Group Theory in Quantum Mechanics Lecture 12.5 (2.24.15)

*Symmetry and Dynamics of C*_N*cyclic systems(contd.)*

(Geometry of U(2) characters - Ch. 6-9 of Unit 3) (Principles of Symmetry, Dynamics, and Spectroscopy - Sec. 3-7 of Ch. 2)

Wave coordinates in spacetime and per-spacetime for Bohr-Schrodinger Dispersion Phase velocity for simple wave $e^{i(kx-\omega t)}$: Newton's "corpuscle" tracks vs.wave-zero paths Slow L-wave $e^{i\mathbf{L}}=e^{i(k(L)\cdot x-\omega(L)\cdot t)}$

Fast *R*-wave $e^{i\mathbf{R}} = e^{i(k(R)\cdot x - \omega(R)\cdot t)}$

Phase velocity for wave pair $e^{i\mathbf{L}} + e^{i\mathbf{R}} = S \cdot D$: Half-sum factor $S = e^{i(\mathbf{L}+\mathbf{R})/2}$ Group velocity for wave pair $e^{i\mathbf{L}} + e^{i\mathbf{R}} = S \cdot D$: Half-difference factor $D = e^{i(\mathbf{L}-\mathbf{R})/2} + e^{-i(\mathbf{L}-\mathbf{R})/2}$

Introduction to wave coordinates by Left-moving and Right-moving laser beams L-laser 600THz and R-laser 600THZ (Laser lab frame) Phase P-vector and group G-vector span Cartesian spacetime coordinates L'-laser 300THz and R'-laser 1200THZ (Doppler shifted in moving frame) Doppler shifted L'-vector and R'-vector in (L, R)-per-spacetime Vectors of phase P'=(R'+L')/2 and group G'=(R'-L')/2 Einstein-Lorentz-Minkowski "Relawavity" spacetime coordinates Brief tour of and relativistic mechanics by geometry Summary of optical wave parameters for relativity and QM *Wave coordinates in spacetime and per-spacetime for Bohr-Schrodinger Dispersion Spacetime (x,t) Per-spacetime (\omega,k)=2\pi(\upsilon,\kappa)*

Wave coordinates in spacetime and per-spacetime for Bohr-Schrodinger Dispersion Spacetime (x,t) *Per-spacetime* $(\omega,k)=2\pi(\upsilon,\kappa)$

Phase velocity for simple wave $e^{i(kx-\omega t)}$ is $V=\omega/k=\upsilon/\kappa$ where: $\upsilon =$ waves per second and $\kappa =$ waves per meter

or:

 $\omega = 2\pi \upsilon = radians \ per \ second$ and $k = 2\pi \kappa = radians \ per \ meter$

Wave coordinates in spacetime and per-spacetime for Bohr-Schrodinger Dispersion Phase velocity for simple wave $e^{i(kx-\omega t)}$: Newton's "corpuscle" tracks vs.wave-zero paths Slow L-wave $e^{i\mathbf{L}} = e^{i(k(L)\cdot x-\omega(L)\cdot t)}$ Fast R-wave $e^{i\mathbf{R}} = e^{i(k(R)\cdot x-\omega(R)\cdot t)}$

Phase velocity for wave pair $e^{i\mathbf{L}} + e^{i\mathbf{R}} = S \cdot D$: Half-sum factor $S = e^{i(\mathbf{L}+\mathbf{R})/2}$ Group velocity for wave pair $e^{i\mathbf{L}} + e^{i\mathbf{R}} = S \cdot D$: Half-difference factor $D = e^{i(\mathbf{L}-\mathbf{R})/2} + e^{-i(\mathbf{L}-\mathbf{R})/2}$

Wednesday, February 25, 15

Wednesday, February 25, 15

Wednesday, February 25, 15

Wave coordinates in spacetime and per-spacetime for Bohr-Schrodinger Dispersion Phase velocity for simple wave $e^{i(kx-\omega t)}$: Newton's "corpuscle" tracks vs.wave-zero paths Slow L-wave $e^{i\mathbf{L}} = e^{i(k(L)\cdot x-\omega(L)\cdot t)}$

Fast *R*-wave $e^{i\mathbf{R}} = e^{i(k(R)\cdot x - \omega(R)\cdot t)}$

Phase velocity for wave pair $e^{i\mathbf{L}} + e^{i\mathbf{R}} = S \cdot D$: Half-sum factor $S = e^{i(\mathbf{L}+\mathbf{R})/2}$ Group velocity for wave pair $e^{i\mathbf{L}} + e^{i\mathbf{R}} = S \cdot D$: Half-difference factor $D = e^{i(\mathbf{L}-\mathbf{R})/2} + e^{-i(\mathbf{L}-\mathbf{R})/2}$

Wednesday, February 25, 15

Wednesday, February 25, 15

Wednesday, February 25, 15

Wave coordinates in spacetime and per-spacetime for Bohr-Schrodinger Dispersion Phase velocity for simple wave $e^{i(kx-\omega t)}$: Newton's "corpuscle" tracks vs.wave-zero paths Slow L-wave $e^{i\mathbf{L}}=e^{i(k(L)\cdot x-\omega(L)\cdot t)}$ Fast R-wave $e^{i\mathbf{R}}=e^{i(k(R)\cdot x-\omega(R)\cdot t)}$

Wednesday, February 25, 15

Wednesday, February 25, 15

Wave coordinates in spacetime and per-spacetime for Bohr-Schrodinger Dispersion Phase velocity for simple wave $e^{i(kx-\omega t)}$: Newton's "corpuscle" tracks vs.wave-zero paths Slow L-wave $e^{i\mathbf{L}}=e^{i(k(L)\cdot x-\omega(L)\cdot t)}$ Fast R-wave $e^{i\mathbf{R}}=e^{i(k(R)\cdot x-\omega(R)\cdot t)}$ Phase velocity for wave pair $e^{i\mathbf{L}}+e^{i\mathbf{R}}=S\cdot D$: Half-sum factor $S=e^{i(\mathbf{L}+\mathbf{R})/2}+e^{-i(\mathbf{L}-\mathbf{R})/2}+e^{-i(\mathbf{L}-\mathbf{R})/2}$

