction for solving 1-dimensional elastic collisions introduced at the 
beginning of review Unit 1. 

A ratio m1:m2 =3:1 stands out. As seen from the dashed line in the figure, this ratio gives 100% energy 
transfer from m1 to m2. It is also the limit SEB ratio of 3:1 as m1:m2 approaches ∞. Using more balls as discussed 
in Ch. 1.8 (Unit 1) leads to SEB ratios well above 3:1 as shown in Fig. 1.8.1.
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Chapter 6.4. Multi-particle systems
 Most of the techniques needed to discus multiparticle systems can be developed using just three particles. 
In fact, as we will see, a rigid three-particle system has enough mechanical structure to mimic perfectly any rigid 
body whatsoever. 

a. A 3-particle system
 A three-particle system is sketched in Fig. 6.4.1. 

  

m1r1

r12 = r1- r2

rCM= m1r1+ m2r2+ m3r3
m1+m2+m3

m2

m3

r31 = r3- r1

r23 = r2- r3
r3

r2

  Fig. 6.4.1 Three-particle coordinate vectors

 There are nine Cartesian coordinates, three for each of three position vectors
   r1 = (x1 , y1 , z1), r2 = (x2 , y2 , z2), and r3 = (x3 , y3 , z3),   (6.4.1)
shown in Fig. 6.4.1. If the three inter particle vectors 
  r12 = (x12 , y12 , z12), r23 = (x23 , y23 , z23), and r31 = (x31 , y31 , z31),  (6.4.2)
            = r1- r2           = r2- r3            = r3- r1    
have constant lengths or magnitudes 
   |r12|2= (x122+ y122+ z122)=const.
    |r23|2= (x232+ y23 2+ z232)=const.     (6.4.3)
   |r31|2= (x312+ y312+ z312)=const.
then the object is called a rigid body. The three equations leave only six free coordinates left, of which three 
could be the center of mass coordinates

   

   

rCM  = (xCM , yCM , zCM )=
mjrj

j=1

3
∑

mj
j=1

3
∑

     (6.4.4)

and three more could be orientation angles such as Euler angles (α, β, γ) to be described later. A general rigid 
body with any number of particles will have only these same six coordinates.
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b. 3-particle force relations
 In order to deal with multiple Newton's equations (one for each particle-j)

     
   
Fj

total = mj x j = p j     (6.4.5a)

it is convenient to break the total force into a sum of external applied and internal constraint forces.

    

   

Fj
total = Fj

applied + Fj
constraint

        = Fj
applied +

k=1 k≠ j( )
3
∑ Fjk

constraint    (6.4.5b)

where Fjk is the force on particle-j due to particle-k  where, by Newton's (3-rd) action-reaction law
      Fjk = -Fkj     (6.4.5c)
as pictured in Fig. 6.4.2.

  

m1

m2

m3
F23 = - F32

F32 = - F23

F13 = - F31

F31 = - F13

F21 = - F12

F12 = - F21

F2applied

F1applied

F3applied

  Fig. 6.4.2 Three-particle force vectors

 The sum of all the Newton's equations eliminates the internal forces from consideration of the motion of 
the CM point. Only the total applied force affects rCM.

   

    

d
dt

mj x j
j=1

3
∑

⎛
⎝⎜

⎞
⎠⎟
=

j=1

3
∑ Fj

total =
j=1

3
∑ Fj

applied +
j=1

3
∑

k=1 k≠ j( )
3
∑ Fjk

constraint

       M rCM      =
j=1

3
∑ Fj

applied +     0 ,      where:  M = mj
j=1

3
∑

 (6.4.6)

This reduces the CM motion of this object to that of a single "particle" of the same total mass.

     
    
Ptotal ≡ M rCM      = Ftotal applied    (6.4.7)
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c. Angular force and momentum relations: Torque
The three coordinates of translation follow the usual Newton's laws for rCM of (6.4.7). The next three coordinates 
(and for a rigid body, the last three free coordinates) are rotational coordinates of some kind. Here we will put off 
defining Euler angles and just deal with the rotational kinematics, that is, the angular velocity vector ω and the 
angular momentum vector L. Let us assume a Copernican view by placing the origin at the center of mass. 
(rCM=0)
 Angular velocity vector ω is a rotation axis that determines linear velocity vrotation of any mass at r due 
just to rotation at angular rate ω = |ω| by its perpendicular distance ("lever-arm") from the axis ω by Darboux 
rotational cross-product relations (3.7.19) to (3.7.23) in Unit 3. (A detailed dynamics discussion is taken up 
around (6.7.5). This kinematics discussion mostly ignores rotational coordinates.)

   
    
vrotation = ω × r  ,      r ≡  vtotal = dr

dt LAB
= dr

dt Body
+ ω × r    (6.4.8)

The particle's total velocity is the sum of rotational velocity vrotation and a body's internal "vibrational" velocity 

  

dr
dt Body

due to rjk motion. (The latter is zero (
   
r jk = 0 ) for a rigid body.) 

 Angular momentum vector Lj of a mass mj is determined by its linear momentum pj times its lever arm as 
given by the angular momentum cross-product relation
     

    
L j=r j × mj r j ≡  r j × p j      (6.4.9a)

The sum-total angular momentum is

    
    
L = Ltotal =

j=1

3
∑ L j=

j=1

3
∑ r j × mj r j      (6.4.9b)

 It is from the derivative of L that we get a "second" Newton's equation, one that connnects rotational 
momentum rxp and rotational force or torque rxF.

   

    

dL
dt

=
j=1

3
∑ r j × mjr j =

j=1

3
∑ r j × Fj

total

     =
j=1

3
∑ r j × Fj

applied +
j=1

3
∑ r j ×

k=1 k≠ j( )
3
∑ Fjk

constraint
⎛

⎝
⎜

⎞

⎠
⎟

   

The internal constraint or coupling force terms (6.4.5b) appear at first, to be a nuisance.

 

   

r j × Fjk
constraint

k=1 k≠ j( )
3
∑

j=1

3
∑ = r1 × F12 + F13

constraint( ) + r2 × F21 + F23
constraint( ) + r3 × F31 + F32

constraint( )
                 = r1 − r2( ) × F12

constraint + r1 − r3( ) × F13
constraint + r2 − r3( ) × F23

constraint = 0

However, they are clearly zero if the coupling forces act along the lines connecting the masses. 
 In fact the sum must vanish even if the individual terms do not, as long as we assume the constraints 
cannot spin up the whole body. The result is the purely rotational Newton's equation.

   
   

dL
dt

= N , where: N = N j
j=1

3
∑    and:   N j =

j=1

3
∑ r j × Fj

applied   (6.4.10a)

These are taken together with the linear or purely translational Newton's equation
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dP
dt

= F ,  where: F =
j=1

3
∑ Fj

applied  .    (6.4.10b)

This is the complete description of rigid body mechanics and the first six equations for the mechanics of any 
body. The remainder of the equations will be normal mode or GCC forms of some kind.

d. Percussion centers: "Sweet spots"
 While the two equations (6.4.10a -b) are translational and rotational versions derived from a single set 
(6.4.5a) of Newton's equation, they are to be viewed and applied independently. To see an example of this, 
imagine a vertical mass M stick of length 2 sitting motionless until it receives an impulse Π from a hammer-hit 
at a distance h from its center of mass (CM) as shown in Fig. 6.4.3. The time integral of force 

     
   
Π = P τ( ) − P 0( ) = Fapplied dt

0

τ
∫     (6.4.11)

is the momentum impulse Π . If the initial momentum  P(0) is zero them Π is the new momentum of the stick and 
the new CM velocity    VCM = rCM  is Π divided by its mass M. 

        VCM = rCM = Π / M     (6.4.12)

This is true no matter what the distance h between the CM and the hammer-hit.
 However, the angular momentum L=Λ the hammer gives to the stick does depend upon the location h of 
the hammer-hit relative to the CM according to (6.4.10a).

    
   
Λ = L τ( ) − L 0( ) = r × Fapplied dt

0

τ
∫     (6.4.13)

In this case the magnitude Λ of Λ is simply distance h times the linear momentum magnitude Π.
     Λ = h Π     (6.4.14)
Clearly, this is zero if the hammer hits dead-on the CM. (h=0)
 The final angular velocity ω about the CM is the angular momentum Λ divided by the moment of inertia 
I= M 2/3 of the stick.
   ω = Λ / I    (= 3 Λ /(M 2) for stick)  (6.4.15a)
       = h Π / I    (= 3 hΠ /(M 2) for stick)  (6.4.15b)
Again, this depends on the hitting radius h and vanishes when h=0.
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Imaginary wheel of radius p rolls on imaginary road
that intersects the Center of Percussion P

bang!





P

Π= linear momentum

h Πh = angular momentum about

p

p

πp

Fig. 6.4.3 The effects of hitting a stationary stick.

 The stick proceeds to act like it is a wheel of radius p rolling 2πp down an imaginary road each time it 
rotates by 2π as shown in Fig. 6.4.3. The road intersects a point called the center of percussion or "sweet spot" 
that is stationary immediately after the hammer-hit. This is the point on the wheel where the speed pω due to 
rotation just equals the translational speed of the CM.
     Π /M =VCM = pω = 3phΠ /(M 2)   (6.4.16)
Solving gives the percussion radius p where you can comfortably grip the stick and hit a ball at h.
     p  = 2/3h      (6.4.17)
To hit the ball near one end (h= ) grip the stick at r=-p=-/3, that is, the other end 1/3 of the way from the center. 
The reverse holds, too. If you grip the end (p= ) then hit the ball 1/3 of the way from the center to the opposite 
end To hit a fast ball off the CM, grip it at p=∞, that is, do not hold it at all or it will hurt!  
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 There is a hitting point where the percussion radius p and the hitting radius h are equal. This radius is 
called the radius of gyration rgyro. For the stick of length 2 this is given by
   r2 = 2/3 or:   rgyro = r =  /√3= 0.577    (6.4.18)
The moment of inertia of any body is its mass times the square of its radius of gyration.
   I= M (rgyro )2 (= M2 /3 for stick of length 2)   (6.4.19)
Hitting a ball outside this radius rgyro means you should hold the body proportionally inside rgyro , (on the other 
side of the CM, of course!) and vice-versa. 
 The points at the radius p of percussion on the flying stick in the lower part of Fig. 6.4.3 each generate a 
cycloid of diameter 2p. The stick itself generates the tangents of a cycloid of diameter p. Points inside and outside 
of percussion radii generate, respectively, prolate and curlate cycloids.

H=?

2R

Exercise 6.4.1 Pool clues
Bumpers on pool and billiards tables are set at a height H that is certain fraction of ball diameter D=2R so that the balls bounce without 
slipping. What is that fraction H/D for three cases listed below?
Case 1 (The usual case.) The ball is a uniform spherical solid.
Case 2 (An unusual case.) The ball is a uniform spherical shell. 
Case 3 (A ridiculous case.) The “ball” is a uniform cylindrical shell. 
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Exercise 6.4.2 Hockey knock
A meter stick is lying flat on an ice rink with two marbles sitting at the lower end on either side of the 0.0cm mark on x-axis. (See 
figure) A hammer gives impulse P=(1N·s)ex to the stick at the h-cm. mark.
What horizontal distance h is least likely to disturb the marbles. At what distances d, 2d, 3d, … along x-axis should the 3rd, 4th, 5th,…
marbles be placed so they are most likely to be knocked below the axis. (See figure above.) 
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Chapter 6.5. Rigid Body Velocity, Momentum, and Energy
 For rigid bodies with no internal motion there are only six coordinates. If we can ignore translation of the 
CM then there are only three coordinates. The three velocities that go with these coordinates are the components 
of the angular velocity vector ω introduced in (6.4.8). The three momenta that go with them are the components 
of the vector L introduced in (6.4.9). These are related by a tensor equation that will be discussed now. 

a. Inertia tensors
The equations (6.4.8) through (6.4.10) apply to rigid body motion. We rewrite them for the rigid case (no internal 
vibrational motion) starting with (6.4.8) for Darboux's velocity.
      

    
r j =  ω × r j       (6.5.1)

Putting this into angular momentum relation (6.4.9) gives

    
    
L =

j=1

3
∑ r j × mj r j = mj

j=1

3
∑ r j × ω × r j( )      (6.5.2)

We expand using 
 
A × B × C( ) = A •C( )B − A •B( )C  or use Levi-Civita analysis in Appendix 1.A.

   
    
L = mj r j • r j( )ω − r j •ω( )r j

⎡
⎣

⎤
⎦ = mj r j • r j( )1− r jr j

⎡
⎣

⎤
⎦j=1

3
∑

j=1

3
∑ •ω =


I •ω   (6.5.3)

Now we define the rotational inertia tensor I. (Compare this r-tensor I to the ω-tensor in (3.7.23).)

     
    


I =


I j

j=1

3
∑ = mj r j • r j( )1− r jr j

⎡
⎣

⎤
⎦j=1

3
∑     (6.5.4)

In matrix form the ω-to-L relation is

    

  

Lx

Ly

Lz

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

= mj

y j
2 + z j

2 −x j y j −x j z j

− y j x j x j
2 + z j

2 − y j z j

−z j x j −z j y j x j
2 + y j

2

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

j=1

3
∑

ω x

ω y

ω z

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

.   (6.5.5a)

Here the inertia matrix <I> is

    

    


I =


I j

j=1

3
∑ = mj

y j
2 + z j

2 −x j y j −x j z j

− y j x j x j
2 + z j

2 − y j z j

−z j x j −z j y j x j
2 + y j

2

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

j=1

3
∑ .   (6.5.5b)

 From this we see that the angular momentum L is related through a linear (matrix) transformation to the 
angular velocity ω, and vice-versa. The two vectors ω and L will not point in the same direction unless they are 
eigenvectors of the inertia tensor I or matirx <I>. Note that the numerical values of the <I> matrix components, 
like components of vectors ω and L, depend on the coordinate basis being used. An eigenvector basis gives a 
diagonal <I> matrix.
 For example, consider one mass m at the end of a bent axle that is rotating around a fixed bearing 

instantaneously at 
   
rm = (xm , ym , zm ) = r(

2
   1 ,

2
   1 ,0)  as shown in Fig. 6.5.1. The L=I·ω relation follows.
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r/√2

r/√2

0

r =

−ω/2

ω/2

0

L=mr2
0

ω

0m
ωω =

  Fig. 6.5.1 Angular momentum for mass rotating on bent axle.

 From (6.5.5b) the inertia matrix for the mass at the instant shown (t=0) in the Fig. 6.5.1 is 

 

    


I = mr2

1 / 2( )2 + 0 − 1 / 2( ) 1 / 2( ) − 1 / 2( )0
− 1 / 2( ) 1 / 2( ) 1 / 2( )2 + 0 − 1 / 2( )0

−0 1 / 2( ) −0 1 / 2( ) 1 / 2( )2 + 1 / 2( )2

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

= mr2
1 / 2 −1 / 2 0
−1 / 2 1 / 2 0

0 0 1

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

Operating on the angular velocity gives the angular momentum shown in the figure.

   

  

Lx

Ly

Lz

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

= mr2
1 / 2 −1 / 2 0
−1 / 2 1 / 2 0

0 0 1

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

0
ω
0

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟
= mr2

−1 / 2
1 / 2

0

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟
ω    (6.5.6)

This is a bad thing! The L-vector is off the ω-axis so it is rotating around off-center like the mass. So by (6.4.10a) 

  
L=N , large  ω implies large oscillatory bearing torque N and possible catastrophic failure. 

b. Kinetic energy in terms of ω
 The kinetic energy of a rotating rigid body can be expressed in terms of the inertia matrix, too. 

   
    
T = 1

2 j=1

3
∑ mj r j • r j =

1
2 j=1

3
∑ mj ω × r j( ) • ω × r j( )      (6.5.7)

We expand using a Levi-Civita identity 
 

A × B( ) × C × D( ) = A •C( ) B •D( ) − A •D( ) B •C( )  to get
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T = 1
2 j=1

3
∑ mj ω •ω( ) r j • r j( ) − ω • r j( ) r j •ω( )⎡

⎣
⎤
⎦

   = 1
2
ω •

j=1

3
∑ mj r j • r j( )1 − r j( ) r j( )⎡

⎣
⎤
⎦ •ω

   = 1
2
ω •

I •ω

     (6.5.8)

The kinetic energy is a quadratic form like (3.5.2) or else potential (4.3.16). The matrix notation is

 

   

T =         1
2

ω x ω y ω y( )
Ixx Ixy Ixz

I yx I yy I yz

Izx Izy Izz

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

ω x

ω y

ω z

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

   = 1
2

ω x ω y ω z( )
x I x x I y x I z

y I x y I y y I z

z I x z I y z I z

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

x ω

y ω

z ω

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

   = 1
2

ω x ω y ω y( ) mj

y j
2 + z j

2 −x j y j −x j z j

− y j x j x j
2 + z j

2 − y j z j

−z j x j −z j y j x j
2 + y j

2

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

j=1

3
∑

ω x

ω y

ω z

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 (Dirac notation)  (6.5.9)

Since <I> is a symmetric matrix, it will always be possible to find a normal coordinate eigen-basis {X,Y,Z} in 
which the I-matrix is diagonal. This basis is called the principle inertial axes {X,Y,Z}or body eigen-axes. In the 
body coordinate system the kinetic expression simplifies greatly.

       

  

T =  1
2

ω X ωY ωZ( )
I XX I XY I XZ

IYX IYY IYZ

IZX IZY IZZ

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

ω X

ωY

ωZ

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

   =  1
2

ω X ωY ωZ( )
I XX 0 0

0 IYY 0

0 0 IZZ

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

ω X

ωY

ωZ

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=
I XXω X

2

2
+

IYYωY
2

2
+

IZZωZ
2

2

   

  (6.5.10)

For constant energy E=T this is an equation for the angular velocity or ω-ellipsoid. The ellipsoid and the 
principle axes {X,Y,Z} are attached to the body and rotate with it.

c. Kinetic energy in terms of L
 The ω-L relation (6.5.3) usually has an inverse. Recall quadratic form relations around (1.11.10).

      L =

I •ω  ,     generally implies:       ω =


I−1 •L   

In this way we can rewrite the kinetic energy in terms of either velocity or momentum (or both).

   
    
T = 1

2
ω •

I •ω  = 1

2
ω •L= 1

2
L •ω = 1

2
L •

I−1 •L     (6.5.11)
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The latter form is a Hamiltonian form while the first is a Lagrangian from. (Recall (1.12.8) in Unit 1.) The 
principle coordinate axes {X,Y,Z} are the same for a matrix and its inverse. 

       

  

T =  1
2

LX LY LZ( )
I XX I XY I XZ

IYX IYY IYZ

IZX IZY IZZ

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

−1
LX

LY

LZ

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

   =  1
2

LX LY LZ( )
1 / I XX 0 0

0 1 / IYY 0

0 0 1 / IZZ

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

LX

LY

LZ

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=
LX

2

2I XX
+

LY
2

2IYY
+

LZ
2

2IZZ

   

  (6.5.12)

The Hamiltonian form gives the equation of the angular momentum or L-ellipsoid. It is conjugate to the ω-
ellipsoid; the major axis of the L-ellipsoid becomes a minor axis of the ω-ellipsoid, and vice-versa. The ω-
ellipsoid more closely resembles its attached body; where the body is longest there also will be the major axes of 
the ω-ellipsoid. The L-vector has to satisfy two conservation  laws in the {X,Y,Z} body frame. It's length |L| must 
be constant so L must lie on a sphere as shown in Fig. 6.5.2. Also T=E must be constant, and so L must lie on an 
intersection of the sphere with the ellipsoid (6.5.12) in the rotating principle axes{X,Y,Z}frame.

Fig. 6.5.2 Angular momentum ellipsoid for rectangular rigid body in its own or eigen {X,Y,Z} frame.
 The L-vector must then follow the intersection curve which may loop around the Z-axis of greatest inertia 
IZZ as shown in Fig. 6.5.2, or if |L| is smaller or E is greater, it may loop around the X-axis of least inertia IXX as 
indicated by ovals drawn around the X-axis. However, it may never loop around the Y-axis of intermediate 
inertia. Separatrices intersect at the intermediate axis like the hyperbolic asymptotes on inverted pendulum 
saddle points in Fig. 1.15.1 on p. 1-25-28.
 Motion near a separatrix is very "upsetting" to anyone who might be unfortunate enough to be on board 
the body. Since vector L must remain fixed relative to the stars, the body will turn completely upside down, spin 
for awhile, and then right itself abruptly, spin, turn over, and so on until it lost energy through creaking joints and 
sloshing fluids. Then the energy ellipse would shrink quickly, and the body would eventually settle into less 
wobbly rotation on its Z-axis. The Z-axis of rotation is stable to energy loss; it has the lowest energy for a given 
magnitude of angular momentum |L|. The X-axis, on the other hand has the highest energy for a given  |L|. X-
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rotation is stable for a truly rigid body, but not if it loses energy through internal friction!  Then it will 
catastrophically "fall" onto the Z-axis as once happened to a TRW satellite. (That was a multi-million dollar 
lesson in rotational mechanics!)
 While L moves on the L-ellipsoid in the body frame the ω-vector is moving on its ellipsoid. Since ω is the 
angular velocity vector, it is the instantaneous rotation axis for motion of every atom in the body relative to the 
lab or star-fixed frame. ω determines how fast the body moves relative to the in the lab frame L-vector, or, in the 
body frame, how fast the L-vector moves (the opposite way) relative to the body. As shown in Fig. 6.5.3, the ω 
and L vectors are normal to each other's ellipsoidal tangent plane and the projection ω •L of ω on L is constant 
according to (6.5.11). (Remember that L is star-fixed but ω will not be star-stationary unless it lies along L.) 
However, all body points along ω are instantaneously star-stationary since that is, for an instant, the rotation axis. 
So the ω-ellipsoid rolls without slipping along a star fixed plane normal to L. (Recall the geometry of Fig. 1.12.2 
in Unit 1.)

