Group Theory in Quantum Mechanics

C_{N} symmetry systems coupled, uncoupled, and re-coupled
(Geometry of U(2) characters - Ch. 6-12 of Unit 3)
(Principles of Symmetry, Dynamics, and Spectroscopy - Sec. 1-12 of Ch. 2)
Breaking C_{N} cyclic coupling into linear chains
Review of 1D-Bohr-ring related to infinite square well (and review of revival)
∞-Square well paths analyzed using Bohr rotor paths
Breaking $C_{2 N+2}$ to approximate linear N-chain
Band-It simulation: Intro to scattering approach to quantum symmetry
Breaking $C_{2 N}$ cyclic coupling down to C_{N} symmetry
Acoustical modes vs. Optical modes
Intro to other examples of band theory
Type-AB avoided crossing view of band-gaps
Finally! Symmetry groups that are not just C_{N}
The "4-Group (s)" D_{2} and $C_{2 v}$
Spectral decomposition of D_{2}
Some D_{2} modes
Outer product properties and the Crystal-Point Group Zoo

Breaking C_{N} cyclic coupling into linear chains
Review of $1 D$-Bohr-ring related to infinite square well (and review of revival) ∞-Square well paths analyzed using Bohr rotor paths
Breaking $C_{2 N+2}$ to approximate linear N-chain
Band-It simulation: Intro to scattering approach to quantum symmetry

```
Breaking C2N cyclic coupling down to CN symmetry
    Acoustical modes vs. Optical modes
    Intro to other examples of band theory
    Avoided crossing view of band-gaps
Finally! Symmetry groups that are not just CN
    The "4-Group(s)" D2 and C2v
    Spectral decomposition of D}\mp@subsup{D}{2}{
        Some D2 modes
    Outer product properties and the Group Zoo
```

Review: ∞-Square well PE \& Bohr rotor

(a) Infinite Square Well

Fig. 12.2.6 Comparison of eigensolutions for
(a) Infinite square well, and (b) Bohr rotor.

From QTCA Unit 5 Ch. 12 $m=0, \pm 1, \pm 2, \pm 3, \ldots$ are momentum quanta in wavevector formula: $k_{m}=2 \pi m / L$ ($k_{m}=m \quad$ if: $L=2 \pi$)

Imagining "wrap-around" ϕ-coordinate

Review: ∞-Square well PE \& Bohr rotor
(a) Infinite Square Well

Fig. 12.2.6 Comparison of eigensolutions for (a) Infinite square well, and (b) Bohr rotor.

From QTCA Unit 5 Ch. 12 $m=0, \pm 1, \pm 2, \pm 3, \ldots$ are momentum quanta in wavevector formula: $k_{m}=2 \pi m / L$ ($k_{m}=m$ if: $L=2 \pi$)

$$
\begin{aligned}
& E_{m}=\left(\hbar k_{m}\right)^{2} / 2 M=m^{2}\left[h^{2} / 2 M L^{2}\right] \\
& =m^{2} h v_{l}=m^{2} \hbar \omega_{l}
\end{aligned}
$$

fundamental Bohr $\angle-$ frequency
$\omega_{I}=2 \pi v_{I}$
lowest transition (beat) frequency
$v_{1}=\left(E_{1}-E_{0}\right) / h$ (E_{0} is defined as zero)

Review: ∞-Square well PE paths analyzed using Bohr rotor paths
(9 or10-levels $(0, \pm 1, \pm 2, \pm 3, \pm 4, \ldots, \pm 9, \pm 10, \pm 1 \ldots$.$) excited)$

Zeros(clearly) and "particle-packets" (fainty) have paths labeled by fraction sequences like: $\frac{0}{7}, \frac{1}{7}, \frac{2}{7}, \frac{3}{7}, \frac{4}{7}, \frac{5}{7}, \frac{6}{7}, \frac{1}{7}$

[Harter, J. Mol. Spec. 210, 166-182 (2001)]
Coordinate ϕ
(units of 2π)

Breaking C_{N} cyclic coupling into linear chains
Review of 1D-Bohr-ring related to infinite square well (and review of revival) $\rightarrow \infty$-Square well paths analyzed using Bohr rotor paths

Breaking $C_{2 N+2}$ to approximate linear N-chain
Band-It simulation: Intro to scattering approach to quantum symmetry

```
Breaking \(C_{2 N}\) cyclic coupling down to \(C_{N}\) symmetry
    Acoustical modes vs. Optical modes
    Intro to other examples of band theory
    Avoided crossing view of band-gaps
Finally! Symmetry groups that are not just \(C_{N}\)
    The "4-Group \((s)\) " \(D_{2}\) and \(C_{2 v}\)
    Spectral decomposition of \(D_{2}\)
        Some \(D_{2}\) modes
    Outer product properties and the Group Zoo
```

All ∞-well peak must be made of sine wave components.
(a) Infinite Square Well at $t=0$

(c) Half-time revival at $t=\tau / 2$

So how is the ∞-well "flipped revival explained?

After only 50 round-trips M's wave does a partial revival as it makes an upside down-delta function around $x=0.8 \mathrm{~W}$.

All ∞-well peak must be made of sine wave components.
(a) Infinite Square Well at $t=0$

(c) Half-time revival at $t=\tau / 2$

3. So how is the ∞-well "flipped revival explained?
2. Bohr rotor peak made of sine wave components is anti-symmetric, so an upside-down mirror image peak must accompany any peak.
(b) Bohr Rotor at $t=0$

(d) Half-fime revivval at $t \neq \tau / 2$

4. Bohr rotor half-time revival is same-side-up copy of initial peak on opposite side of ring. So that upside-down Bohr-image will appear upside-down on the other side at half-time revival.

Breaking C_{N} cyclic coupling into linear chains
Review of 1D-Bohr-ring related to infinite square well (and review of revival) ∞-Square well paths analyzed using Bohr rotor paths

\longrightarrowBreaking $C_{2 N+2}$ to approximate linear N-chain
Band-It simulation: Intro to scattering approach to quantum symmetry

```
Breaking C2N cyclic coupling down to C CN symmetry
Acoustical modes vs. Optical modes
Intro to other examples of band theory
Avoided crossing view of band-gaps
```

Finally! Symmetry groups that are not just C_{N}
The "4-Group (s)" D_{2} and $C_{2 v}$
Spectral decomposition of D_{2}
Some D2 modes
Outer product properties and the Group Zoo

C6 symmetry: Elementary Bloch Hamiltonian $\mathbf{H}^{1 B(6)}$ (1st neighbor coupling)

C6 Symmetry: Elementary Bloch Hamiltonian $\mathbf{H}^{1 B(6)}$ (1st neighbor coupling)

$$
\mathbf{H}^{1 B(6)}\left(\begin{array}{c}
\psi_{0}^{m} \\
\psi_{1}^{m} \\
\psi_{2}^{m} \\
\psi_{3}^{m} \\
\psi_{4}^{m} \\
\psi_{5}^{m}
\end{array}\right)=\left(\begin{array}{cccccc}
p=0 & 1 & 2 & 3 & 4 & 5 \\
2 r & -r & \cdot & \cdot & \cdot & -r \\
-r & 2 r & -r & \cdot & \cdot & \cdot \\
\cdot & -r & 2 r & -r & \cdot & \cdot \\
\cdot & \cdot & -r & 2 r & -r & \cdot \\
\cdot & \cdot & \cdot & -r & 2 r & -r \\
-r & \cdot & \cdot & \cdot & -r & 2 r
\end{array}\right)\left(\begin{array}{c}
\psi_{0}^{m} \\
\psi_{1}^{m} \\
\psi_{2}^{m} \\
\psi_{3}^{m} \\
\psi_{4}^{m} \\
\psi_{5}^{m}
\end{array}\right)=2 r\left(1-\cos \frac{2 \pi m}{6}\right)\left(\begin{array}{c}
\psi_{0}^{m} \\
\psi_{1}^{m} \\
\psi_{2}^{m} \\
\psi_{3}^{m} \\
\psi_{4}^{m} \\
\psi_{5}^{m}
\end{array}\right) \quad r=3
$$

C6 symmetry: Elementary Bloch Hamiltonian $\mathbf{H}^{1 B(6)}$ (1st neighbor coupling)

$$
\mathbf{H}^{1 B(6)}\left(\begin{array}{c}
\psi_{0}^{m} \\
\psi_{1}^{m} \\
\psi_{2}^{m} \\
\boldsymbol{\psi}_{3}^{m} \\
\boldsymbol{\psi}_{4}^{m} \\
\boldsymbol{\psi}_{5}^{m}
\end{array}\right)=\left(\begin{array}{cccccc}
p=0 & 1 & 2 & 3 & 4 & 5 \\
2 r & -r & \cdot & \cdot & \cdot & -r \\
-r & 2 r & -r & \cdot & \cdot & \cdot \\
\cdot & -r & 2 r & -r & \cdot & \cdot \\
\cdot & \cdot & -r & 2 r & -r & \cdot \\
\cdot & \cdot & \cdot & -r & 2 r & -r \\
-r & \cdot & \cdot & \cdot & -r & 2 r
\end{array}\right)\left(\begin{array}{c}
\psi_{0}^{m} \\
\psi_{1}^{m} \\
\psi_{2}^{m} \\
\psi_{3}^{m} \\
\psi_{4}^{m} \\
\psi_{5}^{m}
\end{array}\right)=2 r\left(1-\cos \frac{2 \pi m}{6}\right)\left(\begin{array}{l}
\psi_{0}^{m} \\
\psi_{1}^{m} \\
\psi_{2}^{m} \\
\psi_{3}^{m} \\
\psi_{4}^{m} \\
\psi_{5}^{m}
\end{array}\right)
$$

$\mathbf{H}^{1 B(6)}$ eigensolutions are very sensitive to zeroing or constraining a coupling!

Consider sine and cosine eigenvectors of a 14-by-14 elementary Bloch matrix $\mathbf{H}^{\mathrm{EB}(14)}$

$$
\begin{aligned}
& \left\langle\cos ^{m}\right|=\left(\left.\begin{array}{lllllll}
c_{0}^{m}=1 & c_{1}^{m} & c_{2}^{m} & c_{3}^{m} & c_{4}^{m} & c_{5}^{m} & c_{6}^{m}
\end{array} c_{7}^{m}=1 \right\rvert\, \begin{array}{llllll}
c_{-6}^{m} & c_{-5}^{m} & c_{-4}^{m} & c_{-3}^{m} & c_{-2}^{m} & c_{-1}^{m}
\end{array}\right) \quad \quad c_{p}^{m}=\cos \left(m \cdot p \frac{\pi}{7}\right)=c_{-p}^{m} \\
& \left\langle\sin ^{m}\right|=\left(\begin{array}{lllllll|l|lllllll}
s_{0}^{m}=0 & s_{1}^{m} & s_{2}^{m} & s_{3}^{m} & s_{4}^{m} & s_{5}^{m} & s_{6}^{m} & s_{7}^{m}=0 & s_{-6}^{m} & s_{-5}^{m} & s_{-4}^{m} & s_{-3}^{m} & s_{-2}^{m} & s_{-1}^{m}
\end{array}\right) \quad s_{p}^{m}=\sin \left(m \cdot p \frac{\pi}{7}\right)=-s_{-p}^{m}
\end{aligned}
$$

$$
\mathbf{H}^{\mathrm{EB}(14)}\left|\left\langle i^{m}\right\rangle \quad=\omega^{m(14)}\right|\left\langle i^{m}\right\rangle
$$

where:
$\omega^{m(14)}=2 r\left(1-\cos \frac{2 \pi m}{14}\right)$

Consider sine and cosine eigenvectors of a 14-by-14 elementary Bloch matrix $\mathbf{H}^{\mathrm{EB}(14)}$

$$
\begin{aligned}
& \left\langle\cos ^{m}\right|=\left(\left.\begin{array}{lllllll}
c_{0}^{m}=1 & c_{1}^{m} & c_{2}^{m} & c_{3}^{m} & c_{4}^{m} & c_{5}^{m} & c_{6}^{m}
\end{array} c_{7}^{m}=1 \right\rvert\, \begin{array}{llllll}
c_{-6}^{m} & c_{-5}^{m} & c_{-4}^{m} & c_{-3}^{m} & c_{-2}^{m} & c_{-1}^{m}
\end{array}\right) \quad \quad c_{p}^{m}=\cos \left(m \cdot p \frac{\pi}{7}\right)=c_{-p}^{m} \\
& \left\langle\sin ^{m}\right|=\left(\begin{array}{lllllllllllll}
s_{0}^{m}=0 & s_{1}^{m} & s_{2}^{m} & s_{3}^{m} & s_{4}^{m} & s_{5}^{m} & s_{6}^{m} & s_{7}^{m}=0 & s_{-6}^{m} & s_{-5}^{m} & s_{-4}^{m} & s_{-3}^{m} & s_{-2}^{m}
\end{array} s_{-1}^{m}\right) \quad \quad s_{p}^{m}=\sin \left(m \cdot p \frac{\pi}{7}\right)=-s_{-p}^{m}
\end{aligned}
$$

$$
\left.\mathbf{H}^{\mathrm{EB}(4)}\left|\left\langle i^{m}\right\rangle=\omega^{m(14)}\right| s i^{m}\right\rangle
$$

$\mathbf{H}^{\mathrm{EB}(14)}$ gives eigensolution of a δ-by- 6 constrained Bloch matrix $\mathbf{H}^{\mathrm{CM}(6)}$

$\mathbf{H}^{\mathrm{EB}(14)}$ gives eigensolution of a $6-b y-6$ constrained Bloch matrix $\mathbf{H}^{\mathrm{CM}(6)}$ using its sine-waves only

$\mathbf{H}^{\mathrm{EB}(14)}$ gives eigensolution of a $6-b y-6$ constrained Bloch matrix $\mathbf{H}^{\mathrm{CM}(6)}$ using its sine-waves only

$\mathbf{H}^{\mathrm{EB}(14)}$ gives eigensolution of a $6-b y-6$ constrained Bloch matrix $\mathbf{H}^{\mathrm{CM}(6)}$ using its sine-waves only

$\mathbf{H}^{\mathrm{EB}(14)}$ gives eigensolution of a $6-b y-6$ constrained Bloch matrix $\mathbf{H}^{\mathrm{CM}(6)}$ using its sine-waves only

Breaking C_{N} cyclic coupling into linear chains
Review of 1D-Bohr-ring related to infinite square well (and review of revival) ∞-Square well paths analyzed using Bohr rotor paths Breaking $C_{2 N+2}$ to approximate linear N-chain Band-It simulation: Intro to scattering approach to quantum symmetry

```
Breaking C2N cyclic coupling down to CN symmetry
    Acoustical modes vs. Optical modes
    Intro to other examples of band theory
    Avoided crossing view of band-gaps
Finally! Symmetry groups that are not just CN
    The "4-Group(s)" D2 and C2v
    Spectral decomposition of D}\mp@subsup{D}{2}{
        Some D2 modes
    Outer product properties and the Group Zoo
```

$\mathbf{H}^{\mathrm{EB}(14)}$ gives eigensolution of a $6-b y-6$ constrained Bloch matrix $\mathbf{H}^{\mathrm{CM}(6)}$ using its sine-waves only

Band-It simulation is
Mac OS 9 application not yet converted to web

How Band-It simulation works (from QTfCA Unit 4 Chapter 13)

How Band-It simulation works (from QTfCA Unit 4 Chapter 13)

$$
\Psi_{E}(x, 0)=R e^{i k x}+L e^{-i k x} \quad \frac{\partial}{\partial x} \Psi_{E}(x, 0)=i k \operatorname{Re}^{i k x}-i k L e^{-i k x} \equiv D \Psi_{E}(x, 0)
$$

Classical

Band-It simulation is

Mac OS 9 application not yet converted to web
Non-Classical Region ($\mathrm{E}<\mathrm{V}$)

