Group Theory in Quantum Mechanics

Spectral decomposition of groups $D_{3} \sim C_{3} v$

(Int.J.Mol.Sci, 14, 714(2013) p.755-774, QTCA Unit 5 Ch. 15)
(PSDS - Ch. 3)

Group theory of equivalence transformations and classes Lagrange theorems
All-commuting class projectors
D_{3}-invariant character ortho-completeness
Spectral resolution to irreducible representations ("irreps") foretold by characters or traces

Subgroup splitting or correlation frequency formula. $f^{(a)}\left(D^{(\alpha)}(G) \downarrow H\right)$
Atomic ℓ-level or $2 \ell+1$-multiplet splitting
D_{3} Algebra

\mathbf{i}_{1}

$$
D_{3} \text { examples for } \ell=1-6
$$

Group invariant numbers: Centrum, Rank, and Order
$2^{\text {nd -Stage spectral decompositions of global/local } D_{3}}$
Splitting class projectors using subgroup chains $D_{3} \supset C_{2}$ and $D_{3} \supset C_{3}$
Splitting classes
$3^{r d}$-stage spectral resolution to irreducible representations (ireps) and Hamiltonian eigensolutions Tunneling modes and spectra for $D_{3} \supset C_{2}$ and $D_{3} \supset C_{3}$ local subgroup chains

Review:Spectral resolution of \boldsymbol{D}_{3} Center (Class algebra)
Group theory of equivalence transformations and classes
Lagrange theorems
All-commuting class projectors and D_{3}-invariant character ortho-completeness
Spectral resolution to irreducible representations (or "irreps") foretold by characters or traces
Subgroup splitting and correlation frequency formula: $f^{(a)}\left(D^{(\alpha)}(G) \downarrow H\right)$
Atomic ℓ-level or $2 \ell+1$-multiplet splitting
D_{3} examples for $\ell=1-6$
Group invariant numbers: Centrum, Rank, and Order
2nd-Stage spectral decompositions of global/local D_{3}
Splitting class projectors using subgroup chains $D_{3} \supset C_{2}$ and $D_{3} \supset C_{3}$
3 rd-stage spectral resolution to irreducible representations (ireps) and Hamiltonian eigensolutions Tunneling modes and spectra for $D_{3} \supset C_{2}$ and $D_{3} \supset C_{3}$ local subgroup chains

Review: $1^{\text {st }}$-Stage Spectral resolution of \boldsymbol{D}_{3} Center (Class algebra)

Review: $1^{\text {st }}$-Stage Spectral resolution of \boldsymbol{D}_{3} Center (Class algebra)

Review: $1^{\text {st }}$-Stage Spectral resolution of \boldsymbol{D}_{3} Center (Class algebra)

Review: $1^{\text {st }}$-Stage Spectral resolution of \boldsymbol{D}_{3} Center (Class algebra)

${ }^{\circ}{ }_{S_{k}}=$ order of \mathbf{g}_{k}-self-symmetry: $\left({ }^{\circ}{ }_{S_{1}}=6,{ }^{\circ}{ }_{S_{r}}=3,{ }^{\circ} S_{i}=2\right)$

Class-sum $\boldsymbol{\kappa}_{k}$ invariance:

$$
\mathbf{g}_{t} \boldsymbol{\kappa}_{k}=\boldsymbol{\kappa}_{k} \mathbf{g}_{t}
$$

${ }^{\circ} G=$ order of group: $\quad\left({ }^{\circ} D_{3}=6\right)$
${ }^{\circ} \kappa_{k}=$ order of class $\kappa_{k}: \quad\left({ }^{\circ} \kappa_{1}=1,{ }^{\circ} \kappa_{r}=2,{ }^{\circ} \kappa_{i}=3\right)$
$\mathbf{g}_{t} \boldsymbol{\kappa}_{k} \mathbf{g}_{t}^{-1}=\boldsymbol{\kappa}_{k}$ where: $\boldsymbol{\kappa}_{\mathbf{k}}=\sum_{j=1}^{j={ }^{\circ} \boldsymbol{\kappa}_{k}} \mathbf{g}_{j}=\frac{1}{{ }^{\circ} S_{k}} \sum_{t=1}^{t={ }^{\circ} G} \mathbf{g}_{t} \mathbf{g}_{k} \mathbf{g}_{t}^{-1}$
D_{3} Algebra

Review:Spectral resolution of \boldsymbol{D}_{3} Center (Class algebra)
Group theory of equivalence transformations and classes
Lagrange theorems
All-commuting class projectors and D_{3}-invariant character ortho-completeness
Spectral resolution to irreducible representations (or "irreps") foretold by characters or traces
Subgroup splitting and correlation frequency formula: $f^{(a)}\left(D^{(\alpha)}(G) \downarrow H\right)$
Atomic ℓ-level or $2 \ell+1$-multiplet splitting
D_{3} examples for $\ell=1-6$
Group invariant numbers: Centrum, Rank, and Order
2nd-Stage spectral decompositions of global/local D_{3}
Splitting class projectors using subgroup chains $D_{3} \supset C_{2}$ and $D_{3} \supset C_{3}$
3rd-stage spectral resolution to irreducible representations (ireps) and Hamiltonian eigensolutions Tunneling modes and spectra for $D_{3} \supset C_{2}$ and $D_{3} \supset C_{3}$ local subgroup chains

Review: $1^{\text {st}}$-Stage Spectral resolution of \mathbf{D}_{3} Center (Lagrange subgroup/class theorems)
Class-sum $\boldsymbol{\kappa}_{k}$ invariance:

$$
\mathbf{g}_{t} \boldsymbol{\kappa}_{k}=\boldsymbol{\kappa}_{k} \mathbf{g}_{t}
$$

${ }^{\circ} G=$ order of group: $\quad\left({ }^{\circ} D_{3}=6\right)$
${ }^{\circ} \kappa_{k}=$ order of class $\kappa_{k}: \quad\left({ }^{\circ} \kappa_{1}=1,{ }^{\circ} \kappa_{r}=2,{ }^{\circ} \kappa_{i}=3\right)$
$\mathbf{g}_{t} \boldsymbol{\kappa}_{k} \mathbf{g}_{t}^{-1}=\boldsymbol{\kappa}_{k}$ where: $\boldsymbol{\kappa}_{\mathbf{k}}=\sum_{j=1}^{j={ }^{\circ} \boldsymbol{\kappa}_{k}} \mathbf{g}_{j}=\frac{1}{{ }^{\circ} S_{k}} \sum_{t=1}^{t={ }^{\circ} G} \mathbf{g}_{t} \mathbf{g}_{k} \mathbf{g}_{t}^{-1}$
D_{3} Algebra

${ }^{\circ} S_{k}=$ order of \mathbf{g}_{k}-self-symmetry: $\left({ }^{\circ} S_{1}=6,{ }^{\circ} S_{r}=3,{ }^{\circ} S_{i}=2\right)$
${ }^{\circ} S_{k}={ }^{\circ} G /{ }^{\circ} \kappa_{k} \quad{ }^{\circ} S_{k}$ is an integer count of D_{3} operators \mathbf{g}_{s} that commute with \mathbf{g}_{k}.

Review: $1^{\text {st}}$-Stage Spectral resolution of \mathbf{D}_{3} Center (Lagrange subgroup/class theorems)
Class-sum $\boldsymbol{\kappa}_{k}$ invariance:

$$
\mathbf{g}_{t} \boldsymbol{\kappa}_{k}=\boldsymbol{\kappa}_{k} \mathbf{g}_{t}
$$

${ }^{\circ} G=$ order of group: $\quad\left({ }^{\circ} D_{3}=6\right)$
${ }^{\circ} \kappa_{k}=$ order of class $\kappa_{k}: \quad\left({ }^{\circ} \kappa_{1}=1,{ }^{\circ} \kappa_{r}=2,{ }^{\circ} \kappa_{i}=3\right)$
$\mathbf{g}_{t} \boldsymbol{\kappa}_{k} \mathbf{g}_{t}^{-1}=\boldsymbol{\kappa}_{k} \quad$ where: $\boldsymbol{\kappa}_{\mathbf{k}}=\sum_{j=1}^{j={ }^{\circ} \kappa_{k}} \mathbf{g}_{j}=\frac{1}{{ }^{{ }_{S}}{ }_{k}} \sum_{t=1}^{t={ }^{\circ} G} \mathbf{g}_{t} \mathbf{g}_{k} \mathbf{g}_{t}^{-1}$
D_{3} Algebra

${ }^{\circ} S_{k}=$ order of \mathbf{g}_{k}-self-symmetry: $\left({ }^{\circ} S_{1}=6,{ }^{\circ} S_{r}=3,{ }^{\circ} S_{i}=2\right)$
${ }^{\circ} s_{k}={ }^{\circ} G /{ }^{\circ} \kappa_{k} \quad{ }^{\circ}{ }_{S k}$ is an integer count of D_{3} operators \mathbf{g}_{s} that commute with \mathbf{g}_{k}.
These operators \mathbf{g}_{s} form the \mathbf{g}_{k}-self-symmetry group s_{k}. Each \mathbf{g}_{s} transforms \mathbf{g}_{k} into itself: $\mathbf{g}_{s} \mathbf{g}_{k} \mathbf{g}_{s}{ }^{-1}=\mathbf{g}_{k}$

Class-sum κ_{k} invariance:

$$
\mathbf{g}_{t} \boldsymbol{\kappa}_{k}=\boldsymbol{\kappa}_{k} \mathbf{g}_{t}
$$

${ }^{\circ} G=$ order of group: $\quad\left({ }^{\circ} D_{3}=6\right)$
${ }^{\circ} \kappa_{k}=$ order of class $\kappa_{k}: \quad\left({ }^{\circ} \kappa_{1}=1,{ }^{\circ} \kappa_{r}=2,{ }^{\circ} \kappa_{i}=3\right)$
$\mathbf{g}_{t} \boldsymbol{\kappa}_{k} \mathbf{g}_{t}^{-1}=\boldsymbol{\kappa}_{k} \quad$ where: $\boldsymbol{\kappa}_{\mathbf{k}}=\sum_{j=1}^{j={ }^{\circ} \kappa_{k}} \mathbf{g}_{j}=\frac{1}{{ }^{{ }_{S}}{ }_{k}} \sum_{t=1}^{t={ }^{\circ} G} \mathbf{g}_{t} \mathbf{g}_{k} \mathbf{g}_{t}^{-1}$
D_{3} Algebra

${ }^{\circ} S_{k}=$ order of \mathbf{g}_{k}-self-symmetry: $\left({ }^{\circ} S_{1}=6,{ }^{\circ} S_{r}=3,{ }^{\circ} S_{i}=2\right)$
${ }^{\circ} S_{k}={ }^{\circ} G /{ }^{\circ} \kappa_{k} \quad{ }^{\circ} S_{k}$ is an integer count of D_{3} operators \mathbf{g}_{s} that commute with \mathbf{g}_{k}.
These operators \mathbf{g}_{s} form the \mathbf{g}_{k}-self-symmetry group sk. Each \mathbf{g}_{s} transforms \mathbf{g}_{k} into itself: $\mathbf{g}_{s} \mathbf{g}_{k} \mathbf{g}_{s}{ }^{-1}=\mathbf{g}_{k}$
If an operator \mathbf{g}_{t} transforms \mathbf{g}_{k} into a different element $\mathbf{g}^{\prime}{ }_{k}$ of its class: $\mathbf{g}_{t} g_{k} \mathbf{g}_{t}{ }^{-1}=\mathbf{g}^{\prime}{ }_{k}$, then so does $\mathbf{g}_{t} \mathbf{g}_{s}$. that is: $\mathbf{g}_{t} \boldsymbol{g}_{s} \mathbf{g}_{k}\left(\mathbf{g}_{t} \mathbf{g}_{s}\right)^{-1}=\mathbf{g}_{t} g_{s} \mathbf{g}_{k} \mathbf{g}_{s}{ }^{-1} \mathbf{g}_{t}{ }^{-1}=\mathbf{g}_{t} \boldsymbol{g}_{k} \mathbf{g}_{t}{ }^{-1}=\mathbf{g}^{\prime}{ }_{k}$,

Class-sum κ_{k} invariance:

$$
\mathbf{g}_{t} \boldsymbol{\kappa}_{k}=\boldsymbol{\kappa}_{k} \mathbf{g}_{t}
$$

${ }^{\circ} G=$ order of group: $\quad\left({ }^{\circ} D_{3}=6\right)$
${ }^{\circ} \kappa_{k}=$ order of class $\kappa_{k}: \quad\left({ }^{\circ} \kappa_{1}=1,{ }^{\circ} \kappa_{r}=2,{ }^{\circ} \kappa_{i}=3\right)$
$\mathbf{g}_{t} \boldsymbol{\kappa}_{k} \mathbf{g}_{t}^{-1}=\boldsymbol{\kappa}_{k} \quad$ where: $\boldsymbol{\kappa}_{\mathbf{k}}=\sum_{j=1}^{j={ }^{\circ} \kappa_{k}} \mathbf{g}_{j}=\frac{1}{{ }^{{ }_{S}}{ }_{k}} \sum_{t=1}^{t={ }^{\circ} G} \mathbf{g}_{t} \mathbf{g}_{k} \mathbf{g}_{t}^{-1}$
D_{3} Algebra

${ }^{\circ} S_{k}=$ order of \mathbf{g}_{k}-self-symmetry: $\left({ }^{\circ} S_{1}=6,{ }^{\circ} S_{r}=3,{ }^{\circ} S_{i}=2\right)$
${ }^{\circ}{ }_{S_{k}}={ }^{\circ} G /{ }^{\circ} \kappa_{k} \quad{ }^{\circ} S_{k}$ is an integer count of D_{3} operators \mathbf{g}_{s} that commute with \mathbf{g}_{k}.
These operators \mathbf{g}_{s} form the \mathbf{g}_{k}-self-symmetry group sk. Each \mathbf{g}_{s} transforms \mathbf{g}_{k} into itself: $\mathbf{g}_{s} \mathbf{g}_{k} \mathbf{g}_{s}{ }^{-1}=\mathbf{g}_{k}$
If an operator \mathbf{g}_{t} transforms \mathbf{g}_{k} into a different element $\mathbf{g}^{\prime}{ }_{k}$ of its class: $\mathbf{g}_{\boldsymbol{t}} \boldsymbol{g}_{k} \mathbf{g}_{t}{ }^{-1}=\mathbf{g}^{\prime}{ }_{k}$, then so does $\mathbf{g}_{t} \boldsymbol{g}_{s}$.
Subgroup $S_{k}=\left\{\mathbf{g}_{0}=\mathbf{1}, \mathbf{g}_{1}=\mathbf{g}_{k}, \mathbf{g}_{2}, \ldots\right\}$ has $\ell=\left({ }^{\circ}{ }_{\kappa_{k}}-1\right)$ Left Cosets (one coset for each member of class $\boldsymbol{\kappa}_{k}$).

Class-sum κ_{k} invariance:

$$
\mathbf{g}_{t} \boldsymbol{\kappa}_{k}=\boldsymbol{\kappa}_{k} \mathbf{g}_{t}
$$

${ }^{\circ} G=$ order of group: $\quad\left({ }^{\circ} D_{3}=6\right)$
${ }^{\circ} \kappa_{k}=$ order of class $\kappa_{k}: \quad\left({ }^{\circ} \kappa_{1}=1,{ }^{\circ} \kappa_{r}=2,{ }^{\circ} \kappa_{i}=3\right)$
$\mathbf{g}_{t} \boldsymbol{\kappa}_{k} \mathbf{g}_{t}^{-1}=\boldsymbol{\kappa}_{k} \quad$ where: $\boldsymbol{\kappa}_{\mathbf{k}}=\sum_{j=1}^{j={ }^{\circ} \kappa_{k}} \mathbf{g}_{j}=\frac{1}{{ }^{{ }_{S}}{ }_{k}} \sum_{t=1}^{t={ }^{\circ} G} \mathbf{g}_{t} \mathbf{g}_{k} \mathbf{g}_{t}^{-1}$
D_{3} Algebra

Review: $1^{s t}$-Stage Spectral resolution of \boldsymbol{D}_{3} Center (Lagrange subgroup/class theorems)
Class-sum κ_{k} invariance:

$$
\mathbf{g}_{t} \boldsymbol{\kappa}_{k}=\boldsymbol{\kappa}_{k} \mathbf{g}_{t}
$$

${ }^{\circ} G=$ order of group: (${ }^{\circ} D_{3}=6$)
${ }^{\circ} \kappa_{k}=$ order of class $\kappa_{k}: \quad\left({ }^{\circ} \kappa_{1}=1,{ }^{\circ} \kappa_{r}=2,{ }^{\circ} \kappa_{i}=3\right)$

D_{3} Algebra

${ }^{\circ} S_{k}=$ order of \mathbf{g}_{k}-self-symmetry: $\left({ }^{\circ} S_{1}=6,{ }^{\circ} S_{r}=3,{ }^{\circ} S_{i}=2\right)$
${ }^{\circ}{ }_{S_{k}}={ }^{\circ} G /{ }^{\circ} \kappa_{k} \quad{ }_{S k}$ is an integer count of D_{3} operators \mathbf{g}_{s} that commute with \mathbf{g}_{k}.
These operators \mathbf{g}_{s} form the \mathbf{g}_{k}-self-symmetry group s_{k}. Each \mathbf{g}_{s} transforms \mathbf{g}_{k} into itself: $\mathbf{g}_{s} \mathbf{g}_{k} \mathbf{g}_{s}{ }^{-1}=\mathbf{g}_{k}$
If an operator \mathbf{g}_{t} transforms \mathbf{g}_{k} into a different element $\mathbf{g}^{\prime}{ }_{k}$ of its class: $\mathbf{g}_{t} g_{k} \mathbf{g}_{t}{ }^{-1}=\mathbf{g}^{\prime}{ }_{k}$, then so does $\mathbf{g}_{t} \mathbf{g}_{s}$.
Subgroup $s_{k}=\left\{\mathbf{g}_{0}=\mathbf{1}, \mathbf{g}_{1}=\mathbf{g}_{k}, \mathbf{g}_{2}, \ldots\right\}$ has $\ell=\left({ }^{\left.{ }^{\circ} \mathcal{K}_{k}-1\right)}\right.$ Left Cosets (one coset for each member of class $\boldsymbol{\kappa}_{k}$).

They will divide the group of order ${ }^{\circ} D_{3}={ }^{\circ}{ }_{\kappa} k^{\circ}{ }^{\circ}{ }_{k}$ evenly into ${ }^{\circ}{ }^{K} k$ subsets each of order ${ }^{\circ} S k$.

Review:Spectral resolution of \boldsymbol{D}_{3} Center (Class algebra)
Group theory of equivalence transformations and classes
Lagrange theorems
All-commuting class projectors and D_{3}-invariant character ortho-completeness
Spectral resolution to irreducible representations (or "irreps") foretold by characters or traces
Subgroup splitting and correlation frequency formula: $f^{(a)}\left(D^{(\alpha)}(G) \downarrow H\right)$
Atomic ℓ-level or $2 \ell+1$-multiplet splitting D_{3} examples for $\ell=1-6$
Group invariant numbers: Centrum, Rank, and Order
2nd-Stage spectral decompositions of global/local D_{3}
Splitting class projectors using subgroup chains $D_{3} \supset C_{2}$ and $D_{3} \supset C_{3}$
3rd-stage spectral resolution to irreducible representations (ireps) and Hamiltonian eigensolutions Tunneling modes and spectra for $D_{3} \supset C_{2}$ and $D_{3} \supset C_{3}$ local subgroup chains

Review: 1st-Stage Spectral resolution of \boldsymbol{D}_{3} Center (All-commuting class projectors)

Review: 1st-Stage Spectral resolution of \boldsymbol{D}_{3} Center (All-commuting class projectors)

Review: 1st-Stage Spectral resolution of \boldsymbol{D}_{3} Center (All-commuting class projectors)

Review: 1st-Stage Spectral resolution of \mathbf{D}_{3} Center (All-commuting class projectors)

Review: 1st-Stage Spectral resolution of \mathbf{D}_{3} Center (All-commuting class projectors)

Review: 1st-Stage Spectral resolution of \mathbf{D}_{3} Center (All-commuting class projectors)

Review: 1st-Stage Spectral resolution of \mathbf{D}_{3} Center (All-commuting class projectors)

Review: 1st-Stage Spectral resolution of \mathbf{D}_{3} Center (All-commuting class projectors)

Review:Spectral resolution of \boldsymbol{D}_{3} Center (Class algebra)
Group theory of equivalence transformations and classes
Lagrange theorems
All-commuting class projectors and D_{3}-invariant character ortho-completeness
Spectral resolution to irreducible representations (or "irreps") foretold by characters or traces
Subgroup splitting and correlation frequency formula: $f^{(a)}\left(D^{(\alpha)}(G) \downarrow H\right)$
Atomic ℓ-level or $2 \ell+1$-multiplet splitting
D_{3} examples for $\ell=1-6$
Group invariant numbers: Centrum, Rank, and Order
2nd-Stage spectral decompositions of global/local D_{3}
Splitting class projectors using subgroup chains $D_{3} \supset C_{2}$ and $D_{3} \supset C_{3}$
3rd-stage spectral resolution to irreducible representations (ireps) and Hamiltonian eigensolutions Tunneling modes and spectra for $D_{3} \supset C_{2}$ and $D_{3} \supset C_{3}$ local subgroup chains

Spectral resolution to irreducible representations (or "irreps") foretold by characters or traces

Spectral resolution to irreducible representations (or "irreps") is foretold by characters or traces

$\mathbf{P}^{A_{1}}=\left(\boldsymbol{\kappa}_{1}+\mathbf{\kappa}_{2}+\mathbf{\kappa}_{3}\right) / 6=\left(\mathbf{1}+\mathbf{r}+\mathbf{r}^{2}+\mathbf{i}_{1}+\mathbf{i}_{2}+\mathbf{i}_{3}\right) / 6 \Rightarrow R\left(\mathbf{P}^{A_{1}}\right)=\left(\begin{array}{llllll}1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1\end{array}\right) / 6 \quad \operatorname{TraceR}\left(\mathbf{P}^{A_{1}}\right)=1$

Spectral resolution to irreducible representations (or "irreps") is foretold by characters or traces

$\mathbb{P}^{A_{2}}=\left(\kappa_{1}+\kappa_{2}-\kappa_{3}\right) / 6=\left(\mathbf{1}+\mathbf{r}+\mathbf{r}^{2}-\mathbf{i}_{1}-\mathbf{i}_{2}-\mathbf{i}_{3}\right) / 6 \Rightarrow R\left(\mathbb{P}^{A_{2}}\right)=\left(\begin{array}{cccccc}1 & 1 & 1 & -1 & -1 & -1 \\ 1 & 1 & 1 & -1 & -1 & -1 \\ 1 & 1 & 1 & -1 & -1 & -1 \\ -1 & -1 & -1 & 1 & 1 & 1 \\ -1 & -1 & -1 & 1 & 1 & 1 \\ -1 & -1 & -1 & 1 & 1 & 1\end{array}\right) / 6 \quad \operatorname{TraceR}\left(\mathbb{P}^{A_{2}}\right)=1$

Spectral resolution to irreducible representations (or "irreps") is foretold by characters or traces

Review:Spectral resolution of \boldsymbol{D}_{3} Center (Class algebra)
Group theory of equivalence transformations and classes
Lagrange theorems
All-commuting class projectors and D_{3}-invariant character tho-completeness
Spectral resolution to irreducible representations (or "irreps") foretold by characters or traces
Subgroup splitting and correlation frequency formula: $f^{(a)}\left(D^{(\alpha)}(G) \downarrow H\right)$
Atomic ℓ-level or $2 \ell+1$-multiplet splitting
D_{3} examples for $\ell=1-6$
Group invariant numbers: Centrum, Rank, and Order
2nd-Stage spectral decompositions of global/local D_{3}
Splitting class projectors using subgroup chains $D_{3} \supset C_{2}$ and $D_{3} \supset C_{3}$
3rd-stage spectral resolution to irreducible representations (ireps) and Hamiltonian eigensolutions Tunneling modes and spectra for $D_{3} \supset C_{2}$ and $D_{3} \supset C_{3}$ local subgroup chains