Wednesday, February 25, 15

Introduction to wave coordinates by Left-moving and Right-moving laser beams L-laser 600THz and R-laser 600THZ (Laser lab frame) Phase P-vector and group G-vector span Cartesian spacetime coordinates
L'-laser 300THz and R'-laser 1200THZ (Doppler shifted in moving frame) Doppler shifted L'-vector and R'-vector in (L, R)-per-spacetime Vectors of phase P'=(R'+L')/2 and group G'=(R'-L')/2
Einstein-Lorentz-Minkowski "Relawavity" spacetime coordinates Brief tour of and relativistic mechanics by geometry Introduction to wave coordinates by Left-moving and Right-moving laser beams *u*=0 *space-time coordinates*

u=0 *space-time pulse waves*

CM with a BANG! Fig. 8.2.1

CM with a BANG! Unit 8

Wednesday, February 25, 15

Wave coordinates with Linear Dispersion

Continuous Wave (CW) coordinates discussed in following pages...

...starting with standing-wave case shown here

Pulse Wave (PW) coordinates ("Packet-Wave" or "particle-like") *PW dynamics is discussed in the* following Lecture 13

u=3*c*/5 *space-time pulse waves*

CM with a BANG! Fig. 8.2.1

<u>CM with a BANG! Unit 8</u> CM with

Unit 8 CM with a BANG! Fig. 8.2.2

Introduction to wave coordinates by Left-moving and Right-moving laser beams

 Introduction to wave coordinates by Left-moving and Right-moving laser beams
 L-laser 600THz and R-laser 600THZ (Laser lab frame) Phase P-vector and group G-vector span Cartesian spacetime coordinates
 L'-laser 300THz and R'-laser 1200THZ (Doppler shifted in moving frame) Doppler shifted L'-vector and R'-vector in (L, R)-per-spacetime Vectors of phase P'=(R'+L')/2 and group G'=(R'-L')/2
 Einstein-Lorentz-Minkowski "Relawavity" spacetime coordinates Brief tour of and relativistic mechanics by geometry Summary of optical wave parameters for relativity and QM

Introduction to wave coordinates by Left-moving and Right-moving laser beams L-laser 600THz and R-laser 600THZ (Laser lab frame) Phase P-vector and group G-vector span Cartesian spacetime coordinates L'-laser 300THz and R'-laser 1200THZ (Doppler shifted in moving frame) Doppler shifted L'-vector and R'-vector in (L, R)-per-spacetime Vectors of phase P'=(R'+L')/2 and group G'=(R'-L')/2 Einstein-Lorentz-Minkowski "Relawavity" spacetime coordinates Brief tour of and relativistic mechanics by geometry Summary of optical wave parameters for relativity and QM L-laser 600THz and R-laser 600THZ (Laser lab frame) Phase P-vector and group G-vector span Cartesian spacetime coordinates

> <u>Relativity and Quantum Theory by Ruler and</u> <u>Compass</u>

Introduction to wave coordinates by Left-moving and Right-moving laser beams L-laser 600THz and R-laser 600THZ (Laser lab frame) Phase P-vector and group G-vector span Cartesian spacetime coordinates L'-laser 300THz and R'-laser 1200THZ (Doppler shifted in moving frame) Doppler shifted L'-vector and R'-vector in (L, R)-per-spacetime Vectors of phase P'=(R'+L')/2 and group G'=(R'-L')/2 Einstein-Lorentz-Minkowski "Relawavity" spacetime coordinates Brief tour of and relativistic mechanics by geometry Summary of optical wave parameters for relativity and QM L'-laser 300THz and R'-laser 1200THZ (Doppler shifted in moving frame)

Relativity and Quantum Theory by Ruler and Compass Fig. 5 Relativity and Quantum Theory by Ruler and <u>Compass</u> Introduction to wave coordinates by Left-moving and Right-moving laser beams L-laser 600THz and R-laser 600THZ (Laser lab frame) Phase P-vector and group G-vector span Cartesian spacetime coordinates L'-laser 300THz and R'-laser 1200THZ (Doppler shifted in moving frame) Doppler shifted L'-vector and R'-vector in (L, R)-per-spacetime Vectors of phase P'=(R'+L')/2 and group G'=(R'-L')/2 Einstein-Lorentz-Minkowski "Relawavity" spacetime coordinates Brief tour of and relativistic mechanics by geometry Summary of optical wave parameters for relativity and QM *Vectors of phase* $\mathbf{P'} = (\mathbf{R'} + \mathbf{L'})/2$ and group $\mathbf{G'} = (\mathbf{R'} - \mathbf{L'})/2$

