Group Theory in Quantum Mechanics Lecture 16 (3.19.15)

Local-symmetry eigensolutions and wave modes

(Int.J.Mol.Sci, 14, 714(2013) p.755-774, QTCA Unit 5 Ch. 15) (PSDS - Ch. 4)

Review Stage 1: Group Center: Class-sums κ_{g} , characters $\chi^{\mu}(g)$, and All-Commuting Projectors \mathbb{P}^{μ} Review Stage 2: Group operators g and Mutually-Commuting projectors \mathbf{P}^{μ}_{kk} Review Stage 3: Weyl g-expansion in irreps $D^{\mu}_{jk}(g)$ and Non-Commuting projectors \mathbf{P}^{μ}_{jk} Simple matrix algebra $\mathbf{P}^{\mu}_{ab} \mathbf{P}^{\nu}_{cd} = \delta^{\mu\nu} \delta_{bc} \mathbf{P}^{\mu}_{ad}$ \mathbf{P}^{μ}_{jk} transforms right-and-left \mathbf{P}^{μ}_{jk} -expansion in g-operators Example of D₃ transformation by matrix $D^{E}_{jk}(\mathbf{r}^{1})$

Details of Mock-Mach relativity-duality for D₃ groups and representations Lab-fixed(Extrinsic-Global) vs. Body-fixed (Intrinsic-Local) Compare Global vs Local $|\mathbf{g}\rangle$ -basis and Global vs Local $|\mathbf{P}^{(\mu)}\rangle$ -basis

Hamiltonian and D₃ group matrices in global and local $|\mathbf{P}^{(\mu)}\rangle$ -basis Global vs. Local block rearrangement Hamiltonion eigen-matrix calculation Hamiltonian local-symmetry eigensolution (Vibrations treated in following Lecture 17)

Review Stage 1: Group Center: Class-sums κ_{g} , characters $\chi^{\mu}(g)$, and All-Commuting Projectors \mathbb{P}^{μ} Review Stage 2: Group operators g and Mutually-Commuting projectors \mathbf{P}^{μ}_{kk} Review Stage 3: Weyl g-expansion in irreps $D^{\mu}_{jk}(g)$ and Non-Commuting projectors \mathbf{P}^{μ}_{jk} Simple matrix algebra $\mathbf{P}^{\mu}_{ab} \mathbf{P}^{\nu}_{cd} = \delta^{\mu\nu} \delta_{bc} \mathbf{P}^{\mu}_{ad}$ \mathbf{P}^{μ}_{jk} transforms right-and-left \mathbf{P}^{μ}_{jk} -expansion in g-operators Example of D_3 transformation by matrix $D^{E}_{jk}(\mathbf{r}^1)$

Details of Mock-Mach relativity-duality for D₃ groups and representations Lab-fixed(Extrinsic-Global) vs. Body-fixed (Intrinsic-Local) Compare Global vs Local $|\mathbf{g}\rangle$ -basis and Global vs Local $|\mathbf{P}^{(\mu)}\rangle$ -basis

Hamiltonian and D₃ group matrices in global and local $|\mathbf{P}^{(\mu)}\rangle$ -basis Global vs. Local block rearrangement Hamiltonian local-symmetry eigensolution Molecular vibrational mode eigensolution Local symmetry limit Global symmetry limit (free or "genuine" modes)

Review Stage 1: Group Center: Class-sums $\kappa_{\mathbf{g}}$, *characters* $\chi^{\mu}(\mathbf{g})$, and All-Commuting Projectors \mathbb{P}^{μ}

Characters:
$$\chi_g^{\mu} \equiv TrD^{\mu}(\mathbf{g}) = \chi^{\mu}(\mathbf{g}) = \chi^{\mu}(\mathbf{hgh}^{-1})$$

 D_3 examples

Review Stage 1: Group Center: Class-sums κ_{g} , characters $\chi^{\mu}(g)$, and All-Commuting Projectors \mathbb{P}^{μ} Review Stage 2: Group operators g and Mutually-Commuting projectors \mathbf{P}^{μ}_{kk} Review Stage 3: Weyl g-expansion in irreps $D^{\mu}_{jk}(g)$ and Non-Commuting projectors \mathbf{P}^{μ}_{jk} Simple matrix algebra $\mathbf{P}^{\mu}_{ab} \mathbf{P}^{\nu}_{cd} = \delta^{\mu\nu} \delta_{bc} \mathbf{P}^{\mu}_{ad}$ \mathbf{P}^{μ}_{jk} transforms right-and-left \mathbf{P}^{μ}_{jk} -expansion in g-operators Example of D_3 transformation by matrix $D^{E}_{jk}(\mathbf{r}^1)$

Details of Mock-Mach relativity-duality for D₃ groups and representations Lab-fixed(Extrinsic-Global) vs. Body-fixed (Intrinsic-Local) Compare Global vs Local $|\mathbf{g}\rangle$ -basis and Global vs Local $|\mathbf{P}^{(\mu)}\rangle$ -basis

Hamiltonian and D₃ group matrices in global and local $|\mathbf{P}^{(\mu)}\rangle$ -basis Global vs. Local block rearrangement Hamiltonian local-symmetry eigensolution Molecular vibrational mode eigensolution Local symmetry limit Global symmetry limit (free or "genuine" modes)

Review Stage 2: Group operators **g** and Mutually-Commuting projectors \mathbf{P}^{μ}_{kk} $\mathbb{P}^{\mu} = \mathbf{P}^{\mu}_{11} + \mathbf{P}^{\mu}_{22} + \dots \mathbf{P}^{\mu}_{\ell^{\mu}\ell^{\mu}}$ (Mutually-commuting Projectors \mathbf{P}^{μ}_{mm}) \mathbb{P}^{μ} splits into a number ℓ^{μ} of irreducible \mathbf{P}^{μ}_{jj} where ℓ^{μ} =dimension of irrep D^{μ}

Review Stage 2: Group operators **g** and Mutually-Commuting projectors \mathbf{P}^{μ}_{kk} $\mathbb{P}^{\mu} = \mathbf{P}^{\mu}_{11} + \mathbf{P}^{\mu}_{22} + \dots \mathbf{P}^{\mu}_{\ell^{\mu}\ell^{\mu}}$ (Mutually-commuting Projectors \mathbf{P}^{μ}_{mm}) \mathbb{P}^{μ} splits into a number ℓ^{μ} of irreducible \mathbf{P}^{μ}_{jj} where ℓ^{μ} =dimension of irrep D^{μ} and sum of ℓ^{μ}_{jj} is RANK of D_3

 \mathbb{P}^{μ} splitting NOT unique if $\ell^{\mu} > 1$

Example: The splittable all-commuting projector in D₃ $\mathbb{P}^{E} = (2\kappa_{1} - \kappa_{r} + 0)/3 = (21 - \mathbf{r} - \mathbf{r}^{2})/3$

...OR....

