

2nd-Stage spectral decompositions of global/local D₃ Splitting class projectors using subgroup chains $D_3 \supset C_2$ and $D_3 \supset C_3$ Splitting classes

 3^{rd} -stage spectral resolution to *irreducible representations* (ireps) and Hamiltonian eigensolutions Tunneling modes and spectra for $D_3 \supset C_2$ and $D_3 \supset C_3$ local subgroup chains

Review: Spectral resolution of D_3 Center (Class algebra) Group theory of equivalence transformations and classes Lagrange theorems All-commuting class projectors and D_3 -invariant character ortho-completeness Spectral resolution to irreducible representations (or "irreps") foretold by characters or traces Subgroup splitting and correlation frequency formula: $f^{(a)}(D^{(\alpha)}(G)\downarrow H)$ Atomic ℓ -level or 2ℓ +1-multiplet splitting D_3 examples for ℓ =1-6 Group invariant numbers: Centrum, Rank, and Order

2nd-Stage spectral decompositions of global/local D_3 Splitting class projectors using subgroup chains $D_3 \supset C_2$ and $D_3 \supset C_3$

3rd-stage spectral resolution to irreducible representations (*ireps*) *and Hamiltonian eigensolutions Tunneling modes and spectra for* $D_3 \supset C_2$ *and* $D_3 \supset C_3$ *local subgroup chains*

Review: 1st-Stage Spectral resolution of **D**₃ Center (Class algebra)

Review: 1st-Stage Spectral resolution of **D**₃ Center (Class algebra)

Review: 1st-Stage Spectral resolution of **D**₃ Center (Class algebra)

Review: 1st-Stage Spectral resolution of **D**₃ Center (Class algebra)

Review: 1st-Stage Spectral resolution of **D**₃ Center (Class algebra)

 $s_k = G / \kappa_k$ s_k is an integer count of D_3 operators \mathbf{g}_s that commute with \mathbf{g}_k .

Review: Spectral resolution of D_3 Center (Class algebra) Group theory of equivalence transformations and classes Lagrange theorems All-commuting class projectors and D_3 -invariant character ortho-completeness Spectral resolution to irreducible representations (or "irreps") foretold by characters or traces Subgroup splitting and correlation frequency formula: $f^{(a)}(D^{(\alpha)}(G)\downarrow H)$ Atomic ℓ -level or 2ℓ +1-multiplet splitting D_3 examples for ℓ =1-6 Group invariant numbers: Centrum, Rank, and Order

2nd-Stage spectral decompositions of global/local D_3 Splitting class projectors using subgroup chains $D_3 \supset C_2$ and $D_3 \supset C_3$

3rd-stage spectral resolution to irreducible representations (*ireps*) *and Hamiltonian eigensolutions Tunneling modes and spectra for* $D_3 \supset C_2$ *and* $D_3 \supset C_3$ *local subgroup chains*

 $s_k = G / \kappa_k$ s_k is an integer count of D_3 operators \mathbf{g}_s that commute with \mathbf{g}_k .

 $s_k = G / \kappa_k$ s_k is an integer count of D_3 operators \mathbf{g}_s that commute with \mathbf{g}_k .

These operators \mathbf{g}_s form the \mathbf{g}_k -self-symmetry group s_k . Each \mathbf{g}_s transforms \mathbf{g}_k into itself: $\mathbf{g}_s \mathbf{g}_k \mathbf{g}_s^{-1} = \mathbf{g}_k$

 $s_k = G / \kappa_k$ s_k is an integer count of D_3 operators \mathbf{g}_s that commute with \mathbf{g}_k .

These operators \mathbf{g}_s form the \mathbf{g}_k -self-symmetry group s_k . Each \mathbf{g}_s transforms \mathbf{g}_k into itself: $\mathbf{g}_s \mathbf{g}_k \mathbf{g}_s^{-1} = \mathbf{g}_k$

If an operator \mathbf{g}_t transforms \mathbf{g}_k into a different element \mathbf{g}'_k of its class: $\mathbf{g}_t \mathbf{g}_k \mathbf{g}_t^{-1} = \mathbf{g}'_k$, then so does $\mathbf{g}_t \mathbf{g}_s$. that is: $\mathbf{g}_t \mathbf{g}_s \mathbf{g}_k (\mathbf{g}_t \mathbf{g}_s)^{-1} = \mathbf{g}_t \mathbf{g}_s \mathbf{g}_k \mathbf{g}_s^{-1} = \mathbf{g}_t \mathbf{g}_k \mathbf{g}_t^{-1} = \mathbf{g}'_k$,

 $s_k = G / \kappa_k$ s_k is an integer count of D_3 operators \mathbf{g}_s that commute with \mathbf{g}_k .

These operators \mathbf{g}_s form the \mathbf{g}_k -self-symmetry group s_k . Each \mathbf{g}_s transforms \mathbf{g}_k into itself: $\mathbf{g}_s \mathbf{g}_k \mathbf{g}_s^{-1} = \mathbf{g}_k$

If an operator \mathbf{g}_t transforms \mathbf{g}_k into a different element \mathbf{g}'_k of its class: $\mathbf{g}_t \mathbf{g}_k \mathbf{g}_t^{-1} = \mathbf{g}'_k$, then so does $\mathbf{g}_t \mathbf{g}_s$. that is: $\mathbf{g}_t \mathbf{g}_s \mathbf{g}_k (\mathbf{g}_t \mathbf{g}_s)^{-1} = \mathbf{g}_t \mathbf{g}_s \mathbf{g}_k \mathbf{g}_s^{-1} \mathbf{g}_t^{-1} = \mathbf{g}_t \mathbf{g}_k \mathbf{g}_t^{-1} = \mathbf{g}'_k$, Subgroup $s_k = \{\mathbf{g}_0 = \mathbf{1}, \mathbf{g}_1 = \mathbf{g}_k, \mathbf{g}_2, \ldots\}$ has $\ell = ({}^{\circ}\kappa_k - 1)$ Left Cosets (one coset for each member of class κ_k).

 $s_k = G / \kappa_k$ s_k is an integer count of D_3 operators \mathbf{g}_s that commute with \mathbf{g}_k .

These operators \mathbf{g}_s form the \mathbf{g}_k -self-symmetry group s_k . Each \mathbf{g}_s transforms \mathbf{g}_k into itself: $\mathbf{g}_s \mathbf{g}_k \mathbf{g}_s^{-1} = \mathbf{g}_k$

If an operator \mathbf{g}_t transforms \mathbf{g}_k into a different element \mathbf{g}'_k of its class: $\mathbf{g}_t \mathbf{g}_k \mathbf{g}_t^{-1} = \mathbf{g}'_k$, then so does $\mathbf{g}_t \mathbf{g}_s$. that is: $\mathbf{g}_t \mathbf{g}_s \mathbf{g}_k (\mathbf{g}_t \mathbf{g}_s)^{-1} = \mathbf{g}_t \mathbf{g}_s \mathbf{g}_k \mathbf{g}_s^{-1} = \mathbf{g}'_k$, Subgroup $s_k = \{\mathbf{g}_0 = \mathbf{1}, \ \mathbf{g}_1 = \mathbf{g}_k, \ \mathbf{g}_2, \ldots\}$ has $\ell = (\circ \kappa_k - 1)$ Left Cosets (one coset for each member of class κ_k). $\circ_{\kappa_k} \begin{cases} \mathbf{g}_1 s_k = \mathbf{g}_1 \{\mathbf{g}_0 = 1, \ \mathbf{g}_1 = \mathbf{g}_k, \ \mathbf{g}_2, \ldots\}, \\ \mathbf{g}_2 s_k = \mathbf{g}_2 \{\mathbf{g}_0 = 1, \ \mathbf{g}_1 = \mathbf{g}_k, \ \mathbf{g}_2, \ldots\}, \ldots \end{cases}$

They will divide the group of order ${}^{\circ}D_3 = {}^{\circ}\kappa_k \cdot {}^{\circ}s_k$ evenly into ${}^{\circ}\kappa_k$ subsets each of order ${}^{\circ}s_k$.

 $\circ s_k = \circ G / \circ \kappa_k$ or s_k is an integer count of D_3 operators \mathbf{g}_s that commute with \mathbf{g}_k .

These operators \mathbf{g}_s form the \mathbf{g}_k -self-symmetry group s_k . Each \mathbf{g}_s transforms \mathbf{g}_k into itself: $\mathbf{g}_s \mathbf{g}_k \mathbf{g}_s^{-1} = \mathbf{g}_k$

If an operator \mathbf{g}_t transforms \mathbf{g}_k into a different element \mathbf{g}'_k of its class: $\mathbf{g}_t \mathbf{g}_k \mathbf{g}_t^{-1} = \mathbf{g}'_k$, then so does $\mathbf{g}_t \mathbf{g}_s$. that is: $\mathbf{g}_t \mathbf{g}_s \mathbf{g}_k (\mathbf{g}_t \mathbf{g}_s)^{-1} = \mathbf{g}_t \mathbf{g}_s \mathbf{g}_k \mathbf{g}_t^{-1} = \mathbf{g}'_k \mathbf{g}_k \mathbf{g}_t^{-1} = \mathbf{g}'_k$, Subgroup $s_k = \{\mathbf{g}_0 = 1, \ \mathbf{g}_1 = \mathbf{g}_k, \ \mathbf{g}_2, \ldots\}$ has $\ell = (\circ \kappa_k - 1)$ Left Cosets (one coset for each member of class κ_k). $\circ_{\kappa_k} \{ \begin{array}{l} \mathbf{g}_1 s_k = \mathbf{g}_1 \{\mathbf{g}_0 = 1, \ \mathbf{g}_1 = \mathbf{g}_k, \ \mathbf{g}_2, \ldots\}, \\ \mathbf{g}_2 s_k = \mathbf{g}_2 \{\mathbf{g}_0 = 1, \ \mathbf{g}_1 = \mathbf{g}_k, \ \mathbf{g}_2, \ldots\}, \\ \vdots \\ \vdots \\ \ddots \\ \mathbf{g}_k \\$ Review: Spectral resolution of D_3 Center (Class algebra) Group theory of equivalence transformations and classes Lagrange theorems All-commuting class projectors and D_3 -invariant character ortho-completeness Spectral resolution to irreducible representations (or "irreps") foretold by characters or traces Subgroup splitting and correlation frequency formula: $f^{(a)}(D^{(\alpha)}(G)\downarrow H)$ Atomic ℓ -level or $2\ell+1$ -multiplet splitting D_3 examples for $\ell=1-6$ Group invariant numbers: Centrum, Rank, and Order

2nd-Stage spectral decompositions of global/local D_3 Splitting class projectors using subgroup chains $D_3 \supset C_2$ and $D_3 \supset C_3$

3rd-stage spectral resolution to irreducible representations (*ireps*) *and Hamiltonian eigensolutions Tunneling modes and spectra for* $D_3 \supset C_2$ *and* $D_3 \supset C_3$ *local subgroup chains*

Wednesday, April 1, 2015

Wednesday, April 1, 2015

Wednesday, April 1, 2015

Review: Spectral resolution of D_3 Center (Class algebra) Group theory of equivalence transformations and classes Lagrange theorems All-commuting class projectors and D₃-invariant character ortho-completeness Spectral resolution to irreducible representations (or "irreps") foretold by characters or traces Subgroup splitting and correlation frequency formula: $f^{(a)}(D^{(\alpha)}(G)\downarrow H)$ Atomic ℓ -level or $2\ell+1$ -multiplet splitting D₃ examples for $\ell=1-6$ Group invariant numbers: Centrum, Rank, and Order

2nd-Stage spectral decompositions of global/local D_3 Splitting class projectors using subgroup chains $D_3 \supset C_2$ and $D_3 \supset C_3$

3rd-stage spectral resolution to irreducible representations (*ireps*) *and Hamiltonian eigensolutions Tunneling modes and spectra for* $D_3 \supset C_2$ *and* $D_3 \supset C_3$ *local subgroup chains*

Review: Spectral resolution of D_3 Center (Class algebra) Group theory of equivalence transformations and classes Lagrange theorems All-commuting class projectors and D_3 -invariant character in tho-completeness Spectral resolution to irreducible representations (or "irreps") foretold by characters or traces Subgroup splitting and correlation frequency formula: $f^{(a)}(D^{(\alpha)}(G)\downarrow H)$ Atomic ℓ -level or 2ℓ +1-multiplet splitting D_3 examples for ℓ =1-6 Group invariant numbers: Centrum, Rank, and Order

2nd-Stage spectral decompositions of global/local D_3 Splitting class projectors using subgroup chains $D_3 \supset C_2$ and $D_3 \supset C_3$

3rd-stage spectral resolution to irreducible representations (*ireps*) *and Hamiltonian eigensolutions Tunneling modes and spectra for* $D_3 \supset C_2$ *and* $D_3 \supset C_3$ *local subgroup chains*

$$\begin{split} & R^{G}(\mathbf{t}) = R^{G}(\mathbf{t}) = R^{G}(\mathbf{t}) = R^{G}(\mathbf{t}^{2}) = R^{G}(\mathbf{t}_{1}) = R^{G}(\mathbf{t}_{2}) = R^{G}(\mathbf{t}_{3}) = \\ & 1 \\ r^{2} \\ r^{3} \\ r^{3} \\ r^{3} \\ r^{4} \\ r^{5} \\ r^{5}$$

Review: Spectral resolution of D_3 Center (Class algebra) Group theory of equivalence transformations and classes Lagrange theorems All-commuting class projectors and D₃-invariant character ortho-completeness Spectral resolution to irreducible representations (or "irreps") foretold by characters or traces Subgroup splitting and correlation frequency formula: $f^{(a)}(D^{(\alpha)}(G)\downarrow H)$ Atomic ℓ -level or 2ℓ +1-multiplet splitting D₃ examples for ℓ =1-6 Group invariant numbers: Centrum, Rank, and Order

2nd-Stage spectral decompositions of global/local D_3 Splitting class projectors using subgroup chains $D_3 \supset C_2$ and $D_3 \supset C_3$

3rd-stage spectral resolution to irreducible representations (*ireps*) *and Hamiltonian eigensolutions Tunneling modes and spectra for* $D_3 \supset C_2$ *and* $D_3 \supset C_3$ *local subgroup chains*

$R^{G}(1) =$					$R^G(\mathbf{r}) =$							$R^G(\mathbf{r}^2) =$						$R^G(\mathbf{i}_1) =$							$R^{G}(\mathbf{i}_{2}) =$							$R^G(\mathbf{i}_3) =$									
1	(1	•		•	•	•		•	•	1) (•	1	•			•					1	•	•		•				1) (•		•	•	•	1
r^1		1	•	•	•	•		1	•	•		•	•			•	1	•	•	•			•	•	•	1	•		•	•	•	•	•	1		•	•	•	1	•	•
r^2		•	1	•	•	•		•	1	•	•	•	•		1	•	•	•	•	•		•	•	•	•	•	1		•	•	•	1	•	•		•	•	•	•	1	•
i 1	•	•	•	1	•	•		•	•	•	•	1	•		•	•	•	•	•	1		1	•	•	•	•	•		•	•	1	•	•	•		•	1	•	•	•	•
i_2	•	•	•	•	1	•		•	•	•	•	•	1		•	•	•	1	•	•		•	1	•	•	•	•		1	•	•	•	•	•		•	•	1	•	•	•
i 3	(•	•	•	•	•	1	Л	•	•	•	1	•	• ,		•	•	•	•	1	•) (•	1	•	•	•		•	1	•	•	•	•)		1	•	•	•	•	•)

 $\{R^G(\mathbf{g})\}$ has lots of empty space and looks like it could be reduced.