RelaWavity WebApp

Relativity and QuantumSR&QM by Ruler and CompassTheory by Ruler and Compass

Fig. 7-8

(e) Space-time $(c\tau', x')$ geometry of 2-CW ϕ -paths (f) Per-space-time $(v', c\kappa)$ geometry of 2-CW point vectors *c*·Time-Period *c*· $\tau' = \lambda'$ Frequency: $\upsilon' = 2\pi \cdot \omega'$ P'+G'=R'**G +P =**R (units : $v_A = 600THz$) (units: $\lambda_A = c \tau_A = 0.5 \mu m$) "waves per second" 2.0 "seconds per wave ct'G= 1.5 1.5 $c\tau_A(\cosh\rho)$ $v_R = 2v$ $c\kappa_{phase} = v_A \sinh\rho$ $=c\tau_A 5/4$ G $(x',ct')_{G} =$ $\mathbf{P'} = \mathbf{R'} + \mathbf{L}$ v_{phase} 2 1200THz $=v_A 3/4$ group $=v_A e^{+\rho}$ $c\tau_{A}(\sinh\rho,\cosh\rho)$ $=c\tau_A \operatorname{csch}\rho$ 1.01.0 $=v_A \cosh\rho$ $=c\tau_{A}(3/4,5/4)$ $=c\tau_A 4/3$ $\kappa_{group} = v_A \cosh \rho = v_A 5/4$ $(x',ct')_{\mathbf{p}} =$ $c \tau_{phase}$ '=<u>R'-L'</u> =0,5/ **P'-G'=L** $c\tau_{A}(\cosh\rho, \sinh\rho)$ $= c\tau_{1} \operatorname{sech}\rho \quad 0.5$ $|v_{group}|$ 0.5 $= c \tau_A(5/4, 3/4)$ $v_A {\rm sinh} \rho$ $\neq c\tau_{A}4/5$ $v_A/2 = v_A$ -0.5 G-P =300THz $=v_{A}3/4$ $-1.0 = v_A e^{-\rho} - 0.5$ +0.5+0.5**r**1.0 $+1_{1}0$ +1.5 +20+1.5+20+10 $\lambda_{group} = \lambda_A \operatorname{sech} \rho$ 0 Space-Wavelength x *c*·Wave Number $c \cdot \kappa' = c \cdot k'/2\pi$ $c\tau_r \neq 1.0 \mu m$ (units : $\lambda_A = 0.5 \mu m$) (units : $v_A = c \cdot \kappa_A = 600THz$) $=\lambda_{A}4/5$ $\neq 2c\tau_A$ meters per way "waves per meter" $\lambda_{phase} = \lambda_A \operatorname{csch} \rho$ $=\lambda_A/3$ $\lambda_L = 1.0 \mu m$ $c \cdot \kappa_R = 1200THz = 2\upsilon_A$ $= \upsilon_A e^{+\rho}$ $v_A/2 = c \cdot \kappa_L = 300TH$ = $v_A e^{-\rho}$ =2λ

> <u>Relativity and Quantum Theory by Ruler and</u> <u>Compass</u>

Introduction to wave coordinates by Left-moving and Right-moving laser beams L-laser 600THz and R-laser 600THZ (Laser lab frame) Phase P-vector and group G-vector span Cartesian spacetime coordinates L'-laser 300THz and R'-laser 1200THZ (Doppler shifted in moving frame) Doppler shifted L'-vector and R'-vector in (L, R)-per-spacetime Vectors of phase P'=(R'+L')/2 and group G'=(R'-L')/2 Einstein-Lorentz-Minkowski "Relawavity" spacetime coordinates Brief tour of and relativistic mechanics by geometry Summary of optical wave parameters for relativity and QM

<u>Two Famous-Name Coe</u>	<u>effici</u>	<u>ents</u>	$\frac{Time}{(unit)}$ $\lambda_A = 1/2$	e ct' s of 2μm)	2		Her Min 180	rman nkowski 54-1909	Λ
Albert Einstein 1859-1955					1.5				
This number		-				v'_{phase} =	-1.25		
time-dilation					_0//			Sr	ace x'
(dilated by 25% here)								(i	units of
This number			$\overline{7}$		N group	0.0		λ_A	$=1/2\mu m$
length-contraction			-0.5			5		1.5	
(contracted by 20% here)	phase	$b_{\scriptscriptstyle RED}^{\scriptscriptstyle Doppler}$	$\frac{c}{V_{phase}}$	$rac{\kappa_{_{phase}}}{\kappa_{_A}}$	$rac{{ au _{phase}}}{{ au _A}}$	$\left(\begin{array}{c} \upsilon_{phase} \\ \upsilon_{A} \end{array} ight)$	$rac{\lambda_{phase}}{\lambda_A}$	V _{phase} C	$b_{\scriptscriptstyle BLUE}^{\scriptscriptstyle Doppler}$
Hendrik A. Lorentz 1853-1928	group	$\frac{1}{b_{BLUE}^{Doppler}}$	V _{group}	$rac{m{v}_{group}}{m{v}_A}$	$ \begin{array}{c} \lambda_{group} \\ \hline \lambda_A \end{array} $	$\frac{\kappa_{group}}{\kappa_{A}}$	$rac{{m au}_{group}}{{m au}_{_A}}$	$\frac{c}{V_{group}}$	$rac{1}{b_{\scriptscriptstyle RED}^{\scriptscriptstyle Doppler}}$
	rapidity ρ	$e^{-\rho}$	anh ho	$\sinh ho$	$\operatorname{sech}\rho$	$\cosh \rho$	cschp	$\mathrm{coth}\rho$	$e^{+ ho}$
<u>Old-Fashioned Notation</u>	$\beta \equiv \frac{u}{c}$	$\sqrt{\frac{1-\beta}{1+\beta}}$	$\frac{\beta}{1}$	$\frac{1}{\sqrt{\beta^{-2}-1}}$	$\frac{\sqrt{1-\beta^2}}{1}$	$\frac{1}{\sqrt{1-\beta^2}}$	$\frac{\sqrt{\beta^{-2}-1}}{1}$	$\frac{1}{\beta}$	$\sqrt{\frac{1+eta}{1-eta}}$
<u>UAF Colloquium Nov. 14 2014</u>	value for $\beta=3/5$	$\frac{1}{2} = 0.5$	$\frac{3}{5} = 0.6$	$\frac{3}{4}$ =0.75	$\frac{4}{5} = 0.80$	$\frac{5}{4}$ =1.25	$\frac{4}{3}$ =1.33	$\frac{5}{3}$ =1.67	$\frac{2}{1} = 2.0$

Introduction to wave coordinates by Left-moving and Right-moving laser beams L-laser 600THz and R-laser 600THZ (Laser lab frame) Phase P-vector and group G-vector span Cartesian spacetime coordinates L'-laser 300THz and R'-laser 1200THZ (Doppler shifted in moving frame) Doppler shifted L'-vector and R'-vector in (L, R)-per-spacetime Vectors of phase P'=(R'+L')/2 and group G'=(R'-L')/2 Einstein-Lorentz-Minkowski "Relawavity" spacetime coordinates Brief tour of and relativistic mechanics by geometry Summary of optical wave parameters for relativity and QM