Review Stage 2: Group operators **g** and Mutually-Commuting projectors \mathbf{P}^{μ}_{kk} $\mathbb{P}^{\mu} = \mathbf{P}^{\mu}_{11} + \mathbf{P}^{\mu}_{22} + \dots \mathbf{P}^{\mu}_{\ell^{\mu}\ell^{\mu}}$ (Mutually-commuting Projectors \mathbf{P}^{μ}_{mm}) \mathbb{P}^{μ} splits into a number ℓ^{μ} of irreducible \mathbf{P}^{μ}_{jj} where ℓ^{μ} =dimension of irrep D^{μ} and sum of ℓ^{μ}_{jj} is RANK of D_3

 $\mathbb{P}^{\mu} \text{ splitting NOT unique if } \ell^{\mu} > 1....$ Splitting by $C_2 = \{1, i_3\}$ (See Lect. 15 p. 80) $\mathbf{P}_{0_2, 0_2}^E = \mathbf{P}_{x, x}^E = \mathbb{P}^E (1 + i_3)/2$ $\mathbf{P}_{1_2, 1_2}^E = \mathbf{P}_{y, y}^E = \mathbb{P}^E (1 - i_3)/2$

> Example: The splittable all-commuting projector in D₃ $\mathbb{P}^{E} = (2\kappa_{1} - \kappa_{r} + 0)/3 = (21 - \mathbf{r} - \mathbf{r}^{2})/3$

...OR...

Review Stage 2: Group operators **g** and Mutually-Commuting projectors \mathbf{P}^{μ}_{kk} $\mathbb{P}^{\mu} = \mathbf{P}^{\mu}_{11} + \mathbf{P}^{\mu}_{22} + \dots \mathbf{P}^{\mu}_{\ell^{\mu}\ell^{\mu}}$ (Mutually-commuting Projectors \mathbf{P}^{μ}_{mm}) \mathbb{P}^{μ} splits into a number ℓ^{μ} of irreducible \mathbf{P}^{μ}_{jj} where ℓ^{μ} =dimension of irrep D^{μ} and sum of ℓ^{μ}

and sum of ℓ^{μ} is RANK of D₃

 $\mathbb{P}^{\mu} \text{ splitting NOT unique if } \ell^{\mu} > 1....$ Splitting by $C_2 = \{1, i_3\}$ (See Lect. 15 p. 80) $\mathbf{P}_{0_2, 0_2}^E = \mathbf{P}_{x, x}^E = \mathbb{P}^E (1 + i_3)/2$ $\mathbf{P}_{1_2, 1_2}^E = \mathbf{P}_{y, y}^E = \mathbb{P}^E (1 - i_3)/2$

Product algebra on group table:

Example: The splittable all-commuting projector in D_3 $\mathbb{P}^E = (2\kappa_1 - \kappa_r + 0)/3 = (21 - \mathbf{r} - \mathbf{r}^2)/3$

...OR....

Review Stage 2: Group operators **g** and Mutually-Commuting projectors \mathbf{P}^{μ}_{kk} $\mathbb{P}^{\mu} = \mathbf{P}^{\mu}_{11} + \mathbf{P}^{\mu}_{22} + \dots \mathbf{P}^{\mu}_{\ell^{\mu}\ell^{\mu}}$ (Mutually-commuting Projectors \mathbf{P}^{μ}_{mm}) \mathbb{P}^{μ} splits into a number ℓ^{μ} of irreducible \mathbf{P}^{μ}_{jj} where ℓ^{μ} =dimension of irrep D^{μ} and sum of ℓ^{μ}

and sum of ℓ^{μ} is RANK of D₃

 $\mathbb{P}^{\mu} \text{ splitting NOT unique if } \ell^{\mu} > 1....$ Splitting by $C_2 = \{1, \mathbf{i}_3\}$ (See Lect. 15 p. 80) $\mathbf{P}_{0_2, 0_2}^E = \mathbf{P}_{x, x}^E = \mathbb{P}^E (1 + \mathbf{i}_3)/2 = (21 - \mathbf{r}^1 - \mathbf{r}^2 - \mathbf{i}_1 - \mathbf{i}_2 + 2\mathbf{i}_3)/6$ $\mathbf{P}_{1_2, 1_2}^E = \mathbf{P}_{y, y}^E = \mathbb{P}^E (1 - \mathbf{i}_3)/2 = (21 - \mathbf{r}^1 - \mathbf{r}^2 + \mathbf{i}_1 + \mathbf{i}_2 - 2\mathbf{i}_3)/6$

Product algebra on group table:

Example:

The splittable all-commuting projector in D_3 $\mathbb{P}^E = (2\kappa_1 - \kappa_r + 0)/3 = (21 - \mathbf{r} - \mathbf{r}^2)/3$

Review Stage 2: Group operators **g** and Mutually-Commuting projectors \mathbf{P}^{μ}_{kk} $\mathbb{P}^{\mu} = \mathbf{P}^{\mu}_{11} + \mathbf{P}^{\mu}_{22} + \dots \mathbf{P}^{\mu}_{\ell^{\mu}\ell^{\mu}}$ (Mutually-commuting Projectors \mathbf{P}^{μ}_{mm}) \mathbb{P}^{μ} splits into a number ℓ^{μ} of irreducible \mathbf{P}^{μ}_{jj} where ℓ^{μ} =dimension of irrep D^{μ} and sum of ℓ^{μ}

 $\mathbb{P}^{\mu} \text{ splitting NOT unique if } \ell^{\mu} > 1....$ Splitting by $C_2 = \{1, \mathbf{i}_3\}$ (See Lect. 15 p. 80) $\mathbf{P}_{0_2, 0_2}^E = \mathbf{P}_{x, x}^E = \mathbb{P}^E (1 + \mathbf{i}_3)/2 = (21 - \mathbf{r}^1 - \mathbf{r}^2 - \mathbf{i}_1 - \mathbf{i}_2 + 2\mathbf{i}_3)/6$ $\mathbf{P}_{1_2, 1_2}^E = \mathbf{P}_{y, y}^E = \mathbb{P}^E (1 - \mathbf{i}_3)/2 = (21 - \mathbf{r}^1 - \mathbf{r}^2 + \mathbf{i}_1 + \mathbf{i}_2 - 2\mathbf{i}_3)/6$