Fig. 13.1.1 Non-constant potential $V(x)$ approximated by a series of small constant-V steps.
Between each step potential, kinetic energy, and k are assumed constant. x-derivative is denoted by $D \Psi$

$$
\Psi_{E}(x, 0)=R e^{i k x}+L e^{-i k x} \quad \frac{\partial}{\partial x} \Psi_{E}(x, 0)=i k \operatorname{Re}^{i k x}-i k L e^{-i k x} \equiv D \Psi_{E}(x, 0)
$$

Relations between the pair $(\Psi, D \Psi)$ andiamplitudes (R, L) just above $x=a$.

$$
\binom{\Psi}{D \Psi}=\left(\begin{array}{cc}
e^{-i k x} & e^{-i k x} \\
\vdots i k e^{i k x} & -i k e^{-i k x}
\end{array}\right)\binom{R}{L}
$$

How Band-It simulation works (from QTfCA Unit 4 Chapter 13)

Fig. 13.1.1 Non-constant potential $V(x)$ approximated by a series of small constant-V steps.
Between each step potential, kinetic energy, and k are assumed constant: x-derivative is denoted by $D \Psi$

$$
\Psi_{E}(x, 0)=R e^{i k x}+L e^{-i k x} \quad \frac{\partial}{\partial x} \Psi_{E}(x, 0)=i k \operatorname{Re}^{i k x}-i k L e^{-i k x} \equiv D \Psi_{E}(x, 0)
$$

Relations between the pair $(\Psi, D \Psi)$ and amplitudes: (R, L) just above $x=a$. (Inverted)

$$
\binom{\Psi}{D \Psi}=\left(\begin{array}{cc}
-i k x & e^{-i k x} \\
\hdashline i k e^{i k x} & -i k e^{-i k x}
\end{array}\right)\binom{R}{\hdashline}, \quad\binom{R}{L}=\frac{i}{2 k}\left(\begin{array}{cc}
-i k e^{-i k x} & -e^{-i k x} \\
-i k e^{i k x} & e^{i k x}
\end{array}\right)\binom{\Psi}{D \Psi}
$$

How Band-It simulation works (from QTfCA Unit 4 Chapter 13)

Fig. 13.1.1 Non-constant potential $V(x)$ approximated by a series of small constant-V steps.
Between each step potential, kinetic energy, and k are assumed constant: x-derivative is denoted by $D \Psi$

$$
\Psi_{E}(x, 0)=R e^{i k x}+L e^{-i k x} \quad \frac{\partial}{\partial x} \Psi_{E}(x, 0)=i k \operatorname{Re}^{i k x}-i k L e^{-i k x} \equiv D \Psi_{E}(x, 0)
$$

Relations between the pair $(\Psi, D \Psi)$ and amplitudes: (R, L) just above $x=a$. (Inverted)

$$
\binom{\Psi}{D \Psi}=\left(\begin{array}{cc}
i e^{-i k x} & e^{-i k x} \\
\vdots i k e^{i k x} & -i k e^{-i k x}
\end{array}\right)\binom{R}{\hdashline}, \quad\binom{R}{L}=\frac{i}{2 k}\left(\begin{array}{cc}
-i k e^{-i k x} & -e^{-i k x} \\
-i k e^{i k x} & e^{i k x}
\end{array}\right)\binom{\Psi}{D \Psi}
$$

Relations on the other side of the step boundary just below $x=a$.
(Inverted)

$$
\binom{\Psi^{\prime}}{D \Psi^{\prime}}=\left(\begin{array}{cc}
e^{i k^{\prime} x} & e^{-i k^{\prime} x} \\
i k^{\prime} e^{i k^{\prime} x} & -i k^{\prime} e^{-i k^{\prime} x}
\end{array}\right)\binom{R^{\prime}}{L^{\prime}},\binom{R^{\prime}}{L^{\prime}}=\frac{i}{2 k^{\prime}}\left(\begin{array}{cc}
-i k^{\prime} e^{-i k^{\prime} x} & -e^{-i k^{\prime} x} \\
-i k^{\prime} e^{i k^{\prime} x} & e^{i k^{\prime} x}
\end{array}\right)\binom{\Psi^{\prime}}{D \Psi^{\prime}}
$$

Wave function and derivative at $x=a-\varepsilon$ equals that at $x=a+\varepsilon$.

Between each step potential, kinetic energy, and k are assumed constant. x-derivative is denoted by $D \Psi$

$$
\Psi_{E}(x, 0)=R e^{i k x}+L e^{-i k x} \quad \frac{\partial}{\partial x} \Psi_{E}(x, 0)=i k \operatorname{Re}^{i k x}-i k L e^{-i k x} \equiv D \Psi_{E}(x, 0)
$$

Relations between the pair $(\Psi, D \Psi)$ and amplitudes (R, L) just above $x=a$. (Inverted)

$$
\binom{\Psi}{D \Psi}=\left(\begin{array}{cc}
e^{i k x} & e^{-i k x} \\
i k e^{i k x} & -i k e^{-i k x}
\end{array}\right)\binom{R}{L}, \quad\binom{R}{L}=\frac{i}{2 k}\left(\begin{array}{cc}
-i k e^{-i k x} & -e^{-i k x} \\
-i k e^{i k x} & e^{i k x}
\end{array}\right)\binom{\Psi}{D \Psi}
$$

Relations on the other side of the step boundary just below $x=a$.
(Inverted)
$\binom{\Psi^{\prime}}{D \Psi^{\prime}}=\left(\begin{array}{cc}e^{i k^{\prime} x} & e^{-i k^{\prime} x} \\ i k^{\prime} e^{i k^{\prime} x} & -i k^{\prime} e^{-i k^{\prime} x}\end{array}\right)\binom{R^{\prime}}{L^{\prime}},\binom{R^{\prime}}{L^{\prime}}=\frac{i}{2 k^{\prime}}\left(\begin{array}{cc}-i k^{\prime} e^{-i k^{\prime} x} & -e^{-i k^{\prime} x} \\ -i k^{\prime} e^{i k^{\prime} x} & e^{i k^{\prime} x}\end{array}\right)\binom{\Psi^{\prime}}{D \Psi^{\prime}}$

Wave function and derivative at $x=a-\varepsilon$ equals that at $x=a+\varepsilon$.

Between each step potential, kinetic energy, and k are assumed constant. x-derivative is denoted by $D \Psi$

$$
\Psi_{E}(x, 0)=R e^{i k x}+L e^{-i k x} \quad \frac{\partial}{\partial x} \Psi_{E}(x, 0)=i k \operatorname{Re}^{i k x}-i k L e^{-i k x} \equiv D \Psi_{E}(x, 0)
$$

Relations between the pair $(\Psi, D \Psi)$ and amplitudes (R, L) just above $x=a$. (Inverted)
$\binom{\Psi}{D \Psi}=\left(\begin{array}{cc}e^{i k x} & e^{-i k x} \\ i k e^{i k x} & -i k e^{-i k x}\end{array}\right)\binom{R}{L}, \quad\binom{R}{L}=\frac{i}{2 k}\left(\begin{array}{cc}-i k e^{-i k x} & -e^{-i k x} \\ -i k e^{i k x} & e^{i k x}\end{array}\right)\binom{\Psi}{D \Psi}$
Relations on the other side of the step boundary just below $x=a$
$\binom{\Psi^{\prime}}{D \Psi^{\prime}}=\left(\begin{array}{cc}e^{i k^{\prime} x} & e^{-i k^{\prime} x} \\ i k^{\prime} e^{i k^{\prime} x} & -i k^{\prime} e^{-i k^{\prime} x}\end{array}\right)\binom{R^{\prime}}{L^{\prime}}, \quad\binom{R^{\prime}}{L^{\prime}}=\frac{i}{2 k^{\prime}}\left(\begin{array}{cc}-i k^{\prime} e^{-i k^{\prime} x} & -e^{-i k^{\prime} x} \\ -i k^{\prime} e^{i k^{\prime} x} & e^{i k^{\prime} x}\end{array}\right)\binom{\Psi^{\prime}}{D \Psi^{\prime}}$

How Band-It simulation works (from QTfCA Unit 4 Chapter 13)
Wave function and derivative at $x=a-\varepsilon$ equals that at $x=a+\varepsilon$.

$$
\begin{aligned}
& \begin{array}{l}
\binom{\Psi^{\prime}}{D \Psi^{\prime}}_{x=a-\varepsilon}=(\\
-e^{-i k^{\prime} a}\binom{\Psi}{k^{k^{\prime} a}}\left(\begin{array}{l}
\text { (}
\end{array}\right)_{x=a}
\end{array} \\
& \binom{R^{\prime}}{L^{\prime}}=\frac{i}{2 k^{\prime}}\left(\begin{array}{cc}
-i k^{\prime} e^{-i k^{\prime} a} & -e^{-i k^{\prime} a} \\
-i k^{\prime} e^{i k^{\prime} a} & e^{i k^{\prime} a}
\end{array}\right)\left(\begin{array}{cc}
e^{i k a} & e^{-i k a} \\
i k e^{i k a} & -i k e^{-i k a}
\end{array}\right)\binom{R}{L} \\
& \binom{R^{\prime}}{L^{\prime}}=\left(\begin{array}{ll}
\left(1+\frac{k}{k^{\prime}}\right) \frac{e^{i\left(k-k^{\prime}\right) a}}{2} & \left(1-\frac{k}{k^{\prime}}\right) \frac{e^{-i\left(k+k^{\prime}\right) a}}{2} \\
\left(1-\frac{k}{k^{\prime}}\right) \frac{e^{i\left(k+k^{\prime}\right) a}}{2} & \left(1+\frac{k}{k^{\prime}}\right) \frac{e^{i\left(k^{\prime}-k\right) a}}{2}
\end{array}\right)\binom{R}{L}
\end{aligned}
$$

Wave function and derivative at $x=a-\varepsilon$ equals that at $x=a+\varepsilon$.

$\binom{\Psi^{\prime}}{D \Psi^{\prime}}_{x=a-\varepsilon}=\binom{\Psi}{D \Psi}_{x=a+\varepsilon}$

$$
\binom{R^{\prime}}{L^{\prime}}=\frac{i}{2 k^{\prime}}\left(\begin{array}{cc}
-i k^{\prime} e^{-i k^{\prime} a} & -e^{-i k^{\prime} a} \\
-i k^{\prime} e^{i k^{\prime} a} & e^{i k^{\prime} a}
\end{array}\right)\left(\begin{array}{c}
x=a-\varepsilon \\
\Psi \\
D \Psi
\end{array}\right)_{x=a}
$$

$$
\binom{R^{\prime}}{L^{\prime}}=\frac{i}{2 k^{\prime}}\left(\begin{array}{cc}
-i k^{\prime} e^{-i k^{\prime} a} & -e^{-i k^{\prime} a} \\
-i k^{\prime} e^{i k^{\prime} a} & e^{i k^{\prime} a}
\end{array}\right)\left(\begin{array}{cc}
e^{i k a} & e^{-i k a} \\
i k e^{i k a} & -i k e^{-i k a}
\end{array}\right)\binom{R}{L}
$$

$$
\binom{R^{\prime}}{L^{\prime}}=\left(\begin{array}{ll}
\left(1+\frac{k}{k^{\prime}}\right) \frac{e^{i\left(k-k^{\prime}\right) a}}{2} & \left(1-\frac{k}{k^{\prime}}\right) \frac{e^{-i\left(k+k^{\prime}\right) a}}{2} \\
\left(1-\frac{k}{k^{\prime}}\right) \frac{e^{i\left(k+k^{\prime}\right) a}}{2} & \left(1+\frac{k}{k^{\prime}}\right) \frac{e^{i\left(k^{\prime}-k\right) a}}{2}
\end{array}\right)\binom{R}{L}
$$

A special case: single input conditions with no sources or reflectors on one side (say, right hand side) so no incoming waves exist there (say, $L=0$ but $R=$ Outgoing $\neq 0$.)

Wave function and derivative at $x=a-\varepsilon$ equals that at $x=a+\varepsilon$.

A special case: single input conditions with no sources or reflectors on one side (say, right hand side) so no incoming waves exist there (say, $L=0$ but $R=$ Outgoing $\neq 0$.)

$$
\binom{R^{\prime}}{L^{\prime}}=\left(\begin{array}{ll}
\left(1+\frac{k}{k^{\prime}}\right) \frac{e^{i\left(k-k^{\prime}\right) a}}{2} & \left(1-\frac{k}{k^{\prime}}\right) \frac{e^{-i\left(k+k^{\prime}\right) a}}{2} \\
\left(1-\frac{k}{k^{\prime}}\right) \frac{e^{i\left(k+k^{\prime}\right) a}}{2} & \left(1+\frac{k}{k^{\prime}}\right) \frac{e^{i\left(k^{\prime}-k\right) a}}{2}
\end{array}\right)\binom{R}{0}=\binom{R\left(1+\frac{k}{k^{\prime}}\right) \frac{e^{i\left(k-k^{\prime}\right) a}}{2}}{R\left(1-\frac{k}{k^{\prime}}\right) \frac{e^{i\left(k+k^{\prime}\right) a}}{2}}
$$

How Band-It simulation works (from QTfCA Unit 4 Chapter 13)
A special case: single input conditions with no sources or reflectors on one side (say, right hand side) so no incoming waves exist there (say, $L=0$ but $R=$ Outgoing $\neq 0$.)

$$
\binom{R^{\prime}}{L^{\prime}}=\left(\begin{array}{ll}
\left(1+\frac{k}{k^{\prime}}\right) \frac{e^{i\left(k-k^{\prime}\right) a}}{2} & \left(1-\frac{k}{k^{\prime}}\right) \frac{e^{-i\left(k+k^{\prime}\right) a}}{2} \\
\left(1-\frac{k}{k^{\prime}}\right) \frac{e^{i\left(k+k^{\prime}\right) a}}{2} & \left(1+\frac{k}{k^{\prime}}\right) \frac{e^{i\left(k^{\prime}-k\right) a}}{2}
\end{array}\right)\binom{R}{0}=\binom{R\left(1+\frac{k}{k^{\prime}}\right) \frac{e^{i\left(k-k^{\prime}\right) a}}{2}}{R\left(1-\frac{k}{k^{\prime}}\right) \frac{e^{i\left(k+k^{\prime}\right) a}}{2}}
$$

This gives transmitted or output amplitude R and reflected amplitude L^{\prime} given an input amplitude R^{\prime}.

$$
R=\frac{2 k^{\prime}}{\left(k+k^{\prime}\right)} R^{\prime} e^{i\left(k^{\prime}-k\right) a}, \quad L^{\prime}=\frac{\left(k^{\prime}-k\right)}{\left(k+k^{\prime}\right)} R^{\prime} e^{2 i k^{\prime} a}
$$

The transmission coefficient $T_{\text {transmit }}$ and reflection coefficient $T_{\text {reflect }}$ (for $a=0$)


```
Breaking CN cyclic coupling into linear chains
    Review of 1D-Bohr-ring related to infinite square well (and review of revival)
Breaking C2N+2 to approximate linear N-chain
    Band-It simulation: Intro to scattering approach to quantum symmetry
```

Breaking $C_{2 N}$ cyclic coupling down to C_{N} symmetry Acoustical modes vs. Optical modes Intro to other examples of band theory Avoided crossing view of band-gaps

Finally! Symmetry groups that are not just C_{N} The "4-Group(s)" D_{2} and $C_{2 v}$ Spectral decomposition of D_{2} Some D2 modes Outer product properties and the Group Zoo

Fig. 2.7.6 PrinciplesSymmetry D ynamics\&Spectroscopy

Fig. 2.7.6 PrinciplesSymmetry D ynamics\&Spectroscopy

Only C_{12} symmetry projectors commute with \mathbf{K}-matrix if $\underline{a} \neq \bar{a}$. Then C_{24}-symmetry is $\underline{b} \underline{r}$ oken n

Only C_{12} symmetry projectors commute with \mathbf{K}-matrix if $\underline{a} \neq \bar{a}$. Then C_{24}-symmetry is $\underline{b} \underline{r} \mathrm{ok} e n!$ $\mathbf{P}^{(m)}=\frac{1}{12}\left(\mathbf{1}+e^{-i k_{m}} \mathbf{r}^{2}+e^{-2 i k_{m}} \mathbf{r}^{4}+e^{-3 i k_{m}} \mathbf{r}^{6}+\ldots+e^{+2 i k_{m}} \mathbf{r}^{-4}+e^{+i k_{m}} \mathbf{r}^{-2}\right)$ where: $k_{m}=\frac{2 \pi m}{12}$

Only C_{12} symmetry projectors commute with \mathbf{K}-matrix if $\underline{a} \neq \bar{a}$. Then C_{24}-symmetry is $\underline{b} \underline{r} \mathrm{ok} e n!$
$\mathbf{P}^{(m)}=\frac{1}{12}\left(\mathbf{1}+e^{-i k_{m}} \mathbf{r}^{2}+e^{-2 i k_{m}} \mathbf{r}^{4}+e^{-3 i k_{m}} \mathbf{r}^{6}+\ldots+e^{+2 i k_{m}} \mathbf{r}^{-4}+e^{+i k_{m}} \mathbf{r}^{-2}\right)$ where: $k_{m}=\frac{2 \pi m}{12}$
Two kinds of C_{12} symmetry m-states are coupled by \mathbf{K}-matrix.