Usi	Using (some) wave parameters to develop relativistic quantum theory										
	υ _{phas} CK _{phas}	e = B c $s_e = B s$	$\cosh \rho$ $\sinh \rho$	$\approx \frac{B}{2} + \frac{1}{2}$ $\approx \frac{B}{\rho}$	<i>B</i> ρ ² (f (f	or $u \ll c$	c) c)	coshp≈] sinh p≈j	$1+\frac{1}{2}\rho^2$		$B = v_A$ $B = v_A = c\kappa_A$
					At lo	ow spee	ds:				
Щ					_						
			1					,	1		
group	$b_{\scriptscriptstyle RED}^{\scriptscriptstyle Doppler}$	$\frac{V_{group}}{c}$	$rac{oldsymbol{v}_{group}}{oldsymbol{v}_A}$	$rac{\lambda_{group}}{\lambda_A}$	$\frac{\kappa_{g,oup}}{\kappa_A}$	$rac{{{ au }_{group}}}{{{ au }_{A}}}$	$\frac{V_{phase}}{c}$	$b_{\scriptscriptstyle BLUE}^{\scriptscriptstyle Doppler}$			
phase	$\frac{1}{b_{BLUE}^{Doppler}}$	$\frac{c}{V_{phase}}$	$\frac{\kappa_{phase}}{\kappa_A}$	$rac{{m au}_{phase}}{{m au}_{A}}$	$\left(\begin{array}{c} \upsilon_{phase} \\ \upsilon_A \end{array} \right)$	$rac{\lambda_{phase}}{\lambda_A}$	$\frac{c}{V_{group}}$	$\frac{1}{b_{RED}^{Doppler}}$			
rapidity ρ	$e^{-\rho}$	$tanh \rho$	$\sinh \rho$	sech ρ	$\cosh \rho$	cschp	$\operatorname{coth} \rho$	$e^{+ ho}$			
stellar \forall angle σ	$1/e^{+\rho}$	$\sin \sigma$	$\tan \sigma$	$\cos\sigma$	$\sec\sigma$	$\cot \sigma$	$\csc\sigma$	1/ <i>e</i> ^{-p}			
$\beta \equiv \frac{u}{c}$	$\sqrt{\frac{1-\beta}{1+\beta}}$	$\frac{\beta}{1}$	$\frac{1}{\sqrt{\beta^{-2}-1}}$	$\frac{\sqrt{1-\beta^2}}{1}$	$\frac{1}{\sqrt{1-\beta^2}}$	$\frac{\sqrt{\beta^{-2}-1}}{1}$	$\frac{1}{\beta}$	$\sqrt{\frac{1+\beta}{1-\beta}}$			
value for $\beta=3/5$	$\frac{1}{2} = 0.5$	$\frac{3}{5} = 0.6$	$\frac{3}{4}$ =0.75	$\frac{4}{5}$ =0.80	$\frac{5}{4}$ =1.25	$\frac{4}{3}$ =1.33	$\frac{5}{3}$ =1.67	$\frac{2}{1}=2.0$			

Using (some) wave parameters to develop relativistic quantum theory

$$\frac{v_{phase} = B \cosh \rho \approx B + \frac{1}{2} B \rho^{2} (\text{for } u \ll c)}{c\kappa_{phase} = B \sinh \rho \approx B \rho} \quad (\text{for } u \ll c) \\ (\text{for } u \ll c) \\ \frac{u}{c} = \tanh \rho \approx \rho \quad (\text{for } u \ll c) \\ \text{At low speeds:} \\ v_{phase} \approx B + \frac{1}{2} \frac{B}{c^{2}} u^{2} \quad \Leftarrow \text{ for } (u \ll c) \\ \frac{1}{v_{phase}} = \frac{1}{2} \frac{B}{c^{2}} u^{2} \quad \Leftarrow \text{ for } (u \ll c) \\ \frac{1}{v_{phase}} = \frac{1}{2} \frac{B}{c^{2}} \frac{1}{u^{2}} \quad \Leftarrow \text{ for } (u \ll c) \\ \frac{1}{v_{phase}} = \frac{1}{2} \frac{B}{c^{2}} \frac{1}{u^{2}} \quad \Leftarrow \text{ for } (u \ll c) \\ \frac{1}{v_{phase}} = \frac{1}{2} \frac{B}{c^{2}} \frac{1}{u^{2}} \quad \Leftarrow \text{ for } (u \ll c) \\ \frac{1}{v_{phase}} = \frac{1}{2} \frac{1}{c^{2}} \frac{1}{u^{2}} \quad (1 + \frac{1}{v_{phase}}) \quad \frac{1}{v_{phase}} \frac{1}{v_$$

$$\frac{\upsilon_{phase} = B \cosh \rho}{c\kappa_{phase} = B \sinh \rho} \approx B\rho \quad (\text{for } u \ll c) \qquad \cosh \rho \approx |l + \frac{1}{2}\rho^{2} \approx |l + \frac{1}{2}u^{2} \qquad B = \upsilon_{A}$$