Spectral resolution to irreducible representations (or "irreps") is foretold by characters or traces

$$
\begin{aligned}
& R^{G}(\mathbf{1})=\quad R^{G}(\mathbf{r})=\quad R^{G}\left(\mathbf{r}^{2}\right)=\quad R^{G}\left(\mathbf{i}_{1}\right)=\quad R^{G}\left(\mathbf{i}_{2}\right)=\quad R^{G}\left(\mathbf{i}_{3}\right)= \\
& \begin{array}{c}
1 \\
r^{1} \\
r^{2} \\
i_{1} \\
i_{2} \\
i_{3}
\end{array}\left(\begin{array}{cccccc}
1 & \cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & 1 & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & 1 & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & 1 & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & 1 & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & 1
\end{array}\right),\left(\begin{array}{llllll}
\cdot & \cdot & 1 & \cdot & \cdot & \cdot \\
1 & \cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & 1 & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & 1 & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & 1 \\
\cdot & \cdot & \cdot & 1 & \cdot & \cdot
\end{array}\right)\left(\begin{array}{cccccc}
\cdot & 1 & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & 1 & \cdot & \cdot & \cdot \\
1 & \cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & 1 \\
\cdot & \cdot & \cdot & 1 & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & 1 & \cdot
\end{array}\right),\left(\begin{array}{llllll}
\cdot & \cdot & \cdot & 1 & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & 1 & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & 1 \\
1 & \cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & 1 & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & 1 & \cdot & \cdot & \cdot
\end{array}\right)\left(\begin{array}{llllll}
\cdot & \cdot & \cdot & \cdot & 1 & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & 1 \\
\cdot & \cdot & \cdot & 1 & \cdot & \cdot \\
\cdot & \cdot & 1 & \cdot & \cdot & \cdot \\
1 & \cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & 1 & \cdot & \cdot & \cdot & \cdot
\end{array}\right)\left(\begin{array}{llllll}
\cdot & \cdot & \cdot & \cdot & \cdot & 1 \\
\cdot & \cdot & \cdot & 1 & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & 1 & \cdot \\
\cdot & 1 & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & 1 & \cdot & \cdot & \cdot \\
1 & \cdot & \cdot & \cdot & \cdot & \cdot
\end{array}\right) \\
& R\left(\mathbf{P}^{A_{1}}\right)=\left(\begin{array}{llllll}
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1
\end{array}\right) / 6 \Rightarrow \operatorname{TraceR}\left(\mathbf{P}^{A_{1}}\right)=1 \quad \text { So: } R\left(\mathbf{P}^{A_{1}} \mathbf{g}\right) \text { reduces to }:\left(\begin{array}{ccccc}
D^{A_{1}}(\mathrm{~g}) & . & . & . & . \\
. & . & . & . & . \\
. & . & . & . \\
. & . & . & . & . \\
. & . & . & . \\
. & . & . & .
\end{array}\right) \\
& R\left(\mathbb{P}^{A_{2}}\right)=\left(\begin{array}{cccccc}
1 & 1 & 1 & -1 & -1 & -1 \\
1 & 1 & 1 & -1 & -1 & -1 \\
1 & 1 & 1 & -1 & -1 & -1 \\
-1 & -1 & -1 & 1 & 1 & 1 \\
-1 & -1 & -1 & 1 & 1 & 1 \\
-1 & -1 & -1 & 1 & 1 & 1
\end{array}\right) / 6 \Rightarrow \operatorname{TraceR}\left(\mathrm{P}^{A_{2}}\right)=1 \\
& R\left(\mathbf{P}^{E}\right)=\left(\begin{array}{cccccc}
2 & -1 & -1 & 0 & 0 & 0 \\
-1 & 2 & -1 & 0 & 0 & 0 \\
-1 & -1 & 2 & 0 & 0 & 0 \\
0 & 0 & 0 & 2 & -1 & -1 \\
0 & 0 & 0 & -1 & 2 & -1 \\
0 & 0 & 0 & -1 & -1 & 1
\end{array}\right) / 3 \Rightarrow \operatorname{Trace} R\left(\mathbf{P}^{E}\right)=4
\end{aligned}
$$

Spectral resolution to irreducible representations (or "irreps") is foretold by characters or traces

$$
\begin{aligned}
& R^{G}(\mathbf{1})=\quad R^{G}(\mathbf{r})=\quad R^{G}\left(\mathbf{r}^{2}\right)=\quad R^{G}\left(\mathbf{i}_{1}\right)=\quad R^{G}\left(\mathbf{i}_{2}\right)=\quad R^{G}\left(\mathbf{i}_{3}\right)= \\
& \begin{array}{c}
1 \\
r^{1} \\
r^{2} \\
i_{1} \\
i_{2} \\
i_{3}
\end{array}\left(\begin{array}{cccccc}
1 & \cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & 1 & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & 1 & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & 1 & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & 1 & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & 1
\end{array}\right),\left(\begin{array}{llllll}
\cdot & \cdot & 1 & \cdot & \cdot & \cdot \\
1 & \cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & 1 & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & 1 & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & 1 \\
\cdot & \cdot & \cdot & 1 & \cdot & \cdot
\end{array}\right),\left(\begin{array}{cccccc}
\cdot & 1 & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & 1 & \cdot & \cdot & \cdot \\
1 & \cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & 1 \\
\cdot & \cdot & \cdot & 1 & \cdot & \cdot \\
\cdot & \cdot & \cdot & 1 & \cdot
\end{array}\right),\left(\begin{array}{llllll}
\cdot & \cdot & \cdot & 1 & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & 1 & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & 1 \\
1 & \cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & 1 & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & 1 & \cdot & \cdot & \cdot
\end{array}\right)\left(\begin{array}{llllll}
\cdot & \cdot & \cdot & \cdot & 1 & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & 1 \\
\cdot & \cdot & \cdot & 1 & \cdot & \cdot \\
\cdot & \cdot & 1 & \cdot & \cdot & \cdot \\
1 & \cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & 1 & \cdot & \cdot & \cdot & \cdot
\end{array}\right)\left(\begin{array}{llllll}
\cdot & \cdot & \cdot & \cdot & \cdot & 1 \\
\cdot & \cdot & \cdot & 1 & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & 1 & \cdot \\
\cdot & 1 & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & 1 & \cdot & \cdot & \cdot \\
1 & \cdot & \cdot & \cdot & \cdot & \cdot
\end{array}\right) \\
& R\left(\mathbf{P}^{A_{1}}\right)=\left(\begin{array}{cccccc}
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1
\end{array}\right) / 6 \Rightarrow \operatorname{TraceR}\left(\mathbf{P}^{A_{1}}\right)=1 \quad \operatorname{So}: R\left(\mathbf{P}^{A_{1}} \mathbf{g}\right) \text { reduces to }:\left(\begin{array}{ccccc}
D^{A_{1}}(\mathbf{g}) & . & . & . & . \\
. & . \\
. & . & . & . & . \\
. & . & . & . & . \\
. & . & . & . & . \\
. & . & . & . & .
\end{array}\right) . \\
& R\left(\mathbb{P}^{A_{2}}\right)=\left(\begin{array}{cccccc}
1 & 1 & 1 & -1 & -1 & -1 \\
1 & 1 & 1 & -1 & -1 & -1 \\
1 & 1 & 1 & -1 & -1 & -1 \\
-1 & -1 & -1 & 1 & 1 & 1 \\
-1 & -1 & -1 & 1 & 1 & 1 \\
-1 & -1 & -1 & 1 & 1 & 1
\end{array}\right) / 6 \Rightarrow \operatorname{TraceR}\left(\mathbb{P}^{A_{2}}\right)=1 \quad \text { So: } R\left(\mathbb{P}^{A_{2}} \mathbf{g}\right) \text { reduces to }:\left(\begin{array}{llll}
. & . & . & . \\
. & D^{A_{2}}(\mathbf{g}) & . & .
\end{array}\right] \\
& R\left(\mathbf{P}^{E}\right)=\left(\begin{array}{cccccc}
2 & -1 & -1 & 0 & 0 & 0 \\
-1 & 2 & -1 & 0 & 0 & 0 \\
-1 & -1 & 2 & 0 & 0 & 0 \\
0 & 0 & 0 & 2 & -1 & -1 \\
0 & 0 & 0 & -1 & 2 & -1 \\
0 & 0 & 0 & -1 & -1 & 1
\end{array}\right) / 3 \Rightarrow \operatorname{TraceR}\left(\mathbf{P}^{E}\right)=4
\end{aligned}
$$

Spectral resolution to irreducible representations (or "irreps") is foretold by characters or traces

$$
\begin{aligned}
& R^{G}(\mathbf{1})=\quad R^{G}(\mathbf{r})=\quad R^{G}\left(\mathbf{r}^{2}\right)=\quad R^{G}\left(\mathbf{i}_{1}\right)=\quad R^{G}\left(\mathbf{i}_{2}\right)=\quad R^{G}\left(\mathbf{i}_{3}\right)= \\
& \begin{array}{c}
1 \\
r^{1} \\
r^{2} \\
i_{1} \\
i_{2} \\
i_{3}
\end{array}\left(\begin{array}{cccccc}
1 & \cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & 1 & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & 1 & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & 1 & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & 1 & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & 1
\end{array}\right),\left(\begin{array}{cccccc}
\cdot & \cdot & 1 & \cdot & \cdot & \cdot \\
1 & \cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & 1 & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & 1 & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & 1 \\
\cdot & \cdot & \cdot & 1 & \cdot & \cdot
\end{array}\right),\left(\begin{array}{cccccc}
\cdot & 1 & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & 1 & \cdot & \cdot & \cdot \\
1 & \cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & 1 \\
\cdot & \cdot & \cdot & 1 & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & 1 & \cdot
\end{array}\right),\left(\begin{array}{cccccc}
\cdot & \cdot & \cdot & 1 & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & 1 & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & 1 \\
1 & \cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & 1 & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & 1 & \cdot & \cdot & \cdot
\end{array}\right),\left(\begin{array}{llllll}
\cdot & \cdot & \cdot & \cdot & 1 & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & 1 \\
\cdot & \cdot & \cdot & 1 & \cdot & \cdot \\
\cdot & \cdot & 1 & \cdot & \cdot & \cdot \\
1 & \cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & 1 & \cdot & \cdot & \cdot & \cdot
\end{array}\right),\left(\begin{array}{llllll}
\cdot & \cdot & \cdot & \cdot & \cdot & 1 \\
\cdot & \cdot & \cdot & 1 & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & 1 & \cdot \\
\cdot & 1 & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & 1 & \cdot & \cdot & \cdot \\
1 & \cdot & \cdot & \cdot & \cdot & \cdot
\end{array}\right) \\
& R\left(\mathbf{P}^{A_{1}}\right)=\left(\begin{array}{cccccc}
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1
\end{array}\right) / 6 \Rightarrow \operatorname{TraceR}\left(\mathbf{P}^{A_{1}}\right)=1 \quad \operatorname{So:} R\left(\mathbf{P}^{A_{1}} \mathbf{g}\right) \text { reduces to }:\left(\begin{array}{cccc}
D^{A_{1}}(\mathrm{~g}) & . & . & . \\
. & . \\
. & . & . & . \\
. & . & . & . \\
. & . & . & . \\
. & . & . & .
\end{array}\right) \\
& R\left(\mathbb{P}^{A_{2}}\right)=\left(\begin{array}{cccccc}
1 & 1 & 1 & -1 & -1 & -1 \\
1 & 1 & 1 & -1 & -1 & -1 \\
1 & 1 & 1 & -1 & -1 & -1 \\
-1 & -1 & -1 & 1 & 1 & 1 \\
-1 & -1 & -1 & 1 & 1 & 1 \\
-1 & -1 & -1 & 1 & 1 & 1
\end{array}\right) / 6 \Rightarrow \operatorname{TraceR}\left(\mathbb{P}^{A_{2}}\right)=1 \quad \operatorname{So:~} R\left(\mathbb{P}^{A_{2}} \mathbf{g}\right) \text { reduces to }:\left(\begin{array}{llll}
. & . & \cdot & \cdot
\end{array}\right) \\
& R\left(\mathbf{P}^{E}\right)=\left(\begin{array}{cccccc}
2 & -1 & -1 & 0 & 0 & 0 \\
-1 & 2 & -1 & 0 & 0 & 0 \\
-1 & -1 & 2 & 0 & 0 & 0 \\
0 & 0 & 0 & 2 & -1 & -1 \\
0 & 0 & 0 & -1 & 2 & -1 \\
0 & 0 & 0 & -1 & -1 & 1
\end{array}\right) / 3 \Rightarrow \operatorname{TraceR}\left(\mathbf{P}^{E}\right)=4 \quad \text { So: } R\left(\mathbf{P}^{E} \mathbf{g}\right) \text { reduces to: }\left(\begin{array}{ccccc}
. & . & . & . & . \\
. & . & . & . & . \\
. & D_{11}^{E} & D_{12}^{E} & . & . \\
. & D_{21}^{E} & D_{22}^{E} & . & . \\
. & \cdot & \cdot & D_{11}^{E} & D_{12}^{E} \\
. & \cdot & . & D_{21}^{E} & D_{22}^{E}
\end{array}\right)
\end{aligned}
$$

Spectral resolution to irreducible representations (or "irreps") foretold by characters or traces

$\operatorname{Trace} R\left(\mathbf{P}^{A_{1}}\right)=1 \quad$ So: $R\left(\mathbf{P}^{A_{1}} \mathbf{g}\right)$ reduces to:
$\operatorname{Trace} R\left(\mathbb{P}^{A_{2}}\right)=1 \quad$ So: $R\left(\mathbb{P}^{A_{2}} \mathbf{g}\right)$ reduces to:

$$
\operatorname{Trace} R\left(\mathbf{P}^{E}\right)=4 \quad \text { So: } R\left(\mathbf{P}^{E} \mathbf{g}\right) \text { reduces to: }
$$

Review:Spectral resolution of \boldsymbol{D}_{3} Center (Class algebra)
Group theory of equivalence transformations and classes
Lagrange theorems
All-commuting class projectors and D_{3}-invariant character ortho-completeness
Spectral resolution to irreducible representations (or "irreps") foretold by characters or traces
Subgroup splitting and correlation frequency formula: $f^{(a)}\left(D^{(\alpha)}(G) \downarrow H\right)$
Atomic ℓ-level or $2 \ell+1$-multiplet splitting
D_{3} examples for $\ell=1-6$
Group invariant numbers: Centrum, Rank, and Order
2nd-Stage spectral decompositions of global/local D_{3}
Splitting class projectors using subgroup chains $D_{3} \supset C_{2}$ and $D_{3} \supset C_{3}$
3rd-stage spectral resolution to irreducible representations (ireps) and Hamiltonian eigensolutions Tunneling modes and spectra for $D_{3} \supset C_{2}$ and $D_{3} \supset C_{3}$ local subgroup chains

Spectral resolution to irreducible representations (or "ireps") foretold by characters or traces

$\left\{R^{G}(\mathrm{~g})\right\}$ has lots of empty space and looks like it could be reduced.
But, $\left\{R^{G}(\mathrm{~g})\right\}$ cannot be diagonalized all-at-once. (Not all g commute.)
Nevertheless, $\left\{R^{G}(\mathrm{~g})\right\}$ can be block-diagonalized all-at-once into "ireps" A_{1}, A_{2}, and E_{1}

$$
R(\mathrm{~g}) \text { reduces to: }
$$

$$
\begin{array}{cc}
D^{A_{1}}(\mathrm{~g}) & \cdot \\
\cdot & D^{A_{2}}(\mathrm{~g})
\end{array}
$$

$$
D_{11}^{E} \quad D_{12}^{E}
$$

$$
D_{21}^{E} \quad D_{22}^{E}
$$

$$
D_{\|}^{E} \quad D_{12}^{E}
$$

$$
\left.\begin{array}{ll}
D_{21}^{E} & D_{22}^{E}
\end{array}\right)
$$

Spectral resolution to irreducible representations (or "ireps") foretold by characters or traces

$\left\{R^{G}(\mathrm{~g})\right\}$ has lots of empty space and looks like it could be reduced.
But, $\left\{R^{G}(\mathrm{~g})\right\}$ cannot be diagonalized all-at-once. (Not all g commute.)
Nevertheless, $\left\{R^{G}(\mathrm{~g})\right\}$ can be block-diagonalized all-at-once into "ireps" A_{1}, A_{2}, and E_{1}
$R(\mathrm{~g})$ reduces to:
We relate traces of $\left\{R^{G}(\mathrm{~g})\right\}$:

$(\mathrm{g})=$	$\{\mathbf{1}\}$	$\left\{\mathbf{r}^{1}, \mathbf{r}^{2}\right\}$	$\left\{\mathbf{i}_{1}, \mathbf{i}_{2}, \mathbf{i}_{3}\right\}$
$\operatorname{TraceR}^{G}(\mathrm{~g})=$	6	0	0

to D_{3} character table:

Spectral resolution to irreducible representations (or "ireps") foretold by characters or traces

$\left\{R^{G}(\mathrm{~g})\right\}$ has lots of empty space and looks like it could be reduced.
But, $\left\{R^{G}(\mathrm{~g})\right\}$ cannot be diagonalized all-at-once. (Not all g commute.)
Nevertheless, $\left\{R^{G}(\mathrm{~g})\right\}$ can be block-diagonalized all-at-once into "ireps" A_{1}, A_{2}, and E_{1}
$R(\mathrm{~g})$ reduces to:
We relate traces of $\left\{R^{G}(\mathrm{~g})\right\}$:

$(\mathrm{g})=$	$\{\mathbf{1}\}$	$\left\{\mathbf{r}^{1}, \mathbf{r}^{2}\right\}$	$\left\{\mathbf{i}_{1}, \mathbf{i}_{2}, \mathbf{i}_{3}\right\}$
$\operatorname{TraceR}^{G}(\mathrm{~g})=$	6	0	0

$\chi^{A_{1}}(\mathrm{~g}) |$| 1 | 1 | 1 |
| :--- | :--- | :--- |

to D_{3} character table:

So $\left\{R^{G}(\mathrm{~g})\right\}$ can be block-diagonalized into a direct $\operatorname{sum} \oplus$ of "ireps" $R^{G}(\mathrm{~g})=D^{4_{1}}(\mathrm{~g}) \oplus D^{4_{2}}(\mathrm{~g}) \oplus 2 D^{E_{1}}(\mathrm{~g})$

Review:Spectral resolution of \boldsymbol{D}_{3} Center (Class algebra)
Group theory of equivalence transformations and classes
Lagrange theorems
All-commuting class projectors and D_{3}-invariant character ortho-completeness

Spectral resolution to irreducible representations (or "irreps") foretold by characters or traces
Subgroup splitting and correlation frequency formula: $f^{(a)}\left(D^{(\alpha)}(G) \downarrow H\right)$

Atomic ℓ-level or $2 \ell+1$-multiplet splitting
D_{3} examples for $\ell=1-6$
Group invariant numbers: Centrum, Rank, and Order
2nd-Stage spectral decompositions of global/local D_{3}
Splitting class projectors using subgroup chains $D_{3} \supset C_{2}$ and $D_{3} \supset C_{3}$
3rd-stage spectral resolution to irreducible representations (ireps) and Hamiltonian eigensolutions Tunneling modes and spectra for $D_{3} \supset C_{2}$ and $D_{3} \supset C_{3}$ local subgroup chains

Subgroup splitting and correlation frequency formula: $f^{(a)}\left(D^{(\alpha)}(G) \backslash H\right)$

$$
\text { (irep } \equiv \text { irreducible representation) }
$$

Symmetry reduction of G to $H \subset G$ involves splitting of G-ireps $D^{(\alpha)}(G)$ into smaller H-ireps $d^{(a)}{ }_{(H)}$ $D^{(\alpha)}(G) \downarrow H \equiv D^{(\alpha)}(H)$ is reducible to: $T_{\text {reducer }} D^{(\alpha)}(H) T_{\text {reducer }}=f^{(a)} d^{(a)}(H) \oplus f^{(b)} d^{(b)}(H) \oplus \ldots$

The following derives formulae for integral $H \subset G$ correlation coefficients $f^{(a)}\left(D^{(\alpha)}(G) \downarrow H\right)$

Subgroup splitting and correlation frequency formula: $f^{(a)}\left(D^{(\alpha)}(G) \backslash H\right)$

$$
\text { (irep } \equiv \text { irreducible representation) }
$$

Symmetry reduction of G to $H \subset G$ involves splitting of G-ireps $D^{(\alpha)}(G)$ into smaller H-ireps $d^{(a)}{ }_{(H)}$ $D^{(\alpha)}(G) \downarrow H \equiv D^{(\alpha)}(H)$ is reducible to: $T_{\text {reducer }} D^{(\alpha)}(H) T_{\text {reducer }}=f^{(a)} d^{(a)}(H) \oplus f^{(b)} d^{(b)}(H) \oplus \ldots$

The following derives formulae for integral $H \subset G$ correlation coefficients $f^{(b)}\left(D^{(\alpha)}(G) \downarrow H\right)$

$$
\operatorname{Trace} D^{(\alpha)}\left(\mathbf{P}^{(b)}\right)=f^{(b)} \cdot \ell^{(b)}
$$

Since each $d^{(b)}\left(\mathbf{P}^{(b)}\right)$ is $\ell^{(b)}$-by- $\ell^{(b)}$ unit matrix

Subgroup splitting and correlation frequency formula: $f^{(a)}\left(D^{(\alpha)}(G) \backslash H\right)$

$$
\text { (irep } \equiv \text { irreducible representation) }
$$

Symmetry reduction of G to $H \subset G$ involves splitting of G-ireps $D^{(\alpha)}(G)$ into smaller H-ireps $d^{(a)}(H)$ $D^{(\alpha)}(G) \downarrow H \equiv D^{(\alpha)}(H)$ is reducible to: $T_{\text {reducer }} D^{(\alpha)}(H) T_{\text {reducer }}=f^{(a)} d^{(a)}(H) \oplus f^{(b)} d^{(b)}(H) \oplus \ldots$

The following derives formulae for integral $H \subset G$ correlation coefficients $f^{(a)}\left(D^{(\alpha)}(G) \downarrow H\right)$

$$
\begin{aligned}
& \operatorname{Trace} D^{(\alpha)}\left(\mathbf{P}^{(b)}\right)=f^{(b)} \cdot \ell^{(b)} \\
& f^{(b)}=\frac{1}{\ell^{(b)}} \operatorname{Trace} D^{(\alpha)}\left(\mathbf{P}^{(b)}\right)
\end{aligned}
$$

Subgroup splitting and correlation frequency formula: $f^{(a)}\left(D^{(\alpha)}(G) \backslash H\right)$

$$
\text { (irep } \equiv \text { irreducible representation) }
$$

Symmetry reduction of G to $H \subset G$ involves splitting of G-ireps $D^{(\alpha)}(G)$ into smaller H-ireps $d^{(a)}(H)$ $D^{(\alpha)}(G) \downarrow H \equiv D^{(\alpha)}(H)$ is reducible to: $T_{\text {reducer }} D^{(\alpha)}(H) T_{\text {reducer }}=f^{(a)} d^{(a)}(H) \oplus f^{(b)} d^{(b)}(H) \oplus \ldots$

The following derives formulae for integral $H \subset G$ correlation coefficients $f^{(a)}\left(D^{(\alpha)}(G) \downarrow H\right)$