But, $\{R^G(\mathbf{g})\}$ cannot be diagonalized all-at-once. (Not all \mathbf{g} commute.)

Nevertheless, $\{R^G(\mathbf{g})\}$ can be *block-diagonalized all-at-once* into *"ireps"* A_1 , A_2 , and E_1

 $R(\mathbf{g})$ reduces to:

Spectral resolution to irreducible representations (or "ireps") foretold by characters or traces

	$R^G($	1)=	=				R	2 ⁶ (r	:)=					R	2 ^{<i>G</i>} (r	²)	=				ŀ	R ^G (i	₁)=	=				K	R ^G (i	₂)=	=				R ^G	(i ₃)) =				
1	(1					•)(•		1	•)(•	1			•	•					1		•		•				1) (•		1
r^1		1	•	•	•	•		1	•	•	•		•		•	•	1	•	•	•			•			1					•	•	•	1		•	•	•	1	•	•
r^2		•	1	•	•	•		•	1	•	•	•	•		1	•	•	•	•	•		•	•	•	•	•	1		•	•	•	1	•	•		•	•	•	•	1	•
i 1	•	•	•	1	•	•		•	•	•	•	1	•		•	•	•	•	•	1		1	•	•	•	•	•		•	•	1	•	•	•		•	1	•	•	•	•
i 2	•	•	•	•	1	•		•	•	•	•	•	1		•	•	•	1	•	•		•	1	•	•	•	•		1	•	•	•	•	•		•	•	1	•	•	•
İ3	(\cdot)	•	•	•	•	1	Л	•	•	•	1	•	•		•	•	•	•	1	•) (•	1	•	•	•		•	1	•	•	•	•		1	•	•	•	•	•)

 $\{R^G(\mathbf{g})\}$ has lots of empty space and looks like it could be reduced.

But, $\{R^G(\mathbf{g})\}$ cannot be diagonalized all-at-once. (Not all \mathbf{g} commute.)

Nevertheless, $\{R^G(\mathbf{g})\}$ can be *block-diagonalized all-at-once* into *"ireps"* A_1 , A_2 , and E_1

 $R(\mathbf{g})$ reduces to:

Spectral resolution to irreducible representations (or "ireps") foretold by characters or traces

$$R^{G}(\mathbf{1}) = R^{G}(\mathbf{r}) = R^{G}(\mathbf{r}) = R^{G}(\mathbf{r}^{2}) = R^{G}(\mathbf{i}_{1}) = R^{G}(\mathbf{i}_{2}) = R^{G}(\mathbf{i}_{3}) =$$

$$\begin{pmatrix} 1 & \cdots & \cdots & \cdots \\ \cdot & 1 & \cdots & \cdots \\ \cdot & \cdot & 1 & \cdots \\ \cdot & \cdot & \cdot & 1 & \cdots \\ \cdot & \cdot & \cdot & 1 & \cdots \\ \cdot & \cdot & \cdot & 1 & \cdots \\ \cdot & \cdot & \cdot & 1 & \cdots \\ \cdot & \cdot & \cdot & 1 & \cdots \\ \cdot & 1 & \cdots $

 $\{R^G(\mathbf{g})\}$ has lots of empty space and looks like it could be reduced.

But, $\{R^G(\mathbf{g})\}$ cannot be diagonalized all-at-once. (Not all \mathbf{g} commute.)

Nevertheless, $\{R^G(\mathbf{g})\}$ can be *block-diagonalized all-at-once* into *"ireps"* A_1 , A_2 , and E_1

 $R(\mathbf{g})$ reduces to:

So { $R^{G}(\mathbf{g})$ } can be *block-diagonalized* into a *direct sum* \oplus of *"ireps"* $R^{G}(\mathbf{g})=D^{A_{I}}(\mathbf{g})\oplus D^{A_{2}}(\mathbf{g})\oplus 2D^{E_{I}}(\mathbf{g})$

Review: Spectral resolution of D_3 Center (Class algebra) Group theory of equivalence transformations and classes Lagrange theorems All-commuting class projectors and D_3 -invariant character ortho-completeness Spectral resolution to irreducible representations (or "irreps") foretold by characters or traces Subgroup splitting and correlation frequency formula: $f^{(a)}(D^{(\alpha)}(G)\downarrow H)$ Atomic ℓ -level or 2ℓ +1-multiplet splitting D_3 examples for ℓ =1-6 Group invariant numbers: Centrum, Rank, and Order

2nd-Stage spectral decompositions of global/local D_3 Splitting class projectors using subgroup chains $D_3 \supset C_2$ and $D_3 \supset C_3$

 $D^{(\alpha)}(G) \downarrow H \equiv D^{(\alpha)}(H)$ is reducible to: $T_{reducer} D^{(\alpha)}(H) T^{\dagger}_{reducer} = f^{(a)} d^{(a)}(H) \oplus f^{(b)} d^{(b)}(H) \oplus \dots$

The following derives formulae for integral $H \subset G$ *correlation coefficients* $f^{(a)}(D^{(\alpha)}(G) \downarrow H)$

 $D^{(\alpha)}(G) \downarrow H \equiv D^{(\alpha)}(H)$ is reducible to: $T_{reducer} D^{(\alpha)}(H) T^{\dagger}_{reducer} = f^{(a)} d^{(a)}(H) \oplus f^{(b)} d^{(b)}(H) \oplus \dots$

The following derives formulae for integral $H \subset G$ correlation coefficients $f^{(b)}(D^{(\alpha)}(G) \downarrow H)$ $Trace D^{(\alpha)}(\mathbf{P}^{(b)}) = f^{(b)} \cdot \ell^{(b)}$ Since each $d^{(b)}(\mathbf{P}^{(b)})$ is $\ell^{(b)}$ -by- $\ell^{(b)}$ unit matrix

 $D^{(\alpha)}(G) \downarrow H \equiv D^{(\alpha)}(H)$ is reducible to: $T_{reducer} D^{(\alpha)}(H) T^{\dagger}_{reducer} = f^{(a)} d^{(a)}(H) \oplus f^{(b)} d^{(b)}(H) \oplus \dots$

The following derives formulae for integral $H \subset G$ correlation coefficients $f^{(a)}(D^{(\alpha)}(G) \downarrow H)$ $Trace D^{(\alpha)}(\mathbf{P}^{(b)}) = f^{(b)} \cdot \ell^{(b)}$

$$f^{(b)} = \frac{1}{\ell^{(b)}} Trace D^{(\alpha)}(\mathbf{P}^{(b)})$$

 $D^{(\alpha)}(G) \downarrow H \equiv D^{(\alpha)}(H)$ is reducible to: $T_{reducer} D^{(\alpha)}(H) T^{\dagger}_{reducer} = f^{(a)} d^{(a)}(H) \oplus f^{(b)} d^{(b)}(H) \oplus \dots$

The following derives formulae for integral $H \subset G$ *correlation coefficients* $f^{(a)}(D^{(\alpha)}(G) \downarrow H)$

$$TraceD^{(\alpha)}(\mathbf{P}^{(b)}) = f^{(b)} \cdot \ell^{(b)}$$
$$f^{(b)} = \frac{1}{\ell^{(b)}} TraceD^{(\alpha)}(\mathbf{P}^{(b)}) = \frac{1}{\ell^{(b)}} \frac{\ell^{(b)}}{{}^{\circ}H} \sum_{\substack{\text{classes}\\ \mathbf{\kappa}_{k} \in H}} \chi_{k}^{(b)*} TraceD^{(\alpha)}(\mathbf{\kappa}_{k})$$

Class ortho-complete projector relations (p.24) $\mathbf{P}^{(\alpha)} = \frac{\ell^{(\alpha)}}{{}^{\circ}G} \sum_{k \in G} \chi_k^{(\alpha)*} \mathbf{\kappa}_k$ $\mathbf{P}^{(b)} = \frac{\ell^{(b)}}{{}^{\circ}H} \sum_{k \in H} \chi_k^{(b)*} \mathbf{\kappa}_k$

 $D^{(\alpha)}(G) \downarrow H \equiv D^{(\alpha)}(H)$ is reducible to: $T_{reducer} D^{(\alpha)}(H) T^{\dagger}_{reducer} = f^{(a)} d^{(a)}(H) \oplus f^{(b)} d^{(b)}(H) \oplus \dots$

The following derives formulae for integral $H \subset G$ *correlation coefficients* $f^{(a)}(D^{(\alpha)}(G) \downarrow H)$

 $-(\alpha) = (b)$

a(h) a(h)

$$TraceD^{(\alpha)}(\mathbf{P}^{(b)}) = f^{(b)} \cdot \ell^{(b)}$$

$$TraceD^{(\alpha)}(\mathbf{P}^{(b)}) = f^{(b)} \cdot \ell^{(b)}$$

$$f^{(b)} = \frac{1}{\ell^{(b)}} \sum_{k \in G} \chi_{k}^{(\alpha)*} \mathbf{\kappa}_{k}$$

$$f^{(b)} = \frac{\ell^{(\alpha)}}{\circ G} \sum_{k \in G} \chi_{k}^{(\alpha)*} \mathbf{\kappa}_{k}$$

$$f^{(b)} = \frac{1}{\ell^{(b)}} \sum_{classes} \kappa_{k} \chi_{k}^{(b)*} \chi_{k}^{(\alpha)}$$

$$f^{(b)} = \frac{1}{\circ H} \sum_{classes} \kappa_{k} \chi_{k}^{(b)*} \chi_{k}^{(\alpha)}$$

$$f^{(b)} = \frac{1}{\circ H} \sum_{classes} \kappa_{k} \chi_{k}^{(b)*} \chi_{k}^{(\alpha)}$$

$$f^{(b)} = \frac{1}{\circ H} \sum_{classes} \kappa_{k} \chi_{k}^{(b)*} \chi_{k}^{(\alpha)}$$

$$Character relation for frequency f^{(b)} of d^{(b)} of subgroup H in D^{(\alpha)} \downarrow H of G$$

Wednesday, April 1, 2015

 $^{\circ}G$ $\bar{k \in G}$

 $\mathbf{P}^{(\alpha)}$

Review: Spectral resolution of D_3 Center (Class algebra) Group theory of equivalence transformations and classes Lagrange theorems All-commuting class projectors and D_3 -invariant character ortho-completeness Spectral resolution to irreducible representations (or "irreps") foretold by characters or traces Subgroup splitting and correlation frequency formula: $f^{(a)}(D^{(\alpha)}(G)\downarrow H)$ Atomic ℓ -level or $2\ell+1$ -multiplet splitting D_3 examples for $\ell=1-6$ Group invariant numbers: Centrum, Rank, and Order

2nd-Stage spectral decompositions of global/local D_3 Splitting class projectors using subgroup chains $D_3 \supset C_2$ and $D_3 \supset C_3$

• • •

Review: Spectral resolution of D_3 Center (Class algebra) Group theory of equivalence transformations and classes Lagrange theorems All-commuting class projectors and D_3 -invariant character ortho-completeness Spectral resolution to irreducible representations (or "irreps") foretold by characters or traces Subgroup splitting and correlation frequency formula: $f^{(a)}(D^{(\alpha)}(G)\downarrow H)$ Atomic ℓ -level or $2\ell+1$ -multiplet splitting D_3 examples for $\ell=1-6$ Group invariant numbers: Centrum, Rank, and Order

2nd-Stage spectral decompositions of global/local D_3 Splitting class projectors using subgroup chains $D_3 \supset C_2$ and $D_3 \supset C_3$

U(2) cl	naracter	rs											
from L	ecture	12.6	p.134	1:									
(or end	of this	lectu	ire)										
$\chi^\ell(\Theta)$	$\Theta = 0$	$\frac{2\pi}{3}$	π			$\chi^{\ell}(\Theta) = $	$\frac{\sin(\ell + \frac{1}{2})\Theta}{\Theta}$		$f^{(lpha)}(\ell)$	f^{A_1}	f^{A_2}	f^{E_1}	
$\ell = 0$	1	1	1				$\sin\frac{\Theta}{2}$	-	$\ell = 0$	1	•	•	$1A_I$
1	3	0	-1				2		1	•	1	1	$0A_1 \oplus A_2 \oplus E_1$
2	5	-1	1	and	D_3 ch	aracter ta	able from p	b. 24:	2	1	•	2	$1A_1 \oplus 2E_1$
3	7	1	1	(g)=	{1 }	$\{{f r}^1,{f r}^2\}$	$\{\mathbf{i}_{1}, \mathbf{i}_{2}, \mathbf{i}_{3}\}$		3	1	2	2	$1A_1 \oplus 2A_2 \oplus 2E_1$
(4	9	0	1)	$\gamma^{A_1}(\mathbf{g}) =$	1	1	1		4	1	2	3	
5	11	-1	-1		1	-	1						I
6	13	1	1	$\chi^{n_2}(\mathbf{g}) =$	1	1	-1						
7	15	0	-1	$\boldsymbol{\chi}^{E_1}(\mathbf{g}) =$	2	-1	0						