$$B = \upsilon_{A} = c\kappa_{A}$$

$$C = c\kappa_{A} = c\kappa_{A} = c\kappa_{A} = c\kappa_{A}$$

$$C = c\kappa_{A} = c\kappa_{A$$

$$\begin{array}{c}
 v_{phase} = B \cosh \rho \approx B + \frac{1}{2} B \rho^{2} (\text{for } u \ll c) \\
 c \kappa_{phase} = B \sinh \rho \approx B \rho \quad (\text{for } u \ll c) \\
 \frac{u}{c} = \tanh \rho \approx \rho \quad (\text{for } u \ll c) \\
 \frac{u}{c} = \tanh \rho \approx \rho \quad (\text{for } u \ll c) \\
 \text{At low speeds:} \\
 v_{phase} \approx B + \frac{1}{2} \frac{B}{c^{2}} u^{2} \quad \Leftarrow \text{ for } (u \ll c) \Rightarrow \quad \kappa_{phase} \approx \frac{1}{c} \\
 \text{Rescale } v_{phase} \text{ by } h \quad \text{so: } M = \frac{hB}{c^{2}} \\
 h v_{phase} \approx hB + \frac{1}{2} \frac{hB}{c^{2}} u^{2} \quad \Leftarrow \text{ for } (u \ll c) \Rightarrow \quad h\kappa_{phase} \approx \frac{hL}{c^{2}} \\
 \text{Resembles: } const. + \frac{1}{2} M u^{2} \quad \text{Resembles: } Mu
\end{array}$$

$$\cosh \rho \approx 1 + \frac{1}{2}\rho^{2} \approx 1 + \frac{1}{2}\frac{u^{2}}{c^{2}} \qquad \qquad B = \upsilon_{A}$$
$$B = \upsilon_{A} = c\kappa_{A}$$

ase $\approx \frac{B}{c^2} u$ \mathcal{U}_{phase} and \mathcal{K}_{phase} resemble formulae for Newton's kinetic energy $\frac{1}{2}Mu^2$ and momentum Mu. So attach scale factor hto match units.

group	$b_{\scriptscriptstyle RED}^{\scriptscriptstyle Doppler}$	$rac{V_{group}}{c}$	$rac{oldsymbol{v}_{group}}{oldsymbol{v}_A}$	$rac{\lambda_{group}}{\lambda_A}$	K _g . _{oup} K _A	$rac{{m au}_{group}}{{m au}_A}$	$\frac{V_{phase}}{c}$	$b_{\scriptscriptstyle BLUE}^{\scriptscriptstyle Doppler}$
phase	$\frac{1}{b_{\scriptscriptstyle BLUE}^{\scriptscriptstyle Doppler}}$	$\frac{c}{V_{phase}}$	$rac{\kappa_{phase}}{\kappa_A}$	$rac{{m au}_{phase}}{{m au}_{A}}$	$\left(egin{array}{c} arpsilon_{phase} \ arpsilon_{A} \end{array} ight)$	$rac{\lambda_{phase}}{\lambda_A}$	$rac{C}{V_{group}}$	$rac{1}{b_{\scriptscriptstyle RED}^{\scriptscriptstyle Doppler}}$
rapidity ρ	$e^{- ho}$	$tanh \rho$	$\sinh \rho$	$\operatorname{sech} \rho$	$\cosh \rho$	$\mathrm{csch} ho$	$\operatorname{coth} \rho$	$e^{+ ho}$
stellar \forall angle σ	$1/e^{+\rho}$	$\sin \sigma$	$tan \sigma$	$\cos\sigma$	sec σ	$\cot \sigma$	csco	1/ <i>e</i> ^{-p}
$\beta \equiv \frac{u}{c}$	$\sqrt{\frac{1-\beta}{1+\beta}}$	$\frac{\beta}{1}$	$\frac{1}{\sqrt{\beta^{-2}-1}}$	$\frac{\sqrt{1-\beta^2}}{1}$	$\frac{1}{\sqrt{1-\beta^2}}$	$\frac{\sqrt{\beta^{-2}-1}}{1}$	$\frac{1}{\beta}$	$\sqrt{\frac{1+\beta}{1-\beta}}$
value for β=3/5	$\frac{1}{2} = 0.5$	$\frac{3}{5} = 0.6$	$\frac{3}{4}$ =0.75	$\frac{4}{5} = 0.80$	$\frac{5}{4}$ =1.25	$\frac{4}{3}$ =1.33	$\frac{5}{3}$ =1.67	$\frac{2}{1}$ =2.0

$$v_{phase} = B \cosh \rho \approx B + \frac{1}{2} B \rho^{2} (\text{for } u \ll c)$$

$$c\kappa_{phase} = B \sinh \rho \approx B \rho \quad (\text{for } u \ll c)$$

$$\frac{u}{c} = \tanh \rho \approx \rho \quad (\text{for } u \ll c)$$

$$\frac{u}{c} = \tanh \rho \approx \rho \quad (\text{for } u \ll c)$$

$$At \text{ low speeds:}$$

$$v_{phase} \approx B + \frac{1}{2} \frac{B}{c^{2}} u^{2} \quad \Leftarrow \text{ for } (u \ll c) \Rightarrow \quad \kappa_{phase} \approx \frac{B}{c^{2}} u$$

$$\text{Rescale } v_{phase} \text{ by } h \quad \text{so: } M = \frac{hB}{c^{2}} \quad \text{or: } hB = Mc^{2} \quad (\text{The famous} Mc^{2} \text{ shows up here!})$$

$$hv_{phase} \approx hB + \frac{1}{2} \frac{hB}{c^{2}} u^{2} \quad \Leftarrow \text{ for } (u \ll c) \Rightarrow \quad h\kappa_{phase} \approx \frac{hB}{c^{2}} u$$

$$\text{Resembles: } const. + \frac{1}{2} M u^{2} \quad \text{Resembles: } Mu$$

$$h\rho \approx 1 + \frac{1}{2}\rho^{2} \approx 1 + \frac{1}{2}\frac{u^{2}}{c^{2}} \qquad \qquad B = \upsilon_{A}$$
$$B = \upsilon_{A} = c\kappa_{A}$$

2

 U_{phase} and K_{phase} resemble formulae for Newton's kinetic energy $\frac{1}{2}Mu^2$ and momentum Mu. So attach scale factor hto match units.

