Group Theory in Quantum Mechanics Lecture 13 (3.05.15)

C_Nsymmetry systems coupled, uncoupled, and re-coupled

(Geometry of U(2) characters - Ch. 6-12 of Unit 3) (Principles of Symmetry, Dynamics, and Spectroscopy - Sec. 1-12 of Ch. 2)

Breaking C_N cyclic coupling into linear chains Review of 1D-Bohr-ring related to infinite square well (and review of revival) ∞ -Square well paths analyzed using Bohr rotor paths Breaking C_{2N+2} to approximate linear N-chain Band-It simulation: Intro to scattering approach to quantum symmetry

Breaking C_{2N} cyclic coupling down to C_N symmetry Acoustical modes vs. Optical modes Intro to other examples of band theory Type-AB avoided crossing view of band-gaps

Breaking C_N cyclic coupling into linear chains
 Review of 1D-Bohr-ring related to infinite square well (and review of revival)
 ∞-Square well paths analyzed using Bohr rotor paths
 Breaking C_{2N+2} to approximate linear N-chain
 Band-It simulation: Intro to scattering approach to quantum symmetry

Breaking C_{2N} cyclic coupling down to C_N symmetry Acoustical modes vs. Optical modes Intro to other examples of band theory Avoided crossing view of band-gaps

Review: ∞-Square well PE & Bohr rotor

Fig. 12.2.6 Comparison of eigensolutions for

Review: ∞-Square well PE & Bohr rotor

Fig. 12.2.6 Comparison of eigensolutions for

Breaking C_N cyclic coupling into linear chains Review of 1D-Bohr-ring related to infinite square well (and review of revival) ∞-Square well paths analyzed using Bohr rotor paths Breaking C_{2N+2} to approximate linear N-chain Band-It simulation: Intro to scattering approach to quantum symmetry

Breaking C_{2N} cyclic coupling down to C_N symmetry Acoustical modes vs. Optical modes Intro to other examples of band theory Avoided crossing view of band-gaps

Review: ∞ -Square well PE paths analyzed using Bohr rotor paths

as it makes an upside down-delta function around x=0.8W.

So how is the ∞ -well "flipped revival explained?

(a) Infinite Square Well at t=0

Review: ∞ -Square well PE paths analyzed using Bohr rotor paths

1.

All ∞ -well peak must be made of sine wave components.

2. Bohr rotor peak made of *sine* wave components is *anti*-symmetric, so an *upside-down mirror* image peak must accompany any peak.

as it makes an upside down-delta function around x=0.8W.

3. So how is the ∞ -well "flipped revival explained?

4. Bohr rotor half-time revival is *same*-side-up copy of initial peak on *opposite* side of ring. So that upside-down Bohr-image will appear upside-down on the other side at half-time revival. Breaking C_N cyclic coupling into linear chains
 Review of 1D-Bohr-ring related to infinite square well (and review of revival)
 ∞-Square well paths analyzed using Bohr rotor paths
 Breaking C_{2N+2} to approximate linear N-chain
 Band-It simulation: Intro to scattering approach to quantum symmetry

Breaking C_{2N} cyclic coupling down to C_N symmetry Acoustical modes vs. Optical modes Intro to other examples of band theory Avoided crossing view of band-gaps

Thursday, March 5, 2015

Consider sine and cosine eigenvectors of a 14 -by-14 elementary Bloch matrix $\mathbf{H}^{\text{EB}(14)}$																			
$ \left\langle \cos^{m} \right = \left(\begin{array}{ccc} c_{0}^{m} = 1 \\ c_{1}^{m} \\ c_{2}^{m} \\ c_{3}^{m} \\ c_{3}^{m} \\ c_{4}^{m} \\ c_{5}^{m} \\ c_{6}^{m} \\ c_{7}^{m} = 1 \\ c_{-6}^{m} \\ c_{-5}^{m} \\ c_{-5}^{m} \\ c_{-5}^{m} \\ c_{-3}^{m} \\ c_{-2}^{m} \\ c_{-1}^{m} \\ c_{-1$																			
$\mathbf{H}^{\mathrm{EB}(14)} \Big \sin^{m} \Big\rangle = \omega^{m(14)} \Big \sin^{m} \Big\rangle$																			
	$\frac{p}{p'}$	0	1	2	3	4	5	6	7	-6	-5	-4	-3	-2	-1				
	0	2 <i>r</i>	- <i>r</i>	•	•	•	•	•	•	•	•	•	•		- <i>r</i>	0		0	
	1	<i>-r</i>	2 <i>r</i>	- <i>r</i>	•	•	•	•								s_1^m		s_1^m	where: $\omega^{m(14)} = 2r(1 - \cos\frac{2\pi m}{14})$
	2		- <i>r</i>	2 <i>r</i>	- <i>r</i>	•	•	•								s_2^m		s_2^m	
	3		•	- <i>r</i>	2 <i>r</i>	- <i>r</i>	•	•								s_3^m		s_3^m	
	4		•	•	- <i>r</i>	2 <i>r</i>	- <i>r</i>	•								s_4^m		s_4^m	
	5		•	•	•	- <i>r</i>	2 <i>r</i>	-r								s_5^m		s_5^m	
-	6	•	·	•	•	•	- <i>r</i>	2 <i>r</i>	- <i>r</i>							s_6^m	$=\omega^{m(14)}$	s_6^m	
	7	•						- <i>r</i>	2 <i>r</i>	- <i>r</i>						$\left \begin{array}{c} 0\\ -m \end{array} \right $		$\frac{0}{m}$	
	-6								- <i>r</i>	2 <i>r</i>	-r		•	•	•	$\begin{vmatrix} s_{-6} \\ m \end{vmatrix}$		$\begin{bmatrix} s_{-6} \\ m \end{bmatrix}$	
	-5									<i>-r</i>	2 <i>r</i>	- <i>r</i>		•	•	$\begin{vmatrix} S_{-5} \\ S_m \end{vmatrix}$		$\begin{bmatrix} \mathbf{s}_{-5} \\ \mathbf{s}^m \end{bmatrix}$	
	-4									•	-r	2 <i>r</i>	- <i>r</i>	•	•	$\begin{vmatrix} s_{-4} \\ m \end{vmatrix}$		$\begin{bmatrix} 3_{-4}\\ \mathbf{m} \end{bmatrix}$	
	-3									•	•	- <i>r</i>	2 <i>r</i>	- <i>r</i>	•	$\begin{vmatrix} s_{-3} \\ s_m \end{vmatrix}$		$\begin{bmatrix} \mathbf{s}_{-3}\\ \mathbf{m} \end{bmatrix}$	
	-2									•	•		- <i>r</i>	2 <i>r</i>	- <i>r</i>	$\begin{vmatrix} s_{-2} \\ s_m \end{vmatrix}$		$\begin{vmatrix} \mathbf{s}_{-2} \\ \mathbf{s}^m \end{vmatrix}$	
	-1	- <i>r</i>								•	•	•	•	- <i>r</i>	2 <i>r</i>	(³ -1) (∫ ³ −1)	

Consider sine and cosine eigenvectors of a 14-by-14 elementary Bloch matrix $\mathbf{H}^{\text{EB}(14)}$

$$\left\langle \cos^{m} \right| = \left(\begin{array}{ccc} c_{0}^{m} = 1 \\ c_{1}^{m} \\ c_{2}^{m} \\ c_{3}^{m} \\ c_{4}^{m} \\ c_{5}^{m} \\ c_{6}^{m} \\ c_{7}^{m} = 1 \\ c_{-6}^{m} \\ c_{-5}^{m} \\ c_{-5}^{m} \\ c_{-4}^{m} \\ c_{-3}^{m} \\ c_{-2}^{m} \\ c_{-1}^{m} \\ c_{-$$

 $\mathbf{H}^{\mathrm{EB}(14)} \Big| \sin^{m} \Big\rangle = \omega^{m(14)} \Big| \sin^{m} \Big\rangle$

 $\mathbf{H}^{\text{EB}(14)}$ gives eigensolution of a 6-by-6-constrained Bloch matrix $\mathbf{H}^{\text{CM}(6)}$

where:

 $\mathbf{H}^{\text{EB(14)}}$ gives eigensolution of a 6-by-6 constrained Bloch matrix $\mathbf{H}^{\text{CM(6)}}$ using its sine-waves only

Breaking C_N cyclic coupling into linear chains Review of 1D-Bohr-ring related to infinite square well (and review of revival) ∞ -Square well paths analyzed using Bohr rotor paths Breaking C_{2N+2} to approximate linear N-chain Band-It simulation: Intro to scattering approach to quantum symmetry

Breaking C_{2N} cyclic coupling down to C_N symmetry Acoustical modes vs. Optical modes Intro to other examples of band theory Avoided crossing view of band-gaps

Fig. 13.1.1 Non-constant potential V(x) approximated by a series of small constant-V steps.

Between each step potential, kinetic energy, and k are assumed constant.

 $\Psi_E(x,0) = Re^{ikx} + Le^{-ikx}$

Fig. 13.1.1 Non-constant potential V(x) approximated by a series of small constant-V steps.

Between each step potential, kinetic energy, and k are assumed constant. x-derivative is denoted by $D\Psi = \Psi_E(x,0) = Re^{ikx} + Le^{-ikx} = \frac{\partial}{\partial x}\Psi_E(x,0) = ik \operatorname{Re}^{ikx} - ikLe^{-ikx} \equiv D\Psi_E(x,0)$

Fig. 13.1.1 Non-constant potential V(x) approximated by a series of small constant-V steps.

Between each step potential, kinetic energy, and k are assumed constant. x-derivative is denoted by $D\Psi$

$$\Psi_E(x,0) = Re^{ikx} + Le^{-ikx} \qquad \qquad \frac{\partial}{\partial x} \Psi_E(x,0) = ik \operatorname{Re}^{ikx} - ikLe^{-ikx} \equiv D\Psi_E(x,0)$$

Relations between the pair (Ψ , $D\Psi$) and amplitudes (R , L) just above $x=a$.

$$\begin{pmatrix} \Psi \\ D\Psi \end{pmatrix} = \begin{pmatrix} e^{ikx} & e^{-ikx} \\ ike^{ikx} & -ike^{-ikx} \end{pmatrix} \begin{pmatrix} R \\ L \end{pmatrix}$$

Fig. 13.1.1 Non-constant potential V(x) approximated by a series of small constant-V steps.

Between each step potential, kinetic energy, and k are assumed constant. x-derivative is denoted by $D\Psi$

$$\Psi_{E}(x,0) = Re^{ikx} + Le^{-ikx} \qquad \qquad \frac{\partial}{\partial x}\Psi_{E}(x,0) = ik \operatorname{Re}^{ikx} - ikLe^{-ikx} \equiv D\Psi_{E}(x,0)$$
Relations between the pair (Ψ , $D\Psi$) and amplitudes (R , L) just above $x = a$. (Inverted)

$$\begin{pmatrix} \Psi\\ D\Psi \end{pmatrix} = \begin{pmatrix} e^{ikx} & e^{-ikx}\\ ike^{ikx} & -ike^{-ikx} \end{pmatrix} \begin{pmatrix} R\\ L \end{pmatrix}, \qquad \begin{pmatrix} R\\ L \end{pmatrix} = \frac{i}{2k} \begin{pmatrix} -ike^{-ikx} & -e^{-ikx}\\ -ike^{ikx} & e^{ikx} \end{pmatrix} \begin{pmatrix} \Psi\\ D\Psi \end{pmatrix}$$

Fig. 13.1.1 Non-constant potential V(x) approximated by a series of small constant-V steps.