Formula from p.44
Example:
$$(\ell=4)$$

$$f^{(b)} = \frac{1}{{}^{\circ}D_{3}} \sum_{\substack{\text{classes} \\ \kappa_{k} \in D_{3}}} {}^{\circ}\kappa_{k} \chi_{k}^{(b)*} \chi_{k}^{(\ell)}$$

$$f^{(E_{1})} = \frac{1}{{}^{\circ}D_{3}} \sum_{\substack{\text{classes} \\ \kappa_{k} \in D_{3}}} {}^{\circ}\kappa_{k} \chi_{k}^{(E_{1})*} \chi_{k}^{(\ell=4)} = \frac{1}{{}^{\circ}D_{3}} \left({}^{\circ}\kappa_{0} \cdot \chi_{0}^{(E_{1})*} \chi_{0}^{(\ell=4)} + {}^{\circ}\kappa_{120} \cdot \chi_{120}^{(\ell=4)} + {}^{\circ}\kappa_{180} \cdot \chi_{180}^{(E_{1})*} \chi_{180}^{(\ell=4)} \right)$$

$$= \frac{1}{6} \left(1 \cdot 2^{*} \cdot 9 + 2 \cdot -1^{*} \cdot 0 + 3 \cdot 0^{*} \cdot 1 \right)$$

U(2) cl	naracter	S											
from L	ecture 2	12.61	p.134	4:									
(or end	of this	lectu	ire)										
$\chi^\ell(\Theta)$	$\Theta = 0$	$\frac{2\pi}{3}$	π			$\chi^{\ell}(\Theta) = 0$	$\frac{\sin(\ell + \frac{1}{2})\Theta}{\Theta}$		$f^{(lpha)}(\ell)$	f^{A_1}	f^{A_2}	f^{E_1}	
$\ell = 0$	1	1	1				$\sin\frac{\Theta}{2}$	-	$\ell = 0$	1	•	•	$1A_I$
1	3	0	-1				2		1	•	1	1	$0A_1 \oplus A_2 \oplus E_1$
2	5	-1	1	and	D_3 ch	aracter ta	able from p	. 24:	2	1	•	2	$1A_1 \oplus 2E_1$
3	7	1	-1	(g)=	{1 }	$\{{f r}^1,{f r}^2\}$	$\{\mathbf{i}_{1}, \mathbf{i}_{2}, \mathbf{i}_{3}\}$		2	1	2	2	$1A_1 \oplus 2A_2 \oplus 2E_1$
(4	9	0	1)	$\gamma^{A_1}(\mathbf{g}) =$	1	1	1		4	1	2	-3	
5	11	-1	-1			1			-	-		C	I
6	13	1	1	$\chi^{n_2}(\mathbf{g}) =$	1	I	-1						
7	15	0	-1	$\chi^{E_1}(\mathbf{g}) =$	2	-1	0						

$$\begin{array}{c} Formula from p.44 \\ Example: (\ell=4) \qquad f^{(b)} = \frac{1}{\circ D_{3}} \sum_{\substack{\ell \text{ dammers} \\ k_{\ell} \in D_{3}}} \circ_{k_{k}} \chi_{k}^{(b)} \chi_{k}^{(\ell)} \qquad \ell = \frac{\ell}{4} \int_{k_{\ell}}^{k_{\ell}} \int_{$$

F E	Form xample	ula : (l=	fro i 4)	m p.44	$f^{(b)} =$	$\frac{1}{\circ D_3} \sum_{\substack{\text{classes}\\ \mathbf{\kappa}_k \in D}}$	$^{\circ}\kappa_{k}\chi_{k}^{(b)*}\chi_{k}^{(c)}$	ℓ)	<i>ℓ =4</i>			E_1 A_2 A_2 E_1 E_1 A_1		
	$f^{(E_1)}$	$) = \frac{1}{\circ I}$	$\frac{1}{D_3} \sum_{\substack{clas\\ \mathbf{\kappa}_k \in \mathbf{k}}}^{1}$	$^{\circ}\kappa_{k}\chi_{k}^{(E_{1})}$	$^{*}\chi_{k}^{(\ell=\ell)}$	$^{(4)} = \frac{1}{^{\circ}D_3}$	$\left({}^{\circ}\kappa_{0^{\circ}}\chi_{0^{\circ}}^{(E_{1})*}\chi_{0^{\circ}}\right)$	0° ^(l=4) +	° K _{120°}	$\chi^{(E_1)*}_{120^{\circ}}$	$\chi_{120^{\circ}}$	⁽⁼⁴⁾ +	$^{\circ}\kappa_{180^{\circ}}\chi_{180^{\circ}}^{(E_{1})*}\chi_{180^{\circ}}^{(E_{1})*}$	[ℓ=4]
						$=\frac{1}{6}$	$1 \cdot 2^* \cdot 9$	+ 2	• -]	l* • 0	+	3	$\cdot 0^* \cdot 1$)	
					$f^{(E_1)}$	3 = 3 - 1								٦
U(2) cl	haracter	`S			$f^{(A_2)}$	$=\frac{1}{\epsilon}$	$1 \cdot 1^* \cdot 9$	+ 2	• 1* •	0	+	3 · -	$-1^* \cdot 1) = 1$	
from L	ecture 2	12.6	p.134	ł:		0							,	
(or end	l of this	lectu	ire)											
$\chi^\ell(\Theta)$	$\Theta = 0$	$\frac{2\pi}{3}$	π			$\chi^{\ell}(\Theta) =$	$\frac{\sin(\ell + \frac{1}{2})\Theta}{\Theta}$	$f^{(a)}$	$^{(\alpha)}(\ell)$	f^{A_1}	f^{A_2}	f^{E_1}		
$\ell = 0$	1	1	1				$\sin\frac{\Theta}{2}$	ℓ :	= 0	1	•	•	$1A_1$	
1	3	0	-1				2		1	•	1	1	$0A_1 \oplus A_2 \oplus E_1$	
2	5	-1	1	and	$D_3 ch$	aracter ta	able from p	. 24:	2	1	•	2	$1A_1 \oplus 2E_1$	
3	7	1	1	(g) =	{1}	$\{\mathbf{r}^1,\!\mathbf{r}^2\}$	$\{\mathbf{i}_{1},\mathbf{i}_{2},\mathbf{i}_{3}\}$		3	1	2	2	$1A_1 \oplus 2A_2 \oplus 2E_1$	
(4	9	0		$\chi^{A_1}(\mathbf{g}) =$	1	1	1		4	2	1	3	$\oplus 1A_2 \oplus 3E_1$	_
5	11	-1	-1	$\gamma^{A_2}(\mathbf{g}) =$	1	1	_1		ľ	I			1	
6	13	1	1	λ (s) -		1								
1	15	0	-1	$\chi^{-}(\mathbf{g}) =$	2	-1	U							

F E	Form xample	ula_ : (ℓ=	fro i 4)	m p.44	$f^{(b)} =$	$\frac{1}{\circ D_3} \sum_{\substack{\text{classes}\\ \mathbf{\kappa}_k \in D_2}}$	$^{\circ}\kappa_{k}\chi_{k}^{(b)*}\chi_{k}$	(ℓ)	ℓ =4			E_{I} A_{2} A_{2} E_{I} E_{I} A_{I}		
	$f^{(E_1)}$	$=\frac{1}{\circ I}$	$\frac{1}{D_3} \sum_{\substack{clas\\ \mathbf{\kappa}_k \in \mathbf{k}}}^{\mathbf{l}}$	$\sum_{\substack{ses\\ sD_3}} {}^{\circ} \kappa_k \chi_k^{(E_1)}$	$^{*}\chi_{k}^{(\ell=\ell)}$	$^{4)} = \frac{1}{^{\circ}D_3} ($	$\left({}^{\circ}\kappa_{0^{\circ}}\chi_{0^{\circ}}^{(E_{1})^{*}}\chi\right)$	(ℓ=4)	$+ {}^{\circ}\kappa_{120}$	$\sim \chi^{(E_1)^*}_{120^\circ}$	* X _{120°} (*	^{l=4)} +	$^{\circ}\kappa_{180^{\circ}}\chi_{180^{\circ}}^{(E_{1})^{*}}\chi_{180^{\circ}}$	。 (ℓ=4)
						$= \frac{1}{6} ($	$1 \cdot 2^* \cdot 9$	+	2 · − 1	$1^* \cdot 0$	+	- 3	$3 \cdot 0^* \cdot 1$)	
					$f^{(E_1)}$	$^{0} = 3 1$								
U(2) cl	haracter	S			$f^{(A_2)}$	$=\frac{1}{6}$	$1 \cdot 1^* \cdot 9$	+	$2 \cdot 1^* \cdot$	0	+	3 · ·	$(-1^* \cdot 1) = 1$	_
from L (or end	lecture	12.6 j lectu	p.134 ire)	k:	$f^{(A_l)}$	$= \frac{1}{6} ($	$1 \cdot 1^* \cdot 9$	+	$2 \cdot 1^{*} \cdot$	0	+	3.	$1^* \cdot 1) = 2$	
$\chi^\ell(\Theta)$	$\Theta = 0$	$\frac{2\pi}{3}$	π			$\chi^{\ell}(\Theta) = $	$\frac{\sin(\ell+\frac{1}{2})\Theta}{\Theta}$		$f^{(lpha)}(\ell)$	$\int f^{A_1}$	f^{A_2}	f^{E_1}		
$\ell = 0$	1	1	1				$\sin\frac{\Theta}{2}$	_	$\ell = 0$	1	•	•	$1A_I$	
1	3	0	-1				2		1	•	1	1	$0A_1 \oplus A_2 \oplus E_1$	
2	5	-1	1	and	D_3 ch	aracter ta	able from p	b. 24:	2	1	•	2	$1A_I \oplus 2E_I$	
3	7	1	1	(g) =	{1 }	$\{\mathbf{r}^1, \mathbf{r}^2\}$	$\{\mathbf{i}_{1}, \mathbf{i}_{2}, \mathbf{i}_{3}\}$		3	1	2	2	$1A_1 \oplus 2A_2 \oplus 2E_1$	
(4	9	0	1)	$\chi^{A_1}(\mathbf{g}) =$	1	1	1		4	2	1	3	$2A_1 \oplus 1A_2 \oplus 3E_1$	
5	11	-1	-1	$\chi^{A_2}(\mathbf{a}) -$	1	1	_1		I	I			1	
6	13	1	1	\mathcal{L} (g) –		1	-1							
7	15	0	-1	$\chi^{\mathbb{P}_1}(\mathbf{g}) =$	2	-1	0							

ŀ	Form	ula	froi	m p.44								E_1 A_2		
E	Example	e: (l=	<i>4)</i>	J	$f^{(b)} = -$	$\frac{1}{D_3} \sum_{\substack{\text{classe}\\ \kappa_i \in D}}$	${}^{\circ}\kappa_{k}\chi_{k}^{(b)*}\chi_{k}$	(ℓ)	ℓ =4		j	$ \begin{array}{c} A_2 \\ E_1 \\ E_1 \\ A_1 \end{array} $		
	$f^{(E_j)}$	¹⁾ =	$\frac{1}{D_3} \sum_{\substack{clas\\ \mathbf{\kappa}_{t} \in \mathbf{c}}}$	$\sum_{k=0}^{\circ} \kappa_k \chi_k^{(E_1)*}$	$\chi_k^{(\ell=4)}$	$=\frac{1}{^{\circ}D_{3}}$	$\left({}^{\circ}\kappa_{0^{\circ}}\chi_{0^{\circ}}^{(E_{1})^{*}}\chi\right)$	(ℓ=4	$^{)} + {}^{\circ}\kappa_{120}$	$\sim \chi^{(E_1)*}_{120^{\circ}}$	$\chi_{120^{\circ}}$	^{l=4)} +	$^{\circ}\kappa_{180^{\circ}}\chi_{180^{\circ}}^{(E_{1})}$	* $\chi_{180^{\circ}}^{(\ell=4)}$
			- K	5	=	$= \frac{1}{6} ($	$1 \cdot 2^* \cdot 9$	+	2 · - 3	1 [*] • 0	+	3	$3 \cdot 0^* \cdot 1$)
					$f^{(E_1)}$ =	= 3								
<i>U(2)</i> c	haracte	rs			$f^{(A_2)} =$	$=\frac{1}{6}$	$1 \cdot 1^* \cdot 9$	+	$2 \cdot 1^{*} \cdot$	0	+	3 • •	$-1^* \cdot 1) =$	1
from L	Lecture	12.6	p.134	ł:	$c(\mathbf{A})$				*	0			*	
(or end	l of this	s lecti	ure)		$f^{(\Lambda_1)} =$	$=\frac{-}{6}$	$1 \cdot 1 \cdot 9$	+	$2 \cdot 1 \cdot$	0	+	3.	$1 \cdot 1 = 2$	2
$\chi^\ell(\Theta)$	$\Theta = 0$	$\frac{2\pi}{3}$	π		γ	$\chi^{\ell}(\Theta) =$	$\frac{\sin(\ell+\frac{1}{2})\Theta}{\Theta}$		$f^{(lpha)}(\ell)$	$\int f^{A_1}$	f^{A_2}	$f^{\scriptscriptstyle E_1}$		
$\ell = 0$	1	1	1		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		$\sin\frac{\Theta}{2}$	-	$\ell = 0$	1	•	•	$1A_{I}$	
1	3	0	-1				2		1	•	1	1	$0A_1 \oplus A_2 \oplus E$	1
2	5	-1	1	and <i>I</i>	D ₃ cha	racter t	able from p	o. 24:	2	1	•	2	$1A_1 \oplus 2$	E_1
3	7	1	-1	(g) =	$\{1\}$	$\{{\bf r}^1, {\bf r}^2\}$	$\{\mathbf{i}_{1}, \mathbf{i}_{2}, \mathbf{i}_{3}\}$		3	1	2	2	$1A_1 \oplus 2A_2 \oplus 2A_2 \oplus 2A_2$	$2E_1$
4	9	0	1	$\chi^{A_1}(\mathbf{g}) =$	1	1	1		4	2	1	3	$2A_1 \oplus 1A_2 \oplus$	$3E_1$
5	11	-1	-1	$\gamma^{A_2}(\mathbf{\sigma}) -$	1	1	_1		5	1	2	4	$1A_1 \oplus 2A_2 \oplus A_2$	$4E_1$
6	13	1	1)	\mathcal{L} (g) -	1	1			6	3	2	4	$3A_1 \oplus 2A_2 \oplus 4$	$4E_1$
7	15	0		$\chi^{-1}(\mathbf{g}) =$	2	-1	0		7	2	3	5	$2A_1 \oplus 3\overline{A_2}	$5E_1$
Note: l=	=6 13	1 1	=A	1 1 1 1	$\oplus 2R$	^G 12	$0 0 = A_I \oplus$	∋2[<i>A</i> ₁ €	$A_2 \oplus 2E_I$]	()	$\ell = 6$ is	s 1 st r	e-cycling	point)