group	$b_{\scriptscriptstyle RED}^{\scriptscriptstyle Doppler}$	$rac{V_{group}}{c}$	$rac{oldsymbol{v}_{group}}{oldsymbol{v}_A}$	$rac{\lambda_{group}}{\lambda_A}$	K _g . _{oup} K _A	$rac{{m au}_{group}}{{m au}_A}$	$rac{V_{phase}}{c}$	$b_{\scriptscriptstyle BLUE}^{\scriptscriptstyle Doppler}$
phase	$rac{1}{b_{BLUE}^{Doppler}}$	$\frac{c}{V_{phase}}$	$rac{\kappa_{phase}}{\kappa_A}$	$rac{{m au}_{phase}}{{m au}_{A}}$	$\left(egin{array}{c} arpsilon_{phase} \ arpsilon_{A} \end{array} ight)$	$rac{\lambda_{phase}}{\lambda_A}$	$\frac{c}{V_{group}}$	$rac{1}{b_{\scriptscriptstyle RED}^{\scriptscriptstyle Doppler}}$
rapidity ρ	$e^{-\rho}$	tanh ρ	$\sinh \rho$	$\operatorname{sech} \rho$	$\cosh \rho$	$\mathrm{csch} ho$	$\operatorname{coth} \rho$	$e^{+ ho}$
stellar \forall angle σ	$1/e^{+\rho}$	$\sin \sigma$	$tan \sigma$	$\cos \sigma$	sec σ	$\cot \sigma$	csco	1/ <i>e</i> ^{-p}
$\beta \equiv \frac{u}{c}$	$\sqrt{\frac{1-\beta}{1+\beta}}$	$\frac{\beta}{1}$	$\frac{1}{\sqrt{\beta^{-2}-1}}$	$\frac{\sqrt{1-\beta^2}}{1}$	$\frac{1}{\sqrt{1-\beta^2}}$	$\frac{\sqrt{\beta^{-2}-1}}{1}$	$\frac{1}{\beta}$	$\sqrt{\frac{1+\beta}{1-\beta}}$
value for β=3/5	$\frac{1}{2} = 0.5$	$\frac{3}{5} = 0.6$	$\frac{3}{4}$ =0.75	$\frac{4}{5} = 0.80$	$\frac{5}{4}$ =1.25	$\frac{4}{3}$ =1.33	$\frac{5}{3}$ =1.67	$\frac{2}{1} = 2.0$

 $v_{phase} = B \cosh \rho \approx B + \frac{1}{2} B \rho^2 (\text{for } u \ll c)$ $\cosh \rho \approx 1 + \frac{1}{2}\rho^2 \approx 1 + \frac{1}{2}\frac{u^2}{c^2}$ $B = v_A$ $c\kappa_{phase} = B \sinh \rho \approx B\rho$ (for $u \ll c$) $B = v_A = c\kappa_A$ $\sinh \rho \approx \rho \approx \frac{u}{c}$ $\frac{u}{c} = \tanh \rho \approx \rho \qquad \text{(for } u \ll c\text{)}$ $\frac{u}{c} = \tanh \rho \approx \rho \qquad \text{(for } u \ll c\text{)}$ $\frac{u}{At \text{ low speeds:}} \Leftrightarrow B + \frac{1}{2} \frac{B}{c^2} u^2 \qquad \Leftrightarrow \text{for } (u \ll c\text{)} \Rightarrow$ $\kappa_{phase} \approx \frac{B}{c^2} u$ \mathcal{U}_{phase} and \mathcal{K}_{phase} resemble Rescale v_{phase} by h so: $M = \frac{hB}{c^2}$ or: $hB = Mc^2$ (The famous Mc^2 shows up here!) formulae for Newton's kinetic (The famous Mc^2 energy $\frac{1}{2}Mu^2$ and momentum Mu. $hv_{phase} \approx hB + \frac{1}{2} \frac{hB}{c^2} u^2 \quad \Leftarrow \text{ for } (u \ll c) \Rightarrow \quad h\kappa_{phase} \approx \frac{hB}{c^2} u$ So attach scale factor *h* to match units. *"Lucky coincidences?? Cheap trick??* $hv_{phase} \approx Mc^2 + \frac{1}{2}Mu^2 \quad \Leftarrow \text{ for } (u \ll c) \Rightarrow \quad h\kappa_{phase} \approx Mu$... Try <u>exact</u> \mathcal{U}_{phase} ... $hv_{phase} = hB \cosh \rho = Mc^2 \cosh \rho$ λ_{group} v_{group} au_{group} V_{phase} $b_{\scriptscriptstyle RED}^{\scriptscriptstyle Doppler}$ $b_{\scriptscriptstyle BLUE}^{\scriptscriptstyle Doppler}$ group оир group λ_A С $\tau_{\scriptscriptstyle A}$ С v_{A} \boldsymbol{v}_{phase} $\lambda_{_{phase}}$ **K**_{phase} au_{phase} С С phase $b_{BLUE}^{Doppler}$ $b_{\scriptscriptstyle RED}^{\scriptscriptstyle Doppler}$ λ_{A} Vgroup V_{phase} au_A \mathcal{K}_A $\boldsymbol{v}_{\scriptscriptstyle A}$ rapidity $\sinh \rho$ $e^{-\rho}$ $\cosh \rho$ $tanh \rho$ $\operatorname{sech}\rho$ csch*p* $\operatorname{coth} \rho$ ρ $1/e^{+\rho}$ stellar ∀ $1/e^{-\rho}$ SCO $\sin \sigma$ sec d $\cos\sigma$ $\tan \sigma$ $\cot \sigma$ angle σ $\sqrt{\frac{1-\beta}{1+\beta}} \begin{vmatrix} \frac{\beta}{1} & \frac{1}{\sqrt{\beta^{-2}-1}} \end{vmatrix} \frac{\sqrt{1-\beta^2}}{1} \frac{1}{\sqrt{1-\beta^2}}$ $\frac{\sqrt{\beta^{-2}-1}}{1}$ $\sqrt{\frac{1+\beta}{1-\beta}}$ $\frac{1}{\beta}$ $\beta \equiv \frac{u}{c}$ (old-fashioned notation) $\frac{1}{2} = 0.5 \left| \frac{3}{5} = 0.6 \right| \frac{3}{4} = 0.75 \left| \frac{4}{5} = 0.80 \right| \frac{5}{4} = 1.25 \left| \frac{1}{5} = 0.80 \right| \frac{1}{5} = 0.80 \left| \frac{1}{5} = 0.80 \left| \frac{1}{5} = 0.80 \right| \frac{1}{5} = 0.80 \left| \frac{1}{5} = 0.80 \right| \frac{1}{5} = 0.80 \left| \frac{1}{5} = 0.80 \right| \frac{1}{5} = 0.80 \left| \frac{1}{5} = 0.80 \left| \frac{1}{5} = 0.80 \right| \frac{1}{5} = 0.80 \left| \frac{1}{5} = 0.80 \left| \frac{1}{5} = 0.80 \right| \frac{1}{5} = 0.80 \left| \frac{1}{5} = 0.80 \left| \frac{1}{5} = 0.80 \right| \frac{1}{5} = 0.80 \left| \frac{1}{5} = 0.80 \left| \frac{1}{5} = 0.80 \right| \frac{1}{5} = 0.80 \left| \frac{1}{5} = 0.80 \left| \frac{1}{5} = 0.80 \left| \frac{1}{5} = 0.80 \right| \frac{1}{5} = 0.80 \left| \frac{1}{5} = 0.$ $\frac{4}{3}$ =1.33 $\frac{5}{2}$ =1.67 $\frac{2}{1} = 2.0$ value for $\beta = 3/5$