Between each step potential, kinetic energy, and k are assumed constant. x-derivative is denoted by $D\Psi$

$$\Psi_{E}(x,0) = Re^{ikx} + Le^{-ikx} \qquad \frac{\partial}{\partial x}\Psi_{E}(x,0) = ik \operatorname{Re}^{ikx} - ikLe^{-ikx} \equiv D\Psi_{E}(x,0)$$
Relations between the pair $(\Psi, D\Psi)$ and amplitudes (R, L) just above $x = a$. (Inverted)

$$\begin{pmatrix} \Psi \\ D\Psi \end{pmatrix} = \begin{pmatrix} e^{ikx} & e^{-ikx} \\ ike^{ikx} & -ike^{-ikx} \end{pmatrix} \begin{pmatrix} R \\ L \end{pmatrix}, \qquad \begin{pmatrix} R \\ L \end{pmatrix} = \frac{i}{2k} \begin{pmatrix} -ike^{-ikx} & -e^{-ikx} \\ -ike^{ikx} & e^{ikx} \end{pmatrix} \begin{pmatrix} \Psi \\ D\Psi \end{pmatrix}$$
Relations on the other side of the step boundary just below $x = a$. (Inverted)

$$\begin{pmatrix} \Psi' \\ D\Psi' \end{pmatrix} = \begin{pmatrix} e^{ik'x} & e^{-ik'x} \\ ik'e^{ik'x} & -ik'e^{-ik'x} \end{pmatrix} \begin{pmatrix} R' \\ L' \end{pmatrix}, \qquad \begin{pmatrix} R' \\ L' \end{pmatrix} = \frac{i}{2k'} \begin{pmatrix} -ik'e^{-ik'x} & -e^{-ik'x} \\ -ik'e^{ik'x} & e^{ik'x} \end{pmatrix} \begin{pmatrix} \Psi' \\ D\Psi' \end{pmatrix}$$

Wave function and derivative at $x=a-\varepsilon$ equals that at $x=a+\varepsilon$.

Between each step potential, kinetic energy, and k are assumed constant. x-derivative is denoted by $D\Psi$

$$\Psi_E(x,0) = R e^{ikx} + L e^{-ikx} \qquad \qquad \frac{\partial}{\partial x} \Psi_E(x,0) = ik \operatorname{Re}^{ikx} - ikL e^{-ikx} \equiv D \Psi_E(x,0)$$

Relations between the pair $(\Psi, D\Psi)$ and amplitudes (R, L) just above x=a. (Inverted)

$$\begin{pmatrix} \Psi \\ D\Psi \end{pmatrix} = \begin{pmatrix} e^{ikx} & e^{-ikx} \\ ike^{ikx} & -ike^{-ikx} \end{pmatrix} \begin{pmatrix} R \\ L \end{pmatrix}, \quad \begin{pmatrix} R \\ L \end{pmatrix} = \frac{i}{2k} \begin{pmatrix} -ike^{-ikx} & -e^{-ikx} \\ -ike^{ikx} & e^{ikx} \end{pmatrix} \begin{pmatrix} \Psi \\ D\Psi \end{pmatrix}$$

Relations on the other side of the step boundary just below
$$x=a$$
. (Inverted)

$$\begin{pmatrix} \Psi' \\ D\Psi' \end{pmatrix} = \begin{pmatrix} e^{ik'x} & e^{-ik'x} \\ ik'e^{ik'x} & -ik'e^{-ik'x} \end{pmatrix} \begin{pmatrix} R' \\ L' \end{pmatrix}, \quad \begin{pmatrix} R' \\ L' \end{pmatrix} = \frac{i}{2k'} \begin{pmatrix} -ik'e^{-ik'x} & -e^{-ik'x} \\ -ik'e^{ik'x} & e^{ik'x} \end{pmatrix} \begin{pmatrix} \Psi' \\ D\Psi' \end{pmatrix}$$

Wave function and derivative at $x=a-\varepsilon$ equals that at $x=a+\varepsilon$.

Relations on the other side of the step boundary just below
$$x=a$$
. (Inverted)

$$\begin{pmatrix} \Psi' \\ D\Psi' \end{pmatrix} = \begin{pmatrix} e^{ik'x} & e^{-ik'x} \\ ik'e^{ik'x} & -ik'e^{-ik'x} \end{pmatrix} \begin{pmatrix} R' \\ L' \end{pmatrix}, \quad \begin{pmatrix} R' \\ L' \end{pmatrix} = \frac{i}{2k'} \begin{pmatrix} -ik'e^{-ik'x} & -e^{-ik'x} \\ -ik'e^{ik'x} & e^{ik'x} \end{pmatrix} \begin{pmatrix} \Psi' \\ D\Psi' \end{pmatrix}$$

Wave function and derivative at $x=a-\varepsilon$ equals that at $x=a+\varepsilon$.

$$\begin{pmatrix} R^{*}\\ L^{*} \end{pmatrix} = \begin{pmatrix} R^{*}\\ L^{*} \end{pmatrix} = \begin{pmatrix} i\\ k^{*}\\ k^{*} \end{pmatrix} \begin{pmatrix} -ik^{*}e^{-ik^{*}a} & -e^{-ik^{*}a}\\ -ik^{*}e^{ik^{*}a} & e^{ik^{*}a} \end{pmatrix} \begin{pmatrix} \Psi^{*}\\ D\Psi^{*} \end{pmatrix}_{x=a-\varepsilon} = \begin{pmatrix} \Psi^{*}\\ D\Psi^{*} \end{pmatrix}_{x=a+\varepsilon}$$

$$\begin{pmatrix} R^{*}\\ L^{*} \end{pmatrix} = \frac{i}{2k^{*}} \begin{pmatrix} -ik^{*}e^{-ik^{*}a} & -e^{-ik^{*}a}\\ -ik^{*}e^{ik^{*}a} & e^{ik^{*}a} \end{pmatrix} \begin{pmatrix} \Psi^{*}\\ D\Psi^{*} \end{pmatrix}_{x=a}$$

$$\begin{pmatrix} R^{*}\\ L^{*} \end{pmatrix} = \frac{i}{2k^{*}} \begin{pmatrix} -ik^{*}e^{-ik^{*}a} & -e^{-ik^{*}a}\\ -ik^{*}e^{ik^{*}a} & e^{ik^{*}a} \end{pmatrix} \begin{pmatrix} e^{ika} & e^{-ika}\\ ike^{ika} & -ike^{-ika} \end{pmatrix} \begin{pmatrix} R^{*}\\ L \end{pmatrix}$$

$$\begin{pmatrix} R^{*}\\ L^{*} \end{pmatrix} = \begin{pmatrix} \left(1+\frac{k}{k^{*}}\right)\frac{e^{i(k-k^{*})a}}{2} & \left(1-\frac{k}{k^{*}}\right)\frac{e^{-i(k+k^{*})a}}{2} \\ \left(1-\frac{k}{k^{*}}\right)\frac{e^{i(k+k^{*})a}}{2} & \left(1+\frac{k}{k^{*}}\right)\frac{e^{i(k^{*}-k)a}}{2} \end{pmatrix} \begin{pmatrix} R\\ L \end{pmatrix}$$

Wave function and derivative at $x=a-\varepsilon$ equals that at $x=a+\varepsilon$.

$$\begin{pmatrix} R' \\ L' \end{pmatrix} = \begin{pmatrix} R' \\ L' \end{pmatrix} = \begin{pmatrix} R' \\ L' \end{pmatrix} = \begin{pmatrix} 1 + \frac{k}{k'} \end{pmatrix} \begin{pmatrix} e^{i(k+k')a} \\ 1 - \frac{k}{k'} \end{pmatrix} \begin{pmatrix} 1 - \frac{k}{k'} \end{pmatrix} \begin{pmatrix} e^{i(k-k')a} \\ 1 - \frac{k}{k'} \end{pmatrix} \begin{pmatrix} \Psi' \\ D\Psi' \end{pmatrix}_{x=a-\varepsilon} = \begin{pmatrix} \Psi \\ D\Psi \end{pmatrix}_{x=a+\varepsilon}$$

A special case: *single input conditions* with no sources or reflectors on one side (say, right hand side) so no incoming waves exist there (say, L=0 but $R=Outgoing \neq 0$.)

Wave function and derivative at $x=a-\varepsilon$ equals that at $x=a+\varepsilon$.

$$\begin{pmatrix} R'\\ L' \end{pmatrix} = \begin{pmatrix} R'\\ L' \end{pmatrix} = \begin{pmatrix} 1+\frac{k}{k'} \end{pmatrix} \begin{pmatrix} e^{i(k+k')a}\\ 2 \end{pmatrix} \begin{pmatrix} 1-\frac{k}{k'} \end{pmatrix} \begin{pmatrix} e^{i(k+k')a}\\ 2 \end{pmatrix} \begin{pmatrix} e^{i(k-k)a}\\ 2 \end{pmatrix} \begin{pmatrix} e^{i(k-k)a}\\ 2 \end{pmatrix} \begin{pmatrix} R\\ k' \end{pmatrix} = \begin{pmatrix} R'\\ L' \end{pmatrix} = \begin{pmatrix} 1-\frac{k}{k'} \end{pmatrix} \begin{pmatrix} e^{i(k+k')a}\\ 2 \end{pmatrix} \begin{pmatrix} 1-\frac{k}{k'} \end{pmatrix} \begin{pmatrix} e^{i(k-k)a}\\ 2 \end{pmatrix} \begin{pmatrix} R\\ L' \end{pmatrix} \begin{pmatrix} R\\ L' \end{pmatrix} = \begin{pmatrix} 1-\frac{k}{k'} \end{pmatrix} \begin{pmatrix} e^{i(k+k')a}\\ 2 \end{pmatrix} \begin{pmatrix} 1-\frac{k}{k'} \end{pmatrix} \begin{pmatrix} e^{i(k-k)a}\\ 2 \end{pmatrix} \begin{pmatrix} R\\ L \end{pmatrix} \begin{pmatrix} R\\ L \end{pmatrix} \end{pmatrix} \begin{pmatrix} R\\ L \end{pmatrix}$$

A special case: *single input conditions* with no sources or reflectors on one side (say, right hand side) so no incoming waves exist there (say, L=0 but $R=Outgoing \neq 0$.)

$$\begin{pmatrix} R' \\ L' \end{pmatrix} = \begin{pmatrix} \left(1 + \frac{k}{k'}\right) \frac{e^{i(k-k')a}}{2} & \left(1 - \frac{k}{k'}\right) \frac{e^{-i(k+k')a}}{2} \\ \left(1 - \frac{k}{k'}\right) \frac{e^{i(k+k')a}}{2} & \left(1 + \frac{k}{k'}\right) \frac{e^{i(k'-k)a}}{2} \end{pmatrix} \begin{pmatrix} R \\ 0 \end{pmatrix} = \begin{pmatrix} R\left(1 + \frac{k}{k'}\right) \frac{e^{i(k-k')a}}{2} \\ R\left(1 - \frac{k}{k'}\right) \frac{e^{i(k+k')a}}{2} \end{pmatrix}$$

A special case: *single input conditions* with no sources or reflectors on one side (say, right hand side) so no incoming waves exist there (say, L=0 but $R=Outgoing \neq 0$.)

$$\begin{pmatrix} R' \\ L' \end{pmatrix} = \begin{pmatrix} \left(1 + \frac{k}{k'}\right) \frac{e^{i(k-k')a}}{2} & \left(1 - \frac{k}{k'}\right) \frac{e^{-i(k+k')a}}{2} \\ \left(1 - \frac{k}{k'}\right) \frac{e^{i(k+k')a}}{2} & \left(1 + \frac{k}{k'}\right) \frac{e^{i(k'-k)a}}{2} \end{pmatrix} \begin{pmatrix} R \\ 0 \end{pmatrix} = \begin{pmatrix} R \left(1 + \frac{k}{k'}\right) \frac{e^{i(k-k')a}}{2} \\ R \left(1 - \frac{k}{k'}\right) \frac{e^{i(k+k')a}}{2} \end{pmatrix}$$

This gives transmitted or output amplitude R and reflected amplitude L' given an input amplitude R'.

$$R = \frac{2k'}{\left(k+k'\right)} R' e^{i\left(k'-k\right)a} , \qquad L' = \frac{\left(k'-k\right)}{\left(k+k'\right)} R' e^{2ik'a}$$

The transmission coefficient $T_{transmit}$ and reflection coefficient $T_{reflect}$ (for a=0)

$$T_{transmit} = \frac{|R|^{2}}{|R|^{2}} = \frac{4|k|^{2}}{|k+k|^{2}}, \quad T_{reflect} = \frac{|L|^{2}}{|R|^{2}} = \frac{|k'-k|^{2}}{|k'+k|^{2}} \quad SWR = \frac{L'-R'}{L'+R'} = \frac{\frac{2kR'}{k+k'}}{\frac{2k'R'}{k+k'}} = \frac{k}{k'} = \frac{\sqrt{E-V}}{\sqrt{E}}$$

$$SWR \neq 5: 3$$

$$R' - L'$$

$$R' + L' = R$$

$$Re\Psi(x,t)$$

$$W = 16$$

Breaking C_N cyclic coupling into linear chains Review of 1D-Bohr-ring related to infinite square well (and review of revival) Breaking C_{2N+2} to approximate linear N-chain Band-It simulation: Intro to scattering approach to quantum symmetry

Breaking C_{2N} cyclic coupling down to C_N symmetry Acoustical modes vs. Optical modes Intro to other examples of band theory Avoided crossing view of band-gaps

Only C_{12} symmetry projectors commute with **K**-matrix if $\underline{a} \neq \overline{a}$. Then C_{24} -symmetry is $\underline{b} \, \mathfrak{Le} \, \underline{ken}$!