Only C_{12} symmetry projectors commute with \mathbf{K}-matrix if $\underline{a} \neq \bar{a}$. Then C_{24}-symmetry is $\underline{b} \underline{r} \mathrm{k} \boldsymbol{k} \boldsymbol{n} \boldsymbol{n}$!
$\mathbf{P}^{(m)}=\frac{1}{12}\left(\mathbf{1}+e^{-i k_{m}} \mathbf{r}^{2}+e^{-2 i k_{m}} \mathbf{r}^{4}+e^{-3 i k_{m}} \mathbf{r}^{6}+\ldots+e^{+2 i k_{m}} \mathbf{r}^{-4}+e^{+i k_{m}} \mathbf{r}^{-2}\right)$ where: $k_{m}=\frac{2 \pi m}{12}$
Two kinds of C_{12} symmetry m-states are coupled by \mathbf{K}-matrix: Even $\left|r^{\text {even }}\right\rangle$ and odd $\left|r^{\text {odd }}\right\rangle$ p-points. $\left|k_{m}\right\rangle=\mathbf{P}^{(m)}\left|r^{0}\right\rangle \cdot \sqrt{12}=\left(\left|r^{0}\right\rangle+e^{-i k_{m}}\left|r^{2}\right\rangle+e^{-2 i k_{m}}\left|r^{4}\right\rangle+\ldots\right) / \sqrt{12}$

$$
\left|k_{m}^{\prime}\right\rangle=\mathbf{P}^{(m)}\left|r^{1}\right\rangle \cdot \sqrt{12}=\left(\left|r^{1}\right\rangle+e^{-i k_{m}}\left|r^{3}\right\rangle+e^{-2 i k_{m}}\left|r^{5}\right\rangle+\ldots\right) / \sqrt{12}
$$

Only C_{12} symmetry projectors commute with \mathbf{K}-matrix if $\underline{a} \neq \bar{a}$. Then C_{24}-symmetry is $\underline{b} \underline{r} \mathrm{k} \boldsymbol{k} \boldsymbol{n} \boldsymbol{n}$!

$$
\mathbf{P}^{(m)}=\frac{1}{12}\left(\mathbf{1}+e^{-i k_{m}} \mathbf{r}^{2}+e^{-2 i k_{n}} \mathbf{r}^{4}+e^{-3 i k_{m}} \mathbf{r}^{6}+\ldots+e^{+2 i k_{k_{m}}} \mathbf{r}^{-4}+e^{+i k_{m}} \mathbf{r}^{-2}\right) \text { where: } \quad k_{m}=\frac{2 \pi m}{12}
$$

Two kinds of C_{12} symmetry m-states are coupled by \mathbf{K}-matrix: Even $\left|r^{\text {even }}\right\rangle$ and odd $\left|r^{\text {odd }}\right\rangle p$-points.

$$
\left.\left|k_{m}\right\rangle=\mathbf{P}^{(m)}\left|r^{0}\right\rangle \cdot \sqrt{12}=\left(\left|r^{0}\right\rangle+e^{-i k_{m} \mid}\left|r^{2}\right\rangle+e^{-2 i k_{m}}\left|r^{4}\right\rangle+\ldots\right) / \sqrt{12} \quad\left|k_{m}^{\prime}\right\rangle=\mathbf{P}^{(m)}\left|r^{1}\right\rangle \cdot \sqrt{12}=\left(\left|r^{1}\right\rangle+e^{-i k_{m} \mid} r^{3}\right\rangle+e^{-2 i i_{n}}\left|r^{5}\right\rangle+\ldots\right) / \sqrt{12}
$$

$$
\left\langle k_{m}\right| \mathbf{K}\left|k_{m}\right\rangle=\left\langle r^{0}\right| \mathbf{P}^{(m)} \mathbf{K} \mathbf{P}^{(m)}\left|r^{0}\right\rangle \cdot 12=\left\langle r^{0}\right| \mathbf{K} \mathbf{P}^{(m)}\left|r^{0}\right\rangle \cdot 12
$$

$$
=\left\langle r^{0}\right| \mathbf{K}\left|r^{0}\right\rangle+e^{-i k_{m}}\left\langle r^{0}\right| \mathbf{K}\left|r^{2}\right\rangle+e^{-2 i k_{m}}\left\langle r^{0}\right| \mathbf{K}\left|r^{4}\right\rangle\left|r^{5}\right\rangle+\ldots
$$

$$
=\underline{a}+\bar{a}+0 \quad+0 \quad+\ldots
$$

Only C_{12} symmetry projectors commute with \mathbf{K}-matrix if $\underline{a} \neq \bar{a}$. Then C_{24}-symmetry is $\underline{b} \underline{r}$ 튼 \underline{n} !

$$
\mathbf{P}^{(m)}=\frac{1}{12}\left(\mathbf{1}+e^{-i k_{m}} \mathbf{r}^{2}+e^{-2 i k_{m}} \mathbf{r}^{4}+e^{-3 i k_{m}} \mathbf{r}^{6}+\ldots+e^{+2 i k_{m}} \mathbf{r}^{-4}+e^{+i k_{m}} \mathbf{r}^{-2}\right) \text { where: } k_{m}=\frac{2 \pi m}{12}
$$

Two kinds of C_{12} symmetry m-states are coupled by \mathbf{K}-matrix: Even $\left|r^{\text {even }}\right\rangle$ and odd $\left|r^{\text {odd }}\right\rangle$ p-points.

$$
\begin{aligned}
&\left|k_{m}\right\rangle=\mathbf{P}^{(m)}\left|r^{0}\right\rangle \cdot \sqrt{12}=\left(\left|r^{0}\right\rangle+e^{-i k_{m}}\left|r^{2}\right\rangle+e^{-2 i k_{m}}\left|r^{4}\right\rangle+\ldots\right) / \sqrt{12} \quad\left|k_{m}^{\prime}\right\rangle=\mathbf{P}^{(m)}\left|r^{1}\right\rangle \cdot \sqrt{12}=\left(\left|r^{1}\right\rangle+e^{-i k_{m}}\left|r^{3}\right\rangle+e^{-2 i k_{m}}\left|r^{5}\right\rangle+\ldots\right) / \sqrt{12} \\
&\left\langle k_{m}\right| \mathbf{K}\left|k_{m}\right\rangle=\left\langle r^{0}\right| \mathbf{P}^{(m)} \mathbf{K} \mathbf{P}^{(m)}\left|r^{0}\right\rangle \cdot 12=\left\langle r^{0}\right| \mathbf{K} \mathbf{P}^{(m)}\left|r^{0}\right\rangle \cdot 12 \\
&=\left\langle r^{0}\right| \mathbf{K}\left|r^{0}\right\rangle+e^{-i k_{m}}\left\langle r^{0}\right| \mathbf{K}\left|r^{2}\right\rangle+e^{-2 i k_{m}}\left\langle r^{0}\right| \mathbf{K}\left|r^{4}\right\rangle\left|r^{5}\right\rangle+\ldots \\
&=\underline{a}+\bar{a}+\quad 0 \quad+\quad 0 \quad+\ldots \\
&\left\langle k_{m}^{\prime}\right| \mathbf{K}\left|k_{m}\right\rangle=\left\langle r^{1}\right| \mathbf{P}^{(m)} \mathbf{K} \mathbf{P}^{(m)}\left|r^{0}\right\rangle \cdot 12=\left\langle r^{1}\right| \mathbf{K} \mathbf{P}^{(m)}\left|r^{0}\right\rangle \cdot 12 \\
&=\left\langle r^{1}\right| \mathbf{K}\left|r^{0}\right\rangle+e^{-i k_{m}}\left\langle r^{1}\right| \mathbf{K}\left|r^{2}\right\rangle+e^{-2 i k_{m}}\left\langle r^{1}\right| \mathbf{K}\left|r^{4}\right\rangle\left|r^{5}\right\rangle+\ldots \\
&=-\underline{a}+e^{-i k_{m}} \quad(-\bar{a})+\quad+\ldots \\
&=-\left(\underline{a} \quad+e^{-i k_{m}} \bar{a}\right)=\left\langle k_{m}\right| \mathbf{K}\left|k_{m}^{\prime}\right\rangle *
\end{aligned}
$$

Only C_{12} symmetry projectors commute with \mathbf{K}-matrix if $\underline{a} \neq \bar{a}$. Then C_{24}-symmetry is $\underline{b} \underline{r}$ 튼 \underline{n} !

$$
\mathbf{P}^{(m)}=\frac{1}{12}\left(\mathbf{1}+e^{-i k_{m}} \mathbf{r}^{2}+e^{-2 i k_{m}} \mathbf{r}^{4}+e^{-3 i k_{m}} \mathbf{r}^{6}+\ldots+e^{+2 i k_{m}} \mathbf{r}^{-4}+e^{+i k_{m}} \mathbf{r}^{-2}\right) \text { where: } k_{m}=\frac{2 \pi m}{12}
$$

Two kinds of C_{12} symmetry m-states are coupled by \mathbf{K}-matrix: Even $\left|r^{\text {even }}\right\rangle$ and odd $\left|r^{\text {odd }}\right\rangle$ p-points.

$$
\begin{aligned}
& \left|k_{m}\right\rangle=\mathbf{P}^{(m)}\left|r^{0}\right\rangle \cdot \sqrt{12}=\left(\left|r^{0}\right\rangle+e^{-i k_{m}}\left|r^{2}\right\rangle+e^{-2 i i_{m}}\left|r^{4}\right\rangle+\ldots\right) / \sqrt{12} \quad\left|k_{m}^{\prime}\right\rangle=\mathbf{P}^{(m)}\left|r^{1}\right\rangle \cdot \sqrt{12}=\left(\left|r^{1}\right\rangle+e^{-i k_{m}}\left|r^{3}\right\rangle+e^{-2 i_{m}}\left|r^{5}\right\rangle+\ldots\right) / \sqrt{12} \\
& \left\langle k_{m}\right| \mathbf{K}\left|k_{m}\right\rangle=\left\langle r^{0}\right| \mathbf{P}^{(m)} \mathbf{K} \mathbf{P}^{(m)}\left|r^{0}\right\rangle \cdot 12=\left\langle r^{0}\right| \mathbf{K} \mathbf{P}^{(m)}\left|r^{0}\right\rangle \cdot 12 \\
& =\left\langle r^{0}\right| \mathbf{K}\left|r^{0}\right\rangle+e^{-i k_{m}}\left\langle r^{0}\right| \mathbf{K}\left|r^{2}\right\rangle+e^{-2 i k_{m}}\left\langle r^{0}\right| \mathbf{K}\left|r^{4}\right\rangle\left|r^{5}\right\rangle+\ldots \\
& =\underline{a}+\bar{a}+0 \quad+0 \quad+\ldots \\
& \langle\mathbf{K}\rangle^{k_{m}}=\left(\begin{array}{cc}
\left\langle k_{m}\right| \mathbf{K}\left|k_{m}\right\rangle & \left\langle k_{m}\right| \mathbf{K}\left|k_{m}^{\prime}\right\rangle \\
\left\langle k_{m}^{\prime}\right| \mathbf{K}\left|k_{m}\right\rangle & \left\langle k_{m}^{\prime}\right| \mathbf{K}\left|k_{m}^{\prime}\right\rangle
\end{array}\right) \\
& \left\langle k_{m}^{\prime}\right| \mathbf{K}\left|k_{m}\right\rangle=\left\langle r^{1}\right| \mathbf{P}^{(m)} \mathbf{K} \mathbf{P}^{(m)}\left|r^{0}\right\rangle \cdot 12=\left\langle r^{1}\right| \mathbf{K} \mathbf{P}^{(m)}\left|r^{0}\right\rangle \cdot 12 \\
& =\left\langle r^{1}\right| \mathbf{K}\left|r^{0}\right\rangle+e^{-i k_{m}}\left\langle r^{1}\right| \mathbf{K}\left|r^{2}\right\rangle+e^{-2 i k_{m}}\left\langle r^{1}\right| \mathbf{K}\left|r^{4}\right\rangle\left|r^{5}\right\rangle+\ldots \\
& =-\underline{a}+e^{-i k_{m}}(-\bar{a})+0 \quad+\ldots \\
& =-\left(\underline{a}+e^{-i k_{m}} \bar{a}\right)=\left\langle k_{m}\right| \mathbf{K}\left|k_{m}^{\prime}\right\rangle^{*}
\end{aligned}
$$

Breaking C_{N} cyclic coupling into linear chains

Review of 1D-Bohr-ring related to infinite square well (and review of revival)
Breaking $C_{2 N+2}$ to approximate linear N-chain
Band-It simulation: Intro to scattering approach to quantum symmetry
Breaking $C_{2 N}$ cyclic coupling down to C_{N} symmetry
\rightarrow Acoustical modes vs. Optical modes Intro to other examples of band theory
Type-AB avoided crossing view of band-gaps
Finally! Symmetry groups that are not just C_{N}
The "4-Group(s)" D_{2} and $C_{2 v}$
Spectral decomposition of D_{2}
Some D2 modes
Outer product properties and the Group Zoo

Only C_{12} symmetry projectors commute with \mathbf{K}-matrix if $\underline{a} \neq \bar{a}$. Then C_{24}-symmetry is $\underline{b} \underline{r} \mathrm{k} e \underline{n}$!
$\mathbf{P}^{(m)}=\frac{1}{12}\left(\mathbf{1}+e^{-i k_{m}} \mathbf{r}^{2}+e^{-2 i k_{m}} \mathbf{r}^{4}+e^{-3 i k_{m}} \mathbf{r}^{6}+\ldots+e^{+2 i k_{k_{m}}} \mathbf{r}^{-4}+e^{+i k_{m}} \mathbf{r}^{-2}\right)$ where: $k_{m}=\frac{2 \pi m}{12}$
Two kinds of C_{12} symmetry m-states are coupled by \mathbf{K}-matrix: Even $\left|r^{\text {even }}\right\rangle$ and odd $\left|r^{\text {odd }}\right\rangle$ p-points.