Review: Spectral resolution of D₃ Center (Class algebra)
Group theory of equivalence transformations and classes
Lagrange theorems
All-commuting class projectors and D₃-invariant character ortho-completeness
Spectral resolution to irreducible representations (or "irreps") foretold by characters or traces
Subgroup splitting and correlation frequency formula: f^(a)(D^(α)(G)↓H)
Atomic ℓ-level or 2ℓ+1-multiplet splitting
D₃ examples for ℓ=1-6
Group invariant numbers: Centrum, Rank, and Order

2nd-Stage spectral decompositions of global/local D_3 Splitting class projectors using subgroup chains $D_3 \supset C_2$ and $D_3 \supset C_3$

$$\int_{P_{k}} \frac{1}{P_{k}} \frac{1}{P$$

Review: Spectral resolution of **D**₃ Center (Class algebra) Group theory of equivalence transformations and classes Lagrange theorems All-commuting class projectors and D₃-invariant character ortho-completeness Subgroup splitting and correlation frequency formula: $f^{(a)}(D^{(\alpha)}(G)\downarrow H)$ Group invariant numbers: Centrum, Rank, and Order

2nd-Stage spectral decompositions of global/local D_3 Splitting class projectors using subgroup chains $D_3 \supset C_2$ and $D_3 \supset C_3$ Splitting classes

Spectral reduction of non-commutative "Group-table Hamiltonian" D_3 Example2nd Step: Spectral resolution of Class Projector(s) of D_3 Correlate D_3 characters with its subgoup(s) $C_2(\mathbf{i})$

Spectral reduction of non-commutative "Group-table Hamiltonian" $D_3 Example$ 2nd Step: Spectral resolution of Class Projector(s) of D_3

Correlate D_3 characters with its subgoup(s) $C_2(\mathbf{i})$

D ₃ κ=1	r ¹ + r ²	² i ₁ +	$-i_2 + i_3$
$\mathbf{P}^{A_{l}}=1$	1	1	/6
$\mathbf{P}^{4_2} = 1$	1	-1	/6
$\mathbf{P}^E = 2$	-1	0	/3

$$C_2 \kappa = 1 \quad i_3$$

 $p^{0_2} = 1 \quad 1 / 2$
 $p^{1_2} = 1 \quad -1 / 2$

. . .
Correlate D_3 characters with its subgoup(s) $C_2(\mathbf{i})$

D ₃ κ=1	$\mathbf{l} \mathbf{r}^{l}$ +	$\mathbf{r}^2 \mathbf{i}_1 +$	• i ₂ + i ₃
$\mathbf{P}^{A_l} = 1$	1	1	/6
$\mathbf{P}^{4_{2}} = 1$	l 1	-1	/6
$\mathbf{P}^E = 2$	2 -1	0	/3

Correlate D_3 characters with its subgoup(s) $C_2(\mathbf{i})$

D ₃ κ=	=1	$\mathbf{r}^{l}+\mathbf{r}^{2}$	i ,+	- i ₂ + i ₃
$\mathbf{P}^{A_{l}} =$	1	1	1	/6
\mathbf{P}^{4_2}	1	1	-1	/6
$\mathbf{P}^E =$	2	-1	0	/3

 $D_3 \supset C_2$ Correlation table shows which products of $n^{A_{l}} = 1$. class projector $\mathbf{P}^{(\alpha)}$ with C_2 -unit 1 = $p^{0_2} + p^{1_2}$ will make **IRREDUCIBLE** $P_{n,n}^{(\alpha)}$)

Rank $\rho(D_3)=4$ implies there will be exactly 4 "C₂-friendly" irep projectors $P^{(\alpha)} = P^{(\alpha)} (p^{0_2} + p^{1_2})$ $= \mathbf{P}_{0_{2}0_{2}}^{(\alpha)} + \mathbf{P}_{1_{2}1_{2}}^{(\alpha)}$

$C_2 \kappa = 1$	i ₃
$p^{\theta_2} = 1$	1 /2
$p^{l_2} = 1$	-1 /2
) 1

 $D_3 \supset C_2 \cup 0_2 \cup 1_2$ $n^{A_2} \rightarrow 1$ $n^E = \begin{bmatrix} 1 & 1 \end{bmatrix}$

Correlate D_3 characters with its subgoup(s) $C_2(\mathbf{i})$

D ₃ κ=	1	$\mathbf{r}^{1}+\mathbf{r}^{2}$	i ,+	$-i_2 + i_3$
$\mathbf{P}^{A_{l}} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$	1	1	1	/6
\mathbf{P}^{A_2}	1	1	-1	/6
$\mathbf{P}^E =$	2	-1	0	/3

 $D_3 \supset C_2$ Correlation table shows which products of class projector $\mathbf{P}^{(\alpha)}$ with C_2 -unit $1 = p^{0_2} + p^{1_2}$ will make **IRREDUCIBLE** $\mathbf{P}_{n,n}^{(\alpha)}$) Rank $\rho(D_3)=4$ implies there will be exactly 4

" C_2 -friendly" irep projectors

$$\mathbf{P}^{(\alpha)} \mathbf{1} = \mathbf{P}^{(\alpha)} (p^{0_2} + p^{1_2})$$
$$= \mathbf{P}^{(\alpha)}_{0_2 0_2} + \mathbf{P}^{(\alpha)}_{1_2 1_2}$$

$$C_2 \kappa = 1 \quad \mathbf{i}_3$$

 $p^{0_2} = 1 \quad 1 / 2$
 $p^{1_2} = 1 \quad -1 / 2$

 $\begin{array}{c}
\mathbf{1} = \mathbf{p}^{0_2} + \mathbf{p}^{1_2} \\
\mathbf{P}^{A_1} = \mathbf{P}^{A_1} \cdot \\
\mathbf{P}^{A_2} = \mathbf{P}^{A_2} \\
\mathbf{P}^{E} = \mathbf{P}^{E}_{0_2 0_2} \mathbf{P}^{E}_{1_2 1_2}
\end{array}$

. _ .

Correlate D_3 characters with its subgoup(s) $C_2(\mathbf{i})$

$D_3 \kappa = 1$	r ¹ + r	$\cdot^{2} \mathbf{i}_{l} +$	- i ₂ + i ₃
$\mathbf{P}^{A_{l}}=1$	1	1	/6
$\mathbf{P}^{4_{2}} = 1$	1	-1	/6
$\mathbf{P}^E = 2$	-1	0	/3

 $D_3 \supset C_2$ Correlation table shows which products of $n^{A_{l}} = 1$. class projector $\mathbf{P}^{(\alpha)}$ with C_{2} -unit 1 = $p^{0_{2}}$ + $p^{1_{2}}$ will

make **IRREDUCIBLE** $P_{n,n}^{(\alpha)}$) Rank $\rho(D_3)=4$ implies there will be exactly 4 "C₂-friendly" irep projectors $\mathbf{P}^{(\alpha)}\mathbf{I} = \mathbf{P}^{(\alpha)}(\mathbf{p}^{0_2} + \mathbf{p}^{1_2})$ $= \mathbf{P}_{0_2 0_2}^{(\alpha)} + \mathbf{P}_{1_2 1_2}^{(\alpha)}$ $\mathbf{P}^{A_{1}} = \mathbf{P}^{A_{1}} \mathbf{p}^{\theta_{2}} = \mathbf{P}^{A_{1}} (\mathbf{1} + \mathbf{i}_{3})/2 = (\mathbf{1} + \mathbf{r}^{1} + \mathbf{r}^{2} + \mathbf{i}_{1} + \mathbf{i}_{2} + \mathbf{i}_{3})/6$ $\mathbf{P}^{A_2} = \mathbf{P}^{A_2} \mathbf{p}^{I_2} = \mathbf{P}^{A_2} (\mathbf{1} \cdot \mathbf{i}_3) / 2 = (\mathbf{1} + \mathbf{r}^1 + \mathbf{r}^2 - \mathbf{i}_1 - \mathbf{i}_2 - \mathbf{i}_3) / 6$ $\mathbf{P}_{0,0,2}^{E} = \mathbf{P}^{E} \mathbf{p}^{0_{2}} = \mathbf{P}^{E} (1+\mathbf{i}_{3})/2 = (21)$

 $C_{2} \kappa = 1 i_{3}$

$$1 = p^{0_{2}} + p^{1_{2}}$$

$$A_{1} = \mathbf{P}^{A_{1}} \cdot \mathbf{P}^{A_{2}}_{0_{2}0_{2}} \cdot \mathbf{P}^{A_{2}}_{1_{2}1_{2}} \cdot \mathbf{P}^{A_{2}}_{1_{2}1_{2}} \cdot \mathbf{P}^{E}_{0_{2}0_{2}} \mathbf{P}^{E}_{1_{2}1_{2}}$$

$$E = \mathbf{P}^{E}_{0_{2}0_{2}} \mathbf{P}^{E}_{1_{2}1_{2}}$$

$$\mathbf{P}_{0_{2}0_{2}}^{E} = \mathbf{P}^{E} \mathbf{p}^{0_{2}} = \mathbf{P}^{E} (1+\mathbf{i}_{3})/2 = (21 - \mathbf{r}^{1} - \mathbf{r}^{2} - \mathbf{i}_{1} - \mathbf{i}_{2} + 2\mathbf{i}_{3})/6$$

$$\mathbf{P}_{1_{2}1_{2}}^{E} = \mathbf{P}^{E} \mathbf{p}^{1_{2}} = \mathbf{P}^{E} (1-\mathbf{i}_{3})/2 = (21 - \mathbf{r}^{1} - \mathbf{r}^{2} + \mathbf{i}_{1} + \mathbf{i}_{2} - 2\mathbf{i}_{3})/6$$

Wednesday, April 1, 2015

Review: Spectral resolution of **D**₃ **Center** (Class algebra) Group theory of equivalence transformations and classes Lagrange theorems All-commuting class projectors and D₃-invariant character ortho-completeness Subgroup splitting and correlation frequency formula: $f^{(a)}(D^{(\alpha)}(G)\downarrow H)$ Group invariant numbers: Centrum, Rank, and Order

2nd-Stage spectral decompositions of global/local D_3 Splitting class projectors using subgroup chains $D_3 \supset \mathbb{C}_2$ and $D_3 \supset \mathbb{C}_3$ Splitting classes

3rd-stage spectral resolution to irreducible representations (*ireps*) *and Hamiltonian eigensolutions Tunneling modes and spectra for* $D_3 \supset C_2$ *and* $D_3 \supset C_3$ *local subgroup chains*

2nd-StageSpectral reduction of non-commutative "Group-table Hamiltonian" D_3 Example2nd Step: Spectral resolution of Class Projector(s) of D_3 Correlate D_3 characters with its subgoup(s) $C_2(\mathbf{i})$

2nd-Stage Spectral reduction of non-commutative "Group-table Hamiltonian" D₃ Example 2nd Step: Spectral resolution of Class Projector(s) of D₃ Correlate D₃ characters with its subgoup(s) C₂(i) or ELSE C₃(r) (C₂ and C₃ don't commute)

Correlate D_3 characters with its subgoup(s) $C_2(\mathbf{i})$ or ELSE $C_3(\mathbf{r})$ (C_2 and C_3 don't commute)

 $C_{2} \kappa = 1 i_{3}$

 $p^{0_2} = 1 1/2$

 $p^{l_2} = |1 - 1|/2$

 $D_3 \supset C_2 \ 0_2 \ 1_2$

 $1 = p^{0_2} + p^{1_2}$

D ₃ κ =	-1	$\mathbf{r}^{l}+\mathbf{r}^{2}$	i ,+	$-i_2 + i_3$
$\mathbf{P}^{A_{l}} =$	1	1	1	/6
\mathbf{P}^{A_2}	1	1	-1	/6
$\mathbf{P}^E =$	2	-1	0	/3

 $D_3 \supset C_2$ Correlation table shows which products of $n^{A_{l}} = 1 \cdot$ $n^{A_2} \rightarrow 1$ class projector $\mathbf{P}^{(\alpha)}$ with $n^E = \begin{bmatrix} 1 & 1 \end{bmatrix}$ C_{2} -unit 1 = $p^{0_{2}} + p^{1_{2}}$ will

make **IRREDUCIBLE** $P_{n,n}^{(\alpha)}$)

Rank $\rho(D_3)=4$ implies there will be exactly 4 "C₂-friendly" irep projectors $\mathbf{P}^{(\alpha)} \mathbf{1} = \mathbf{P}^{(\alpha)} (n^{0_2} + n^{1_2})$

$$= \mathbf{P}^{(\alpha)} \left(p^{-2} + p^{-2} \right)$$
$$= \mathbf{P}^{(\alpha)}_{0_2 0_2} + \mathbf{P}^{(\alpha)}_{1_2 1_2}$$

$$\mathbf{P}^{A_{1}} = \mathbf{P}^{A_{1}} \mathbf{p}^{\theta_{2}} = \mathbf{P}^{A_{1}} (\mathbf{1} + \mathbf{i}_{3})/2 = (\mathbf{1} + \mathbf{r}^{1} + \mathbf{r}^{2} + \mathbf{i}_{1} + \mathbf{i}_{2} + \mathbf{i}_{3})/6$$

$$\mathbf{P}^{A_{2}} = \mathbf{P}^{A_{2}} \mathbf{p}^{I_{2}} = \mathbf{P}^{A_{2}} (\mathbf{1} - \mathbf{i}_{3})/2 = (\mathbf{1} + \mathbf{r}^{1} + \mathbf{r}^{2} - \mathbf{i}_{1} - \mathbf{i}_{2} - \mathbf{i}_{3})/6$$

$$\mathbf{P}^{E}_{0_{2}0_{2}} = \mathbf{P}^{E} \mathbf{p}^{\theta_{2}} = \mathbf{P}^{E} (\mathbf{1} + \mathbf{i}_{3})/2 = (2\mathbf{1} - \mathbf{r}^{1} - \mathbf{r}^{2} - \mathbf{i}_{1} - \mathbf{i}_{2} + 2\mathbf{i}_{3})/6$$

$$\mathbf{P}^{E}_{1_{2}1_{2}} = \mathbf{P}^{E} \mathbf{p}^{I_{2}} = \mathbf{P}^{E} (\mathbf{1} - \mathbf{i}_{3})/2 = (2\mathbf{1} - \mathbf{r}^{1} - \mathbf{r}^{2} + \mathbf{i}_{1} + \mathbf{i}_{2} - 2\mathbf{i}_{3})/6$$

Let: $C_3 \kappa = 1 r^2 r^2$ $\epsilon = e^{-2\pi i/3}$ $p^{\theta_{3=}} | 1 1 1 1$ /3 $\mathbf{p}^{I_3} = |1 \quad \mathbf{\epsilon} \quad \mathbf{\epsilon}^*|_{3}$ $\mathbf{p}^{2_3} = \begin{vmatrix} 2 & \epsilon^* & \epsilon \end{vmatrix}$ /3