Two kinds of C_{12} *symmetry m-states are coupled by* **K***-matrix.*

$$\begin{array}{c} C_{24} \text{ lattice reduced to } C_{12} \text{ symmetry} \\ F_{ig. 2.7.6 \text{ PSDS}} \\ \hline & & \\ (r^{23}|_{\mathbf{X}}) \\ \hline & \\ (r^{23}|_{\mathbf{X}}) \\ \hline & \\ (r^{1}|_{\mathbf{X}}) \\ \hline & \\ (r^{1}|_{\mathbf{X}}) \\ \hline & \\ (r^{1}|_{\mathbf{X}}) \\ \hline & \\ (r^{2}|_{\mathbf{X}}) \\ \hline & \\ (r^{2}|_{\mathbf{X}}) \\ \hline & \\ (r^{3}|_{\mathbf{X}}) \\ \hline & \\ (r^{3}$$

$$\mathbf{P}^{(m)} = \frac{1}{12} \left(\mathbf{1} + e^{-ik_m} \mathbf{r}^2 + e^{-2ik_m} \mathbf{r}^4 + e^{-3ik_m} \mathbf{r}^6 + \dots + e^{+2ik_m} \mathbf{r}^{-4} + e^{+ik_m} \mathbf{r}^{-2} \right) \text{ where: } k_m = \frac{2\pi m}{12}$$

Two kinds of C_{12} symmetry *m*-states are coupled by **K**-matrix: Even $|r^{even}\rangle$ and odd $|r^{odd}\rangle$ *p*-points. $|k_m\rangle = \mathbf{P}^{(m)}|r^0\rangle \cdot \sqrt{12} = (|r^0\rangle + e^{-ik_m}|r^2\rangle + e^{-2ik_m}|r^4\rangle + ...)/\sqrt{12}$ $|k_m'\rangle = \mathbf{P}^{(m)}|r^1\rangle \cdot \sqrt{12} = (|r^1\rangle + e^{-ik_m}|r^3\rangle + e^{-2ik_m}|r^5\rangle + ...)/\sqrt{12}$

$$\begin{array}{c}
\left\{ \begin{array}{c}
\left\langle r^{0} | \mathbf{K} | r^{0} \right\rangle & \left\langle r^{0} | \mathbf{K} | r^{1} \right\rangle & \left\langle r^{0} | \mathbf{K} | r^{2} \right\rangle & \dots & \left\langle r^{0} | \mathbf{K} | r^{-1} \right\rangle \\
\left\langle r^{1} | \mathbf{K} | r^{0} \right\rangle & \left\langle r^{1} | \mathbf{K} | r^{1} \right\rangle & \left\langle r^{1} | \mathbf{K} | r^{2} \right\rangle & \dots & \left\langle r^{1} | \mathbf{K} | r^{-1} \right\rangle \\
\left\langle r^{1} | \mathbf{K} | r^{0} \right\rangle & \left\langle r^{1} | \mathbf{K} | r^{1} \right\rangle & \left\langle r^{1} | \mathbf{K} | r^{2} \right\rangle & \dots & \left\langle r^{1} | \mathbf{K} | r^{-1} \right\rangle \\
\left\langle r^{1} | \mathbf{K} | r^{0} \right\rangle & \left\langle r^{1} | \mathbf{K} | r^{1} \right\rangle & \left\langle r^{1} | \mathbf{K} | r^{2} \right\rangle & \dots & \left\langle r^{1} | \mathbf{K} | r^{-1} \right\rangle \\
\left\langle r^{1} | \mathbf{K} | r^{0} \right\rangle & \left\langle r^{1} | \mathbf{K} | r^{1} \right\rangle & \left\langle r^{1} | \mathbf{K} | r^{2} \right\rangle & \dots & \left\langle r^{1} | \mathbf{K} | r^{-1} \right\rangle \\
\left\langle r^{1} | \mathbf{K} | r^{0} \right\rangle & \left\langle r^{1} | \mathbf{K} | r^{1} \right\rangle & \left\langle r^{1} | \mathbf{K} | r^{2} \right\rangle & \dots & \left\langle r^{1} | \mathbf{K} | r^{-1} \right\rangle \\
\left\langle r^{1} | \mathbf{K} | r^{0} \right\rangle & \left\langle r^{1} | \mathbf{K} | r^{1} \right\rangle & \left\langle r^{1} | \mathbf{K} | r^{2} \right\rangle & \dots & \left\langle r^{1} | \mathbf{K} | r^{-1} \right\rangle \\
\left\langle r^{1} | \mathbf{K} | r^{0} \right\rangle & \left\langle r^{1} | \mathbf{K} | r^{1} \right\rangle & \left\langle r^{1} | \mathbf{K} | r^{2} \right\rangle & \dots & \left\langle r^{1} | \mathbf{K} | r^{-1} \right\rangle \\
\left\langle r^{1} | \mathbf{K} | r^{0} \right\rangle & \left\langle r^{1} | \mathbf{K} | r^{1} \right\rangle & \left\langle r^{1} | \mathbf{K} | r^{2} \right\rangle & \dots & \left\langle r^{1} | \mathbf{K} | r^{-1} \right\rangle \\
\left\langle r^{1} | \mathbf{K} | r^{0} \right\rangle & \left\langle r^{1} | \mathbf{K} | r^{1} \right\rangle & \left\langle r^{1} | \mathbf{K} | r^{2} \right\rangle & \dots & \left\langle r^{1} | \mathbf{K} | r^{-1} \right\rangle \\
\left\langle r^{1} | \mathbf{K} | r^{2} \right\rangle & \left\langle r^{1} | \mathbf{K} | r^{2} \right\rangle & \dots & \left\langle r^{1} | \mathbf{K} | r^{-1} \right\rangle \\
\left\langle r^{1} | \mathbf{K} | r^{2} \right\rangle & \left\langle r^{1} | \mathbf{K} | r^{2} \right\rangle & \left\langle r^{1} | \mathbf{K} | r^{2} \right\rangle & \left\langle r^{1} | \mathbf{K} | r^{2} \right\rangle \\
\left\langle r^{1} | \mathbf{K} | r^{2} \right\rangle & \left\langle r^{1} | \mathbf{K} | r^{2} \right\rangle & \left\langle r^{1} | \mathbf{K} | r^{2} \right\rangle \\
\left\langle r^{1} | \mathbf{K} | r^{2} \right\rangle & \left\langle r^{1} | \mathbf{K} | r^{2} \right\rangle & \left\langle r^{2} | \mathbf{K} | r^{2} \right\rangle \\
\left\langle r^{1} | \mathbf{K} | r^{2} \right\rangle & \left\langle r^{2} | \mathbf{K} | r^{2} \right\rangle \\
\left\langle r^{1} | \mathbf{K} | r^{2} \right\rangle & \left\langle r^{2} | \mathbf{K} | r^{2} \right\rangle & \left\langle r^{2} | \mathbf{K} | r^{2} \right\rangle \\
\left\langle r^{2} | \mathbf{K} | r^{2} \right\rangle & \left\langle r^{2} | \mathbf{K} | r^{2} \right\rangle \\
\left\langle r^{2} | \mathbf{K} | r^{2} \right\rangle & \left\langle r^{2} | \mathbf{K} | r^{2} \right\rangle \\
\left\langle r^{2} | \mathbf{K} | r^{2} \right\rangle & \left\langle r^{2} | \mathbf{K} | r^{2} \right\rangle \\
\left\langle r^{2} | \mathbf{K} | r^{2} | \mathbf{K$$

$$\mathbf{P}^{(m)} = \frac{1}{12} \left(\mathbf{1} + e^{-ik_m} \mathbf{r}^2 + e^{-2ik_m} \mathbf{r}^4 + e^{-3ik_m} \mathbf{r}^6 + \dots + e^{+2ik_m} \mathbf{r}^{-4} + e^{+ik_m} \mathbf{r}^{-2} \right) \text{ where: } k_m = \frac{2\pi m}{12}$$

Two kinds of C_{12} symmetry m-states are coupled by K-matrix: Even $|r^{even}\rangle$ and odd $|r^{odd}\rangle$ p-points. $|k_m\rangle = \mathbf{P}^{(m)}|r^0\rangle \cdot \sqrt{12} = (|r^0\rangle + e^{-ik_m}|r^2\rangle + e^{-2ik_m}|r^4\rangle + ...)/\sqrt{12}$ $|k_m'\rangle = \mathbf{P}^{(m)}|r^1\rangle \cdot \sqrt{12} = (|r^1\rangle + e^{-ik_m}|r^3\rangle + e^{-2ik_m}|r^5\rangle + ...)/\sqrt{12}$

$$\langle k_m | \mathbf{K} | k_m \rangle = \langle r^0 | \mathbf{P}^{(m)} \mathbf{K} \mathbf{P}^{(m)} | r^0 \rangle \cdot 12 = \langle r^0 | \mathbf{K} \mathbf{P}^{(m)} | r^0 \rangle \cdot 12$$

$$= \langle r^0 | \mathbf{K} | r^0 \rangle + e^{-ik_m} \langle r^0 | \mathbf{K} | r^2 \rangle + e^{-2ik_m} \langle r^0 | \mathbf{K} | r^4 \rangle | r^5 \rangle + \dots$$

$$= \underline{a} + \overline{a} + 0 + 0 + \dots$$

$$\begin{array}{c} C_{24} \text{ lattice reduced to } C_{12} \text{ symmetry} \\ Fig. 2.7.6 \text{ PSDS} \\ \hline \\ (r^{23}|_{\mathbf{X}}) \\ (1|_{\mathbf{X}}) \\ (1|_{\mathbf{X}}) \\ (1|_{\mathbf{X}}) \\ (r_{1}|_{\mathbf{X}}) \\ (r_{1}|_$$

$$\mathbf{P}^{(m)} = \frac{1}{12} \left(\mathbf{1} + e^{-ik_m} \mathbf{r}^2 + e^{-2ik_m} \mathbf{r}^4 + e^{-3ik_m} \mathbf{r}^6 + \dots + e^{+2ik_m} \mathbf{r}^{-4} + e^{+ik_m} \mathbf{r}^{-2} \right) \text{ where: } k_m = \frac{2\pi m}{12}$$