...OR... Splitting by $C_3 = \{1, r^1, r^2\}$ (See Lect. 15 p. 84) $P_{1_3, 1_3}^E = P_{+1_3, +1_3}^E = \mathbb{P}^E (1 + \varepsilon r^1 + \varepsilon^* r^2)/3$ $P_{2_3, 2_3}^E = P_{-1_3, -1_3}^E = \mathbb{P}^E (1 + \varepsilon^* r^1 + \varepsilon r^2)/3$

is RANK of D₃

Product algebra on group table:

Example:

The splittable all-commuting projector in D_3 $\mathbb{P}^E = (2\kappa_1 - \kappa_r + 0)/3 = (21 - \mathbf{r} - \mathbf{r}^2)/3$

Review Stage 2: Group operators **g** and Mutually-Commuting projectors \mathbf{P}^{μ}_{kk} $\mathbb{P}^{\mu} = \mathbf{P}^{\mu}_{11} + \mathbf{P}^{\mu}_{22} + \dots \mathbf{P}^{\mu}_{\ell^{\mu}\ell^{\mu}}$ (Mutually-commuting Projectors \mathbf{P}^{μ}_{mm}) \mathbb{P}^{μ} splits into a number ℓ^{μ} of irreducible \mathbf{P}^{μ}_{jj} where ℓ^{μ} =dimension of irrep D^{μ} and sum of ℓ^{μ}_{jj} is RANK of D₃

 $\mathbb{P}^{\mu} \text{ splitting NOT unique if } \ell^{\mu} > 1....$ Splitting by $C_2 = \{1, \mathbf{i}_3\}$ (See Lect. 15 p. 80) $\mathbf{P}_{0_2, 0_2}^E = \mathbf{P}_{x, x}^E = \mathbb{P}^E (1 + \mathbf{i}_3)/2 = (21 - \mathbf{r}^1 - \mathbf{r}^2 - \mathbf{i}_1 - \mathbf{i}_2 + 2\mathbf{i}_3)/6$ $\mathbf{P}_{1_2, 1_2}^E = \mathbf{P}_{y, y}^E = \mathbb{P}^E (1 - \mathbf{i}_3)/2 = (21 - \mathbf{r}^1 - \mathbf{r}^2 + \mathbf{i}_1 + \mathbf{i}_2 - 2\mathbf{i}_3)/6$

Product algebra on group table:

...OR... *Splitting by* $C_3 = \{1, r^1, r^2\}$ (*See Lect. 15 p. 84*) $\mathbf{P}_{1_{3},1_{3}}^{E} = \mathbf{P}_{+1_{3},+1_{3}}^{E} = \mathbb{P}^{E} (1 + \varepsilon \mathbf{r}^{1} + \varepsilon^{*} \mathbf{r}^{2})/3$ $\mathbf{P}_{2_{2},2_{2}}^{E} = \mathbf{P}_{1_{2},1_{2}}^{E} = \mathbb{P}^{E} (\mathbf{1} + \varepsilon^{*} \mathbf{r}^{1} + \varepsilon \mathbf{r}^{2})/3$ $\left[(2 - \varepsilon - \varepsilon^*) \mathbf{1} + \varepsilon^* (2 - \varepsilon - \varepsilon^*) \mathbf{r} + \varepsilon (2 - \varepsilon - \varepsilon^*) \mathbf{r}^2 \right] / 3 \cdot 3$ $\left[(2-\varepsilon-\varepsilon^*)\mathbf{1} + (2\varepsilon^*-1-\varepsilon)\mathbf{r} + (2\varepsilon-\varepsilon^*-1)\mathbf{r}^2\right]/3\cdot 3$ i_1 i_3 r^2 1 r*The splittable all-commuting projector in D*₃ $\mathbb{P}^{E} = (2\kappa_{1} - \kappa_{r} + 0)/3 = (21 - r - r^{2})/3$

Review Stage 2: Group operators **g** and Mutually-Commuting projectors \mathbf{P}^{μ}_{kk} $\mathbb{P}^{\mu} = \mathbf{P}^{\mu}_{11} + \mathbf{P}^{\mu}_{22} + \dots \mathbf{P}^{\mu}_{\ell^{\mu}\ell^{\mu}}$ (Mutually-commuting Projectors \mathbf{P}^{μ}_{mm}) \mathbb{P}^{μ} splits into a number ℓ^{μ} of irreducible \mathbf{P}^{μ}_{jj} where ℓ^{μ} =dimension of irrep D^{μ} and sum of ℓ^{μ}_{is} is RANK of D_3 \mathbb{P}^{μ} splitting NOT unique if $\ell^{\mu} > 1$

 $\mathbb{P}^{\mu} \text{ splitting NOT unique if } \ell^{\mu} > 1....$ Splitting by $C_2 = \{1, \mathbf{i}_3\}$ (See Lect. 15 p. 80) $\mathbf{P}_{0_2, 0_2}^E = \mathbf{P}_{x, x}^E = \mathbb{P}^E (1 + \mathbf{i}_3)/2 = (21 - \mathbf{r}^1 - \mathbf{r}^2 - \mathbf{i}_1 - \mathbf{i}_2 + 2\mathbf{i}_3)/6$ $\mathbf{P}_{1_2, 1_2}^E = \mathbf{P}_{y, y}^E = \mathbb{P}^E (1 - \mathbf{i}_3)/2 = (21 - \mathbf{r}^1 - \mathbf{r}^2 + \mathbf{i}_1 + \mathbf{i}_2 - 2\mathbf{i}_3)/6$

Product algebra on group table:

(1				$\pm i_3)/2$						
$(1)^{21}$	21	\mathbf{r}^2	r	\mathbf{i}_1	\mathbf{i}_2	±2i ₃				
$\left(\frac{1}{3}\right)$ -r	-r	1	\mathbf{r}^2	i ₃	\mathbf{i}_1	$\mp \mathbf{i}_2$				
-r ²	$-\mathbf{r}^2$	r	1	i ₂	i ₃	$\mp \mathbf{i}_1$	(1			
	\mathbf{i}_1	1 ₃	i ₂	1	r	\mathbf{r}^2	$\sqrt{6}$			
	\mathbf{i}_2	i ₁	i ₃	\mathbf{r}^2	1	r				
	i ₃	i ₂	\mathbf{i}_1	r	\mathbf{r}^2	1				