$$
\left|k_{m}\right\rangle=\mathbf{P}^{(m)}\left|r^{0}\right\rangle \cdot \sqrt{12}=\left(\left|r^{0}\right\rangle+e^{-i k_{m}}\left|r^{2}\right\rangle+e^{-2 i k_{m}}\left|r^{4}\right\rangle+\ldots\right) / \sqrt{12}
$$

$$
\left|k_{m}^{\prime}\right\rangle=\mathbf{P}^{(m)}\left|r^{1}\right\rangle \cdot \sqrt{12}=\left(\left|r^{1}\right\rangle+e^{-i k_{m}}\left|r^{3}\right\rangle+e^{-2 i k_{m}}\left|r^{5}\right\rangle+\ldots\right) / \sqrt{12}
$$

$$
\begin{aligned}
\langle\mathbf{K}\rangle^{k_{m}} & =\left(\begin{array}{cc}
\left\langle k_{m}\right| \mathbf{K}\left|k_{m}\right\rangle & \left\langle k_{m}\right| \mathbf{K}\left|k_{m}^{\prime}\right\rangle \\
\left\langle k_{m}^{\prime}\right| \mathbf{K}\left|k_{m}\right\rangle & \left\langle k_{m}^{\prime}\right| \mathbf{K}\left|k_{m}^{\prime}\right\rangle
\end{array}\right) \\
& =\left(\begin{array}{cc}
\underline{a}+\bar{a} & -\left(\underline{a}+e^{+i k_{m}} \bar{a}\right) \\
-\left(\underline{a}+e^{-i k_{m}} \bar{a}\right) & \underline{a}+\bar{a}
\end{array}\right)
\end{aligned}
$$

Only C_{12} symmetry projectors commute with \mathbf{K}-matrix if $\underline{a} \neq \bar{a}$. Then C_{24}-symmetry is $\underline{b} \underline{r}$ oke \underline{n} !
$\mathbf{P}^{(m)}=\frac{1}{12}\left(\mathbf{1}+e^{-i k_{m}} \mathbf{r}^{2}+e^{-2 i k_{m}} \mathbf{r}^{4}+e^{-3 i k_{n}} \mathbf{r}^{6}+\ldots+e^{+2 i k_{m}} \mathbf{r}^{-4}+e^{+i k_{n}} \mathbf{r}^{-2}\right)$ where: $k_{m}=\frac{2 \pi m}{12}$
Two kinds of C_{12} symmetry m-states are coupled by \mathbf{K}-matrix: Even $\left|r^{\text {even }}\right\rangle$ and odd $\left|r^{\text {odd }}\right\rangle p$-points.

$$
\left|k_{m}\right\rangle=\mathbf{P}^{(m)}\left|r^{0}\right\rangle \cdot \sqrt{12}=\left(\left|r^{0}\right\rangle+e^{-i k_{m}}\left|r^{2}\right\rangle+e^{-2 i k_{m}}\left|r^{4}\right\rangle+\ldots\right) / \sqrt{12}
$$

$$
\left|k_{m}^{\prime}\right\rangle=\mathbf{P}^{(m)}\left|r^{1}\right\rangle \cdot \sqrt{12}=\left(\left|r^{1}\right\rangle+e^{-i k_{m}}\left|r^{3}\right\rangle+e^{-2 i k_{m}}\left|r^{5}\right\rangle+\ldots\right) / \sqrt{12}
$$

Secular Eq.:

$$
\begin{aligned}
& 0=\kappa^{2}-\operatorname{Tr}\langle\mathbf{K}\rangle^{k_{m}}+\quad \operatorname{Det}\langle\mathbf{K}\rangle^{k_{m}} \\
& 0=\kappa^{2}-2(\underline{a}+\bar{a}) \kappa+(\underline{a}+\bar{a})^{2}-\left(\underline{a}+e^{+i k_{m}} \bar{a}\right)\left(\underline{a}+e^{-i k_{m}} \bar{a}\right) \\
& 0=\kappa^{2}-2(\underline{a}+\bar{a}) \kappa+(\underline{a}+\bar{a})^{2}-\underline{a}^{2}-\bar{a}^{2}-2 \bar{a} \bar{a} \cos k_{m} \\
& 0=\kappa^{2}-2(\underline{a}+\bar{a}) \kappa+2 \bar{a} \underline{a}\left(1-\cos k_{m}\right)
\end{aligned}
$$

$$
\begin{aligned}
\langle\mathbf{K}\rangle^{k_{m}} & =\left(\begin{array}{cc}
\left\langle k_{m}\right| \mathbf{K}\left|k_{m}\right\rangle & \left\langle k_{m}\right| \mathbf{K}\left|k_{m}^{\prime}\right\rangle \\
\left\langle k_{m}^{\prime}\right| \mathbf{K}\left|k_{m}\right\rangle & \left\langle k_{m}^{\prime}\right| \mathbf{K}\left|k_{m}^{\prime}\right\rangle
\end{array}\right) \\
& =\left(\begin{array}{cc}
\underline{a}+\bar{a} & -\left(\underline{a}+e^{+i k_{m}} \bar{a}\right) \\
-\left(\underline{a}+e^{-i k_{m}} \bar{a}\right) & \underline{a}+\bar{a}
\end{array}\right)
\end{aligned}
$$

Only C_{12} symmetry projectors commute with \mathbf{K}-matrix if $\underline{a} \neq \bar{a}$. Then C_{24}-symmetry is $\underline{b} \underline{r}$ oke \underline{n} !
$\mathbf{P}^{(m)}=\frac{1}{12}\left(\mathbf{1}+e^{-i k_{m}} \mathbf{r}^{2}+e^{-2 i k_{m}} \mathbf{r}^{4}+e^{-3 i k_{n}} \mathbf{r}^{6}+\ldots+e^{+2 i k_{m}} \mathbf{r}^{-4}+e^{+i k_{n}} \mathbf{r}^{-2}\right)$ where: $k_{m}=\frac{2 \pi m}{12}$
Two kinds of C_{12} symmetry m-states are coupled by \mathbf{K}-matrix: Even $\left|r^{\text {even }}\right\rangle$ and odd $\left|r^{\text {odd }}\right\rangle p$-points.

$$
\left|k_{m}\right\rangle=\mathbf{P}^{(m)}\left|r^{0}\right\rangle \cdot \sqrt{12}=\left(\left|r^{0}\right\rangle+e^{-i k_{m}}\left|r^{2}\right\rangle+e^{-2 i k_{m}}\left|r^{4}\right\rangle+\ldots\right) / \sqrt{12}
$$

$$
\left|k_{m}^{\prime}\right\rangle=\mathbf{P}^{(m)}\left|r^{1}\right\rangle \cdot \sqrt{12}=\left(\left|r^{1}\right\rangle+e^{-i k_{m}}\left|r^{3}\right\rangle+e^{-2 i k_{m}}\left|r^{5}\right\rangle+\ldots\right) / \sqrt{12}
$$

Secular Eq.:

$$
\begin{aligned}
& 0=\kappa^{2}-\operatorname{Tr}\langle\mathbf{K}\rangle^{k_{m}}+\quad \operatorname{Det}\langle\mathbf{K}\rangle^{k_{m}} \\
& 0=\kappa^{2}-2(\underline{a}+\bar{a}) \kappa+(\underline{a}+\bar{a})^{2}-\left(\underline{a}+e^{+i k_{m}} \bar{a}\right)\left(\underline{a}+e^{-i k_{m}} \bar{a}\right) \\
& 0=\kappa^{2}-2(\underline{a}+\bar{a}) \kappa+(\underline{a}+\bar{a})^{2}-\underline{a}^{2}-\bar{a}^{2}-2 \bar{a} \underline{a} \cos k_{m} \\
& 0=\kappa^{2}-2(\underline{a}+\bar{a}) \kappa+2 \bar{a} \underline{a}\left(1-\cos k_{m}\right)
\end{aligned}
$$

$$
\begin{aligned}
\langle\mathbf{K}\rangle^{k_{m}} & =\left(\begin{array}{cc}
\left\langle k_{m}\right| \mathbf{K}\left|k_{m}\right\rangle & \left\langle k_{m}\right| \mathbf{K}\left|k_{m}^{\prime}\right\rangle \\
\left\langle k_{m}^{\prime}\right| \mathbf{K}\left|k_{m}\right\rangle & \left\langle k_{m}^{\prime}\right| \mathbf{K}\left|k_{m}^{\prime}\right\rangle
\end{array}\right) \\
& =\left(\begin{array}{cc}
\underline{a}+\bar{a} & -\left(\underline{a}+e^{+i k_{m}} \bar{a}\right) \\
-\left(\underline{a}+e^{-i k_{m}} \bar{a}\right) & \underline{a}+\bar{a}
\end{array}\right)
\end{aligned}
$$

Eigenvalues:

$$
\kappa=\omega_{k_{m}}^{2}=\underline{a}+\bar{a} \pm \sqrt{\underline{a}^{2}+2 \bar{a} \underline{a} \cos k_{m}+\bar{a}^{2}}
$$

C_{24} lattice reduced to C_{12} symmetry

Figure 2.7.7 Band splitting due to $C_{24}-C_{12}$ symmetry breaking.
Eigenvalues:
$\kappa=\omega_{k_{m}}^{2}=\underline{a}+\bar{a} \pm \sqrt{\underline{a}^{2}+2 \bar{a} \underline{a} \cos k_{m}+\bar{a}^{2}}$

$$
\begin{array}{r}
\langle\mathbf{K}\rangle^{k_{m}}=\left(\begin{array}{cc}
\left\langle k_{m}\right| \mathbf{K}\left|k_{m}\right\rangle & \left\langle k_{m}\right| \mathbf{K}\left|k_{m}^{\prime}\right\rangle \\
\left\langle k_{m}^{\prime}\right| \mathbf{K}\left|k_{m}\right\rangle & \left\langle k_{m}^{\prime}\right| \mathbf{K}\left|k_{m}^{\prime}\right\rangle
\end{array}\right) \\
=\left(\begin{array}{cc}
\underline{a}+\bar{a} & -\left(\underline{a}+e^{+i k_{m}} \bar{a}\right) \\
-\left(\underline{a}+e^{-i k_{m}} \bar{a}\right) & \underline{a}+\bar{a}
\end{array}\right)
\end{array}
$$

C_{24} lattice reduced to C_{12} symmetry

Figure 2.7.7 Band splitting due to $C_{24}-C_{12}$ symmetry breaking.
Eigenvalues:
$\kappa=\omega_{k_{m}}^{2}=\underline{a}+\bar{a} \pm \sqrt{\underline{a}^{2}+2 \bar{a} \underline{a} \cos k_{m}+\bar{a}^{2}}$

$$
\begin{array}{r}
\langle\mathbf{K}\rangle^{k_{m}}=\left(\begin{array}{cc}
\left\langle k_{m}\right| \mathbf{K}\left|k_{m}\right\rangle & \left\langle k_{m}\right| \mathbf{K}\left|k_{m}^{\prime}\right\rangle \\
\left\langle k_{m}^{\prime}\right| \mathbf{K}\left|k_{m}\right\rangle & \left\langle k_{m}^{\prime}\right| \mathbf{K}\left|k_{m}^{\prime}\right\rangle
\end{array}\right) \\
=\left(\begin{array}{cc}
\underline{a}+\bar{a} & -\left(\underline{a}+e^{+i k_{m}} \bar{a}\right) \\
-\left(\underline{a}+e^{-i k_{m}} \bar{a}\right) & \underline{a}+\bar{a}
\end{array}\right)
\end{array}
$$

C_{24} lattice reduced to C_{12} symmetry

Figure 2.7.7 Band splitting due to $C_{24}-C_{12}$ symmetry breaking.
Eigenvalues:
$\kappa=\omega_{k_{m}}^{2}=\underline{a}+\bar{a} \pm \sqrt{\underline{a}^{2}+2 \bar{a} \underline{a} \cos k_{m}+\bar{a}^{2}}$

$$
\begin{array}{r}
\langle\mathbf{K}\rangle^{k_{m}}=\left(\begin{array}{cc}
\left\langle k_{m}\right| \mathbf{K}\left|k_{m}\right\rangle & \left\langle k_{m}\right| \mathbf{K}\left|k_{m}^{\prime}\right\rangle \\
\left\langle k_{m}^{\prime}\right| \mathbf{K}\left|k_{m}\right\rangle & \left\langle k_{m}^{\prime}\right| \mathbf{K}\left|k_{m}^{\prime}\right\rangle
\end{array}\right) \\
=\left(\begin{array}{cc}
\underline{a}+\bar{a} & -\left(\underline{a}+e^{+i k_{m}} \bar{a}\right) \\
-\left(\underline{a}+e^{-i k_{m}} \bar{a}\right) & \underline{a}+\bar{a}
\end{array}\right)
\end{array}
$$

Breaking C_{N} cyclic coupling into linear chains

Review of 1D-Bohr-ring related to infinite square well (and review of revival)
Breaking $C_{2 N+2}$ to approximate linear N-chain
Band-It simulation: Intro to scattering approach to quantum symmetry
Breaking $C_{2 N}$ cyclic coupling down to C_{N} symmetry Acoustical modes vs. Optical modes Intro to other examples of band theory Type- AB avoided crossing view of band-gaps

```
Finally! Symmetry groups that are not just CN
    The "4-Group(s)" D2 and C2v
    Spectral decomposition of D2
            Some D2 modes
    Outer product properties and the Group Zoo
```

Fig. 2.12.1 PSDS

$$
\begin{aligned}
& \text { Figure 2.12.1 } C_{12} \text { "clocktane" potential wells and energy levels. (a) Zero potential gives } \\
& \text { Bohr orbital levels. (b) Weak potential gives small and-gap splittings at }(m)=6,12, \ldots . \text { (c) } \\
& \text { Strong potential gives tightly clustered bands and wide gaps. (Splitting of clusters is } \\
& \text { exaggerated for clarity.) }
\end{aligned}
$$

Intro to other examples of band theory

Crossing equations for a pair of humps

$$
R^{\prime \prime} e^{i k x}+L^{\prime \prime} e^{-i k x} \quad R_{2}^{\prime} e^{i \ell x}+L_{2}{ }^{\prime} e^{-i \ell x} \quad R_{1}^{\prime} e^{i \ell x}+L_{1}{ }^{\prime} e^{-i \ell x} \quad R e^{i k x}+L e^{-i k x}
$$

Fig. 14.1.5 C_{2}-symmetric double barrier .
$\binom{R^{\prime \prime}}{L^{\prime \prime}}=\left(\begin{array}{cc}e^{i 2 k L} \chi^{2}+e^{-i 2 k A} \xi^{2} & -i \xi\left(e^{-i 2 k b} \chi^{*}+e^{-i 2 k a^{\prime}} \chi\right) \\ i \xi\left(e^{i 2 k b} \chi+e^{i 2 k a^{\prime}} \chi^{*}\right) & e^{-i 2 k L} \chi^{2}+e^{i 2 k A} \xi^{2}\end{array}\right)\binom{R}{L}$
$\chi=\cosh \kappa L-i \sinh 2 \beta \sinh \kappa L$, and: $\xi=\cosh 2 \beta \sinh \kappa L$ $\cosh 2 \beta=\frac{1}{2}\left(\frac{\kappa}{k}+\frac{k}{\kappa}\right)=\frac{\kappa^{2}+k^{2}}{2 k \kappa}, \quad \sinh 2 \beta=\frac{1}{2}\left(\frac{\kappa}{k}-\frac{k}{\kappa}\right)=\frac{\kappa^{2}-k^{2}}{2 k \kappa}$

Fig. 14.1.7 Second ($E=6.117$) resonance in $L=0.5$ well between two width $=0.5$ barriers $(V=25)$.

$$
\begin{aligned}
& C^{3-\text { barrier }}=C^{\prime \prime} \cdot C^{\prime} \cdot C \\
& =\left(\begin{array}{cc}
e^{i k L} \chi^{*} & -i e^{-i k\left(a^{\prime \prime}+b^{\prime \prime}\right)} \xi \\
i e^{i k\left(a^{\prime \prime}+b^{\prime \prime}\right) \xi} & e^{-i k L} \chi
\end{array}\right) \cdot\left(\begin{array}{cc}
e^{i k L} \chi^{*} & -i e^{-i k\left(a^{\prime}+b^{\prime}\right) \xi} \\
i e^{i k\left(a^{\prime}+b^{\prime}\right) \xi} & e^{-i k L} \chi
\end{array}\right) \cdot\left(\begin{array}{cc}
e^{i k L} \chi^{*} & -i e^{-i k(a+b)} \xi \\
i e^{i k(a+b) \xi} & e^{-i k L} \chi
\end{array}\right)
\end{aligned}
$$

Crossing equations for three humps

Fig. 14.1.10 Triple-barrier double-well potential

Bohr-It simulations assume ring-periodic-boundary conditions

Fig. 14.2.8 Multiplets for $V=5$.
($W=15 \mathrm{~nm}$ well,$L=5 n m$ barrier) for ($N=3$)-ring and ($N=6$)-ring.