Two kinds of C_{12} symmetry *m*-states are coupled by **K**-matrix: Even $|r^{even}\rangle$ and odd $|r^{odd}\rangle$ *p*-points. $|k_m\rangle = \mathbf{P}^{(m)}|r^0\rangle \cdot \sqrt{12} = (|r^0\rangle + e^{-ik_m}|r^2\rangle + e^{-2ik_m}|r^4\rangle + ...)/\sqrt{12}$ $|k_m'\rangle = \mathbf{P}^{(m)}|r^1\rangle \cdot \sqrt{12} = (|r^1\rangle + e^{-ik_m}|r^3\rangle + e^{-2ik_m}|r^5\rangle + ...)/\sqrt{12}$

$$\langle k_m | \mathbf{K} | k_m \rangle = \langle r^0 | \mathbf{P}^{(m)} \mathbf{K} \mathbf{P}^{(m)} | r^0 \rangle \cdot 12 = \langle r^0 | \mathbf{K} \mathbf{P}^{(m)} | r^0 \rangle \cdot 12$$

$$= \langle r^0 | \mathbf{K} | r^0 \rangle + e^{-ik_m} \langle r^0 | \mathbf{K} | r^2 \rangle + e^{-2ik_m} \langle r^0 | \mathbf{K} | r^4 \rangle | r^5 \rangle + \dots$$

$$= \underline{a} + \overline{a} + 0 + 0 + \dots$$

$$\langle k'_{m} | \mathbf{K} | k_{m} \rangle = \langle r^{1} | \mathbf{P}^{(m)} \mathbf{K} \mathbf{P}^{(m)} | r^{0} \rangle \cdot 12 = \langle r^{1} | \mathbf{K} \mathbf{P}^{(m)} | r^{0} \rangle \cdot 12$$

$$= \langle r^{1} | \mathbf{K} | r^{0} \rangle + e^{-ik_{m}} \langle r^{1} | \mathbf{K} | r^{2} \rangle + e^{-2ik_{m}} \langle r^{1} | \mathbf{K} | r^{4} \rangle | r^{5} \rangle + \dots$$

$$= -\underline{a} + e^{-ik_{m}} (-\overline{a}) + 0 + \dots$$

$$= -(\underline{a} + e^{-ik_{m}}\overline{a}) = \langle k_{m} | \mathbf{K} | k'_{m} \rangle *$$

$$\int_{(1+a)}^{C_{24} lattice reduced to C_{12} symmetry} \int_{(r^{3}|\mathbf{x}|)}^{\mathbf{x}} \int_{(r^{3}|\mathbf{x}|)}^{\mathbf{x}} \int_{(r^{3}|\mathbf{x}|)}^{\mathbf{x}} \int_{(r^{3}|\mathbf{x}|)}^{\mathbf{x}} \int_{(r^{3}|\mathbf{x}|)}^{\mathbf{x}} \int_{(r^{3}|\mathbf{x}|)}^{\mathbf{x}|r^{3}} \int_{(r^{3}|\mathbf{x}|)}^{\mathbf{x}|r^{3}} \int_{(r^{3}|\mathbf{x}|)}^{\mathbf{x}|r^{3}} \int_{(r^{3}|\mathbf{x}|)}^{\mathbf{x}|r^{3}} \int_{(r^{3}|\mathbf{x}|)}^{\mathbf{x}|r^{3}} \int_{(r^{3}|\mathbf{x}|)}^{\mathbf{x}|r^{3}|\mathbf{x}|r^{3}} \int_{(r^{3}|\mathbf{x}|)}^{\mathbf{x}|r^{3}|\mathbf{x}|\mathbf{x}|r^{3}|\mathbf{x}|\mathbf{x}|r^{3}|\mathbf{x}|r^{3}|\mathbf{x}|r^{3}|$$

$$\begin{split} \langle k_{m} | \mathbf{K} | k_{m} \rangle &= \langle r^{0} | \mathbf{P}^{(m)} \mathbf{K} \mathbf{P}^{(m)} | r^{0} \rangle \cdot 12 = \langle r^{0} | \mathbf{K} \mathbf{P}^{(m)} | r^{0} \rangle \cdot 12 \\ &= \langle r^{0} | \mathbf{K} | r^{0} \rangle + e^{-ik_{m}} \langle r^{0} | \mathbf{K} | r^{2} \rangle + e^{-2ik_{m}} \langle r^{0} | \mathbf{K} | r^{4} \rangle | r^{5} \rangle + \dots \\ &= \underline{a} + \overline{a} + 0 + 0 + \dots \\ \langle k_{m}' | \mathbf{K} | k_{m} \rangle &= \langle r^{1} | \mathbf{P}^{(m)} \mathbf{K} \mathbf{P}^{(m)} | r^{0} \rangle \cdot 12 = \langle r^{1} | \mathbf{K} \mathbf{P}^{(m)} | r^{0} \rangle \cdot 12 \\ &= \langle r^{1} | \mathbf{K} | r^{0} \rangle + e^{-ik_{m}} \langle r^{1} | \mathbf{K} | r^{2} \rangle + e^{-2ik_{m}} \langle r^{1} | \mathbf{K} | r^{4} \rangle | r^{5} \rangle + \dots \\ &= -\underline{a} + e^{-ik_{m}} (-\overline{a}) + 0 + \dots \end{split}$$

$$= -(\underline{a} + e^{-ik_m}\overline{a}) = \langle k_m | \mathbf{K} | k'_m \rangle^*$$

Breaking C_N cyclic coupling into linear chains Review of 1D-Bohr-ring related to infinite square well (and review of revival) Breaking C_{2N+2} to approximate linear N-chain Band-It simulation: Intro to scattering approach to quantum symmetry

Breaking C_{2N} cyclic coupling down to C_N symmetry Acoustical modes vs. Optical modes Intro to other examples of band theory Type-AB avoided crossing view of band-gaps

Finally! Symmetry groups that are not just C_N The "4-Group(s)" D₂ and C_{2v} Spectral decomposition of D₂ Some D₂ modes Outer product properties and the Group Zoo

$$\begin{array}{c} \begin{array}{c} C_{24} \ lattice \ reduced \ to \ C_{12} \ symmetry \\ Fig. 2.7.6 \ PSDS \\ \hline \\ (r^{23} | \mathbf{x}) \\ \hline \\ (r^{23} | \mathbf{x}) \\ \hline \\ (r^{1} | \mathbf{x}) \\ \hline \\ (r^{3} | \mathbf{x}) \\ \hline \\$$

$$\mathbf{P}^{(m)} = \frac{1}{12} \left(\mathbf{1} + e^{-ik_m} \mathbf{r}^2 + e^{-2ik_m} \mathbf{r}^4 + e^{-3ik_m} \mathbf{r}^6 + \dots + e^{+2ik_m} \mathbf{r}^{-4} + e^{+ik_m} \mathbf{r}^{-2} \right) \text{ where: } k_m = \frac{2\pi m}{12}$$

Two kinds of C_{12} symmetry m-states are coupled by K-matrix: Even $|r^{even}\rangle$ and odd $|r^{odd}\rangle$ p-points. $|k_m\rangle = \mathbf{P}^{(m)}|r^0\rangle \cdot \sqrt{12} = (|r^0\rangle + e^{-ik_m}|r^2\rangle + e^{-2ik_m}|r^4\rangle + \dots)/\sqrt{12}$ $|k_m'\rangle = \mathbf{P}^{(m)}|r^1\rangle \cdot \sqrt{12} = (|r^1\rangle + e^{-ik_m}|r^3\rangle + e^{-2ik_m}|r^5\rangle + \dots)/\sqrt{12}$

$$\langle \mathbf{K} \rangle^{k_m} = \begin{pmatrix} \langle k_m | \mathbf{K} | k_m \rangle & \langle k_m | \mathbf{K} | k'_m \rangle \\ \langle k'_m | \mathbf{K} | k_m \rangle & \langle k'_m | \mathbf{K} | k'_m \rangle \end{pmatrix}$$

$$= \begin{pmatrix} \underline{a} + \overline{a} & -(\underline{a} + e^{+ik_m} \overline{a}) \\ -(\underline{a} + e^{-ik_m} \overline{a}) & \underline{a} + \overline{a} \end{pmatrix}$$

$$\begin{array}{c} \left(\begin{array}{c} \langle r^{0} | \mathbf{K} | r^{0} \rangle & \langle r^{0} | \mathbf{K} | r^{1} \rangle & \langle r^{0} | \mathbf{K} | r^{2} \rangle & \dots & \langle r^{0} | \mathbf{K} | r^{-1} \rangle \\ \langle r^{1} | \mathbf{K} | r^{0} \rangle & \langle r^{1} | \mathbf{K} | r^{1} \rangle & \langle r^{1} | \mathbf{K} | r^{2} \rangle & \dots & \langle r^{0} | \mathbf{K} | r^{-1} \rangle \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \left(\begin{array}{c} \langle r^{0} | \mathbf{K} | r^{0} \rangle & \langle r^{1} | \mathbf{K} | r^{1} \rangle & \langle r^{1} | \mathbf{K} | r^{2} \rangle & \dots & \langle r^{1} | \mathbf{K} | r^{-1} \rangle \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \left(\begin{array}{c} a + \overline{a} & -a & 0 & \dots & -\overline{a} \\ -a & a + \overline{a} & -\overline{a} & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \end{array} \right) \\ \end{array} \right) \\
\begin{array}{c} Only \ C_{12} \ symmetry \ projectors \ commute \ with \ \mathbf{K}-matrix \ if \ a \neq \overline{a} \ . \ Then \ C_{24}-symmetry \ is \ \underline{b}^{V} \otimes \underline{k} \in \mathbb{N} \ ! \\ \mathbf{P}^{(m)} = \frac{1}{12} \left(\mathbf{1} + e^{-ik_{m}} \mathbf{r}^{2} + e^{-2ik_{m}} \mathbf{r}^{4} + e^{-3ik_{m}} \mathbf{r}^{6} + \dots + e^{+2ik_{m}} \mathbf{r}^{-4} + e^{+ik_{m}} \mathbf{r}^{-2} \right) \ \text{where:} \quad k_{m} = \frac{2\pi m}{12} \\ \end{array}$$

Two kinds of C_{12} symmetry m-states are coupled by K-matrix: Even $|r^{even}\rangle$ and odd $|r^{odd}\rangle$ p-points. $|k_m\rangle = \mathbf{P}^{(m)}|r^0\rangle \cdot \sqrt{12} = (|r^0\rangle + e^{-ik_m}|r^2\rangle + e^{-2ik_m}|r^4\rangle + \dots)/\sqrt{12}$ $|k_m'\rangle = \mathbf{P}^{(m)}|r^1\rangle \cdot \sqrt{12} = (|r^1\rangle + e^{-ik_m}|r^3\rangle + e^{-2ik_m}|r^5\rangle + \dots)/\sqrt{12}$

Secular Eq.:

$$0 = \kappa^{2} - Tr \langle \mathbf{K} \rangle^{k_{m}} + Det \langle \mathbf{K} \rangle^{k_{m}} \qquad \langle \mathbf{K}_{m} | \mathbf{K} | k_{m} \rangle \quad \langle k_{m} | \mathbf{K} | k_{m} \rangle \qquad \langle k_{m} | \mathbf{K} | k_{m} \rangle \qquad$$

$$\begin{array}{c} \left\langle r^{0} | \mathbf{K} | r^{0} \right\rangle \left\langle r^{0} | \mathbf{K} | r^{1} \right\rangle \left\langle r^{0} | \mathbf{K} | r^{2} \right\rangle \dots \left\langle r^{0} | \mathbf{K} | r^{-1} \right\rangle \\ \left\langle r^{0} | \mathbf{K} | r^{2} \right\rangle \dots \left\langle r^{0} | \mathbf{K} | r^{2} \right\rangle \dots \left\langle r^{0} | \mathbf{K} | r^{-1} \right\rangle \\ \left\langle r^{1} | \mathbf{K} | r^{0} \right\rangle \left\langle r^{1} | \mathbf{K} | r^{1} \right\rangle \left\langle r^{1} | \mathbf{K} | r^{2} \right\rangle \dots \left\langle r^{1} | \mathbf{K} | r^{-1} \right\rangle \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \left(\frac{a + \overline{a} - a}{2} - \frac{a}{2} -$$

Two kinds of C_{12} symmetry m-states are coupled by K-matrix: Even $|r^{even}\rangle$ and odd $|r^{odd}\rangle$ p-points. $|k_m\rangle = \mathbf{P}^{(m)}|r^0\rangle \cdot \sqrt{12} = (|r^0\rangle + e^{-ik_m}|r^2\rangle + e^{-2ik_m}|r^4\rangle + \dots)/\sqrt{12}$ $|k_m'\rangle = \mathbf{P}^{(m)}|r^1\rangle \cdot \sqrt{12} = (|r^1\rangle + e^{-ik_m}|r^3\rangle + e^{-2ik_m}|r^5\rangle + \dots)/\sqrt{12}$

Secular Eq.:

$$0 = \kappa^{2} - Tr \langle \mathbf{K} \rangle^{k_{m}} + Det \langle \mathbf{K} \rangle^{k_{m}}$$

$$0 = \kappa^{2} - 2(\underline{a} + \overline{a})\kappa + (\underline{a} + \overline{a})^{2} - (\underline{a} + e^{+ik_{m}}\overline{a})(\underline{a} + e^{-ik_{m}}\overline{a})$$

$$0 = \kappa^{2} - 2(\underline{a} + \overline{a})\kappa + (\underline{a} + \overline{a})^{2} - \underline{a}^{2} - \overline{a}^{2} - 2\overline{a}\underline{a}\cos k_{m}$$

$$0 = \kappa^{2} - 2(\underline{a} + \overline{a})\kappa + (\underline{a} + \overline{a})^{2} - \underline{a}^{2} - \overline{a}^{2} - 2\overline{a}\underline{a}\cos k_{m}$$

$$0 = \kappa^{2} - 2(\underline{a} + \overline{a})\kappa + 2\overline{a}\underline{a}(1 - \cos k_{m})$$

$$\langle \mathbf{K} \rangle^{k_{m}} = \begin{pmatrix} \langle \mathbf{k}_{m} | \mathbf{K} | \mathbf{k}_{m} \rangle & \langle \mathbf{k}_{m} | \mathbf{K} | \mathbf{k}_{m} \rangle \\ \langle \mathbf{k}_{m} | \mathbf{K} | \mathbf{k}_{m} \rangle & \langle \mathbf{k}_{m} | \mathbf{K} | \mathbf{k}_{m} \rangle \end{pmatrix}$$