 
Fig. 6.5.3 Angular momentum and velocity ellipsoids for rectangular rigid body.

 You will recall how the gradient  ∇V  of a potential energy surface points normal to the PE surface and 
determines the acceleration or "fall-line" in coordinate space. Gradient of a quadratic form in (4.3.16) 

  
∇ r •K • r / 2( ) = K • r  is acceleration in (4.3.5). Also, the phase space gradient of a Hamiltonian determines 

velocity transverse to the fall-line in (2.7.14) of Unit 2. 
 For rotations the kinetic energy T is the Hamiltonian H or the Lagrangian L in the absence of an applied 

torque. The canonical momentum 
   
pµ = ∂L / ∂ qµ  from (3.8.1d) is

     
  
L = ∂T

∂ω
= ∇ωT = ∂

∂ω
ω • Ι •ω

2
= Ι •ω .   (6.5.13)

That is an ω-gradient of the ω-ellipsoid. Hamilton's 1st equations 
   
qµ = ∂H / ∂pµ from (3.8.5d) are as follows.

     
  
ω = ∂H

∂L
= ∇L H = ∂

∂L
L • Ι−1 •L

2
= Ι−1 •L    (6.5.14a)

Angular velocity ω is the L-gradient of the L-ellipsoid. 
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Finally, the 2nd Hamiltonian-Lagrange equations 
   
pµ = −∂H / ∂qµ = ∂L / ∂qµ from (3.8.5e) are as follows.

    
    
L = − ∂H

∂θ
(= 0 if no torques applied) .    (6.5.14b)

They state the conservation of angular momentum for a freely rotating body. 
 The rotational motion dictated by the above equations is more like the phase space motion of Fig. 2.7.3 
and moves transversely to the gradient around the oval loops and separatrices. This motion is explored in greater 
detail in Ch. 7 and Ch. 8 of this unit. (See Fig. 6.7.4 and Fig. 6.8.1.) 

d. Tensor parallel axis theorem 
 Consider a mass rotating about some pivot point besides its CM such as in Fig. 6.5.4. Let us express the I-
tensor around an arbitrary pivot in terms of the one around the CM.

  
  Fig. 6.5.4 Coordinates for off-center rigid body.

Replacing rj by the sum 
  
r j = rCM + rj  in the inertia tensor (6.5.4) gives an expanded version.

      
    


I =


I j

j=1

3
∑ = mj r j • r j( )1− r jr j

⎡
⎣

⎤
⎦j=1

3
∑ = mj rCM + rj( ) • rCM + rj( )( )1− rCM + rj( ) rCM + rj( )⎡

⎣⎢
⎤
⎦⎥j=1

3
∑

Multiplying it out gives the following.

   

    


I = mj

j=1

3
∑

⎛
⎝⎜

⎞
⎠⎟

rCM • rCM( )1− rCM rCM
⎡
⎣⎢

⎤
⎦⎥
+ mj rj • rj( )1− rjrj

⎡
⎣

⎤
⎦j=1

3
∑

       + 2 mjrj
j=1

3
∑

⎛
⎝⎜

⎞
⎠⎟
• rCM1+ mjrj

j=1

3
∑

⎛
⎝⎜

⎞
⎠⎟

rCM + rCM mjrj
j=1

3
∑

⎛
⎝⎜

⎞
⎠⎟

Each sum Σ 
  
mjrj of mass moments relative to the CM point is zero.

   

    

(

I  relative to r) = M rCM • rCM( )1− rCM rCM

⎡
⎣⎢

⎤
⎦⎥
+ mj rj • rj( )1− rjrj

⎡
⎣

⎤
⎦j=1

3
∑

  = (

I  for M concetrated at rCM ) + (


I  relative to rCM )

 (6.5.15)

This is the parallel axis theorem. The inertia of a body rotating around an arbitrary point is equal to that of a point  
mass M at the CM point rCM plus the inertia of the body around its own CM.
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Chapter 6.6. 3D Euler transformations and rotating vector frames
Many labs need to orient crystals or lasers using a goniometer like one shown undergoing an Euler rotational 
sequence in Fig. 6.6.1. Sketches and photographs in Fig. 6.6.1 thru Fig. 6.6.5 show a goniometric rotation-
analog-computer that we will use to describe rotation mechanics. This device helps visualize both R(3) (real 3D 
vector rotations) and U(2) (complex 2D unitary transformations) labeled either by Euler angles (αβγ) or by 
Darboux ω-whirl-vector angles [ϕϑΘ].
    _____________________  _______________________  _____________________

Fig. 6.6.1 Euler sequence R(αβγ) of z-rotation by α after y-rotation by β after z-rotation by γ.

a. Euler angle goniometer and vector 3D rotations
The 3-by-3 rotation matrix R(αβγ) describing an Euler rotation of real 3-vectors is a bit larger than the complex 2-
by-2 spinor matrix (4.4.20). R(αβγ) is a real 3-by-3 matrix made using the same triple product rotation sequence 
R(αβγ) in (4.4.20) or Fig. 4.4.3 of Unit 4 or Fig. 6.6.1 above.

   

  

R αβγ( ) = R α00( )           R 0β0( )             R 00γ( )

      = 
cosα -sinα 0
sinα cosα 0

0 0 1

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

cosβ 0 sinβ
0 1 0

-sinβ 0 cosβ

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

cosγ -sinγ 0
sinγ cosγ 0

0 0 1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

   (6.6.1a)

Rotation matrix
   
e

A
e

B
= e

A
R e

B
 below has row-A or column-B labeled by bra-

  
e

A
 or ket-

  
e

B
.

   

   

                                                    eX =R αβγ( ) eX             eY =R αβγ( ) eY       eZ =R αβγ( ) eZ

eA R(αβγ ) eB( )=

eX

eY

eZ

 
cosα cosβ cosγ − sinα sinγ - cosα cosβ sinγ − sinα cosγ cosα sinβ
sinα cosβ cosγ + cosα sinγ -sinα cosβ sinγ + cosα cosγ sinα sinβ

− cosγ sinβ sinγ sinβ cosβ

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

 (6.6.1b)

The third column contains the Cartesian components of the R(αβγ)-rotated Z-axis that is labeled by
 

   
e

Z
= e

Z
= (cosα sinβ, sinα sinβ, cosβ),  or       eZ

= e
X

cosα sinβ + e
Y

sinα sinβ + e
Z

cosβ

It has the same polar coordinate components (cosα sinβ, sinα sinβ, cosβ) seen in Fig. 4.4.3 or (4.4.21). R is a 

matrix of nine direction cosines 
     
 ...e

X
• e

Y
= X Y = cos

X
Y ,etc.  transforming vectors passively or actively. 

(Recall 2D case (4.B.2) used for passive (4.B.1) or active (4.B.5) transformation.)
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((bb)) PPoossiittiioonn ssttaattee |α=50°,β=60°,γ=70°〉〉〉 ((cc)) PPoossiittiioonn ssttaattee |α=-130°,β=-60°,γ=-110°〉

β=+60°
γ=70°

α=50°α=50°

β=+60°

β=-60°β=-60°

γ=70° γ=-110°γ=-110°

α=-130°α=-130°

|50°,60°,70° 〉 |-130°,-60°,-110°〉

(d) Origin

position state

|α=0°,β=0°,γ=0°〉

For β=0° ,ball frame
holds its position as

the α and γ frames
swivel by angleφ to
any state of form

|α=φ,β=0°,γ=−φ°〉
including origin state

|α=0°,β=0°,γ=0°〉.

α=0°α=0°

γ=0°γ=0°

β=0°β=0°
|0°,0°,0° 〉

(d)

EEuulleerr

aannggllee

ggoonniioommeetteerr

Euler Angle Dial
γ

(Twist coordinate)

Euler Angle Dial
α

(Azimuthal coordinate)

(a)
|α,β,γ 〉 β

α γ

β
x=x1

y=x2

z=x3

x=x1

y=x2

z=x3

An

astronomer’s

diagram

Euler Angle Dial
β

(Polar coordinate)

Fig. 6.6.2 (a-d) Euler angle position states and goniometer.
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Fig. 6.6.2 Euler angle device relates body frame to lab frame through a sucession of frames and dials.
 Metal frames labeled x′ and x′′ in Fig. 6.6.3 connect the laboratory or LAB frame {X,Y,Z} to the body or 
BOD frame {  X,Y ,Z }. A series of three bearings and dials define the Euler angles (αβγ) of the relative LAB-to-
BOD orientation. The device in Fig. 6.6.1-4 shows several key concepts. 
 First, it shows clearly that Euler angles are good position coordinates. While rotation operations are done 
in a definite   RZ (α ) ← RY (β) ← RZ (γ )  order, the dials shown in Fig. 6.6.3 are path independent. Setting (αβγ) in any 

order gives a position state obtained by operations   RZ (α )RY (β)RZ (γ )  in Fig. 4.4.3 or Fig. 6.6.1. We say (αβγ) are 

holonomic (path-independent) coordinates.
 Second, it shows how Euler angles are natural choices for lab or theory involving 3D rotation. Indeed, 
(αβγ) are the same as yaw(α), pitch(β), and roll(γ) used by an airplane pilot to track the bow or  Z -axis of the craft 
body relative to Earth or stars. 
 Third, the convention used in Fig. 6.6.1-2 makes the first two Euler angles (α and β) into azimuth and 
polar angle of the body zenith Z . This is the appropriate for atomic and molecular physics where the body zenith 

 Z  is a symmetry axis, radius vector, or other significant body point. 
 Fourth, Fig. 6.6.3 shows the latter two Euler angles (β and γ), more correctly, their negatives (-β and -γ) 
are also azimuth and polar angles, but for the LAB zenith Z relative to the body frame. Note that the last row of 
matrix (6.6.1b) has exactly the polar coordinate form using -β and -γ as azimuth and polar angle, respectively, as 
sketched in the upper right of Fig. 6.6.3.
 Different conventions exist for Euler angles. The first were based on astronomical orientation of planetary 
orbits and celestial stellar tracks not unlike the arcs in the astronomer’s diagram in Fig. 6.6.2(a). The zenith of an 
orbit plane does not appear in the sky so its azimuth and polar angle is useless. Instead astronomers record the 
azimuth of the points where the body rises or sets, the so-called ascending or descending nodes. These are 
located ±90°, respectively, from the azimuth of the orbital zenith so older Euler definitions measure azimuth α 
from the ±Y-axis instead of the X-axis. Astronomers may also use the orbital elevation-υ or the polar angle 
complement υ =π/2−β.
 Euler angles and any 3D angular coordinates, are fundamentally double valued. Two settings, 
(α=50°,β=60°,γ=70°) in Fig. 6.6.2b of positive β and (α-π=-130°,−β=-60°, γ-π=-110°), in Fig. 6.6.2c of negative β, 
both leave a body in the same lab-relative position. Calculus texts restrict polar angle θ=β to positive to avoid 
this! Recall in Fig. 4.4.4 thru Fig. 4.4.7 that 3D spin vectors rotate twice or by 4π (spin-up, spin-dn, spin-up, spin 
dn) for each spinor rotation (

  
x = ↑ , y = ↓ ,− x = − ↑ ,− y = − ↓ ). A mechanical demonstration of a full 4π 

rotation is shown in Fig. 6.6.4.
 The case of β=0 (Fig. 6.6.2d) is quite singular since then α and γ coordinates are infinite-valued and the 
state (α, 0, γ) is the same position as (α−φ, 0, γ+φ) for all φ. The singularity occurs at origin (α=0,β=0,γ=0) of R(3) 
and U(2) group parameter space or, more precisely, (α=φ, β=0, γ=−φ), and another such singularity is at β=π. 
Singular φ−floppiness is a killer, literally, and corresponds to gyroscopic gimbal-lock dreaded by pilots who fly 
acrobatic maneuvers depending on mechanical gyroscopic instruments that have a linkage quite like the ones 
shown here. The Euler device in Fig. 6.6.2 provides an excellent demonstration of a gyro compass.
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LAB x=x
1
axis α

Dial

LAB

z=x
3

zenith

BOD

z=x
3

zenith

β
Dial

γ
Dial

BOD frame view

BOD y=x
2

axis

LAB frame view

BOD x=x
1
axis

α
α

β

β

γ

γ

z

x y

−β

−γ

α

Polar angles of

LAB zenith z=x3 are
(azimuth angle=−γ,
polar angle=−β )

Polar angles of

BOD zenith z=x3 are
(azimuth angle=α,
polar angle=β )

z

x y

z

z
β

x′-Frame
x′′-Frame

x′′
1
=x
1
cos α+x

2
sin α x′′

2
=-x

1
sin α+x

2
cos α

x-Frame

 Fig. 6.6.3 Relating body frame to lab frame through a sucession of frames and dials.

b. Darboux rotations, whirl vector Θ=Ωτ, and axis angles [ϕ,ϑ,Θ]
A multi-valued rotational origin is necessary to allow a Darboux crank axis-angle rotation R[ϕ,ϑ,Θ] of Fig. 6.6.4 
to produce Euler position states (6.6.1) from an origin or original state |000〉.
   R(αβγ) |000〉 = |αβγ〉 = R[ϕ,ϑ,Θ] |000〉= R[ϕ,ϑ,Θ] |ϕ−π/2, 0, π/2−ϕ〉 (6.6.2)
A device that demonstrates this is shown attached to the Euler angle goniometer in Fig. 6.6.4. However, gimbal-
lock prevents motion from original position |000〉 until the goniometer x′-x′′-frame pair is tucked under the axis-
angle crank support at azimuth ϕ, that is, until the origin is reset from (α=0, β=0, γ=0) to (ϕ−π/2, 0, π/2−ϕ). Note 
azimuth α points the x′-frame with its β-axis to an azimuth α-90°. Then, the continuous rotation by axis angle 
Θ=ωt may begin in Fig. 6.6.4. Euler angles (αβγ) in parentheses or axis-angles [ϕ,ϑ,Ωt=Θ] in braces[] relate R
(αβγ)=R[ϕ,ϑ,Θ] by equating the four Θ-components{ΘX, ΘY, ΘZ, Θ0} of crank (4.4.10) (or (4.4.30)) with oscillator 
variables {x1, p1, x2, p2} of state (4.4.20).

 

  

R αβγ( ) =
e
− iα+γ

2 cos β
2

−e
iγ −α

2 sin β
2

e
iα−γ

2 sin β
2

e
iα+γ

2 cos β
2

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=       cosα + γ
2

cos β
2

1 0
0 1

⎛

⎝⎜
⎞

⎠⎟

       − i 0 1
1 0

⎛

⎝⎜
⎞

⎠⎟
sin γ −α

2
sin β

2
− i 0 −i

i 0

⎛

⎝⎜
⎞

⎠⎟
cos γ −α

2
sin β

2
− i 1 0

0 −1

⎛

⎝⎜
⎞

⎠⎟
sinα + γ

2
cos β

2

  (6.6.3)

  

  

R Θ⎡⎣ ⎤⎦=
cos Θ

2
− iΘ̂Z sin Θ

2
−i sin Θ

2
Θ̂X − iΘ̂Y( )

−i sin Θ
2

Θ̂X + iΘ̂Y( ) cos Θ
2
+ iΘ̂Z sin Θ

2

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

= cos Θ
2

1 0
0 1

⎛

⎝⎜
⎞

⎠⎟

       − i 0 1
1 0

⎛

⎝⎜
⎞

⎠⎟
Θ̂X sin Θ

2
       − i 0 −i

i 0

⎛

⎝⎜
⎞

⎠⎟
Θ̂Y sin Θ

2
         − i 1 0

0 −1

⎛

⎝⎜
⎞

⎠⎟
Θ̂Z sin Θ

2

   (6.6.4)
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Shared 4D phasor coordinates (xj=ReΨj, pj=ImΨj) in (4.4.1c) relate Euler-to-Axis angles. 
  x1 =  cos[(γ+α)/2] cosβ/2  =         cos Θ/2  
  -p2=  sin[(γ−α)/2] sinβ/2  =  Θ̂ X sin Θ/2  = cos ϕ  sin ϑ sin Θ/2 

  x2 =  cos[(γ−α)/2] sinβ/2  =  Θ̂ Y sin Θ/2  = sin ϕ  sin ϑ  sin Θ/2   (6.6.5a)
  -p1=  sin[(γ+α)/2] cosβ/2  =  Θ̂ Z sin Θ/2  = cos ϑ   sin Θ/2 
Solving these relations yields the following Euler angles in terms of axis angles ϕ, ϑ, and Θ=Ωt.
       α = ϕ −π/2 + T,    β = 2sin-1(sinΘ/2 sinϑ),    γ = π/2 −ϕ + T    (6.6.5b)
Here T= tan-1(tan (Ω/2) cos ϑ ). Inverting this gives axis-angles in terms of Euler angles.
      ϕ = (α − γ + π)/2 ,     ϑ = tan-1[tan β/2/ sin(α+γ)/2] ,     Θ = 2 cos-1[cos β/2 cos(α+γ)/2].  	
 (6.6.5c)
 It is important to recall the practical difference between Euler angles (αβγ) and axis angles [ϕ,ϑ,Θ]. Euler 
angles (αβγ) are coordinates of rotated states of position while axis-angles [ϕ,ϑ,Θ] are parameters of rotation 
operators or angular velocity.  Euler angles (αβγ) serve as convenient polar coordinates of spin vectors S (Recall 
Fig. 4.4.5) and for orbiting or spinning bodies as shown below. Axis angles [ϕ,ϑ,Θ] are the polar coordinates and 
rotation angle of a crank-axis Ω for an operation. Euler angels (αβγ) tell where S is while axis angles [ϕ,ϑ,Ω] 
tells whence it came and where it's going.
 A note of caution is in order with respect to exponential operator notation. Axis angle operations were 
given in (4.4.15) using a single exponential-of-a-sum expression. 

     R[] = e−i•S = e−i ΘXSX +ΘYSY +ΘZSZ( ) = e−iΘ Θ̂XSX +Θ̂YSY +Θ̂ZSZ( )    (6.6.5d)
Euler angle operation (6.6.1) is a product of three separate single exponentials.

       R(αβγ ) = e−iα SZ e−iβSY e−iγ SZ      (6.6.5e)

Unless operators A and B commute, eiA eiB is not ei(A+B). In rare cases (such as here!) where two operators 
commute with their commutator you can write
   eA eB e-[A,B]= e(A+B) = eB eA e[A,B]  if: [A, [A, B]] = 0 = [A, [A, B]]  
This is the first part of what is known as the Baker-Campbell-Hausdorf theorem. 

1. Double valued axis angle rotation
Fig. 6.6.5 follows an entire 720° or 4π rotation that connects the two positions shown in Fig. 6.6.2. First relations 
(6.6.5a) find the axis angles [ϕ=80°, ϑ=34°, Θ=129°] for the initial Euler position state (α=50°, β=60°, γ=70°) in 
Fig. 6.6.2(b) and Fig. 6.6.3.
  R(α=50°, β=60°, γ=70°) |000〉 = R[ϕ=80°, ϑ=34°, Θ=129°] |000〉    (6.6.6a)
It starts from a "1st" origin state in Fig. 6.6.5(a). (Note figure notation: φ=ϕ, θ=ϑ, ω=Θ)
   |000〉 = |ϕ−π/2, 0, π/2−ϕ〉 = |α=−10°, β=0°, γ=10°〉= R[ϕ, ϑ, Θ=0°] |000〉   (6.6.6b)
A 2π rotation (a-g) by Θ=ω = 360° gives the "2nd" origin state in Fig. 6.6.5(g).
    R[ϕ=80°, ϑ=34°, Θ=360°] |000〉 =  |α=170°, β=0°, γ=190°〉    (6.6.6c) 
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Fig. 6.6.4 Mechanical crank axis angles [ϕ,ϑ,Θ] operating on sphere having Euler angles (α,β,γ)
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Fig. 6.6.5 Rotational 4π sequence 1st Row: (a) First origin state ω=Θ=0, (b-f) First position states.

Fig. 6.6.5 Rotation 2nd Row: (g) 2nd origin state ω=Θ=2π, (h-l) 2nd position states (negative-β ).