Bohr-It simulations assume ring-periodic-boundary conditions

Fig. 14.2.8 Multiplets for $V=5$.
($W=15 \mathrm{~nm}$ well , $L=5 \mathrm{~nm}$ barrier) for ($N=3$)-ring and ($N=6$)-ring.

Band-It simulations line-non-periodic scattering conditions

Fig. 14.2.9 $(N=6)$-ring and ($N=2$)-line potential. ($V=5, W=15 \mathrm{~nm}$ well,$L=5 \mathrm{~nm}$ barrier)

Breaking C_{N} cyclic coupling into linear chains
Review of 1D-Bohr-ring related to infinite square well (and review of revival)
Breaking $C_{2 N+2}$ to approximate linear N-chain
Band-It simulation: Intro to scattering approach to quantum symmetry
Breaking $C_{2 N}$ cyclic coupling down to C_{N} symmetry Acoustical modes vs. Optical modes Intro to other examples of band theory Type-AB avoided crossing view of band-gaps

Finally! Symmetry groups that are not just C_{N}
The "4-Group (s) " D_{2} and $C_{2 v}$
Spectral decomposition of D_{2}
Some D_{2} modes
Outer product properties and the Group Zoo

Transform $\mathbf{H}(A$ - basis) into $\mathbf{H}(B$-basis $)$
$\frac{\left(\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right)}{\sqrt{2}}\left(\begin{array}{cc}+A & B \\ B & -A\end{array}\right) \frac{\left(\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right)}{\sqrt{2}}$ $=\frac{1}{2}\left(\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right)\left(\begin{array}{cc}+A & B \\ B & -A\end{array}\right)\left(\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right)$
$=\frac{1}{2}\left(\begin{array}{ll}+A+B & B-A \\ +A-B & B+A\end{array}\right)\left(\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right)$
$=\quad \frac{1}{2}\left(\begin{array}{cc}2 B & 2 A \\ 2 A & -2 B\end{array}\right)$
$=\quad\left(\begin{array}{cc}+B & A \\ A & -B\end{array}\right)$

Fig. 2.12.7 PSDS
$\mid X$ up $\rangle \mid X$ down \rangle
Pure Type-B
$\langle\mathrm{H}\rangle=\left(\begin{array}{cc}\mathrm{H} & -\mathrm{s} \\ -\mathrm{s} & \mathrm{H}\end{array}\right)$ Hamiltonian
NH_{3} (Ammonia)

C_{h} Reflection Symmetry
$|s|>0$
$\mathrm{S}=0$

Type-AB Hamiltonian NH_{3} (with applied E-field)

Review of Lecture 10 p. 65 to 73

Fig. 2.12.8 PSDS

A to B to A Symmetry breaking described by hyperbolic eigenvalues of $A \boldsymbol{\sigma}_{A}+B \sigma_{B}=\mathbf{H}=\left(\begin{array}{cc}+A & B \\ B & -A\end{array}\right)$ $\mathbf{H}=\left(\begin{array}{cc}+A & B \\ B & -A\end{array}\right)$ Secular equation: $\varepsilon^{2}-0 \cdot \varepsilon-\left(A^{2}+B^{2}\right)$ gives hyperbolic energy levels: $\varepsilon= \pm \sqrt{A^{2}+B^{2}}$

Breaking C_{N} cyclic coupling into linear chains
Review of 1D-Bohr-ring related to infinite square well (and review of revival)
Breaking $C_{2 N+2}$ to approximate linear N-chain Band-It simulation: Intro to scattering approach to quantum symmetry

Breaking $C_{2 N}$ cyclic coupling down to C_{N} symmetry
Acoustical modes vs. Optical modes
Intro to other examples of band theory
Type-AB avoided crossing view of band-gaps
\rightarrow
Finally! Symmetry groups that are not just C_{N}
The "4-Group (s) " D_{2} and $C_{2 v}$
Spectral decomposition of D_{2}

Some D_{2} modes
Outer product properties and the Crystal-Point Group Zoo

Figure 2.11.1 Abelian crystal point groups. Sixteen of the 32 crystal point groups are Abelian and are illustrated by models drawn in circles.

Figure 2.11.1 Abelian crystal point groups. Sixteen of the 32 crystal point groups are Abelian and are illustrated by models drawn in circles.

Figure 2.11.1 Abelian crystal point groups. Sixteen of the 32 crystal point groups are Abelian and are illustrated by models drawn in circles.

D2 Symmetry (The 4-Group)

1: THE ORIGINAL POSITION R_{z} : THE HALF-TURN POSITION

Don't touch the fan blade.
Rotate it by 180° around its axle or the z axis.
R_{y} : THE OVERTURNED POSITION Overturn it 180° around the y axis.
R_{x} : THE FLIPPED POSITION Flip it 180° around the x axis.

Fig. 2.1.1 PSDS

D2 Symmetry (The 4-Group)

1: THE ORIGINAL POSITION R_{z} : THE HALF-TURN POSITION

Don't touch the fan blade.
Rotate it by 180° around its axle or the z axis.
R_{y} : THE OVERTURNED POSITION Overturn it 180° around the y axis.
R_{x} : THE FLIPPED POSITION Flip it 180° around the x axis.

Fig. 2.1.1 PSDS

Fig. 2.1.2 PSDS

$$
\left|R_{z}\right\rangle=R_{z}|1\rangle
$$

POSITION

$$
\left|R_{y}\right\rangle=R_{y}|1\rangle
$$

FLIPPED
POSITION

$$
\left|R_{x}\right\rangle=\mathbb{R}_{x}|1\rangle
$$

D2 Symmetry (The 4-Group)

1: THE ORIGINAL POSITION R_{z} : THE HALF-TURN POSITION

Don't touch the fan blade.
Rotate it by 180° around its axle or the z axis.
R_{y} : THE OVERTURNED POSITION Overturn it 180° around the y axis.
R_{x} : THE FLIPPED POSITION Flip it 180° around the x axis.

Fig. 2.1.1 PSDS

Fig. 2.1.2 PSDS

- $\left|R_{z}\right\rangle=R_{z}|1\rangle$

Most important: \mathbb{R}_{x}
The CPT subgroup of Lorentz Group

1	\mathbf{C}	\mathbf{P}	\mathbf{T}
C	1	\mathbf{T}	\mathbf{P}
\mathbf{P}	\mathbf{T}	1	C
\mathbf{T}	\mathbf{P}	C	1

POSITION

$$
\left|\mathrm{R}_{\mathrm{y}}\right\rangle=\mathrm{R}_{y}|1\rangle
$$

$$
\left|R_{x}\right\rangle=R_{x}|1\rangle
$$

```
Breaking \(C_{N}\) cyclic coupling into linear chains
Review of \(1 D\)-Bohr-ring related to infinite square well (and review of revival)
Breaking \(C_{2 N+2}\) to approximate linear N-chain Band-It simulation: Intro to scattering approach to quantum symmetry
```

```
Breaking C2N cyclic coupling down to CN symmetry
    Acoustical modes vs. Optical modes
    Intro to other examples of band theory
    Avoided crossing view of band-gaps
```

Finally! Symmetry groups that are not just C_{N}
The "4-Group (s)" D_{2} and $C_{2 v}$
Spectral decomposition of D_{2}
Some D_{2} modes
Outer product properties and the Crystal-Point Group Zoo
D_{2} spectral decomposition: The old " $1=1 \cdot 1$ trick" again Two C_{2} subgroup minimal equations:

$$
R_{x}^{2}-\mathbf{1}=\mathbf{0}, \quad \mathbf{R y}^{2}-\mathbf{1}=\mathbf{0}
$$

D_{2} spectral decomposition: The old " $1=1 \cdot 1$ trick" again
Two C_{2} subgroup minimal equations and their projectors:

$$
\begin{array}{lll}
\mathbf{R}_{x}^{2}-\mathbf{1}=\mathbf{0}, & \mathbf{R}_{\mathbf{y}}{ }^{2} \mathbf{1}=\mathbf{0} . \\
\mathbf{P}_{x}^{+}=\frac{\mathbf{1}+\mathbf{R}_{x}}{2} & \text { reducible } & \mathbf{P}_{y}^{+}=\frac{\mathbf{1}+\mathbf{R}_{y}}{2} \\
\mathbf{P}_{x}^{-}=\frac{\mathbf{1}-\mathbf{R}_{x}}{2} & \text { projectors } & \mathbf{P}_{y}^{-}=\frac{\mathbf{1}-\mathbf{R}_{y}}{2}
\end{array}
$$

D_{2} spectral decomposition: The old " $1=1 \cdot 1$ trick" again
Two C_{2} subgroup minimal equations and their projectors:

$$
\begin{array}{lll}
\mathbf{R}_{\mathrm{x}}^{2}-\mathbf{1}=\mathbf{0}, & \mathbf{R}_{\mathbf{y}}{ }^{2}-\mathbf{1}=\mathbf{0} . \\
\mathbf{P}_{x}^{+}=\frac{\mathbf{1}+\mathbf{R}_{x}}{2} & \text { reducible } & \mathbf{P}_{y}^{+}=\frac{\mathbf{1}+\mathbf{R}_{y}}{2} \\
\mathbf{P}_{x}^{-}=\frac{\mathbf{1}-\mathbb{R}_{x}}{2} & \text { projectors } & \mathbf{P}_{y}^{-}=\frac{\mathbf{1}-\mathbf{R}_{y}}{2} \\
\mathbf{1}=\mathbf{P}_{x}^{+}+\mathbf{P}_{x}^{-} & \text {Completness } & \mathbf{1}=\mathbf{P}_{y}^{+}+\mathbf{P}_{y}^{-}
\end{array}
$$

D_{2} spectral decomposition: The old " $1=1 \cdot 1$ trick" again
Two C_{2} subgroup minimal equations and their projectors:

$$
\begin{array}{clc}
\mathbb{R}_{x}{ }^{2}-\mathbf{1}=\mathbf{0}, & & \mathbf{R}_{\mathbf{y}}{ }^{2}-\mathbf{1}=\mathbf{0} \\
\mathbf{P}_{x}^{+}=\frac{\mathbf{1}+\mathbb{R}_{x}}{2} & \text { reducible } & \mathbf{P}_{y}^{+}=\frac{\mathbf{1}+\mathbf{R}_{y}}{2} \\
\mathbf{P}_{x}^{-}=\frac{\mathbf{1}-\mathbb{R}_{x}}{2} & \text { projectors } & \mathbf{P}_{y}^{-}=\frac{\mathbf{1}-\mathbf{R}_{y}}{2} \\
\mathbf{1}=\mathbf{P}_{x}^{+}+\mathbf{P}_{x}^{-} & \text {Completness } & \mathbf{1}=\mathbf{P}_{y}^{+}+\mathbf{P}_{y}^{-} \\
\mathbb{R}_{x}=\mathbf{P}_{x}^{+}-\mathbf{P}_{x}^{-} & \text {Spec.decomps } & \mathbf{R}_{y}=\mathbf{P}_{y}^{+}-\mathbf{P}_{y}^{-}
\end{array}
$$

D_{2} spectral decomposition: The old " $1=1 \cdot 1$ trick" again
Two C_{2} subgroup minimal equations and their projectors:

$$
\begin{array}{lll}
\mathbb{R}_{x}{ }^{2}-\mathbf{1}=\mathbf{0}, & & \mathbf{R y}^{2}-\mathbf{1}=\mathbf{0} . \\
\mathbf{P}_{x}^{+}=\frac{\mathbf{1}+\mathbf{R}_{x}}{2} & \text { reducible } & \mathbf{P}_{y}^{+}=\frac{\mathbf{1}+\mathbf{R}_{y}}{2} \\
\mathbf{P}_{x}^{-}=\frac{\mathbf{1}-\mathbf{R}_{x}}{2} & \text { projectors } & \mathbf{P}_{y}^{-}=\frac{\mathbf{1}-\mathbf{R}_{y}}{2} \\
\mathbf{1}=\mathbf{P}_{x}^{+}+\mathbf{P}_{x}^{-} & \text {Completness } & \mathbf{1}=\mathbf{P}_{y}^{+}+\mathbf{P}_{y}^{-} \\
\mathbb{R}_{x}=\mathbf{P}_{x}^{+}-\mathbf{P}_{x}^{-} & \text {Spec.decomps } & \mathbf{R}_{y}=\mathbf{P}_{y}^{+}-\mathbf{P}_{y}^{-}
\end{array}
$$

The old " $\mathbf{1}=\mathbf{1} \bullet 1$ trick" $\mathbf{1}=\mathbf{1} \cdot \mathbf{1}=\left(\mathbf{P}_{x}^{+}+\mathbf{P}_{x}^{-}\right) \cdot\left(\mathbf{P}_{y}^{+}+\mathbf{P}_{y}^{-}\right)=\mathbf{P}_{x}^{+} \cdot \mathbf{P}_{y}^{+}+\mathbf{P}_{x}^{-} \cdot \mathbf{P}_{y}^{+}+\mathbf{P}_{x}^{+} \cdot \mathbf{P}_{y}^{-}+\mathbf{P}_{x}^{-} \cdot \mathbf{P}_{y}^{-} \quad$ gives irrep projectors
D_{2} spectral decomposition: The old " $1=1 \cdot 1$ trick" again
Two C_{2} subgroup minimal equations and their projectors:

$$
\begin{array}{lll}
\mathbb{R}_{x}{ }^{2}-\mathbf{1}=\mathbf{0}, & \mathbf{R}_{y}{ }^{2}-\mathbf{1}=\mathbf{0} . \\
\mathbf{P}_{x}^{+}=\frac{\mathbf{1}+\mathbb{R}_{x}}{2} & \text { reducible } & \mathbf{P}_{y}^{+}=\frac{\mathbf{1}+\mathbf{R}_{y}}{2} \\
\mathbf{P}_{x}^{-}=\frac{\mathbf{1}-\mathbb{R}_{x}}{2} & \text { projectors } & \mathbf{P}_{y}^{-}=\frac{\mathbf{1}-\mathbf{R}_{y}}{2} \\
\mathbf{1}=\mathbf{P}_{x}^{+}+\mathbf{P}_{x}^{-} & \text {Completness } & \mathbf{1}=\mathbf{P}_{y}^{+}+\mathbf{P}_{y}^{-} \\
\mathbb{R}_{x}=\mathbf{P}_{x}^{+}-\mathbf{P}_{x}^{-} & \text {Spec.decomps } & \mathbf{R}_{y}=\mathbf{P}_{y}^{+}-\mathbf{P}_{y}^{-}
\end{array}
$$