Eigenvalues:

$$\kappa = \omega_{k_m}^2 = \underline{a} + \overline{a} \pm \sqrt{\underline{a}^2 + 2\overline{a}\underline{a}\cos k_m + \overline{a}^2}$$

C₂₄ lattice reduced to C₁₂ symmetry

*C*₂₄ *lattice reduced to C*₁₂ *symmetry*

*C*₂₄ *lattice reduced to C*₁₂ *symmetry*

Breaking C_N cyclic coupling into linear chains Review of 1D-Bohr-ring related to infinite square well (and review of revival) Breaking C_{2N+2} to approximate linear N-chain Band-It simulation: Intro to scattering approach to quantum symmetry

Breaking C_{2N} cyclic coupling down to C_N symmetry Acoustical modes vs. Optical modes
Intro to other examples of band theory Type-AB avoided crossing view of band-gaps

Intro to other examples of band theory

$$C^{3-barrier} = C^{rr} \cdot C^{r} \cdot C$$

$$= \begin{pmatrix} e^{ikt} \chi^{*} & -ie^{-ikt}(\alpha^{r}+b^{r})\xi \\ ie^{ikt}(\alpha^{r}+b^{r})\xi \\ e^{-ikL}\chi \end{pmatrix} \cdot \begin{pmatrix} e^{ikt} \chi^{*} & -ie^{-ikt}(\alpha^{r}+b^{r})\xi \\ ie^{ikt}(\alpha^{r}+b^{r})\xi \\ e^{-ikL}\chi \end{pmatrix} \cdot \begin{pmatrix} e^{ikt} \chi^{*} & -ie^{-ikt}(\alpha^{r}+b^{r})\xi \\ e^{-ikL}\chi \end{pmatrix}$$
Crossing equations for three humps
$$Fig. 14.1.10 \text{ Triple-barrier double-well potential}$$

$$V = \begin{pmatrix} A \\ B^{r} \\ a^{r} \\ b^{r} \\ b^{r} \\ a^{r} \\ b^{r} \\ b^{r} \\ b^{r} \\ a^{r} \\ b^{r} \\ a^{r} \\ b^{r} \\ b^{r} \\ a^{r} \\ b^{r} \\ a^{r} \\ b^{r} \\ b^{r$$

Intro to other examples of band theory

Bohr-It simulations assume ring-periodic-boundary conditions

Fig. 14.2.8 Multiplets for V=5. (W=15nm well , L=5nm barrier) for (N=3)-ring and (N=6)-ring. Bohr-It simulations assume ring-periodic-boundary conditions

N=3 N=6 -1₃ -26 E_I E_{2} 0 36 B_2 B_1 26 13 6 ΩN. -N E_{I} E_{2} (2) (2) 9 +⊇ E_{I} - 00 - 00 AI AI ŵ φ A_2 A_2 V=5 E_{I} (1)(1) E_{I} E_2 Bo (0)(0) E_{2} E_{I} E_{I} Fig. 14.2.8 Multiplets for V=5.

(W=15nm well , L=5nm barrier) for (N=3)-ring and (N=6)-ring.

Band-It simulations line-non-periodic scattering conditions

Fig. 14.2.9 (N=6)-ring and (N=2)-line potential. (V=5, W=15nm well ,L=5nm barrier) Breaking C_N cyclic coupling into linear chains Review of 1D-Bohr-ring related to infinite square well (and review of revival) Breaking C_{2N+2} to approximate linear N-chain Band-It simulation: Intro to scattering approach to quantum symmetry

Breaking C_{2N} cyclic coupling down to C_N symmetry Acoustical modes vs. Optical modes Intro to other examples of band theory Type-AB avoided crossing view of band-gaps

Finally! Symmetry groups that are not just C_N The "4-Group(s)" D₂ and C_{2v} Spectral decomposition of D₂ Some D₂ modes Outer product properties and the Group Zoo

Breaking C_N cyclic coupling into linear chains Review of 1D-Bohr-ring related to infinite square well (and review of revival) Breaking C_{2N+2} to approximate linear N-chain Band-It simulation: Intro to scattering approach to quantum symmetry

Breaking C_{2N} cyclic coupling down to C_N symmetry Acoustical modes vs. Optical modes Intro to other examples of band theory Type-AB avoided crossing view of band-gaps

Finally! Symmetry groups that are not just C_N The "4-Group(s)" D_2 and $C_{2\nu}$ Spectral decomposition of D_2 Some D_2 modes Outer product properties and the Crystal-Point Group Zoo

Figure 2.11.1 Abelian crystal point groups. Sixteen of the 32 crystal point groups are Abelian and are illustrated by models drawn in circles.

Finally! Symmetry groups that are not just C_N (And some that are)

Figure 2.11.1 Abelian crystal point groups. Sixteen of the 32 crystal point groups are Abelian and are illustrated by models drawn in circles.

Finally! Symmetry groups that are not just C_N (And some that are) Starting with D_2

Figure 2.11.1 Abelian crystal point groups. Sixteen of the 32 crystal point groups are Abelian and are illustrated by models drawn in circles.

Finally! Symmetry groups that are not just C_N (And some that are) Starting with D_2 and C_{2h} and C_{2v}

D₂ Symmetry (The 4-Group)

D₂ Symmetry (The 4-Group)

D₂ Symmetry (The 4-Group)

Breaking C_N cyclic coupling into linear chains Review of 1D-Bohr-ring related to infinite square well (and review of revival) Breaking C_{2N+2} to approximate linear N-chain Band-It simulation: Intro to scattering approach to quantum symmetry

Breaking C_{2N} cyclic coupling down to C_N symmetry Acoustical modes vs. Optical modes Intro to other examples of band theory Avoided crossing view of band-gaps

Finally! Symmetry groups that are not just C_N
The "4-Group(s)" D₂ and C_{2v}
Spectral decomposition of D₂
Some D₂ modes
Outer product properties and the Crystal-Point Group Zoo

 D_2 spectral decomposition: The old "1=1•1 trick" again Two C_2 subgroup minimal equations:

 $R_x^2 - 1 = 0,$ $R_y^2 - 1 = 0.$

$$\mathbf{R}_{x}^{2} - \mathbf{1} = \mathbf{0}, \qquad \mathbf{R}_{y}^{2} - \mathbf{1} = \mathbf{0}.$$

$$\mathbf{P}_{x}^{+} = \frac{\mathbf{1} + \mathbf{R}_{x}}{2} \qquad reducible \qquad \mathbf{P}_{y}^{+} = \frac{\mathbf{1} + \mathbf{R}_{y}}{2}$$

$$\mathbf{P}_{x}^{-} = \frac{\mathbf{1} - \mathbf{R}_{x}}{2} \qquad projectors \qquad \mathbf{P}_{y}^{-} = \frac{\mathbf{1} - \mathbf{R}_{y}}{2}$$

$$\mathbf{1} = \mathbf{P}_{x}^{+} + \mathbf{P}_{x}^{-} \qquad Completness \qquad \mathbf{1} = \mathbf{P}_{y}^{+} + \mathbf{P}_{y}^{-}$$

$$\mathbf{R}_{x} = \mathbf{P}_{x}^{+} - \mathbf{P}_{x}^{-} \qquad Spec.decomps \qquad \mathbf{R}_{y} = \mathbf{P}_{y}^{+} - \mathbf{P}_{y}^{-}$$

The old "1=1•1 trick" $1 = 1 \cdot 1 = \left(\mathbf{P}_x^+ + \mathbf{P}_x^-\right) \cdot \left(\mathbf{P}_y^+ + \mathbf{P}_y^-\right) = \mathbf{P}_x^+ \cdot \mathbf{P}_y^+ + \mathbf{P}_x^- \cdot \mathbf{P}_y^+ + \mathbf{P}_x^- \cdot \mathbf{P}_y^- + \mathbf{P}_x^- \cdot \mathbf{P}_y^-$ gives irrep projectors
$$\mathbf{R}_{x}^{2} - \mathbf{1} = \mathbf{0}, \qquad \mathbf{R}_{y}^{2} - \mathbf{1} = \mathbf{0}.$$

$$\mathbf{P}_{x}^{+} = \frac{\mathbf{1} + \mathbf{R}_{x}}{2} \qquad reducible \qquad \mathbf{P}_{y}^{+} = \frac{\mathbf{1} + \mathbf{R}_{y}}{2}$$

$$\mathbf{P}_{x}^{-} = \frac{\mathbf{1} - \mathbf{R}_{x}}{2} \qquad projectors \qquad \mathbf{P}_{y}^{-} = \frac{\mathbf{1} - \mathbf{R}_{y}}{2}$$

$$\mathbf{1} = \mathbf{P}_{x}^{+} + \mathbf{P}_{x}^{-} \qquad Completness \qquad \mathbf{1} = \mathbf{P}_{y}^{+} + \mathbf{P}_{y}^{-}$$

$$\mathbf{R}_{x} = \mathbf{P}_{x}^{+} - \mathbf{P}_{x}^{-} \qquad Spec.decomps \qquad \mathbf{R}_{y} = \mathbf{P}_{y}^{+} - \mathbf{P}_{y}^{-}$$

The old "1=1•1 trick" 1=1·1=
$$(\mathbf{P}_{x}^{+}+\mathbf{P}_{x}^{-})\cdot(\mathbf{P}_{y}^{+}+\mathbf{P}_{y}^{-})=\mathbf{P}_{x}^{+}\cdot\mathbf{P}_{y}^{+}+\mathbf{P}_{x}^{-}\cdot\mathbf{P}_{y}^{+}+\mathbf{P}_{x}^{-}\cdot\mathbf{P}_{y}^{-}+\mathbf{P}_{x}^{-}\cdot\mathbf{P}_{y}^{-}$$
 gives irrep projectors
 $\mathbf{P}^{++} \equiv \mathbf{P}_{x}^{+}\cdot\mathbf{P}_{y}^{+} = \frac{(\mathbf{1}+\mathbf{R}_{x})\cdot(\mathbf{1}+\mathbf{R}_{y})}{2\cdot2} = \frac{1}{4}(\mathbf{1}+\mathbf{R}_{x}+\mathbf{R}_{y}+\mathbf{R}_{z})$
 $\mathbf{P}^{-+} \equiv \mathbf{P}_{x}^{-}\cdot\mathbf{P}_{y}^{+} = \frac{(\mathbf{1}-\mathbf{R}_{x})\cdot(\mathbf{1}+\mathbf{R}_{y})}{2\cdot2} = \frac{1}{4}(\mathbf{1}-\mathbf{R}_{x}+\mathbf{R}_{y}-\mathbf{R}_{z})$
 $\mathbf{P}^{+-} \equiv \mathbf{P}_{x}^{+}\cdot\mathbf{P}_{y}^{-} = \frac{(\mathbf{1}+\mathbf{R}_{x})\cdot(\mathbf{1}-\mathbf{R}_{y})}{2\cdot2} = \frac{1}{4}(\mathbf{1}+\mathbf{R}_{x}-\mathbf{R}_{y}-\mathbf{R}_{z})$
 $\mathbf{P}^{--} \equiv \mathbf{P}_{x}^{-}\cdot\mathbf{P}_{y}^{-} = \frac{(\mathbf{1}-\mathbf{R}_{x})\cdot(\mathbf{1}-\mathbf{R}_{y})}{2\cdot2} = \frac{1}{4}(\mathbf{1}-\mathbf{R}_{x}-\mathbf{R}_{y}+\mathbf{R}_{z})$