...OR... Splitting by $C_3 = \{1, r^1, r^2\}$ (See Lect. 15 p. 84) $\mathbf{P}_{1_{2},1_{2}}^{E} = \mathbf{P}_{+1_{2},+1_{2}}^{E} = \mathbb{P}^{E} (\mathbf{1} + \varepsilon \mathbf{r}^{1} + \varepsilon^{*} \mathbf{r}^{2})/3 = (\mathbf{1} + \varepsilon \mathbf{r}^{1} + \varepsilon^{*} \mathbf{r}^{2})/3$ $\mathbf{P}_{2_{2,2_{3}}}^{E} = \mathbf{P}_{1_{2,-1_{3}}}^{E} = \mathbb{P}^{E} (\mathbf{1} + \varepsilon^{*} \mathbf{r}^{1} + \varepsilon \mathbf{r}^{2})/3 = (\mathbf{1} + \varepsilon^{*} \mathbf{r}^{1} + \varepsilon \mathbf{r}^{2})/3$ (3)1+ $\varepsilon^*(3)\mathbf{r}$ + $\varepsilon(3)\mathbf{r}^2/3\cdot 3$ $(2-\varepsilon-\varepsilon^*)\mathbf{1} + \varepsilon^*(2-\varepsilon-\varepsilon^*)\mathbf{r} + \varepsilon(2-\varepsilon-\varepsilon^*)\mathbf{r}^2]/3.3$ $\left[(2-\varepsilon-\varepsilon^*)\mathbf{1} + (2\varepsilon^*-1-\varepsilon)\mathbf{r} + (2\varepsilon-\varepsilon^*-1)\mathbf{r}^2\right]/3\cdot 3$

The splittable all-commuting projector in D_3 $\mathbb{P}^E = (2\kappa_1 - \kappa_r + 0)/3 = (21 - \mathbf{r} - \mathbf{r}^2)/3$ Review Stage 1: Group Center: Class-sums κ_g, characters χ^μ(g), and All-Commuting Projectors P^μ Review Stage 2: Group operators g and Mutually-Commuting projectors P^μ_{kk}
Review Stage 3: Weyl g-expansion in irreps D^μ_{jk}(g) and Non-Commuting projectors P^μ_{jk}
Simple matrix algebra P^μ_{ab} P^ν_{cd} = δ^{μν}δ_{bc}P^μ_{ad}
P^μ_{jk} transforms right-and-left
P^μ_{jk} -expansion in g-operators
Example of D₃ transformation by matrix D^E_{jk}(r¹)

Details of Mock-Mach relativity-duality for D₃ groups and representations Lab-fixed(Extrinsic-Global) vs. Body-fixed (Intrinsic-Local) Compare Global vs Local $|\mathbf{g}\rangle$ -basis and Global vs Local $|\mathbf{P}^{(\mu)}\rangle$ -basis

Hamiltonian and D₃ group matrices in global and local $|\mathbf{P}^{(\mu)}\rangle$ -basis Global vs. Local block rearrangement Hamiltonian local-symmetry eigensolution Molecular vibrational mode eigensolution Local symmetry limit Global symmetry limit (free or "genuine" modes)

Review Stage 2: Group operators **g** and Mutually-Commuting projectors \mathbf{P}^{μ}_{kk} $\mathbb{P}^{\mu} = \mathbf{P}^{\mu}_{11} + \mathbf{P}^{\mu}_{22} + \dots \mathbf{P}^{\mu}_{\ell^{\mu}\ell^{\mu}}$ (Mutually-commuting Projectors \mathbf{P}^{μ}_{mm}) \mathbb{P}^{μ} splits into a number ℓ^{μ} of irreducible \mathbf{P}^{μ}_{jj} where ℓ^{μ} =dimension of irrep D^{μ} Review Stage 3: Weyl **g**-expansion in irreps $D^{\mu}_{jk}(g)$ and Non-Commuting projectors \mathbf{P}^{μ}_{jk} Group **g**-expansion in Projectors \mathbf{P}^{μ}_{mn} Projector \mathbf{P}^{μ}_{mn} expansion in Group **g**

$$\mathbf{g} = \left(\sum_{\mu'} \sum_{m'}^{\ell^{\mu}} \sum_{n'}^{\ell^{\mu}} D_{m'n'}^{\mu'} \left(\mathbf{g} \right) \mathbf{P}_{m'n'}^{\mu'} \right)$$

Review Stage 2: Group operators g and Mutually-Commuting projectors \mathbf{P}^{μ}_{kk} $\mathbb{P}^{\mu} = \mathbf{P}^{\mu}_{11} + \mathbf{P}^{\mu}_{22} + \dots \mathbf{P}^{\mu}_{\ell^{\mu}\ell^{\mu}} \qquad (Mutually-commuting Projectors \mathbf{P}^{\mu}_{mm})$ \mathbb{P}^{μ} splits into a number ℓ^{μ} of irreducible \mathbf{P}^{μ}_{ij} where ℓ^{μ} =dimension of irrep D^{μ} *Review Stage 3: Weyl* **g***-expansion in irreps* $D^{\mu}_{jk}(g)$ and Non-Commuting projectors \mathbf{P}^{μ}_{jk} *Group* **g***-expansion in Projectors* \mathbf{P}^{μ}_{mn} Projector \mathbf{P}^{μ}_{mn} expansion in Group g $\mathbf{g} = \left(\sum_{\mu'} \sum_{m'}^{\ell^{\mu}} \sum_{n'}^{\ell^{\mu}} D_{m'n'}^{\mu'}(g) \mathbf{P}_{m'n'}^{\mu'}\right) \quad The \ \mathbf{g} = \mathbf{1} \cdot \mathbf{g} \cdot \mathbf{1} \ development:$ (Lecture 15 p. 90-97) Weyl development follows... $\mathbf{g} = \mathbf{1} \cdot \mathbf{g} \cdot \mathbf{1} = (\mathbf{P}_{x,x}^{A_1} + \mathbf{P}_{y,y}^{A_2} + \mathbf{P}_{x,x}^{E} + \mathbf{P}_{y,y}^{E}) \cdot \mathbf{g} \cdot (\mathbf{P}_{x,x}^{A_1} + \mathbf{P}_{y,y}^{A_2} + \mathbf{P}_{x,x}^{E} + \mathbf{P}_{y,y}^{E})$ $\mathbf{g} = \mathbf{1} \cdot \mathbf{g} \cdot \mathbf{1} = \mathbf{P}_{\mathbf{x},\mathbf{x}}^{\mathbf{A}_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{\mathbf{x},\mathbf{x}}^{\mathbf{A}_{1}} + \mathbf{0} + \mathbf{0} + \mathbf{0}$ + 0 + $\mathbf{P}_{v,v}^{A_2} \cdot \mathbf{g} \cdot \mathbf{P}_{v,v}^{A_2}$ + 0 + 0 + 0 + 0 + $\mathbf{P}_{x,x}^{E} \cdot \mathbf{g} \cdot \mathbf{P}_{x,x}^{E} + \mathbf{P}_{x,x}^{E} \cdot \mathbf{g} \cdot \mathbf{P}_{y,y}^{E}$ + 0 + 0 + $\mathbf{P}_{y,y}^{E} \cdot \mathbf{g} \cdot \mathbf{P}_{x,x}^{E} + \mathbf{P}_{y,y}^{E} \cdot \mathbf{g} \cdot \mathbf{P}_{y,y}^{E}$