The ball “looks” the same in the 2nd initial state of Fig. 6.6.5(i) or Fig. 6.6.2(b) as in the 1st. 
    R[ϕ=80°, ϑ=34°, Θ=489°] |000〉 =  |α=230°, β=−60°, γ=250°〉   (6.6.6d) 
However, “looks” by classical eyes are deceiving. In fact, the αγ-Euler angles and the goniometer x′-frame for 
each “2nd” position in figures 6.6.5(g-l) are π-flipped from those above them in figures 6.6.5(a-f). Also, β is 
negative. Another "full" 2π rotation (either way) is needed to finish a full-U(2) rotation of 0-modulo-4 π and 
return the apparatus to its first initial position in Fig. 6.6.5(c).
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First position states have positive-β >0.

 2nd position states have negative-β <0.

 There is a double-valued nature of the 3D-space we occupy. It has been noted repeatedly in Unit 4 
comparisons of the real 3-D R(3) spin-vector world versus the complex 2-D U(2) spinor world in Fig. 4.4.5. 
Photon polarization spin-vector S goes twice (4π) around R(3) space while polarization E-vector or Ψ-spinor 
goes just once around U(2) space in Fig. 4.4.6. Also, spinor reflections only need half the angle of the rotations 
they accomplish. They also provide a more elegant formula and graphical “slide-rule” for rotation group 
products. As we show now, it’s all “done with mirrors!”
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2. Mirror reflections and Hamilton's turns
In Section 4.4 we noted that mirror reflection operations are more fundamental than rotations and are done by 
real Pauli matrices such as σX and σZ or their combination σφ below. 

 
  
σ X = 0 1

1 0

⎛

⎝⎜
⎞

⎠⎟
  ,  σZ = 1 0

0 −1

⎛

⎝⎜
⎞

⎠⎟
  ,   σφ =

cosφ sinφ
sinφ − cosφ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

=σ X cosφ +σZ sinφ   ,

Action of σφ displayed in Fig. 6.6.6 reflects through a plane tilted at half-angle φ/2 to the x-axis. The product 
σφσX is a rotation R[φ] by angle φ, while σXσφ is the opposite rotation R[-φ] by (-φ).

 

  

σφσ X =
cosφ sinφ
sinφ − cosφ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

1 0
0 −1

⎛

⎝⎜
⎞

⎠⎟
 ,       σ Xσφ = 1 0

0 −1

⎛

⎝⎜
⎞

⎠⎟
cosφ sinφ
sinφ − cosφ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

          =
cosφ − sinφ
sinφ cosφ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

=R[φ]  ,                   =
cosφ sinφ
− sinφ cosφ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

=R[-φ]  

  (6.6.7)

 

φ/2

φ
σφ|x〉=cosφ|x〉+sinφ|y〉

σφ|y〉= sinφ|x〉−cosφ|y〉

|x〉

|y〉|y〉

|x〉

σX|x〉= |x〉

σX|x〉=−|y〉

σφσx

 Fig. 6.6.6 Mirror reflections σX through xz-plane and σφ through rotated plane.

 Hamilton saw this as a neat way to visualize three-dimensional rotations. Simply install two mirrors so 
they intersect on a Θ crank vector with half-angle Θ/2 between the first and the second as shown in Fig. 6.6.7. It 
is like a clothing store mirror which lets you rotate an image of yourself by Θ as you adjust the angle Θ/2 
between mirrors. A unit normal vector N1 and N2 is constructed from each mirror plane and a Θ/2 arc-vector 
drawn between the first and second plane normals. This arc is called Hamilton's turn vector (N1→N2). It is these 
Hamilton turns that can be "added" like vectors to give U(2) group products!
 Notice that only the relative angle Θ/2 or π−Θ/2 between mirrors is important in defining rotation R[Θ] ; 
their absolute position is irrelevant. You can swivel the two mirrors anywhere around the Θ-axis. The trick to 
making products is to swivel the Hamilton turn arc N1→N2 for the first rotation R[Θ] around so it meets head-to-
tail with the Hamilton turn arc N'1→ N'2 of the second rotation as R[Θ'] as shown in Fig. 6.6.8. Then the two 
mirrors associated with N2 and N'1 lie on top of each other and cancel since two reflections by the same mirror is 
no reflection. That leaves only the first mirror (N1) and the last (N'2), and the resultant Hamilton-turn arc 
N1→N'2 is the arc of the desired product R[Θ"]=R[Θ']R[Θ].
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N1

N2
Hamilton Turn

N1→→N2

Θ/2
Rotation vectorΘΘ
Rotation angle = Θ

(Θ/2 Arc)

1st Mirror

plane

2nd Mirror

plane

  Fig. 6.6.7 Mirror reflection planes, normals, and Hamilton-turn arc vector.

        

N1
N2 N'1

N'2

ΘΘ

ΘΘ'

R[ΘΘ']•R[ΘΘ]

N1

N'2

ΘΘ"

Product R[ΘΘ"]
=R[ΘΘ']•R[ΘΘ]

  Fig. 6.6.8 Adding Hamilton-turn arcs to compute a U(2) product R[Θ"]=R[Θ']R[Θ].

It is important to note that all Hamilton-turn arcs lie on great or equatorial circles and slide along the equatorial 
circles of the rotation axis vector Θ of the rotation R[Θ] .
 Also, note that each Hamilton arc Θ/2, Θ'/2, or Θ"/2 is half of the actual angle Θ, Θ', or Θ" of rotation R
[Θ] , R[Θ'] , or R[Θ"], respectively. That means that an arc Θ/2 between N1 and N2 and its supplement angles (Θ
±2π)/2 = Θ/2±π between N1 and -N2 represent the same classical rotation by Θ. For classical objects, a rotation by 
Θ±2π is the same as one by Θ. However, for a quantum spin-1/2 object, the arc pointing from N1 to the antipodal 
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normal -N2 represents a Θ-rotation with an extra π-phase factor e±iπ = -1, that is, -R[Θ] . Recall rotation by 2π of 
the U(2) polarization state in Fig. 4.4.6 always comes up the same state, but it's π-out of phase. Hamilton's turns 
account for this.

3. Similarity transformation and Hamilton's turns
 Finally, the Hamilton-turn "vector addition" on a sphere gives different results if the vectors are added in 
the reverse order to give R[Θ''']=R[Θ]R[Θ'] instead of R[Θ"]=R[Θ']R[Θ]. The arc-diagram for this forms a 
spherical parallelogram as shown in Fig. 6.6.9. It also shows the effect of a similarity transformation of rotation R
[Θ''] by rotation R[Θ] to give rotation R[Θ'''].
  R[Θ] R[Θ"] R[-Θ] = R[Θ''']     (6.6.8a)  R[-Θ] R[Θ'''] R[Θ] = R[Θ"]     (6.6.8b)
As in (6.6.4), a rotation R[Θ] of a rotation R[Θ"] is just that; everything associated with the rotation R[Θ"] gets 
rotated by the full angle Θ around axis Θ. This includes its crank vector Θ" and now its Hamilton-turn arc that in 
Fig. 6.6.9 gets moved by exactly two R[Θ] Hamilton-turn arcs into path of the R[Θ'''] turn arc below it, that is, 
two R[Θ] Hamilton-turn Θ/2 arcs amount to one whole angle Θ. Fig. 6.6.9 shows similarity transformation of 
rotation R[Θ'''] by rotation R[Θ'] to gives R[Θ"].
     R[Θ'] R[Θ'''] R[-Θ'] = R[Θ"]     (6.6.8c)
An infinite number of rotations transform R[Θ"] into R[Θ'''] but just one crank direction has a smallest and 
largest angles Θ and 2π-Θ. You should locate this crank and Hamilton-turn on Fig. 6.6.9. (The four crank vectors 
Θ, Θ', Θ", and Θ''' also define a spherical parallelogram below.)

  

ΘΘ"

Product R[ΘΘ"]
= R[ΘΘ']•R[ΘΘ]

Product R[ΘΘ''']
= R[ΘΘ]•R[ΘΘ']

ΘΘ'''

Product
R[ΘΘ']•R-1[ΘΘ]

Product
R-1[ΘΘ]•R[ΘΘ']

  Fig. 6.6.9 Hamilton-turn arc parallelogram with  R[Θ"]=R[Θ']R[Θ] and  R[Θ''']=R[Θ]R[Θ']

The geometry of minimal or geodesic transformations is important for classical and quantum dynamics as will be 
shown in Unit 7.
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4. Combining rotations: U(2) group products
 The product of R[Θ'] R[Θ] of any two rotations is another rotation operator R[Θ"] which can be 
computed using Hamilton's axis-angle expansion (4.4.15) as follows.

   

   

R[Θ ']R[Θ] = cos Θ '
2

 1 − i sin Θ '
2

 Θ̂ '• σ
⎛
⎝⎜

⎞
⎠⎟

cos Θ
2

 1 − i sin Θ
2

 Θ̂• σ
⎛
⎝⎜

⎞
⎠⎟

    = cos Θ '
2

cos Θ
2

 1 − i cos Θ '
2

sin Θ
2

 Θ̂ + cos Θ
2

sin Θ '
2

 Θ̂ '
⎡

⎣
⎢

⎤

⎦
⎥ • σ − sin Θ '

2
sin Θ

2
Θ̂ '• σ( ) Θ̂ • σ( )

(6.6.9)

The Hamilton-Jordan-Pauli identity (4.4.12) is used to reduce (Θ'•σ)(Θ•σ).

       

   

R[Θ ']R[Θ] =  cos Θ"
2

⎛
⎝⎜

⎞
⎠⎟

 1    −        i sin Θ"
2

 Θ̂ "
⎡

⎣
⎢

⎤

⎦
⎥ • σ =R[Θ "]

    = cos Θ '
2

cos Θ
2

⎛
⎝⎜

⎞
⎠⎟

 1 − i cos Θ '
2

sin Θ
2

 Θ̂ + cos Θ
2

sin Θ '
2

 Θ̂ '+ sin Θ '
2

sin Θ
2
Θ̂ '× Θ̂

⎡

⎣
⎢

⎤

⎦
⎥ • σ

   (6.6.10 a)

It is straightforward to solve for the new product angle Θ" and axis Θ" . 

       

 

    cos Θ"
2

⎛
⎝⎜

⎞
⎠⎟

 = cos Θ '
2

cos Θ
2

⎛
⎝⎜

⎞
⎠⎟

    

sin Θ"
2

 Θ̂ "
⎡

⎣
⎢

⎤

⎦
⎥ = cos Θ '

2
sin Θ

2
 Θ̂ + cos Θ

2
sin Θ '

2
 Θ̂ '+ sin Θ '

2
sin Θ

2
Θ̂ '× Θ̂

⎡

⎣
⎢

⎤

⎦
⎥

       (6.6.10 b)

This is the U(2) group product formula that in Fig. 6.6.7 is done with mirrors!.

5. Similarity transformation of rotation axes
Euler’s factoring (6.6.1) of axis-angle expression (4.4.15) is not unique. Rotation R[ϕ,ϑ,Θ] by Θ about axis Θ of 
polar angle (ϕ, ϑ) is a similarity transformation T of Z-axis-twist rotation e-iΘSZ.
    R[ϕ,ϑ,Θ] = T e-iΘSZ T†       (6.6.11a)
The desired transformation T is just the Euler operation R(ϕϑ0) such as was diagrammed in Fig. 6.6.1, only one 
omits the twist γ since it just cancels out. Effectively, we take the Θ-axis from polar-angle [ϕ,ϑ] to the Z-axis 
with an inverse Euler-op T† = R†(ϕϑ0), then do the Z-twist e-iΘSZ, and finally, return the axis to its original 
(ϕ,ϑ)-position with the Euler rotation (sans twist) T=R(ϕϑ0).
   R[ϕ,ϑ,Θ] = R(ϕϑ0) e-iΘSZ R†(ϕϑ0) = R(ϕϑ0) R(00Θ) R†(ϕϑ0)     (6.6.11b) 
Euler rotations are given by (6.6.1). (Note: R†(0ϑ0) = R(0−ϑ0) and R†S† = (SR)† )
   R[ϕ,ϑ,Θ] = R(ϕ00) R(0ϑ0) R(00Θ) R(0−ϑ0) R(-ϕ00)       (6.6.11c) 
   R[ϕ,ϑ,Θ] =  e-iϕSZ    e-iϑSY  e-iΘSZ   e+iϑSY   e+iϕSZ     (6.6.11d)
So axis-defined R[ϕ,ϑ,Θ] factors into five monomial exponentials instead of three factors found in the much 
simpler Euler rotation R(αβγ) of (6.6.1). (Check that this gives the same 2-by-2 matrix in (4.4.15a).) Doing 
rotations with just Y and Z axes keeps complex matrix arithmetic to a minimum since often Z-axis rotations are 
diagonal and Y-rotations, if not diagonal, are generally real.
 Now the application of σ-rules to the derivation of the expression for a general rotation R[Θ] of an 
arbitrary unit 3-vector eL or unit spinor σL  is tricky. But, it's something that a physicist should do at least once! 
Therefore we leave the following results as exercises.
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R[Θ]⋅ σ L ⋅R[Θ]n  = cos Θ
2

 1 − i sin Θ
2

 Θ̂KσK
⎛
⎝⎜

⎞
⎠⎟
⋅ σ L ⋅ cos Θ

2
 1 + i sin Θ

2
 Θ̂NσN

⎛
⎝⎜

⎞
⎠⎟

                = σ L ' = σ L cosΘ − εLKM Θ̂KσM sinΘ + 1− cosΘ( )Θ̂L Θ̂NσN( )
  (6.6.12)

You should also demonstrate that this is equivalent to the following 3-vector expression.

  
     

e
L

= R ⋅ e
L

= e
L
cosΘ− ε

LKM
Θ̂

K
e

M
sinΘ+ 1− cosΘ( )Θ̂L

Θ̂
N
e

N( )
    = e

L
cosΘ+ Θ̂×e

L
sinΘ+ 1− cosΘ( )Θ̂ Θ̂ • e

L( )
  (6.6.13)

The 3-vector transformations are more complicated than the 2-spinor ones but are functions of whole angles Θ of 

rotation unlike 2-space spinor operations that have half-angles Θ/2 or square-root cosines 
  
cos

2
Θ =

   2
1+cosΘ . (Recall 

(4.4.14).) Direction-cosine rotation components    eM
ie

L
are as follows.

  
      
e

M
R e

L
= R

ML
= e

M
ie

L
= δ

ML
cosΘ− ε

LKM
Θ̂

K
sinΘ+ 1− cosΘ( )Θ̂M

Θ̂
L

 (6.6.14)

Nine  RLM
give a 3D Darboux rotation matrix R[Θ]=R[ϕϑΘ]with axis angle parameters of whirl angle Θ=ωt and 

the unit whirl axis:     (Θ̂X
, Θ̂

Y
, Θ̂

Z
) = (cosϕ sinϑ, sinϕ sinϑ, cosϑ)  in Fig. 6.6.10.

 

    

R
XX

R
XY

R
XZ

R
YX

R
YY

R
YZ

R
ZX

R
ZY

R
ZZ

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

=

e
X
ie

X
e

X
ie

Y
e

X
ie

Z

e
Y

ie
X

e
Y

ie
Y

e
Y

ie
Z

e
Z
ie

X
e

Z
ie

Y
e

Z
ie

Z

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

=      (6.6.15)

 

   

cosΘ+ 1− cosΘ( )Θ̂X
2 1− cosΘ( )Θ̂X

Θ̂
Y
− Θ̂

Z
sinΘ 1− cosΘ( )Θ̂X

Θ̂
Z
+ Θ̂

Y
sinΘ

1− cosΘ( )Θ̂X
Θ̂

Y
+ Θ̂

Z
sinΘ cosΘ+ 1− cosΘ( )Θ̂Y

2 1− cosΘ( )Θ̂Y
Θ̂

Z
− Θ̂

X
sinΘ

1− cosΘ( )Θ̂X
Θ̂

Z
− Θ̂

Y
sinΘ 1− cosΘ( )Θ̂Y

Θ̂
Z
+ Θ̂

X
sinΘ cosΘ+ 1− cosΘ( )Θ̂Z

2

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

This should equal Euler’s R(αβγ) in (6.6.1) or 3D rotation R[ϕ,ϑ,Θ] in (6.6.11) after Euler-to-axis angle 
conversions (6.6.5) relating 2D spinor rotation R[ϕ,ϑ,Θ] in (6.6.4) to R(αβγ) in (6.6.3).

6. Geometry of spin precession
 Fig. 6.6.10 shows 3-views of a spin Sαβ vector (rotating) around a cone centered on a unit whirl axis 

    Ω̂ = Θ̂ = [Ω̂
A
, Ω̂

B
, Ω̂

C
] = [Ω̂

Z
, Ω̂

X
, Ω̂

Y
] = [cosϑ,  cosϕ sinϑ,  sinϕ sinϑ] . It is like Fig. 4.4.2 but Ω has zero azimuth ϕ=0  so 

  Ω̂ lies in the AB -plane     Ω̂ = [Ω̂
A
, Ω̂

B
,0] = [cosϑ, sinϑ,0 ] . The initial spin state 

   
↑

A
= (

0
1 )  (up-A) has spin vector 

   [SA
,S

B
,S

C
] = S[1,0,0]  pointing up-A-axis at    (α = 0,β = 0) . Then S00 rotates around  Ω̂  by angle   Θ= Ω ⋅ t  at angular 

rate  Ω to become Sαβ
   = [S

A
,S

B
,S

C
] =    S[cosβ, cosα sinβ, sinα sinβ] . Here we use the {A,B,C} polarization symmetry 

labels Asymmetry, Balance, Circulation to denote, respectively,  Cartesian {Z,X,Y} components of spin state as 
defined by (4.4.16) and operator R=e-iHt as defined by (4.4.18) in Sec. 4.4.

Note that the crank Ω swings spin S to a maximum polar angle    β = 2ϑ that is twice the polar angle ϑ  of 
crank  Ω as measured from A-axis where the spin was initially. Rotation angle   Θ=Ω⋅t  is  π  as it passes through the 
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AB –plane that it also contains  Ω̂  and the spin vector S00  at t=0. Then spin Sαβ    (t=π/Ω)  is at its lowest and most 

distant position relative to the A-axis. 
Let us compare the    [SA

,S
B
,S

C
] = [S

Z
,S

X
,S

Y
]  component geometry of vector Sαβ in Fig. 6.6.10 with the Z-

column vector of matrix (6.6.15) for a crank with ϕ=0 or     [Θ̂Z
,Θ̂

X
,Θ̂

Y
] = [cosϑ, sinϑ,0 ] = [Θ̂

A
,Θ̂

B
,Θ̂

C
] . 

The A-altitude of the spin vector is given by trigonometry of Fig. 6.6.10 views (a), (b) or (c).

 
    
S

A
= S

Z
= S cosβ = S

1 + cosΘ
2

+ S
1− cosΘ

2
cos2ϑ = S(cos2 ϑ+ sin2 ϑcosΘ) = S(cosΘ+ (1− cosΘ)cos2 ϑ)

 
    
           = S(1− 2sin2 ϑ sin2 Ω⋅t

2
)    where :    Θ= Ω⋅t      (6.6.16a)

Its minimum value is    S cos2ϑ  as we should expect from the doubling of the cone half-angle. The range of motion 
of expectation value SA

 is the altitude   2S sin2 ϑ of a right triangle shown by (c) view (top left).

 As the A-component of spin oscillates so does the B-component and the C-component, each with different 
time dependence. Looking straight down the Ω -crank axis shows uniform circular motion in the upper left hand 
part (d) of Fig. 6.6.10. With C-axis  normal to Ω  (ϕ=0), the C-component oscillation is along cone base radius

   S sinϑ  projected onto the C-axis times    −sinΩ ⋅ t  as shown by view (a) or (b).
      SC

= S
Y

= S sinα sinβ =−S sinϑ sinΩ⋅t       (6.6.16c)

 The minus sign is due to the counter-clockwise rotation that first goes toward the negative C-axis.
 The B-component oscillates along a   cosϑ  projection of the cone base diameter    S sinϑ .

  
    
S

B
= S

X
= S cosα sinβ = S sinϑcosϑ(1− cosΘ) = S sin 2ϑ sin2 Ω⋅t

2
   (6.6.16b)

The range of expectation value SB
is the base     S sin 2ϑ = 2S sinϑcosϑ  of the right triangle in the (c) view.

Each of these values is consistent with the Z-column of (6.6.15). For these, the crank azimuth ϕ  is not zero 

as it is in Fig. 6.6.10. To rectify this situation, it is only necessary to rotate the B-component and C-component by 
that azimuth angle  ϕ  using a matrix for  ϕ -rotation around the A-axis.