$$\begin{aligned} \mathbf{R}_{x}^{2} - \mathbf{1} &= \mathbf{0}, & \mathbf{R}_{y}^{2} - \mathbf{1} &= \mathbf{0}. \\ \mathbf{P}_{x}^{+} &= \frac{\mathbf{1} + \mathbf{R}_{x}}{2} & reducible & \mathbf{P}_{y}^{+} &= \frac{\mathbf{1} + \mathbf{R}_{y}}{2} \\ \mathbf{P}_{x}^{-} &= \frac{\mathbf{1} - \mathbf{R}_{x}}{2} & \mathbf{P}_{y}^{-} &= \frac{\mathbf{1} - \mathbf{R}_{y}}{2} \\ \mathbf{1} &= \mathbf{P}_{x}^{+} + \mathbf{P}_{x}^{-} & Completness & \mathbf{1} &= \mathbf{P}_{y}^{+} + \mathbf{P}_{y}^{-} \\ \mathbf{R}_{x} &= \mathbf{P}_{x}^{+} - \mathbf{P}_{x}^{-} & Spec. decomps & \mathbf{R}_{y} &= \mathbf{P}_{y}^{+} - \mathbf{P}_{y}^{-} \end{aligned}$$
The old "1=1•1 trick" 1=1•1 (\mathbf{P}_{x}^{+} + \mathbf{P}_{x}^{-}) \cdot (\mathbf{P}_{y}^{+} + \mathbf{P}_{y}^{-}) = \mathbf{P}_{x}^{+} \cdot \mathbf{P}_{y}^{+} + \mathbf{P}_{x}^{-} \cdot \mathbf{P}_{y}^{+} + \mathbf{P}_{x}^{-} \cdot \mathbf{P}_{y}^{-} & gives \ irrep \ projectors \\ \mathbf{P}^{++} &= \mathbf{P}_{x}^{+} \cdot \mathbf{P}_{y}^{+} &= \frac{(\mathbf{1} + \mathbf{R}_{x}) \cdot (\mathbf{1} + \mathbf{R}_{y})}{2 \cdot 2} = \frac{1}{4} (\mathbf{1} + \mathbf{R}_{x} + \mathbf{R}_{y} + \mathbf{R}_{z}) & (completeness \ is \ first) \\ \mathbf{P}^{-+} &= \mathbf{P}_{x}^{-} \cdot \mathbf{P}_{y}^{-} &= \frac{(\mathbf{1} + \mathbf{R}_{x}) \cdot (\mathbf{1} - \mathbf{R}_{y})}{2 \cdot 2} = \frac{1}{4} (\mathbf{1} - \mathbf{R}_{x} + \mathbf{R}_{y} - \mathbf{R}_{z}) \\ \mathbf{P}^{--} &= \mathbf{P}_{x}^{-} \cdot \mathbf{P}_{y}^{-} &= \frac{(\mathbf{1} - \mathbf{R}_{x}) \cdot (\mathbf{1} - \mathbf{R}_{y})}{2 \cdot 2} = \frac{1}{4} (\mathbf{1} - \mathbf{R}_{x} - \mathbf{R}_{y} + \mathbf{R}_{z}) \\ \mathbf{P}^{--} &= \mathbf{P}_{x}^{-} \cdot \mathbf{P}_{y}^{-} &= \frac{(\mathbf{1} - \mathbf{R}_{x}) \cdot (\mathbf{1} - \mathbf{R}_{y})}{2 \cdot 2} = \frac{1}{4} (\mathbf{1} - \mathbf{R}_{x} - \mathbf{R}_{y} + \mathbf{R}_{z}) \end{aligned}

$$\begin{aligned} \mathbf{R}_{x}^{2} - 1 &= \mathbf{0}, & \mathbf{R}_{y}^{2} - 1 &= \mathbf{0}. \\ \mathbf{P}_{x}^{+} &= \frac{1 + \mathbf{R}_{x}}{2} & reducible & \mathbf{P}_{y}^{+} &= \frac{1 + \mathbf{R}_{y}}{2} \\ \mathbf{P}_{x}^{-} &= \frac{1 - \mathbf{R}_{x}}{2} & \mathbf{P}_{y}^{-} &= \frac{1 - \mathbf{R}_{y}}{2} \\ \mathbf{1} &= \mathbf{P}_{x}^{+} + \mathbf{P}_{x}^{-} & Completness & \mathbf{1} &= \mathbf{P}_{y}^{+} + \mathbf{P}_{y}^{-} \\ \mathbf{R}_{x} &= \mathbf{P}_{x}^{+} - \mathbf{P}_{x}^{-} & Spec.decomps & \mathbf{R}_{y} = \mathbf{P}_{y}^{+} - \mathbf{P}_{y}^{-} \end{aligned}$$
The old "1=1•1 trick" 1=1•1 = (\mathbf{P}_{x}^{+} + \mathbf{P}_{x}^{-}) \cdot (\mathbf{P}_{y}^{+} + \mathbf{P}_{y}^{-}) = \mathbf{P}_{x}^{+} \cdot \mathbf{P}_{y}^{+} + \mathbf{P}_{x}^{-} \cdot \mathbf{P}_{y}^{+} + \mathbf{P}_{x}^{-} \cdot \mathbf{P}_{y}^{-} & gives irrep projectors \\ \mathbf{P}^{++} &= \mathbf{P}_{x}^{+} \cdot \mathbf{P}_{y}^{+} = \frac{(\mathbf{1} + \mathbf{R}_{x}) \cdot (\mathbf{1} + \mathbf{R}_{y})}{2 \cdot 2} = \frac{1}{4} (\mathbf{1} - \mathbf{R}_{x} + \mathbf{R}_{y} - \mathbf{R}_{z}) & \mathbf{1} = (+1)\mathbf{P}^{++} + (+1)\mathbf{P}^{-+} + (+1)\mathbf{P}^{--} \\ \mathbf{P}^{+-} &= \mathbf{P}_{x}^{-} \cdot \mathbf{P}_{y}^{-} = \frac{(\mathbf{1} - \mathbf{R}_{x}) \cdot (\mathbf{1} - \mathbf{R}_{y})}{2 \cdot 2} = \frac{1}{4} (\mathbf{1} - \mathbf{R}_{x} - \mathbf{R}_{y} - \mathbf{R}_{z}) \\ \mathbf{P}^{--} &= \mathbf{P}_{x}^{-} \cdot \mathbf{P}_{y}^{-} = \frac{(\mathbf{1} - \mathbf{R}_{x}) \cdot (\mathbf{1} - \mathbf{R}_{y})}{2 \cdot 2} = \frac{1}{4} (\mathbf{1} - \mathbf{R}_{x} - \mathbf{R}_{y} + \mathbf{R}_{z}) \\ \mathbf{P}^{--} &= \mathbf{P}_{x}^{-} \cdot \mathbf{P}_{y}^{-} = \frac{(\mathbf{1} - \mathbf{R}_{x}) \cdot (\mathbf{1} - \mathbf{R}_{y})}{2 \cdot 2} = \frac{1}{4} (\mathbf{1} - \mathbf{R}_{x} - \mathbf{R}_{y} + \mathbf{R}_{z}) \end{aligned}

P⁻

P⁻

$$\begin{aligned} \mathbf{R}_{x}^{2} - \mathbf{1} &= \mathbf{0}, & \mathbf{R}_{y}^{2} - \mathbf{1} &= \mathbf{0}. \\ \mathbf{P}_{x}^{+} &= \frac{\mathbf{1} + \mathbf{R}_{x}}{2} & reducible & \mathbf{P}_{y}^{+} &= \frac{\mathbf{1} + \mathbf{R}_{y}}{2} \\ \mathbf{P}_{x}^{-} &= \frac{\mathbf{1} - \mathbf{R}_{x}}{2} & projectors & \mathbf{P}_{y}^{-} &= \frac{\mathbf{1} - \mathbf{R}_{y}}{2} \\ \mathbf{1} &= \mathbf{P}_{x}^{+} + \mathbf{P}_{x}^{-} & Completness & \mathbf{1} &= \mathbf{P}_{y}^{+} + \mathbf{P}_{y}^{-} \\ \mathbf{R}_{x} &= \mathbf{P}_{x}^{+} - \mathbf{P}_{x}^{-} & Spec.decomps & \mathbf{R}_{y} = \mathbf{P}_{y}^{+} - \mathbf{P}_{y}^{-} \end{aligned}$$
the old " $\mathbf{1} = \mathbf{1} \cdot \mathbf{1} \operatorname{trick}$ " $\mathbf{1} = \mathbf{1} \cdot \mathbf{1} = (\mathbf{P}_{x}^{+} + \mathbf{P}_{x}^{-}) \cdot (\mathbf{P}_{y}^{+} + \mathbf{P}_{y}^{-}) = \mathbf{P}_{x}^{+} \cdot \mathbf{P}_{y}^{+} + \mathbf{P}_{x}^{-} \cdot \mathbf{P}_{y}^{+} + \mathbf{P}_{x}^{-} \cdot \mathbf{P}_{y}^{-} & gives \ irrep \ projectors \\ \mathbf{P}^{++} &\equiv \mathbf{P}_{x}^{+} \cdot \mathbf{P}_{y}^{+} = \frac{(\mathbf{1} - \mathbf{R}_{x}) \cdot (\mathbf{1} + \mathbf{R}_{y})}{2 \cdot 2} = \frac{1}{4} (\mathbf{1} - \mathbf{R}_{x} + \mathbf{R}_{y} + \mathbf{R}_{z}) & (\dots and \ so \ forth) \\ \mathbf{P}^{-+} &\equiv \mathbf{P}_{x}^{-} \cdot \mathbf{P}_{y}^{-} = \frac{(\mathbf{1} - \mathbf{R}_{x}) \cdot (\mathbf{1} - \mathbf{R}_{y})}{2 \cdot 2} = \frac{1}{4} (\mathbf{1} - \mathbf{R}_{x} + \mathbf{R}_{y} - \mathbf{R}_{z}) \\ \mathbf{P}^{--} &\equiv \mathbf{P}_{x}^{-} \cdot \mathbf{P}_{y}^{-} = \frac{(\mathbf{1} - \mathbf{R}_{x}) \cdot (\mathbf{1} - \mathbf{R}_{y})}{2 \cdot 2} = \frac{1}{4} (\mathbf{1} - \mathbf{R}_{x} - \mathbf{R}_{y} - \mathbf{R}_{z}) \\ \mathbf{P}^{--} &\equiv \mathbf{P}_{x}^{-} \cdot \mathbf{P}_{y}^{-} = \frac{(\mathbf{1} - \mathbf{R}_{x}) \cdot (\mathbf{1} - \mathbf{R}_{y})}{2 \cdot 2} = \frac{1}{4} (\mathbf{1} - \mathbf{R}_{x} - \mathbf{R}_{y} - \mathbf{R}_{z}) \\ \mathbf{P}^{--} &\equiv \mathbf{P}_{x}^{-} \cdot \mathbf{P}_{y}^{-} = \frac{(\mathbf{1} - \mathbf{R}_{x}) \cdot (\mathbf{1} - \mathbf{R}_{y})}{2 \cdot 2} = \frac{1}{4} (\mathbf{1} - \mathbf{R}_{x} - \mathbf{R}_{y} - \mathbf{R}_{z}) \\ \mathbf{R}_{z}^{-} &= (+1)\mathbf{P}^{++} + (-1)\mathbf{P}^{-+} + (-1)\mathbf{P}^{+-} + (-1)\mathbf{P}^{--} +$