$$\frac{\upsilon_{phase} = B\cosh \rho}{(\kappa_{phase} = B\sinh \rho)} \approx B\rho \quad (for \ u \ll c)} \qquad \cosh \rho \approx 1 + \frac{1}{2}\rho^{2} \approx 1 + \frac{1}{2}c^{2} \qquad B = \upsilon_{A}$$

$$B = \upsilon_{A} = \varepsilon_{A}$$

$$B = \varepsilon_{A} = \varepsilon_{A}$$

$$B = \upsilon_{A} = \varepsilon_{A}$$

$$B = \varepsilon_{A} = \varepsilon_{A}$$

$$B =$$

 $v_{phase} = B \cosh \rho \approx B + \frac{1}{2} B \rho^2 (\text{for } u \ll c)$ $\cosh \rho \approx 1 + \frac{1}{2}\rho^2 \approx 1 + \frac{1}{2}\frac{u^2}{c^2}$ $\sinh \rho \approx \rho \approx \frac{u}{c}$ $B = v_A$ $c\kappa_{phase} = B \sinh \rho \approx B\rho$ (for $u \ll c$) $B = v_A = c\kappa_A$ $= \tanh \rho \approx \rho$ (for $u \ll c$) 1858-1947 At low speeds: $v_{phase} \approx B + \frac{1}{2} \frac{B}{c^2} u^2$ At low speeds: $\Leftarrow \text{ for } (u \ll c) \Rightarrow$ $\kappa_{phase} \approx \frac{B}{c^2} u$ U_{phase} and K_{phase} resemble formulae for Newton's kinetic Rescale v_{phase} by h so: $M = \frac{hB}{c^2}$ or: $hB = Mc^2$ (The famous Mc^2 energy $\frac{1}{2}Mu^2$ and momentum Mu. shows up here!) $hv_{phase} \approx hB + \frac{1}{2} \frac{hB}{c^2} u^2 \quad \Leftarrow \text{ for } (u \ll c) \Rightarrow \quad h\kappa_{phase} \approx \frac{hB}{c^2} u$ So attach scale factor *h* (or *hN*) to match units. *Eucky coincidences??* Cheap trick?? $hv_{phase} \approx Mc^2 + \frac{1}{2}Mu^2 \quad \Leftarrow \text{ for } (u \ll c) \Rightarrow \quad h\kappa_{phase} \approx Mu$... Try <u>exact</u> \mathcal{U}_{phase} ... $hv_{phase} = hB \cosh \rho = Mc^2 \cosh \rho$ Need to replace with *hN* to match Planck (1900) Total Energy: $E = \frac{Mc^2}{\sqrt{1-u^2/c^2}}$ Einstein (1905) V_{phas} e.m. energy density v_{group} $au_{\it group}$ λ_{group} $b_{\scriptscriptstyle RED}^{\scriptscriptstyle Doppler}$ group оир group $\varepsilon_0 E^* E = h N v_{phase}$ С λ_{A} С v_{A} κ_{phase} v_{phase} au_{phase} This motivates the С phase $b_{\scriptscriptstyle BLUE}^{\scriptscriptstyle Doppler}$ 'particle" normalization V_{phase} au_A $\boldsymbol{\mathcal{U}}_{\boldsymbol{A}}$ \mathcal{K}_{A} $\int \Psi^* \Psi \, dV = N \quad \Psi = \sqrt{\frac{\varepsilon_0}{hv}} E$ Big worry: Is not rapidity $e^{-\rho}$ $\sinh \rho$ $\cosh \rho$ $tanh \rho$ $\operatorname{sech}\rho$ ρ oscillator energy quadratic in frequency v? $1/e^{-\rho}$ stellar ∀ $1/e^{+\rho}$ $\sin \sigma$ $\csc\sigma$ $\cot \sigma$ $\tan \sigma$ $\cos\sigma$ $\sec \sigma$ HO energy= $\frac{1}{2}A^2v^2$ angle σ $\frac{\sqrt{\beta^{-2}-1}}{1}$ $\frac{\sqrt{1-\beta^2}}{1}$ $\sqrt{\frac{1+\beta}{1-\beta}}$ $\frac{1}{\beta}$ $\frac{\beta}{1}$ $\frac{1}{\sqrt{\beta^{-2}-1}}$ $\frac{1}{\sqrt{1-\beta^2}}$ $\beta \equiv \frac{u}{c}$ Resolution and dirty secret: E, N, and v_{phase} are all frequencies! $\frac{1}{2} = 0.5 \left| \frac{3}{5} = 0.6 \right| \frac{3}{4} = 0.75 \left| \frac{4}{5} = 0.80 \right| \frac{5}{4} = 1.25 \left| \frac{1}{2} = 0.80 \right| \frac{1}{2} = 0.80 \left| \frac{1}{2} = 0.80 \left| \frac{1}{2} = 0.80 \right| \frac{1}{2} = 0.80 \left| \frac{1}{2} = 0.80 \right| \frac{1}{2} = 0.80 \left| \frac{1}{2} = 0.80 \left| \frac{1}{2} = 0.80 \right| \frac{1}{2} = 0.80 \left| \frac{1}{2} = 0.80 \left| \frac{1}{2} = 0.80 \right| \frac{1}{2} = 0.80 \left| \frac{1}{2} = 0.80 \left| \frac{1}{2} = 0.80 \right| \frac{1}{2} = 0.80 \left| \frac{1}{2} = 0.80 \left| \frac{1}{2} = 0.80 \right| \frac{1}{2} = 0.80 \left| \frac{1}{2} = 0.80 \left| \frac{1}{2} = 0.80 \left| \frac{1}{2} = 0.80 \right| \frac{1}{2} = 0.80 \left| \frac{1}{2} = 0.$ $\frac{4}{3}$ =1.33 $\frac{5}{3}$ =1.67 $\frac{2}{2}$ =2.0 value for $\beta = 3/5$