Class ortho-complete

$$
\operatorname{Trace} D^{(\alpha)}\left(\mathbf{P}^{(b)}\right)=f^{(b)} \cdot \ell^{(b)}
$$ projector relations (p.24)

$$
\begin{aligned}
& \mathbf{P}^{(\alpha)}=\frac{\ell^{(\alpha)}}{{ }^{\circ} G} \sum_{k \in G} \chi_{k}^{(\alpha)^{*}} \mathbf{\kappa}_{k} \\
& \mathbf{P}^{(b)}=\frac{\ell^{(b)}}{{ }^{\circ} H} \sum_{k \in H} \chi_{k}^{(b)^{*}} \kappa_{k}
\end{aligned}
$$

$$
f^{(b)}=\frac{1}{\ell^{(b)}} \operatorname{Trace} D^{(\alpha)}\left(\mathbf{P}^{(b)}\right)=\frac{1}{\ell^{(b)}} \frac{\ell^{(b)}}{{ }^{(b)}} \sum_{\substack{\text { classes } \\ \kappa_{k} \in H}} \chi_{k}^{(b))^{*}} \operatorname{Trace} D^{(\alpha)}\left(\kappa_{k}\right)
$$

Subgroup splitting and correlation frequency formula: $f^{(a)}\left(D^{(\alpha)}(G) \backslash H\right)$ (irep \equiv irreducible representation)
Symmetry reduction of G to $H \subset G$ involves splitting of G-ireps $D^{(\alpha)}(G)$ into smaller H-ireps $d^{(a)}(H)$ $D^{(\alpha)}(G) \downarrow H \equiv D^{(\alpha)}(H)$ is reducible to: $T_{\text {reducer }} D^{(\alpha)}(H) T_{\text {reducer }}=f^{(a)} d^{(a)}(H) \oplus f^{(b)} d^{(b)}(H) \oplus \ldots$

The following derives formulae for integral $H \subset G$ correlation coefficients $f^{(a)}\left(D^{(\alpha)}(G) \downarrow H\right)$
Class ortho-complete

$$
\operatorname{Trace} D^{(\alpha)}\left(\mathbf{P}^{(b)}\right)=f^{(b)} \cdot \ell^{(b)}
$$ projector relations (p.24)

$$
\begin{aligned}
& \mathbf{P}^{(\alpha)}=\frac{\ell^{(\alpha)}}{{ }^{\circ} G} \sum_{k \in G} \chi_{k}^{(\alpha)^{*}} \kappa_{k} \\
& \mathbf{P}^{(b)}=\frac{\ell^{(b)}}{{ }^{\circ} H} \sum_{k \in H} \chi_{k}^{(b)^{*}} \kappa_{k}
\end{aligned}
$$

$$
f^{(b)}=\frac{1}{\ell^{(b)}} \operatorname{Trace} D^{(\alpha)}\left(\mathbf{P}^{(b)}\right)=\frac{1}{\ell^{(b)} \frac{\ell^{(b)}}{{ }^{\circ} H} \sum_{\substack{\text { clases } \\ \kappa_{k} \in H}} \chi_{k}^{(b) *} \underbrace{\operatorname{Trace} D^{(\alpha)}\left(\kappa_{k}\right)}_{\chi^{(\alpha)}\left(\kappa_{k}\right)={ }^{\circ} \kappa_{k} \chi_{k}^{(\alpha)}}}
$$

$$
f^{(b)}=\frac{1}{{ }^{\circ} H} \sum_{\substack{\text { classes } \\ \mathrm{K}_{k} \in H}}{ }^{\circ} \kappa_{k} \chi_{k}^{(b) *} \chi_{k}^{(\alpha)}
$$

Character relation for frequency $f^{(b)}$ of $d^{(b)}$ of subgroup H in $D^{(\alpha)} \downarrow H$ of G

Review:Spectral resolution of \boldsymbol{D}_{3} Center (Class algebra)
Group theory of equivalence transformations and classes
Lagrange theorems
All-commuting class projectors and D_{3}-invariant character ortho-completeness
Spectral resolution to irreducible representations (or "irreps") foretold by characters or traces
Subgroup splitting and correlation frequency formula: $f^{(a)}\left(D^{(\alpha)}(G) \downarrow H\right)$
Atomic ℓ-level or $2 \ell+1$-multiplet splitting
D_{3} examples for $\ell=1-6$
Group invariant numbers: Centrum, Rank, and Order
2nd-Stage spectral decompositions of global/local D_{3}
Splitting class projectors using subgroup chains $D_{3} \supset C_{2}$ and $D_{3} \supset C_{3}$
3rd-stage spectral resolution to irreducible representations (ireps) and Hamiltonian eigensolutions Tunneling modes and spectra for $D_{3} \supset C_{2}$ and $D_{3} \supset C_{3}$ local subgroup chains

Atomic ℓ-level or $2 \ell+1$-multiplet splitting
Formula from p. 44
Example: $(\ell=4)$

$$
f^{(b)}=\frac{1}{{ }^{\circ} D_{3}} \sum_{\substack{\text { classes } \\ k_{k} \in \in D_{3}}}{ }^{\circ} \kappa_{k} \chi_{k}^{(b)^{* *}} \chi_{k}^{(\ell)}
$$

$\ell=0, s$-singlet $2 \ell+1=1$
$\ell=1$, p-triplet $2 \ell+1=3$

Crystal-field splitting: $O(3) \supset D_{3}$ symmetry reduction

Atomic ℓ-level or $2 \ell+1$-multiplet splitting
Formula from p. 44
Example: $(\ell=4)$

Crystal-field splitting: $O(3) \supset D_{3}$ symmetry reduction
$\ell=0, s$-singlet $2 \ell+1=1$
$\ell=1$, p-triplet $2 \ell+1=3$
$\ell=2$, d-quintet
$2 \ell+1=5$

Atomic ℓ-level or $2 \ell+1$-multiplet splitting
Formula from p. 44
Example: $(\ell=4)$

Crystal-field splitting: $O(3) \supset D_{3}$ symmetry reduction
$\ell=0, s$-singlet $2 \ell+1=1$
$\ell=1$, p-triplet
$2 \ell+1=3$
$\ell=2$, d-quintet
$2 \ell+1=5$
$\ell=3$, f-septet
$2 \ell+1=7$

Atomic ℓ-level or $2 \ell+1$-multiplet splitting
Formula from p. 44
Example: $(\ell=4)$

Crystal-field splitting: $O(3) \supset D_{3}$ symmetry reduction

$$
\begin{aligned}
& \ell=0, s \text {-singlet } \\
& 2 \ell+l=1 \\
& \ell=1, p \text {-triplet } \\
& 2 \ell+l=3 \\
& \ell=2, d \text {-quintet } \\
& 2 \ell+l=5 \\
& \ell=3, f \text {-septet } \\
& 2 \ell+l=7 \\
& \ell=4, g \text {-nonet } \\
& 2 \ell+l=9 \\
& \ell=5, h-(l 1) \text {-let } \\
& 2 \ell+l=11
\end{aligned}
$$

Atomic ℓ-level or $2 \ell+1$-multiplet splitting
Formula from p. 44
Example: $(\ell=4)$

Crystal-field splitting: $O(3) \supset D_{3}$ symmetry reduction and $D^{\ell} \downarrow D_{3}$ splitting
$\ell=0, s$-singlet $2 \ell+1=1$
$\ell=1$, p-triplet
$2 \ell+1=3$
$\ell=2$, d-quintet
$2 \ell+1=5$

Atomic ℓ-level or $2 \ell+1$-multiplet splitting
Formula from p. 44
Example: $(\ell=4)$

Crystal-field splitting: $O(3) \supset D_{3}$ symmetry reduction and $D^{\ell} \downarrow D_{3}$ splitting
$\ell=0, s$-singlet $2 \ell+1=1$
$\ell=1$, p-triplet $2 \ell+1=3$
$\ell=2$, d-quintet
$2 \ell+1=5$

$$
\begin{aligned}
& = \\
& \chi^{\ell}\left(\frac{2 \pi}{n}\right)=\frac{\sin \frac{(2 \ell+1) \pi}{n}}{\begin{array}{c}
\text { srmmetry } \\
\sin \frac{\pi}{n} \\
\text { R(3) character } \\
\text { where }: 2 \ell+1
\end{array}} \begin{array}{l}
\text { is } \ell \text {-orbital dimension }
\end{array}
\end{aligned}
$$

$$
\ell=3, f \text {-septet }
$$

$$
2 \ell+1=7
$$

$$
\begin{aligned}
& \ell=4, \text { g-nonet } \\
& 2 \ell+1=9 \\
& \ell=5, h-(11) \text {-let }
\end{aligned}
$$

$U(2)$ characters

$$
2 \ell+1=11
$$ from Lecture 12.6 p.134: (or end of this lecture)

Atomic ℓ-level or $2 \ell+1$-multiplet splitting
Formula from p. 44
Example: $(\ell=4)$

$$
f^{(b)}=\frac{1}{{ }^{\circ} D_{3}} \sum_{\substack{\text { classes } \\ \kappa_{k} \in D_{\mathbf{s}}}}{ }^{\circ} \kappa_{k} \chi_{k}^{(b))^{*}} \chi_{k}^{(\ell)}
$$

$\ell=0, s$-singlet $2 \ell+1=1$
$\ell=1$, p-triplet $2 \ell+1=3$
$\ell=2$, d-quintet
$2 \ell+1=5$
Crystal-field splitting: $O(3) \supset D_{3}$ symmetry reduction and $D^{\ell} \downarrow D_{3}$ splitting
$\ell=3$, f-septet
$2 \ell+1=7$

(α)
$U(2)$ characters from Lecture 12.6 p.134: (or end of this lecture)

$\chi^{\ell}(\Theta)$	$\Theta=0$	$\frac{2 \pi}{3}$	π
$\ell=0$	1	1	1
1	3	0	-1
2	5	-1	1
3	7	1	-1
4	9	0	1
5	11	-1	-1
6	13	1	1
7	15	0	-1

$$
\chi^{\ell}(\Theta)=\frac{\sin \left(\ell+\frac{1}{2}\right) \Theta}{\sin \frac{\Theta}{2}}
$$

Atomic ℓ-level or $2 \ell+1$-multiplet splitting
Formula from p. 44
Example: $(\ell=4)$

$$
f^{(b)}=\frac{1}{{ }^{\circ} D_{3} \text { classes }} \sum_{\substack{{ }_{k} \\ \kappa_{k} \in D_{3}}} \kappa_{k} \chi_{k}^{(b)^{*} *} \chi_{k}^{(\ell)}
$$

$\ell=0, s$-singlet $2 \ell+1=1$
$\ell=1$, p-triplet $2 \ell+1=3$
$\ell=2$, d-quintet $2 \ell+1=5$
Crystal-field splitting: $O(3) \supset D_{3}$ symmetry reduction and $D^{\ell} \downarrow D_{3}$ splitting
$\ell=3$, f-septet $2 \ell+1=7$
$\ell=4, g$-nonet
$2 \ell+1=9$
$\ell=5$, h-(ll)-let
$U(2)$ characters

$$
R(3) \text { character }
$$

$$
2 \ell+1=11
$$

from Lecture 12.6 p.134:
(or end of this lecture)

$\chi^{\ell}(\Theta)$	$\Theta=0$	$\frac{2 \pi}{3}$	π	$\chi^{\ell}(\Theta)=\frac{\sin \left(\ell+\frac{1}{2}\right) \Theta}{\sin -\Theta}$			
$\ell=0$	1	1	1				
1	3	0	-1	...and D_{3} character table from p			
2	5	-1	1				
3	7	1	-1	(g) =	\{1\}	$\left\{\mathbf{r}^{1}, \mathbf{r}^{2}\right\}$	$\left\{\mathbf{i}_{1}, \mathbf{i}_{2}, \mathbf{i}_{3}\right\}$
4	9	0	1	$\chi^{A_{1}}(\mathrm{~g})=$	1	1	1
5	11	-1	-1				
6	13	1	1	χ (g) $=$	1	1	-1
7	15	0	-1	$\chi^{E_{1}}(\mathrm{~g})=$	2	-1	0

$$
\chi^{\ell}\left(\frac{2 \pi}{n}\right)=\frac{\sin \frac{(2 \ell+1) \pi}{n}}{\sin \frac{\pi}{n}}
$$

Review:Spectral resolution of \boldsymbol{D}_{3} Center (Class algebra)
Group theory of equivalence transformations and classes
Lagrange theorems
All-commuting class projectors and D_{3}-invariant character ortho-completeness
Spectral resolution to irreducible representations (or "irreps") foretold by characters or traces
Subgroup splitting and correlation frequency formula: $f^{(a)}\left(D^{(\alpha)}(G) \downarrow H\right)$
Atomic ℓ-level or $2 \ell+1$-multiplet splitting
7 D_{3} examples for $\ell=1-6$
Group invariant numbers: Centrum, Rank, and Order
2nd-Stage spectral decompositions of global/local D_{3}
Splitting class projectors using subgroup chains $D_{3} \supset C_{2}$ and $D_{3} \supset C_{3}$
3rd-stage spectral resolution to irreducible representations (ireps) and Hamiltonian eigensolutions Tunneling modes and spectra for $D_{3} \supset C_{2}$ and $D_{3} \supset C_{3}$ local subgroup chains

Atomic ℓ-level or $2 \ell+1$-multiplet splitting
Formula from p. 44
Example: $(\ell=4)$

$$
f^{(b)}=\frac{1}{{ }^{\circ} D_{3}} \sum_{\substack{\text { classes } \\ \kappa_{k} \in D_{3}}}{ }^{\circ} \kappa_{k} \chi_{k}^{(b))^{*}} \chi_{k}^{(\ell)}
$$

$\ell=0, s$-singlet $2 \ell+1=1$
$\ell=1$, p-triplet $2 \ell+1=3$
$\ell=2$, d-quintet
$2 \ell+1=5$
Crystal-field splitting: $O(3) \supset D_{3}$ symmetry reduction and $D^{\ell} \downarrow D_{3}$ splitting
$\ell=3$, f-septet $2 \ell+1=7$

$$
\begin{aligned}
& \ell=4, g \text {-nonet } \\
& 2 \ell+1=9
\end{aligned}
$$

$$
\ell=5, h-(11)-l e t
$$

$$
\chi^{\ell}\left(\frac{2 \pi}{n}\right)=\frac{\sin \frac{(2 \ell+1) \pi}{n}}{\sin \frac{\pi}{n}} \quad \begin{gathered}
R(3) \text { character } \\
\text { where: } 2 \ell+1
\end{gathered} ~ i s ~ \ell \text {-orbital dimens }
$$

$U(2)$ characters
from Lecture 12.6 p.134:
(or end of this lecture)

$\chi^{\ell}(\Theta)$	$\Theta=0$	$\frac{2 \pi}{3}$		$\chi^{\ell}(\Theta)=\frac{\sin \left(\ell+\frac{1}{2}\right) \Theta}{\Theta}$			
$\ell=0$	1	1	1				
1		0	-1	...and D_{3} character table from p			
2	5	-1	1				
3	7	1	-1	(g) $=$	\{1\}	$\left\{\mathbf{r}^{1}, \mathbf{r}^{2}\right\}$	$\left\{\mathbf{i}_{1}, \mathbf{i}_{2}, \mathbf{i}_{3}\right\}$
4	9	0	1	$\chi^{A_{1}}(\mathrm{~g})=$	1	1	1
5	11	-1	-1				-1
6	13	1	1	$\chi(\mathrm{l})=$ $\chi^{E_{1}(\mathrm{~g})} \mathrm{l}$	1	-1	-1
7	15	0	-1	$\chi^{E_{1}}(\mathrm{~g})=$	2	-1	0

Atomic ℓ-level or $2 \ell+1$-multiplet splitting
Formula from p. 44
Example: $(\ell=4)$

$$
f^{(b)}=\frac{1}{{ }^{\circ} D_{3}} \sum_{\substack{\text { classes } \\ \kappa_{k} \in D_{3}}}{ }^{\circ} \kappa_{k} \chi_{k}^{(b) *} \chi_{k}^{(\ell)}
$$

$U(2)$ characters
from Lecture 12.6 p.134:
(or end of this lecture)

$\chi^{\ell}(\Theta)$	$\Theta=0 \quad \frac{2 \pi}{3} \quad \pi$	$\chi^{\ell}(\Theta)=\frac{\sin \left(\ell+\frac{1}{2}\right) \Theta}{\sin \Theta}$		
$\ell=0$	$1 \begin{array}{lll}1 & 1\end{array}$			
1	$\begin{array}{lll}3 & 0 & -1\end{array}$...and D_{3} character table from p		
2	$\begin{array}{llll}5 & -1 & 1\end{array}$			
3	$7 \begin{array}{lll}7 & 1 & -1\end{array}$	(g) =	\{1\} $\left\{\mathbf{r}^{1}, \mathbf{r}\right.$	$\left\{\mathbf{i}_{1}, \mathbf{i}_{2}, \mathbf{i}_{3}\right\}$
4	$0 \quad 1$	$\chi^{A_{1}}(\mathrm{~g})=$	1	1
5	$\begin{array}{ccc}11 & -1 & -1\end{array}$		1	-1
6	$\begin{array}{ccc}13 & 1 & 1\end{array}$	$\chi(\mathrm{g})=$ $\chi^{E_{1}(\mathrm{~g})} \mathrm{l}=$	-1	-1
7	$15 \quad 0 \quad-1$	$\chi^{E_{1}}(\mathrm{~g})=$	-1	0

$$
\begin{aligned}
\chi^{\ell}\left(\frac{2 \pi}{n}\right) & =\frac{\sin \frac{(2 \ell+1) \pi}{n}}{\sin \frac{\pi}{n}} \\
\chi^{\ell}(\Theta) & =\frac{\sin \left(\ell+\frac{1}{2}\right) \Theta}{\sin \frac{\Theta}{2}}
\end{aligned}
$$

...and D_{3} character table from p. 24:
$R(3)$ character
$\ell=0, s$-singlet $2 \ell+1=1$
$\ell=1$, p-triplet $2 \ell+1=3$
$\ell=2$, d-quintet $2 \ell+1=5$
$\ell=3$, f-septet $2 \ell+1=7$ $\ell=4, g$-nonet
$2 \ell+1=9$
$\ell=5$, h-(ll)-let $2 \ell+1=11$

Atomic ℓ-level or $2 \ell+1$-multiplet splitting

$$
\ell=0, s \text {-singlet }
$$

Formula from p. 44
Example: $(\ell=4) \quad f^{(b)}=\frac{1}{{ }^{\circ} D_{3}} \sum_{\substack{\text { classes } \\ \kappa_{k} \in D_{3}}}{ }^{\circ} \kappa_{k} \chi_{k}^{(b)^{*}} \chi_{k}^{(\ell)}$

$$
f^{(b)}=\frac{1}{{ }^{\circ} D_{3}} \sum_{\substack{\text { classes } \\ \kappa_{k} \in D_{3}}}{ }^{\circ} \kappa_{k} \chi_{k}^{(b))^{*}} \chi_{k}^{(\ell)}
$$

$$
\chi^{\ell}\left(\frac{2 \pi}{n}\right)=\frac{\sin \frac{(2 \ell+1) \pi}{n}}{\sin \frac{\pi}{n}}
$$ $2 \ell+1=1$

$\ell=1, p$-triplet $2 \ell+1=3$
$\ell=2$, d-quintet $2 \ell+1=5$

$$
R(3) \text { character }
$$

Atomic ℓ-level or $2 \ell+1$-multiplet splitting
Formula from p. 44

$$
f^{(b)}=\frac{1}{{ }^{\circ} D_{3}} \sum_{\substack{\text { classes } \\ \kappa_{k} \in D_{3}}}{ }^{\circ} \kappa_{k} \chi_{k}^{(b) *} \chi_{k}^{(\ell)}
$$

$\ell=0, s$-singlet $2 \ell+1=1$

Atomic ℓ-level or $2 \ell+1$-multiplet splitting
Formula from p. 44
Example: $(\ell=4)$

$$
f^{(b)}=\frac{1}{{ }^{\circ} D_{3}} \sum_{\substack{\text { classes } \\ \kappa_{k} \in D_{3}}}{ }^{\circ} \kappa_{k} \chi_{k}^{(b))^{*}} \chi_{k}^{(\ell)}
$$

$\ell=0, s$-singlet $2 \ell+1=1$
$\ell=1$, p-triplet $2 \ell+1=3$
$\ell=2$, d-quintet $2 \ell+1=5$

Atomic ℓ-level or $2 \ell+1$-multiplet splitting
Formula from p. 44
Example: $(\ell=4)$

$$
f^{(b)}=\frac{1}{{ }^{\circ} D_{3}} \sum_{\substack{\text { classes } \\ \kappa_{k} \in D_{3}}}{ }^{\circ} \kappa_{k} \chi_{k}^{(b) *} \chi_{k}^{(\ell)}
$$

$\ell=0, s$-singlet $2 \ell+1=1$
$\ell=1$, p-triplet $2 \ell+1=3$
$\ell=2$, d-quintet $2 \ell+1=5$

Formula from p. 44

$$
\rightleftharpoons E_{1}
$$

Example: $(\ell=4)$

$$
f^{(b)}=\frac{1}{{ }^{\circ} D_{3}} \sum_{\substack{\text { classes } \\ \kappa_{k} \in D_{3}}}{ }^{\circ} \kappa_{k} \chi_{k}^{(b) *} \chi_{k}^{(\ell)}
$$

$$
\ell=4
$$

$$
f^{\left(E_{1}\right)}=\frac{1}{{ }^{\circ} D_{3} \text { classes }} \sum_{\substack{ \\\kappa_{k} \in D_{3}}} \kappa_{k} \chi_{k}^{\left(E_{1}\right)^{*} *} \chi_{k}^{(\ell=4)}=\frac{1}{{ }^{\circ} D_{3}}\left({ }^{\circ} \kappa_{0^{\circ}} \chi_{0^{\circ}}^{\left(E_{1}\right)^{*}} \chi_{0^{\circ}}^{(\ell=4)}+{ }^{\circ} \kappa_{1200^{\circ}} \chi_{120^{\circ}}^{\left(E_{1}\right)^{*}} \chi_{120^{\circ}}^{(\ell=4)}+{ }^{\circ} \kappa_{180^{\circ}} \chi_{180^{(E)}}^{\left(E_{1}^{* *}\right.} \chi_{180^{\circ}}^{(\ell=4)}\right)
$$

$U(2)$ characters
from Lecture 12.6 p.134:
(or end of this lecture)

$\chi^{\ell}(\Theta)$	$\Theta=0$	$\frac{2 \pi}{3}$	π
$\ell=0$	1	1	1
1	3	0	-1
2	5	-1	1
3	7	1	-1
4	9	0	1
5	11	-1	-1
6	13	1	1
7	15	0	-1

$f^{(\alpha)}(\ell)$	$f^{A_{1}}$	$f^{A_{2}}$	$f^{E_{1}}$	
$\ell=0$	1	\cdot	\cdot	$1 A_{l}$
1	\cdot	1	1	$0 A_{l} \oplus A_{2} \oplus E_{l}$
2	1	\cdot	2	$1 A_{l} \quad \oplus 2 E_{l}$
3	1	2	2	$1 A_{l} \oplus 2 A_{2} \oplus 2 E_{l}$
4	1	2	3	

Formula from p. 44
Example: $(\ell=4)$

$$
f^{(b)}=\frac{1}{{ }^{\circ} D_{3}} \sum_{\substack{\text { classes } \\ \kappa_{k} \in D_{3}}}{ }^{\circ} \kappa_{k} \chi_{k}^{(b))^{*}} \chi_{k}^{(\ell)}
$$

$$
\begin{aligned}
f^{\left(E_{1}\right)}=\frac{1}{{ }^{\circ} D_{3}} \sum_{\substack{\text { classes } \\
\kappa_{k} D_{3}}}{ }^{\circ} \kappa_{k} \chi_{k}^{\left(E_{1}\right)^{*}} \chi_{k}^{(\ell=4)} & =\frac{1}{{ }^{\circ} D_{3}}\left({ }^{\circ} \kappa_{00} \chi_{0^{\circ}}^{\left(E_{1}\right)^{*}} \chi_{0^{\circ}}^{(l=4)}+{ }^{\circ} \kappa_{120^{\circ}} \chi_{120^{\circ}}^{\left(E_{1}{ }^{*}\right.} \chi_{120^{\circ}}^{(\ell=4)}+{ }^{\circ} \kappa_{1800^{\circ}} \chi_{180^{\circ}}^{\left(E_{1}{ }^{*}\right.} \chi_{180^{\circ}}^{(\ell=4)}\right) \\
& =\frac{1}{6}\left(1 \cdot 2^{*} \cdot 9+2 \cdot-1^{*} \cdot 0+3 \cdot 0^{*} \cdot 1\right)
\end{aligned}
$$