2nd-Stage Spectral reduction of non-commutative "Group-table Hamiltonian" D_3 Example 2nd Step: Spectral resolution of Class Projector(s) of D_3 Correlate D_3 characters with its subgoup(s) $C_2(\mathbf{i})$ or ELSE $C_3(\mathbf{r})$ (C_2 and C_3 don't commute)

 $C_2 \kappa = 1 i_3$

 $p^{0_2} = 1 1/2$

 $p^{l_2} = |1 - 1|/2$

 $D_3 \supset C_2 \ 0_2 \ 1_2$

 $1 = p^{0_2} + p^{1_2}$

D ₃ κ=	1	r ¹ + r ²	² i ₁ +	- i ₂ + i ₃
$\mathbf{P}^{A_{l}} = \begin{bmatrix} 1 & 1 \end{bmatrix}$	1	1	1	/6
\mathbf{P}^{4_2}	1	1	-1	/6
$\mathbf{P}^E =$	2	-1	0	/3

 $D_3 \supset C_2$ Correlation table shows which products of $n^{A_l} = 1 \cdot 1$ class projector $\mathbf{P}^{(\alpha)}$ with $n^{A_2} - 1$ $n^E = \begin{bmatrix} 1 & 1 \end{bmatrix}$ C_{2} -unit 1 = $p^{0_{2}} + p^{1_{2}}$ will make **IRREDUCIBLE** $P_{n,n}^{(\alpha)}$) Rank $\rho(D_3)=4$ implies

there will be exactly 4 "C₂-friendly" irep projectors

 $P^{(\alpha)} = P^{(\alpha)} (p^{0_2} + p^{1_2})$ $= \mathbf{P}_{0_{2}0_{2}}^{(\alpha)} + \mathbf{P}_{1_{2}1_{2}}^{(\alpha)}$

$$\mathbf{P}^{A_{1}} = \mathbf{P}^{A_{1}} p^{0_{2}} = \mathbf{P}^{A_{1}} (\mathbf{1} + \mathbf{i}_{3})/2 = (\mathbf{1} + \mathbf{r}^{1} + \mathbf{r}^{2} + \mathbf{i}_{1} + \mathbf{i}_{2} + \mathbf{i}_{3})/6$$

$$\mathbf{P}^{A_{2}} = \mathbf{P}^{A_{2}} p^{1_{2}} = \mathbf{P}^{A_{2}} (\mathbf{1} - \mathbf{i}_{3})/2 = (\mathbf{1} + \mathbf{r}^{1} + \mathbf{r}^{2} - \mathbf{i}_{1} - \mathbf{i}_{2} - \mathbf{i}_{3})/6$$

$$\mathbf{P}^{E}_{0_{2}0_{2}} = \mathbf{P}^{E} p^{0_{2}} = \mathbf{P}^{E} (\mathbf{1} + \mathbf{i}_{3})/2 = (2\mathbf{1} - \mathbf{r}^{1} - \mathbf{r}^{2} - \mathbf{i}_{1} - \mathbf{i}_{2} + 2\mathbf{i}_{3})/6$$

$$\mathbf{P}^{E}_{1_{2}1_{2}} = \mathbf{P}^{E} p^{1_{2}} = \mathbf{P}^{E} (\mathbf{1} - \mathbf{i}_{3})/2 = (2\mathbf{1} - \mathbf{r}^{1} - \mathbf{r}^{2} + \mathbf{i}_{1} + \mathbf{i}_{2} - 2\mathbf{i}_{3})/6$$

 $\epsilon = e^{-2\pi i/3}$ $p^{\theta_{3}} = 1 1 1 1/3$ $p^{l_3} = 1 \epsilon \epsilon^*/3$ $p^{2_3} = |1 \epsilon^* \epsilon|/3$ Same for Correlation table: $D_2 \supset C_2 \cup 0_2 \cup 1_2 \cup 2_3$

Let:

3 3	5 3	-3	-3
$n^{A_{l}} =$	1	•	•
$n^{A_2} =$	1	•	•
$n^E =$	•	1	1

 $C_3 \kappa = 1 r^2 r^2$

2nd-Stage Spectral reduction of non-commutative "Group-table Hamiltonian" $D_{3} Example$ 2nd Step: Spectral resolution of Class Projector(s) of D_3 Correlate D_3 characters with its subgoup(s) $C_2(\mathbf{i})$ or ELSE $C_3(\mathbf{r})$ (C_2 and C_3 don't commute) $C_3 \kappa = 1 r^2 r^2$ $D_{3} \kappa = 1 ||r^{1} + r^{2}||i_{1} + i_{2} + i_{3}|$ Let: $C_{2} \kappa = 1 i_{3}$ $\mathbf{P}^{A_{l}} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} / 6$

 $\mathbf{P}^{E} = \begin{vmatrix} 2 & -1 & 0 \end{vmatrix} /3$ $D_3 \supset C_2$ Correlation table shows which products of class projector $\mathbf{P}^{(\alpha)}$ with C_{2} -unit 1 = $p^{0_{2}} + p^{1_{2}}$ will make **IRREDUCIBLE** $P_{n,n}^{(\alpha)}$) Rank $\rho(D_3)=4$ implies there will be exactly 4 "C₂-friendly" irep projectors $P^{(\alpha)} = P^{(\alpha)} (p^{0_2} + p^{1_2})$ $\mathbf{P}^{A_{2}}$ $= \mathbf{P}_{0_2 0_2}^{(\alpha)} + \mathbf{P}_{1_2 1_2}^{(\alpha)}$ $\mathbf{P}^{A_{1}} = \mathbf{P}^{A_{1}} \mathbf{p}^{\theta_{2}} = \mathbf{P}^{A_{1}} (\mathbf{1} + \mathbf{i}_{3})/2 = (\mathbf{1} + \mathbf{r}^{1} + \mathbf{r}^{2} + \mathbf{i}_{1} + \mathbf{i}_{2} + \mathbf{i}_{3})/6$ $\mathbf{P}^{A_2} = \mathbf{P}^{A_2} \mathbf{p}^{I_2} = \mathbf{P}^{A_2} (\mathbf{1} \cdot \mathbf{i}_3) / 2 = (\mathbf{1} + \mathbf{r}^1 + \mathbf{r}^2 - \mathbf{i}_1 - \mathbf{i}_2 - \mathbf{i}_3) / 6$ $\mathbf{P}_{0_{2}0_{2}}^{E} = \mathbf{P}^{E} \mathbf{p}^{0_{2}} = \mathbf{P}^{E} (1 + \mathbf{i}_{3})/2 = (21 - \mathbf{r}^{1} - \mathbf{r}^{2} - \mathbf{i}_{1} - \mathbf{i}_{2} + 2\mathbf{i}_{3})/6$ $\mathbf{P}_{1_{2}1_{2}}^{E} = \mathbf{P}^{E} \mathbf{p}^{I_{2}} = \mathbf{P}^{E} (\mathbf{1} \cdot \mathbf{i}_{3})/2 = (2\mathbf{1} \cdot \mathbf{r}^{I} \cdot \mathbf{r}^{2} + \mathbf{i}_{3} + \mathbf{i}_{3} - 2\mathbf{i}_{3})/6$

 $\epsilon = e^{-2\pi i/3}$ $p^{\theta_{3=}} | 1 | 1 | 1$ /3 $p^{0_2} = 1 1/2$ $p^{I_3} = |1 \ \epsilon \ \epsilon^*|_3$ $\mathbf{P}^{A_{2}} = 1 \quad 1 \quad -1 \mid 6$ $p^{I_2} = |1 - 1|/2$ $p^{23} = |1 \epsilon^* \epsilon|/3$ **Same for** Correlation table: $D_3 \supset C_3 \cup 0_3 \cup 1_3 \cup 2_3$ $D_3 \supset C_2 0_2 1_2$ $n^{A_l} = 1 \cdot 1$ $n^{A_l} = 1 \cdot \cdot$ $n^{A_2} - 1$ $n^{A_2} = 1 \cdot \cdot \cdot$ $n^E = \begin{bmatrix} 1 & 1 \end{bmatrix}$ $n^E = \cdot 1 \cdot 1$ Rank $\rho(D_3)=4$ implies $1 = p^{0_2} + p^{1_2}$ there will be exactly 4 $\mathbf{P}^{A_{l}} = \overline{\mathbf{P}^{A_{l}}_{0,0,}} \cdot$ " C_3 -friendly" irreducible projectors $\mathbf{P}^{(\alpha)} \mathbf{1} = \mathbf{P}^{(\alpha)} (\mathbf{p}^{0_3} + \mathbf{p}^{1_3} + \mathbf{p}^{2_3})$ • = $P_{0_20_2}^{(\alpha)} + P_{1_21_2}^{(\alpha)} + P_{2_32_3}^{(\alpha)}$ $\mathbf{P}^E = \mid \mathbf{P}^E_{\mathbf{0}_2\mathbf{0}_2} \; \mathbf{P}^E_{\mathbf{1}_2\mathbf{1}}$

2nd-Stage Spectral reduction of non-commutative "Group-table Hamiltonian" D_3 Example 2nd Step: Spectral resolution of Class Projector(s) of D_3 Correlate D_3 characters with its subgoup(s) $C_2(\mathbf{i})$ or ELSE $C_3(\mathbf{r})$ (C_2 and C_3 don't commute)

D ₃ κ=1	r ¹ + r	• ² \mathbf{i}_{l} +	$-i_2 + i_3$
$\mathbf{P}^{A_{l}}=1$	1	1	/6
$\mathbf{P}^{A_{2}}=1$	1	-1	/6
$\mathbf{P}^E = 2$	-1	0	/3

 $D_3 \supset C_2$ Correlation table shows which products of class projector $\mathbf{P}^{(\alpha)}$ with C_{2} -unit 1 = $p^{0_{2}}$ + $p^{1_{2}}$ will make **IRREDUCIBLE** $P_{n,n}^{(\alpha)}$)

Rank $\rho(D_3)=4$ implies there will be exactly 4 "C₂-friendly" irep projectors $\mathbf{P}^{(\alpha)}\mathbf{I} = \mathbf{P}^{(\alpha)}(\mathbf{p}^{0_2} + \mathbf{p}^{1_2})$ $= \mathbf{P}_{0_2 0_2}^{(\alpha)} + \mathbf{P}_{1_2 1_2}^{(\alpha)}$

 $\dot{\mathbf{P}}^{A_1} = \mathbf{P}^{A_1} \mathbf{p}^{0_2} = \mathbf{P}^{A_1} (1 + i_3)/2 = (1 +$ $P^{A_2} = P^{A_2} p^{I_2} = P^{A_2} (1 - i_3)/2 = (1 + i$ $\mathbf{P}_{0,0,2}^{E} = \mathbf{P}^{E} \mathbf{p}^{0_{2}} = \mathbf{P}^{E} (1+\mathbf{i}_{3})/2 = (21$ $\mathbf{P}_{1_{2}1_{2}}^{E} = \mathbf{P}^{E} \mathbf{p}^{I_{2}} = \mathbf{P}^{E} (\mathbf{1} - \mathbf{i}_{2})/2 = (2\mathbf{1} - \mathbf{r}^{I} - \mathbf{r}^{2} + \mathbf{i}_{1} + \mathbf{i}_{2} - 2\mathbf{i}_{2})/6$

$$C_{2} \kappa = 1 \quad i_{3}$$

$$p^{0_{2}} = \begin{vmatrix} 1 & 1 \\ 2 \\ p^{l_{2}} = \begin{vmatrix} 1 & -1 \\ 2 \\ p^{l_{2}} = \begin{vmatrix} 1 & -1 \\ 2 \\ p^{l_{2}} = \end{vmatrix}$$

$$D_{3} \supset C_{2} \quad 0_{2} \quad 1_{2}$$

$$n^{4_{1}} = \begin{bmatrix} 1 & \cdot \\ n^{4_{2}} = \\ n^{4_{2}} = \\ n^{E} = \end{vmatrix}$$

$$B^{4_{1}} = \begin{bmatrix} p^{0_{2}} + p^{l_{2}} \\ p^{4_{2}} = \\ p^{E_{2}} + p^{I_{2}} \\ p^{E_{2}} = \begin{bmatrix} p^{0_{2}} + p^{l_{2}} \\ p^{E_{2}} = \\ p^{E_{2}} + p^{I_{2}} \\ p^{E_{2}} = \begin{bmatrix} p^{0_{2}} + p^{l_{2}} \\ p^{E_{2}} \\ p^{E_{2}} = \\ p^{E_{2}} \\ p^{E_{2}} = \\ p^{E_{2}} \\ p^{E_{2}} = \\ p^{E_{2}} \\ p^{C_{2}} \cdot p^{I_{2}} \\ p^{I_{2}} - \\ p^{I_{2}} \\ p^{I_{2}} = \\ p^{I_{2}} \\ p^{I_{2}} = \\ p^{I_{2}} $

2nd-Stage Spectral reduction of non-commutative "Group-table Hamiltonian" D_3 Example 2nd Step: Spectral resolution of Class Projector(s) of D_3 Correlate D_3 characters with its subgoup(s) $C_2(\mathbf{i})$ or ELSE $C_3(\mathbf{r})$ (C_2 and C_3 don't commute) $C_3 \kappa = 1 r^l r^2$ $D_{3} \kappa = 1 ||r^{1} + r^{2}||i_{1} + i_{2} + i_{3}|$ Let: $C_{2} \kappa = 1 i_{3}$ $\epsilon = e^{-2\pi i/3}$ $p^{\theta_{3}} | 1 | 1 | 1$ $\mathbf{P}^{A_{l}} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} / 6$ /3 $p^{0_2} = 1 1/2$ $p^{l_3} = |1 \ \epsilon \ \epsilon^*|_3$ $\mathbf{P}^{4_2} = 1 \quad 1 \quad -1 \mid /6$ $p^{l_2} = |1 - 1|/2$ $p^{23} = |1 \quad \epsilon^* \epsilon |/3$ $\mathbf{P}^{E} = \begin{vmatrix} 2 & -1 & 0 \end{vmatrix} / 3$ Same for Correlation table: $D_3 \supset C_3 \ 0_3 \ 1_3 \ 2_3$ $D_3 \supset C_2$ Correlation table $D_3 \supset C_2 \ 0_2 \ 1_2$ $n^{A_l} = 1$ · shows which products of $1 \cdot \cdot$ $n^{A_l} = 1$ class projector $\mathbf{P}^{(\alpha)}$ with $n^{A_2} - 1$ $n^{A_2} = 1 \cdot \cdot \cdot$ C_{2} -unit 1 = $p^{0_{2}} + p^{1_{2}}$ will $n^{E} = \begin{bmatrix} 1 & 1 \end{bmatrix}$ $n^E = \cdot 1 \cdot 1$ make **IRREDUCIBLE** $P_{n,n}^{(\alpha)}$) Rank $\rho(D_3)=4$ implies Rank $\rho(D_3)=4$ implies $1 = p^{0_3} + p^{1_3} + p^{2_3}$ $1 = p^{0_2} + p^{1_2}$ there will be exactly 4 there will be exactly 4 $\mathbf{P}^{A_{l}} = \overline{\mathbf{P}^{A_{l}}_{0,0_{\gamma}}} \cdot$ $\mathbf{P}^{A_1}_{\mathbf{0}}$ "C₃-friendly" irreducible projectors "C₂-friendly" irep projectors $\mathbf{P}^{(\alpha)} \mathbf{1} = \mathbf{P}^{(\alpha)} (\mathbf{p}^{0_3} + \mathbf{p}^{1_3} + \mathbf{p}^{2_3})$ $P^{(\alpha)} = P^{(\alpha)} (p^{0_2} + p^{1_2})$ $\mathbf{P}^{A_{2}}$ $\mathbf{p}(\alpha) + \mathbf{p}(\alpha) + \mathbf{p}(\alpha)$ $= \mathbf{P}_{0_2 0_2}^{(\alpha)} + \mathbf{P}_{1_2 1_2}^{(\alpha)}$ $\mathbf{P}^E = \mid \mathbf{P}^E_{\mathbf{0}_2\mathbf{0}_2} \; \mathbf{P}^E_{\mathbf{1}_2\mathbf{1}}$