The old " $\mathbf{1}=\mathbf{1} \bullet 1$ trick" $\mathbf{1}=\mathbf{1} \cdot \mathbf{1}=\left(\mathbf{P}_{x}^{+}+\mathbf{P}_{x}^{-}\right) \cdot\left(\mathbf{P}_{y}^{+}+\mathbf{P}_{y}^{-}\right)=\mathbf{P}_{x}^{+} \cdot \mathbf{P}_{y}^{+}+\mathbf{P}_{x}^{-} \cdot \mathbf{P}_{y}^{+}+\mathbf{P}_{x}^{+} \cdot \mathbf{P}_{y}^{-}+\mathbf{P}_{x}^{-} \cdot \mathbf{P}_{y}^{-} \quad$ gives irrep projectors
$\mathbf{P}^{++} \equiv \mathbf{P}_{x}^{+} \cdot \mathbf{P}_{y}^{+}=\frac{\left(\mathbf{1}+\mathbf{R}_{x}\right) \cdot\left(\mathbf{1}+\mathbf{R}_{y}\right)}{2 \cdot 2}=\frac{1}{4}\left(\mathbf{1}+\mathbf{R}_{x}+\mathbf{R}_{y}+\mathbf{R}_{z}\right)$
$\mathbf{P}^{+} \equiv \mathbf{P}_{x}^{-} \cdot \mathbf{P}_{y}^{+}=\frac{\left(\mathbf{1}-\mathbf{R}_{x}\right) \cdot\left(\mathbf{1}+\mathbf{R}_{y}\right)}{2 \cdot 2}=\frac{1}{4}\left(\mathbf{1}-\mathbf{R}_{x}+\mathbf{R}_{y}-\mathbf{R}_{z}\right)$
$\mathbf{P}^{+-} \equiv \mathbf{P}_{x}^{+} \cdot \mathbf{P}_{y}^{-}=\frac{\left(\mathbf{1}+\mathbf{R}_{x}\right) \cdot\left(\mathbf{1}-\mathbf{R}_{y}\right)}{2 \cdot 2}=\frac{1}{4}\left(\mathbf{1}+\mathbf{R}_{x}-\mathbf{R}_{y}-\mathbf{R}_{z}\right)$
$\mathbf{P}^{--} \equiv \mathbf{P}_{x}^{-} \cdot \mathbf{P}_{y}^{-}=\frac{\left(\mathbf{1}-\mathbf{R}_{x}\right) \cdot\left(\mathbf{1}-\mathbf{R}_{y}\right)}{2 \cdot 2}=\frac{1}{4}\left(\mathbf{1}-\mathbf{R}_{x}-\mathbf{R}_{y}+\mathbf{R}_{z}\right)$
D_{2} spectral decomposition: The old " $1=1 \cdot 1$ trick" again
Two C_{2} subgroup minimal equations and their projectors:

$$
\begin{array}{lll}
\mathbb{R}_{x}{ }^{2}-\mathbf{1}=\mathbf{0}, & \mathbf{R}_{y}{ }^{2}-\mathbf{1}=\mathbf{0} . \\
\mathbf{P}_{x}^{+}=\frac{\mathbf{1}+\mathbb{R}_{x}}{2} & \text { reducible } & \mathbf{P}_{y}^{+}=\frac{\mathbf{1}+\mathbf{R}_{y}}{2} \\
\mathbf{P}_{x}^{-}=\frac{\mathbf{1}-\mathbf{R}_{x}}{2} & \text { projectors } & \mathbf{P}_{y}^{-}=\frac{\mathbf{1}-\mathbf{R}_{y}}{2} \\
\mathbf{1}=\mathbf{P}_{x}^{+}+\mathbf{P}_{x}^{-} & \text {Completness } & \mathbf{1}=\mathbf{P}_{y}^{+}+\mathbf{P}_{y}^{-} \\
\mathbb{R}_{x}=\mathbf{P}_{x}^{+}-\mathbf{P}_{x}^{-} & \text {Spec.decomps } & \mathbf{R}_{y}=\mathbf{P}_{y}^{+}-\mathbf{P}_{y}^{-}
\end{array}
$$

The old " $\mathbf{1}=1 \bullet 1$ trick" $\mathbf{1}=\mathbf{1} \cdot \mathbf{1}=\left(\mathbf{P}_{x}^{+}+\mathbf{P}_{x}^{-}\right) \cdot\left(\mathbf{P}_{y}^{+}+\mathbf{P}_{y}^{-}\right)=\mathbf{P}_{x}^{+} \cdot \mathbf{P}_{y}^{+}+\mathbf{P}_{x}^{-} \cdot \mathbf{P}_{y}^{+}+\mathbf{P}_{x}^{+} \cdot \mathbf{P}_{y}^{-}+\mathbf{P}_{x}^{-} \cdot \mathbf{P}_{y}^{-} \quad$ gives irrep projectors

$$
\mathbf{P}^{++} \equiv \mathbf{P}_{x}^{+} \cdot \mathbf{P}_{y}^{+}=\frac{\left(\mathbf{1}+\mathbf{R}_{x}\right) \cdot\left(\mathbf{1}+\mathbf{R}_{y}\right)}{2 \cdot 2}=\frac{1}{4}\left(\mathbf{1}+\mathbb{R}_{x}+\mathbf{R}_{y}+\mathbf{R}_{z}\right)
$$

(completeness is first)
$\mathbf{P}^{+} \equiv \mathbf{P}_{x}^{-} \cdot \mathbf{P}_{y}^{+}=\frac{\left(\mathbf{1}-\mathbf{R}_{x}\right) \cdot\left(\mathbf{1}+\mathbf{R}_{y}\right)}{2 \cdot 2}=\frac{1}{4}\left(\mathbf{1}-\mathbf{R}_{x}+\mathbf{R}_{y}-\mathbf{R}_{z}\right)$
$\mathbf{1}=(+1) \mathbf{P}^{++}+(+1) \mathbf{P}^{-+}+(+1) \mathbf{P}^{+-}+(+1) \mathbf{P}^{--}$
$\mathbf{P}^{+-} \equiv \mathbf{P}_{x}^{+} \cdot \mathbf{P}_{y}^{-}=\frac{\left(\mathbf{1}+\mathbf{R}_{x}\right) \cdot\left(\mathbf{1}-\mathbf{R}_{y}\right)}{2 \cdot 2}=\frac{1}{4}\left(\mathbf{1}+\mathbf{R}_{x}-\mathbf{R}_{y}-\mathbf{R}_{z}\right)$
$\mathbf{P}^{--} \equiv \mathbf{P}_{x}^{-} \cdot \mathbf{P}_{y}^{-}=\frac{\left(\mathbf{1}-\mathbf{R}_{x}\right) \cdot\left(\mathbf{1}-\mathbf{R}_{y}\right)}{2 \cdot 2}=\frac{1}{4}\left(\mathbf{1}-\mathbf{R}_{x}-\mathbf{R}_{y}+\mathbf{R}_{z}\right)$
D_{2} spectral decomposition: The old " $1=1 \cdot 1$ trick" again
Two C_{2} subgroup minimal equations and their projectors:

$$
\begin{array}{lll}
\mathbb{R}_{x}{ }^{2}-\mathbf{1}=\mathbf{0}, & \mathbf{R}_{y}{ }^{2}-\mathbf{1}=\mathbf{0} . \\
\mathbf{P}_{x}^{+}=\frac{\mathbf{1}+\mathbb{R}_{x}}{2} & \text { reducible } & \mathbf{P}_{y}^{+}=\frac{\mathbf{1}+\mathbf{R}_{y}}{2} \\
\mathbf{P}_{x}^{-}=\frac{\mathbf{1}-\mathbb{R}_{x}}{2} & \text { projectors } & \mathbf{P}_{y}^{-}=\frac{\mathbf{1}-\mathbf{R}_{y}}{2} \\
\mathbf{1}=\mathbf{P}_{x}^{+}+\mathbf{P}_{x}^{-} & \text {Completness } & \mathbf{1}=\mathbf{P}_{y}^{+}+\mathbf{P}_{y}^{-} \\
\mathbf{R}_{x}=\mathbf{P}_{x}^{+}-\mathbf{P}_{x}^{-} & \text {Spec.decomps } & \mathbf{R}_{y}=\mathbf{P}_{y}^{+}-\mathbf{P}_{y}^{-}
\end{array}
$$

The old " $\mathbf{1}=1 \bullet 1$ trick" $\mathbf{1}=\mathbf{1} \cdot \mathbf{1}=\left(\mathbf{P}_{x}^{+}+\mathbf{P}_{x}^{-}\right) \cdot\left(\mathbf{P}_{y}^{+}+\mathbf{P}_{y}^{-}\right)=\mathbf{P}_{x}^{+} \cdot \mathbf{P}_{y}^{+}+\mathbf{P}_{x}^{-} \cdot \mathbf{P}_{y}^{+}+\mathbf{P}_{x}^{+} \cdot \mathbf{P}_{y}^{-}+\mathbf{P}_{x}^{-} \cdot \mathbf{P}_{y}^{-} \quad$ gives irrep projectors
$\mathbf{P}^{++} \equiv \mathbf{P}_{x}^{+} \cdot \mathbf{P}_{y}^{+}=\frac{\left(\mathbf{1}+\mathbf{R}_{x}\right) \cdot\left(\mathbf{1}+\mathbf{R}_{y}\right)}{2 \cdot 2}=\frac{1}{4}\left(\mathbf{1}+\mathbf{R}_{x}+\mathbf{R}_{y}+\mathbf{R}_{z}\right)$
(then R_{x} eigenvalues)
$\mathbf{P}^{+} \equiv \mathbf{P}_{x}^{-} \cdot \mathbf{P}_{y}^{+}=\frac{\left(\mathbf{1}-\mathbf{R}_{x}\right) \cdot\left(\mathbf{1}+\mathbf{R}_{y}\right)}{2 \cdot 2}=\frac{1}{4}\left(\mathbf{1}-\mathbf{R}_{x}+\mathbf{R}_{y}-\mathbf{R}_{z}\right)$
$\mathbf{1}=(+1) \mathbf{P}^{++}+(+1) \mathbf{P}^{++}+(+1) \mathbf{P}^{+-}+(+1) \mathbf{P}$
$\mathbf{R}_{x}=(+1) \mathbf{P}^{++}+(-1) \mathbf{P}^{++}+(+1) \mathbf{P}^{+-}+(-1) \mathbf{P}^{-}$
$\mathbf{P}^{+-} \equiv \mathbf{P}_{x}^{+} \cdot \mathbf{P}_{y}^{-}=\frac{\left(\mathbf{1}+\mathbf{R}_{x}\right) \cdot\left(\mathbf{1}-\mathbf{R}_{y}\right)}{2 \cdot 2}=\frac{1}{4}\left(\mathbf{1}+\mathbf{R}_{x}-\mathbf{R}_{y}-\mathbf{R}_{z}\right)$
$\mathbf{P}^{--} \equiv \mathbf{P}_{x}^{-} \cdot \mathbf{P}_{y}^{-}=\frac{\left(\mathbf{1}-\mathbf{R}_{x}\right) \cdot\left(\mathbf{1}-\mathbf{R}_{y}\right)}{2 \cdot 2}=\frac{1}{4}\left(\mathbf{1}-\mathbf{R}_{x}-\mathbf{R}_{y}+\mathbf{R}_{z}\right)$
D_{2} spectral decomposition: The old " $1=1 \cdot 1$ trick" again
Two C_{2} subgroup minimal equations and their projectors:

$$
\begin{array}{lll}
\mathbb{R}_{x}{ }^{2}-\mathbf{1}=\mathbf{0}, & \mathbf{R}_{y}{ }^{2}-\mathbf{1}=\mathbf{0} . \\
\mathbf{P}_{x}^{+}=\frac{\mathbf{1}+\mathbb{R}_{x}}{2} & \text { reducible } & \mathbf{P}_{y}^{+}=\frac{\mathbf{1}+\mathbf{R}_{y}}{2} \\
\mathbf{P}_{x}^{-}=\frac{\mathbf{1}-\mathbb{R}_{x}}{2} & \text { projectors } & \mathbf{P}_{y}^{-}=\frac{\mathbf{1}-\mathbf{R}_{y}}{2} \\
\mathbf{1}=\mathbf{P}_{x}^{+}+\mathbf{P}_{x}^{-} & \text {Completness } & \mathbf{1}=\mathbf{P}_{y}^{+}+\mathbf{P}_{y}^{-} \\
\mathbb{R}_{x}=\mathbf{P}_{x}^{+}-\mathbf{P}_{x}^{-} & \text {Spec.decomps } & \mathbf{R}_{y}=\mathbf{P}_{y}^{+}-\mathbf{P}_{y}^{-}
\end{array}
$$

The old " $\mathbf{1}=\mathbf{1} \bullet 1$ trick" $\mathbf{1}=\mathbf{1} \cdot \mathbf{1}=\left(\mathbf{P}_{x}^{+}+\mathbf{P}_{x}^{-}\right) \cdot\left(\mathbf{P}_{y}^{+}+\mathbf{P}_{y}^{-}\right)=\mathbf{P}_{x}^{+} \cdot \mathbf{P}_{y}^{+}+\mathbf{P}_{x}^{-} \cdot \mathbf{P}_{y}^{+}+\mathbf{P}_{x}^{+} \cdot \mathbf{P}_{y}^{-}+\mathbf{P}_{x}^{-} \cdot \mathbf{P}_{y}^{-} \quad$ gives irrep projectors

$$
\begin{array}{ll}
\mathbf{P}^{++} \equiv \mathbf{P}_{x}^{+} \cdot \mathbf{P}_{y}^{+}=\frac{\left(\mathbf{1}+\mathbb{R}_{x}\right) \cdot\left(\mathbf{1}+\mathbf{R}_{y}\right)}{2 \cdot 2}=\frac{1}{4}\left(\mathbf{1}+\mathbf{R}_{x}+\mathbf{R}_{y}+\mathbf{R}_{z}\right) & (\ldots \text { and so forth }) \\
\mathbf{P}^{++} \equiv \mathbf{P}_{x}^{-} \cdot \mathbf{P}_{y}^{+}=\frac{\left(\mathbf{1}-\mathbb{R}_{x}\right) \cdot\left(\mathbf{1}+\mathbf{R}_{y}\right)}{2 \cdot 2}=\frac{1}{4}\left(\mathbf{1}-\mathbf{R}_{x}+\mathbf{R}_{y}-\mathbf{R}_{z}\right) & \mathbf{1}=(+1) \mathbf{P}^{++}+(+1) \mathbf{P}^{++}+(+1) \mathbf{P}^{+-}+(+1) \mathbf{P}^{--} \\
\mathbf{P}_{x}=(+1) \mathbf{P}^{++}+(-1) \mathbf{P}^{++}+(+1) \mathbf{P}^{+-}+(-1) \mathbf{P}^{--} \\
\mathbf{P}_{x}^{+} \cdot \mathbf{P}_{y}^{-}=\frac{\left(\mathbf{1}+\mathbb{R}_{x}\right) \cdot\left(\mathbf{1}-\mathbf{R}_{y}\right)}{2 \cdot 2}=\frac{1}{4}\left(\mathbf{1}+\mathbf{R}_{x}-\mathbf{R}_{y}-\mathbf{R}_{z}\right) & \mathbf{R}_{y}=(+1) \mathbf{P}^{++}+(+1) \mathbf{P}^{++}+(-1) \mathbf{P}^{+-}+(-1) \mathbf{P}^{--} \\
\mathbf{P}^{--} \equiv \mathbf{P}_{x}^{-} \cdot \mathbf{P}_{y}^{-}=\frac{\left(\mathbf{1}-\mathbb{R}_{x}\right) \cdot\left(\mathbf{1}-\mathbf{R}_{y}\right)}{2 \cdot 2}=\frac{1}{4}\left(\mathbf{1}-\mathbf{R}_{x}-\mathbf{R}_{y}+\mathbf{R}_{z}\right) & \mathbf{R}_{z}=(+1) \mathbf{P}^{++}+(-1) \mathbf{P}^{++}+(-1) \mathbf{P}^{+-}+(+1) \mathbf{P}^{--}
\end{array}
$$