$U(2)$ characters
from Lecture 12.6 p.134:
(or end of this lecture)

$\chi^{\ell}(\Theta)$	$\Theta=0$	$\frac{2 \pi}{3}$	π
$\ell=0$	1	1	1
1	3	0	-1
2	5	-1	1
3	7	1	-1
4	9	0	1
5	11	-1	-1
6	13	1	1
7	15	0	-1

$\chi^{\ell}(\Theta)=\frac{\sin \left(\ell+\frac{1}{2}\right) \Theta}{\sin \frac{\Theta}{2}}$

$f^{(\alpha)}(\ell)$	$f^{A_{1}}$	$f^{A_{2}}$	$f^{E_{1}}$
$\ell=0$	1		
$1 A_{l}$			

$0 A_{l} \oplus A_{2} \oplus E_{l}$

...and D_{3} character table from p. 24:	1	\cdot	1	1	$1 A_{l} \oplus E^{\prime}$	
2	1	\cdot	2	$1 A_{l}$	$\oplus 2 E_{l}$	

$(\mathrm{g})=$	$\{\mathbf{1}\}$	$\left\{\mathbf{r}^{1}, \mathbf{r}^{2}\right\}$	$\left\{\mathbf{i}_{1}, \mathbf{i}_{2}, \mathbf{i}_{3}\right\}$
$\chi^{A_{1}}(\mathrm{~g})=$	1	1	1
$\chi^{A_{2}}(\mathrm{~g})=$	1	1	-1
$\chi^{E_{1}}(\mathrm{~g})=$	2	-1	0

Formula from p. 44
Example: $(\ell=4)$

$$
\begin{aligned}
& f^{(b)}=\frac{1}{{ }^{\circ} D_{3}} \sum_{\text {classes }}{ }^{\circ} \kappa_{k} \chi_{k}^{(b) *} \chi_{k}^{(\ell)}
\end{aligned}
$$

$$
\begin{aligned}
f^{\left(E_{1}\right)}=\frac{1}{{ }^{\circ} D_{3}} \sum_{\substack{\text { classes } \\
\kappa_{k} \in D_{3}}}{ }^{\circ} \kappa_{k} \chi_{k}^{\left(E_{1}\right)^{*}} \chi_{k}^{(\ell=4)} & =\frac{1}{{ }^{\circ} D_{3}}\left({ }^{\circ} \kappa_{00} \chi_{0^{\circ}}^{\left(E_{1}\right)^{*}} \chi_{0^{\circ}}{ }^{(\ell=4)}+{ }^{\circ} \kappa_{120} \chi_{120^{\circ}}^{\left(E_{1}\right)^{*}} \chi_{120^{\circ}}{ }^{(\ell=4)}+{ }^{\circ} \kappa_{1800} \chi_{180^{\circ}}^{\left(E_{1}\right)^{*}} \chi_{1800^{(l)}}{ }^{(\ell=4)}\right) \\
& =\frac{1}{6}\left(1 \cdot 2^{*} \cdot 9+2 \cdot-1^{*} \cdot 0+3 \cdot 0^{*} \cdot 1\right) \\
f^{\left(E_{1}\right)} & =3
\end{aligned}
$$

$U(2)$ characters
from Lecture 12.6 p.134:
(or end of this lecture)

$\chi^{\ell}(\Theta)$	$\Theta=0$	$\frac{2 \pi}{3}$	π
$\ell=0$	1	1	1
1	3	0	-1
2	5	-1	1
3	7	1	-1
4	9	0	1
5	11	-1	-1
6	13	1	1
7	15	0	-1

$\chi^{\ell}(\Theta)=\frac{\sin \left(\ell+\frac{1}{2}\right) \Theta}{\sin \frac{\Theta}{2}}$

$f^{(\alpha)}(\ell)$	$f^{A_{1}}$		$f^{E_{1}}$	
$\ell=0$	1			$1 A_{l}$
1		1	1	$0 A_{1} \oplus A_{2} \oplus E_{l}$
2	1		2	$1 A_{l} \quad \oplus 2 E_{l}$
3	1	2	2	$1 A_{l} \oplus 2 A_{2} \oplus 2 E_{l}$
4	2	1	3	$\oplus 3 E_{l}$

Formula from p. 44
Example: $(\ell=4)$

$$
f^{(b)}=\frac{1}{{ }^{\circ} D_{3}} \sum_{\text {classes }}{ }^{\circ} \kappa_{k} \chi_{k}^{(b))^{*}} \chi_{k}^{(\ell)}
$$

$$
f^{\left(E_{1}\right)}=\frac{1}{{ }^{\circ} D_{3}} \sum_{\substack{\text { classes } \\ \mathrm{K}_{k} D_{3}}}{ }^{\circ} \kappa_{k} \chi_{k}^{\left(E_{1}\right)^{*}} \chi_{k}^{(\ell=4)}=\frac{1}{{ }^{\circ} D_{3}}\left({ }^{\circ} \kappa_{00} \chi_{0^{\circ}}^{\left(E_{1}\right)^{*}} \chi_{0^{\circ}}{ }^{(\ell=4)}+{ }^{\circ} \kappa_{1200^{\circ}} \chi_{120^{\circ}}^{\left(E_{1}\right)^{*}} \chi_{120^{\circ}}{ }^{(\ell=4)}+{ }^{\circ} \kappa_{180} \chi_{180^{\circ}}^{\left(E_{1}\right)^{*}} \chi_{180^{\circ}}{ }^{(\ell=4)}\right)
$$

$U(2)$ characters
from Lecture 12.6 p.134:
(or end of this lecture)

$\chi^{\ell}(\Theta)$	$\Theta=0$	$\frac{2 \pi}{3}$	π
$\ell=0$	1	1	1
1	3	0	-1
2	5	-1	1
3	7	1	-1
4	9	0	1
5	11	-1	-1
6	13	1	1
7	15	0	-1

$f^{(\alpha)}(\ell)$	$f^{A_{1}}$	$f^{A_{2}}$	$f^{E_{1}}$	
$\ell=0$	1		\cdot	$1 A_{l}$
1	\cdot	1	$0 A_{1}$	

$0 A_{l} \oplus A_{2} \oplus E_{l}$
$1 A_{1} \quad \oplus 2 E_{1}$

$$
\begin{aligned}
f^{\left(E_{1}\right)} & =3 \\
f^{\left(A_{2}\right)} & =\frac{1}{6}\left(1 \cdot 1^{*} \cdot 9+2 \cdot 1^{*} \cdot 0+3 \cdot-1^{*} \cdot 1\right)=1
\end{aligned}
$$

$\rightarrow 1 A_{2} \oplus 3 E_{1}$

Formula from p. 44
Example: $(\ell=4)$

$$
f^{(b)}=\frac{1}{{ }^{\circ} D_{3}} \sum_{\text {classes }}{ }^{\circ} \kappa_{k} \chi_{k}^{(b))^{*}} \chi_{k}^{(\ell)}
$$

$$
f^{\left(E_{1}\right)}=\frac{1}{{ }^{\circ} D_{3}} \sum_{\substack{\text { classes } \\ \mathrm{K}_{k} D_{3}}}{ }^{\circ} \kappa_{k} \chi_{k}^{\left(E_{1}\right)^{*}} \chi_{k}^{(\ell=4)}=\frac{1}{{ }^{\circ} D_{3}}\left({ }^{\circ} \kappa_{00} \chi_{0^{(0)}}^{\left(E_{1}\right)^{*}} \chi_{0^{\circ}}{ }^{(\ell=4)}+{ }^{\circ} \kappa_{1200^{\circ}} \chi_{120^{\circ}}^{\left(E_{1}\right)^{*}} \chi_{120^{\circ}}{ }^{(\ell=4)}+{ }^{\circ} \kappa_{180} \chi_{180^{\circ}}^{\left(E_{1}\right)^{*}} \chi_{180^{\circ}}{ }^{(\ell=4)}\right)
$$

$U(2)$ characters
from Lecture 12.6 p.134:
(or end of this lecture)

$\chi^{\ell}(\Theta)$	$\Theta=0$	$\frac{2 \pi}{3}$	π
$\ell=0$	1	1	1
1	3	0	-1
2	5	-1	1
3	7	1	-1
4	9	0	1
5	11	-1	-1
6	13	1	1
7	15	0	-1

$$
=\frac{1}{6}\left(1 \cdot 2^{*} \cdot 9+2 \cdot-1^{*} \cdot 0+3 \cdot 0^{*} \cdot 1\right)
$$

$$
f^{\left(E_{1}\right)}=
$$

$$
f^{\left(A_{2}\right)}=\frac{1}{6}\left(1 \cdot 1^{*} \cdot 9+2 \cdot 1^{*} \cdot 0+3 \cdot-1^{*} \cdot 1\right)=1
$$

$$
f^{\left(A_{1}\right)}=\frac{1}{6}\left(1 \cdot 1^{*} \cdot 9+2 \cdot 1^{*} \cdot 0+3 \cdot 1^{*} \cdot 1\right)=2
$$

...and D_{3} character table from			
(g) $=$	\{1\}	$\left\{\mathbf{r}^{1}, \mathbf{r}^{2}\right\}$	$\left\{\mathbf{i}_{1}, \mathbf{i}_{2}, \mathbf{i}_{3}\right\}$
$\chi^{A_{1}}(\mathrm{~g})=$	1	1	1
$\chi^{H_{2}}(\mathrm{~g})=$	1	1	-1
$\chi^{E_{1}}(\mathrm{~g})=$	2	-1	0

$$
\chi^{\ell}(\Theta)=\frac{\sin \left(\ell+\frac{1}{2}\right) \Theta}{\sin \frac{\Theta}{2}}
$$

$$
\begin{array}{c|ccc|c}
f^{(\alpha)}(\ell) & f^{A_{1}} & f^{A_{2}} & f^{E_{1}} & \\
\hline \ell=0 & 1 & & \cdot & 1 A_{l} \\
1 & \cdot & 1 & 1 & 0 A_{l}
\end{array}
$$

$$
\begin{array}{ll|lll|lll}
\ldots \text { and } D_{3} \text { character table from p. 24: } & 2 & 1 & 2 & 1 A_{l} & \oplus 2 E_{l}
\end{array}
$$

Formula from p. 44
Example: $(\ell=4)$

$$
f^{(b)}=\frac{1}{{ }^{\circ} D_{3}} \sum_{\text {classes }}{ }^{\circ} \kappa_{k} \chi_{k}^{(b) *} \chi_{k}^{(b)}
$$

$$
f^{\left(E_{1}\right)}=\frac{1}{{ }^{\circ} D_{3}} \sum_{\substack{\text { classes } \\ \mathrm{K}_{k}=D_{3}}}{ }^{\circ} \kappa_{k} \chi_{k}^{\left(E_{1}\right)^{*}} \chi_{k}^{(\ell=4)}=\frac{1}{{ }^{\circ} D_{3}}\left({ }^{\circ} \kappa_{00} \chi_{0^{(0)}}^{\left(E_{1}\right)^{*}} \chi_{0^{\circ}}{ }^{(\ell=4)}+{ }^{\circ} \kappa_{1200^{\circ}} \chi_{120^{\circ}}^{\left(E_{1}\right)^{*}} \chi_{120^{\circ}}{ }^{(\ell=4)}+{ }^{\circ} \kappa_{180} \chi_{180^{\circ}}^{\left(E_{1}\right)^{*}} \chi_{180^{\circ}}{ }^{(\ell=4)}\right)
$$

$U(2)$ characters
from Lecture 12.6 p.134:
(or end of this lecture)

$\chi^{\ell}(\Theta)$	$\Theta=0$	$\frac{2 \pi}{3}$	π
$\ell=0$	1	1	1
1	3	0	-1
2	5	-1	1
3	7	1	-1
4	9	0	1
5	11	-1	-1
6	13	1	1
7	15	0	-1

and D_{3} character table from			
$(\mathrm{g})=$		$\left\{\mathbf{r}^{1}, \mathbf{r}^{2}\right\}$	$\left\{\mathbf{i}_{1}, \mathbf{i}_{2}, \mathbf{i}_{3}\right\}$
$\chi^{A_{1}}(\mathrm{~g})=$	1	1	1
$\chi^{A_{2}}(\mathrm{~g})=$	1	1	-1
$\chi^{E_{1}}(\mathrm{~g})=$	2	-1	0

Note : $\ell=6\left|\begin{array}{lll}13 & 1 & 1\end{array}\right|=A_{1}\left|\begin{array}{lll}1 & 1 & 1\end{array}\right| \oplus 2 R^{G}\left|\begin{array}{lll}12 & 0 & 0\end{array}\right|=A_{l} \oplus 2\left[A_{1} \oplus A_{2} \oplus 2 E_{l}\right] \quad\left(\ell=6\right.$ is $1^{\text {st }}$ re-cycling point)

Spectral splitting in symmetry breaking foretold by character analysis (on p. 38)

Crystal-field splitting: $O(3) \supset D_{3}$ symmetry reduction and $D^{\ell} \downarrow D_{3}$ splitting

Review:Spectral resolution of \boldsymbol{D}_{3} Center (Class algebra)
Group theory of equivalence transformations and classes
Lagrange theorems
All-commuting class projectors and D_{3}-invariant character ortho-completeness
Spectral resolution to irreducible representations (or "irreps") foretold by characters or traces
Subgroup splitting and correlation frequency formula: $f^{(a)}\left(D^{(\alpha)}(G) \downarrow H\right)$
Atomic ℓ-level or $2 \ell+1$-multiplet splitting
D_{3} examples for $\ell=1-6$
\pm
Group invariant numbers: Centrum, Rank, and Order
2nd-Stage spectral decompositions of global/local D_{3}
Splitting class projectors using subgroup chains $D_{3} \supset C_{2}$ and $D_{3} \supset C_{3}$
3 rd-stage spectral resolution to irreducible representations (ireps) and Hamiltonian eigensolutions Tunneling modes and spectra for $D_{3} \supset C_{2}$ and $D_{3} \supset C_{3}$ local subgroup chains
\mathbf{D}_{3} Algebra
Important invariant numbers or "characters"
$\ell^{\alpha}=$ Irreducible representation (irrep) dimension or level degeneracy For symmetry group or algebra G

Centrum: $\kappa(G)=\Sigma_{\text {irrep }(\alpha)}\left(\ell^{\alpha}\right)^{0}=$ Number of classes, invariants, irrep types, all-commuting ops Rank: $\quad \rho(G)=\Sigma_{\text {irrep }(\alpha)}\left(\ell^{\alpha}\right)^{l}=$ Number of irrep idempotents $\mathbf{P}_{n, n}^{(\alpha)}$, mutually-commuting ops
Order: $\quad{ }^{\circ}(G)=\Sigma_{\text {irrep }(\alpha)}\left(\ell^{\alpha}\right)^{2}=$ Total number of irrep projectors $\mathbf{P}_{m, n}^{(\alpha)}$ or symmetry ops

$$
\begin{gathered}
\boldsymbol{\kappa}\left(D_{3}\right)=(1)^{0}+(1)^{0}+(2)^{0}=3 \\
\boldsymbol{\rho}\left(D_{3}\right)=(1)^{1}+(1)^{1}+(2)^{1}=4 \\
\circ\left(D_{3}\right)=(1)^{2}+(1)^{2}+(2)^{2}=6
\end{gathered}
$$

Review:Spectral resolution of \boldsymbol{D}_{3} Center (Class algebra)
Group theory of equivalence transformations and classes Lagrange theorems
All-commuting class projectors and D_{3}-invariant character ortho-completeness Subgroup splitting and correlation frequency formula: $f^{(a)}\left(D^{(\alpha)}(G) \downarrow H\right)$
Group invariant numbers: Centrum, Rank, and Order
2nd-Stage spectral decompositions of global/local D3
Splitting class projectors using subgroup chains $D_{3} \supset C_{2}$ and $D_{3} \supset C_{3}$
Splitting classes
3rd-stage spectral resolution to irreducible representations (ireps) and Hamiltonian eigensolutions Tunneling modes and spectra for $D_{3} \supset C_{2}$ and $D_{3} \supset C_{3}$ local subgroup chains

Spectral reduction of non-commutative "Group-table Hamiltonian" D_{3} Example

2nd Step: Spectral resolution of Class Projector(s) of D_{3} Correlate D_{3} characters with its subgoup(s) $C_{2}(\mathbf{i})$

Standing-wave Subroup chain $D_{3} \supset C_{2}\left(\rho_{3}\right)$

Spectral reduction of non-commutative "Group-table Hamiltonian"

 D_{3} Example2nd Step: Spectral resolution of Class Projector(s) of D_{3}
Correlate D_{3} characters with its subgoup(s) $C_{2}(\mathbf{i})$

$$
\begin{array}{llll}
\boldsymbol{D}_{3} \kappa=\mathbf{1} & \mathbf{r}^{l}+\mathbf{r}^{2} \mid \mathbf{i}_{1}+\mathbf{i}_{2}+\mathbf{i}_{3} & C_{2} \kappa=\mathbf{1} & \mathbf{i}_{3} \\
\mathbf{P}^{4_{l}}=1 & 1 & 1 & 16 \\
\mathbb{P}^{4_{2}}=1 & 1 & -1 / 6 & \boldsymbol{p}^{0_{2}}=1 \\
\mathbf{P}^{E}=2 & -1 & 0 & 1 / 3 \\
\hline
\end{array}
$$

Spectral reduction of non-commutative "Group-table Hamiltonian"

 D_{3} Example2nd Step: Spectral resolution of Class Projector(s) of D_{3}
Correlate D_{3} characters with its subgoup(s) $C_{2}(\mathbf{i})$

$D_{3} \mathrm{\kappa}=\mathbf{1} \mid \mathbf{r}^{1}+\mathbf{r}^{2} \mathbf{i}_{1}+\mathbf{i}_{2}+\mathbf{i}$
$\mathbf{P}^{4 l}=1 \begin{array}{llll}1 & 1 & 1 / 6\end{array}$
$\mathbb{P}^{1_{2}}=1 \begin{array}{lll}1 & 1 & -1\end{array}$
$\mathbb{P}^{E}=2 \begin{array}{lll}2 & -1 & 0\end{array}$

$D_{3} \supset C_{2}$ Correlation table shows which products of class projector $\mathbf{P}^{(\alpha)}$ with C_{2}-unit $1=\boldsymbol{p}^{0_{2}}+\boldsymbol{p}^{1_{2}}$ will make IRREDUCIBLE $\left.\mathbf{P}_{n, n}^{(\alpha)}\right)$

$$
\begin{aligned}
& C_{2}{ }^{\kappa}=1 \quad \mathbf{i}_{3} \\
& \begin{aligned}
\boldsymbol{p}^{0_{2}} & =1 \\
\boldsymbol{p}^{12} & =1 \\
=1 & -1 / 2
\end{aligned} \\
& D_{3} \supset C_{2} 0_{2} \quad 1_{2} \\
& n^{A_{l}}=1 \text {. } \\
& n^{A_{2}}=\quad \cdot 1 \\
& n^{E}=\quad 1 \quad 1
\end{aligned}
$$

Spectral reduction of non-commutative "Group-table Hamiltonian"

D_{3} Example
2nd Step: Spectral resolution of Class Projector(s) of D_{3}
Correlate D_{3} characters with its subgoup(s) $C_{2}(\mathbf{i})$

$D_{3} \supset C_{2}$ Correlation table shows which products of class projector $\mathbf{P}^{(\alpha)}$ with C_{2}-unit $1=p^{0_{2}}+p^{1_{2}}$ will make $\left.\operatorname{IRREDUCIBLE} \mathbf{P}_{n, n}^{(\alpha)}\right)$

Rank $\rho\left(\boldsymbol{D}_{3}\right)=4$ implies
there will be exactly 4
" C_{2}-friendly" irep projectors

$$
\begin{aligned}
\mathbf{P}^{(\alpha)} \mathbb{1} & =\mathbf{P}^{(\alpha)}\left(\boldsymbol{p}^{0_{2}}+\boldsymbol{p}^{1_{2}}\right) \\
& =\mathbf{P}_{0_{2} 0_{2}}^{(\alpha)}+\mathbf{P}_{1_{2} 1_{2}}^{(\alpha)}
\end{aligned}
$$

$$
\begin{aligned}
& \boldsymbol{C}_{2} \boldsymbol{\kappa}=\mathbf{1} \\
& \mathbf{i}_{3} \\
& \left.\boldsymbol{p}^{0_{2}}=1 \begin{array}{ll}
1 & 1 \\
\boldsymbol{p}^{I_{2}}=1 & -1
\end{array}\right]^{12} \\
& \boldsymbol{D}_{3} \supset \boldsymbol{C}_{2} 0_{2} 1_{2} \\
& n^{A_{1}}=\begin{array}{|cc}
1 & \cdot \\
n^{A_{2}}= & \cdot \\
n^{E}= & 1 \\
1 & 1
\end{array}
\end{aligned}
$$

Spectral reduction of non-commutative "Group-table Hamiltonian"

D_{3} Example
2nd Step: Spectral resolution of Class Projector(s) of D_{3}
Correlate D_{3} characters with its subgoup(s) $C_{2}(\mathbf{i})$

$D_{3} \mathrm{k}=\mathbf{1} \mid \mathbf{r}^{1}+\mathbf{r}^{2} \mathbf{i}_{1}+\mathbf{i}_{2}+\mathbf{i}$
$\mathbf{P}^{4 l}=1$1 1 1
$\mathbb{P}^{4_{2}}=1 \begin{array}{lll}1 & 1 & -1\end{array}$
$\mathbb{P}^{E}=2 \begin{array}{lll}2 & -1 & 0\end{array}$

$D_{3} \supset C_{2}$ Correlation table shows which products of class projector $\mathbf{P}^{(\alpha)}$ with C_{2}-unit $1=\boldsymbol{p}^{0_{2}}+\boldsymbol{p}^{1_{2}}$ will make IRREDUCIBLE $\left.\mathbf{P}_{n, n}^{(\alpha)}\right)$

Rank $\rho\left(\boldsymbol{D}_{3}\right)=4$ implies
there will be exactly 4
" C_{2}-friendly" irep projectors
$\mathbf{P}^{(\alpha)} \mathbb{1}=\mathbf{P}^{(\alpha)}\left(\boldsymbol{p}^{0_{2}}+\boldsymbol{p}^{1_{2}}\right)$
$=\mathbf{P}_{0_{2} 0_{2}}^{(\alpha)}+\mathbf{P}_{1_{2} I_{2}}^{(\alpha)}$

$$
\begin{aligned}
& C_{2}{ }^{\kappa}=1 \quad \mathbf{i}_{3}
\end{aligned}
$$

$$
\begin{aligned}
& D_{3} \supset C_{2} 0_{2} 1_{2} \\
& n^{A_{l}}=1 \text {. } \\
& n^{A_{2}}=\quad \cdot 1 \\
& n^{E}=1 \begin{array}{ll}
1 & 1
\end{array}
\end{aligned}
$$

Spectral reduction of non-commutative "Group-table Hamiltonian"

D_{3} Example
2nd Step: Spectral resolution of Class Projector(s) of D_{3}
Correlate D_{3} characters with its subgoup(s) $C_{2}(\mathbf{i})$

$D_{3} \mathrm{~K}=1$	$\mathbf{r}^{l}+\mathbf{r}^{2} \mathbf{i}_{1}+\mathbf{i}_{2}+\mathbf{i}_{3}$		
$\mathbf{P}^{4}{ }^{\prime}=1$	1	1	6
$\mathbb{P}^{42}=1$	1	-1	
$\mathbf{P}^{E}=2$		0	