    

S
B

S
C

⎛

⎝

⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟
=

S
X

S
Y

⎛

⎝

⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟
= S

sinβ cosα
sinβ sinα

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟
= S sinϑ

cosϕ   -sinϕ
sinϕ cosϕ

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

cosϑ(1− cosΘ)

sinΩ ⋅ t

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
= S

cosϕ   -sinϕ
sinϕ cosϕ

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

sin 2ϑ sin2 Ω ⋅ t
2

−sinϑ sinΩ ⋅ t

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟

The A-altitude SA
 is independent of the azimuth angle  ϕ .  Of the three expectation values, only  SA

 is guaranteed 

to be 100% certain value +S (“up”) and then only at certain times    t = 0,2π/Ω, 4π/Ω,... . Other values are averages of 

quantum up-and-down values  +S=+2
 or  −S=−2

 allowed inside any B or C analyzer. The values (6.6.16) vary with 

time unless  

S  and  Ω̂  coincide.(ϑ = 0 here.)   

If we increase crank polar angle to a “magic angle” 
    
ϑ

magic
= cos−1 3−1/2 ≅ 54.7°  and azimuth to    ϕ=π/4  as in 

Fig. 4.4.2, then each analyzer A, B, and C will experience, in turn, a moment of certainty when they are sure to 
find the spin “up” in their direction. (Verify this.)
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2Ssin2ϑ
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Ssin2ϑ
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C

B

(b) Down-B view(c) Down-C view

(d) Down-Ω view

-C

(a) Down-A view

Ssinϑ
-SsinϑsinΩt

	
 	
 Fig. 6.6.10 Geometry of 3D rotation R[ϕ=0,ϑ,Θ]by Θ=Ωt of S vector initially on Z=A axis
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Chapter 6.7. Euler rotational kinematics and dynamics
The relations between the Darboux whirl-vector ω or Ω of angular velocity, the various LAB and BOD 
components 

  
{Lx , Ly , Lz}( LAB) and 

  
{Lx , Ly , Lz }( BOD) of angular momentum, and the individual Euler angular 

velocities  { α , β, γ } are developed here using the Euler-Axis relations of Sec. 6.6.

a. Euler angular velocity relations
The Euler device in Fig. 6.6.3 can be viewed as four connected Merry-Go-Rounds consisting of the LAB-x-frame 

  {x = x1, y = x2 , z = x3}(presumably inertial, but not necessarily so) connected by bearing and dial α to the x′-frame 

  { ′x = ′x1, ′y = ′x2 , ′z = ′x3}  connected by bearing and dial β to the x′′-frame   { ′′x = ′′x1, ′′y = ′′x2 , ′′z = ′′x3} holding bearing 

and dial γ for BOD   x3 -frame   {x = x1, y = x2 , z = x3} .

 Velocity as seen by each intermediate frame is added to its rotational velocity ω × r relative to a frame 

whose rotation axis ω supports it, so velocity  ′r seen in x′-frame added to  ωα × r is LAB   rLAB .

 
   r

LAB = ′r +ωα × r    where:  
   ωα = αx3 = α(− sinβ cosγ x1 + sinβ sinγ x2 + cosβx3)   (6.7.1)

Rotation ωα is about LAB z=x3-axis whose BOD coordinates     x3ixk  are the 3rd row of matrix (6.6.1b).

Then x′-frame dial β supports the x′′-frame. Coordinates of ωβ appear in Fig. 6.6.3.  
 

  
′r = ′′r +ωβ × r       where: 

   
ωβ = β(− sinαx1 + cosαx2 ) = β(sinγ x1 + cosγ x2 )       (6.7.2)

Then x′′-frame dial γ has the   x3 -axis whose LAB coordinates    x3ixk  are the 3rd column of (6.6.1b).

 
   
′′r = r BOD +ωγ × r  where: 

   
ωγ = γ (sinβ cosαx1 + sinβ sinαx2 + cosβx3) = γ x3       (6.7.3)

The relations collapse into a single LAB-BOD relation by eliminating the “middle-men”  ′r and   ′′r .

 
   
rLAB = ′r +ωα × r = ′′r +ωβ × r +ωα × r = r BOD +ωγ × r +ωβ × r +ωα × r             (6.7.4)

This repeats a Galilean-sum-rule of rotational relativity derived in (3.7.14) of Unit 3.

   
    
rLAB = r BOD + (ωγ +ωβ +ωα )× r = r BOD +ω × r        (6.7.5a)

Angular velocity ω has LAB   {x1,x2 ,x3}  or BOD   {x1 ,x2 ,x3}  frame components
 
ω j or

 
ω j .

  

   

ω = ωγ + ωβ + ωα = ω1x1 +ω2x2 +ω3x3 = ω1x1 +ω2x2 +ω 3x3

ω = (− β sinα + γ sinβ cosα )x1 + ( β cosα + γ sinβ sinα )x2 + ( α + γ cosβ)x3

ω = (+ β sinγ − α sinβ cosγ )x1 + ( β cosγ + α sinβ sinγ )x2 +  ( γ + α cosβ)x3

      (6.7.5b)

A LAB-BOD symmetry (α to −γ, β to −β, γ to −α) is evident in these LAB and BOD Jacobian relations.

  

ω1

ω2

ω3

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=
0 − sinα cosα sinβ
0 cosα sinα sinβ
1 0 cosβ

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

α
β
γ

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

(6.7.5c) 

  

ω1

ω2

ω 3

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=
− sinβ cosγ sinγ 0
sinβ sinγ cosγ 0

cosβ 0 1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

α
β
γ

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

  (6.7.5d)

Their inverses are LAB and BOD “Kajobians” below. Together they define rotational mechanics.
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α
β
γ

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
=

− cosα cot β − sinα cot β 1
− sinα cosα 0

cosα cscβ sinα cscβ 0

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

ω1

ω2

ω3

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

(6.7.5e)   

  

α
β
γ

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
=

− cosγ cscβ sinγ cscβ 0
sinγ cosγ 0

cot β cosγ − cot β sinγ 1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

ω1

ω2

ω 3

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

      (6.7.5f)

b. Euler angular momentum relations
The Euler velocity relations yield angular momentum in terms of a Lagrangian L(  α , β, γ ;α ,β,γ ).

    
   
Jα =

∂L
∂ α

 ,            Jβ =
∂L
∂ β

 ,            Jγ =
∂L
∂ γ

 .    (6.7.6)

This is consistent with fundamental definitions (1.12.10) in Unit 1, (2.4.1) in Unit 2, and (3.6.4) in Unit 3. Jµ are 
Euler’s version of GCC momentum pµ and (αβγ) are the angular GCC  (q

1,q 2,q 3) .

The Cartesian momentum components  Jm
or Jm

 go with angular velocity components  ωk = Θk or  ωk = Θk  

in (6.7.5) that refer to Cartesian frames LAB or BOD, respectively.

LAB:
  

J1 =
∂L
∂ω1

,   J2 =
∂L
∂ω2

,  J3 =
∂L
∂ω3

⎛

⎝⎜
⎞

⎠⎟
(6.7.7a) BOD:

  
J1 =

∂L
∂ω1

,  J2 =
∂L
∂ω2

,  J3 =
∂L
∂ω 3

⎛

⎝⎜
⎞

⎠⎟
(6.7.7b)

Strangely, there are no well-defined Cartesian-coordinate LAB angles (Θ1,Θ2 ,Θ3) or BOD angles  (Θ1 ,Θ2 ,Θ3 )  to 

go with angular velocitiesωk orωk . Only their derivatives are definable.

   (
Θ1, Θ2 , Θ3) = (ω1,ω2 ,ω3).  (6.7.8a)    (

Θ1 , Θ2 , Θ3 ) = (ω1 ,ω2 ,ω 3 ).  (6.7.8b)

TheΘk -angles are non-holonomic or non-integrable coordinates as noted in regard to derivative constraints 

(3.9.25) in Unit 3.  DifferentialdΘk =ωkdt or derivative  
Θk  is locally defined but integrals dΘk∫ = ωk dt∫  are 

path-dependent. Cartesian Θk angles cannot define global orientation as Euler (αβγ) do in Fig. 6.6.2. 

Cartesian momentum Jm
or Jm

in (6.7.7) relate to Euler angles by Jacobian derivative chain-sums over 

Euler velocity   ( α,
β, γ)but not angles  (α,β,γ)  since coordinates cannot be explicit functions of velocity ωk  or ωk . 

So Jm
or Jm

in (6.7.9) use transposed and inverted velocity matrices (6.7.5) to give (6.7.10).

    
   
Jm =

∂L
∂ωm

=
∂L
  

   
∂ωm

=
∂L
∂ α   

∂ α    
∂ωm

+
∂L
∂ β   

∂ β    
∂ωm

+
∂L
∂ γ   

∂ γ    
∂ωm

= Jα
∂ α    
∂ωm

+  Jβ
∂ β    
∂ωm

+ Jγ
∂ γ    
∂ωm

 (6.7.9a)

    
   
Jk =

∂L
∂ωk

=
∂L
  

   
∂ωk

=
∂L
∂ α   

∂ α    
∂ωk

+
∂L
∂ β   

∂ β    
∂ωk

+
∂L
∂ γ   

∂ γ    
∂ωk

= Jα
∂ α    
∂ωk

+  Jβ
∂ β    
∂ωk

+ Jγ
∂ γ    
∂ωk

  (6.7.9b)

Euler{Jα , Jβ , Jγ } -to-  {Jm
,J

m
} matrices are transposed cartesian   {ωm

,ω
m
} -to- { α ,

β, γ}  matrices (6.7.5e-f).

  

J1

J2

J3

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=
− cosα cot β − sinα cosα cscβ
− sinα cot β cosα sinα cscβ

1 0 0

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

Jα
Jβ
Jγ

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

(6.7.10a) 

  

J1

J2

J3

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=
− cosγ cscβ sinγ cot β cosγ
sinγ cscβ cosγ − cot β sinγ

0 0 1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

Jα
Jβ
Jγ

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

(6.7.10b)

Momentum  {Jm
,J

m
} -to-{Jα , Jβ , Jγ }  matrices are transposed velocity  { α ,

β, γ}-to-   {ωm
,ω

m
} matrices (6.7.5c-d).
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Jα
Jβ
Jγ

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=
0 0 1

− sinα cosα 0
cosα sinβ sinα sinβ cosβ

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

J1

J2

J3

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

(6.7.10c)        

  

Jα
Jβ
Jγ

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=
− sinβ cosγ sinβ sinγ cosβ

sinγ cosγ 0
0 0 1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

J1

J2

J3

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 (6.7.10d)

Since coordinates have zero velocity dependence, coordinate and velocity Jacobians are identical.  

  Lemma 1: (
 ∂ q

m
∂xa ≡ 0 ≡

∂xb
∂qn ) implies: 

 ∂ q
m

∂ xa ≡
∂qm
∂xa  and: 

 ∂xb
∂ qn ≡

∂xb
∂qn   (3.5.4)repeated

But, velocity is coordinate dependent for curved coordinates, that is, for analytic non-constant J.

  Lemma 2: (
∂qm∂qn
∂2xa ≡

∂qn∂qm
∂2xa ) implies: 

 dt
d
∂qm
∂xa ≡

∂qm
∂ xa  and: 

 dt
d
∂xb
∂qn ≡

∂xb
∂ qn   (3.5.6)repeated

All this assumes a coordinate differential  dx
a = xadt  is velocity x

a  times a time differential dt. 

   
 
dxa =

∂qµ
∂xa dqµ   implies:  dt

dxa ≡ xa =
∂qµ
∂xa qµ ≡

∂qµ
∂xa
dt
dqµ  

c. Euler-Lagrange equations of motion
        Lagrange definition of momentum p or Jm by velocity partial derivative 

 ∂ q
µ

∂L = pµ  or 
 ∂
Θm

∂L = Jm and Lagrange 

equation of force F = p or torque 
Jm  by coordinate partial derivative 

 ∂q
µ

∂L = pµ  or 
 ∂Θm

∂L = Jm are the same form in any 

coordinate system or frame due to symmetry of Jacobian matrices Jm
m =

∂qm
∂xm . 

 LAB- momentaJm  transform to Euler Jb = {Jα , Jβ , Jγ }  in (6.7.10c) by Jacobian Jm
b =∂βb

∂Θm as in (6.7.11a). 

Torques 
Jm  and 

 
Jb = { Jα , Jβ , Jγ }  involve Jacobian time derivatives as in (6.7.12) below. 

  
Jb =

∂L
∂ βb

=
∂Θm
∂βb

Jm    (6.7.11a)    
  
Jb =

∂L
∂βb

  (6.7.11b)

Inverse Kb
m =∂Θm

∂βb  transforms Euler Jb = {Jα , Jβ , Jγ }to LAB Jm in (6.7.10a) and (6.7.11c).  

  
  
Jm =

∂L
∂ Θm

= Jb
∂βb
∂Θm

 (6.7.11c)     
  
Jm =

∂L
∂Θm

 (6.7.11d)

Cartesian BOD-momenta transform by JacobianJm
b =∂βb

∂Θm in (6.7.10d) or by Kb
m =∂Θm

∂βb in (6.7.10b).

  
  
Jm =

∂L
∂ Θm

= Jb
∂βb
∂Θm

 (6.7.11e)     
  
Jm =

∂L
∂Θm

 (6.7.11f)

 Terms in 
 
J1 =dt

d
∂ Θ1
∂L of (6.7.9) and (6.7.11d) relate to (6.7.11) thru six chain-sum terms of ∂Θ1

∂L .  

  
 
J1 =dt

d [∂ α
∂L

∂ Θ1

∂ α + ∂ β
∂L

∂ Θ1

∂ β +  ∂ γ
∂L

∂ Θ1

∂ γ ]= ∂Θ1

∂L = ∂α
∂L

∂Θ1

∂α + ∂β
∂L

∂Θ1

∂β + ∂γ
∂L

∂Θ1

∂γ + ∂ α
∂L

∂Θ1

∂ α + ∂ β
∂L

∂Θ1

∂ β + ∂ γ
∂L

∂Θ1

∂ γ   (6.7.12)

Lemma 1 applies on the left and Lemma 2 on the right. Euler equations (6.7.11) result term-by-term.

  
 
J1 =dt

d [∂ α
∂L

∂Θ1

∂α + ∂ β
∂L

∂Θ1

∂β + ∂ γ
∂L

∂Θ1

∂γ ] = ∂α
∂L  ∂Θ1

∂α + ∂β
∂L

∂Θ1

∂β + ∂γ
∂L  ∂Θ1

∂γ + ∂ α
∂L

dt
d
∂Θ1

∂α +  ∂ β
∂L

dt
d
∂Θ1

∂β + ∂ γ
∂L

dt
d
∂Θ1

∂γ  (6.7.13a)
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J1 =dt

d [Jα ∂Θ1
∂α +Jβ ∂Θ1

∂β +Jγ ∂Θ1
∂γ ] = Jα ∂Θ1

∂α + Jβ ∂Θ1
∂β + Jγ ∂Θ1

∂γ + Jα dt
d
∂Θ1
∂α + Jβ dt

d
∂Θ1
∂β + Jγ dt

d
∂Θ1
∂γ  (6.7.13b)

LAB-Euler velocity transformation matrices (6.7.5) are repeated below in Jacobian notation. 

    

∂ω
1

∂ α

∂ω
1

∂ β

∂ω
1

∂ γ
∂ω

2

∂ α

∂ω
2

∂ β

∂ω
2

∂ γ
∂ω

3

∂ α

∂ω
3

∂ β

∂ω
3

∂ γ

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

=

∂Θ
1

∂α

∂Θ
1

∂β

∂Θ
1

∂γ
∂Θ

2

∂α

∂Θ
2

∂β

∂Θ
2

∂γ
∂Θ

3

∂α

∂Θ
3

∂β

∂Θ
3

∂γ

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

=
0 −sinα cosα sinβ
0 cosα sinα sinβ
1 0 cosβ

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

Euler( α β γ)

veloc. to
LAB[ Θ

123
]

 (6.7.14a) 

    

∂ α
∂ω

1

∂ α
∂ω

2

∂ α
∂ω

3

∂ β
∂ω

1

∂ β
∂ω

2

∂ β
∂ω

3

∂ γ
∂ω

1

∂ γ
∂ω

2

∂ γ
∂ω

3

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

=

∂α
∂Θ

1

∂α
∂Θ

2

∂α
∂Θ

3

∂β
∂Θ

1

∂β
∂Θ

2

∂β
∂Θ

3

∂γ
∂Θ

1

∂γ
∂Θ

2

∂γ
∂Θ

3

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

=

−cosαcotβ −sinαcotβ 1
−sinα cosα 0

cosαcscβ sinαcscβ 0

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟

LAB[ Θ
123
]

veloc. to
Euler( α β γ)

(6.7.14b)

Momentum transformation is matrix transpose going opposite way as in (6.7.10a) and (6.7.10c).  

  

0 0 1
− sinα cosα 0

cosα sinβ sinα sinβ cosβ

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

LAB[J123]

mom. to
Euler(Jαβγ )

  

  

− cosα cot β − sinα cosα cscβ
− sinα cot β cosα sinα cscβ

1 0 0

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

Euler(Jαβγ )

mom. to
LAB[J123]

Similar transformations (6.7.5d) or (6.7.5f) connect Euler-angular and BOD-Cartesian quantities.

 

    

∂ω
1

∂ α

∂ω
1

∂ β

∂ω
1

∂ γ
∂ω

2

∂ α

∂ω
2

∂ β

∂ω
2

∂ γ
∂ω

3

∂ α

∂ω
3

∂ β

∂ω
3

∂ γ

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

=

∂Θ
1

∂α

∂Θ
1

∂β

∂Θ
1

∂γ
∂Θ

2

∂α

∂Θ
2

∂β

∂Θ
2

∂γ
∂Θ

3

∂α

∂Θ
3

∂β

∂Θ
3

∂γ

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

=
−sinβ cosγ sin γ 0
sinβ sin γ cosγ 0

cosβ 0 1

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

Euler(αβγ)

coord. to
BOD[Θ

123
]

(6.7.14c) 

    

∂ α
∂ω

1

∂ α
∂ω

2

∂ α
∂ω

3

∂ β
∂ω

1

∂ β
∂ω

2

∂ β
∂ω

3

∂ γ
∂ω

1

∂ γ
∂ω

2

∂ γ
∂ω

3

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

=

∂α
∂Θ

1

∂α
∂Θ

2

∂α
∂Θ

3

∂β
∂Θ

1

∂β
∂Θ

2

∂β
∂Θ

3

∂γ
∂Θ

1

∂γ
∂Θ

2

∂γ
∂Θ

3

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

=

−cosγ cscβ sin γ cscβ 0
sin γ cosγ 0

cotβ cosγ −cotβ sin γ 1

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

BOD[Θ
123
]

coord. to
Euler(αβγ)

(6.7.14d)

Again, transposed matrices do momentum transforms oppositely as in (6.7.10b) and (6.7.10d).  

  

− sinβ cosγ sinβ sinγ cosβ
sinγ cosγ 0

0 0 1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

BOD[J123]

mom. to
Euler(Jαβγ )

  

  

− cosγ cscβ sinγ cot β cosγ
sinγ cscβ cosγ − cot β sinγ

0 0 1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

Euler(Jαβγ )

mom. to
BOD[J123]

A product of (6.7.14a) and (6.7.14d) gives the original rotation R(αβγ) in (6.6.1) from LAB-to-BOD.  

   

∂Θ
1

∂α

∂Θ
1

∂β

∂Θ
1

∂γ
∂Θ

2

∂α

∂Θ
2

∂β

∂Θ
2

∂γ
∂Θ

3

∂α

∂Θ
3

∂β

∂Θ
3

∂γ

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

⋅

∂α
∂Θ

1

∂α
∂Θ

2

∂α
∂Θ

3

∂β
∂Θ

1

∂β
∂Θ

2

∂β
∂Θ

3

∂γ
∂Θ

1

∂γ
∂Θ

2

∂γ
∂Θ

3

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

=

   

0 −sinα cosα sinβ
0 cosα sinα sinβ
1 0 cosβ

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

⋅
−cosγ cscβ sin γ cscβ 0

sin γ cosγ 0
cotβ cosγ −cotβ sin γ 1

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

  (6.6.15a)
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=

∂Θ
1

∂Θ
1

∂Θ
1

∂Θ
2

∂Θ
1

∂Θ
3

∂Θ
2

∂Θ
1

∂Θ
2

∂Θ
2

∂Θ
2

∂Θ
3

∂Θ
3

∂Θ
1

∂Θ
3

∂Θ
2

∂Θ
3

∂Θ
3

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

= R(αβγ) =
cosαcosβ cosγ − sinα sin γ -cosαcosβ sin γ − sinαcosγ cosα sinβ
sinαcosβ cosγ + cosα sin γ -sinαcosβ sin γ + cosαcosγ sinα sinβ

−cosγ sinβ sin γ sinβ cosβ

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

Inverse rotation R(−γ−β−α)=R-1(αβγ) going from BOD-to-LAB is a transpose RT(αβγ) of (6.6.1) since R is an 
orthogonal matrix (R-1=RT or R=( RT)-1), and that gives a related factorization of R(αβγ). 