$$\frac{v_{phase} = B\cosh \rho}{c\kappa_{phase} = B\sinh \rho} \approx B\rho \quad (for \ u \ll c)$$

$$\frac{u}{c} = \tanh \rho \approx \rho \quad (for \ u \ll c)$$

$$\frac{u}{c} = \tanh \rho \approx \rho \quad (for \ u \ll c)$$

$$\frac{u}{c} = \tanh \rho \approx \rho \quad (for \ u \ll c)$$

$$At \ low \ speeds:$$

$$v_{phase} \approx B + \frac{1}{2} \frac{B}{c^2} u^2 \quad \Leftarrow \ for \ (u \ll c) \Rightarrow \quad \kappa_{phase} \approx \frac{B}{c^2} u \quad U_{phase} \ and \ \kappa_{phase} \ resemble$$

$$formulae \ for \ Newton's \ kinetic$$

$$rescale \ v_{phase} by \ h \ so: \ M = \frac{hB}{c^2} \quad or: \ hB = Mc^2 \quad (The \ famous \ Mc^2 \ shows \ up \ here!)$$

$$hv_{phase} \approx hB + \frac{1}{2} \frac{hB}{c^2} u^2 \quad \Leftarrow \ for \ (u \ll c) \Rightarrow \quad h\kappa_{phase} \approx \frac{hB}{c^2} u \quad U_{phase} \ and \ \kappa_{phase} \ resemble$$

$$formulae \ for \ Newton's \ kinetic \ energy \ \frac{1}{2} Mu^2 \ and \ momentum \ Mu.$$

$$hv_{phase} \approx Mc^2 + \frac{1}{2} Mu^2 \quad \Leftarrow \ for \ (u \ll c) \Rightarrow \quad h\kappa_{phase} \approx \frac{hB}{c^2} u \quad So \ attach \ scale \ factor \ h \ (or \ hN) \ to \ match \ units.$$

$$hv_{phase} \approx Mc^2 + \frac{1}{2} Mu^2 \quad \Leftarrow \ for \ (u \ll c) \Rightarrow \quad h\kappa_{phase} \approx Mu \quad \ Ty \ exact \ U_{phase} \ and \ \kappa_{phase}.$$

$$hv_{phase} \approx Mc^2 + \frac{1}{2} Mu^2 \quad \Leftarrow \ for \ (u \ll c) \Rightarrow \quad h\kappa_{phase} \approx Mu \quad \ Ty \ exact \ U_{phase} \ and \ \kappa_{phase}.$$

$$hv_{phase} = hB \ sch \ \rho = Mc^2 \ coh \ \rho = Mc^2 \ coh \ \rho \ match \ matc$$

$$\frac{v_{phase} = B \cosh \rho}{c\kappa_{phase} = B \sinh \rho} \approx B\rho \quad (for \ u \ll c)$$

$$\frac{u}{c} = \tanh \rho \approx \rho \quad (for \ u \ll c)$$

$$\frac{u}{c} = \tanh \rho \approx \rho \quad (for \ u \ll c)$$

$$\sinh \rho \approx \rho \approx \frac{u}{c}$$

$$\frac{u}{c} = \tanh \rho \approx \rho \quad (for \ u \ll c)$$

$$\sinh \rho \approx \rho \approx \frac{u}{c}$$

$$\frac{u}{c} = \tanh \rho \approx \rho \quad (for \ u \ll c)$$

$$\sinh \rho \approx \rho \approx \frac{u}{c}$$

$$\frac{u}{c} = \tanh \rho \approx \rho \quad (for \ u \ll c)$$

$$\sinh \rho \approx \rho \approx \frac{u}{c}$$

$$\frac{u}{c} = \tanh \rho \approx \rho \quad (for \ u \ll c)$$

$$here \ Planek \quad here \ here$$

Introduction to wave coordinates by Left-moving and Right-moving laser beams L-laser 600THz and R-laser 600THZ (Laser lab frame) Phase P-vector and group G-vector span Cartesian spacetime coordinates L'-laser 300THz and R'-laser 1200THZ (Doppler shifted in moving frame) Doppler shifted L'-vector and R'-vector in (L, R)-per-spacetime Vectors of phase P'=(R'+L')/2 and group G'=(R'-L')/2 Einstein-Lorentz-Minkowski "Relawavity" spacetime coordinates Brief tour of and relativistic mechanics by geometry Summary of optical wave parameters for relativity and QM