$\operatorname{Rank} \rho\left(\mathbb{D}_{3}\right)=4$ implies
there will be exactly 4
" C_{2}-friendly" irep projectors
$\mathbf{P}^{(\alpha)} \mathbb{1}=\mathbf{P}^{(\alpha)}\left(\boldsymbol{p}^{0_{2}}+\boldsymbol{p}^{1_{2}}\right)$
$\boldsymbol{\downarrow}=\mathbf{P}_{0_{2} 0_{2}}^{(\alpha)}+\mathbf{P}_{1_{2} 1_{2}}^{(\alpha)}$
$\mathbf{P}^{A_{1}}=\mathbf{P}^{A_{1}} \boldsymbol{p}^{0_{2}}=\mathbf{P}^{A_{l}}\left(\mathbf{1}+\mathbf{i}_{3}\right) / 2=\left(\mathbf{1}+\mathbf{r}^{1}+\mathbf{r}^{2}+\mathbf{i}_{1}+\mathbf{i}_{2}+\mathbf{i}_{3}\right) / 6$
$\mathbb{P}^{A_{2}}=\mathbb{P}^{4_{2}} \boldsymbol{p}^{1_{2}}=\mathbb{P}^{A_{2}}\left(\mathbf{1}-\mathbf{i}_{3}\right) / 2=\left(\mathbf{1}+\mathbf{r}^{1}+\mathbf{r}^{2}-\mathbf{i}_{1}-\mathbf{i}_{2}-\mathbf{i}_{3}\right) / 6$
$\mathbb{P}_{0_{2} 0_{2}}^{E}=\mathbb{P}^{E} \boldsymbol{p}^{0_{2}}=\mathbb{P}^{E}\left(\mathbf{1}+\mathbf{i}_{3}\right) / 2=\left(2 \mathbf{1}-\mathbf{r}^{l}-\mathbf{r}^{2}-\mathbf{i}_{1}-\mathbf{i}_{2}+2 \mathbf{i}_{3}\right) / 6$
$\mathbb{P}_{1_{2} 1_{2}}^{E}=\mathbb{P}^{E} \boldsymbol{p}^{1_{2}}=\mathbb{P}^{E}\left(\mathbf{1}-\mathbf{i}_{3}\right) / 2=\left(2 \mathbf{1}-\mathbf{r}^{l}-\mathbf{r}^{2}+\mathbf{i}_{1}+\mathbf{i}_{2}-2 \mathbf{i}_{3}\right) / 6$

$C_{2}{ }^{\kappa}=1 \quad \mathbf{i}_{3}$		
$\begin{aligned} \boldsymbol{p}^{0_{2}} & \left.=\begin{array}{rr} 1 & 1 \\ \boldsymbol{p}^{1_{2}} & =1 \\ 1 & -1 \end{array}\right] \end{aligned}$		
$D_{3} \supset C_{2} 0_{2} 1_{2}$		
$n^{4 l}=$	1	
$n^{A_{2}}=$		1
$n^{E}=$		

Review:Spectral resolution of \boldsymbol{D}_{3} Center (Class algebra)
 Group theory of equivalence transformations and classes Lagrange theorems
 All-commuting class projectors and D_{3}-invariant character ortho-completeness Subgroup splitting and correlation frequency formula: $f^{(a)}\left(D^{(\alpha)}(G) \downarrow H\right)$
 Group invariant numbers: Centrum, Rank, and Order

2nd-Stage spectral decompositions of global/local D3
Splitting class projectors using subgroup chains $D_{3} \supset C_{2}$ and $D_{3} \supset C_{3}$ Splitting classes

3rd-stage spectral resolution to irreducible representations (ireps) and Hamiltonian eigensolutions Tunneling modes and spectra for $D_{3} \supset C_{2}$ and $D_{3} \supset C_{3}$ local subgroup chains

Spectral reduction of non-commutative "Group-table Hamiltonian"
D_{3} Example
2nd Step: Spectral resolution of Class Projector(s) of D_{3}
Correlate D_{3} characters with its subgoup(s) $C_{2}(\mathbf{i})$

Standing-wave Subroup chain $D_{3} \supset C_{2}\left(\rho_{3}\right)$

Spectral reduction of non-commutative "Group-table Hamiltonian"
D_{3} Example
2nd Step: Spectral resolution of Class Projector(s) of D_{3} Correlate D_{3} characters with its subgoup(s) $C_{2}(\mathbf{i})$ or ELSE $C_{3}(\mathbf{r}) \quad\left(C_{2}\right.$ and C_{3} don't commute)

Spectral reduction of non-commutative "Group-table Hamiltonian"

D_{3} Example
2nd Step: Spectral resolution of Class Projector(s) of D_{3} Correlate D_{3} characters with its subgoup(s) $C_{2}(\mathbf{i})$ or ELSE $C_{3}(\mathbf{r}) \quad\left(C_{2}\right.$ and C_{3} don't commute)

$D_{3} \kappa=\mathbf{1} \mid \mathbf{r}^{l}+\mathbf{r}^{2} \mathbf{i}_{1}+\mathbf{i}_{2}+\mathbf{i}_{3}$	$C_{2} \mathrm{\kappa}=1 \quad \mathrm{i}_{3}$
$\mathbf{P}^{4 /=}$1 1 $1 / 6$	$\begin{array}{rl}\boldsymbol{p}^{0_{2}} & =1 \\ \boldsymbol{p}^{12} & =1 \\ 1 & 1\end{array} \mathbf{- 1}^{1 / 2}$
$\mathbb{P}^{4}=1 \begin{array}{llll}1 & 1 & -1 / 6\end{array}$	
$\mathbf{P}^{E}=2^{2}-100 \mid / 3$	
${ }_{3} \supset C_{2}$ Correlation table	$D_{3} \supset C_{2} 0_{2} 1_{2}$
hows which products of	$n^{4_{1}}=1$
ass projector $\mathbf{P}^{(\alpha)}$ with	$n^{A_{2}=} \cdot 1$
${ }_{2}$-unit $\boldsymbol{1}=\boldsymbol{p}^{0_{2}}+\boldsymbol{p}^{12}$ will	$n^{E}=$

Let:	$C_{3} \mathrm{k}=\mathbf{1} \quad \mathbf{r}^{1} \quad \mathbf{r}^{2}$				
$\varepsilon=\mathrm{e}^{-2 \pi i / 3}$	$p^{03}=$				
	$p^{13}=$	1	ε	ε	*/3
	$p^{23}=$	2	ε	*	

$\operatorname{Rank} \rho\left(\mathbb{D}_{3}\right)=4$ implies
there will be exactly 4
" C_{2}-friendly" irep projectors

$$
\begin{aligned}
& \boldsymbol{1}=\boldsymbol{p}^{0_{2}}+\boldsymbol{p}^{1_{2}} \\
& \mathbf{P}^{A_{1}}=\mathbf{P}_{0_{0} 0_{2}}^{A_{1}} \cdot \\
& \mathbf{P}^{A_{2}}=\mathbf{P}_{0_{2}} \cdot \\
& \mathbf{P}_{2}^{A_{2} I_{2}} \\
& \mathbf{P}^{E}=\mathbf{P}_{0_{2} 0_{2}}^{E} \\
& \mathbf{P}_{1_{2} 1_{2}}^{E}
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{P}^{(\alpha)} \mathbb{1}=\mathbf{P}^{(\alpha)}\left(\boldsymbol{p}^{0_{2}}+\boldsymbol{p}^{1_{2}}\right) \\
& \downarrow=\mathbf{P}_{0_{2} 0_{2}}^{(\alpha)}+\mathbf{P}_{1_{2} 1_{2}}^{(\alpha)} \\
& \mathbf{P}^{A_{l}}=\mathbf{P}^{4}{ }^{4} \boldsymbol{p}^{0_{2}}=\mathbf{P}^{A_{l}}\left(\mathbf{1}+\mathbf{i}_{3}\right) / 2=\left(\mathbf{1}+\mathbf{r}^{l}+\mathbf{r}^{2}+\mathbf{i}_{1}+\mathbf{i}_{2}+\mathbf{i}_{3}\right) / 6 \\
& \mathbb{P}^{A_{2}}=\mathbb{P}^{4_{2}} \boldsymbol{p}^{1_{2}}=\mathbb{P}^{4_{2}}\left(\mathbf{1}-\mathbf{i}_{3}\right) / 2=\left(\mathbf{1}+\mathbf{r}^{1}+\mathbf{r}^{2}-\mathbf{i}_{1}-\mathbf{i}_{2}-\mathbf{i}_{3}\right) / 6 \\
& \mathbf{P}_{0_{2} 0_{2}}^{E}=\mathbb{P}^{E} \boldsymbol{p}^{0_{2}}=\mathbb{P}^{E}\left(\mathbf{1}+\mathbf{i}_{3}\right) / 2=\left(21-\mathbf{r}^{l}-\mathbf{r}^{2}-\mathbf{i}_{1}-\mathbf{i}_{2}+2 \mathbf{i}_{3}\right) / 6 \\
& \mathbf{P}_{1_{2} 1_{2}}^{E}=\mathbb{P}^{E} \boldsymbol{p}^{l_{2}}=\mathbb{P}^{E}\left(\mathbf{1}-\mathbf{i}_{3}\right) / 2=\left(2 \mathbf{1}-\mathbf{r}^{l}-\mathbf{r}^{2}+\mathbf{i}_{1}+\mathbf{i}_{2}-2 \mathbf{i}_{3}\right) / 6
\end{aligned}
$$

2nd-Stage

Spectral reduction of non-commutative "Group-table Hamiltonian"

D_{3} Example
2nd Step: Spectral resolution of Class Projector(s) of D_{3} Correlate D_{3} characters with its subgoup(s) $C_{2}(\mathbf{i})$ or ELSE $C_{3}(\mathbf{r}) \quad\left(C_{2}\right.$ and C_{3} don't commute)

$D_{3} \kappa=\mathbf{1} \quad \mathbf{r}^{1}+\mathbf{r}^{2} \mathbf{i}_{1}+\mathbf{i}_{2}+\mathbf{i}_{3}$	$C_{2} \mathrm{~K}=1 \quad \mathrm{i}_{3}$
$\mathbf{P}^{4_{l}}=1 \begin{array}{lll}1 & 1 & 1\end{array} 6$	$\left.\begin{array}{rl}\boldsymbol{p}^{0_{2}}= & =1 \\ \boldsymbol{p}^{12} & =1 \\ 1 & -1\end{array}\right]^{1 / 2}$
$\mathbb{P}^{42}=1 \begin{array}{lll}1 & 1 & -1 / 6\end{array}$	
$\left.\mathbb{P}^{E}=\begin{array}{llll}2 & -1 & 0\end{array}\right]$	
${ }_{3} \supset C_{2}$ Correlation table	$D_{3} \supset C_{2} 0_{2} \quad 12$
hows which products of	$n^{A_{l}}=1$
lass projector $\mathbf{P}^{(\alpha)}$ with	$n^{A_{2}}=$
${ }_{2}$-unit $1=p^{0_{2}}+p^{1_{2}}$ will	$n^{E}=1$

Let:
$\varepsilon=\mathrm{e}^{-2 \pi i / 3}$

$C_{3}{ }^{\text {K }}$		$\mathbf{r}^{\text {I }}$	
$p^{0_{3}}=$	1	1	1
$p^{13}=$	1	ε	¢
$p^{23}=$	1	$\varepsilon *$	ε

Same for Correlation table: $\boldsymbol{D}_{3} \supset C_{3} 0_{3} 1_{3} 2_{3}$ make $\left.\operatorname{IRREDUCIBLE} \mathbf{P}_{n, n}^{(\alpha)}\right)$

$$
\operatorname{Rank} \rho\left(\mathbb{D}_{3}\right)=4 \text { implies }
$$

there will be exactly 4
" C_{2}-friendly" irep projectors

$$
\begin{array}{r}
\boldsymbol{1}=\boldsymbol{p}^{0_{2}}+\boldsymbol{p}^{1_{2}} \\
\mathbf{P}^{A_{1}}=\mathbf{P}_{0_{0}}^{A_{1}} \\
\mathbf{0}_{2} \\
\mathbb{P}^{4_{2}}= \\
\cdot \\
\mathbf{P}^{E}=\mathbf{P}_{1_{2} 1_{2}}^{A_{2}} \\
\mathbf{P}_{0_{2} 0_{2}}^{E}
\end{array} \mathbf{P}_{1_{2} 1_{2}}^{E}
$$

$$
\begin{aligned}
& \mathbf{P}^{(\alpha)} \mathbb{1}=\mathbf{P}^{(\alpha)}\left(\boldsymbol{p}^{0_{2}}+\boldsymbol{p}^{1_{2}}\right) \\
& \boldsymbol{L}=\mathbf{P}_{0_{2} 0_{2}}^{(\alpha)}+\mathbf{P}_{1_{2} l_{2}}^{(\alpha)} \\
& \mathbf{P}^{A_{l}}=\mathbf{P}^{A_{1}} \boldsymbol{p}^{0_{2}}=\mathbf{P}^{A_{l}}\left(\mathbf{1}+\mathbf{i}_{3}\right) / 2=\left(\mathbf{1}+\mathbf{r}^{1}+\mathbf{r}^{2}+\mathbf{i}_{1}+\mathbf{i}_{2}+\mathbf{i}_{3}\right) / 6 \\
& \mathbb{P}^{A_{2}}=\mathbb{P}^{A_{2}} \boldsymbol{p}^{1_{2}}=\mathbb{P}^{A_{2}}\left(\mathbf{1}-\mathbf{i}_{3}\right) / 2=\left(\mathbf{1}+\mathbf{r}^{1}+\mathbf{r}^{2}-\mathbf{i}_{1}-\mathbf{i}_{2}-\mathbf{i}_{3}\right) / 6 \\
& \mathbf{P}_{0_{2} 0_{2}}^{E}=\mathbf{P}^{E} \boldsymbol{p}^{0_{2}}=\mathbb{P}^{E}\left(\mathbf{1}+\mathbf{i}_{3}\right) / 2=\left(2 \mathbf{1}-\mathbf{r}^{l}-\mathbf{r}^{2}-\mathbf{i}_{1}-\mathbf{i}_{2}+2 \mathbf{i}_{3}\right) / 6 \\
& \mathbf{P}_{1_{2} 1_{2}}^{E}=\mathbb{P}^{E} \boldsymbol{p}^{1_{2}}=\mathbb{P}^{E}\left(\mathbf{1}-\mathbf{i}_{3}\right) / 2=\left(2 \mathbf{1}-\mathbf{r}^{l}-\mathbf{r}^{2}+\mathbf{i}_{1}+\mathbf{i}_{2}-2 \mathbf{i}_{3}\right) / 6
\end{aligned}
$$

2nd-Stage

Spectral reduction of non-commutative "Group-table Hamiltonian"

D_{3} Example
2nd Step: Spectral resolution of Class Projector(s) of D_{3} Correlate D_{3} characters with its subgoup(s) $C_{2}(\mathbf{i})$ or ELSE $C_{3}(\mathbf{r}) \quad\left(C_{2}\right.$ and C_{3} don't commute)

$D_{3} \kappa=\mathbf{1} \mathbf{r}^{l}+\mathbf{r}^{2} \mathbf{i}_{1}+\mathbf{i}_{2}+\mathbf{i}_{3}$	$C_{2}{ }^{\mathrm{K}=1} \quad \mathrm{i}_{3}$
$\mathbf{P}^{4_{l}}=1$1 1 1 6	$\left.\left.\begin{aligned} & \boldsymbol{p}^{0_{2}}=1 \\ & \boldsymbol{p}^{1_{2}}=1 \\ & \hline \end{aligned}\right\|^{1 / 2}\right\|^{2}$
$\mathbb{P}^{42}=1 \begin{array}{lll}1 & 1 & -1 / 6\end{array}$	
$\mathbb{P}^{E}=2^{2}-1001 / 3$	
${ }_{3} \supset C_{2}$ Correlation table	$D_{3} \supset C_{2} 0_{2} \quad 12$
hows which products of	$n^{A_{l}}=1$
lass projector $\mathbf{P}^{(\alpha)}$ with	$n^{A_{2}=} \cdot 1$
2 -unit $1=p^{0_{2}}+p^{1_{2}}$ will	$n^{E}=1$

Let:
$\varepsilon=\mathrm{e}^{-2 \pi i / 3}$

$C_{3}{ }^{\text {K }}$		$\mathbf{r}^{\text {I }}$	
$p^{0_{3}}=$	1	1	1
$p^{13}=$	1	ε	¢
$p^{23}=$	1	$\varepsilon *$	ε

Same for Correlation table: $\boldsymbol{D}_{3} \supset C_{3} 0_{3} 1_{3} 2_{3}$ make $\left.\operatorname{IRREDUCIBLE} \mathbf{P}_{n, n}^{(\alpha)}\right)$

Rank $\rho\left(\mathbb{D}_{3}\right)=4$ implies

there will be exactly 4
" C_{2}-friendly" irep projectors

$$
\begin{aligned}
& \mathbf{P}^{(\alpha)} \mathbb{1}=\mathbf{P}^{(\alpha)}\left(\boldsymbol{p}^{0_{2}}+\boldsymbol{p}^{1_{2}}\right) \\
& \boldsymbol{L}=\mathbf{P}_{0_{2} 0_{2}}^{(\alpha)}+\mathbf{P}_{1_{2} l_{2}}^{(\alpha)} \\
& \mathbf{P}^{A_{l}}=\mathbf{P}^{A_{1}} \boldsymbol{p}^{0_{2}}=\mathbf{P}^{A_{l}}\left(\mathbf{1}+\mathbf{i}_{3}\right) / 2=\left(\mathbf{1}+\mathbf{r}^{1}+\mathbf{r}^{2}+\mathbf{i}_{1}+\mathbf{i}_{2}+\mathbf{i}_{3}\right) / 6 \\
& \mathbb{P}^{A_{2}}=\mathbb{P}^{A_{2}} \boldsymbol{p}^{1_{2}}=\mathbb{P}^{A_{2}}\left(\mathbf{1}-\mathbf{i}_{3}\right) / 2=\left(\mathbf{1}+\mathbf{r}^{1}+\mathbf{r}^{2}-\mathbf{i}_{1}-\mathbf{i}_{2}-\mathbf{i}_{3}\right) / 6 \\
& \mathbf{P}_{0_{2} 0_{2}}^{E}=\mathbb{P}^{E} \boldsymbol{p}^{0_{2}}=\mathbb{P}^{E}\left(\mathbf{1}+\mathbf{i}_{3}\right) / 2=\left(2 \mathbf{1}-\mathbf{r}^{1}-\mathbf{r}^{2}-\mathbf{i}_{1}-\mathbf{i}_{2}+2 \mathbf{i}_{3}\right) / 6 \\
& \mathbf{P}_{1_{2} 1_{2}}^{E}=\mathbb{P}^{E} \boldsymbol{p}^{1 / 2}=\mathbb{P}^{E}\left(\mathbf{1}-\mathbf{i}_{3}\right) / 2=\left(2 \mathbf{1}-\mathbf{r}^{1}-\mathbf{r}^{2}+\mathbf{i}_{1}+\mathbf{i}_{2}-2 \mathbf{i}_{3}\right) / 6
\end{aligned}
$$

2nd-Stage

Spectral reduction of non-commutative "Group-table Hamiltonian"

D_{3} Example
2nd Step: Spectral resolution of Class Projector(s) of D_{3}
Correlate D_{3} characters with its subgoup(s) $C_{2}(\mathbf{i})$ or ELSE $C_{3}(\mathbf{r}) \quad\left(C_{2}\right.$ and C_{3} don't commute)

$$
\begin{aligned}
\boldsymbol{D}_{3} \kappa & =\mathbf{1}
\end{aligned} \mathbf{r}^{1}+\mathbf{r}^{2} \mathbf{i}_{1}+\mathbf{i}_{2}+\mathbf{i}_{3},
$$

$D_{3} \supset C_{2}$ Correlation table shows which products of class projector $\mathbf{P}^{(\alpha)}$ with C_{2}-unit $1=\boldsymbol{p}^{0_{2}}+\boldsymbol{p}^{1_{2}}$ will make $\left.\operatorname{IRREDUCIBLE} \mathbf{P}_{n, n}^{(\alpha)}\right)$
$\operatorname{Rank} \rho\left(\mathbb{D}_{3}\right)=4$ implies
there will be exactly 4
" C_{2}-friendly" irep projectors

$$
\begin{aligned}
& \mathbf{P}^{(\alpha)} \mathbb{1}=\mathbf{P}^{(\alpha)}\left(\boldsymbol{p}^{0_{2}}+\boldsymbol{p}^{1_{2}}\right) \\
& \downarrow=\mathbf{P}_{0_{2} 0_{2}}^{(\alpha)}+\mathbf{P}_{1_{2} 1_{2}}^{(\alpha)} \\
& \mathbf{P}^{A_{l}}=\mathbf{P}^{A_{1}} \boldsymbol{p}^{0_{2}}=\mathbf{P}^{A_{l}}\left(\mathbf{1}+\mathbf{i}_{3}\right) / 2=\left(\mathbf{1}+\mathbf{r}^{1}+\mathbf{r}^{2}+\mathbf{i}_{1}+\mathbf{i}_{2}+\mathbf{i}_{3}\right) / 6 \\
& \mathbb{P}^{A_{2}}=\mathbb{P}^{A_{2}} \boldsymbol{p}^{1_{2}}=\mathbb{P}^{A_{2}}\left(\mathbf{1}-\mathbf{i}_{3}\right) / 2=\left(\mathbf{1}+\mathbf{r}^{1}+\mathbf{r}^{2}-\mathbf{i}_{1}-\mathbf{i}_{2}-\mathbf{i}_{3}\right) / 6 \\
& \mathbf{P}_{0_{2} 0_{2}}^{E}=\mathbb{P}^{E} \boldsymbol{p}^{0_{2}}=\mathbb{P}^{E}\left(\mathbf{1}+\mathbf{i}_{3}\right) / 2=\left(2 \mathbf{1}-\mathbf{r}^{1}-\mathbf{r}^{2}-\mathbf{i}_{1}-\mathbf{i}_{2}+2 \mathbf{i}_{3}\right) / 6 \\
& \mathbf{P}_{1_{2} 1_{2}}^{E}=\mathbb{P}^{E} \boldsymbol{p}^{1 / 2}=\mathbb{P}^{E}\left(\mathbf{1}-\mathbf{i}_{3}\right) / 2=\left(2 \mathbf{1}-\mathbf{r}^{1}-\mathbf{r}^{2}+\mathbf{i}_{1}+\mathbf{i}_{2}-2 \mathbf{i}_{3}\right) / 6
\end{aligned}
$$

Let:
$\varepsilon=\mathrm{e}^{-2 \pi i / 3}$

		\mathbf{r}^{1}		
$p^{0_{3}}$	1	1		
p^{13}	1	ε		
p^{23}		ε		

Same for Correlation table: $\boldsymbol{D}_{3} \supset C_{3} 0_{3} 1_{3} 2_{3}$

$$
\begin{aligned}
& n^{A l}= \\
& n^{A 2}= \\
& n^{E}= \\
& n^{1} \\
& = \\
& 1 \\
& \cdot \\
& \\
& \hline
\end{aligned}
$$

$\operatorname{Rank} \rho\left(\boldsymbol{D}_{\mathbf{3}}\right)=4$ implies
there will be exactly 4
" C_{3}-friendly" irreducible projectors

$$
\mathbf{P}^{(\alpha)} \mathbb{1}=\mathbf{P}^{(\alpha)}\left(p^{0_{3}}+\boldsymbol{p}^{1_{3}}+p^{2_{3}}\right)
$$

$$
=\quad \mathbf{P}_{0_{2} 0_{2}}^{(\alpha)}+\mathbf{P}_{1_{3} l_{3}}^{(\alpha)}+\mathbf{P}_{2_{3} 2_{3}}^{(\alpha)}
$$

2nd-Stage

Spectral reduction of non-commutative "Group-table Hamiltonian"