 $\mathbf{P}^{A_{1}} = \mathbf{P}^{A_{1}} p^{\theta_{2}} = \mathbf{P}^{A_{1}} (\mathbf{1} + \mathbf{i}_{3})/2 = (\mathbf{1} + \mathbf{r}^{1} + \mathbf{r}^{2} + \mathbf{i}_{1} + \mathbf{i}_{2} + \mathbf{i}_{3})/6$ $\mathbf{P}^{A_{2}} = \mathbf{P}^{A_{2}} p^{I_{2}} = \mathbf{P}^{A_{2}} (\mathbf{1} - \mathbf{i}_{3})/2 = (\mathbf{1} + \mathbf{r}^{1} + \mathbf{r}^{2} - \mathbf{i}_{1} - \mathbf{i}_{2} - \mathbf{i}_{3})/6$ $\mathbf{P}^{E}_{\mathbf{0}_{2}\mathbf{0}_{2}} = \mathbf{P}^{E} p^{\theta_{2}} = \mathbf{P}^{E} (\mathbf{1} + \mathbf{i}_{3})/2 = (2\mathbf{1} - \mathbf{r}^{1} - \mathbf{r}^{2} - \mathbf{i}_{1} - \mathbf{i}_{2} + 2\mathbf{i}_{3})/6$ $\mathbf{P}^{E}_{\mathbf{1}_{2}\mathbf{1}_{2}} = \mathbf{P}^{E} p^{I_{2}} = \mathbf{P}^{E} (\mathbf{1} - \mathbf{i}_{3})/2 = (2\mathbf{1} - \mathbf{r}^{1} - \mathbf{r}^{2} + \mathbf{i}_{1} + \mathbf{i}_{2} - 2\mathbf{i}_{3})/6$

$$\mathbf{P}_{0_{2}0_{2}}^{A_{1}} = \mathbf{P}_{1_{3}1_{3}}^{A_{1}} \mathbf{P}_{2_{3}2_{3}}^{B_{2}} \mathbf{P}_{2_{3}2_{3}}^{B_{2}} = \mathbf{P}_{1_{3}1_{3}}^{A_{1}} \mathbf{P}_{2_{3}2_{3}}^{B_{2}} = \mathbf{P}_{1_{3}1_{3}}^{A_{2}} \mathbf{P}_{2_{3}2_{3}}^{B_{2}} = \mathbf{P}_{1_{3}1_{3}}^{A_{2}} \mathbf{P}_{2_{3}2_{3}}^{B_{2}} = \mathbf{P}_{1_{3}1_{3}}^{B_{2}} \mathbf{P}_{2_{3}2_{3}}^{B_{2}} \mathbf{P}_{2_{3}2_{3}}^{B_{2}} = \mathbf{P}_{1_{3}1_{3}}^{B_{2}} \mathbf{P}_{2_{3}2_{3}}^{B_{2}} \mathbf{P}_{2_{3}}^{B_{2}} \mathbf{P}_{2_{3}2_{3}}^{B_{2}} \mathbf{P}_{2_{3}}^{B_{2}} \mathbf{P}_{2_{3}}^{B_{2}} \mathbf{P}_{2_{3}}^{B_{2}} \mathbf{P}_{2_{3}}^{B_{2}} \mathbf{P}_{2_{3}}^{B_{2}} \mathbf{P}_{2_{3}}^{B_{2}} \mathbf{P}_{2_{3}}^{B_{2}} \mathbf{P}_{$$

Review: Spectral resolution of D_3 Center (Class algebra) Group theory of equivalence transformations and classes Lagrange theorems All-commuting class projectors and D₃-invariant character ortho-completeness Subgroup splitting and correlation frequency formula: $f^{(a)}(D^{(\alpha)}(G)\downarrow H)$ Atomic ℓ -level or $2\ell+1$ -multiplet splitting D₃ examples for $\ell=1-6$ Group invariant numbers: Centrum, Rank, and Order

2nd-Stage spectral decompositions of global/local D₃
 Splitting class projectors using subgroup chains D₃⊃C₂ and D₃⊃C₃
 Splitting classes

3rd-stage spectral resolution to irreducible representations (*ireps*) *and Hamiltonian eigensolutions Tunneling modes and spectra for* $D_3 \supset C_2$ *and* $D_3 \supset C_3$ *local subgroup chains*

Review: Spectral resolution of **D**₃ Center (Class algebra) Group theory of equivalence transformations and classes Lagrange theorems All-commuting class projectors and D₃-invariant character ortho-completeness Subgroup splitting and correlation frequency formula: $f^{(a)}(D^{(\alpha)}(G)\downarrow H)$ Group invariant numbers: Centrum, Rank, and Order

2nd-Stage spectral decompositions of global/local D_3 Splitting class projectors using subgroup chains $D_3 \supset C_2$ and $D_3 \supset C_3$ Splitting classes

3rd-stage spectral resolution to **irreducible representations** (ireps) and Hamiltonian eigensolutions Tunneling modes and spectra for $D_3 \supset C_2$ and $D_3 \supset C_3$ local subgroup chains

Spectral resolution of ALL 6 of D3 :

$$\begin{array}{c} Rank \ \rho(D_{3}) = 4 \\ idempotents \\ P_{n,n}^{(\alpha)} \end{array}$$

$$\begin{array}{c} P_{x,x}^{A_{1}} = \ \mathbf{P}_{0_{2}0_{2}}^{A_{1}} = \mathbf{P}_{1}^{A_{1}} \mathbf{p}_{0}^{0_{2}} = \mathbf{P}_{1}^{A_{1}} (\mathbf{1} + \mathbf{i}_{3})/2 = (\ \mathbf{1} + \mathbf{r}^{1} + \mathbf{r}^{2} + \mathbf{i}_{1} + \mathbf{i}_{2} + \mathbf{i}_{3})/6 \\ \mathbf{P}_{x,x}^{A_{2}} = \ \mathbf{P}_{1_{2}1_{2}}^{A_{2}} = \mathbf{P}_{2}^{A_{2}} \mathbf{p}^{1_{2}} = \mathbf{P}_{2}^{A_{2}} (\mathbf{1} - \mathbf{i}_{3})/2 = (\ \mathbf{1} + \mathbf{r}^{1} + \mathbf{r}^{2} - \mathbf{i}_{1} - \mathbf{i}_{2} - \mathbf{i}_{3})/6 \\ \mathbf{P}_{x,x}^{E} = \ \mathbf{P}_{0_{2}0_{2}}^{E} = \ \mathbf{P}_{2}^{E} \mathbf{p}_{2}^{0_{2}} = \ \mathbf{P}_{2}^{E} (\mathbf{1} + \mathbf{i}_{3})/2 = (\mathbf{2}\mathbf{1} - \mathbf{r}^{1} - \mathbf{r}^{2} - \mathbf{i}_{1} - \mathbf{i}_{2} + \mathbf{2}\mathbf{i}_{3})/6 \\ \mathbf{P}_{x,y}^{E} = \ \mathbf{P}_{2}^{E} = \ \mathbf{P}_{2}^{E} \mathbf{p}_{2}^{1_{2}} = \ \mathbf{P}_{2}^{E} (\mathbf{1} - \mathbf{i}_{3})/2 = (\mathbf{2}\mathbf{1} - \mathbf{r}^{1} - \mathbf{r}^{2} + \mathbf{i}_{1} + \mathbf{i}_{2} - \mathbf{2}\mathbf{i}_{3})/6 \\ \mathbf{P}_{y,y}^{E} = \ \mathbf{P}_{21_{2}}^{E} = \ \mathbf{P}_{2}^{E} \mathbf{p}_{2}^{1_{2}} = \ \mathbf{P}_{2}^{E} (\mathbf{1} - \mathbf{i}_{3})/2 = (\mathbf{2}\mathbf{1} - \mathbf{r}^{1} - \mathbf{r}^{2} + \mathbf{i}_{1} + \mathbf{i}_{2} - \mathbf{2}\mathbf{i}_{3})/6 \\ \end{array}$$

3rd and Final Step:

Spectral resolution of ALL 6 of D₃ :

The old 'g-equals-1-times-g-times-1' Trick

$$\mathbf{g} = \mathbf{1} \cdot \mathbf{g} \cdot \mathbf{1} = (\mathbf{P}_{x,x}^{A_1} + \mathbf{P}_{y,y}^{A_2} + \mathbf{P}_{x,x}^{E} + \mathbf{P}_{y,y}^{E}) \cdot \mathbf{g} \cdot (\mathbf{P}_{x,x}^{A_1} + \mathbf{P}_{y,y}^{A_2} + \mathbf{P}_{x,x}^{E} + \mathbf{P}_{y,y}^{E})$$

$$\begin{array}{l} \begin{array}{c} Rank \ \rho(D_{3}) = 4 \\ idempotents \\ P_{n,n}^{(\alpha)} \end{array} \end{array}$$

$$\begin{array}{c} P_{x,x}^{A_{1}} = \ P_{0_{2}0_{2}}^{A_{1}} = P^{A_{1}}p^{0_{2}} = P^{A_{1}}(1+i_{3})/2 = (1+r^{1}+r^{2}+i_{1}+i_{2}+i_{3})/6 \\ P_{x,x}^{A_{2}} = \ P_{1_{2}1_{2}}^{A_{2}} = P^{A_{2}}p^{1_{2}} = P^{A_{2}}(1-i_{3})/2 = (1+r^{1}+r^{2}-i_{1}-i_{2}-i_{3})/6 \\ P_{x,x}^{E} = \ P_{0_{2}0_{2}}^{E} = P^{E}p^{0_{2}} = P^{E}(1+i_{3})/2 = (21-r^{1}-r^{2}-i_{1}-i_{2}+2i_{3})/6 \\ P_{x,y}^{E} = \ P_{1_{2}1_{2}}^{E} = P^{E}p^{1_{2}} = P^{E}(1-i_{3})/2 = (21-r^{1}-r^{2}+i_{1}+i_{2}-2i_{3})/6 \end{array}$$

3rd and Final Step: Spectral resolution of ALL 6 of D3 : The old 'g-equals-1-times-g-times-1' Trick

$$\mathbf{g} = \mathbf{1} \cdot \mathbf{g} \cdot \mathbf{1} = (\mathbf{P}_{x,x}^{A_1} + \mathbf{P}_{y,y}^{A_2} + \mathbf{P}_{x,x}^{E} + \mathbf{P}_{y,y}^{E}) \cdot \mathbf{g} \cdot (\mathbf{P}_{x,x}^{A_1} + \mathbf{P}_{y,y}^{A_2} + \mathbf{P}_{x,x}^{E} + \mathbf{P}_{y,y}^{E})$$

$$\mathbf{g} = \mathbf{1} \cdot \mathbf{g} \cdot \mathbf{1} = \mathbf{P}_{x,x}^{A_1} \cdot \mathbf{g} \cdot \mathbf{P}_{x,x}^{A_1} + 0 + 0 + 0$$

$$+ 0 + \mathbf{P}_{y,y}^{A_2} \cdot \mathbf{g} \cdot \mathbf{P}_{y,y}^{A_2} + 0 + 0$$

$$+ 0 + \mathbf{0} + \mathbf{P}_{x,x}^{E} \cdot \mathbf{g} \cdot \mathbf{P}_{x,x}^{E} + \mathbf{P}_{x,x}^{E} \cdot \mathbf{g} \cdot \mathbf{P}_{y,y}^{E}$$

$$+ 0 + 0 + \mathbf{0} + \mathbf{P}_{x,x}^{E} \cdot \mathbf{g} \cdot \mathbf{P}_{x,x}^{E} + \mathbf{P}_{x,x}^{E} \cdot \mathbf{g} \cdot \mathbf{P}_{y,y}^{E}$$

 $\mathbf{g} = \mathbf{1} \cdot \mathbf{g} \cdot \mathbf{1} = (\mathbf{P}_{x,x}^{A_1} + \mathbf{P}_{y,y}^{A_2} + \mathbf{P}_{x,x}^{E} + \mathbf{P}_{y,y}^{E}) \cdot \mathbf{g} \cdot (\mathbf{P}_{x,x}^{A_1} + \mathbf{P}_{y,y}^{A_2} + \mathbf{P}_{x,x}^{E} + \mathbf{P}_{y,y}^{E})$ $\mathbf{g} = \mathbf{1} \cdot \mathbf{g} \cdot \mathbf{1} = \mathbf{P}_{x \, x}^{\mathbf{A}_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{x \, x}^{\mathbf{A}_{1}} + \mathbf{0}$ 0 + 0+ 0 + $\mathbf{P}_{y,y}^{A_2} \cdot \mathbf{g} \cdot \mathbf{P}_{y,y}^{A_2}$ + 0 0 ++ 0 + $\mathbf{P}_{x,x}^{E} \cdot \mathbf{g} \cdot \mathbf{P}_{x,x}^{E} + \mathbf{P}_{x,x}^{E} \cdot \mathbf{g} \cdot \mathbf{P}_{y,y}^{E}$ $\mathbf{P}_{x,x}^{\mathbf{A}_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{x,x}^{\mathbf{A}_{1}} = D^{\mathbf{A}_{1}}(\mathbf{g})\mathbf{P}_{x,x}^{\mathbf{A}_{1}}$