D_{2} spectral decomposition: The old " $1=1 \cdot 1$ trick" again
Two C_{2} subgroup minimal equations and their projectors:

$$
\begin{array}{rlr}
\mathbb{R}_{x}{ }^{2}-\mathbf{1}=\mathbf{0}, & \mathbf{R}_{y}{ }^{2} \mathbf{1}=\mathbf{0} . \\
\mathbf{P}_{x}^{+}=\frac{\mathbf{1}+\mathbf{R}_{x}}{2} & \text { reducible } & \mathbf{P}_{y}^{+}=\frac{\mathbf{1}+\mathbf{R}_{y}}{2} \\
\mathbf{P}_{x}^{-}=\frac{\mathbf{1}-\mathbf{R}_{x}}{2} & \text { projectors } & \mathbf{P}_{y}^{-}=\frac{\mathbf{1}-\mathbf{R}_{y}}{2} \\
\mathbf{1}=\mathbf{P}_{x}^{+}+\mathbf{P}_{x}^{-} & \text {Completness } & \mathbf{1}=\mathbf{P}_{y}^{+}+\mathbf{P}_{y}^{-} \\
\mathbb{R}_{x}=\mathbf{P}_{x}^{+}-\mathbf{P}_{x}^{-} & \text {Spec.decomps } & \mathbf{R}_{y}=\mathbf{P}_{y}^{+}-\mathbf{P}_{y}^{-}
\end{array}
$$

The old " $\mathbf{1}=\mathbf{1} \bullet 1$ trick" $\mathbf{1}=\mathbf{1} \cdot \mathbf{1}=\left(\mathbf{P}_{x}^{+}+\mathbf{P}_{x}^{-}\right) \cdot\left(\mathbf{P}_{y}^{+}+\mathbf{P}_{y}^{-}\right)=\mathbf{P}_{x}^{+} \cdot \mathbf{P}_{y}^{+}+\mathbf{P}_{x}^{-} \cdot \mathbf{P}_{y}^{+}+\mathbf{P}_{x}^{+} \cdot \mathbf{P}_{y}^{-}+\mathbf{P}_{x}^{-} \cdot \mathbf{P}_{y}^{-} \quad$ gives irrep projectors

$$
\mathbf{P}^{++} \equiv \mathbf{P}_{x}^{+} \cdot \mathbf{P}_{y}^{+}=\frac{\left(\mathbf{1}+\mathbf{R}_{x}\right) \cdot\left(\mathbf{1}+\mathbf{R}_{y}\right)}{2 \cdot 2}=\frac{1}{4}\left(\mathbf{1}+\mathbf{R}_{x}+\mathbf{R}_{y}+\mathbf{R}_{z}\right)
$$

(completeness is first)

$$
\mathbf{P}^{-+} \equiv \mathbf{P}_{x}^{-} \cdot \mathbf{P}_{y}^{+}=\frac{\left(\mathbf{1}-\mathbf{R}_{x}\right) \cdot\left(\mathbf{1}+\mathbf{R}_{y}\right)}{2 \cdot 2}=\frac{1}{4}\left(\mathbf{1}-\mathbf{R}_{x}+\mathbf{R}_{y}-\mathbf{R}_{z}\right)
$$

$$
\mathbf{P}^{+-} \equiv \mathbf{P}_{x}^{+} \cdot \mathbf{P}_{y}^{-}=\frac{\left(\mathbf{1}+\mathbb{R}_{x}\right) \cdot\left(\mathbf{1}-\mathbf{R}_{y}\right)}{2 \cdot 2}=\frac{1}{4}\left(\mathbf{1}+\mathbb{R}_{x}-\mathbf{R}_{y}-\mathbf{R}_{z}\right)
$$

$$
\mathbf{P}^{--} \equiv \mathbf{P}_{x}^{-} \cdot \mathbf{P}_{y}^{-}=\frac{\left(\mathbf{1}-\mathbf{R}_{x}\right) \cdot\left(\mathbf{1}-\mathbf{R}_{y}\right)}{2 \cdot 2}=\frac{1}{4}\left(\mathbf{1}-\mathbf{R}_{x}-\mathbf{R}_{y}+\mathbf{R}_{z}\right)
$$

Shortcut notation for getting D_{2} character table

C_{2}^{x}	$\mathbf{1}$	\mathbf{R}_{x}				
+	1	1				
-	1	-1	\times	C_{2}^{y}	$\mathbf{1}$	\mathbf{R}_{y}
:---:	:---:	:---:				
+	1	1				
-	1	-1				

$\mathbf{R}_{z}=$
$\left|\begin{array}{c|cc|}C_{2}^{y} & \mathbf{1} & \mathbf{R}_{y} \\ \hline+ & 1 & 1 \\ - & 1 & -1\end{array}\right|=$

$$
\mathbf{R}_{x}=(+1) \mathbf{P}^{++}+(-1) \mathbf{P}^{-+}+(+1) \mathbf{P}^{+-}+(-1) \mathbf{P}^{-}
$$

$$
\mathbf{R}_{y}=(+1) \mathbf{P}^{++}+(+1) \mathbf{P}^{++}+(-1) \mathbf{P}^{+-}+(-1) \mathbf{P}^{-}
$$

$$
\mathbf{R}_{z}=(+1) \mathbf{P}^{++}+(-1) \mathbf{P}^{++}+(-1) \mathbf{P}^{+-}+(+1) \mathbf{P}^{-}
$$

$C_{2}^{x} \times C_{2}^{y}$	$\mathbf{1} \cdot \mathbf{1}$	$\mathbb{R}_{x} \cdot \mathbf{1}$	$\mathbf{1} \cdot \mathbf{R}_{y}$	$\mathbb{R}_{x} \cdot \mathbf{R}_{y}$
$+\cdot+$	$1 \cdot 1$	$1 \cdot 1$	$1 \cdot 1$	$1 \cdot 1$
$-\cdot+$	$1 \cdot 1$	$-1 \cdot 1$	$1 \cdot 1$	$-1 \cdot 1$
$+\cdot-$	$1 \cdot 1$	$1 \cdot 1$	$1 \cdot(-1)$	$1 \cdot(-1)$
$-\cdot-$	$1 \cdot 1$	$-1 \cdot 1$	$1 \cdot(-1)$	$-1 \cdot(-1)$

D_{2} spectral decomposition: The old " $1=1 \cdot 1$ trick" again Two C_{2} subgroup minimal equations and their projectors:

$$
\begin{array}{lll}
\mathbb{R}_{x}{ }^{2}-\mathbf{1}=\mathbf{0}, & \mathbf{R}_{y}{ }^{2}-\mathbf{1}=\mathbf{0} . \\
\mathbf{P}_{x}^{+}=\frac{\mathbf{1}+\mathbb{R}_{x}}{2} & \text { reducible } & \mathbf{P}_{y}^{+}=\frac{\mathbf{1}+\mathbf{R}_{y}}{2} \\
\mathbf{P}_{x}^{-}=\frac{\mathbf{1}-\mathbb{R}_{x}}{2} & \text { projectors } & \mathbf{P}_{y}^{-}=\frac{\mathbf{1}-\mathbf{R}_{y}}{2} \\
\mathbf{1}=\mathbf{P}_{x}^{+}+\mathbf{P}_{x}^{-} & \text {Completness } & \mathbf{1}=\mathbf{P}_{y}^{+}+\mathbf{P}_{y}^{-} \\
\mathbb{R}_{x}=\mathbf{P}_{x}^{+}-\mathbf{P}_{x}^{-} & \text {Spec.decomps } & \mathbf{R}_{y}=\mathbf{P}_{y}^{+}-\mathbf{P}_{y}^{-}
\end{array}
$$

$\left.=\begin{array}{c|cc|cc|}C_{2}^{x} \times C_{2}^{y} & \mathbf{1} \cdot \mathbf{1} & \mathbf{R}_{x} \cdot \mathbf{1} & \mathbf{1} \cdot \mathbf{R}_{y} & \mathbf{R}_{x} \cdot \mathbf{R}_{y} \\ \hline+\cdot+ & 1 \cdot 1 & 1 \cdot 1 & 1 \cdot 1 & 1 \cdot 1 \\ -\cdot+ & 1 \cdot 1 & -1 \cdot 1 & 1 \cdot 1 & -1 \cdot 1 \\ \hline+\cdot- & 1 \cdot 1 & 1 \cdot 1 & 1 \cdot(-1) & 1 \cdot(-1) \\ -\cdot- & 1 \cdot 1 & -1 \cdot 1 & 1 \cdot(-1) & -1 \cdot(-1) \\ \hline & \begin{array}{c|cc|cc|}D_{2} & \mathbf{1} & \mathbf{R}_{x} & \mathbf{R}_{y} & \mathbf{R}_{z} \\ \hline+\cdot+ & 1 & 1 & 1 & 1 \\ -\cdot+ & 1 & -1 & 1 & -1 \\ \hline+\cdot- & 1 & 1 & -1 & -1 \\ -\cdot- & 1 & -1 & -1 & 1 \\ \hline\end{array}\end{array}\right)$

The old " $\mathbf{1}=\mathbf{1} \bullet \mathbf{1}$ trick" $\mathbf{1}=\mathbf{1} \cdot \mathbf{1}=\left(\mathbf{P}_{x}^{+}+\mathbf{P}_{x}^{-}\right) \cdot\left(\mathbf{P}_{y}^{+}+\mathbf{P}_{y}^{-}\right)=\mathbf{P}_{x}^{+} \cdot \mathbf{P}_{y}^{+}+\mathbf{P}_{x}^{-} \cdot \mathbf{P}_{y}^{+}+\mathbf{P}_{x}^{+} \cdot \mathbf{P}_{y}^{-}+\mathbf{P}_{x}^{-} \cdot \mathbf{P}_{y}^{-} \quad$ gives irrep projectors

$$
\mathbf{P}^{++} \equiv \mathbf{P}_{x}^{+} \cdot \mathbf{P}_{y}^{+}=\frac{\left(\mathbf{1}+\mathbb{R}_{x}\right) \cdot\left(\mathbf{1}+\mathbf{R}_{y}\right)}{2 \cdot 2}=\frac{1}{4}\left(\mathbf{1}+\mathbb{R}_{x}+\mathbf{R}_{y}+\mathbf{R}_{z}\right)
$$

$$
\mathbf{P}^{+} \equiv \mathbf{P}_{x}^{-} \cdot \mathbf{P}_{y}^{+}=\frac{\left(\mathbf{1}-\mathbf{R}_{x}\right) \cdot\left(\mathbf{1}+\mathbf{R}_{y}\right)}{2 \cdot 2}=\frac{1}{4}\left(\mathbf{1}-\mathbf{R}_{x}+\mathbf{R}_{y}-\mathbf{R}_{z}\right)
$$

$$
\mathbf{P}^{+-} \equiv \mathbf{P}_{x}^{+} \cdot \mathbf{P}_{y}^{-}=\frac{\left(\mathbf{1}+\mathbf{R}_{x}\right) \cdot\left(\mathbf{1}-\mathbf{R}_{y}\right)}{2 \cdot 2}=\frac{1}{4}\left(\mathbf{1}+\mathbb{R}_{x}-\mathbf{R}_{y}-\mathbf{R}_{z}\right)
$$

$$
\mathbf{P}^{--} \equiv \mathbf{P}_{x}^{-} \cdot \mathbf{P}_{y}^{-}=\frac{\left(\mathbf{1}-\mathbf{R}_{x}\right) \cdot\left(\mathbf{1}-\mathbf{R}_{y}\right)}{2 \cdot 2}=\frac{1}{4}\left(\mathbf{1}-\mathbf{R}_{x}-\mathbf{R}_{y}+\mathbf{R}_{z}\right)
$$

Shortcut notation for getting D_{2} character table

C_{2}^{x}	$\mathbf{1}$	\mathbf{R}_{x}				
+	1	1				
-	1	-1	\times	C_{2}^{y}	$\mathbf{1}$	\mathbf{R}_{y}
:---:	:---:	:---:				
+	1	1				
-	1	-1				

$$
\begin{aligned}
& \mathbf{1}=(+1) \mathbf{P}^{++}+(+1) \mathbf{P}^{++}+(+1) \mathbf{P}^{+-}+(+1) \mathbf{P}^{--} \\
& \mathbf{R}_{x}=(+1) \mathbf{P}^{++}+(-1) \mathbf{P}^{++}+(+1) \mathbf{P}^{+-}+(-1) \mathbf{P}^{-1} \\
& \mathbf{R}_{y}=(+1) \mathbf{P}^{++}+(+1) \mathbf{P}^{++}+(-1) \mathbf{P}^{+-}+(-1) \mathbf{P}^{--} \\
& \mathbf{R}_{z}=(+1) \mathbf{P}^{++}+(-1) \mathbf{P}^{-+}+(-1) \mathbf{P}^{+-}+(+1) \mathbf{P}^{-1}
\end{aligned}
$$

D_{2} spectral decomposition: The old " $1=1 \cdot 1$ trick" again
Two C_{2} subgroup minimal equations and their projectors:

$$
\begin{array}{lll}
\mathbb{R}_{x}{ }^{2}-\mathbf{1}=\mathbf{0}, & \mathbf{R}_{y}{ }^{2}-\mathbf{1}=\mathbf{0} . \\
\mathbf{P}_{x}^{+}=\frac{\mathbf{1}+\mathbb{R}_{x}}{2} & \text { reducible } & \mathbf{P}_{y}^{+}=\frac{\mathbf{1}+\mathbf{R}_{y}}{2} \\
\mathbf{P}_{x}^{-}=\frac{\mathbf{1}-\mathbb{R}_{x}}{2} & \text { projectors } & \mathbf{P}_{y}^{-}=\frac{\mathbf{1}-\mathbf{R}_{y}}{2} \\
\mathbf{1}=\mathbf{P}_{x}^{+}+\mathbf{P}_{x}^{-} & \text {Completness } & \mathbf{1}=\mathbf{P}_{y}^{+}+\mathbf{P}_{y}^{-} \\
\mathbf{R}_{x}=\mathbf{P}_{x}^{+}-\mathbf{P}_{x}^{-} & \text {Spec.decomps } & \mathbf{R}_{y}=\mathbf{P}_{y}^{+}-\mathbf{P}_{y}^{-}
\end{array}
$$

$=$| $C_{2}^{x} \times C_{2}^{y}$ | $\mathbf{1} \cdot \mathbf{1}$ | $\mathbb{R}_{x} \cdot \mathbf{1}$ | $\mathbf{1} \cdot \mathbf{R}_{y}$ | $\mathbb{R}_{x} \cdot \mathbf{R}_{y}$ |
| :---: | :---: | :---: | :---: | :---: |
| $+\cdot+$ | $1 \cdot 1$ | $1 \cdot 1$ | $1 \cdot 1$ | $1 \cdot 1$ |
| $-\cdot+$ | $1 \cdot 1$ | $-1 \cdot 1$ | $1 \cdot 1$ | $-1 \cdot 1$ |
| $+\cdot-$ | $1 \cdot 1$ | $1 \cdot 1$ | $1 \cdot(-1)$ | $1 \cdot(-1)$ |
| $-\cdot-$ | $1 \cdot 1$ | $-1 \cdot 1$ | $1 \cdot(-1)$ | $-1 \cdot(-1)$ |

$=$| D_{2} | $\mathbf{1}$ | \mathbf{R}_{x} | \mathbf{R}_{y} | \mathbf{R}_{z} |
| :---: | :---: | :---: | :---: | :---: |
| $++=A_{1}$ | 1 | 1 | 1 | 1 |
| $+=A_{2}$ | 1 | -1 | 1 | -1 |
| $+-=B_{1}$ | 1 | 1 | -1 | -1 |
| $-=B_{2}$ | 1 | -1 | -1 | 1 |