D_{3} Example
2nd Step: Spectral resolution of Class Projector(s) of D_{3} Correlate D_{3} characters with its subgoup(s) $C_{2}(\mathbf{i})$ or ELSE $C_{3}(\mathbf{r}) \quad\left(C_{2}\right.$ and C_{3} don't commute)

$$
\begin{aligned}
& \boldsymbol{C}_{2}=\mathbf{1} \\
& \mathbf{i}_{3} \\
& \boldsymbol{p}^{0_{2}}=1 \\
& \boldsymbol{p}^{1_{2}}=1 \\
& \boldsymbol{x}^{1}-1 / 2
\end{aligned}
$$

$$
\begin{aligned}
& C_{3} \kappa=\mathbf{1} \\
& \mathbf{r}^{1} \\
& \mathbf{p}^{0_{3}}=\begin{array}{|l|l|}
1 & 1 \\
1 & 1
\end{array}
\end{aligned}
$$

$$
\boldsymbol{p}^{1_{3}=} 1 \quad \varepsilon \quad \varepsilon^{* / 3}
$$

$$
\boldsymbol{p}^{23}=1^{*} \quad \varepsilon^{*} \varepsilon
$$

$D_{3} \supset C_{2}$ Correlation table shows which products of class projector $\mathbf{P}^{(\alpha)}$ with C_{2}-unit $1=\boldsymbol{p}^{0_{2}}+\boldsymbol{p}^{1_{2}}$ will make $\left.\operatorname{IRREDUCIBLE} \mathbf{P}_{n, n}^{(\alpha)}\right)$

$\operatorname{Rank} \rho\left(\mathbb{D}_{3}\right)=4$ implies

there will be exactly 4 " C_{2}-friendly" irep projectors

$$
\mathbf{P}^{(\alpha)} \mathbb{1}=\mathbf{P}^{(\alpha)}\left(\boldsymbol{p}^{0_{2}}+\boldsymbol{p}^{1_{2}}\right)
$$

$\boldsymbol{D}_{\mathbf{3}} \supset \boldsymbol{C}_{2} \mathrm{O}_{2} 1_{2}$
$n^{A_{l}=}$
$n^{A_{2}=}$

$n^{E}=$| 1 | \cdot |
| :--- | :--- |
| \cdot | 1 |
| 1 | 1 |

Same for Correlation table: $\mathbb{D}_{3} \supset C_{3} 0_{3} 1_{3} 2_{3}$

$$
\begin{aligned}
& n^{A l}= \\
& n^{A 2}= \\
& n^{E}=
\end{aligned} \begin{array}{lll}
1 & \cdot & \cdot \\
1 & \cdot & \cdot \\
\cdot & 1 & 1
\end{array}
$$

$$
\begin{gathered}
\boldsymbol{1}=\boldsymbol{p}^{0_{2}}+\boldsymbol{p}^{1_{2}} \\
\mathbf{P}^{4_{1}}=\mathbf{P}_{0_{0} 0_{2} 0_{2}} \cdot \\
\mathbb{P}^{4_{2}=} \\
\mathbf{P}^{E}=\mathbf{P}_{12 \Gamma_{2}}^{A_{2}}=\mathbf{P}_{0_{2} 0_{2}}^{E} \mathbf{P}_{1_{2} 1_{2}}^{E_{2}}
\end{gathered}
$$

$\operatorname{Rank} \rho\left(D_{3}\right)=4$ implies
there will be exactly 4 " C_{3}-friendly" irreducible projectors

$$
\downarrow=\mathbf{P}_{0_{2} 0_{2}}^{(\alpha)}+\mathbf{P}_{1_{2} L_{2}}^{(\alpha)}
$$

$$
\begin{aligned}
& \mathbf{P}^{(\alpha)} \mathbb{1}=\mathbf{P}^{(\alpha)}\left(\boldsymbol{p}^{0_{3}}+\boldsymbol{p}^{1_{3}}+\boldsymbol{p}^{2_{3}}\right) \\
& \boldsymbol{V}=\mathbf{P}_{0_{2} 0_{2}}^{(\alpha)}+\mathbf{P}_{1_{3} 1_{3}}^{(\alpha)}+\mathbf{P}_{2_{3} 2_{3}}^{(\alpha)} \\
& \mathbf{P}_{0_{3} 0_{3}}^{A_{l}}=\mathbf{P}^{4}{ }^{4} \boldsymbol{p}^{0_{3}}=\mathbf{P}^{4_{l}}\left(\mathbf{1}+\mathbf{r}^{l}+\mathbf{r}^{2}\right) / 3=\left(\mathbf{1}+\mathbf{r}^{l}+\mathbf{r}^{2}+\mathbf{i}_{1}+\mathbf{i}_{2}+\mathbf{i}_{3}\right) / 6 \\
& \mathbb{O}_{0_{3} 0_{3}}^{A_{2}}=\mathbb{P}^{4_{2}} \boldsymbol{p}^{0_{3}}=\mathbb{P}^{4_{2}}\left(\mathbf{1}+\mathbf{r}^{1}+\mathbf{r}^{2}\right) / 3=\left(\mathbf{1}+\mathbf{r}^{1}+\mathbf{r}^{2}-\mathbf{i}_{1}-\mathbf{i}_{2}-\mathbf{i}_{3}\right) / 6 \\
& \mathbb{1}_{1_{3}^{1}}^{E_{3}}=\mathbb{P}^{E} \boldsymbol{p}^{l_{3}}=\mathbb{P}^{E}\left(\mathbf{1}+\varepsilon \mathbf{r}^{1}+\varepsilon^{*} \mathbf{r}^{2}\right) / 3=\left(\mathbf{1}+\varepsilon \mathbf{r}^{1}+\varepsilon^{*} \mathbf{r}^{2}\right) / 3 \\
& \mathbf{P}_{2_{3}{ }^{2}}^{E}=\mathbb{P}^{E} \boldsymbol{p}^{2_{3}}=\mathbb{P}^{E}\left(\mathbf{1}+\varepsilon^{*} \mathbf{r}^{1}+\varepsilon \mathbf{r}^{2}\right) / 3=\left(\mathbf{1}+\varepsilon^{*} \mathbf{r}^{1}+\varepsilon \mathbf{r}^{2}\right) / 3
\end{aligned}
$$

$$
\begin{aligned}
& D_{3} \kappa=\mathbf{1} \quad \mathbf{r}^{1}+\mathbf{r}^{2} \mathbf{i}_{1}+\mathbf{i}_{2}+\mathbf{i}_{3}
\end{aligned}
$$

Review:Spectral resolution of \boldsymbol{D}_{3} Center (Class algebra)
Group theory of equivalence transformations and classes
Lagrange theorems
All-commuting class projectors and D_{3}-invariant character ortho-completeness
Subgroup splitting and correlation frequency formula: $f^{(a)}\left(D^{(\alpha)}(G) \downarrow H\right)$ Atomic ℓ-level or $2 \ell+1$-multiplet splitting
D_{3} examples for $\ell=1-6$
Group invariant numbers: Centrum, Rank, and Order
2nd-Stage spectral decompositions of global/local D3
Splitting class projectors using subgroup chains $D_{3} \supset C_{2}$ and $D_{3} \supset C_{3}$ Splitting classes

3rd-stage spectral resolution to irreducible representations (ireps) and Hamiltonian eigensolutions Tunneling modes and spectra for $D_{3} \supset C_{2}$ and $D_{3} \supset C_{3}$ local subgroup chains

2nd Step: (contd.)While some class projectors $\mathbb{P}^{(\alpha)}$ split in two, so ALSO DO some classes κ_{k}

$\operatorname{Rank} \rho\left(\boldsymbol{D}_{\mathbf{3}}\right)=4$ idempotents $\downarrow \mathbf{P}^{(\alpha)}$	
$\mathbf{P}_{0_{2} 0_{2}}^{A_{l}}=\mathbf{P}^{4} \boldsymbol{p}^{0_{2}}=\mathbf{P}^{4 l}\left(\mathbf{1}+\mathbf{i}_{3}\right) / 2=\left(1+\mathbf{r}^{1}+\mathbf{r}^{2}+\mathbf{i}_{1}+\mathbf{i}_{2}+\dot{\mathbf{i}}_{3}\right) / 6$	
$\mathbb{P}_{0_{0} 0_{2}}^{E}=\mathbb{P}^{E} \boldsymbol{p}^{0_{2}}=\mathbb{P}^{E}\left(\mathbf{1}+\mathbf{i}_{3}\right) / 2=\left(21-\mathbf{r}^{1}-\mathbf{r}^{2}-\mathbf{i}_{1}-\mathbf{i}_{2}+2 \mathbf{i}_{3}\right)^{\prime} / 6$	
$\mathbb{P}_{1_{2}^{1}}^{E_{2}^{2}}=\mathbf{P}^{E} \boldsymbol{p}^{1_{2}}=\mathbf{P}^{E}\left(\mathbf{1}-\mathbf{i}_{3}\right) / 2=\left(21-\mathbf{r}^{1}-\mathbf{r}^{2}+\mathbf{i}_{1}+\mathbf{i}_{-2}-2 \mathbf{i}_{3}\right) / 6$	
splits in	

4 different idempotent
$\downarrow \mathbf{P}_{n, n}^{(\alpha)}$

$$
\mathbf{P}_{0_{3} 0_{3}}^{A_{l}}=\mathbf{P}^{A_{1}} \mathbf{p}^{0_{3}}=\mathbf{P}^{A_{1}}\left(\mathbf{1}+\mathbf{r}^{1}+\mathbf{r}^{2}\right) / 3=\left(1+\sqrt{\mathbf{r}^{1}+\mathbf{r}^{2}}+\mathbf{i}_{1}+\mathbf{i}_{2}+\mathbf{i}_{3}\right) / 6
$$

$$
\mathbb{P}_{0_{3} O_{3}}^{\alpha_{3}}=\mathbb{P}^{A_{2}} \boldsymbol{p}^{0_{3}}=\mathbb{P}^{A_{2}}\left(\mathbf{1}+\mathbf{r}^{1}+\mathbf{r}^{2}\right) / 3=\left(\mathbf{1}+\mathbf{r}^{1}+\mathbf{r}^{2}-\mathbf{i}_{1}-\mathbf{i}_{2}-\mathbf{i}_{3}\right) / 6
$$

$$
\mathbf{P}_{1_{3} 1_{3}}^{E}=\mathbb{P}^{E} \boldsymbol{p}^{1_{3}}=\mathbb{P}^{E}\left(\mathbf{1}+\varepsilon \mathbf{r}^{1}+\varepsilon^{*} \mathbf{r}^{2}\right) / 3=\left(\mathbf{1}+\varepsilon \mathbf{r}^{1}+\varepsilon^{*} \mathbf{r}^{2}\right) / 3 e^{-2 \pi i / 3}
$$

$$
\mathbb{R}_{3^{2}}^{E}=\mathbf{P}^{E} \boldsymbol{p}^{23}=\mathbb{P}^{E}\left(\mathbf{1}+\varepsilon^{*} \mathbf{r}^{1}+\varepsilon \mathbf{r}^{2}\right) / 3=\left(\mathbf{1}+\varepsilon^{*} \mathbf{r}^{1}+\varepsilon \mathbf{r}^{2}\right) / 3
$$

\mathbb{P}^{E} splits into $\mathbb{P}^{E}=\mathbf{P}_{1_{3} 3_{3}}^{E}+\mathbf{P}_{2_{3}{ }^{2},}^{E}$
class $K_{\mathbf{r}}$ splits into $\mathcal{K}_{\mathbf{r}}$ and $K_{\mathbf{r} 2}$

2nd-Stage

2nd Step: (contd.) While some class projectors $\mathbb{P}^{(\alpha)}$ split in two, so ALSO DO some classes κ_{k}
Rank $\rho\left(\boldsymbol{D}_{3}\right)=4$
idempotents
$\downarrow \mathbf{P}^{(\alpha)}$ class $\mathrm{K}_{\mathbf{i}}$ splits into \mathbf{k}_{12} and $\mathbf{K}_{\mathbf{i}_{3}}$

4 different idempotent

$\downarrow \mathbf{P}_{n, n}^{(\alpha)}$
$\mathbf{P}_{0_{3} 0_{3}}^{A_{1}}=\mathbf{P}^{A_{1}} \boldsymbol{p}^{0_{3}}=\mathbf{P}^{A_{l}}\left(\mathbf{1}+\mathbf{r}^{1}+\mathbf{r}^{2}\right) / 3=\left(1+\sqrt[\mathbf{r}^{1}]{ }+\mathbf{r}^{2}+\mathbf{i}_{1}+\mathbf{i}_{2}+\mathbf{i}_{3}\right) / 6$
$\mathbb{P}_{0_{3} 0_{3}}^{A_{2}}=\mathbb{P}^{4_{2}} \boldsymbol{p}^{0_{3}}=\mathbb{P}^{A_{2}}\left(\mathbf{1}+\mathbf{r}^{1}+\mathbf{r}^{2}\right) / 3=\left(1+\mathbf{r}^{1}+\mathbf{r}^{2}-\mathbf{i}_{1}-\mathbf{i}_{2}-\mathbf{i}_{3}\right) / 6$
$\mathbb{P}_{1_{3}}^{E}=\mathbb{P}^{E} \boldsymbol{p}^{13}=\mathbb{P}^{E}\left(\mathbf{1}+\varepsilon \mathbf{r}^{1}+\varepsilon^{*} \mathbf{r}^{2}\right) / 3=\left(\mathbf{1}+\varepsilon \mathbf{r}^{1}+\varepsilon^{*} \mathbf{r}^{2}\right) / 3 \quad \varepsilon=\mathrm{e}^{-2 \pi i / 3}$
$\mathbf{P}_{3_{2}^{2}}^{E}=\mathbb{P}^{E} \boldsymbol{p}^{23}=\mathbb{P}^{E}\left(\mathbf{1}+\varepsilon^{*} \mathbf{r}^{1}+\varepsilon \mathbf{r}^{2}\right) / 3=\left(\mathbf{1}+\varepsilon^{*} \mathbf{r}+\varepsilon \mathbf{r}^{2}\right) / 3 \quad \varepsilon=\mathrm{e}^{-2 \pi i / 3}$

Centrum $K\left(D_{3}\right)=3$ idempotents $\mathbb{P}^{(\alpha)}$

$$
D_{3} \kappa=\mathbf{1} \mathbf{r}^{l}+\mathbf{r}^{2} \mathbf{i}_{1}+\mathbf{i}_{2}+\mathbf{i}_{3}
$$

Review:Spectral resolution of \boldsymbol{D}_{3} Center (Class algebra)
Group theory of equivalence transformations and classes
Lagrange theorems
All-commuting class projectors and D_{3}-invariant character ortho-completeness
Subgroup splitting and correlation frequency formula: $f^{(a)}\left(D^{(\alpha)}(G) \downarrow H\right)$ Group invariant numbers: Centrum, Rank, and Order

2nd-Stage spectral decompositions of global/local D_{3}
Splitting class projectors using subgroup chains $D_{3} \supset C_{2}$ and $D_{3} \supset C_{3}$
Splitting classes
3rd-stage spectral resolution to irreducible representations (ireps) and Hamiltonian eigensolutions Tunneling modes and spectra for $D_{3} \supset C_{2}$ and $D_{3} \supset C_{3}$ local subgroup chains

$\text { Centrum } \mathrm{K}\left(\boldsymbol{D}_{\mathbf{3}}\right)=3$	$D_{3} \kappa=1 \quad \mathbf{r}^{1}+\mathbf{r}^{2} \mathbf{i}+\mathbf{i}^{\prime}$
idempotents $p^{(\alpha)}$	$\begin{gathered} \boldsymbol{D}_{\mathbf{3}} \mathrm{K}=\mathbf{1} \mathbf{1} \mathbf{r}^{\mathbf{r}}+\mathbf{r}^{-} \mathbf{1}_{1}^{+} \\ \mathbf{P}^{4}=1 \end{gathered}$
	$\mathbb{P}^{4_{2}}=1 \begin{array}{lll}1 & 1 & -1\end{array}$
	$\mathbb{P}^{E}=2 \begin{array}{lll}2 & -1 & 0\end{array}$

3rd and Final Step: Spectral resolution of $A L L 6$ of D_{3} :

Centrum $K\left(\boldsymbol{D}_{\mathbf{3}}\right)=3$
idempotents $\mathbf{P}^{(\alpha)}$

$D_{3} \mathrm{~K}=1$	$\mathbf{r}^{1}+\mathbf{r}^{2} \mathbf{i}_{1}+\mathbf{i}_{2}+\mathbf{i}_{3}$		
$\mathbf{P}^{4}=1$	1	1	
$2=1$	1	-	
$\mathrm{P}^{E}=2$	-1	0	

3rd and Final Step:
Spectral resolution of $A L L 6$ of D_{3} :
The old 'g-equals-1-times-g-times-1' Trick

$$
\mathbf{g}=\mathbf{1} \cdot \mathbf{g} \cdot \mathbf{1}=\left(\mathbf{P}_{x, x}^{A_{1}}+\mathbf{P}_{y, y}^{A_{2}}+\mathbf{P}_{x, x}^{E}+\mathbf{P}_{y, y}^{E}\right) \cdot \mathbf{g} \cdot\left(\mathbf{P}_{x, x}^{A_{1}}+\mathbf{P}_{y, y}^{A_{2}}+\mathbf{P}_{x, x}^{E}+\mathbf{P}_{y, y}^{E}\right)
$$

Centrum $\mathrm{K}\left(\boldsymbol{D}_{\mathbf{3}}\right)=3$
idempotents
$\mathbf{P}^{(\alpha)}$

$$
\begin{aligned}
& D_{3} \kappa=1 \quad \mathbf{r}^{1}+\mathbf{r}^{2} \mathbf{i}_{1}+\mathbf{i}_{2}+\dot{i}_{3} \\
& \begin{array}{l}
\mathbf{P}^{4_{1}}=1 \begin{array}{lll|l}
1 & 1 & 1 & 6 \\
\mathbf{P}^{4_{2}}= & 1 & 1 & -1 / 6 \\
\mathbf{P}^{E} & =2 & -1 & 0
\end{array} / 3
\end{array}
\end{aligned}
$$

3rd and Final Step:
Spectral resolution of $A L L 6$ of D_{3} :
The old 'g-equals-1-times-g-times-1' Trick

$$
\begin{aligned}
& \mathbf{g}=\mathbf{1} \cdot \mathbf{g} \cdot \mathbf{1}=\left(\mathbf{P}_{x, x}^{A_{1}}+\mathbf{P}_{y, y}^{A_{2}}+\mathbf{P}_{x, x}^{E}+\mathbf{P}_{y, y}^{E}\right) \cdot \mathbf{g} \cdot\left(\mathbf{P}_{x, x}^{A_{1}}+\mathbf{P}_{y, y}^{A_{2}}+\mathbf{P}_{x, x}^{E}+\mathbf{P}_{y, y}^{E}\right) \\
& \mathbf{g}=\mathbf{1} \cdot \mathbf{g} \cdot \mathbf{1}=\mathbf{P}_{x, x}^{A_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{x, x}^{A_{1}}+\quad 0 \quad+\quad 0 \quad+\quad 0 \\
& +0+\mathbf{P}_{y, y}^{A_{2}} \cdot \mathbf{g} \cdot \mathbf{P}_{y, y}^{A_{2}}+0+0 \\
& +0 \quad+\quad 0 \quad+\mathbf{P}_{x, x}^{E} \cdot \mathbf{g} \cdot \mathbf{P}_{x, x}^{E}+\mathbf{P}_{x, x}^{E} \cdot \mathbf{g} \cdot \mathbf{P}_{y, y}^{E} \\
& +0+0 \quad+\mathbf{P}_{y, y}^{E} \cdot \mathbf{g} \cdot \mathbf{P}_{x, x}^{E}+\mathbf{P}_{y, y}^{E} \cdot \mathbf{g} \cdot \mathbf{P}_{y, y}^{E}
\end{aligned}
$$

idempotents
$\mathbf{P}^{(\alpha)}$

$$
\begin{aligned}
& D_{3} \kappa=\mathbf{1} \quad \mathbf{r}^{1}+\mathbf{r}^{2} \quad \mathbf{i}_{1}+\mathbf{i}_{2}+\mathbf{i}_{3}
\end{aligned}
$$

3 rd and Final Step:

$$
\begin{aligned}
& \operatorname{Rank} \rho\left(\boldsymbol{D}_{\mathbf{3}}\right)=4 \\
& \text { idempotents } \\
& \mathbf{P}_{x, x}^{A_{l}}=\mathbf{P}_{0_{2} 0_{2}}^{A_{l}}=\mathbf{P}^{A_{l}} \boldsymbol{p}^{0_{2}}=\mathbf{P}^{A_{l}}\left(\mathbf{\mathbf { P } _ { n , n } ^ { (\alpha) }} \mathbf{i}_{3}\right) / 2=\left(1+\mathbf{r}^{1}+\mathbf{r}^{2}+\mathbf{i}_{1}+\mathbf{i}_{2}+\mathbf{i}_{3}\right) / 6 \\
& \mathbb{P}_{y, y}^{A_{2}}=\mathbb{P}_{1_{2} \mathrm{I}_{2}}^{\mathrm{I}_{2}}=\mathbb{P}^{A_{2}} \boldsymbol{p}^{1_{2}}=\mathbb{P}^{A_{2}}\left(\mathbf{1}-\mathbf{i}_{3}\right) / 2=\left(\mathbf{1}+\mathbf{r}^{1}+\mathbf{r}^{2}-\mathbf{i}_{1}-\mathbf{i}_{2}-\mathbf{i}_{3}\right) / 6 \\
& \mathbb{P}_{x, x}^{E}=\mathbb{P}_{0_{0} 0_{2}}^{E}=\mathbb{P}^{E} \boldsymbol{p}^{0_{2}}=\mathbb{P}^{E}\left(\mathbf{1}+\mathbf{i}_{3}\right) / 2=\left(2 \mathbf{1}-\mathbf{r}^{1}-\mathbf{r}^{2}-\mathbf{i}_{1}-\mathbf{i}_{2}+2 \mathbf{i}_{3}\right) / 6 \\
& \mathbf{P}_{y, y}^{E}=\mathbf{P}_{1_{2} 1_{2}}^{E}=\mathbb{P}^{E} \boldsymbol{p}^{12}=\mathbb{P}^{E}\left(\mathbf{1}-\mathbf{i}_{3}\right) / 2=\left(21-\mathbf{r}^{I}-\mathbf{r}^{2}+\mathbf{i}_{1}+\mathbf{i}_{2}-2 \mathbf{i}_{3}\right) / 6
\end{aligned}
$$

Spectral resolution of ALL 6 of D_{3} :