 

    

R(αβγ) = RT (αβγ)( )−1
=
−cosαcotβ −sinα cosαcscβ
−sinαcotβ cosα sinαcscβ

1 0 0

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟

−sinβ cosγ sinβ sin γ cosβ
sin γ cosγ 0

0 0 1

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟
   (6.7.15b)

  Poincare invariant energy and Hamilton equations
Angular velocity ω and momentum J transform by inverse Jacobians. So   


ωi

J  is another example of a Poincare 

invariant (2.6.9) or (3.8.5c). Also,   2
1 ωi

J is invariant kinetic energy 

   
T =2

1 (H + L) =2
1 pµ q

µ . 

      
    
T =2

1 (H + L) =2
1 (Jα α +  Jβ

β+ Jγ γ )=2
1 (J1ω1 +  J2ω2 + J3ω3) =2

1 (J1ω1 +  J2ω2 + J3ω 3 ) =2
1 ωi

J  (6.7.16)

 Scalar product  

ωi

J  of angular momentum and velocity is frame-invariant. Without external torque or 

potential,   

J is constant in LAB-frame and ω moves on tangent plane   


ωi

J = 2T normal to LAB-fixed   


J  in Fig. 

6.5.3. The ω•I•ω-ellipse and its BOD frame roll without slipping on the tangent plane. The ω-ellipse contacts the 
plane at ω, precisely where a BOD point is instantaneously stationary in the LAB-frame. 

 Kinetic energy is     T ( α , β, γ ;α ,β,γ ) =2
1 ωi

J  in any frame or potential V(αβγ). Hamiltonian H= T+V is 

constant if L=T-V is time-independent. Kinetic energy T is constant if V is negligible. Then energy is simply: 
H=T=L=E, as it is for free or for constrained rotors discussed below. Hamilton’s equations for Hamiltonian H
(
  
Jα , Jβ , Jγ ;α ,β,γ ) have a LAB form, a BOD form, and an Euler form as shown below. 

     

  

Jm = −
∂H
∂Θm

Θm =
∂H
∂Jm

(6.7.17a)    

  

Jm = −
∂H
∂Θm

Θm =
∂H
∂Jm

(6.7.17b)   

   

( Jα , Jβ , Jγ ) = −(
∂H
∂α

,
∂H
∂β

,
∂H
∂γ

)

  ( α , β, γ )   =    (
∂H
∂ α

,
∂H
∂ β

,
∂H
∂ γ

)
 (6.7.17c) 

d. Constrained vs. Free rigid rotors 
Rigid-rotor Lagrangian or Hamiltonian has a LAB-defined kinetic energy from (6.5.5) or (6.7.16).

       L =2
1 ωi

J =2

1ωiIiω =2
1ωmImnωn = KE  (6.7.18a)      H =2

1 JiI−1iJ =2
1 JmImn

−1 Jn = KE    (6.7.18b)

Potential V is assumed constant or zero for a free-rotor (meaning potential-free) but also for a rotor constrained by 
frictionless bearings with infinite bearing raceway potential V that guides the rotor but takes zero work to or from 
the KE of H or of L. Let us compare constrained-versus-free rotor kinetics.
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1. Constant-ω  constrained rotor (LAB frame view)
Fig. 6.7.1a shows a linear rotor with its angular rotation axis ω fixed by a bearing along the LAB z=x3 axis. Body 
axis z = x3  is welded to the z-axle at a constant polar angle β. LAB-defined inertia Imn for mass m on body radius

r = rx3  vary with angle α and β by (6.5.1), but only α=Θ3 = α·t varies in time.

   I = m(r2 − rr)  where: r = rx3 = r(cosα sinβ, sinα sinβ, cosβ)

 
I11 I12 I13
I21 I22 I23
I31 I32 I33

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

= mr2
1− cos2α sin2 β − sinα cosα sin2 β − cosα sinβ cosβ

I21 = I12 1− sin2α sin2 β − sinα sinβ cosβ

I31 = I13 I32 = I23 sin2 β

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

  (6.7.19a)

Angular velocity vector ω constrained to one LAB-z-component.
      ω = (ω1,ω2 ,ω3) = (0,0, α)       (6.7.19b)

This yields a time-varying 3-component angular momentum vector J given by tensor relation J=I•ω of (6.5.5). 
The J-vector is sketched in relation to radius vector r and angular velocity ω in Fig. 6.7.1b.

 

 

J1
J2
J3

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

=

I11 I12 I13
I21 I22 I23
I31 I32 I33

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

ω1
ω2
ω3

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

=

I11 I12 I13
I21 I22 I23
I31 I32 I33

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

0
0
α

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟
= mr2

− cosα sinβ cosβ
− sinα sinβ cosβ

sin2 β

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
α  (6.7.20a)

The J-vector traces a cone of polar angle π/2−β=const. in the lab as it rotates by α=Θ3 at rate α =ω3 . 

 

J1

J2

J3

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

=
cosα − sinα 0
sinα cosα 0

0 0 1

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

− cosβ
0

sinβ

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
j =

cosα -sinα 0
sinα cosα 0

0 0 1

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

sinβ 0 -cosβ
0 1 0

-cosβ 0 sinβ

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

0
0
j

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

 
where :

j=mr2 α sinβ
(6.7.20b)

 

 Energy (6.7.16) depends on azimuthal angular velocity (ω3 = α)but not on angle α=Θ3 itself, so  
Jα = 0 . 

   
    L = T =2

1 ωi

J=2

1 ωi

Ii

ω =2

1 mr2 α 2 sin2 β =2
1 mr2ω3

2 sin2 β     (6.7.21)

So energy L=T=KE is constant if both  ω3 = α and β are constant. If β is fixed then so is α . 

LAB-frame Lagrange equations (6.7.11) or (6.7.13) and (6.7.20) should be consistent with velocity 
constraints (ω1,ω2 ,ω3) = (0,0, α) that fix Euler angles β, γ, and leave only the 3rd ωa and angle α free.

   

  

J1 =
∂L
∂ω1

= I13ω3

= −(mr2 cosα sinβ cosβ)ω3

        

  

J2 =
∂L
∂ω2

= I23ω3

= −(mr2 sinα sinβ cosβ)ω3

    

  

J3 =
∂L
∂ω3

= I33ω3

= (mr2 sin2 β)ω3

 (6.7.22a)

Evaluating ∂ωm

∂L using Jacobian components (6.7.14b) gives consistent results for LAB J.

 

   

J1 =
∂L
∂ω1

=
∂L
∂ α

∂ α
∂ω1

= − αmr2 sin2 β cosα cotβ

 

   

J2 =
∂L
∂ω2

=
∂L
∂ α

∂ α
∂ω2

= − αmr2 sin2 β sinα cotβ

 

   

J3 =
∂L
∂ω3

=
∂L
∂ α

∂ α
∂ω3

= αmr2 sin2 β

  (6.7.22b)
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But, J-motion equations for torques
  
Jβ  are upset by constraints. Lagrangian  (6.7.21) is a function of β so its 

usual equation
  
Jβ =∂β

∂L  is nonzero. Constraint equation c=β adds a Lagrange-multiplier torque 
 
λ∂β
∂c = λ  to constrain 

J-motion to
   
Jβ = 0  for constant β. (

 
Jβ is really undefined due to infinite β -bearing potentials!)

   
Jβ =∂β

∂L +λ∂β
∂c (= 0 if: λ = −mr2 α 2 sinβ cosβ)     (6.7.23)

This λ is a centripetal (center-pulling) torque holding β constant and is maximum at β=π/4. If
 
Jβ ,

 
Jγ  and

  
Jα  are 

zero, so are all   
Jm terms in (6.7.13b) except Jα dt

d
∂Θm

∂α for m=1,2. Jacobian ∂Θm

∂α in (6.7.14b) give   
Jm  that are 

consistent with simple time derivatives of (6.7.20a) or (6.7.22a).

 

   

J1 =
∂L
∂Θ1

=
∂L
∂ α

d
dt

∂α
∂Θ1

= mr2 α sin2 β( α sinα cotβ)

= mr2 α 2 sinα sinβ cosβ

 

   

J2 =
∂L
∂Θ2

=
∂L
∂ α

d
dt

∂α
∂Θ2

= −mr2 α sin2 β( α cosα cotβ)

= −mr2 α 2 cosα sinβ cosβ

 
   

J3 =
∂L
∂Θ3

=
∂L
∂ α

d
dt

∂α
∂Θ3

= mr2 α sin2 β   ⋅  (0)
= 0

  (6.7.24)

 2. Constant-ω  constrained rotor (BOD frame view)
Body axis ±z=± x3  is welded to LAB z-axle (z=x3) at constant polar-angle β . Azimuth-angle  α = α·t  moves in 

Fig. 6.7.1a. Any vector (x1, x2, x3) or tensor (x1x1, x1x2,… x3x3) rotates to BOD by R(αβ0) . 

  xk = R(αβ0) ⋅xk  (6.7.25a)  x jxk = R(αβ0) ⋅x jxk ⋅R
T (αβ0)  (6.7.25b)

The inverse matrix R-1(αβγ) (or transpose RT(αβγ)) makes a LAB-to-BOD coordinate change-of-basis.

      
x1
x2
x3

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

= RT (αβ0) ⋅

x1
x2
x3

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 (6.7.25c)  
I11 I12 I13
I21 I22 I23
I31 I32 I33

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

= RT (αβ0) ⋅

I11 I12 I13
I21 I22 I23
I31 I32 I33

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

⋅ R(αβ0)  (6.7.25d)

β r

J

ωω

(b) Angular velocity ωω
and momentum J J

ωω

ω-ellipsoid

J-ellipsoid

(c) Energy ellipsoids
x
3

x
2

x
1

x
3

α

β

LAB

x
1
axis

LAB

x
3
axis BOD

x
3
axis

(a) Constrained rotor

Fig. 6.7.1 Elementary ω-constrained rotor and angular velocity-momentum geometry.  

Examples below use matrix representations based on matrix R=R(αβ0)  derived from (6.6.1) with γ=0.
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  z = x3         = R(αβ0) ⋅ x3

cosα sinβ
sinα sinβ

cosβ

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
= R(αβ0) ⋅

0
0
1

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

 

                               zz = x3x3                                        = R(αβ0) ⋅       x3x3    ⋅RT (αβ0)

cos2 α sin2 β sinα cosα sin2 β cosα sinβ cosβ

I21 = I12 sin2 α sin2 β sinα sinβ cosβ

I31 = I13 I32 = I23 cos2 β

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

= R(αβ0) ⋅
0 0 0
0 0 0
0 0 1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

⋅ RT (αβ0)

For example, a LAB inertia matrix like (6.7.19) transforms by RT(αβ0) to a diagonal BOD-based matrix.

 
I1 0 0

0 I2 0

0 0 I3

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=
I 0 0
0 I 0
0 0 ι

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟
=RT

I + (ι − I) cos2α sin2 β (ι − I) sinα cosα sin2 β (ι − I) cosα sinβ cosβ

(ι − I) sinα cosα sin2 β I + (ι − I) sin2α sin2 β (ι − I) sinα sinβ cosβ

(ι − I) cosα sinβ cosβ (ι − I) sinα sinβ cosβ I sin2 β + (ι) cos2 β

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

R  (6.7.26)

 I-matrix (6.7.26) has an extra “iota” of longitudinal inertia in the 3rd eigenvalue ( I3 = ι = εmr2 ) due to 

thickness of radius rod holding m-masses at body frame ±z=± x3 . The previous example (6.7.19) had only 

transverse inertia ( I1 = mr
2 = I2 =I). Adding ι lets us define an inverse inertia matrix I-1 that a valid Hamiltonian 

needs. BOD-frame Lagrangian contains I-matrix eigenvalues {I1 = I , I2 = I , I3 = ι} in (6.7.13) while a Hamiltonian 

function of J contains inverse I-1-matrix eigenvalues {I1
−1 =I

1 , I2
−1 =I

1 , I3
−1 =ι

1}below. 

   

    

H =2
1 JiI−1iJ =2

1 JmImn
−1 Jn =2

1 JmImn
−1 Jn =2

1 J1
2

I1
+

J2
2

I2
+

J3
2

I3

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

principle−BOD−axes

L =2
1ωiIiω =2

1ωmImnωn =2
1ωmImnωn =2

1 I1ω1
2 + I2ω2

2 +I3ω 3
2( ) = E =2

1 Jiω

   (6.7.27a)

BOD-frame inertia Im,n  and eigenvalues Im are  constant if a rigid-body is rigidly fixed to its BOD-frame of I and 

I-1 eigenvectors  {x1 ,x2 ,x3} that define axes of J-ellipsoid (H=E) or ω-ellipsoid (L=E) in (6.7.27a).

J-ellipsoid radii {a,b,c}  in {J1 , J2 , J3} -space are proportional to square roots Im  of eigen-inertia Im .

 H
E

=
J1

2

a2
+
J2

2

b2
+
J3

2

c2
= 1  where:     a =

I1

2E
,     b =

I2

2E
,     c =

I3

2E
.   (6.7.27b)

In contrast, ω -ellipsoid radii {A,B,C}  in {ω1 ,ω2 ,ω3} -space are inversely proportional to Im .

 L
E
=
ω1

2

A2
+
ω2

2

B2
+
ω3

2

C2
= 1  where:  A =

1
2EI1

,  B =
1

2EI2

,  C =
1

2EI3

.   (6.7.27c)

As a result, the ω-ellipsoid      L =
2
1ωiIiω  has a shape that matches the body it represents with its major (minor) axis 

along the longest (shortest) body dimension. For the J-ellipsoid      H =
2
1 JiIiJ it is vice-versa. An ω-ellipsoid of I-

matrix (6.7.26) for a rod of low iota (ι <<1) is a cigar-like shaft shown in Fig. 6.7.1c.  It inflates to an infinitely 
long (C→∞ ) cylinder if ι goes to zero as in I-matrix (6.7.19). The same limit (ι→0 ) deflates the discus-like J- 

ellipsoid in Fig. 6.7.1c into a flat ( c→0 ) disc of radius a=b.  
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 BOD-frame H and L functions (6.7.27) have only momentum Jm  or velocity  ωm  components and constants

 Im and E. So, BOD- Jm  and ωm are constant by equations (6.7.11) or (6.7.17) of (non)-motion.

  
   
Jm =

∂L
∂Θm

= 0 = −
∂H
∂Θm

    ⇒ implies:⇒     const.= Jm =
∂L
∂ Θm

=
∂L
∂ωm

= Imnωn   (6.7.28)

LAB-frame Jn or ωn components are related by rotation R(αβ0) in (6.7.25c) to BOD-frame Jm or ωm .

 
  
Jm = Rm,n

T (αβ0)Jn = JnRn,m(αβ0)   (6.7.29a)        
  
ωm = Rm,n

T (αβ0)ωn =ωnRn,m(αβ0)     (6.7. 29b) 

 
  
Jn = Rn,m(αβ0)Jm         (6.7. 29c)             

  
ωn = Rn,m(αβ0)ωm      (6.7. 29d)

Time derivative 
R = εω iR  of rotation  R[ω ⋅ t] = eεiω⋅t = eεω ⋅t acting on vector v gives: 

Rv = εω iRv = ω × (Rv) .

 

    

Jn = Rn,m(αβ0)Jm + Rn,m(αβ0) Jm

    =    (ω × RRT J)n +     0

    =    (ω × J)n

(6.7.30a)      

    

ωn = Rn,m(αβ0)ωm + Rn,m(αβ0) ωm

    = (ω × RRTω)n +     0

    = (ω ×ω)n = 0

   (6.7.30a)

So LAB torque   
Jn  is nonzero and  


J  moves in the LAB unless it is aligned with ω, but ω is fixed in both frames 

by a constraint  α =ω 3t = αt  of (6.7.19b) as enforced by the frictionless bearing in Fig. 6.7.1a. Results (6.7.30) for

 

J and  

J agree with Jacobian results (6.7.22) and time derivatives (6.7.24).

   

 

ω ×

J =

x1 x2 x3
0 0 ω3
J1 J2 J3

=
−ω3J2
ω3J1
0

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
= mr2 α 2 sinβ cosβ

sinα
− cosα
0

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

 

 

J  is LAB-moving and  


ω is LAB-fixed while both 


ω and  


J are BOD-fixed for the constrained rotor above. 

In a free rotor discussed next,  

J is LAB-fixed but BOD-moving while  


ω  moves in both LAB and BOD 

frames. By definition, a Darboux whirl  

ω -vector must be a line of instantaneous stationary points in both LAB 

and BOD frames, but like “eyes” of hurricanes, unconstrained  

ω vectors are generally moving in both the LAB 

frame (as in Fig. 6.7.2b) and in the BOD frame. 
	


α

β

LAB

x
1
axis

BOD

x
3
axis

(a) Constrained rotor:LAB-fixedωω, moving J (b) Free rotor:LAB-fixed J, movingωω

α

β

LAB

x
1
axis

BOD

x
3
axisJ ωω

LAB

x
3
axis

LAB-fixed
J

ωω(0)J(t)
LAB-moving LAB-movingωω(t)ωωLAB-fixed

 Fig. 6.7.2 Free rotor cut loose from LAB-constraining ω-axis changes dynamics accordingly.
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f. Free rigid symmetric rotor 
Freeing the constrained rotor removes the constraint c=β that made the polar angle β a constant parameter and 

recovers a variable β with well-defined velocity 
β and momentum

  
Jβ =∂ β

∂L . Breaking connection to the bearing in 

Fig. 6.7.2(a) lets the rotor tumble so 
  
Jβ =∂β

∂L  may vary as may azimuth angular velocity { α , γ}  and momentum

   
{Jα =∂ α

∂L , Jγ =∂ γ
∂L γ }  in Euler-Hamiltion-Lagrange  equations (6.7.11) or (6.7.17). 

 Lagrangian(6.7.17)  has BOD-based terms  2
1 Imωm

2  involving constants Im and velocity ωm . The latter 

relates to Euler angles (α ,β,γ )  and velocity ( α ,
β, γ )  by Jacobian relations (6.7.5d) that are squared below. 

  

 

ω1
2 = (− α sinβ cosγ + β sinγ )2 = α 2 sin2 β cos2 γ − 2 α β sinβ sinγ cosγ + β2 sin2 γ

ω2
2 = (+ α sinβ sinγ + β cosγ )2 = α 2 sin2 β sin2 γ + 2 α β sinβ sinγ cosγ + β2 cos2 γ

ω3
2 = (+ α cosβ + γ )2                = α 2 cos2 β + 2 α γ cosβ + γ 2

  (6.7.31)

1. Free symmetric-top rotor (Euler angle view)
The rotor in Fig. 6.7.2 is called a prolate symmetric-top rotor since its cylindrical symmetry makes its first two 
inertial constants equal ( I1 = I2 = III > I3 = ι ) and larger than the third ( I3 = ι ). The opposite case, an oblate 

symmetric-top, is a ring or discus shaped object with ( III < I3 ). (Discs and rings have ( III =2
1 I3 ).)

The symmetric-top Lagrangian reduces to a simpler form by cancellation in (6.7.31).

  
 
Lsym−top =2

1 III (ω1
2 +ω2

2)+2
1 I3ω3

2 =2
1 III ( α

2 sin2 β + β2)+2
1 I3 ( α cosβ + γ )2       (6.7.32a)

The rigid spherical-top Lagrangian with three equal inertia ( I1 = I2 = I3 = IIII ) further simplifies.

  
 
Lsph−top =2

1 IIII (ω1
2 +ω2

2 +ω3
2) =2

1 IIII ( α
2 + β2 + 2 α γ cosβ + γ 2)                     (6.7.32b)

 Metricgµυ forms (3.3.13) or (3.5.10) for Lsym-top lead to Lagrange-Euler equations and momentum.

    

 

Lsym−top =2
1 gµυ µ υ =

2
1 α β γ( )

gαα gαβ gαγ
gβα gββ gβγ
gγα gγβ gγγ

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

α
β
γ

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
=2
1 α β γ( )

III sin
2 β +I3 cos

2 β 0 I3 cosβ

0 III 0
I3 cosβ 0 I3

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

α
β
γ

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

   (6.7.33)

Covariant momentum pµ is a Lagrangian
 ∂ q

µ
∂L  derivative and a linear combination 

 
gµυ q

υ  of velocity. Metric 

coefficients gαβ , gβα , gβγ , andgγβ are zero since theβ axis is normal to that of α and γ . (Recall Fig. 6.6.3.)

   

 

Jµ =gµυ υ =
∂Lsym−top

∂ µ
=

Jα
Jβ
Jγ

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=

gαα gαβ gαγ
gβα gββ gβγ
gγα gγβ gγγ

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

α
β
γ

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
=

III sin
2 β +I3 cos

2 β 0 I3 cosβ

0 III 0
I3 cosβ 0 I3

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

α
β
γ

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

 (6.7.34)
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Inverse metric relation gυµ pµ  gives velocity q
υ as momentum derivative∂pυ

∂H  of Euler-Hamiltonian Hsym-top. 