The

 $R_x^2 - 1 = 0$, $R_y^2 - 1 = 0.$ $\mathbf{P}_{y}^{+} = \frac{\mathbf{I} + \mathbf{R}_{y}}{2}$ $\mathbf{P}_{x}^{+} = \frac{\mathbf{1} + \mathbf{R}_{x}}{2}$ reducible $\mathbf{1} = \mathbf{P}_y^+ + \mathbf{P}_y^ 1 = P_x^+ + P_x^-$ Completness $\mathbf{R}_{\mathbf{x}} = \mathbf{P}_{\mathbf{x}}^{+} - \mathbf{P}_{\mathbf{x}}^{-}$ Spec. decomps $\mathbf{R}_{v} = \mathbf{P}_{v}^{+} - \mathbf{P}_{v}^{-}$ The old "1=1•1 trick" $1 = 1 \cdot 1 = \left(\mathbf{P}_x^+ + \mathbf{P}_x^-\right) \cdot \left(\mathbf{P}_y^+ + \mathbf{P}_y^-\right) = \mathbf{P}_x^+ \cdot \mathbf{P}_y^+ + \mathbf{P}_x^- \cdot \mathbf{P}_y^+ + \mathbf{P}_x^- \cdot \mathbf{P}_y^- + \mathbf{P}_x^- \cdot \mathbf{P}_y^-$ gives irrep projectors $\mathbf{P}^{++} \equiv \mathbf{P}_{x}^{+} \cdot \mathbf{P}_{y}^{+} = \frac{\left(\mathbf{1} + \mathbf{R}_{x}\right) \cdot \left(\mathbf{1} + \mathbf{R}_{y}\right)}{2 \cdot 2} = \frac{1}{4} \left(\mathbf{1} + \mathbf{R}_{x} + \mathbf{R}_{y} + \mathbf{R}_{z}\right)$ (completeness is first) $\mathbf{P}^{-+} \equiv \mathbf{P}_x^- \cdot \mathbf{P}_y^+ = \frac{\left(\mathbf{1} - \mathbf{R}_x\right) \cdot \left(\mathbf{1} + \mathbf{R}_y\right)}{2 \cdot 2} = \frac{1}{4} \left(\mathbf{1} - \mathbf{R}_x + \mathbf{R}_y - \mathbf{R}_z\right)$ $\mathbf{1} = (+1)\mathbf{P}^{++} + (+1)\mathbf{P}^{-+} + (+1)\mathbf{P}^{+-} + (+1)\mathbf{P}^{--}$ $\mathbf{R}_{\mathbf{x}} = (+1)\mathbf{P}^{++} + (-1)\mathbf{P}^{-+} + (+1)\mathbf{P}^{+-} + (-1)\mathbf{P}^{--}$ $\mathbf{P}^{+-} \equiv \mathbf{P}_x^+ \cdot \mathbf{P}_y^- = \frac{\left(\mathbf{1} + \mathbf{R}_x\right) \cdot \left(\mathbf{1} - \mathbf{R}_y\right)}{2 \cdot 2} = \frac{1}{4} \left(\mathbf{1} + \mathbf{R}_x - \mathbf{R}_y - \mathbf{R}_z\right)$ $\mathbf{R}_{v} = (+1)\mathbf{P}^{++} + (+1)\mathbf{P}^{-+} + (-1)\mathbf{P}^{+-} + (-1)\mathbf{P}^{--}$ $\mathbf{R}_{z} = (+1)\mathbf{P}^{++} + (-1)\mathbf{P}^{-+} + (-1)\mathbf{P}^{+-} + (+1)\mathbf{P}^{--}$ $\mathbf{P}^{--} \equiv \mathbf{P}_x^- \cdot \mathbf{P}_y^- = \frac{\left(\mathbf{1} - \mathbf{R}_x\right) \cdot \left(\mathbf{1} - \mathbf{R}_y\right)}{2 \cdot 2} = \frac{1}{4} \left(\mathbf{1} - \mathbf{R}_x - \mathbf{R}_y + \mathbf{R}_z\right)$ Shortcut notation for getting D₂ character table $1 \cdot 1 - 1 \cdot 1 | 1 \cdot (-1) - 1 \cdot (-1)$

Thursday, March 5, 2015

 $\begin{array}{c|c} C_2^y & \mathbf{1} & \mathbf{R}_y \\ \hline + & 1 & 1 \end{array}$ D_2 spectral decomposition: The old " $1=1\cdot 1$ trick" again Two C_2 subgroup minimal equations and their projectors: $C_2^x \times C_2^y \mid \mathbf{1} \cdot \mathbf{1} \quad \mathbf{R}_x \cdot \mathbf{1} \mid \mathbf{1} \cdot \mathbf{R}_y \quad \mathbf{R}_x \cdot \mathbf{R}_y$ $R_x^2 - 1 = 0$. $R_v^2 - 1 = 0.$ 1.1 1.1 1.1 1.1 $\mathbf{P}_{y}^{+} = \frac{\mathbf{I} + \mathbf{R}_{y}}{2}$ $\mathbf{P}_x^+ = \frac{\mathbf{1} + \mathbf{R}_x}{2}$ -1.1 $-1 \cdot 1$ reducible $1 \cdot (-1)$ 1.1 $1 \cdot (-1)$ +.-1.1 projectors -1.1 $1 \cdot (-1) - 1 \cdot (-1)$ 1.1 $\mathbf{P}_{y}^{-} = \frac{\mathbf{1} - \mathbf{R}_{y}}{2}$ $\mathbf{P}_x^- = \frac{1 - \mathbf{R}_x}{2}$ 1 \mathbf{R}_x \mathbf{R}_y \mathbf{R}_z Completness $1 = \mathbf{P}_{y}^{+} + \mathbf{P}_{y}^{-}$ $1 = P_{r}^{+} + P_{r}^{-}$ $-\cdot + 1 -1$ $+\cdot - 1 1$ $\mathbf{R}_{x} = \mathbf{P}_{x}^{+} - \mathbf{P}_{r}^{-}$ Spec.decomps $\mathbf{R}_{v} = \mathbf{P}_{v}^{+} - \mathbf{P}_{v}^{-}$ The old "1=1•1 trick" $1 = 1 \cdot 1 = (P_x^+ + P_x^-) \cdot (P_y^+ + P_y^-) = P_x^+ \cdot P_y^+ + P_x^- \cdot P_y^+ + P_x^- \cdot P_y^- + P_x^- \cdot P_y^-$ gives irrep projectors $\mathbf{P}^{++} \equiv \mathbf{P}_{x}^{+} \cdot \mathbf{P}_{y}^{+} = \frac{\left(\mathbf{1} + \mathbf{R}_{x}\right) \cdot \left(\mathbf{1} + \mathbf{R}_{y}\right)}{2 \cdot 2} = \frac{1}{4} \left(\mathbf{1} + \mathbf{R}_{x} + \mathbf{R}_{y} + \mathbf{R}_{z}\right)$ (completeness is first) $\mathbf{P}^{-+} \equiv \mathbf{P}_x^- \cdot \mathbf{P}_y^+ = \frac{\left(\mathbf{1} - \mathbf{R}_x\right) \cdot \left(\mathbf{1} + \mathbf{R}_y\right)}{2 \cdot 2} = \frac{1}{4} \left(\mathbf{1} - \mathbf{R}_x + \mathbf{R}_y - \mathbf{R}_z\right)$ $\mathbf{1} = (+1)\mathbf{P}^{++} + (+1)\mathbf{P}^{-+} + (+1)\mathbf{P}^{+-} + (+1)\mathbf{P}^{--}$ $\mathbf{R}_{\mathbf{x}} = (+1)\mathbf{P}^{++} + (-1)\mathbf{P}^{-+} + (+1)\mathbf{P}^{+-} + (-1)\mathbf{P}^{--}$ $\mathbf{P}^{+-} \equiv \mathbf{P}_x^+ \cdot \mathbf{P}_y^- = \frac{\left(\mathbf{1} + \mathbf{R}_x\right) \cdot \left(\mathbf{1} - \mathbf{R}_y\right)}{2 \cdot 2} = \frac{1}{4} \left(\mathbf{1} + \mathbf{R}_x - \mathbf{R}_y - \mathbf{R}_z\right)$ $\mathbf{R}_{v} = (+1)\mathbf{P}^{++} + (+1)\mathbf{P}^{-+} + (-1)\mathbf{P}^{+-} + (-1)\mathbf{P}^{--}$ $\mathbf{R}_{\tau} = (+1)\mathbf{P}^{++} + (-1)\mathbf{P}^{-+} + (-1)\mathbf{P}^{+-} + (+1)\mathbf{P}^{--}$ $\mathbf{P}^{--} \equiv \mathbf{P}_x^- \cdot \mathbf{P}_y^- = \frac{\left(\mathbf{1} - \mathbf{R}_x\right) \cdot \left(\mathbf{1} - \mathbf{R}_y\right)}{2 \cdot 2} = \frac{1}{4} \left(\mathbf{1} - \mathbf{R}_x - \mathbf{R}_y + \mathbf{R}_z\right)$ $1 \cdot (-1) - 1 \cdot (-1)$ $1 \cdot 1 - 1 \cdot 1$