Review Stage 2: Group operators **g** *and Mutually-Commuting projectors* \mathbf{P}^{μ}_{kk} $\mathbb{P}^{\mu} = \mathbf{P}^{\mu}_{11} + \mathbf{P}^{\mu}_{22} + \dots \mathbf{P}^{\mu}_{\ell^{\mu}\ell^{\mu}} \qquad (Mutually-commuting Projectors \mathbf{P}^{\mu}_{mm})$ \mathbb{P}^{μ} splits into a number ℓ^{μ} of irreducible \mathbf{P}^{μ}_{ij} where ℓ^{μ} =dimension of irrep D^{μ} *Review Stage 3: Weyl* **g***-expansion in irreps* $D^{\mu}_{jk}(g)$ and Non-Commuting projectors \mathbf{P}^{μ}_{jk} Group g-expansion in Projectors \mathbf{P}^{μ}_{mn} Projector \mathbf{P}^{μ}_{mn} expansion in Group g $\mathbf{g} = \left(\sum_{\mu'} \sum_{m'}^{\ell^{\mu}} \sum_{n'}^{\ell^{\mu}} D_{m'n'}^{\mu'}(g) \mathbf{P}_{m'n'}^{\mu'}\right) \quad The \ \mathbf{g} = \mathbf{1} \cdot \mathbf{g} \cdot \mathbf{1} \ development:$ (Lecture 15 p. 90-97) Weyl development follows... $\mathbf{g} = \mathbf{1} \cdot \mathbf{g} \cdot \mathbf{1} = (\mathbf{P}_{x,x}^{A_1} + \mathbf{P}_{y,y}^{A_2} + \mathbf{P}_{x,x}^{E} + \mathbf{P}_{y,y}^{E}) \cdot \mathbf{g} \cdot (\mathbf{P}_{x,x}^{A_1} + \mathbf{P}_{y,y}^{A_2} + \mathbf{P}_{x,x}^{E} + \mathbf{P}_{y,y}^{E})$ $\mathbf{g} = \mathbf{1} \cdot \mathbf{g} \cdot \mathbf{1} = D^{\mathbf{A}_{\mathbf{I}}}(\mathbf{g}) \mathbf{P}_{\mathbf{x},\mathbf{x}}^{\mathbf{A}_{\mathbf{I}}} + \mathbf{0} + \mathbf{0} + \mathbf{0}$ + 0 + $D^{A_2}(\mathbf{g})\mathbf{P}^{A_2}_{v,v}$ + 0 + 0 + 0 + 0 $+ D_{x,x}^{E}(\mathbf{g})\mathbf{P}_{x,x}^{E} + D_{x,y}^{E}(\mathbf{g})\mathbf{P}_{x,y}^{E}$ + 0 + 0 $+ D_{y,x}^{E}(\mathbf{g})\mathbf{P}_{y,x}^{E} + D_{y,y}^{E}(\mathbf{g})\mathbf{P}_{y,y}^{E}$ where: $\mathbf{P}_{x,x}^{A_1} \cdot \mathbf{g} \cdot \mathbf{P}_{x,x}^{A_1} = D^{A_1}(\mathbf{g}) \mathbf{P}_{x,x}^{A_1} \qquad \mathbf{P}_{y,y}^{A_2} \cdot \mathbf{g} \cdot \mathbf{P}_{y,y}^{A_2} = D^{A_2}(\mathbf{g}) \mathbf{P}_{y,y}^{A_2}$ $\mathbf{P}_{x,x}^{E} \cdot \mathbf{g} \cdot \mathbf{P}_{x,x}^{E} = D_{x,x}^{E}(\mathbf{g})\mathbf{P}_{x,x}^{E} \qquad \mathbf{P}_{x,x}^{E} \cdot \mathbf{g} \cdot \mathbf{P}_{y,y}^{E} = D_{x,y}^{E}(\mathbf{g})\mathbf{P}_{x,y}^{E}$ $\mathbf{P}_{v,v}^{E} \cdot \mathbf{g} \cdot \mathbf{P}_{x,x}^{E} = D_{v,x}^{E}(\mathbf{g})\mathbf{P}_{v,x}^{E} \qquad \mathbf{P}_{v,v}^{E} \cdot \mathbf{g} \cdot \mathbf{P}_{v,v}^{E} = D_{v,v}^{E}(\mathbf{g})\mathbf{P}_{v,v}^{E}$

Wednesday, April 1, 2015

Review Stage 1: Group Center: Class-sums κ_g , characters $\chi^{\mu}(g)$, and All-Commuting Projectors \mathbb{P}^{μ} Review Stage 2: Group operators g and Mutually-Commuting projectors \mathbf{P}^{μ}_{kk} Review Stage 3: Weyl g-expansion in irreps $D^{\mu}_{jk}(g)$ and Non-Commuting projectors \mathbf{P}^{μ}_{jk}

Simple matrix algebra $\mathbf{P}^{\mu}_{ab} \mathbf{P}^{\nu}_{cd} = \delta^{\mu\nu} \delta_{bc} \mathbf{P}^{\mu}_{ad}$ \mathbf{P}^{μ}_{jk} transforms right-and-left \mathbf{P}^{μ}_{jk} -expansion in **g**-operators Example of D₃ transformation by matrix $D^{E}_{jk}(\mathbf{r}^{1})$

Details of Mock-Mach relativity-duality for D₃ groups and representations Lab-fixed(Extrinsic-Global) vs. Body-fixed (Intrinsic-Local) Compare Global vs Local $|\mathbf{g}\rangle$ -basis and Global vs Local $|\mathbf{P}^{(\mu)}\rangle$ -basis

Hamiltonian and D₃ group matrices in global and local $|\mathbf{P}^{(\mu)}\rangle$ -basis Global vs. Local block rearrangement Hamiltonian local-symmetry eigensolution Molecular vibrational mode eigensolution Local symmetry limit Global symmetry limit (free or "genuine" modes)