+ 0 + 0 + $\mathbf{P}_{v,v}^{E} \cdot \mathbf{g} \cdot \mathbf{P}_{x,x}^{E} + \mathbf{P}_{y,y}^{E} \cdot \mathbf{g} \cdot \mathbf{P}_{y,y}^{E}$

Need to Define

$$\mathbf{P}_{x,x}^{E} \cdot \mathbf{g} \cdot \mathbf{P}_{y,y}^{E} = D_{x,y}^{E}(\mathbf{g})\mathbf{P}_{x,y}^{E}$$
6 Irredu

$$\mathbf{P}_{y,y}^{E} \cdot \mathbf{g} \cdot \mathbf{P}_{y,y}^{E} = D_{y,y}^{E}(\mathbf{g})\mathbf{P}_{y,y}^{E}$$

ucible Projectors $\mathbf{P}_{m,n}^{(\alpha)}$

Order $^{\circ}(D_3) = 6$

where:

 $\mathbf{P}_{\mathbf{v},\mathbf{v}}^{A_2} \cdot \mathbf{g} \cdot \mathbf{P}_{\mathbf{v},\mathbf{v}}^{A_2} = D^{A_2}(\mathbf{g}) \mathbf{P}_{\mathbf{v},\mathbf{v}}^{A_2}$

 $\mathbf{P}_{x,x}^{E} \cdot \mathbf{g} \cdot \mathbf{P}_{x,x}^{E} = D_{x,x}^{E}(\mathbf{g})\mathbf{P}_{x,x}^{E}$

 $\mathbf{P}_{v,v}^{E} \cdot \mathbf{g} \cdot \mathbf{P}_{x,x}^{E} = D_{v,x}^{E}(\mathbf{g})\mathbf{P}_{v,x}^{E}$

The old 'g-equals-1-times-g-times-1' Trick

$$\mathbf{g} = \mathbf{1} \cdot \mathbf{g} \cdot \mathbf{1} = (\mathbf{P}_{x,x}^{A_{1}} + \mathbf{P}_{y,y}^{A_{2}} + \mathbf{P}_{x,x}^{E} + \mathbf{P}_{y,y}^{E}) \cdot \mathbf{g} \cdot (\mathbf{P}_{x,x}^{A_{1}} + \mathbf{P}_{y,y}^{A_{2}} + \mathbf{P}_{x,x}^{E} + \mathbf{P}_{y,y}^{E})$$

$$\mathbf{g} = \mathbf{1} \cdot \mathbf{g} \cdot \mathbf{1} = D^{A_{1}}(\mathbf{g})\mathbf{P}_{x,x}^{A_{1}} + 0 + 0 + 0$$

$$+ 0 + D^{A_{2}}(\mathbf{g})\mathbf{P}_{y,y}^{A_{2}} + 0 + 0$$

$$+ 0 + D^{A_{2}}(\mathbf{g})\mathbf{P}_{y,y}^{A_{2}} + 0 + 0$$

$$+ 0 + 0 + D^{E}_{x,x}(\mathbf{g})\mathbf{P}_{x,x}^{E} + D^{E}_{x,y}(\mathbf{g})\mathbf{P}_{x,y}^{E}$$

$$+ 0 + 0 + D^{E}_{x,x}(\mathbf{g})\mathbf{P}_{x,x}^{E} + D^{E}_{x,y}(\mathbf{g})\mathbf{P}_{x,y}^{E}$$

where:

 $\mathbf{P}_{x}^{A_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{x}^{A_{1}} = D$ $\mathbf{P}_{v,v}^{A_2} \cdot \mathbf{g} \cdot \mathbf{P}_{v,v}^{A_2} = D^{A_2}(\mathbf{g}) \mathbf{P}_{v,v}^{A_2}$ $\mathbf{P}_{x,x}^{E} \cdot \mathbf{g} \cdot \mathbf{P}_{x,x}^{E} = D_{x,x}^{E}(\mathbf{g})\mathbf{P}_{x,x}^{E}$ $\mathbf{P}_{v,v}^{E} \cdot \mathbf{g} \cdot \mathbf{P}_{x,x}^{E} = D_{v,x}^{E}(\mathbf{g})\mathbf{P}_{v,x}^{E}$

Need to Define

- $\mathbf{P}_{x,x}^{E} \cdot \mathbf{g} \cdot \mathbf{P}_{y,y}^{E} = D_{x,y}^{E}(\mathbf{g})\mathbf{P}_{x,y}^{E}$
- $\mathbf{P}_{v,v}^{E} \cdot \mathbf{g} \cdot \mathbf{P}_{v,v}^{E} = D_{v,v}^{E}(\mathbf{g})\mathbf{P}_{v,v}^{E}$

6 Irreducible

- Projectors $\mathbf{P}_{m,n}^{(\alpha)}$
- *Order* $^{\circ}(D_3) = 6$

Wednesday, April 1, 2015

$$\begin{array}{l} \begin{array}{c} Rank \ \rho(D_{3}) = 4 \\ idempotents \\ P_{n,n}^{(\alpha)} \end{array} \end{array}$$

$$\begin{array}{c} P_{x,x}^{A_{1}} = \ P_{0_{2}0_{2}}^{A_{1}} = \ P^{A_{1}}p^{0_{2}} = \ P^{A_{1}}(1 + \mathbf{i}_{3})/2 = (1 + \mathbf{r}^{1} + \mathbf{r}^{2} + \mathbf{i}_{1} + \mathbf{i}_{2} + \mathbf{i}_{3})/6 \\ P_{x,x}^{A_{2}} = \ P_{1_{2}1_{2}}^{A_{2}} = \ P^{A_{2}}p^{1_{2}} = \ P^{A_{2}}(1 - \mathbf{i}_{3})/2 = (1 + \mathbf{r}^{1} + \mathbf{r}^{2} - \mathbf{i}_{1} - \mathbf{i}_{2} - \mathbf{i}_{3})/6 \\ P_{x,x}^{E} = \ P_{0_{2}0_{2}}^{E} = \ P^{E}p^{0_{2}} = \ P^{E}(1 + \mathbf{i}_{3})/2 = (21 - \mathbf{r}^{1} - \mathbf{r}^{2} - \mathbf{i}_{1} - \mathbf{i}_{2} + 2\mathbf{i}_{3})/6 \\ P_{x,y}^{E} = \ P_{1_{2}1_{2}}^{E} = \ P^{E}p^{1_{2}} = \ P^{E}(1 - \mathbf{i}_{3})/2 = (21 - \mathbf{r}^{1} - \mathbf{r}^{2} + \mathbf{i}_{1} + \mathbf{i}_{2} - 2\mathbf{i}_{3})/6 \end{array}$$

3rd and Final Step: Spectral resolution of ALL 6 of D3 : The old 'g-equals-1-times-g-times-1' Trick $g = 1 \cdot g \cdot 1 = (\mathbf{P}_{x,x}^{A_1} + \mathbf{P}_{y,y}^{A_2} + \mathbf{P}_{x,x}^{E} + \mathbf{P}_{y,y}^{E}) \cdot g \cdot (\mathbf{P}_{x,x}^{A_1} + \mathbf{P}_{y,y}^{A_2} + \mathbf{P}_{x,x}^{E} + \mathbf{P}_{y,y}^{E})$ $g = 1 \cdot g \cdot 1 = D^{A_1}(g) \mathbf{P}_{x,x}^{A_1} + D^{A_2}(g) \mathbf{P}_{y,y}^{A_2} + D_{x,x}^{E}(g) \mathbf{P}_{x,x}^{E} + D_{x,y}^{E}(g) \mathbf{P}_{x,y}^{E}$ $+ D_{y,x}^{E}(g) \mathbf{P}_{y,x}^{E} + D_{y,y}^{E}(g) \mathbf{P}_{y,y}^{E}$

where:

 $\mathbf{P}_{x,x}^{A_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{x,x}^{A_{1}} = D^{A_{1}}(\mathbf{g})\mathbf{P}_{x,x}^{A_{1}}$ $\mathbf{P}_{x,x}^{A_{2}} \cdot \mathbf{g} \cdot \mathbf{P}_{y,y}^{A_{2}} = D^{A_{2}}(\mathbf{g})\mathbf{P}_{y,y}^{A_{2}}$ $\mathbf{P}_{x,x}^{E} \cdot \mathbf{g} \cdot \mathbf{P}_{x,x}^{E} = D_{x,x}^{E}(\mathbf{g})\mathbf{P}_{x,x}^{E}$ $\mathbf{P}_{x,x}^{E} \cdot \mathbf{g} \cdot \mathbf{P}_{y,y}^{E} = D_{x,x}^{E}(\mathbf{g})\mathbf{P}_{x,x}^{E}$ $\mathbf{P}_{y,y}^{E} \cdot \mathbf{g} \cdot \mathbf{P}_{x,x}^{E} = D_{y,x}^{E}(\mathbf{g})\mathbf{P}_{y,x}^{E}$ $\mathbf{P}_{y,y}^{E} \cdot \mathbf{g} \cdot \mathbf{P}_{y,y}^{E} = D_{y,y}^{E}(\mathbf{g})\mathbf{P}_{y,y}^{E}$

Need to Define <u>6</u> Irreducible Projectors $\mathbf{P}_{m,n}^{(\alpha)}$ *Order* $^{\circ}(D_3) = 6$

Wednesday, April 1, 2015

$$\begin{array}{c} Rank \ \rho(D_{3}) = 4 \\ idempotents \\ P_{n,n}^{(\alpha)} \end{array}$$

$$\begin{array}{c} P_{x,x}^{A_{1}} = \ P_{0_{2}0_{2}}^{A_{1}} = \ P^{A_{1}}p^{0_{2}} = \ P^{A_{1}}(1 + \mathbf{i}_{3})/2 = (1 + \mathbf{r}^{1} + \mathbf{r}^{2} + \mathbf{i}_{1} + \mathbf{i}_{2} + \mathbf{i}_{3})/6 \\ P_{x,x}^{A_{2}} = \ P_{1_{2}1_{2}}^{A_{2}} = \ P^{A_{2}}p^{1_{2}} = \ P^{A_{2}}(1 - \mathbf{i}_{3})/2 = (1 + \mathbf{r}^{1} + \mathbf{r}^{2} - \mathbf{i}_{1} - \mathbf{i}_{2} - \mathbf{i}_{3})/6 \\ P_{x,x}^{E} = \ P_{0_{2}0_{2}}^{E} = \ P^{E}p^{0_{2}} = \ P^{E}(1 + \mathbf{i}_{3})/2 = (21 - \mathbf{r}^{1} - \mathbf{r}^{2} - \mathbf{i}_{1} - \mathbf{i}_{2} + 2\mathbf{i}_{3})/6 \\ P_{x,x}^{E} = \ P_{2_{12}}^{E} = \ P^{E}p^{0_{2}} = \ P^{E}(1 - \mathbf{i}_{3})/2 = (21 - \mathbf{r}^{1} - \mathbf{r}^{2} + \mathbf{i}_{1} + \mathbf{i}_{2} - 2\mathbf{i}_{3})/6 \\ P_{y,y}^{E} = \ P_{1_{2}1_{2}}^{E} = \ P^{E}p^{1_{2}} = \ P^{E}(1 - \mathbf{i}_{3})/2 = (21 - \mathbf{r}^{1} - \mathbf{r}^{2} + \mathbf{i}_{1} + \mathbf{i}_{2} - 2\mathbf{i}_{3})/6 \end{array}$$

3rd and Final Step: Spectral resolution of ALL 6 of D₃: The old 'g-equals-1-times-g-times-1' Trick $\mathbf{g} = \mathbf{1} \cdot \mathbf{g} \cdot \mathbf{1} = (\mathbf{P}_{x,x}^{A_1} + \mathbf{P}_{y,y}^{A_2} + \mathbf{P}_{x,x}^{E} + \mathbf{P}_{y,y}^{E}) \cdot \mathbf{g} \cdot (\mathbf{P}_{x,x}^{A_1} + \mathbf{P}_{y,y}^{A_2} + \mathbf{P}_{x,x}^{E} + \mathbf{P}_{y,y}^{E})$ $\mathbf{g} = D^{A_1}(\mathbf{g})\mathbf{P}_{x,x}^{A_1} + D^{A_2}(\mathbf{g})\mathbf{P}_{y,y}^{A_2} + D^{E}_{x,x}(\mathbf{g})\mathbf{P}_{x,x}^{E} + D^{E}_{y,y}(\mathbf{g})\mathbf{P}_{y,y}^{E} + D^{E}_{x,y}(\mathbf{g})\mathbf{P}_{x,y}^{E} + D^{E}_{y,x}(\mathbf{g})\mathbf{P}_{y,x}^{E}$ Six D_3 projectors: 4 idempotents + 2 nilpotents (off-diag.)

Wednesday, April 1, 2015

 $\mathbf{P}_{mn}^{(\mu)} = \frac{\ell^{(\mu)}}{2} \sum_{g} D_{mn}^{(\mu)} g g$

Spectral Efficiency: Same D(a)_{mn} projectors give a lot!

When there is no there, there...