The old ' g -equals-1-times-g-times-1' Trick
where:

$$
\begin{aligned}
\mathbf{g}=\mathbf{1} \cdot \mathbf{g} \cdot \mathbf{1}= & \left(\mathbf{P}_{x, x}^{A_{1}}+\mathbf{P}_{y, y}^{A_{2}}+\mathbf{P}_{x, x}^{E}+\mathbf{P}_{y, y}^{E}\right) \cdot \mathbf{g} \cdot\left(\mathbf{P}_{x, x}^{A_{1}}+\mathbf{P}_{y, y}^{A_{2}}+\mathbf{P}_{x, x}^{E}+\mathbf{P}_{y, y}^{E}\right) \\
\mathbf{g}=\mathbf{1} \cdot \mathbf{g} \cdot \mathbf{1}= & \mathbf{P}_{x, x}^{A_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{x, x}^{A_{1}}+\quad 0 \quad+\quad 0+\mathbf{P}_{y, y}^{A_{2}} \cdot \mathbf{g} \cdot \mathbf{P}_{y, y}^{A_{2}}+0 \\
& +0+0
\end{aligned}
$$

$$
\begin{array}{llll}
\mathbf{P}_{x, x}^{A_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{x, x}^{A_{1}}=D^{A_{1}}(\mathbf{g}) \mathbf{P}_{x, x}^{A_{1}} & + & 0 & + \\
\mathbf{P}_{y, y}^{A_{2}} \cdot \mathbf{g} \cdot \mathbf{P}_{y, y}^{A_{2}}=D^{A_{2}}(\mathbf{g}) \mathbf{P}_{y, y}^{A_{2}} & + & 0 & +\mathbf{P}_{x, x}^{E} \\
\mathbf{P}_{x, x}^{E} \cdot \mathbf{g} \cdot \mathbf{P}_{x, x}^{E}=D_{x, x}^{E}(\mathbf{g}) \mathbf{P}_{x, x}^{E} & & +\mathbf{P}_{y, y}^{E} \\
\mathbf{P}_{y, y}^{E} \cdot \mathbf{g} \cdot \mathbf{P}_{x, x}^{E}=D_{y, x}^{E}(\mathbf{g}) \mathbf{P}_{y, x}^{E} \cdot \mathbf{P}_{y, y}^{E}=D_{x, y}^{E}(\mathbf{g}) \mathbf{P}_{x, y}^{E} \\
& \mathbf{P}_{y, y}^{E} \cdot \mathbf{g} \cdot \mathbf{P}_{y, y}^{E}=D_{y, y}^{E}(\mathbf{g}) \mathbf{P}_{y, y}^{E}
\end{array}
$$

$$
+0 \quad+0 \quad+\mathbf{P}_{x, x}^{E} \cdot \mathbf{g} \cdot \mathbf{P}_{x, x}^{E}+\mathbf{P}_{x, x}^{E} \cdot \mathbf{g} \cdot \mathbf{P}_{y, y}^{E}
$$

$$
+0 \quad+\quad 0 \quad+\mathbf{P}_{y, y}^{E} \cdot \mathbf{g} \cdot \mathbf{P}_{x, x}^{E}+\mathbf{P}_{y, y}^{E} \cdot \mathbf{g} \cdot \mathbf{P}_{y, y}^{E}
$$

Need to Define 6 Irreducible Projectors $\mathbf{P}_{m, n}^{(\alpha)}$ $\operatorname{Order}^{\circ}\left(D_{3}\right)=6$

$D_{3} \kappa=1$	$\mathbf{r}^{1}+\mathbf{r}^{2} \mathbf{i}_{1}$	$\mathbf{i}_{2}+\mathbf{i}_{3}$
$\mathbf{P}^{A_{l}}=1$	11	/6
$P^{42}=1$	$1-1$	16
$\mathbb{P}^{E}=2$	-1 0	

3 rd and Final Step:

Spectral resolution of ALL 6 of D_{3} :

The old ' g -equals-1-times-g-times-1' Trick
where:

$$
\mathbf{P}_{x, x}^{A_{1}} \mathbf{g} \cdot \mathbf{P}_{x, x}^{A_{1}}=D^{A_{1}}(\mathbf{g}) \mathbf{P}_{x, x}^{A_{1}}
$$

$$
\mathbf{P}_{y, y}^{A_{2}} \cdot \mathbf{g} \cdot \mathbf{P}_{y, y}^{A_{2}}=D^{A_{2}}(\mathbf{g}) \mathbf{P}_{y, y}^{A_{2}}
$$

$$
\mathbf{P}_{x, x}^{E} \cdot \mathbf{g} \cdot \mathbf{P}_{x, x}^{E}=D_{x, x}^{E}(\mathbf{g}) \mathbf{P}_{x, x}^{E}
$$

$$
\mathbf{P}_{y, y}^{E} \cdot \mathbf{g} \cdot \mathbf{P}_{x, x}^{E}=D_{y, x}^{E}(\mathbf{g}) \mathbf{P}_{y, x}^{E}
$$

$$
\begin{aligned}
& \mathbf{P}_{x, x}^{E} \cdot \mathbf{g} \cdot \mathbf{P}_{y, y}^{E}=D_{x, y}^{E}(\mathbf{g}) \mathbf{P}_{x, y}^{E} \\
& \mathbf{P}_{y, y}^{E} \cdot \mathbf{g} \cdot \mathbf{P}_{y, y}^{E}=D_{y, y}^{E}(\mathbf{g}) \mathbf{P}_{y, y}^{E}
\end{aligned}
$$

Need to Define 6 Irreducible Projectors $\mathbf{P}_{m, n}^{(\alpha)}$ $\operatorname{Order}^{\circ}\left(D_{3}\right)=6$

$$
\begin{aligned}
& \mathbf{g}=\mathbf{1} \cdot \mathbf{g} \cdot \mathbf{1}=\left(\mathbf{P}_{x, x}^{A_{1}}+\mathbf{P}_{y, y}^{A_{2}}+\mathbf{P}_{x, x}^{E}+\mathbf{P}_{y, y}^{E}\right) \cdot \mathbf{g} \cdot\left(\mathbf{P}_{x, x}^{A_{1}}+\mathbf{P}_{y, y}^{A_{2}}+\mathbf{P}_{x, x}^{E}+\mathbf{P}_{y, y}^{E}\right) \\
& \mathbf{g}=\mathbf{1} \cdot \mathbf{g} \cdot \mathbf{1}=D^{A_{1}}(\mathbf{g}) \mathbf{P}_{x, x}^{A_{1}}+0 \quad+\quad 0 \quad+\quad 0 \\
& +0+D^{A_{2}}(\mathbf{g}) \mathbf{P}_{y, y}^{A_{2}}+0+0 \\
& +0+0+D_{x, x}^{E}(\mathbf{g}) \mathbf{P}_{x, x}^{E}+D_{x, y}^{E}(\mathbf{g}) \mathbf{P}_{x, y}^{E} \\
& +0+0+D_{y, x}^{E}(\mathbf{g}) \mathbf{P}_{y, x}^{E}+D_{y, y}^{E}(\mathbf{g}) \mathbf{P}_{y, y}^{E}
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{P}_{x, x}^{A_{l}}=\mathbf{P}_{0_{2} 0_{2}}^{A_{l}}=\mathbf{P}^{A_{l}} \boldsymbol{p}^{0_{2}}=\mathbf{P}^{A_{l}}\left(\mathbf{\mathbf { P } _ { n , n } ^ { (\alpha) }} \mathbf{i}_{3}\right) / 2=\left(\mathbf{1}+\mathbf{r}^{1}+\mathbf{r}^{2}+\mathbf{i}_{1}+\mathbf{i}_{2}+\mathbf{i}_{3}\right) / 6 \\
& \mathbb{P}_{y, y}^{A_{2}}=\mathbb{P}_{1_{2} \mathrm{I}_{2}}^{\mathrm{I}_{2}}=\mathbb{P}^{A_{2}} \boldsymbol{p}^{1_{2}}=\mathbb{P}^{A_{2}}\left(\mathbf{1}-\mathbf{i}_{3}\right) / 2=\left(\mathbf{1}+\mathbf{r}^{1}+\mathbf{r}^{2}-\mathbf{i}_{1}-\mathbf{i}_{2}-\mathbf{i}_{3}\right) / 6 \\
& \mathbb{P}_{x, x}^{E}=\mathbb{P}_{0_{2} 0_{2}}^{E}=\mathbb{P}^{E} \boldsymbol{p}^{0_{2}}=\mathbb{P}^{E}\left(\mathbf{1}+\mathbf{i}_{3}\right) / 2=\left(2 \mathbf{1}-\mathbf{r}^{1}-\mathbf{r}^{2}-\mathbf{i}_{1}-\mathbf{i}_{2}+2 \mathbf{i}_{3}\right) / 6 \\
& \mathbf{P}_{y, y}^{E}=\mathbf{P}_{1_{2} 1_{2}}^{E}=\mathbb{P}^{E} \boldsymbol{p}^{12}=\mathbb{P}^{E}\left(\mathbf{1}-\mathbf{i}_{3}\right) / 2=\left(21-\mathbf{r}^{1}-\mathbf{r}^{2}+\mathbf{i}_{1}+\mathbf{i}_{2}-2 \mathbf{i}_{3}\right) / 6
\end{aligned}
$$

$\text { Centrum } \kappa\left(\boldsymbol{D}_{\mathbf{3}}\right)=3$	$D_{3} \kappa=1 \mathbf{r}^{l}+\mathbf{r}^{2} \mathbf{i}+$
idempotents $P^{(\alpha)}$	$\begin{gathered} \mathbf{D}_{3} \mathrm{~K}=\mathbf{1} \mid \mathbf{r}^{+}+\mathbf{r}_{1} \mathbf{1}_{1}^{+1} \\ \mathbf{P}^{4} l=1 \end{gathered}$
	$\mathbb{P}^{4_{2}}=1$ 1 $1 \begin{array}{lll}1 & -1\end{array}$
	$\mathbf{P}^{E}=2 \begin{array}{lll}2 & -1 & 0\end{array}$

$3^{r d}$ and Final Step:

$$
\begin{aligned}
& \mathbb{P}_{y, y}^{A_{2}}=\mathbb{P}_{1_{2} r_{2}}^{A_{2}}=\mathbb{P}^{4_{2}} \boldsymbol{p}^{L_{2}}=\mathbb{P}^{4_{2}}\left(\mathbf{1}-\mathbf{i}_{3}\right) / 2=\left(\mathbf{1}+\mathbf{r}^{1}+\mathbf{r}^{2}-\mathbf{i}_{1}-\mathbf{i}_{2}-\mathbf{i}_{3}\right) / 6 \\
& \mathbb{P}_{x, x}^{E}=\mathbb{P}_{0_{0} 0_{2}}^{E}=\mathbb{P}^{E} \boldsymbol{p}^{0_{2}}=\mathbb{P}^{E}\left(\mathbf{1}+\mathbf{i}_{3}\right) / 2=\left(2 \mathbf{1}-\mathbf{r}^{l}-\mathbf{r}^{2}-\mathbf{i}_{1}-\mathbf{i}_{2}+2 \mathbf{i}_{3}\right) / 6 \\
& \mathbf{P}_{\mathbf{y}, y}^{E}=\mathbb{P}_{1_{2}^{1}}^{E}=\mathbb{P}^{E} \boldsymbol{p}^{l_{2}}=\mathbb{P}^{E}\left(\mathbf{1}-\mathbf{i}_{3}\right) / 2=\left(2 \mathbf{1}-\mathbf{r}^{1}-\mathbf{r}^{2}+\mathbf{i}_{1}+\mathbf{i}_{2}-2 \mathbf{i}_{3}\right) / 6
\end{aligned}
$$

Spectral resolution of ALL 6 of D_{3} :

The old ' g -equals-1-times-g-times-1' Trick

$$
\begin{aligned}
& \mathbf{g}=\mathbf{1} \cdot \mathbf{g} \cdot \mathbf{1}=\left(\mathbf{P}_{x, x}^{A_{1}}+\mathbf{P}_{y, y}^{A_{2}}+\mathbf{P}_{x, x}^{E}+\mathbf{P}_{y, y}^{E}\right) \cdot \mathbf{g} \cdot\left(\mathbf{P}_{x, x}^{A_{1}}+\mathbf{P}_{y, y}^{A_{2}}+\mathbf{P}_{x, x}^{E}+\mathbf{P}_{y, y}^{E}\right) \\
& \mathbf{g}=\mathbf{1} \cdot \mathbf{g} \cdot \mathbf{1}=D^{A_{1}}(\mathbf{g}) \mathbf{P}_{x, x}^{A_{1}}+D^{A_{2}}(\mathbf{g}) \mathbf{P}_{y, y}^{A_{2}}+D_{x, x}^{E}(\mathbf{g}) \mathbf{P}_{x, x}^{E}+D_{x, y}^{E}(\mathbf{g}) \mathbf{P}_{x, y}^{E} \\
&+D_{y, x}^{E}(\mathbf{g}) \mathbf{P}_{y, x}^{E}+D_{y, y}^{E}(\mathbf{g}) \mathbf{P}_{y, y}^{E}
\end{aligned}
$$

where:

$$
\begin{array}{ll}
\mathbf{P}_{x, x}^{A_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{x, x}^{A_{1}}=D^{A_{1}}(\mathbf{g}) \mathbf{P}_{x, x}^{A_{1}} & \\
\mathbf{P}_{y, y}^{A_{2}} \cdot \mathbf{g} \cdot \mathbf{P}_{y, y}^{A_{2}}=D^{A_{2}}(\mathbf{g}) \mathbf{P}_{y, y}^{A_{2}} & \mathbf{P}_{x, x}^{E} \cdot \mathbf{g} \cdot \mathbf{P}_{y, y}^{E}=D_{x, y}^{E}(\mathbf{g}) \mathbf{P}_{x, y}^{E} \\
\mathbf{P}_{x, x}^{E} \cdot \mathbf{g} \cdot \mathbf{P}_{x, x}^{E}=D_{x, x}^{E}(\mathbf{g}) \mathbf{P}_{x, x}^{E} & \mathbf{P}_{y, y}^{E} \cdot \mathbf{g} \cdot \mathbf{P}_{y, y}^{E}=D_{y, y}^{E}(\mathbf{g}) \mathbf{P}_{y, y}^{E} \\
\mathbf{P}_{y, y}^{E} \cdot \mathbf{g} \cdot \mathbf{P}_{x, x}^{E}=D_{y, x}^{E}(\mathbf{g}) \mathbf{P}_{y, x}^{E} &
\end{array}
$$

Need to Define 6 Irreducible Projectors $\mathbf{P}_{m, n}^{(\alpha)}$ $\operatorname{Order}^{\circ}\left(D_{3}\right)=6$
idempotents
$\mathbb{P}^{(\alpha)}$

$$
\begin{aligned}
& D_{3} \kappa=\mathbf{1} \quad \mathbf{r}^{1}+\mathbf{r}^{2} \mathbf{i}_{1}+\mathbf{i}_{2}+\mathbf{i}_{3} \\
& \begin{array}{l}
\mathbf{P}^{4_{1}}=1 \begin{array}{lll|l}
1 & 1 & 1 & 6 \\
\mathbb{P}^{4_{2}}= & 1 & 1 & -1 / 6 \\
\mathbf{P}^{E} & =2 & -1 & 0
\end{array} / 3
\end{array}
\end{aligned}
$$

idempotents

$\mathbf{P}_{n, n}^{(\alpha)}$

$$
\mathbf{P}_{x, x}^{A_{l}}=\mathbf{P}_{0_{2} 0_{2}}^{A_{l}}=\mathbf{P}^{A_{l}} \boldsymbol{p}^{0_{2}}=\mathbf{P}^{A_{l}}\left(\mathbf{1}+\mathbf{i}_{3}\right) / 2=\left(\mathbf{1}+\mathbf{r}^{1}+\mathbf{r}^{2}+\mathbf{i}_{1}+\mathbf{i}_{2}+\mathbf{i}_{3}\right) / 6
$$

$$
\mathbb{P}_{y, y}^{A_{2}}=\mathbb{P}_{1_{2} 1_{2}}^{A_{2}}=\mathbb{P}^{A_{2}} \boldsymbol{p}^{1_{2}}=\mathbb{P}^{A_{2}}\left(\mathbf{1}-\mathbf{i}_{3}\right) / 2=\left(\mathbf{1}+\mathbf{r}^{1}+\mathbf{r}^{2}-\mathbf{i}_{1}-\mathbf{i}_{2}-\mathbf{i}_{3}\right) / 6
$$

$$
\mathbb{P}_{x, x}^{E}=\mathbf{P}_{0_{2}}^{E}=\mathbb{P}^{E} \boldsymbol{p}^{0_{2}}=\mathbb{P}^{E}\left(\mathbf{1}+\mathbf{i}_{3}\right) / 2=\left(2 \mathbf{1}-\mathbf{r}^{1}-\mathbf{r}^{2}-\mathbf{i}_{1}-\mathbf{i}_{2}+2 \mathbf{i}_{3}\right) / 6
$$

$$
\mathbb{P}_{y, y}^{E}=\mathbf{P}_{1_{2}^{1}}^{E}=\mathbf{P}^{E} \boldsymbol{p}^{1_{2}}=\mathbb{P}^{E}\left(\mathbf{1}-\mathbf{i}_{3}\right) / 2=\left(2 \mathbf{1}-\mathbf{r}^{1}-\mathbf{r}^{2}+\mathbf{i}_{1}+\mathbf{i}_{2}-2 \mathbf{i}_{3}\right) / 6
$$

3rd and Final Step:

Spectral resolution of ALL 6 of D_{3} :

The old ' g -equals-1-times-g-times-1' Trick

$$
\begin{aligned}
\mathbf{g}=\mathbf{1} \cdot \mathbf{g} \cdot \mathbf{1}=\left(\mathbf{P}_{x, x}^{A_{1}}+\mathbf{P}_{y, y}^{A_{2}}+\mathbf{P}_{x, x}^{E}+\mathbf{P}_{y, y}^{E}\right) \cdot \mathbf{g} \cdot\left(\mathbf{P}_{x, x}^{A_{1}}+\mathbf{P}_{y, y}^{A_{2}}+\mathbf{P}_{x, x}^{E}+\mathbf{P}_{y, y}^{E}\right) \\
\mathbf{g}=D^{A_{1}}(\mathbf{g}) \mathbf{P}_{x, x}^{A_{1}}+D^{A_{2}}(\mathbf{g}) \mathbf{P}_{y, y}^{A_{2}}+D_{x, x}^{E}(\mathbf{g}) \mathbf{P}_{x, x}^{E}+D_{y, y}^{E}(\mathbf{g}) \mathbf{P}_{y, y}^{E}+D_{x, y}^{E}(\mathbf{g}) \mathbf{P}_{x, y}^{E}+D_{y, x}^{E}(\mathbf{g}) \mathbf{P}_{y, x}^{E}
\end{aligned}
$$

idempotents
$\mathbb{P}^{(\alpha)}$

$$
\begin{aligned}
& D_{3} \kappa=\mathbf{1} \quad \mathbf{r}^{1}+\mathbf{r}^{2} \mathbf{i}_{1}+\mathbf{i}_{2}+\mathbf{i}_{3}
\end{aligned}
$$

$\mathbf{P}_{n, n}^{(\alpha)}$

$$
\mathbf{P}_{x, x}^{A_{l}}=\mathbf{P}_{0_{2} 0_{2}}^{A_{1}}=\mathbf{P}^{4} \boldsymbol{p}^{0_{2}}=\mathbf{P}^{4_{l}}\left(\mathbf{1}+\mathbf{i}_{3}\right) / 2=\left(\mathbf{1}+\mathbf{r}^{1}+\mathbf{r}^{2}+\mathbf{i}_{l}+\mathbf{i}_{2}+\hat{\mathbf{i}}_{3}\right) / 6
$$

$$
\mathbb{P}_{y, y}^{A_{2}}=\mathbb{P}_{1_{2}}^{A_{2}^{2}}=\mathbb{P}^{4_{2}} \boldsymbol{p}^{1_{2}}=\mathbb{P}^{4_{2}}\left(\mathbf{1}-\mathbf{i}_{3}\right) / 2=\left(\mathbf{1}+\mathbf{r}^{1}+\mathbf{r}^{2}-\mathbf{i}_{1}-\mathbf{i}_{2}-\mathbf{i}_{3}\right) / 6
$$

$$
\mathbb{P}_{x, x}^{E}=\mathbb{P}_{0_{2} 0_{2}}^{E}=\mathbb{P}^{E} \boldsymbol{p}^{0_{2}}=\mathbb{P}^{E}\left(\mathbf{1}+\mathbf{i}_{3}\right) / 2=\left(2 \mathbf{1}-\mathbf{r}^{l}-\mathbf{r}^{2}-\mathbf{i}_{1}-\mathbf{i}_{2}+2 \mathbf{i}_{3}\right) / 6
$$

$$
\mathbb{P}_{y, y}^{E}=\mathbb{P}_{2_{2}^{1}}^{E^{2}}=\mathbb{P}^{E} \boldsymbol{p}^{l_{2}}=\mathbb{P}^{E}\left(\mathbf{1}-\mathbf{i}_{3}\right) / 2=\left(2 \mathbf{1}-\mathbf{r}^{1}-\mathbf{r}^{2}+\mathbf{i}_{1}+\mathbf{i}_{2}-2 \mathbf{i}_{3}\right) / 6
$$

3rd and Final Step:

Spectral resolution of ALL 6 of D_{3} :
The old ' g -equals-1-times-g-times-1' Trick

$$
\begin{aligned}
& \mathbf{g}=\Sigma_{m} \Sigma_{e} \Sigma_{b} D_{e b}^{(m)}(g) \mathbf{P}_{e b}^{(m)} \\
& \left.\mathbf{P}_{e b}^{(m)}=_{(n o r m)} \Sigma_{\mathbf{g}} D_{e b}^{\left.(m)^{*}\right)}{ }^{*}\right) \mathbf{g}
\end{aligned}
$$

$$
\mathbf{g}=\mathbf{1} \cdot \mathbf{g} \cdot \mathbf{1}=\left(\mathbf{P}_{x, x}^{A_{1}}+\mathbf{P}_{y, y}^{A_{2}}+\mathbf{P}_{x, x}^{E}+\mathbf{P}_{y, y}^{E}\right) \cdot \mathbf{g} \cdot\left(\mathbf{P}_{x, x}^{A_{1}}+\mathbf{P}_{y, y}^{A_{2}}+\mathbf{P}_{x, x}^{E}+\mathbf{P}_{y, y}^{E}\right)
$$

$$
\mathbf{g}=D^{A_{1}}(\mathbf{g}) \mathbf{P}_{x, x}^{A_{1}}+D^{A_{2}}(\mathbf{g}) \mathbf{P}_{y, y}^{A_{2}}+D_{x, x}^{E}(\mathbf{g}) \mathbf{P}_{x, x}^{E}+D_{y, y}^{E}(\mathbf{g}) \mathbf{P}_{y, y}^{E}+D_{x, y}^{E}(\mathbf{g}) \mathbf{P}_{x, y}^{E}+D_{y, x}^{E}(\mathbf{g}) \mathbf{P}_{y, x}^{E}
$$

Six D_{3} projectors: 4 idempotents +2 nilpotents (off-diag.)