   

 

υ =gυµJµ =
∂Hsym−top

∂Jυ
=

α
β
γ

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
=

gαα gαβ gαγ

gβα gββ gβγ

gγα gγβ gγγ

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

Jα
Jβ
Jγ

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=

1
III sin

2 β
0 − cosβ

III sin
2 β

0 1
III

0

− cosβ
III sin

2 β
0 1

I3
+
cos2 β
III sin

2 β

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

Jα
Jβ
Jγ

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

(6.7.35a)

       Hsym−top =2
1 gµυJµJυ =

(Jα − Jγ cosβ)
2

2III sin
2 β

+
Jβ
2

2III
+
Jγ
2

2I3
      (6.7.35b)

Momentum time derivative
 
pµ  or torque 

Jυ  is either coordinate derivative
∂qµ
∂L  of Lsym-top or-

∂qµ
∂H  of Hsym-top.

 

Jα
Jβ
Jγ

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=

∂α
∂L

∂β
∂L

∂γ
∂L

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

=
0

(III −I3 ) α
2 sinβ cosβ −I3 α γ sinβ

0

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
=

−∂α
∂H

−∂β
∂H

−∂γ
∂H

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

=

0
(Jα − Jγ cosβ)(Jα cosβ − Jγ )

III sin
3 β

0

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

     (6.7.36)

LAB-symmetry (isotropy) makes Jα = kα  constant, and cylindrical BOD symmetry ( I1 = I2 = III ) gives constant

Jγ = kγ . Torque  
Jα (or

 
Jγ ) is zero if and only if Lsym-top or Hsym-top are independent of α (or γ ). 

 The factors that give torque 
 
Jβ  in (6.7.36) convert by (6.7.34) to α and γ velocity terms below. 

     
 
Jα − Jγ cosβ = III α sin

2 β    (6.7.37a)  
 
Jα cosβ − Jγ = (III −I3 ) α sin

2 β cosβ −I3 γ sin
2 β    (6.7.37b)

If β or
 
Jβ = III β is constant then

 
Jβ  is zero and so is one or both of (6.7.37). If LAB momentum is J on z-axis 

(J1, J2 , J3) = (0,0,J) then (6.7.10c) gives Euler (Jα , Jβ , Jγ ) = (J,0, J cosβ) . Then Jβ  and 
 
β =III

Jβ are zero.

 

  

Jα
Jβ
Jγ

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=
0 0 1

− sinα cosα 0
cosα sinβ sinα sinβ cosβ

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

0
0
J

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟
=

J
0

J cosβ

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

 implies :
Jα − Jγ cosβ = J sin2 β

Jα cosβ − Jγ = 0

⎧

⎨
⎪

⎩
⎪

 (6.7.38)

(6.7.37b) is zero but (6.7.37a) is a constant  J sin
2 β = III α sin

2 β  like J3 for β-constrained rotor in (6.7.22a). 

Constant BOD-twist rate  γ from (6.7.35a) lets a free rotor turn like a constrained rotor at LAB-rate 
 
α=III

J .

     
 

γ =
−Jα cosβ

III sin
2 β

+
Jγ
I3

+
Jγ cos

2 β

III sin
2 β

=
1
I3

−
1
III

⎛

⎝⎜
⎞

⎠⎟
J cosβ =

III − I3
I3

α cosβ =
III − I3
III I3

J3 =
III − I3
III

ω3    (6.7.39)

With constant γ andβ in (6.7.10b), BOD-frame sees LAB z-axis or J = (J1, J2 , J3) = (0,0,J)  trace a β-cone by 

J = (J1 , J2 , J3 ) given below, while the LAB-frame sees BOD z -axis trace its β-cone going the other way.  
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⎜
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⎟
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J cosβ

⎛

⎝
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⎜
⎜
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⎠
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⎟
⎟

  (6.7.40)

The BOD J = J(− sinβ cosγ ,sinβ sinγ ,cosβ) = Jz  vector matches the z -row of R(αβγ)-matrix (6.6.1b). 

 Constant α , γ andβ in (6.7.5c-d) give angular velocity ω  seen in LAB andω seen in BOD-frame.
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⎟
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⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

    

   = α
0
0
1

⎛

⎝

⎜
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⎞
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cosα sinβ
sinα sinβ

cosβ

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
= αz + γ z   (6.7.41a) 

    

   = α
− sinβ cosγ
sinβ sinγ

cosβ

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
+ γ

0
0
1

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟
= αz + γ z   (6.7.41b)

The ω vector traces a LAB-cone as α varies in (6.7.41a), and the ω vector traces a BOD-cone as γ varies in 
(6.7.41b).  Both cones are shown for prolate tops in Fig. 6.7.3(a-c) where the BOD-cone rolls outside the LAB-
cone. For a spherical top in Fig. 6.7.3(d) the LAB-cone collapses onto the LAB-axis. For oblate tops the BOD-
cone can “hula” with the LAB-cone inside it as in Fig. 6.7.3(e). (It shows the most-oblate case.) 
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• •

γγ=γx3•
• -β

LAB x3
axis

BOD x3
axis

-

LAB

cone
BOD

cone

β

γγ==00•

β

αα==ωω•

β

αα•

γγ•

ωω

β
ωω

γγ•
αα•

γγ•
αα•

ωω

Prolate tops: (a) I
II
=4I

3
(b) I

II
=2I

3
(c) I

II
=(3/2) I

3

γ=3αcosβ γ= αcosβ γ=(1/2)αcosβ
γ=(3/4)ω3 γ=(1/2)ω3 γ=(1/3)ω3

(e) Oblate limit:

I
II
=(1/2) I

3

γ=(-1/2)αcosβ
γ= -ω3

•
•

•

(d) Spherical top:

I
II
= I

3

γ=0•

•
-• - • -
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Fig. 6.7.3 Symmetric top ω-cones for β=30°and inertial ratios: (a) I3

III − I3 =3, (b) 1, (c) 2
1 , (d) 0,  (e) - 2

1 .
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2. Symmetric-top kinetic geometry
Detailed geometry of angular velocity vectors reveals the kinetic relations between LAB and BOD views. Fig. 
6.7.4(a) expands on prolate case (c) of Fig. 6.7.3. Fig. 6.7.4(b) details the most-oblate case (e). The most-oblate 
case ( I3 = 2I1 = 2I2 ) applies to flat symmetric n-sided polygonal-ring molecules for n>2. The most-prolate limit 

( I3 = ι < I1 = I2 ) is a diatomic (n=2) molecule like Fig. 6.7.1. Each inertia eigenvalue Ia  for a classical body is 

less than the sum Ib + Ic of its other two. Each Ia  may approach but not equal zero.

 Fig. 6.7.4 is based on geometric relations (6.7.41) between Cartesian and Euler angular velocity and 
angular momentum relations (6.7.37) thru (6.7.40) that assumes LAB (J1, J2 , J3) = (0,0,J)  is on z=x3-axis. 

  

 

ω1 = γ sinβ
ω2 = 0
ω3 = α + γ cosβ

  (6.7.42a)   

 

ω1 = − α sinβ
ω2 = 0
ω3 = α cosβ + γ

  (6.7.42b)

It is a zero-azimuth (α = 0 = γ ) projection of Fig. 6.7.3 onto the (ω1,ω3 )-plane or (ω1 ,ω3 )-plane. LAB fixed 

Euler α-dial and BOD fixed γ-dial compete to spin BOD points relative to LAB points. 
Between x3 and x3  is a line ω along which BOD and LAB points have for an instant zero speed relative to 

each other. For points on that “hurricane-eye-line” vector  ω, the rotation in the LAB-frame around its x3-axis at 
rate α  exactly cancels the BOD-frame rotation at rate γ  around its x3 -axis.

 LAB cone base radius  ω1 = γ sinβ  (Fig. 6.7.4(a) top) spins at  α  to produce a linear “velocity” 

 ω1 α = α γ sinβ  that exactly cancels a “velocity” ω1 γ = − α γ sinβ  produced by the rate γ  of BOD base cone radius

 ω1 = − γ sinβ at the tip of the ω vector joining the two radii. Meanwhile, vector ω rotates at rate α  in concert with 

BOD x3 axis around LAB axis x3  and, vice-versa, ω and x3 rotate at rate γ  around x3 .

 The ellipsoid 
 2
1ωiΙiω=E and BOD ω-cone is fixed to its x3 frame. The BOD ω-cone rolls on the LAB ω-

cone like one conical gear on another. Fig. 6.7.4 shows ω-ellipsoid (6.7.27c) tangent to the LAB cone base plane 
that is normal to the z=x3-axis and to angular momentum J. Not shown is the J-ellipsoid 

 2
1 JiΙ-1iJ=E (6.7.27b). 

The J-ellipsoid has a tangent plane at J that is always normal to ω. 
 BOD-frame angular momentum J relates to BOD-velocity ω by inertial eigen-relations Ja = Iaωa . LAB-

frame z=x3-axis has its direction defined here by (J1, J2 , J3) = (0,0,J)  and (6.7.39). 

      J = J3 = III α = I1 α = I2 α      (6.7.43a)

Note that LAB wobble frequency α  is related to J by III = I1 = I2  and not by I3 . BOD velocity and momentum 

involve I1 = I2  and I3  as do BOD wobble frequencies γ  and ω3  in (6.7.42b). 

   J3 = J cosβ = J3 cosβ = I1 α cosβ = I3ω3   where:  ω3 = α cosβ + γ   (6.7.43b)

  
 
ω3 =

I1
I3
α cosβ =

J
I3
cosβ  (6.7.43c)  

 
γ =

I1 − I3
I3

α cosβ =
I1 − I3
I1

ω3   (6.7.43d)

As I3  approaches zero, the BOD ω-cone angle shrinks and BOD frequencies  γ  and ω3  grow ever larger and more 

nearly equal for a given fixed momentum J, polar inclination angle β , and LAB frequency α .
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 Fig. 6.7.4 Detailed geometry of symmetric top kinetics. (a) Prolate case. (b) Most-oblate case
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3. Free rotor equations (Cartesian BOD and LAB views)

Determining conservation of a canonical momentum pυ in Lagrangian and Hamiltonian mechanics is often just a 
matter of noting that its conjugate coordinateqυ  does not appear in L or H so that a momentum time derivative 

 
pυ =

∂qυ
∂L = −

∂qυ
∂H  goes to zero with a coordinate partial derivative of either function.   

 However, no simple inspection of Cartesian rotor L or H functions (6.7.27) for dependence on Cartesian-
coordinate BOD angles  (Θ1 ,Θ2 ,Θ3 ) or LAB angles (Θ1,Θ2 ,Θ3) is evident. The Θ are non-integral coordinates 
conjugate to  (J1 , J2 , J3 ) or  (J1, J2 , J3) and unable to uniquely orient a rotor. Derivatives by Θ are found by Jacobian 
chain links to Euler angles (αβγ) as in (6.7.13) and not by simple inspection.
 Jacobian derivation of time derivatives   (

J1 , J2 , J3 ) or   (
J1, J2 , J3) is reduced to a page or so by doing just 

symmetric tops ( III = I1 = I2 ) with Euler{Jα , Jβ , Jγ } and 
 
{ Jα , Jβ , Jγ }  given by (6.7.34) and (6.7.36).

  

 

Jα = III ( α sin2 β)

      +I3 ( αcos2 β + γ cosβ)

Jβ = III β Jγ =

        I3 ( αcosβ + γ )

Jα = 0
     

Jβ = III α
2 sinβ cosβ

     − I3 ( α cosβ + γ ) α sinβ

Jγ = 0

       

 (6.7.44)

The 1st- LAB momentum component derivative has the Euler chain introduced by (6.7.12).

 

 

J1 =dt
d [∂ α

∂L
∂ Θ1

∂ α + ∂ β
∂L

∂ Θ1

∂ β +  ∂ γ
∂L

∂ Θ1

∂ γ ]= ∂Θ1

∂L = ∂α
∂L

∂Θ1

∂α + ∂β
∂L

∂Θ1

∂β + ∂γ
∂L

∂Θ1

∂γ +    ∂ α
∂L
dt
d
∂Θ1

∂α + ∂ β
∂L
dt
d
∂Θ1

∂β + ∂ γ
∂L
dt
d
∂Θ1

∂γ

    =dt
d [Jα∂Θ1

∂α + Jβ∂Θ1

∂β + Jγ ∂Θ1

∂γ ]= ∂Θ1

∂L = Jα ∂Θ1

∂α + Jβ ∂Θ1

∂β + Jγ ∂Θ1

∂γ +    Jαdt
d
∂Θ1

∂α +Jβdt
d
∂Θ1

∂β +Jγ dt
d
∂Θ1

∂γ
 (6.7.45)

Jacobian (6.7.14b) and Euler-J (6.7.44) are sorted by inertial parameters and powers of  α , 
β , and  γ . 

 

J1 = Jα ∂Θ1

∂α + Jβ  ∂Θ1

∂β         + Jγ ∂Θ1

∂γ +                                Jα     dt
d   ∂Θ1

∂α            +Jβ   dt
d   ∂Θ1

∂β   +    Jγ dt
d    ∂Θ1

∂γ

    =  0       + Jβ (− sinα ) + 0       +                              Jαdt
d − cosα cosβ

sinβ
⎛
⎝⎜

⎞
⎠⎟
+Jβdt

d (− sinα )+     Jγ dt
d cosα

sinβ
⎛
⎝⎜

⎞
⎠⎟

 

=  III α
2 sinβ cosβ(− sinα )  +                         α sin2 βdt

d − cosα cosβ
sinβ

⎛
⎝⎜

⎞
⎠⎟
+  βdt

d (− sinα )+            0
⎡

⎣
⎢

⎤

⎦
⎥

+  I3 −( α cosβ + γ ) α sinβ(− sinα )  + ( α cos2 β + γ cosβ )dt
d − cosα cosβ

sinβ
⎛
⎝⎜

⎞
⎠⎟

         + ( α cosβ + γ )dt
d cosα

sinβ
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

 (6.7.46)

 

=  III − α 2 sinβ cosβ sinα   +                              α sin2 β   
α sinα cosβ

sinβ
+
βcosα
sin2 β

⎛

⎝⎜
⎞

⎠⎟
− β α cosα+      0

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+  I3 ( α 2 sinβ cosβ+ γ α sinβ)sinα+ ( α cos2 β+ γ cosβ )
αsinα cosβ

sinβ
+
βcosα
sin2 β

⎛

⎝⎜
⎞

⎠⎟
− ( α cosβ + γ )

αsinα
sinβ

+
βcosα cosβ

sin2 β
⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

The terms add up to zero  
J1=0 , and similarly   

J2=0 = J3. (This is explained later by symmetry.)

 

J1 =  III α
2 (− sinβ cosβ sinα+sin2 β  sinα cosβ

sinβ
) + α β sin2 β cosα

sin2 β
− cosα

⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

    (6.7.47) 

 
+  I3 α 2 (sinβ + cos2 β −1

sinβ
) cosβ sinα + α β 1−1

sin2 β
cos2 β cosα + α γ (sinβ+ cos2 β −1

sinβ
) sinα + β γ 1−1

sin2 β
cosα cosβ

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= 0

However, the BOD momentum component derivatives   (
J1 , J2 , J3 )  do not vanish so easily.
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The 1st- BOD torque 
J1  has an Euler chain similar to that of 

J1 .

 

 

J1 =dt
d [∂ α

∂L
∂ Θ1

∂ α + ∂ β
∂L

∂ Θ1

∂ β +  ∂ γ
∂L

∂ Θ1

∂ γ ]= ∂Θ1

∂L = ∂α
∂L

∂Θ1

∂α + ∂β
∂L

∂Θ1

∂β + ∂γ
∂L

∂Θ1

∂γ +    ∂ α
∂L
dt
d
∂Θ1

∂α + ∂ β
∂L
dt
d
∂Θ1

∂β + ∂ γ
∂L
dt
d
∂Θ1

∂γ

    =dt
d [Jα∂Θ1

∂α + Jβ∂Θ1

∂β + Jγ ∂Θ1

∂γ ]= ∂Θ1

∂L = Jα ∂Θ1

∂α + Jβ ∂Θ1

∂β + Jγ ∂Θ1

∂γ +    Jαdt
d
∂Θ1

∂α +Jβdt
d
∂Θ1

∂β +Jγ dt
d
∂Θ1

∂γ

But, Jacobian (6.7.14d) gives non-zero combinations of quadratic powers of  α , 
β , and  γ . 

 

J1 = Jα ∂Θ1

∂α + Jβ  ∂Θ1

∂β   + Jγ ∂Θ1

∂γ                          + Jα  dt
d   ∂Θ1

∂α                           +Jβdt
d   ∂Θ1

∂β        +Jγ dt
d    ∂Θ1

∂γ

    =  0       + Jβ (sinγ ) + 0                               + Jαdt
d − cosγ

sinβ
⎛
⎝⎜

⎞
⎠⎟

                   +Jβdt
d (sinγ )       + Jγ dt

d cosγ cosβ
sinβ

⎛
⎝⎜

⎞
⎠⎟

 

 =  III α
2 sinβ cosβ sinγ                           + α sin2 β

γ sinγ
sinβ

+
β cosγ cosβ

sin2β

⎛

⎝
⎜

⎞

⎠
⎟+ β γ cosγ              +  0

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
  (6.7.48)

 

 +  I3 −( α cosβ + γ ) α sinβ sinγ   + ( α cos2 β + γ cosβ)
γ sinγ
sinβ

+
β cosγ cosβ

sin2β

⎛

⎝
⎜

⎞

⎠
⎟          − ( α cosβ + γ )

γ sinγ cosβ
sinβ

+
βcosγ
sin2β

⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

Torque 
J1 reduces to a quadraticω2ω3  of BOD velocity from (6.7.5d). (So does   

J2 , but   
J3  is zero here.) 

 

J1 =  (III −  I3 ) α 2 sinβ cosβ sinγ + α β cosβ cosγ + α γ sinβ sinγ + β γ cosγ⎡
⎣

⎤
⎦ =  (III −  I3 )ω2ω3

J2 =  (III −  I3 ) α 2 sinβ cosβ cosγ − α β cosβ sinγ + α γ sinβ cosγ − β γ sinγ⎡
⎣

⎤
⎦ =− (III −  I3 )ω1ω3

J3 = 0

 (6.7.49)

 The zero of  
J3  is for a special case, the symmetric-top Lagrangian (6.7.32a) with two equal inertia 

( III = I1 = I2 ). For the spherical-top Lagrangian (6.7.32b) all three inertia are equal  ( I1 = I2 = I3 ) and that means 

all three BOD torques in (6.7.49) are zero. A general rigid rotor is an asymmetric-top that has no inertial 
degeneracy ( I1 ≠ I2 ≠ I3 ≠ I1 ) and obeys Euler-Hamilton equations that have no zero BOD torques.

    

 

J1 =  (I2 −  I3 )ω2ω3 =  
I2 −  I3
I2I3

J2J3

J2 =  (I3 −  I1 )ω3ω1 =  
I3 −  I1
I3I1

J3J1

J3 = (I1 − I2 )ω1ω2 =  
I1 − I2
I1I2

J1J2

     (6.7.50)

 The Euler-Jacobian algebra of asymmetric top Lagrangians needed to prove (6.7.50) begins with a 
generalization of (6.7.33) and (6.7.44) and is quite a bit more formidable than the above. It becomes still worse 
for deformable and coupled rotors. The following Section 6.8 explores some alternative techniques for dealing 
with (6.7.50) as well as more advanced problems including those of quantum molecular rotors that undergo 
centrifugal and Coriolis distortion. 
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Oblate limit:

I
II
=(1/2) I

3

γ=(-1/2)αcosβ
γ= -ω3

•
•

•

Very prolate top: I
II
=9I

3

γ=8αcosβ
γ=(8/9)ω3
• -

• •
γ = ω3 - α cos β
= (α cos β)(I1-I3)/I3
= ω3 (I1-I3)/I1

• •-
•

-

β=30° BOD

cone

LAB x3
axis

LAB

cone

BOD x3
axis

-αα++ γγ==ωω• •

αα=αx3
• •

β

ωω

γγ•
αα•

β=60°
BOD

cone

LAB x3
axis

LAB

cone

BOD x3
axis

-
αα++ γγ==ωω• •

αα=αx3
• •

β=60°

ωω

γγ•
αα•

BOD x3
axis

-

BOD x3
axis

-

   Fig. 6.7.5 Extreme cases (Oblate vs. Prolate) of symmetric-top geometry.
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Chapter 6.8 Symmetry and dynamics of rotors
The Euler-Jacobian approach of preceding sections has a complexity due to mixing geometric symmetry relations 

such as J=R⋅J with physical ones like  
J =∂Θ

∂L or  
J =∂Θ

∂L  that depend on a particular Lagrangian function L.  The 

latter grow in complexity with the internal physics of a rotor, but the former do not. 

a. Asymmetic rotor equations
Euler equations (6.7.50) are mainly rotational geometry and symmetry relations of whirl vectors ω of a 3D 

rotation R[ω ·t]=eε•ω·t. Levi-Civita matrix εK  plays the same role that Pauli 2
1 σK  plays in 2D rotations. 

   εK( )JL = εJKL =
+1 if {JKL} is EVEN permuation of {123},
 - 1 if {JKL}  is ODD permuation of {123}, 

0                        otherwise.                      

⎧

⎨
⎪

⎩
⎪

   (6.8.1)

Euler equations of motion arise from time derivatives of rotation relations like (6.7.25).