 $\begin{array}{l} Polygonal \ geometry \ of \ U(2) \supset C_N \ character \ spectral \ function \\ Trace-character \ \chi^j(\Theta) \ of \ U(2) \ rotation \ by \ C_n \ angle \ \Theta = 2\pi/n \\ is \ an \ (\ell^j = 2j+1) \ term \ sum \ of \ e^{-im\Theta} \ over \ allowed \ m-quanta \ m = \{-j, \ -j+1, \dots, \ j-1, \ j\}. \\ \chi^{1/2}(\Theta) = trace D^{1/2}(\Theta) = trace \left(\begin{array}{cc} e^{-i\theta/2} & \cdot \\ \cdot & e^{+i\theta/2} \end{array}\right) \qquad \chi^1(\Theta) = trace D^1(\Theta) = trace \left(\begin{array}{cc} e^{-i\theta} & \cdot & \cdot \\ \cdot & 1 & \cdot \\ \cdot & e^{-i\theta} \end{array}\right) \\ (vector-j=1) \qquad (vector-j=1) \end{array}$

Polygonal geometry of $U(2) \supset C_N$ character spectral function Trace-character $\chi^{j}(\Theta)$ of U(2) rotation by C_n angle $\Theta = 2\pi/n$ is an $(\ell^{j} = 2j + 1)$ -term sum of e^{-im\Theta} over allowed *m*-quanta $m = \{-j, -j + 1, ..., j - 1, j\}$. $\chi^{1/2}(\Theta) = traceD^{1/2}(\Theta) = trace \begin{pmatrix} e^{-i\theta/2} & & \\ & e^{+i\theta/2} \end{pmatrix} \qquad \chi^{1}(\Theta) = traceD^{1}(\Theta) = trace \begin{pmatrix} e^{-i\theta} & \cdot & \cdot \\ & \cdot & 1 & \cdot \\ & & (vector-j=1) \end{pmatrix}$ $\chi^{j}(\Theta)$ involves a sum of $2\cos(m \Theta/2)$ for $m \ge 0$ up to m = j. $\chi^{1/2}(\Theta) = e^{-i\frac{\Theta}{2}} + e^{i\frac{\Theta}{2}} = 2\cos\frac{\Theta}{2} \qquad (spinor-j=1/2)$ $\chi^{3/2}(\Theta) = e^{-i\frac{\Theta}{2}} + ... + e^{i\frac{\Theta}{2}} = 2\cos\frac{\Theta}{2} + 2\cos\frac{\Theta}{2}$

 $\begin{array}{ll} Polygonal \ geometry \ of \ U(2) \supset C_N \ character \ spectral \ function \\ Trace-character \ \chi^{j}(\Theta) \ of \ U(2) \ rotation \ by \ C_n \ angle \ \Theta = 2\pi/n \\ is \ an \ (\ell^{j} = 2j+1) \ term \ sum \ of \ e^{-im\Theta} \ over \ allowed \ m-quanta \ m = \{-j, \ -j+1, \dots, j-1, j\}. \\ \chi^{1/2}(\Theta) = trace D^{1/2}(\Theta) = trace \left(\begin{array}{c} e^{-i\theta/2} & & \\ & e^{+i\theta/2} \end{array} \right) \qquad \chi^{1}(\Theta) = trace D^{1}(\Theta) = trace \left(\begin{array}{c} e^{-i\theta} & & & \\ & & 1 & & \\ & & (vector-j=1) \end{array} \right) \\ \chi^{j}(\Theta) \ involves \ a \ sum \ of \ 2cos(m \ \Theta/2) \ for \ m \ge 0 \ up \ to \ m=j. \\ \chi^{1/2}(\Theta) = e^{-i\frac{\Theta}{2}} + e^{i\frac{\Theta}{2}} = 2cos\frac{\Theta}{2} \qquad (spinor-j=1/2) \\ \chi^{3/2}(\Theta) = e^{-i\frac{\Theta}{2}} + ... \qquad + e^{i\frac{3\Theta}{2}} = 2cos\frac{\Theta}{2} + 2cos\frac{3\Theta}{2} \qquad \chi^{1}(\Theta) = e^{-i\Theta} + 1 + e^{i\Theta} = 1 + 2cos\Theta \\ (vector-j=1) \\ \chi^{5/2}(\Theta) = e^{-i\frac{5\Theta}{2}} + ... \qquad + e^{i\frac{5\Theta}{2}} = 2cos\frac{\Theta}{2} + 2cos\frac{3\Theta}{2} + 2cos\frac{5\Theta}{2} \qquad \chi^{2}(\Theta) = e^{-i2\Theta} + ...e^{i2\Theta} = 1 + 2cos\Theta + 2cos2\Theta \\ \end{array}$

(tensor-j=2)

Polygonal geometry of $U(2) \supset C_N$ character spectral function *Trace-character* $\chi^{j}(\Theta)$ of U(2) rotation by C_n angle $\Theta = 2\pi/n$ is an $(\ell^j = 2j+1)$ -term sum of $e^{-im\Theta}$ over allowed *m*-quanta $m = \{-j, -j+1, ..., j-1, j\}$. $\chi^{1/2}(\Theta) = traceD^{1/2}(\Theta) = trace \begin{pmatrix} e^{-i\theta/2} & \cdot \\ \cdot & e^{+i\theta/2} \end{pmatrix} \qquad \chi^{1}(\Theta) = traceD^{1}(\Theta) = trace \begin{pmatrix} e^{-i\theta} & \cdot & \cdot \\ \cdot & 1 & \cdot \\ \cdot & e^{-i\theta} \end{pmatrix}$ $j(\Theta) \text{ involves a sum of } 2\cos(m |\Theta|/2) \text{ for } > 0$ $\chi^{j}(\Theta)$ involves a sum of $2\cos(m \Theta/2)$ for $m \ge 0$ up to m=j. $\chi^{1/2}(\Theta) = e^{-i\frac{\Theta}{2}} + e^{i\frac{\Theta}{2}} = 2\cos\frac{\Theta}{2} \qquad (spinor-j=1/2)$ $\chi^0(\Theta) = e^{-i\Theta \cdot 0} \qquad = 1$ (scalar-j=0) $\chi^{3/2}(\Theta) = e^{-i\frac{3\Theta}{2}} + \dots + e^{i\frac{3\Theta}{2}} = 2\cos\frac{\Theta}{2} + 2\cos\frac{3\Theta}{2}$ $\chi^{1}(\Theta) = e^{-i\Theta} + 1 + e^{i\Theta} = 1 + 2\cos\Theta$ (vector-j=1) $\chi^{5/2}(\Theta) = e^{-i\frac{5\Theta}{2}} + \dots + e^{i\frac{5\Theta}{2}} = 2\cos\frac{\Theta}{2} + 2\cos\frac{3\Theta}{2} + 2\cos\frac{5\Theta}{2}$ $\chi^{2}(\Theta) = e^{-i2\Theta} + \dots e^{i2\Theta} = 1 + 2\cos\Theta + 2\cos2\Theta$ (tensor-j=2) $\chi^{j}(\Theta)$ is a geometric series with ratio $e^{i\Theta}$ between each successive term. $\chi^{j}(\Theta) = TraceD^{(j)}(\Theta) = e^{-i\Theta j} + e^{-i\Theta(j-1)} + e^{-i\Theta(j-2)} + \dots + e^{+i\Theta(j-2)} + e^{+i\Theta(j-1)} + e^{+i\Theta j}$ $\chi^{j}(\Theta)e^{-i\Theta} = e^{-i\Theta(j+1)} + e^{-i\Theta j} + e^{-i\Theta(j-1)} + e^{-i\Theta(j-2)} + \dots + e^{+i\Theta(j-2)} + e^{+i\Theta(j-1)} + e^{-i\Theta(j-1)} +$ Subtracting gives: $\chi^{j}(\Theta)(1-e^{-i\Theta}) = -e^{-i\Theta(j+1)}$ $e^{+i\Theta j}$ +
Polygonal geometry of $U(2) \supset C_N$ character spectral function *Trace-character* $\chi^{j}(\Theta)$ of U(2) rotation by C_n angle $\Theta = 2\pi/n$ is an $(\ell^j = 2j+1)$ -term sum of e^{-im Θ} over allowed *m*-quanta $m = \{-j, -j+1, ..., j-1, j\}$. $\chi^{1/2}(\Theta) = traceD^{1/2}(\Theta) = trace \begin{pmatrix} e^{-i\theta/2} & \ddots \\ & e^{+i\theta/2} \end{pmatrix} \qquad \chi^{1}(\Theta) = traceD^{1}(\Theta) = trace \begin{pmatrix} e^{-i\theta} & \ddots & \ddots \\ & \ddots & 1 & \ddots \\ & & \ddots & e^{-i\theta} \end{pmatrix}$ $j(\Theta) \text{ involves a sum of } 2\cos(m |\Theta|/2) \text{ for } > 0$ $\chi^{j}(\Theta)$ involves a sum of $2\cos(m \Theta/2)$ for $m \ge 0$ up to m=j. $\chi^{1/2}(\Theta) = e^{-i\frac{\Theta}{2}} + e^{i\frac{\Theta}{2}} = 2\cos\frac{\Theta}{2} \qquad (spinor-j=1/2)$ $\chi^0(\Theta) = e^{-i\Theta \cdot 0} \qquad = 1$ (scalar-j=0) $\chi^{3/2}(\Theta) = e^{-i\frac{3\Theta}{2}} + \dots + e^{i\frac{3\Theta}{2}} = 2\cos\frac{\Theta}{2} + 2\cos\frac{3\Theta}{2}$ $\chi^{1}(\Theta) = e^{-i\Theta} + 1 + e^{i\Theta} = 1 + 2\cos\Theta$ (vector-j=1) $\chi^{5/2}(\Theta) = e^{-i\frac{5\Theta}{2}} + \dots + e^{i\frac{5\Theta}{2}} = 2\cos\frac{\Theta}{2} + 2\cos\frac{3\Theta}{2} + 2\cos\frac{5\Theta}{2}$ $\chi^{2}(\Theta) = e^{-i2\Theta} + \dots e^{i2\Theta} = 1 + 2\cos\Theta + 2\cos2\Theta$ (tensor-j=2) $\chi^{j}(\Theta)$ is a geometric series with ratio $e^{i\Theta}$ between each successive term. $\chi^{j}(\Theta) = TraceD^{(j)}(\Theta) = e^{-i\Theta j} + e^{-i\Theta(j-1)} + e^{-i\Theta(j-2)} + \dots + e^{+i\Theta(j-2)} + e^{+i\Theta(j-1)} + e^{+i\Theta(j-1)} + e^{+i\Theta(j-1)} + e^{-i\Theta(j-1)} + e^{ \chi^{j}(\Theta)e^{-i\Theta} = e^{-i\Theta(j+1)} + e^{-i\Theta j} + e^{-i\Theta(j-1)} + e^{-i\Theta(j-2)} + \dots + e^{+i\Theta(j-2)} + e^{+i\Theta(j-1)} + e^{-i\Theta(j-1)} +$ Subtracting/dividing gives $\chi^{j}(\Theta)$ formula. $\chi^{j}(\Theta) = \frac{e^{+i\Theta j} - e^{-i\Theta(j+1)}}{1 - e^{-i\Theta}} = \frac{e^{+i\Theta(j+\frac{1}{2})} - e^{-i\Theta(j+\frac{1}{2})}}{e^{+i\frac{\Theta}{2}} - e^{-i\frac{\Theta}{2}}} = \frac{\sin\Theta(j+\frac{1}{2})}{\sin\frac{\Theta}{2}}$

Excerpts from Lecture 12.6 page 126-136

Polygonal geometry of $U(2) \supset C_N$ character spectral function *Trace-character* $\chi^{j}(\Theta)$ of U(2) rotation by C_n angle $\Theta = 2\pi/n$ is an $(\ell^j = 2j+1)$ -term sum of $e^{-im\Theta}$ over allowed *m*-quanta $m = \{-j, -j+1, ..., j-1, j\}$. $\chi^{1/2}(\Theta) = traceD^{1/2}(\Theta) = trace \begin{pmatrix} e^{-i\theta/2} & \cdot \\ \cdot & e^{+i\theta/2} \end{pmatrix} \qquad \chi^{1}(\Theta) = traceD^{1}(\Theta) = trace \begin{pmatrix} \cdot & 1 & \cdot \\ \cdot & 1 & \cdot \\ \cdot & e^{-i\theta} \end{pmatrix}$ $\chi^{1}(\Theta) = traceD^{1}(\Theta) = trace \begin{pmatrix} \cdot & 1 & \cdot \\ \cdot & \cdot & e^{-i\theta} \end{pmatrix}$ $\chi^{j}(\Theta)$ involves a sum of $2\cos(m \Theta/2)$ for $m \ge 0$ up to m=j. $\chi^{1/2}(\Theta) = e^{-i\frac{\Theta}{2}} + e^{i\frac{\Theta}{2}} = 2\cos\frac{\Theta}{2} \qquad (spinor-j=1/2)$ $\chi^0(\Theta) = e^{-i\Theta \cdot 0}$ =1 (scalar-j=0) $\chi^{3/2}(\Theta) = e^{-i\frac{3\Theta}{2}} + \dots + e^{i\frac{3\Theta}{2}} = 2\cos\frac{\Theta}{2} + 2\cos\frac{3\Theta}{2}$ $\chi^{1}(\Theta) = e^{-i\Theta} + 1 + e^{i\Theta} = 1 + 2\cos\Theta$ (vector-j=1) $\chi^{5/2}(\Theta) = e^{-i\frac{5\Theta}{2}} + \dots + e^{i\frac{5\Theta}{2}} = 2\cos\frac{\Theta}{2} + 2\cos\frac{3\Theta}{2} + 2\cos\frac{5\Theta}{2}$ $\chi^{2}(\Theta) = e^{-i2\Theta} + \dots e^{i2\Theta} = 1 + 2\cos\Theta + 2\cos2\Theta$ (tensor-j=2) $\chi^{j}(\Theta)$ is a geometric series with ratio $e^{i\Theta}$ between each successive term. $\chi^{j}(\Theta) = TraceD^{(j)}(\Theta) = e^{-i\Theta j} + e^{-i\Theta(j-1)} + e^{-i\Theta(j-2)} + \dots + e^{+i\Theta(j-2)} + e^{+i\Theta(j-1)} + e^{+i\Theta(j-1)} + e^{+i\Theta(j-1)} + e^{-i\Theta(j-1)} + e^{ \chi^{j}(\Theta)e^{-i\Theta} = e^{-i\Theta(j+1)} + e^{-i\Theta j} + e^{-i\Theta(j-1)} + e^{-i\Theta(j-2)} + \dots + e^{+i\Theta(j-2)} + e^{+i\Theta(j-1)} + e^{-i\Theta(j-1)} +$ Subtracting/dividing gives $\chi^{j}(\Theta)$ formula. $\chi^{j}(\Theta) = \frac{e^{+i\Theta j} - e^{-i\Theta(j+1)}}{1 - e^{-i\Theta}} = \frac{e^{+i\Theta(j+\frac{1}{2})} - e^{-i\Theta(j+\frac{1}{2})}}{e^{+i\frac{\Theta}{2}} - e^{-i\frac{\Theta}{2}}} = \frac{\sin\Theta(j+\frac{1}{2})}{\sin\frac{\Theta}{2}}$ $\chi^{j}(\frac{2\pi}{n}) = \frac{\sin\frac{\pi}{n}(2j+1)}{\sin\frac{\pi}{n}} = \frac{\sin\frac{\pi\ell^{j}}{n}}{\sin\frac{\pi}{n}}$ Character Spectral Function For C_n angle $\Theta = 2\pi/n$ this χ^j has where: $\ell^{j}=2j+1$ a lot of geometric significance. is U(2) irrep dimension

Polygonal geometry of $U(2) \supset C_N$ character spectral function