Weyl expansion of g in irep $D^{\mu}_{jk}(g)\mathbf{P}^{\mu}_{jk}$		"g-equals-1·g·1-trick"											
<i>Irreducible idempotent completeness</i> $1 = \mathbf{P}^{A_1} + \mathbf{P}^{A_2} + \mathbf{P}_{xx}^{E_1} + \mathbf{P}_{yy}^{E_1}$ <i>completely expands group by</i> $\mathbf{g} = 1 \cdot \mathbf{g} \cdot 1$													
$\mathbf{g} = 1 \cdot \mathbf{g} \cdot 1 = \sum_{\mu} \sum_{m} \sum_{n} D_{mn}^{\mu}(g) \mathbf{P}_{mn}^{\mu} = D_{xx}^{A_{1}}(g) \mathbf{P}^{A_{1}} + D_{yy}^{A_{2}}(g) \mathbf{P}^{A_{2}} + D_{xx}^{E_{1}}(g) \mathbf{P}_{xx}^{E_{1}}$ For irreducible class idempotents sub-indices xx or yy are optional $+ D_{yx}^{E_{1}}(g) \mathbf{P}_{yy}^{E_{1}}$	$+ D_{x_{j}}^{H}$	$\sum_{y}^{E_1} (g)$	$\mathbf{P}_{xy}^{E_1}$		$ \begin{array}{c} Previo \\ P_{0202} \\ P_{1202} \\ P_{1202} \\ \end{array} $	$\begin{bmatrix} \mathbf{P}_{xx}^{E_{1}} \\ \mathbf{P}_{yx}^{E_{1}} \end{bmatrix}$	tation: $\mathbf{P}_{0212}^{E_1} = \mathbf{P}_{1212}^{E_1}$ $\mathbf{P}_{1212}^{E_1} = \mathbf{P}_{1212}^{E_1}$	E_{I}					
$\mathbf{P}_{xx}^{A_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{xx}^{A_{1}} = D_{xx}^{A_{1}}(g) \mathbf{P}_{xx}^{A_{1}}, \mathbf{P}_{yy}^{A_{2}} \cdot \mathbf{g} \cdot \mathbf{P}_{yy}^{A_{2}} = D_{yy}^{A_{2}}(g) \mathbf{P}_{yy}^{A_{2}}, \mathbf{P}_{xx}^{E_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{xx}^{E_{1}} = D_{xx}^{E_{1}}(g) \mathbf{P}_{xx}^{E_{1}} = D$	$(g)\mathbf{P}_{x}^{T}$ $(g)\mathbf{P}_{y}$ $Grout to sin$	E_1 E_1 yx $ip p$ $mple$	$\mathbf{P}_{xx}^{E_{1}}$ \mathbf{P}_{yy}^{E} $rodu$ $e pro$	• .g . P	E ₁ =D y E ₁ =L yy ble bo or ma	$P_{xy}^{E_1}(g)$ $P_{yy}^{E_1}(g)$ oils of the second se	$) \mathbf{P}_{xy}^{E_1}$ $\mathbf{P}_{yy}^{E_1}$ $\mathbf{P}_{yy}^{E_1}$ $down$ $algeb$	ra					
there arise two <i>nilpotent</i> projectors $\mathbf{P}_{yx}^{E_1}$, and $\mathbf{P}_{xy}^{E_1}$]	$\mathbf{P}_{xx}^{A_1}$	$\mathbf{P}_{yy}^{A_2}$	$\mathbf{P}_{xx}^{E_1}$	$\mathbf{P}_{xy}^{E_1}$	$\mathbf{P}_{yx}^{E_1}$	$\mathbf{P}_{yy}^{E_1}$	••••					
<i>Idempotent projector orthogonality</i> $\mathbf{P}_i \mathbf{P}_j = \delta_{ij} \mathbf{P}_i = \mathbf{P}_j \mathbf{P}_i$	$ \begin{array}{c c} \mathbf{P}_{xx}^{A_{1}} \\ \mathbf{P}_{yy}^{A_{2}} \end{array} $	$\mathbf{P}_{xx}^{A_1}$	$\mathbf{P}_{vv}^{A_2}$	•	•	•	•						
Generalizes to idempotent/nilpotent orthogonality	$\mathbf{P}_{xx}^{E_1}$	•	•	$\mathbf{P}_{xx}^{E_1}$	$\mathbf{P}_{xy}^{E_1}$	•	•						
<i>known as simple Matrix Algebra:</i> $\left(\mathbf{P}_{jk}^{\mu}\mathbf{P}_{mn}^{\nu}=\delta^{\mu\nu}\delta_{km}\mathbf{P}_{jn}^{\mu}\right)$	•	•	$\mathbf{P}_{yx}^{E_1}$	$\mathbf{P}_{yy}^{E_1}$	•	•							
Coefficients $D_{mn}^{\mu}(g)_{\mathbf{r}^1}$ are irreducible representations (ireps) of \mathbf{g} $\mathbf{g} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}_{\mathbf{r}^2} \begin{bmatrix} \mathbf{g} \\ \mathbf{r}^2 \end{bmatrix}_{\mathbf{r}^2} \end{bmatrix}_{\mathbf{r}^2} \begin{bmatrix} \mathbf{g} \\ \mathbf{r}^2 \end{bmatrix}_{\mathbf{r}^2} \begin{bmatrix} \mathbf{g} \\ \mathbf{r}^2 \end{bmatrix}_{\mathbf{r}^2} \begin{bmatrix} \mathbf{g} \\ \mathbf{g} \\ \mathbf{r}^2 \end{bmatrix}_{\mathbf{r}^2} \end{bmatrix}_{\mathbf{r}^2} \begin{bmatrix} \mathbf{g} \\ \mathbf{g} \\ \mathbf{g} \\ \mathbf{r}^2 \end{bmatrix}_{\mathbf{r}^2} \end{bmatrix}_{\mathbf{r}^2} \end{bmatrix}_{\mathbf{r}^2} \begin{bmatrix} \mathbf{g} \\ \mathbf{g} \\ \mathbf{g} \\ \mathbf{g} \end{bmatrix}_{\mathbf{r}^2} \end{bmatrix}_{\mathbf{r}^2} \end{bmatrix}_{\mathbf{r}^2} \begin{bmatrix} \mathbf{g} \\ \mathbf{g} \\ \mathbf{g} \\ \mathbf{g} \end{bmatrix}_{\mathbf{r}^2} \end{bmatrix}_{\mathbf{r}^2} \end{bmatrix}_{\mathbf{r}^2} \end{bmatrix}_{\mathbf{r}^2} \begin{bmatrix} \mathbf{g} \\ \mathbf{g} \\ \mathbf{g} \\ \mathbf{g} \end{bmatrix}_{\mathbf{r}^2} \end{bmatrix}_{\mathbf{r}^2} \end{bmatrix}_{\mathbf{r}^2} \end{bmatrix}_{\mathbf{r}^2} \end{bmatrix}_{\mathbf{r}^2} \end{bmatrix}_{\mathbf{r}^2} \end{bmatrix}_{\mathbf{r}^2} \begin{bmatrix} \mathbf{g} $	$\mathbf{P}_{\boldsymbol{x}\boldsymbol{y}}^{E_1}$ $\mathbf{P}_{\boldsymbol{y}\boldsymbol{y}}^{E_1}$	•	•	•	•	$\mathbf{P}_{\boldsymbol{x}\boldsymbol{x}}^{E_1}$ $\mathbf{P}_{\boldsymbol{y}\boldsymbol{x}}^{E_1}$	$\mathbf{P}_{\boldsymbol{x}\boldsymbol{y}}^{E_1}$ $\mathbf{P}_{\boldsymbol{y}\boldsymbol{y}}^{E_1}$						
$D^{A_{1}}(\mathbf{g}) = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & -1 & -1$	0 -1)												