    J = R(αβγ ) ⋅ J   represented by :  

J1

J2

J3

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

= R(αβγ ) ⋅

J1

J2

J3

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

   example :
J cosα sinβ
J sinα sinβ
J cosβ

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
= R(αβγ )

0
0
J

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

 (6.8.2)

The example uses a 3D Euler R-matrix (6.6.1) that must equal the Darboux R[ω ·t]-matrix in (6.6.15).
 Time derivative of LAB J=R⋅J  is zero by (6.7.47). (Zero LAB-based torque conserves LAB J.) 

   dt
d R[ω ⋅ t] ⋅ J( ) =dtd J = 0 =dtd R[ω ⋅ t]( ) ⋅ J +R[ω ⋅ t] ⋅dt

d J( )     (6.8.3a)

                                 J = 0 =       R[ω ⋅ t] ⋅ J +R[ω ⋅ t] ⋅ J     (6.8.3b)

Rotation operator  R[ω ⋅ t] = eεiω⋅t  has a simple time derivative of its exponential form.

     
R[ω ⋅ t] =dt

d eεiω⋅t = eεiω⋅tεiω = R[ω ⋅ t]εiω     (6.8.4a)

This converts the LAB J conservation relation (6.8.3b) into a BOD equation of motion.

     
J = R[ω ⋅ t]εiω ⋅ J +R[ω ⋅ t] ⋅ J(= 0 for free rotor)    (6.8.4b)

Inverse rotationR-1[ω ⋅ t]  gives equations that hold regardless of Lagrangian L or Hamiltonian H.

     
J = R-1[ω ⋅ t] ⋅ J − εiω ⋅ J(= 0 − εiω ⋅ J for free rotor)    (6.8.5a)

BOD-frame components use (6.8.1). They resemble Euler equations (6.7.50) but need L or H relations.

 

 

J1 =− ε1KLωK JL =− ε123ω2J3− ε132ω3J2
J2 =− ε2KLωK JL =− ε231ω3J1− ε213ω1J3
J3 =− ε3KLωK JL =− ε312ω1J2− ε321ω2J1

        

 

J1 =ω3J2 −ω2J3 =−ω × J 1
J2 =ω1J3 −ω3J1 =−ω × J 2
J3 =ω2J1 −ω1J2 =−ω × J 3

  (6.8.5b)

Lagrangian (6.7.27) gives JK in terms of ωK by JK =∂ωK

∂L = IKωK and the Hamiltonian gives ωK in terms of JK by

ωK =∂JK
∂H =JK / IK , so Euler-Lagrange and Euler-Hamilton free-rigid-rotor equations(6.7.50) emerge.
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I1 ω1 = (I2 − I3 )ω2ω3
I2 ω2 = (I3 − I1 )ω3ω1
I3 ω3 = (I1 − I2 )ω1ω2

 (6.8.5c)  

 

J1 = (I3
-1 − I2

-1)J2J3=  [(I2 −  I3 )/ I2I3 ]J2J3

J2 = (I1
-1 − I3

-1)J3J1=  [(I3 −  I1 )/ I3I1 ]J3J1

J3 = (I2
-1 − I1

-1)J1J2=  [(I1 − I2 )/ I1I2 ]J1J2

 (6.8.5d)

 (6.8.5) are non-linear with one constant, say b = (I3 − I1 )/ I3I1 , of opposite sign if ( I1 > I2 > I3 ). 

 x = + |a| yz,   y = − |b| zx,   z = + |c| xy.  

The intermediate variable y = J2  must blow up but the other two x=J1 and z=J3may do small oscillation. If x and 

y are small compared to z then z  0 so z=J is quasi-constant and x and y quasi-harmonic e±iΩt. 

     x  − |a| yz  − |a||b| z2x,   y  − |a||b| z2y,   z  0. 

Oscillation frequency is a geometric mean of precession frequencies like (6.7.39) for symmetric tops.  

 

Ωx ,y
z = |a||b| z2 =

J
I3

(I1 − I3  )(I2 −  I3 )
I1I2

↑ clockwise ↓
↑around-zx

y↓

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
I1 >I2 >I3

   (6.8.6a)

 

Ωy,z
x = |b||c| z2 =  J

I1

(I1 − I2 )(I1 − I3 )
I2I3

↓anti-clockwise↑

↓ around-x y
z ↑

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
I1 >I2 >I3

   (6.8.6b)

But, if x and z are small compared to y then y  0 so y=J is quasi-constant and x and z quasi-hyperbolic e±Ξt.

  

 

Ξx ,z
y = |a||c| y2 =

J
I2

(I1 − I2 )(I2 −  I3 )
I1I3

←hyperbolic→

→to&from-yx
z ←

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
I1 >I2 >I3

   (6.8.6c)

b. Asymmetic rotor surfaces of rotational energy
To visualize nonlinear motion of asymmetric rotors and as well as non-rigid rotors we introduce methods to plot 
their position, velocity, momentum and energy functions. Two of these are constant energy (CE) surfaces that 
have been mentioned in regard to symmetric tops in Fig. 6.7.1 and Fig. 6.7.4 that also show a constant-energy ω-
velocity-ellipsoid (6.7.27c) with a CE plot of a J-momentum-ellipsoid (6.7.27b). Also, recall earlier discussions 
in Fig. 6.5.2 and 6.5.3 of body coordinate or BOD-frame ellipsoid plots.
 Another kind of surface used in molecular physics is a constant-J surface or rotational energy (RE) 
surface. To draw an RE surface (RES) one plots rotational energy E(J) along the BOD J-vector with length |J|=J=|
J| constant. Orthogonal rotation (6.7.25a) relates LAB-J to BOD-J=R·J so length |J| equals length |J|.

    | J |= JT iJ = (RiJ)T iRiJ = JTRT iRiJ = JT iJ =| J |

If LAB-torque is zero ( 
Ja =0 ) then LAB-J and therefore |J| and |J| are constant even if BOD-J or Jb are not.

 The RE and CE surfaces are complimentary plots of the energy function E(J) from (6.7.27a).

     E(J) =
J1
2

2I1
+
J2
2

2I2
+
J3
2

2I3
     (6.7.27)repeated

An RE surface plots radii E for fixed J vs BOD-angles (β,γ ) of (Ĵ1 , Ĵ2 , Ĵ3 ) = (− cosγ sinβ, sinγ sinβ, cosβ) .
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   rRE = E(J, Ĵ) =
J1
2

2I1
+
J2
2

2I2
+
J3
2

2I3
= J2 cos2 γ sin2 β

2I1
+ J

2 sin2 γ sin2 β
2I2

+ J
2 cos2 β
2I3

 (6.8.7)

A CE surface plots radii J for fixed E vs BOD-angles (β,γ ) of (J1 , J2 , J3 ) = (−J cosγ sinβ, J sinγ sinβ, J cosβ) .

   rCE = J(E,J) = E
cos2 γ sin2 β

2I1
+ sin

2 γ sin2 β
2I2

+ cos
2 β

2I3

    (6.8.8)

An RE surface contains a range of different E-levels for a given J-value, as is useful for molecular levels.  A CE 
surface is vice-versa. It contains a range of J-values that are allowed for a given energy E. 

J1
_

J2
_

J3
_

J1
_ J2

_

J3
_

J3
_

(a) RE surface (b) CE surface (c) RES intersecting CES

x2-

x3-

x1-
r1

r3=√7
r2=√5

r3

r2

r1=√1
I1 =6 I2 =4 I3 =3
_ _ _

E = const.J = const.

Fig. 6.8.1 Rigid  rotor surfaces (a) RES polynomial, (b) CES ellipsoid, and (c) RES and CES intersected.

The CES in Fig. 6.8.1(b) is an ellipsoid though its equation (6.8.8) is not the standard form of (6.7.27b). The RES 
in Fig. 6.8.1(a) is not an ellipsoid but a Jb -polynomial whose min, mid, and max (J1J2J3 ) values lie on min, mid, 

and max (x1x2x3 ) -BOD-radii (r1<r2<r3) of the rotor shown between its RES and CES plots. 

1
I1
: 1
I2
: 1
I3

= 1
2m(r2

2 + r3
2 )
: 1
2m(r1

2 + r3
2 )
: 1
2m(r1

2 + r2
2 )

= 1
6
: 1
4
: 1
3

   (6.8.8a)

The RES has a shape commensurate with the rotor itself. In contrast, a CES ellipsoid in Fig. 6.8.1(b) has an 
inverse shape with major, middle, and minor radii (a<b<c) along min, mid, and max (J1J2J3 ) axes.  

   6 : 4 : 3 = I1 : I2: I3 = 2m(r2
2 + r3

2 ) : 2m(r1
2 + r3

2 ):2m(r1
2 + r2

2 ) = 2a2E : 2b2E : 2c2E  (6.8.8b)

The CES aspect ratios are reciprocals of those of the RES, but both share the same level contours that are colored 
bands in Fig. 6.8.1. Level contours are lines of equal radius or level where the surface intersects a sphere, a 
constant-J sphere for a CES, but a constant-E sphere for an RES. BOD- Ĵ -paths conserve both J and E so CES and 

RES contours trace the same Ĵ -directions of the LAB J=J ẑ  axis in BOD space.
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 The contour being shared in Fig. 6.8.1(c) is a special one. It forms a separatrix that intersects the saddle 
points on the intermediate ±J2 -axes. Setting J1=0=J3 and J2 = J  in (6.8.7) gives the following.

   
E = 0 + J2

2I2
+0 =

J2 cos2 γ A sin2 βA
2I1

+
J2 sin2 γ A sin2 βA

2I2
+
J2 cos2 βA

2I3

                        =
J2 sin2 γ B sin2 βB

2I1
+
J2 cos2 βB

2I2
+
J2 cos2 γ B sin2 βB

2I3

  (6.8.9)

Here (4.4.25b) shuffles angles so the intermediate I2 axis has polar angleβB . Then, J2 sin2 βB  factors out. The 

separatrix is a pair of circles lying in planes of constant I2 -axial azimuth±γ B with 2γ B between them.

  sinγ B= ±
I1
I2

I3 − I2
I3 − I1

 cosγ B= ±
I3
I2

I1 − I2
I1 − I3

   tanγ B= ±
I1
I3

I2 − I3
I1 − I2

   (6.8.10)

For inertia (I1 , I2 , I3 ) = (6,4,3) used in Fig. 6.8.1, separatrix circles lie at right angles on γ B=±45° planes.

 The intermediate value I2=4  in Fig. 6.8.1 has maximum asymmetry for I1=6 and I2=3 . If I2  grows toward 

the high I1=6 value, a more prolate RES emerges in Fig. 6.8.2(a-b) as shrinking separatrix-circles approach

γ B=±90° to swallow a min-energy CES. As I2 nears the lowest value I2=3  as in Fig. 6.8.2(c), an increasingly 

oblate RES is swallowed by separatrix-circles closing on γ B=0°  inside a max-energy CES.

  

(a) I2 =5.6 (c) I2 =3.2 _I1 =6 I3 =3
_

γB=63°
γB=21°γB=75°

___

CES

RESRES

J2J2-
J2J2-

J2J2-J2J2-

J1J1-

J1J1-

J1J1-

(b) I2 =5.0

Fig. 6.8.2 Fixed-J- RES with CES at separatrix E=J2 / 2I2 as I2 varies. (a) I2=5.6  and γ B=75.5° (Nearly prolate 
low-E CES),  (b) I2=5.0 and γ B= 63.4° ,  (c) I2=3.2 and γ B= 20.7°  (Nearly oblate high-E CES).

HarterSoft –LearnIt © 2012 Chapter 8 Symmetry and dynamics of rotors  60



J-vectors precess like a pendulum in Fig. 2.15.2 except BOD-orbits go clockwise by (6.8.6a) around RES maxima 
and anti-clockwise by (6.8.6b) around RES minima. Right-hand rules of LAB frames become left-hand rules in 
BOD-frames. J-vectors arrive and depart saddle points exponentially by (6.8.6c).

c. Deformable rotors
Hamiltonians of higher-than-quadratic powers model deformable rotors that change their inertia more or less due 

to centrifugal force. An example in Fig. 6.8.3 is a single rotating mass m held by a spring k = mωv
2 .

The rotor has vibrational kinetic and potential energy KEv and PEv plus rotational kinetic energy REJ.

   

 

E = KEv +       PEv     +   REJ

  =
m r2

2
+
k
2

(r − r0 )2 +
I θ2

2
=
pv

2

2m
+
m
2
ωv

2(r − r0 )2 +
µJ2

2

  (6.8.11)

Rotational inertiaI=mr2=1/µ , angular  velocity 
θ =ω J , and momentum J=I

θ = Iω J involve radius r that grows 

from rest value r0 until spring forceFspring = −mωv
2(r − r0 )  cancels centrifugal force Fcentrif = mω J

2r .

  Fspring + Fcentrif = 0 = mω J
2r −mωv

2(r − r0 )     implies:     r = r0
ωv

2

ωv
2 −ω J

2
    (6.8.12)

Centrifugal equilibrium r blows up as rotational rateω J  nears vibrational frequencyωv . The derivative of 

effective potential PEv+REJ in (6.8.11) is zero at equilibrium radius r or stretch distanced=r−r0 .

  ∂
∂r

(PEv+REJ ) = 0 = mωv
2(r − r0 )+

J2

2
∂µ
∂r

    implies:    d = r − r0 =
J2

2mωv
2
∂µ
∂r

 (6.8.13)

We assume the angular velocityω J varies inversely with r so that momentum J is conserved as it must be since the 

central spring force exerts no torque.
 The inverse inertia I=1/µ is approximated for small stretch  (d=r−r01)  and (6.8.13) is inserted.

    µ ≅ µ0 +
∂µ
∂r
(r − r0 )+... = µ0 −

∂µ
∂r

J2

2mωv
2
∂µ
∂r

+...    (6.8.14a)

This with (6.8.13) is inserted into energy expression (6.8.11) to approximate the effect of momentum J. 

   

E =
pv

2

2m
+
m
2
ωv

2 r − r0( )2           +
µJ2

2

   =
pv

2

2m
+
m
2
ωv

2 J2

2mωv
2
∂µ
∂r

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

2

+
µ0J

2

2
−
∂µ
∂r

J2

2mωv
2
∂µ
∂r

J2

2
+...

   =
pv

2

2m
+          

J4

8mωv
2

∂µ
∂r

⎛
⎝⎜

⎞
⎠⎟

2

+
µ0J

2

2
−

J4

4mωv
2

∂µ
∂r

⎛
⎝⎜

⎞
⎠⎟

2

+...

  (6.8.14b)

This reduces to a simpler form that lends some insight into centrifugal distortion energy.
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   E =
pv
2

2m
+
µ0J

2

2
−

J4

8mωv
2

∂µ
∂r

⎛
⎝⎜

⎞
⎠⎟

2

+... =
pv
2

2m
+
µ0J

2

2
−
m
2
ωv
2d2+...   (6.8.15)

The rigid rotor energy is perturbed by a J4/r6 term that reduces total energy by just the amount of work needed to 
stretch the spring by distance d in (6.8.13). The spring gains PE=kd2/2 the whole system loses twice that in 
rotational kinetic energy by expanding to radius r=r0+d for a net loss of kd2/2=mωv2d2/2. 

 

kv
m

r

r0
d d d d (J >0)

effective
potential
drops by
kvd

2/2

(J =0)
potential
V=kvd

2/2
minimum
at r0.

(J >0)
effective
potential
minimum at r =r0 +d.

 Fig. 6.8.3 Spring-mass model for centrifugal stretch of a model vib-rotor showing effective PE shift.

 Imagine a rotor of energy E is held by a wire at its (J=0)-radius r0 but has momentum J>0 tending to pull 
it out to radius r=r0+d. Cutting the wire changes neither energy E nor momentum J but lets mass m begin 
vibrating around its new equilibrium of r=r0+d with an amplitude ±d between rmin=r0 and rmax=r0+2d.
 Multi-mass molecular Hamiltonians have vibration normal coordinates qµ  and BOD momentumJm .

   H =2
1 pµ pµ +2

1ωµ
2qµqµ +2

1 Jmµmn Jn      (6.8.16)

Each normal coordinate may have an equilibrium shiftδqµ  analogous to the d in (6.8.13). 

   δqµ = −
JmJn
2ωµ

2

∂µmn
∂qµ

        (6.8.17)

Here the inverse inertia is represented by a 3-by-3 matrix µmn = Imn
-1 inverse to the inertia tensor Imn . The resulting 

effective Hamiltonian analogous to (6.8.15) involves a 4th-degree J-tensor sum over all modes qµ . 

  
 

H = H0 −
Jk J JmJn

8ωµ
2

∂µk
∂qµ

∂µmn
∂qµ

   where:    H0 =2
1 pµ pµ +2

1 Jmµmn
(0)Jn   (6.8.18)

 The sum over modes may be quite tedious, however for high symmetry molecules, the form of the 
possible J-tensors can be deduced by symmetry. For molecules that are cubic, octahedral, and tetrahedral (for 
example, C8H8, SF6, and CF4, respectively) there is only one linearly independent 4th-degree J-tensor or (xyz)-
polynomial. Powers J4 or r4 are spherical scalars, but expanding r4 reveals non-scalar tensors.  

  r4 = (r2)2 = (x2 + y2 + z2)2 = (x4 + y4 + z4 )+ 2(x2y2 + x2z2 + y2z2)   (6.8.19)
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An octahedral (SF6-like) molecule uses the first tensor. Cubic or tetrahedral molecules use the other.

    Hoctahedral = H0 + t4 (J1
4 + J2

4 + J3
4 ) (6.8.20a)  Hcubic = H0 + t22(J1

2J2
2 + J1

2J3
2 + J2

2J3
2)  (6.8.20b)

The scalar or spherical term is H0 = BJ
2 + t0J

4 whereBJ2 = B(J1
2 + J2

2 + J3
2)  is for a rigid spherical top, but total 

RES have octahedral and cubic shapes, respectively, as shown in Fig. 6.8.4(a) and Fig. 6.8.4(b).

  
T (4) (J) = J1

4 + J2
4 + J3

4

= J4[cos4 γ sin4 β + sin4 γ sin4 β + cos4 β]
(6.8.20c)      

T (2,2) (J) = J1
2J2
2 + J1

2J3
2 + J2

2J3
2

= J4[cos2 2γ sin2 β + sin2 2β]
 (6.8.20d)

J
2
J
2
-

J
2
J
2
-

J
1
J
1
-

J
1
J
1
-

J
3
J
3
-

(a) H
octahedral

=BJ
2
+t
0
J
4
+t
4
(J
1

4
+J
2

4
+J
3

4
)

(b) H
cubic

=BJ
2
+t
0
J
4
+t
22
(J
1

2
J
2

2
+J
1

2
J
3

2
+J
2

2
J
3

2
)

x
2
-

x
3
-

x
1
-

J(100) affects
centrifugal

stretch of XY
6

Radial bonds resistant

J(111) affects
centrifugal

bend of XY
6

Bend bonds compliant

J(100) affects
centrifugal

bend of XY
4

or XY
8

J(111) affects
centrifugal

stretch of XY
4

or XY
8

Radial bonds resistant Bend bonds compliant

J

J

J

J

J

JJ

J

J

Fig. 6.8.4 Centrifugal  4th-degree sphere-top RES. (a) octahedral (SF6) (b) cubic (C8H8) tetrahedral (CF4)

 The Hamiltonians (a) and (b) of (6.8.20) and RES (a) and (b) in Fig. 6.8.4 are related in (6.8.19) by a 
±sign since t22 is just –2t4 if scalar t0 is adjusted accordingly. Nevertheless, distortion of an octahedral SF6 
molecule described by T(4) is quite different from a T(2,2) distortion of cubic C8H8 or tetrahedral CF4.
 The octahedral RES has a minimum when the J is near one of the eight (111) axes of trigonal (3-fold) 
symmetry. Rotation about (111) axes has maximum effect on octahedral molecules since they have relatively 
weak bending bonds, so centrifugal force due to (111) rotation more easily spreads the six arms of an SF6 
molecule and thus (111) is in a valley in Fig. 6.8.4(a). But a rotation on one of six (100) axes of tetragonal (4-
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fold) symmetry can only stretch radial bonds normal to these axes and those only stretch a little due to high radial 
bond strength. Thus (100) is on one of six octahedral RES peaks in Fig. 6.8.4(a).
 It is vice-versa for cubic C8H8 and tetrahedral CF4 molecules. They are resistant to distortion by rotation 
on one of the eight (111)-axes of trigonal (3-fold) symmetry but susceptible to rotation on one of six (100), (010), 
or (001) tetragonal axes that bend bonds and thus lie in six RES valleys of Fig. 6.8.4(b).
 Spherical top RES topography in Fig. 6.8.4 has an exaggerated scale compared to asymmetric RES 
topography of Fig. 6.8.1 or Fig. 6.8.2. Centrifugal  J(4) factors t22 or t4 are tiny compared to asymmetric-top 

factors (A =2I1
1 ,B =2I2

1 ,C =2I3
1 ) . Thus centrifugal effects are easily washed away in low symmetry.