The old $^{\prime \prime} \mathbf{1}=\mathbf{1} \cdot \mathbf{1}$ trick" $\mathbf{1}=\mathbf{1} \cdot \mathbf{1}=\left(\mathbf{P}_{x}^{+}+\mathbf{P}_{x}^{-}\right) \cdot\left(\mathbf{P}_{y}^{+}+\mathbf{P}_{y}^{-}\right)=\mathbf{P}_{x}^{+} \cdot \mathbf{P}_{y}^{+}+\mathbf{P}_{x}^{-} \cdot \mathbf{P}_{y}^{+}+\mathbf{P}_{x}^{+} \cdot \mathbf{P}_{y}^{-}$| $-=B_{2}$ |
| :--- |
| $+\mathbf{P}_{x}^{-} \cdot \mathbf{P}_{y}^{-} \quad$ gives irrep projectors |

$$
\mathbf{P}^{++} \equiv \mathbf{P}_{x}^{+} \cdot \mathbf{P}_{y}^{+}=\frac{\left(\mathbf{1}+\mathbf{R}_{x}\right) \cdot\left(\mathbf{1}+\mathbf{R}_{y}\right)}{2 \cdot 2}=\frac{1}{4}\left(\mathbf{1}+\mathbb{R}_{x}+\mathbf{R}_{y}+\mathbf{R}_{z}\right)
$$

$$
\mathbf{P}^{++} \equiv \mathbf{P}_{x}^{-} \cdot \mathbf{P}_{y}^{+}=\frac{\left(\mathbf{1}-\mathbf{R}_{x}\right) \cdot\left(\mathbf{1}+\mathbf{R}_{y}\right)}{2 \cdot 2}=\frac{1}{4}\left(\mathbf{1}-\mathbb{R}_{x}+\mathbf{R}_{y}-\mathbf{R}_{z}\right)
$$

$$
\mathbf{P}^{+-} \equiv \mathbf{P}_{x}^{+} \cdot \mathbf{P}_{y}^{-}=\frac{\left(\mathbf{1}+\mathbf{R}_{x}\right) \cdot\left(\mathbf{1}-\mathbf{R}_{y}\right)}{2 \cdot 2}=\frac{1}{4}\left(\mathbf{1}+\mathbb{R}_{x}-\mathbf{R}_{y}-\mathbf{R}_{z}\right)
$$

$$
\mathbf{P}^{--} \equiv \mathbf{P}_{x}^{-} \cdot \mathbf{P}_{y}^{-}=\frac{\left(\mathbf{1}-\mathbf{R}_{x}\right) \cdot\left(\mathbf{1}-\mathbf{R}_{y}\right)}{2 \cdot 2}=\frac{1}{4}\left(\mathbf{1}-\mathbf{R}_{x}-\mathbf{R}_{y}+\mathbf{R}_{z}\right)
$$

$$
\mathbf{R}_{z}=(+1) \mathbf{P}^{++}+(-1) \mathbf{P}^{-+}+(-1) \mathbf{P}^{+-}+(+1) \mathbf{P}^{--}
$$

Shortcut notation for getting D_{2} character table
$\left.\begin{array}{c|cc|}C_{2}^{x} & \mathbf{1} & \mathbf{R}_{x} \\ \hline+ & 1 & 1 \\ - & 1 & -1\end{array} \times \begin{array}{c|cc|}C_{2}^{y} & \mathbf{1} & \mathbf{R}_{y} \\ \hline+ & 1 & 1 \\ - & 1 & -1\end{array}\right]=$

$C_{2}^{x} \times C_{2}^{y}$	$\mathbf{1} \cdot \mathbf{1}$	$\mathbb{R}_{x} \cdot \mathbf{1}$	$\mathbf{1} \cdot \mathbf{R}_{y}$	$\mathbb{R}_{x} \cdot \mathbf{R}_{y}$
$+\cdot+$	$1 \cdot 1$	$1 \cdot 1$	$1 \cdot 1$	$1 \cdot 1$
$-\cdot+$	$1 \cdot 1$	$-1 \cdot 1$	$1 \cdot 1$	$-1 \cdot 1$
$+\cdot-$	$1 \cdot 1$	$1 \cdot 1$	$1 \cdot(-1)$	$1 \cdot(-1)$
$-\cdot-$	$1 \cdot 1$	$-1 \cdot 1$	$1 \cdot(-1)$	$-1 \cdot(-1)$

Breaking C_{N} cyclic coupling into linear chains
Review of 1D-Bohr-ring related to infinite square well (and review of revival)
Breaking $C_{2 N+2}$ to approximate linear N-chain Band-It simulation: Intro to scattering approach to quantum symmetry

Breaking $C_{2 N}$ cyclic coupling down to C_{N} symmetry
Acoustical modes vs. Optical modes
Intro to other examples of band theory
Avoided crossing view of band-gaps
Finally! Symmetry groups that are not just C_{N}
The "4-Group (s) " D_{2} and $C_{2 v}$
Spectral decomposition of D_{2}
Some D_{2} modes
Outer product properties and the Crystal-Point Group Zoo

$$
\left.\begin{array}{l}
\langle 1 \mid \ddot{x}\rangle \\
\langle 2 \mid \ddot{x}\rangle \\
\langle 3 \mid \ddot{x}\rangle \\
\langle 4 \mid \ddot{x}\rangle
\end{array}\right)=\left(\begin{array}{llll}
A & a & b & c \\
a & A & c & b \\
b & c & A & a \\
c & b & a & A
\end{array}\right)\left(\begin{array}{l}
\langle 1 \mid x\rangle \\
\langle 2 \mid x\rangle \\
\langle 3 \mid x\rangle \\
\langle 4 \mid x\rangle
\end{array}\right) \quad \begin{aligned}
& \begin{array}{l}
A=-\left(k_{a} \cos ^{2}(a, b)+k_{b}+k_{c} \cos ^{2}(b, c)\right) / m, \\
a=-k_{a} \cos ^{2}(a, b) / m, \\
b=-k_{b} / m, \\
c=-k_{c} \cos ^{2}(b, c) / m .
\end{array}
\end{aligned}
$$

$\left|e^{A_{1}}\right\rangle \equiv\left|e^{1}\right\rangle=P^{1}|1\rangle \sqrt{4}=(|1\rangle+|2\rangle+|3\rangle+|4\rangle) / 2$,

$$
\left|e^{B_{2}}\right\rangle \equiv\left|e^{2}\right\rangle=P^{2}|1\rangle \sqrt{4}=(|1\rangle-|2\rangle+|3\rangle-|4\rangle) / 2,
$$

$$
\left|e^{B_{1}}\right\rangle \equiv\left|e^{3}\right\rangle=P^{3}|1\rangle \sqrt{4}=(|1\rangle+|2\rangle-|3\rangle-|4\rangle) / 2,
$$

$$
\left|e^{A_{2}}\right\rangle \equiv\left|e^{4}\right\rangle=P^{4}|1\rangle \sqrt{4}=(|1\rangle-|2\rangle-|3\rangle+|4\rangle) / 2,
$$

$$
\left(\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right) / 2 \quad(A+a+b+c)^{1 / 2}
$$

$$
\left(\begin{array}{r}
1 \\
-1 \\
1 \\
-1
\end{array}\right) / 2
$$

$$
(A-a+b-c)^{1 / 2}
$$

$$
\left(\begin{array}{r}
1 \\
1 \\
-1 \\
-1
\end{array}\right) / 2
$$

$$
(A+a-b-c)^{1 / 2}
$$

$$
\left(\begin{array}{r}
1 \\
-1 \\
-1 \\
1
\end{array}\right) / 2
$$

$$
(A-a-b+c)^{1 / 2}
$$

Fig. 2.8.2 PSDS

Breaking C_{N} cyclic coupling into linear chains
Review of 1D-Bohr-ring related to infinite square well (and review of revival)
Breaking $C_{2 N+2}$ to approximate linear N-chain Band-It simulation: Intro to scattering approach to quantum symmetry

Breaking $C_{2 N}$ cyclic coupling down to C_{N} symmetry Acoustical modes vs. Optical modes Intro to other examples of band theory Avoided crossing view of band-gaps

Finally! Symmetry groups that are not just C_{N}
The "4-Group (s) " D_{2} and $C_{2 v}$
Spectral decomposition of D_{2}
Some D_{2} modes
\rightarrow Outer product properties and the Crystal-Point Group Zoo

Crystal-Point Group Zoo having 32 groups
(Showing 16 Abelian Crystal Groups)

Fig. 2.11.1 PSDS

Abelian means all its elements commute

Figure 2.11.1 Abelian crystal point groups. Sixteen of the 32 crystal point groups are Abelian and are illustrated by models drawn in circles.

Crystal-Point Group Zoo having 32 groups (Showing 16 Abelian Crystal Groups)

Fig. 2.11.1 PSDS

Abelian means all its elements commute

The other 16 crystal-point groups are
Non-Abelian

From Lecture 12.6 p. 134
Character Trace of
n-fold rotation
where: $\ell^{j}=2 j+1$
is $U(2)$ irrep dimension

$$
\chi^{j}\left(\frac{2 \pi}{n}\right)=\frac{\sin \frac{\pi}{n}(2 j+1)}{\sin \frac{\pi}{n}}=\frac{\sin \frac{\pi \ell^{J}}{n}}{\sin \frac{\pi}{n}}
$$

Figure 2.11.1 Abelian crystal point groups. Sixteen of the 32 crystal point groups are Abelian and are illustrated by models drawn in circles.

Fig. 2.11.1 PSDS

Abelian means all its elements commute
order of groups

The other 16 crystal-point groups
are
Non-Abelian

From Lecture 12.6 p. 134
Character Trace of n-fold rotation
where: $\ell^{j}=2 j+1$
is $U(2)$ irrep dimension

$$
\chi^{j}\left(\frac{2 \pi}{n}\right)=\frac{\sin \frac{\pi}{n}(2 j+1)}{\sin \frac{\pi}{n}}=\frac{\sin \frac{\pi \ell^{J}}{n}}{\sin \frac{\pi}{n}}
$$

To be a crystal-point group the Character Trace of n-fold vector rotation for: $\ell^{1}=2+1=3$ $\chi^{1}\left(\frac{2 \pi}{n}\right)=\frac{\sin \frac{\pi}{1}(2 j+1)}{\sin \frac{\pi}{n}}=\frac{\sin \frac{3 \pi}{n}}{\sin \frac{\pi}{n}}=$ integer
Non-Abelian
means some elements do not commute
$\frac{\sin \frac{3 \pi}{2}}{\sin \frac{\pi}{2}}=-1(n=2 \mathrm{ok})$
$\frac{\sin \frac{3 \pi}{3}}{\sin \frac{\pi}{3}}=+1(n=3 \mathrm{ok})$
$\frac{\sin \frac{3 \pi}{4}}{\sin \frac{\pi}{4}}=+1(n=4 \mathrm{ok})$
$\frac{\sin \frac{3 \pi}{5}}{\sin \frac{\pi}{5}}=G^{+} \quad(n=5 \mathrm{NO}!)$
$\frac{\sin \frac{3 \pi}{6}}{\sin \frac{\pi}{6}}=+2(n=6 \mathrm{ok})$
Figure 2.11.1 Abelian crystal point groups. Sixteen of the 32 crystal point groups are Abelian and are illustrated by models drawn in circles.

Crystal-Point Group Zoo

Fig. 2.11.1 PSDS

Abelian means all its elements commute

The other 16 crystal-point groups are

having 32 groups (Showing 16 Abelian Crystal Groups)

Non-Abelian means some elements do not commute

Log-histogram of all groups of order ${ }^{\circ} G=1$ to 64 Abelian shown in Black Non-Abelian in $\$ TVTlíte

Figure 2.11.1 Abelian crystal point groups. Sixteen of the 32 crystal point groups are Abelian and are illustrated by models drawn in circles.

Group "census"

Crystal-Point Group Zoo having 32 groups (Showing 16 Non-Abelian Crystal Groups)

Fig. 2.11.1 PSDS
The other 16 crystal-point group,
are

Abelian

means all its elements commute

Figure 3.1.1 Crystal point symmetry groups. Models are sketched in circles for the 16 non-Abelian groups. (See also Figure 2.11.1.)

C_{6} is product $\mathrm{C}_{3} \times \mathrm{C}_{2}$ (but C_{4} is NOT $\mathrm{C}_{2} \times \mathrm{C}_{2}$)

$$
\begin{array}{c|ccc}
C_{3} & \mathbf{1} & \mathbf{r} & \mathbf{r}^{2} \\
\hline(0)_{3} & 1 & 1 & 1 \\
(1)_{3} & 1 & e^{2 \pi i / 3} & e^{-2 \pi i / 3} \\
(2)_{3} & 1 & e^{-2 \pi i / 3} & e^{2 \pi i / 3}
\end{array} \times \begin{array}{c|cc|}
C_{2} & \mathbf{1} & \mathbf{R} \\
\hline(0)_{2} & 1 & 1 \\
(1)_{2} & 1 & -1 \\
\hline
\end{array}
$$

$C_{3} \times C_{2}$	$\mathbf{1}$	\mathbf{r}	\mathbf{r}^{2}	$\mathbf{1} \cdot \mathbf{R}$	$\mathbf{r} \cdot \mathbf{R}$	$\mathbf{r}^{2} \cdot \mathbf{R}$
$(0)_{3} \cdot(0)_{2}$	$1 \cdot 1$					

$=$| $(1)_{3} \cdot(0)_{2}$ | $1 \cdot 1$ | $e^{2 \pi i / 3} \cdot 1$ | $e^{-2 \pi i / 3} \cdot 1$ | $1 \cdot 1$ | $e^{2 \pi i / 3} \cdot 1$ | $e^{-2 \pi i / 3} \cdot 1$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $(2)_{3} \cdot(0)_{2}$ | $1 \cdot 1$ | $e^{-2 \pi i / 3} \cdot 1$ | $e^{2 \pi i / 3} \cdot 1$ | $1 \cdot 1$ | $e^{-2 \pi i / 3} \cdot 1$ | $e^{2 \pi i / 3} \cdot 1$ |
| $(0)_{3} \cdot(1)_{2}$ | $1 \cdot 1$ | $1 \cdot 1$ | $1 \cdot 1$ | $1 \cdot(-1)$ | $1 \cdot(-1)$ | $1 \cdot(-1)$ |
| $(1)_{3} \cdot(1)_{2}$ | $1 \cdot 1$ | $1 \cdot 1$ | $e^{-2 \pi i / 3} \cdot 1$ | $1 \cdot(-1)$ | $e^{2 \pi i / 3} \cdot(-1)$ | $e^{-2 \pi i / 3} \cdot(-1)$ |
| $(2)_{3} \cdot(1)_{2}$ | $1 \cdot 1$ | $e^{-2 \pi i / 3} \cdot 1$ | $1 \cdot 1$ | $1 \cdot(-1)$ | $e^{-2 \pi i / 3} \cdot(-1)$ | $e^{2 \pi i / 3} \cdot(-1)$ |

C_{6} is product $\mathrm{C}_{3} \times \mathrm{C}_{2}$ (but C_{4} is NOT $\mathrm{C}_{2} \times \mathrm{C}_{2}$)

$C_{3} \times C_{2}=C_{6}$	$\mathbf{1}$	$\mathbf{r}=h^{2}$	$\mathbf{r}^{2}=h^{4}$	$\mathbf{R}=\mathbf{h}^{3}$	$\mathbf{r} \cdot \mathbf{R}=h$	$\mathbf{r}^{2} \cdot \mathbf{R}=h^{5}$
$(0)_{3} \cdot(0)_{2}=(0)_{6}$	1	1	1	1	1	1
$(1)_{3} \cdot(0)_{2}=(2)_{6}$	1	$e^{2 \pi i / 3}$	$e^{-2 \pi i / 3}$	1	$e^{2 \pi i / 3}$	$e^{-2 \pi i / 3}$
$=(2)_{3} \cdot(0)_{2}=(4)_{6}$	1	$e^{-2 \pi i / 3}$	$e^{2 \pi i / 3}$	1	$e^{-2 \pi i / 3}$	$e^{2 \pi i / 3}$
$(0)_{3} \cdot(1)_{2}=(3)_{6}$	1	1	1	-1	-1	-1
$(1)_{3} \cdot(1)_{2}=(5)_{6}$	1	$e^{2 \pi i / 3}$	$e^{-2 \pi i / 3}$	-1	$-e^{2 \pi i / 3}$	$-e^{-2 \pi i / 3}$
$(2)_{3} \cdot(1)_{2}=(1)_{6}$	1	$e^{-2 \pi i / 3}$	$e^{2 \pi i / 3}$	-1	$-e^{-2 \pi i / 3}$	$-e^{2 \pi i / 3}$