Shortcut notation for getting D₂ character table

 $C_2^x \times C_2^y \mid \mathbf{1} \cdot \mathbf{1} \quad \mathbf{R}_x \cdot \mathbf{1} \mid \mathbf{1} \cdot \mathbf{R}_y \quad \mathbf{R}_x \cdot \mathbf{R}_y$ $R_x^2 - 1 = 0$. $R_v^2 - 1 = 0.$ 1.1 1.1 1.1 1.1 -1.11.1 $\mathbf{P}_{y}^{+} = \frac{\mathbf{I} + \mathbf{R}_{y}}{2}$ $\mathbf{P}_x^+ = \frac{\mathbf{1} + \mathbf{R}_x}{2}$ 1.1 $1 \cdot (-1)$ $1 \cdot (-1)$ 1.1 reducible $1 \cdot (-1) - 1 \cdot (-1)$ $1 \cdot 1 - 1 \cdot 1$ projectors $\mathbf{P}_{y}^{-} = \frac{\mathbf{1} - \mathbf{R}_{y}}{\mathbf{2}}$ $\mathbf{P}_x^- = \frac{1 - \mathbf{R}_x}{2}$ **1** $\mathbf{R}_x \mid \mathbf{R}_y \mid \mathbf{R}_z$ D_{2} $++=A_1$ | 1 1 | 1 Note 1 $1 = \mathbf{P}_{y}^{+} + \mathbf{P}_{y}^{-}$ Completness $1 = P_{r}^{+} + P_{r}^{-}$ common Spec.decomps notation $\mathbf{R}_{r} = \mathbf{P}_{r}^{+} - \mathbf{P}_{r}^{-}$ $\mathbf{R}_{v} = \mathbf{P}_{v}^{+} - \mathbf{P}_{v}^{-}$ The old "1=1•1 trick" $1 = 1 \cdot 1 = \left(\mathbf{P}_x^+ + \mathbf{P}_x^-\right) \cdot \left(\mathbf{P}_y^+ + \mathbf{P}_y^-\right) = \mathbf{P}_x^+ \cdot \mathbf{P}_y^+ + \mathbf{P}_x^- \cdot \mathbf{P}_y^+ + \mathbf{P}_x^- \cdot \mathbf{P}_y^- + \mathbf{P}_x^- \cdot \mathbf{P}_y^-$ gives irrep projectors $\mathbf{P}^{++} \equiv \mathbf{P}_{x}^{+} \cdot \mathbf{P}_{y}^{+} = \frac{\left(\mathbf{1} + \mathbf{R}_{x}\right) \cdot \left(\mathbf{1} + \mathbf{R}_{y}\right)}{2 \cdot 2} = \frac{1}{4} \left(\mathbf{1} + \mathbf{R}_{x} + \mathbf{R}_{y} + \mathbf{R}_{z}\right)$ (completeness is first) $\mathbf{P}^{-+} \equiv \mathbf{P}_{x}^{-} \cdot \mathbf{P}_{y}^{+} = \frac{\left(\mathbf{1} - \mathbf{R}_{x}\right) \cdot \left(\mathbf{1} + \mathbf{R}_{y}\right)}{2 \cdot 2} = \frac{1}{4} \left(\mathbf{1} - \mathbf{R}_{x} + \mathbf{R}_{y} - \mathbf{R}_{z}\right)$ $\mathbf{1} = (+1)\mathbf{P}^{++} + (+1)\mathbf{P}^{-+} + (+1)\mathbf{P}^{+-} + (+1)\mathbf{P}^{--}$ $\mathbf{R}_{r} = (+1)\mathbf{P}^{++} + (-1)\mathbf{P}^{-+} + (+1)\mathbf{P}^{+-} + (-1)\mathbf{P}^{--}$ $\mathbf{P}^{+-} \equiv \mathbf{P}_x^+ \cdot \mathbf{P}_y^- = \frac{\left(\mathbf{1} + \mathbf{R}_x\right) \cdot \left(\mathbf{1} - \mathbf{R}_y\right)}{2 \cdot 2} = \frac{1}{4} \left(\mathbf{1} + \mathbf{R}_x - \mathbf{R}_y - \mathbf{R}_z\right)$ $\mathbf{R}_{v} = (+1)\mathbf{P}^{++} + (+1)\mathbf{P}^{-+} + (-1)\mathbf{P}^{+-} + (-1)\mathbf{P}^{--}$ $\mathbf{R}_{\tau} = (+1)\mathbf{P}^{++} + (-1)\mathbf{P}^{-+} + (-1)\mathbf{P}^{+-} + (+1)\mathbf{P}^{--}$ $\mathbf{P}^{--} \equiv \mathbf{P}_x^- \cdot \mathbf{P}_y^- = \frac{\left(\mathbf{1} - \mathbf{R}_x\right) \cdot \left(\mathbf{1} - \mathbf{R}_y\right)}{2 \cdot 2} = \frac{1}{4} \left(\mathbf{1} - \mathbf{R}_x - \mathbf{R}_y + \mathbf{R}_z\right)$ $\frac{C_{2}^{x} | \mathbf{1} | \mathbf{R}_{x} |}{| \mathbf{1} | \mathbf{1} |} \times \frac{C_{2}^{y} | \mathbf{1} | \mathbf{R}_{y} |}{| \mathbf{1} | \mathbf{1} |} = \frac{C_{2}^{x} \times C_{2}^{y} | \mathbf{1} \cdot \mathbf{1} | \mathbf{R}_{x} \cdot \mathbf{1} | \mathbf{1} \cdot \mathbf{R}_{y} |}{| \mathbf{1} \cdot \mathbf{1} | \mathbf{1} \cdot \mathbf{1} | \mathbf{1} \cdot \mathbf{1} |} = \frac{C_{2}^{x} \times C_{2}^{y} | \mathbf{1} \cdot \mathbf{1} | \mathbf{1} \cdot \mathbf{1} |}{| \mathbf{1} \cdot \mathbf{1} | \mathbf{1} \cdot \mathbf{1} |} = \frac{-\cdot + |\mathbf{1} \cdot \mathbf{1} | \mathbf{1} \cdot \mathbf{1} |}{| \mathbf{1} \cdot \mathbf{1} | \mathbf{1} \cdot \mathbf{1} |} = \frac{-\cdot + |\mathbf{1} \cdot \mathbf{1} | \mathbf{1} \cdot \mathbf{1} |}{| \mathbf{1} \cdot \mathbf{1} | \mathbf{1} \cdot \mathbf{1} |} = \frac{-\cdot + |\mathbf{1} \cdot \mathbf{1} | \mathbf{1} \cdot \mathbf{1} |}{| \mathbf{1} \cdot \mathbf{1} | \mathbf{1} \cdot \mathbf{1} |} = \frac{-\cdot + |\mathbf{1} \cdot \mathbf{1} |}{| \mathbf{1} \cdot \mathbf{1} | \mathbf{1} \cdot \mathbf{1} |} = \frac{-\cdot + |\mathbf{1} \cdot \mathbf{1} |}{| \mathbf{1} \cdot \mathbf{1} |} = \frac{-\cdot + |\mathbf{1} \cdot \mathbf{1} |}{| \mathbf{1} \cdot \mathbf{1} |} = \frac{-\cdot + |\mathbf{1} \cdot \mathbf{1} |}{| \mathbf{1} \cdot \mathbf{1} |} = \frac{-\cdot + |\mathbf{1} \cdot \mathbf{1} |}{| \mathbf{1} \cdot \mathbf{1} |} = \frac{-\cdot + |\mathbf{1} \cdot \mathbf{1} |}{| \mathbf{1} \cdot \mathbf{1} |} = \frac{-\cdot + |\mathbf{1} \cdot \mathbf{1} |}{| \mathbf{1} \cdot \mathbf{1} |} = \frac{-\cdot + |\mathbf{1} \cdot \mathbf{1} |}{| \mathbf{1} \cdot \mathbf{1} |} = \frac{-\cdot + |\mathbf{1} \cdot \mathbf{1} |}{| \mathbf{1} \cdot \mathbf{1} |} = \frac{-\cdot + |\mathbf{1} \cdot \mathbf{1} |}{| \mathbf{1} \cdot \mathbf{1} |} = \frac{-\cdot + |\mathbf{1} \cdot \mathbf{1} |}{| \mathbf{1} \cdot \mathbf{1} |} = \frac{-\cdot + |\mathbf{1} \cdot \mathbf{1} |}{| \mathbf{1} \cdot \mathbf{1} |} = \frac{-\cdot + |\mathbf{1} \cdot \mathbf{1} |}{| \mathbf{1} \cdot \mathbf{1} |} = \frac{-\cdot + |\mathbf{1} \cdot \mathbf{1} |}{| \mathbf{1} \cdot \mathbf{1} |} = \frac{-\cdot + |\mathbf{1} \cdot \mathbf{1} |}{| \mathbf{1} \cdot \mathbf{1} |} = \frac{-\cdot + |\mathbf{1} \cdot \mathbf{1} |}{| \mathbf{1} \cdot \mathbf{1} |} = \frac{-\cdot + |\mathbf{1} \cdot \mathbf{1} |}{| \mathbf{1} \cdot \mathbf{1} |} = \frac{-\cdot + |\mathbf{1} \cdot \mathbf{1} |}{| \mathbf{1} \cdot \mathbf{1} |} = \frac{-\cdot + |\mathbf{1} \cdot \mathbf{1} |}{| \mathbf{1} \cdot \mathbf{1} |} = \frac{-\cdot + |\mathbf{1} \cdot \mathbf{1} |}{| \mathbf{1} \cdot \mathbf{1} |} = \frac{-\cdot + |\mathbf{1} \cdot \mathbf{1} |}{| \mathbf{1} \cdot \mathbf{1} |} = \frac{-\cdot + |\mathbf{1} \cdot \mathbf{1} |}{| \mathbf{1} \cdot \mathbf{1} |} = \frac{-\cdot + |\mathbf{1} \cdot \mathbf{1} |}{| \mathbf{1} \cdot \mathbf{1} |} = \frac{-\cdot + |\mathbf{1} \cdot \mathbf{1} |}{| \mathbf{1} \cdot \mathbf{1} |} = \frac{-\cdot + |\mathbf{1} \cdot \mathbf{1} |}{| \mathbf{1} \cdot \mathbf{1} |} = \frac{-\cdot + |\mathbf{1} \cdot \mathbf{1} |}{| \mathbf{1} \cdot \mathbf{1} |} = \frac{-\cdot + |\mathbf{1} \cdot \mathbf{1} |}{| \mathbf{1} \cdot \mathbf{1} |} = \frac{-\cdot + |\mathbf{1} \cdot \mathbf{1} |}{| \mathbf{1} \cdot \mathbf{1} |} = \frac{-\cdot + |\mathbf{1} \cdot \mathbf{1} |}{| \mathbf{1} \cdot \mathbf{1} |} = \frac{-\cdot + |\mathbf{1} \cdot \mathbf{1} |}{| \mathbf{1} \cdot \mathbf{1} |} = \frac{-\cdot + |\mathbf{1} \cdot \mathbf{1} |}{| \mathbf{1} \cdot \mathbf{1} |} = \frac{-\cdot + |\mathbf{1} \cdot \mathbf{1} |}{| \mathbf{1} \cdot \mathbf{1} |} = \frac{-\cdot + |\mathbf{1} \cdot \mathbf{1} |}{| \mathbf{1} \cdot \mathbf{1} |} = \frac{-\cdot + |\mathbf{1} \cdot \mathbf{1} |}{| \mathbf{1} \cdot \mathbf{1} |} = \frac{-\cdot + |\mathbf{1} \cdot \mathbf{1} |}{| \mathbf{1} |} = \frac{-\cdot + |\mathbf{1} \cdot \mathbf{1} |}{| \mathbf{1} |} = \frac{-\cdot$ Shortcut notation for getting D₂ character table $1 \cdot (-1) - 1 \cdot (-1)$ $1 \cdot 1 - 1 \cdot 1$

 $\mathbf{T} \mathbf{R}_{y}$

 \times

Breaking C_N cyclic coupling into linear chains Review of 1D-Bohr-ring related to infinite square well (and review of revival) Breaking C_{2N+2} to approximate linear N-chain Band-It simulation: Intro to scattering approach to quantum symmetry

Breaking C_{2N} cyclic coupling down to C_N symmetry Acoustical modes vs. Optical modes Intro to other examples of band theory Avoided crossing view of band-gaps

Finally! Symmetry groups that are not just C_N The "4-Group(s)" D₂ and C_{2v} Spectral decomposition of D₂ Some D₂ modes Outer product properties and the Crystal-Point Group Zoo

$$\begin{pmatrix} \langle 1 | \ddot{x} \rangle \\ \langle 2 | \ddot{x} \rangle \\ \langle 3 | \ddot{x} \rangle \\ \langle 4 | \ddot{x} \rangle \end{pmatrix} = \begin{pmatrix} A & a & b & c \\ a & A & c & b \\ b & c & A & a \\ c & b & a & A \end{pmatrix} \begin{pmatrix} \langle 1 | x \rangle \\ \langle 2 | x \rangle \\ \langle 3 | x \rangle \\ \langle 4 | x \rangle \end{pmatrix} \qquad A = -(k_a \cos^2(a, b) + k_b + k_c \cos^2(b, c))/m, \\ a = -k_a \cos^2(a, b)/m, \\ b = -k_b/m, \\ c = -k_c \cos^2(b, c)/m.$$

$$\begin{split} |e^{A_1}\rangle &\equiv |e^1\rangle = P^1 |1\rangle \sqrt{4} = (|1\rangle + |2\rangle + |3\rangle + |4\rangle)/2, \\ |e^{B_2}\rangle &\equiv |e^2\rangle = P^2 |1\rangle \sqrt{4} = (|1\rangle - |2\rangle + |3\rangle - |4\rangle)/2, \\ |e^{B_1}\rangle &\equiv |e^3\rangle = P^3 |1\rangle \sqrt{4} = (|1\rangle + |2\rangle - |3\rangle - |4\rangle)/2, \\ |e^{A_2}\rangle &\equiv |e^4\rangle = P^4 |1\rangle \sqrt{4} = (|1\rangle - |2\rangle - |3\rangle + |4\rangle)/2, \end{split}$$

Fig. 2.8.2 PSDS

Breaking C_N cyclic coupling into linear chains Review of 1D-Bohr-ring related to infinite square well (and review of revival) Breaking C_{2N+2} to approximate linear N-chain Band-It simulation: Intro to scattering approach to quantum symmetry

Breaking C_{2N} cyclic coupling down to C_N symmetry Acoustical modes vs. Optical modes Intro to other examples of band theory Avoided crossing view of band-gaps

Finally! Symmetry groups that are not just C_N
 The "4-Group(s)" D₂ and C_{2v}
 Spectral decomposition of D₂
 Some D₂ modes
 Outer product properties and the Crystal-Point Group Zoo

Figure 2.11.1 Abelian crystal point groups. Sixteen of the 32 crystal point groups are Abelian and are illustrated by models drawn in circles.

From Lecture 12.6 p. 134 Character Trace of *n*-fold rotation where: $\ell^{j} = 2j + l$ is U(2) irrep dimension

<u>Non</u>-Abelian some elements do <u>not</u> commute

Figure 2.11.1 Abelian crystal point groups. Sixteen of the 32 crystal point groups are Abelian and are illustrated by models drawn in circles.

*C*₆ *is product* $C_3 \times C_2$ *(but* C_4 *is NOT* $C_2 \times C_2$ *)*

C_6 is product $C_3 \times C_2$ (but C_4 is NOT $C_2 \times C_2$)

	$C_3 \times C_2 = C_6$	1	$\mathbf{r} = h^2$	$\mathbf{r}^2 = h^4$	$\mathbf{R} = \mathbf{h}^3$	$\mathbf{r} \cdot \mathbf{R} = h$	$\mathbf{r}^2 \cdot \mathbf{R} = h^5$
	$(0)_3 \cdot (0)_2 = (0)_6$	1	1	1	1	1	1
	$\left(1\right)_{3}\cdot\left(0\right)_{2}=\left(2\right)_{6}$	1	$e^{2\pi i/3}$	$e^{-2\pi i/3}$	1	$e^{2\pi i/3}$	$e^{-2\pi i/3}$
=	$\left(2\right)_{3}\cdot\left(0\right)_{2}=\left(4\right)_{6}$	1	$e^{-2\pi i/3}$	$e^{2\pi i/3}$	1	$e^{-2\pi i/3}$	$e^{2\pi i/3}$
	$(0)_3 \cdot (1)_2 = (3)_6$	1	1	1	-1	-1	-1
	$\left(1\right)_{3} \cdot \left(1\right)_{2} = \left(5\right)_{6}$	1	$e^{2\pi i/3}$	$e^{-2\pi i/3}$	-1	$-e^{2\pi i/3}$	$-e^{-2\pi i/3}$
	$(2)_3 \cdot (1)_2 = (1)_6$	1	$e^{-2\pi i/3}$	$e^{2\pi i/3}$	-1	$-e^{-2\pi i/3}$	$-e^{2\pi i/3}$