Wednesday, April 1, 2015

Review Stage 1: Group Center: Class-sums κ_{g} , characters $\chi^{\mu}(g)$, and All-Commuting Projectors \mathbb{P}^{μ} Review Stage 2: Group operators g and Mutually-Commuting projectors \mathbf{P}^{μ}_{kk} Review Stage 3: Weyl g-expansion in irreps $D^{\mu}_{jk}(g)$ and Non-Commuting projectors \mathbf{P}^{μ}_{jk}

Simple matrix algebra $\mathbf{P}^{\mu}_{ab} \mathbf{P}^{\nu}_{cd} = \delta^{\mu\nu} \delta_{bc} \mathbf{P}^{\mu}_{ad}$

 \mathbf{P}^{μ}_{jk} transforms right-and-left \mathbf{P}^{μ}_{jk} -expansion in **g**-operators Example of D_3 transformation by matrix $D^E_{jk}(\mathbf{r}^1)$

Details of Mock-Mach relativity-duality for D₃ groups and representations Lab-fixed(Extrinsic-Global) vs. Body-fixed (Intrinsic-Local) Compare Global vs Local $|\mathbf{g}\rangle$ -basis and Global vs Local $|\mathbf{P}^{(\mu)}\rangle$ -basis

Hamiltonian and D₃ group matrices in global and local $|\mathbf{P}^{(\mu)}\rangle$ -basis Global vs. Local block rearrangement Hamiltonian local-symmetry eigensolution Molecular vibrational mode eigensolution Local symmetry limit Global symmetry limit (free or "genuine" modes)

Spectral decomposition defines *left and right irep transformation* due to spectrally decomposed **g** acting on left and right side of projector \mathbf{P}^{μ}_{mn} .

$$\mathbf{g}\mathbf{P}_{mn}^{\mu} = \left(\sum_{\mu'} \sum_{m'}^{\ell^{\mu}} \sum_{n'}^{\ell^{\mu}} D_{m'n'}^{\mu'}(g) \mathbf{P}_{m'n'}^{\mu'}\right) \mathbf{P}_{mn}^{\mu}$$

Use
$$\mathbf{P}_{mn}^{\mu}$$
-orthonormality
 $\mathbf{P}_{m'n'}^{\mu'}\mathbf{P}_{mn}^{\mu} = \delta^{\mu'\mu}\delta_{n'm}\mathbf{P}_{m'n}^{\mu}$
(Simple matrix algebra)

$$\mathbf{g} = \begin{pmatrix} \sum_{\mu'} & \sum_{m'}^{\ell^{\mu}} & \sum_{n'}^{\mu'} D_{m'n'}^{\mu'} (g) \mathbf{P}_{m'n'}^{\mu'} \\ \mu' & \mu' & \mu' \end{pmatrix}$$

Spectral decomposition defines *left and right irep transformation* due to spectrally decomposed **g** acting on left and right side of projector \mathbf{P}^{μ}_{mn} .

 $\mathbf{g} = \left(\sum_{\mu'} \sum_{m'}^{\ell^{\mu}} \sum_{n'}^{\ell^{\mu}} D_{m'n'}^{\mu'} \left(\mathbf{g} \right) \mathbf{P}_{m'n'}^{\mu'} \right)$

Spectral decomposition defines *left and right irep transformation* due to spectrally decomposed **g** acting on left and right side of projector \mathbf{P}^{μ}_{mn} .

$$\mathbf{g}\mathbf{P}_{mn}^{\mu} = \begin{pmatrix} \sum & \sum \limits_{\mu'}^{\ell^{\mu}} & \sum \limits_{n'}^{\ell^{\mu}} D_{m'n'}^{\mu'}(g) \mathbf{P}_{m'n'}^{\mu'} \mathbf{P}_{mn}^{\mu} \mathbf{P}_{mn}^{\mu} \\ = \sum & \sum \limits_{\mu'}^{\ell^{\mu}} & \sum \limits_{n'}^{\ell^{\mu}} & D_{m'n'}^{\mu'}(g) \mathbf{\delta}_{n'm}^{\mu'} \mathbf{P}_{m'n}^{\mu} \\ = \sum & \sum \limits_{\mu'}^{\ell^{\mu}} & \sum \limits_{n'}^{\ell^{\mu}} & D_{m'n'}^{\mu'}(g) \mathbf{\delta}_{n'm}^{\mu'} \mathbf{P}_{m'n}^{\mu} \\ = \sum & \sum \limits_{m'}^{\ell^{\mu}} & D_{m'm}^{\mu}(g) \mathbf{P}_{m'n}^{\mu} \end{cases}$$

 $\mathbf{g} = \left(\begin{array}{ccc} \sum_{\mu'} & \ell^{\mu} & \ell^{\mu} \\ \sum_{\mu'} & \sum_{n'} & \sum_{n'} D_{m'n'}^{\mu'} \left(g \right) \mathbf{P}_{m'n'}^{\mu'} \end{array} \right)$

Spectral decomposition defines *left and right irep transformation* due to spectrally decomposed **g** acting on left and right side of projector \mathbf{P}^{μ}_{mn} .

$$\mathbf{g}\mathbf{P}_{mn}^{\mu} = \begin{pmatrix} \sum_{\mu'} \sum_{n'}^{\ell^{\mu}} \sum_{n'}^{\ell^{\mu}} D_{m'n'}^{\mu'}(g) \mathbf{P}_{m'n'}^{\mu'} \mathbf{P}_{mn}^{\mu} \mathbf{P}_{mn}^{\mu} \\ = \sum_{\mu'} \sum_{n'}^{\ell^{\mu}} \sum_{n'}^{\ell^{\mu}} D_{m'n'}^{\mu'}(g) \delta_{n'm}^{\mu'} \mathbf{P}_{m'n}^{\mu} \\ = \sum_{\mu'} \sum_{m'}^{\ell^{\mu}} D_{m'n'}^{\mu}(g) \mathbf{P}_{m'n}^{\mu} \\ = \sum_{m'} D_{m'm}^{\mu}(g) \mathbf{P}_{m'n}^{\mu} \end{cases}$$