Centrum $\mathrm{K}\left(\boldsymbol{D}_{\mathbf{3}}\right)=3$
idempotents
$\mathbf{P}^{(\alpha)}$

$$
\begin{aligned}
& D_{3} \kappa=\mathbf{1} \quad \mathbf{r}^{1}+\mathbf{r}^{2} \mathbf{i}_{1}+\mathbf{i}_{2}+\mathbf{i}_{3} \\
& \mathbf{P}^{4 l=} \begin{array}{lll}
1 & 1 & 1
\end{array} / 6 \\
& \begin{array}{rl}
\mathbb{P}^{4_{2}}= & 1 \\
1 & 1 \\
\mathbf{P}^{E} & -1 \\
2 & -1 \\
\hline
\end{array}
\end{aligned}
$$

$\mathbf{P}_{n, n}^{(\alpha)}$

$$
\mathbf{P}_{x, x}^{A_{l}}=\mathbf{P}_{0_{2} 0_{2}}^{A_{1}}=\mathbf{P}^{4} \boldsymbol{p}^{0_{2}}=\mathbf{P}^{4_{l}}\left(\mathbf{1}+\mathbf{i}_{3}\right) / 2=\left(\mathbf{1}+\mathbf{r}^{1}+\mathbf{r}^{2}+\mathbf{i}_{l}+\mathbf{i}_{2}+\hat{\mathbf{i}}_{3}\right) / 6
$$

$$
\mathbb{P}_{y, y}^{A_{2}}=\mathbb{P}_{1_{2} r_{2}}^{T_{2}^{2}}=\mathbb{P}^{4} 2 \boldsymbol{p}^{1_{2}}=\mathbb{P}^{4_{2}}\left(\mathbf{1}-\mathbf{i}_{3}\right) / 2=\left(\mathbf{1}+\mathbf{r}^{1}+\mathbf{r}^{2}-\mathbf{i}_{1}-\mathbf{i}_{2}-\mathbf{i}_{3}\right) / 6
$$

$$
\mathbb{P}_{x, x}^{E}=\mathbb{P}_{0_{2} 0_{2}}^{E}=\mathbb{P}^{E} \boldsymbol{p}^{0_{2}}=\mathbb{P}^{E}\left(\mathbf{1}+\mathbf{i}_{3}\right) / 2=\left(2 \mathbf{1}-\mathbf{r}^{l}-\mathbf{r}^{2}-\mathbf{i}_{1}-\mathbf{i}_{2}+2 \mathbf{i}_{3}\right) / 6
$$

$$
\mathbb{P}_{y, y}^{E}=\mathbb{P}_{1_{2}^{1}}^{E_{2}}=\mathbb{P}^{E} \boldsymbol{p}^{1_{2}}=\mathbb{P}^{E}\left(\mathbf{1} \mathbf{i}_{3}\right) / 2=\left(2 \mathbf{1}-\mathbf{r}^{1}-\mathbf{r}^{2}+\mathbf{i}_{1}+\mathbf{i}_{2}-2 \mathbf{i}_{3}\right) / 6
$$

3rd and Final Step:

Spectral resolution of $A L L 6$ of D_{3} :

The old 'g-equals-1-times-g-times-1' Trick

$$
\begin{aligned}
& \mathbf{g}=\Sigma_{m} \Sigma_{e} \Sigma_{b} D_{e b}^{(m)}(g) \mathbf{P}_{e b}^{(m)} \\
& \mathbf{P}_{e b}^{(m)}={ }_{(n o r m)} \Sigma_{\mathbf{g}} D_{e b}^{(m)}{ }_{(g)} \mathbf{g}
\end{aligned}
$$

$$
\mathbf{g}=\mathbf{1} \cdot \mathbf{g} \cdot \mathbf{1}=\left(\mathbf{P}_{x, x}^{A_{1}}+\mathbf{P}_{y, y}^{A_{1}}+\mathbf{P}_{x, x}^{E}+\mathbf{P}_{y, y}^{E}\right) \cdot \mathbf{g} \cdot\left(\mathbf{P}_{x, x}^{A_{1}}+\mathbf{P}_{y, y}^{A_{1}}+\mathbf{P}_{x, x}^{E}+\mathbf{P}_{y, y}^{E}\right)
$$

$$
\mathbf{g}=D^{A_{1}}(\mathbf{g}) \mathbf{P}_{x, x}^{A_{1}}+D^{A_{2}}(\mathbf{g}) \mathbf{P}_{y, y}^{A_{2}}+D_{x, x}^{E}(\mathbf{g}) \mathbf{P}_{x, x}^{E}+D_{y, y}^{E}(\mathbf{g}) \mathbf{P}_{y, y}^{E}+D_{x, y}^{E}(\mathbf{g}) \mathbf{P}_{x, y}^{E}+D_{y, x}^{E}(\mathbf{g}) \mathbf{P}_{y, x}^{E}
$$

Six D_{3} projectors: 4 idempotents +2 nilpotents (off-diag.)

$$
D^{E}(1)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), D^{E}(\mathbf{r})=\left(\begin{array}{cc}
-\frac{1}{2} & -\sqrt{\frac{3}{4}} \\
\sqrt{\frac{3}{4}} & -\frac{1}{2}
\end{array}\right), D^{E}\left(\mathbf{r}^{2}\right)=\left(\begin{array}{cc}
-\frac{1}{2} & \sqrt{\frac{3}{4}} \\
-\sqrt{\frac{3}{4}} & -\frac{1}{2}
\end{array}\right), D^{E}\left(\mathbf{i}_{1}\right)=\left(\begin{array}{cc}
-\frac{1}{2} & -\sqrt{\frac{3}{4}} \\
-\sqrt{\frac{3}{4}} & \frac{1}{2}
\end{array}\right), D^{E}\left(\mathbf{i}_{2}\right)=\left(\begin{array}{cc}
-\frac{1}{2} & \sqrt{\frac{3}{4}} \\
\sqrt{\frac{3}{4}} & \frac{1}{2}
\end{array}\right), D^{E}\left(\mathbf{i}_{3}\right)=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

> where D_{3} irreducible representations are: $\quad D^{A_{1}}(\mathbf{g})=+1, \quad D^{A_{1}}(\mathbf{g})= \pm 1$,

 symmety label-e symmety label-b GLOBAL LOCAL

$$
\mathbf{P}_{m n}^{(\mu)}=\frac{\ell_{G}^{(\mu)}}{\sum_{\mathrm{g}}} D_{m n}^{(\mu)}(\underline{g}) \mathrm{g}
$$

Spectral Efficiency: Same $D(a)_{m n}$ projectors give a lot!

-Local symmetery eigenvalue formulae (L.S.=> off-diagonal zero.)

$$
\begin{aligned}
r_{1}=r_{2}=r_{1} *= & r, \quad i_{1}=i_{2}=i_{1} *=i \\
& A_{1} \text {-level: } H+2 r+2 i+\dot{i}_{3} \\
\text { gives: } & \text { Al-level: } H+2 r-2 i-\dot{i}_{3} \\
& E_{x} \text {-level: } H-r-i+\dot{i}_{3} \\
& E_{y} \text {-level: } H-r+i-i_{3}
\end{aligned}
$$

Global (LAB) symmetry $\quad D_{3}>C_{2} \mathbf{i}_{3}$ projector states Local (BOD) symmetry

$$
\begin{aligned}
& \left.\left.\mathbf{i}_{3} \mathbf{i}^{(n)}\right\rangle={ }^{(n)}\right\rangle=\mathbf{i}_{3} \mathbf{P}_{e b}^{(n)}|1\rangle \\
& =(-1)^{e}|(m)\rangle \\
& \left|{ }_{e b}^{(m)}\right\rangle=\mathbf{P}_{e b}^{(m)}|1\rangle \\
& \overline{\mathbf{i}}_{3}\left|e e^{(n)}\right\rangle=\overline{\mathbf{i}}_{3} \mathbf{P}_{e b}^{(m)}|1\rangle=\mathbf{P}_{e b}^{(n)} \overline{\mathbf{i}_{3}}|1\rangle \\
& \left.=\mathbf{P}_{e b}^{(m) \hat{i}_{3}^{\dagger}}|1\rangle=\left.(-1)^{b}\right|^{(m)}\right\rangle
\end{aligned}
$$

When there is no there, there...

Nobody Home
where LOCAL and GLOBAL

(a) Local $D_{3} \supset C_{2}\left(i_{3}\right)$ model

Polygonal geometry of $U(2) \supset C_{N}$ character spectral function Trace-character $\chi^{j}(\Theta)$ of $\mathrm{U}(2)$ rotation by C_{n} angle $\Theta=2 \pi / n$
is an ($\left.\ell^{j}=2 j+1\right)$-term sum of $\mathrm{e}^{-i m \Theta}$ over allowed m-quanta $m=\{-j,-j+1, \ldots, j-1, j\}$.

Excerpts from Lecture 12.6 page 126-136

Polygonal geometry of $U(2) \supset C_{N}$ character spectral function Trace-character $\chi^{j}(\Theta)$ of $\mathrm{U}(2)$ rotation by C_{n} angle $\Theta=2 \pi / n$
is an $\left(\ell^{j}=2 j+1\right)$-term sum of $\mathrm{e}^{-i m \Theta}$ over allowed m-quanta $m=\{-j,-j+1, \ldots, j-1, j\}$.

$$
\begin{aligned}
& \chi^{1 / 2}(\Theta)=\underset{(\text { spinor- } j=1 / 2)}{\operatorname{trace}} \mathrm{A}^{1 / 2}(\Theta)=\operatorname{trace}\left(\begin{array}{cc}
e^{-i \theta / 2} & \cdot \\
\cdot & e^{+i \theta / 2}
\end{array}\right) \quad \chi^{1}(\Theta)=\underset{(\text { vector }-j=1)}{\operatorname{trace} D^{1}(\Theta)=\operatorname{trace}}\left(\begin{array}{ccc}
e^{-i \theta} & \cdot & \cdot \\
\cdot & 1 & \cdot \\
\cdot & \cdot & e^{-i \theta}
\end{array}\right)
\end{aligned}
$$

$\chi^{j}(\Theta)$ involves a sum of $2 \cos (m \Theta / 2)$ for $m \geq 0$ up to $m=j$.

$$
\begin{array}{ll}
\chi^{1 / 2}(\Theta)=e^{-i \frac{\Theta}{2}}+e^{i \frac{\Theta}{2}} & =2 \cos \frac{\Theta}{2} \\
\chi^{3 / 2}(\Theta)=e^{-i \frac{3 \Theta}{2}}+\ldots & +e^{i \frac{3 \Theta}{2}}=2 \cos \frac{\Theta}{2}+2 \cos \frac{3 \Theta}{2} \\
\chi^{5 / 2}(\Theta)=e^{-i \frac{5 \Theta}{2}}+\ldots & +e^{i \frac{5 \Theta}{2}}=2 \cos \frac{\Theta}{2}+2 \cos \frac{3 \Theta}{2}+2 \cos \frac{5 \Theta}{2}
\end{array}
$$

Excerpts from Lecture 12.6 page 126-136

Polygonal geometry of $U(2) \supset C_{N}$ character spectral function

Trace-character $\chi^{j}(\Theta)$ of $\mathrm{U}(2)$ rotation by C_{n} angle $\Theta=2 \pi / n$

is an $\left(\ell^{j}=2 j+1\right)$-term sum of $\mathrm{e}^{-i m \Theta}$ over allowed m-quanta $m=\{-j,-j+1, \ldots, j-1, j\}$.

$$
\chi^{1 / 2}(\Theta)=\underset{(\text { spinor }-j=1 / 2)}{\operatorname{trace}} D^{1 / 2}(\Theta)=\operatorname{trace}\left(\begin{array}{cc}
e^{-i \theta / 2} & \cdot \\
\cdot & e^{+i \theta / 2}
\end{array}\right) \quad \chi^{1}(\Theta)=\underset{(\text { vector }-j=1)}{\operatorname{trace} D^{1}(\Theta)=\operatorname{trace}}\left(\begin{array}{ccc}
e^{-i \theta} & \cdot & \cdot \\
\cdot & 1 & \cdot \\
\cdot & \cdot & e^{-i \theta}
\end{array}\right)
$$

$\chi^{j}(\Theta)$ involves a sum of $2 \cos (m \Theta / 2)$ for $m \geq 0$ up to $m=j$.

$$
\begin{array}{ll}
\chi^{1 / 2}(\Theta)=e^{-i \frac{\Theta}{2}}+e^{i \frac{\Theta}{2}} & =2 \cos \frac{\Theta}{2} \quad \chi^{0}(\Theta)=e^{-i \Theta \cdot 0} \quad=1 \\
\chi^{3 / 2}(\Theta)=e^{-i \frac{3 \Theta}{2}}+\ldots & +e^{i \frac{3 \Theta}{2}}=2 \cos \frac{\Theta}{2}+2 \cos \frac{3 \Theta}{2} \\
\chi^{5 / 2}(\Theta)=e^{-i \frac{5 \Theta}{2}}+\ldots & +e^{i \frac{5 \Theta}{2}}=2 \cos \frac{\Theta}{2}+2 \cos \frac{3 \Theta}{2}+2 \cos \frac{5 \Theta}{2}
\end{array}
$$

Excerpts from Lecture 12.6 page 126-136

Polygonal geometry of $U(2) \supset C_{N}$ character spectral function

Trace-character $\chi^{j}(\Theta)$ of $\mathrm{U}(2)$ rotation by C_{n} angle $\Theta=2 \pi / n$
is an $\left(\ell^{j}=2 j+1\right)$-term sum of $\mathrm{e}^{-i m \Theta}$ over allowed m-quanta $m=\{-j,-j+1, \ldots, j-1, j\}$.

$$
\chi^{1 / 2}(\Theta)=\underset{(\text { spinor }-j=1 / 2)}{\operatorname{trace}} D^{1 / 2}(\Theta)=\operatorname{trace}\left(\begin{array}{cc}
e^{-i \theta / 2} & \cdot \\
\cdot & e^{+i \theta / 2}
\end{array}\right) \quad \chi^{1}(\Theta)=\underset{(\text { vector }-j=1)}{\operatorname{trace} D^{1}(\Theta)=\operatorname{trace}}\left(\begin{array}{ccc}
e^{-i \theta} & \cdot & \cdot \\
\cdot & 1 & \cdot \\
\cdot & \cdot & e^{-i \theta}
\end{array}\right)
$$

$\chi^{j}(\Theta)$ involves a sum of $2 \cos (m \Theta / 2)$ for $m \geq 0$ up to $m=j$.

$$
\begin{array}{ll}
\chi^{1 / 2}(\Theta)=e^{-i \frac{\Theta}{2}}+e^{i \frac{\Theta}{2}} & =2 \cos \frac{\Theta}{2} \\
\chi^{3 / 2}(\Theta)=e^{-i \frac{3 \Theta}{2}}+\ldots & +e^{i \frac{3 \Theta}{2}}=2 \cos \frac{\Theta}{2}+2 \cos \frac{3 \Theta}{2} \\
\chi^{5 / 2}(\Theta)=e^{-i \frac{5 \Theta}{2}}+\ldots & +e^{i \frac{5 \Theta}{2}}=2 \cos \frac{\Theta}{2}+2 \cos \frac{3 \Theta}{2}+2 \cos \frac{5 \Theta}{2}
\end{array}
$$

$$
\chi^{0}(\Theta)=e^{-i \Theta \cdot 0} \quad=1
$$

$$
\chi^{1}(\Theta)=e^{-i \Theta}+1+e^{i \Theta}=1+2 \cos \Theta
$$

$$
\text { (vector- } j=1 \text {) }
$$

$$
\chi^{2}(\Theta)=e^{-i 2 \Theta}+\ldots e^{i 2 \Theta}=1+2 \cos \Theta+2 \cos 2 \Theta
$$

$$
\text { (tensor }-j=2 \text {) }
$$

$\chi^{j}(\Theta)$ is a geometric series with ratio $e^{i \Theta}$ between each successive term.
$\chi^{j}(\Theta)=\operatorname{Trace} D^{(j)}(\Theta)=e^{-i \Theta j}+e^{-i \Theta(j-1)}+e^{-i \Theta(j-2)}+\ldots+e^{+i \Theta(j-2)}+e^{+i \Theta(j-1)}+e^{+i \Theta j}$ $\chi^{j}(\Theta) e^{-i \Theta}=e^{-i \Theta(j+1)}+e^{-i \Theta j}+e^{i \Theta(j-1)}+e^{-i \Theta(j-2)}+\ldots+e^{+i \Theta(j-2)}+e^{+i \Theta(j-1)}$
Subtracting gives:
$\chi^{j}(\Theta)\left(1-e^{-i \Theta}\right)=-e^{-i \Theta(j+1)}$
$+$
$e^{+i \Theta j}$

Excerpts from Lecture 12.6 page 126-136

Polygonal geometry of $U(2) \supset C_{N}$ character spectral function

Trace-character $\chi^{j}(\Theta)$ of $\mathrm{U}(2)$ rotation by C_{n} angle $\Theta=2 \pi / n$
is an $\left(\ell^{j}=2 j+1\right)$-term sum of $\mathrm{e}^{-i m \Theta}$ over allowed m-quanta $m=\{-j,-j+1, \ldots, j-1, j\}$.

$$
\begin{aligned}
& \chi^{1 / 2}(\Theta)=\underset{(\text { spinor }-j=1 / 2)}{\operatorname{trace}}\left(\ell^{1 / 2}(\Theta)=\operatorname{trace}\left(\begin{array}{cc}
e^{-i \theta / 2} & \cdot \\
\cdot & e^{+i \theta / 2}
\end{array}\right) \quad \chi^{1}(\Theta)=\underset{(\text { vector }-j=1)}{\operatorname{trace} D^{1}(\Theta)=\operatorname{trace}}\left(\begin{array}{ccc}
e^{-i \theta} & \cdot & \cdot \\
\cdot & 1 & \cdot \\
\cdot & \cdot & e^{-i \theta}
\end{array}\right)\right.
\end{aligned}
$$

$\chi^{j}(\Theta)$ involves a sum of $2 \cos (m \Theta / 2)$ for $m \geq 0$ up to $m=j$.

$$
\begin{array}{ll}
\chi^{1 / 2}(\Theta)=e^{-i \frac{\Theta}{2}}+e^{i \frac{\Theta}{2}} & =2 \cos \frac{\Theta}{2} \\
\chi^{3 / 2}(\Theta)=e^{-i \frac{3 \Theta}{2}}+\ldots & +e^{i \frac{3 \Theta}{2}}=2 \cos \frac{\Theta}{2}+2 \cos \frac{3 \Theta}{2} \\
\chi^{5 / 2}(\Theta)=e^{-i \frac{5 \Theta}{2}}+\ldots & +e^{i \frac{5 \Theta}{2}}=2 \cos \frac{\Theta}{2}+2 \cos \frac{3 \Theta}{2}+2 \cos \frac{5 \Theta}{2}
\end{array}
$$

$$
\chi^{0}(\Theta)=e^{-i \Theta \cdot 0} \quad=1
$$

$$
\chi^{1}(\Theta)=e^{-i \Theta}+1+e^{i \Theta}=1+2 \cos \Theta
$$

$$
\text { (vector- } j=1 \text {) }
$$

$$
\chi^{2}(\Theta)=e^{-i 2 \Theta}+\ldots e^{i 2 \Theta}=1+2 \cos \Theta+2 \cos 2 \Theta
$$

$$
\text { (tensor }-j=2 \text {) }
$$

$\chi^{j}(\Theta)$ is a geometric series with ratio $e^{i \Theta}$ between each successive term.
$\chi^{j}(\Theta)=\operatorname{Trace} D^{(j)}(\Theta)=e^{-i \Theta j}+e^{-i \Theta(j-1)}+e^{-i \Theta(j-2)}+\ldots+e^{+i \Theta(j-2)}+e^{+i \Theta(j-1)}+e^{+i \Theta j}$
$\chi^{j}(\Theta) e^{-i \Theta}=e^{-i \Theta(j+1)}+e^{-i \Theta j}+e^{i \Theta(j-1)}+e^{-i \Theta(j-2)}+\ldots+e^{+i \Theta(j-2)}+e^{+i \Theta(j-1)}$
Subtracting/dividing gives $\chi^{j}(\Theta)$ formula.

$$
\chi^{j}(\Theta)=\frac{e^{+i \Theta j}-e^{-i \Theta(j+1)}}{1-e^{-i \Theta}}=\frac{e^{+i \Theta\left(j+\frac{1}{2}\right)}-e^{-i \Theta\left(j+\frac{1}{2}\right)}}{e^{+i \frac{\Theta}{2}}-e^{-i \frac{\Theta}{2}}}=\frac{\sin \Theta\left(j+\frac{1}{2}\right)}{\sin \frac{\Theta}{2}}
$$

Excerpts from Lecture 12.6 page 126-136

Polygonal geometry of $U(2) \supset C_{N}$ character spectral function

Trace-character $\chi^{j}(\Theta)$ of $\mathrm{U}(2)$ rotation by C_{n} angle $\Theta=2 \pi / n$
is an $\left(\ell^{j}=2 j+1\right)$-term sum of $\mathrm{e}^{-i m \Theta}$ over allowed m-quanta $m=\{-j,-j+1, \ldots, j-1, j\}$.

$$
\chi^{1 / 2}(\Theta)=\underset{(\text { spinor- }-j=1 / 2)}{\operatorname{trace}} D^{1 / 2}(\Theta)=\operatorname{trace}\left(\begin{array}{cc}
e^{-i \theta / 2} & \cdot \\
\cdot & e^{+i \theta / 2}
\end{array}\right) \quad \chi^{1}(\Theta)=\underset{(\text { vector }-j=1)}{\operatorname{trace} D^{1}(\Theta)}=\operatorname{trace}
$$

$\chi^{0}(\Theta)=e^{-i \Theta \cdot 0} \quad=1$
(scalar-j=0)
$\chi^{1}(\Theta)=e^{-i \Theta}+1+e^{i \Theta}=1+2 \cos \Theta$
(vector $-j=1$)

$$
\begin{aligned}
& \text { O) involves a sum of } 2 \cos (m \Theta / 2) \text { for } m \geq 0 \text { up to } m=j . \\
& \chi^{1 / 2}(\Theta)=e^{-i \frac{\Theta}{2}}+e^{i \frac{\Theta}{2}} \quad=2 \cos \frac{\Theta}{2} \quad(\text { spinor }-j=1 / 2) \\
& \chi^{3 / 2}(\Theta)=e^{-i \frac{3 \Theta}{2}}+\ldots \quad+e^{i \frac{3 \Theta}{2}}=2 \cos \frac{\Theta}{2}+2 \cos \frac{3 \Theta}{2} \\
& \chi^{5 / 2}(\Theta)=e^{-i \frac{5 \Theta}{2}}+\ldots \quad+e^{i \frac{5 \Theta}{2}}=2 \cos \frac{\Theta}{2}+2 \cos \frac{3 \Theta}{2}+2 \cos \frac{5 \Theta}{2}
\end{aligned}
$$

$$
\chi^{1}(\Theta)=e^{-i \Theta}+1+e^{i \Theta}=1+2 \cos \Theta
$$

$$
(\text { vector }-j=1)
$$

$$
\chi^{2}(\Theta)=e^{-i 2 \Theta}+\ldots e^{i 2 \Theta}=1+2 \cos \Theta+2 \cos 2 \Theta
$$

$\chi^{j}(\Theta)$ is a geometric series with ratio $e^{i \Theta}$ between each successive term.

$$
\text { (tensor }-j=2 \text {) }
$$

$\chi^{j}(\Theta)=\operatorname{Trace} D^{(j)}(\Theta)=e^{-i \Theta j}+e^{-i \Theta(j-1)}+e^{-i \Theta(j-2)}+\ldots+e^{+i \Theta(j-2)}+e^{+i \Theta(j-1)}+e^{+i \Theta j}$
$\chi^{j}(\Theta) e^{-i \Theta}=e^{-i \Theta(j+1)}+e^{-i \Theta j}+e^{i \Theta(j-1)}+e^{-i \Theta(j-2)}+\ldots+e^{+i \Theta(j-2)}+e^{+i \Theta(j-1)}$
Subtracting/dividing gives $\chi^{j}(\Theta)$ formula.

$$
\chi^{j}(\Theta)=\frac{e^{+i \Theta j}-e^{-i \Theta(j+1)}}{1-e^{-i \Theta}}=\frac{e^{+i \Theta\left(j+\frac{1}{2}\right)}-e^{-i \Theta\left(j+\frac{1}{2}\right)}}{e^{+i \frac{\Theta}{2}}-e^{-i \frac{\Theta}{2}}}=\frac{\sin \Theta\left(j+\frac{1}{2}\right)}{\sin \frac{\Theta}{2}}, ~
$$

For C_{n} angle $\Theta=2 \pi / n$ this χ^{j} has a lot of geometric significance.

$$
\chi^{j}\left(\frac{2 \pi}{n}\right)=\frac{\sin \frac{\pi}{n}(2 j+1)}{\sin \frac{\pi}{n}}=\frac{\sin \frac{\pi \ell^{j}}{n}}{\sin \frac{\pi}{n}}
$$

Character Spectral Function where: $\ell^{j}=2 j+1$ is $U(2)$ irrep dimension

Polygonal geometry of $U(2) \supset C_{N}$ character spectral function

Excerpts from Lecture 12.6 page 136
$(j)^{\text {th }} n$-goo segments

$$
\begin{array}{cc}
\chi^{j}(2 \pi / n)=\sin \left(\frac{\pi}{n} \ell^{j}\right) \sin \frac{\pi}{n} \\
\ell^{j}=2 j+1 & n=7 \\
n=5 & \ell^{j}=1,2,3 \\
\ell^{j}=1,2 &
\end{array}
$$

$$
x^{0}(2 \pi / 5)=1
$$

$$
\chi^{1 / 2}(2 \pi / 5)=1.618 \ldots
$$

$$
=(1+\sqrt{5}) / 2=
$$