 For a spherical top the rigid inertial components are exactly equal (A=B=C) and so even the tiniest 
anisotropy of distortion determines the RES topography lines, saddle points, and separatrices that dictate the 
rotational dynamics. RES paths show up like puddles on a level tennis court that might seem quite flat when it is 
dry, but these delicate puddles are washed away if the court experiences upheavals.
 Higher-than-4th-degree J-tensors T(6), T(8),… may affect motion, too. All these may be organized into 
multipole expansions of cubic-symmetry spherical harmonics Yq(k)(γ,β). Such expansions are described in the 
following section and include odd-degree tensors T(1), T(3),…, as well. Below are the cubic-symmetry4th and 6th-
degree  tensors T(4) and T(6) that are linearly independent of r2, r4, and r6. (Here Xqk =rk Yq(k)(γ,β).)

T (4) = 12
7 X0

4 − 24
5 (X4

4 + X−4
4 ) = 8

15
2π
7 x4 + y4 + z4 −5

3 r6{ }
T (6) = 8

1 X0
6 − 4

7 (X4
6 + X−4

6 ) =40
21

2π
1 3 x6 + y6 + z6 − 5[x4 (y2 + z2)+ y4 (x2 + z2)+ z4 ((y2 + z2))]+ 70x2y2z2 −21

5 r6{ }
The T(6) topography in Fig. 6.8.5 differs from the 4th-degree RES above. Most remarkable is the presence of 
stable-loop paths around the twelve (110)-directions that only have saddle points in Fig. 6.8.4 above. Also, both 
(111) and (100) directions are elevated in T(6) while only (100) is for T(4) in Fig. 6.8.4(a).

J1J1-

J3J3-

J2J2-

(110) axis
(100) axis

(111) axis

   Fig. 6.8.5 Centrifugal  6th-degree sphere-top RES.
This 6th-degree topography becomes relevant in methane CH4 spectra. The low inertia of CH4 means it rotates 
more rapidly than CCl4, CF4, or even CD4. Then centrifugal effects drive its vibrational potential into anharmonic 
regions so higher power J-terms arise. Of course if higher-than-4th degree perturbations are effective, then motion 
may be ultra-sensitive to the relative amounts of competing multipole functions.
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Chapter 6.9 Coupled rotors: multiple rotational energy surfaces MRES
 The previous Sec. 6.8 introduced Hamiltonians and RE surfaces having time-reversal symmetry. Even-k 
multipole functions (isotropic or monopole (k=0), quadratic or quadrupole (k=2), quartic or hexadecapole (k=4), 
etc.) have (J→ -J) symmetry but odd-k (linear-dipole (k=1), cubic or octupole (k=3) , etc.) do not. However, rotors 
with gyros (“rotor-rotors”) have Hamiltonians that may use any multipole function. The lowest anisotropic 
multipole is the dipole (k=1) and will be described first. 

a. Gyro-Rotors 
 A coupled rotor is one composed of two or more spinning objects with more or less independent angular 
momentum such as a molecule with attached methyl (CH3) “gyro” or “pinwheel” sub-rotors, a system of 
considerable biophysical interest. Or else a single molecule may have a vibration or “phonon” excitation that 
couples strongly to rotation. Nuclear or electronic spins with significant coupling may be regarded as an 
elementary sub-rotors. A classical analogy would be a spacecraft with gyro(s) on board.
 A rotor-rotor Hamiltonian is the sum of the HR and HS for each and coupling Hamiltonian HRS.
  

  
Hrotor R+S = HrotorR

+ HrotorS
+VRS     (6.9.1)

A useful approximation attaches a rotorS “gyro-bearing” to a rotorR frame so interaction VRS becomes a constraint, 
does no work, and is thus ignored. An asymmetric top with body-fixed spin is the following modified version of 
(6.7.27). Rotor momentum R adds to gyro spin S to make a total momentum J=R+S.

  
    
HR+S(Body−fixed) = ARx

2 + BRy
2 +CRz

2 + HrotorS
+ (~ 0)         (6.9.2a)

The system total angular momentum is a conserved vector J=R+S in the lab-frame and has a conserved 
magnitude |J| in the rotorR BOD frame. So we use R=J-S in place of R. 

 

    

HR,S(fixed) = A Jx − Sx( )2 + B Jy − Sy( )2 +C Jz − Sz( )2 + HrotorS

           = AJx
2 + BJy

2 +CJz
2 − 2AJxSx − 2BJySy − 2CJz Sz + ′HrotorS

   (6.9.2b)

Gyro-spin components Sa are constant classical parameters Sa. (Fixed bearing constraints do no work.)

    

HR,S(fixed) = const.1− 2ASxJx − 2BSyJy − 2CSzJz + AJx
2 + BJy

2 +CJz
2

               = M0T0
0       +       DdTd

1
d∑        +         QqTq

2
q∑

 (6.9.2c)

This is a simple Hamiltonian multipole tensor operator expansion having here just a monopole 
  
T0

0  term, 

three dipole 
   
Ta

1  terms, and two quadrupole 
   
Tq

2  terms shown in Fig. 6.9.1. Each multipole graph is a radial plot of 

a spherical harmonic function 
    
Yq

k ϕ,ϑ( )  representing a tensor operator 
  
Tq

k for each polar
   
ϕ,ϑ( ) -coordinate direction 

in the BOD -frame of the J-vector fixed on LAB z.
   
ϕ =−γ,ϑ =−β( )
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 Fig. 6.9.1 The six lowest order RES components needed to describe rigid gyro-rotors.

  

    

T0
0 =

Jx
2 + Jy

2 + Jz
2

3
  (6.9.3a)         

    

Tx
1 = Jx =

T+1
1 + T−1

1

2

Ty
1 = Jy =

T+1
1 −T−1

1

i 2

Tz
1 = Jz = T0

1

  (6.9.3b)        

    

Tzz
2 =

2Jz
2 − Jx

2 − Jy
2

2
= T0

2

T
x2−y2
2 = Jx

2 − Jy
2 =

2 T2
2 −T−2

2( )
6

(6.9.3c)

The constant coefficients or moments indicate strength of the respective multipole symmetry.The scalar monopole 
RES (a) is a sphere, while vector dipole RES (b) are bi-spheres pointing along Cartesian axes, and the RES (c) 
resemble quadrupole antenna patterns or d-wave (    = 2 ) functions. 
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M0 = A + B +C + 3 ′HrotorS (6.9.4a)     

   

Dx =−2ASx

Dy =−2BSy

Dz =−2CSz

 (6.9.4b)           

   

Qzz = 2C −A−B( )/ 6

Q
x2−y2 = A−B( )/ 2

(6.9.4c)

  Asymmetric and symmetric rotor Hamiltonians (6.7.27) and (6.7.32) are combinations of a 
monopole (6.9.3a) that, by itself makes a spherical rotor, and varying amounts of the two quadrupole terms 
(6.9.3c) to give the rigid rotor RES pictured previously in Fig. 6.8.1 and Fig. 6.8.2. Both Q-coefficients (6.9.4c) 
are zero for a spherical top (A=B=C). Only one is zero for a symmetric top (A=B). 
 Combining monopole (6.9.3a) with dipole terms (6.9.3b) gives a gyro-rotor Hamiltonian (6.9.2b) for a 
spherical rotor (A=B=C) that has the following form. (Imagine a spherical spaceship with gyro.)
   H= BR2=B(J- S)2=const+ BJ2 - gµS·J  (where:  gµ=2A=2B=2C)    (6.9.5)
H resembles a dipole potential -m·B for a magnetic moment m=gJ that precesses clockwise around a lab-fixed 
magnetic field B=µS. (The PE is least for J lined up along S.)

Here, the Hamiltonian (6.9.5) is a simple example of Coriolis rotational energy. It is least for J along S 
where |R|=|J-S| is least and rotor kinetic energy BR2 is least. (Magnitudes |J| and |S| stay constant here.) The 
spherical rotor-gyro RES in Fig. 6.9.2 is minimum for J along body axis +S where BR2 is least and maximum for 
J along –S where BR2 is greatest.

As is the case for rigid solid rotors in Fig. 6.8.1 and Fig. 6.8.2, the RES energy topography lines 
determine the precession J-paths in the body frame wherein gyro-S is fixed in Fig. 6.9.2. The left hand rule gives 
J-precession sense in the body S-frame, that is, all J precess anti-clockwise relative to the “low” valley on the 
+S-axis or clockwise relative to the “high” peak on the –S-axis. (It is like the wind on the Northern hemisphere of 
Earth.) In the lab, S appears to precess clockwise around a fixed J.

Gyro-RES differ from rigid rotor RES in Fig. 6.8.2 that have pairs of ±z-axis peaks and/or valleys 
separated by saddle or separatrix points where the J-flow direction reverses. The gyro-RES in Fig. 6.9.2 has no 
separatrix with one peak and one valley on opposite ends of an axis defining direction of J-flow. It has the same 
harmonic precession frequency for all J-vectors no matter how close to high +S and low –S-axis. Energy of a 
gyro-rotor Hamiltonian (6.9.5) is harmonic or linear in the z-axial component K=Jz. 

 
   
Egyro−R = const.+ BJ 2 − 2BK  (6.9.6b)  

   
Esymm−top = const.+ BJ 2 + (C −B)K 2  (6.9.6b)

In contrast, a symmetric rigid rotor energy (6.7.35) is quadratic in K. Asymmetric and deformable rotor energy 
shown in Fig. 6.8.2 and Fig. 6.8.4 have a higher power or transcendental dependence. Harmonic or linear energy 
dependence is an unusual (but welcome) rarity in rotor mechanics.
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 Fig. 6.9.2 The spherical gyro-rotor RES is a cardioid of revolution around gyro spin S 

b. 3D-Rotor and 2D-Oscillator Analogy
 One associates linear levels with harmonic oscillators not rotors. The gyro-rotor’s linear spectrum 
reminds us of a 150-year-old analogy between motions of 3D rotors and 2D vibrations. Stokes [1863] described 
2D electric vibration or optical polarization, by 3D vectors known as Stokes vectors and labeled by S. Stokes’ 
spin uses Hamilton quaternions, redone 80 years later as Pauli spinor σµ components of a general 2D Hermitian 
operator H. This repeats some of the discussion of (4.4.9).

    

H = A B − iC
B + iC D

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

=
A + D

2
σ0 +

A−D
2
σA    + BσB       +CσC , 

                where: σ0 = 1 0
0 1

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟
,  σA = 1 0

0 −1

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟
,  σB = 0 1

1 0

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟
,  σC = 0 −i

i 0

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟
. 

  (6.9.7)

Labels: A (“Asymmetric-diagonal”), B (“Bilateral-balanced”), and C(“Circular-Coriolis”) are mnemonic 
alternatives to Pauli’s dry z, x, and y, respectively. The 2D Hamiltonian has an S·J=S·σ/2=Ω·σ form of Coriolis 
coupling (6.9.5). (Note: Do not confuse ABCD’s above with our inertial labels

   
(A=

2I1

1 ,B=
2I 2

1 ,C=
2I 3

1 ) .) 

      

          H =      S01        + SAJA         + SBJB      + SCJC    =S0J0 +

S • J, 

where:          J0 = 1,      JA =
σA
2

,       JB =
σB
2

,  JC =
σC
2

,  

   and: S0 = (A + D) / 2,  SA = (A−D),  SB = 2B,    SC = 2C . 

   (6.9.8)

The 2D-3D analogy writes Pauli J=σ/2 operators using elementary oscillator ladder operators ejk=aj†ak.

  

    

J0=N=a1
†a1 + a2

†a2, JA=
1
2

a1
†a1 − a2

†a2( ), JB=
1
2

a1
†a2 + a2

†a1( ), JC =
-i
2

a1
†a2 − a2

†a1( ).
                where: a1

†a1 = 1 0
0 0

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟
,  a1

†a2 = 0 1
0 0

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟
,  a2

†a1 = 0 0
1 0

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟
,  a2

†a2 = 0 0
0 1

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟
. 

  (6.9.9)

This notational trick is very useful for extending the classical analysis to quantum J-operators.
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How all this gets “quantized”

Schwinger’s 3D J-momentum raising-lowering operators 
    
J+ = JB + iJC = a1

†a2 and 
    
J− = JB − iJC = a2

†a1 are well 

known in the case that 2D dimensions 1 and 2 represent quantum spin-up (+/2) and spin-down (-/2) instead of 
the x-and y-polarized fundamental oscillator states envisioned by Stokes.
 Angular 3D ladder operation is simplified by far simpler 2D oscillator operations.

   
    

J+ n1n2 = a1
†a2 n1n2 = n1 + 1 n2 n1 + 1,n2 −1

J− n1n2 = a2
†a1 n1n2 = n1 n2 + 1 n1 −1,n2 + 1

    (6.9.10)

2D oscillator states are labeled by total number N=(n1+n2) of quanta and the net quantum population ΔN=(n1-n2). 3D 

angular momentum states 
 K
J  are labeled by total momentum J=N/2=(n1+n2)/2 and z-component K=N/2=(n1+n2)/2, 

just half (or /2) of N and ΔN. 

      

   

n1,n2 =
a1

†( )
n1

a2
†( )

n2

n1 !n2 !
0,0 = K

J =
a1

†( )
J +K

a2
†( )

J−K

J + K( )! J −K( ) !
0,0 ,  where:

n1 = J + K

n2 = J −K

⎧
⎨
⎪⎪⎪

⎩
⎪⎪⎪

   (6.9.11)

This leads to Schwinger ‘s quantum angular momentum matrices 
   
DMK

J αβγ( )  and Clebsch-Gordan Wigner-Eckart 

relations needed for quantum calculations and their semiclassical RE surface approximations.

   
′K
′J Tq

k
K
J =Cq

k
K
J
′K
′J ′J k J ~C0

k
K
J

K
J J k J ~ DJK

J ΘK
J( ) .  

c.  Gyro-rotor and anharmonic  2D-Local mode analogy
 Quite beyond the computational value of the 2D-3D analogy is the insight and visualization gained for 
fundamental processes. In a slight stretch of the 2D analogy we imagine two 1D oscillators in place of the single 
2D oscillator in the Stokes model as was introduced in Unit 4 by developing the idea of ABCD-symmetry types 
of 2D harmonic oscillators. Now an anharmonic oscillator example may be considered.
 If the oscillators are identical they have bilateral or B- symmetry and a HB Hamiltonian commutes with 
both σB (a +45° mirror reflection of +x and +y axes) and with -σB (a -45° mirror reflection of -x and +y axes). σB 

interchange the oscillators. This means that to first order the Hamiltonian is HB=2BσB, that is, a gyro rotor 
   
Tx

1  

with S along the B-axis as shown in Fig. 6.9.3. (Added 
  
T0

0  affects eigenvalues, not states.)  

Eigenvectors of HB are the symmetric and antisymmetric normal modes that belong to the fixed points on 
the S-vector and ±B-axes of the Stokes space. If instead, the S-vector lies on the A-axis, the Hamiltonian is an 
asymmetric diagonal HA= 2AσA matrix. From (6.9.7) we see that operator σA reflects y into –y but leaves x alone, 
so eigenvectors of HA are localized on the x-oscillator or the y-oscillator but not both. Such motions are local 
modes, but are not modes of HB, which does not commute with HA.  

Hamiltonian HB rotates a J-vector from the +A-axis (local x-mode) around to the –C axis to the –A (local 
y-mode), then to the+C axis, and then home to +A. The J-path is the largest equator of Fig. 6.9.3(a). The ±C-axes 
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belong to what Stokes would call circular polarization with chirality right and left, respectively. Double vibrator, 
±C resonant beats have one vibrator’s phase ±90° relative to the other’s.

Simple mode beat transfer dynamics is disrupted by adding an anharmonic 
  
T0

2  term to existing B-

symmetry terms 
   
Tx

1  and 
  
T0

0 , as shown in Fig. 6.9.3(b-c). The effect of 
  
T0

2  in Fig. 6.9.3(c) is to replace a stable 

fixed point +B (representing the (+)-normal mode) by a saddle point as it bifurcates (splits) into a pair of fixed 
points that head toward the ±A-axes. So one normal mode dies to begat two stable local modes wherein a mass 

may retain its energy instead of giving it to the other by a resonant beating process. Anharmonicity 
  
T0

2  decouples 

the masses for the symmetric +B-normal mode but spares the antisymmetric -B-mode on the backside of Fig. 
6.9.3(c). Pairs of classical local modes, each localized on different sides of an RES in Fig. 6.9.3(c) are analogous 
to asymmetric top ±K-precession pairs in Fig. 6.8.2 that share the same (degenerate) energy level in a classical 
RES picture but may split by tunneling in a quantum picture. 

 

A
(or z)

B
(or x)

C (or y)

−Α FIXED PT.
Local
Mode-2

+Α FIXED PT.
Local
Mode-1

S

+B FIXED PT.
Symmetric
Normal
Mode

S

−B FIXED PT.
Anti-Symmetric

Normal
Mode

Symmetric normal
mode becomes
UNSTABLE

(a) Spherical Gyro-Rotor
or

Normal ± B-Modes

(b) Perturbed Gyro-Rotor
or

“Soft” +B- Mode

(c) Symmetric Gyro-Rotor
or

Local ±A-Mode
Normal -B-ModeT0

(0) +Dy
(1)Ty
(1)

T0
(0) +Dy

(1)Ty
(1) +Q0

(2)T0
(2)

 Fig. 6.9.3 A spherical gyro-rotor becomes a symmetric gyro-rotor by as more of 
  
T0

2  is added.  

 In molecular rotation theory, the 
  
T0

2  term along with 
  
T0

0  comprise an unperturbed symmetric top 
Hamiltonian and gyro termsTq

1  are viewed as perturbations. For vibration theory, the latterTq
1  comprise a normal 

mode Hamiltonian and the former 
  
T0

2  term is viewed as an anharmonic perturbation. 
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d. Multiple Gyro-Rotor RES and Eigen-surfaces
 A simple rotor has J with multiple RES paths. A gyro-rotor J may use multiple paths and surfaces. Gyro-
rotor RES depend on S, and if S is a quantum spin, distribution over multiple RES is possible. 
 The simplest classical theory of S considers just +S and -S. The RES for each is plotted one on top of 
other as in Fig. 6.9.4 (a) while component RES are shown in Fig. 6.9.4(b) for +S and in Fig. 6.9.4(c) for -S. An 
energy sphere is shown intersecting an RES pair for an asymmetric gyro-rotor. If the spin S is set to zero, the pair 
of RES collapse to a rigid asymmetric top RES shown in Fig. 6.8.1 having angular inversion (time-reversal J→-J) 
and reflection symmetry. The composite RES in Fig. 6.9.4(a) has inversion  symmetry but lacks reflection 
symmetry. Its two parts in Fig. 6.9.4 (b) and in Fig. 6.9.4 (c) have neither reflection nor inversion symmetry due 
to their gyro-spins ±S.

     

S

Jz

Jx

Jy
S

(b) Forward
gyro-spin
+S=(1,1,1)

RR
JJ

(c) Time
reversed
gyro-spin
-S=(-1,-1,-1)

(a) Composite
±S Rotational
Energy Surface
Spin gyro S=(1,1,1) attached to
Asymmetric Top (A=5, B=10, C=15)

S

       Fig. 6.9.4 Asymmetric classical gyro-rotor RES. 
 (a) Composite ±S. (b) Forward spin +S. (c) Reversed spin – S.

 A quantum theory of multiple RES involves a tunneling or mixing between its base states. The simplest 
quantum gyro-spin is a two-state spin-1/2 having a 2-by-2 Hamiltonian matrix. Semi-classical gyro-rotor 
dynamics are approximated by a pair of RES obtained from eigensolutions of the following 2-by-2 matrix for 
each classical orientation (β,γ) of the J-vector in the body frame.

 

HR,S(quantized ) = AJx
2 + BJy

2 +CJz
2 − AJxσ x − BJyσ y −CJzσ z + const.

=
REatop − JC cosβ −AJ cosγ sinβ − iBJ sinγ sinβ

−AJ cosγ sinβ + iBJ sinγ sinβ REatop + JC cosβ

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

 

where:  REatop = J2(Acos2 γ sin2 β + Bsin2 γ sin2 β +C cos2 β)

 (6.9.12)
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 Fig. 6.9.5 compares of views of both the classical RES of Fig. 6.9.4 (top half of Fig. 6.9.5) and the semi-
classical RES (bottom half of Fig. 6.9.5) resulting from inserting quantum spin S=σ/2 matrices in (6.9.2) to give 
(6.9.12) then diagonalizing and plotting the resulting eigenvalues. Each sc-RES surface is an asymmetric RES 
perturbed around where the c-RES cross. The inner surface is particularly affected by a bifurcation into an 
unstable saddle point and a pair of loops around fixed points.

 
 Fig. 6.9.5 (a) Views of classical gyro-rotor c-RES in Fig. 6.9.4 (a) based on (6.9.2).

 
 Fig. 6.9.5 (b) Views of semi-classical gyro-rotor sc-RES based on eigenvalues of (6.9.12) with S=σ/2.
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