Left-action transforms irep-ket $\mathbf{g}\Big|_{mn}^{\mu} = \frac{\mathbf{g}\mathbf{P}_{mn}^{\mu}|\mathbf{1}}{norm}$.

$$\mathbf{g}\Big|_{mn}^{\mu}\Big\rangle = \sum_{m'}^{\ell^{\mu}} D_{m'm}^{\mu} \left(\mathbf{g}\right)\Big|_{m'n}^{\mu}\Big\rangle$$

 $\mathbf{g} = \left(\sum_{\mu'} \sum_{m'}^{\ell^{\mu}} \sum_{n'}^{\ell^{\mu}} D_{m'n'}^{\mu'} \left(g \right) \mathbf{P}_{m'n'}^{\mu'} \right)$

Spectral decomposition defines *left and right irep transformation* due to spectrally decomposed **g** acting on left and right side of projector \mathbf{P}^{μ}_{mn} .

$$\mathbf{g}\mathbf{P}_{mn}^{\mu} = \begin{pmatrix} \sum_{\mu'} \sum_{n'}^{\ell^{\mu}} D_{m'n'}^{\mu'}(g) \mathbf{P}_{m'n'}^{\mu'} \mathbf{P}_{mn'n'}^{\mu} \mathbf{P}_{mn'}^{\mu} \mathbf{P}_{m'n'}^{\mu} \mathbf{P}_{mn'}^{\mu} \mathbf{P}_{m'n'}^{\mu} \mathbf{P}_{mn'}^{\mu} \mathbf{P}_{m'n'}^{\mu} \mathbf{P}_{m'n'}$$

Left-action transforms irep-ket $\mathbf{g}\Big|_{mn}^{\mu} = \frac{\mathbf{g}\mathbf{P}_{mn}^{\mu}|\mathbf{1}}{norm}$.

$$\mathbf{g} \Big| \begin{array}{l} \mu \\ mn \end{array} \right\rangle = \sum_{m'}^{\ell^{\mu}} D_{m'm}^{\mu} (g) \Big| \begin{array}{l} \mu \\ m'n \end{array} \right\rangle$$

$$A \text{ simple irep expression...}$$

$$\left\langle \begin{array}{l} \mu \\ m'n \end{array} \right| \mathbf{g} \Big| \begin{array}{l} \mu \\ mn \end{array} \right\rangle = D_{m'm}^{\mu} (g)$$

 $\mathbf{g} = \left(\sum_{\mu'} \sum_{m'}^{\ell^{\mu}} \sum_{n'}^{\ell^{\mu}} D_{m'n'}^{\mu'} \left(\mathbf{g} \right) \mathbf{P}_{m'n'}^{\mu'} \right)$

Spectral decomposition defines *left and right irep transformation* due to spectrally decomposed **g** acting on left and right side of projector \mathbf{P}^{μ}_{mn} .

$$\mathbf{g}\mathbf{P}_{mn}^{\mu} = \begin{pmatrix} \sum_{\mu'} \sum_{n'}^{\ell^{\mu}} \sum_{n'}^{\ell^{\mu}} D_{m'n'}^{\mu'}(g) \mathbf{P}_{m'n'}^{\mu'} \mathbf{P}_{mn}^{\mu} \mathbf{P}_{mn}^{\mu} \\ = \sum_{\mu'} \sum_{m'}^{\ell^{\mu}} \sum_{n'}^{\ell^{\mu}} D_{m'n'}^{\mu'}(g) \delta_{n'm}^{\mu'} \mathbf{P}_{m'n}^{\mu} \mathbf{P}_{m'n}^{\mu} \\ = \sum_{\mu'} \sum_{m'}^{\ell^{\mu}} D_{m'n'}^{\mu}(g) \mathbf{P}_{m'n}^{\mu} \end{cases}$$

$$(Use \mathbf{P}_{mn}^{\mu} - orthonormality}{\mathbf{P}_{mn'}^{\mu'} \mathbf{P}_{mn}^{\mu} = \delta_{n'm}^{\mu'} \delta_{n'm} \mathbf{P}_{m'n}^{\mu}}$$

$$(Simple matrix algebra)$$

$$(Simple matrix algebra)$$

Left-action transforms irep-ket $\mathbf{g}\Big|_{mn}^{\mu} = \frac{\mathbf{g}\mathbf{P}_{mn}^{\mu}|\mathbf{1}}{norm}$.

...requires proper normalization:
$$\left\langle \substack{\mu'\\m'n'} \\ mn \right\rangle = \frac{\left\langle \mathbf{1} \middle| \mathbf{P}_{n'm'}^{\mu'} \\ norm. \\ \mathbf{P}_{mn}^{\mu} \middle| \mathbf{1} \right\rangle}{norm^*.}$$

$$= \delta^{\mu'\mu} \delta_{m'm} \frac{\left\langle \mathbf{1} \middle| \mathbf{P}_{n'n}^{\mu'} \middle| \mathbf{1} \right\rangle}{|norm.|^2}$$
$$= \delta^{\mu'\mu} \delta_{m'm} \delta_{n'n}$$

 \boldsymbol{A}

 $\mathbf{g} = \left(\begin{array}{cc} \sum & \ell^{\mu} & \ell^{\mu} \\ \sum & \sum & n' \\ \mu' & m' & n' \end{array} D_{m'n'}^{\mu'} \left(g \right) \mathbf{P}_{m'n'}^{\mu'} \right)$

Spectral decomposition defines *left and right irep transformation* due to spectrally decomposed **g** acting on left and right side of projector \mathbf{P}^{μ}_{mn} .

Use \mathbf{P}_{mn}^{μ} -orthonormality $\mathbf{P}_{m'n'}^{\mu'}\mathbf{P}_{mn}^{\mu} = \delta^{\mu'\mu}\delta_{n'm}\mathbf{P}_{m'n}^{\mu}$ *(Simple matrix algebra)*

$$\mathbf{g}\mathbf{P}_{mn}^{\mu} = \left(\sum_{\substack{\mu' \ m' \ m' \ n'}} \sum_{\substack{n' \ n'}}^{\ell^{\mu}} D_{m'n'}^{\mu'}(g) \mathbf{P}_{m'n'}^{\mu'}\right) \mathbf{P}_{mn}^{\mu}$$
$$= \sum_{\substack{\mu' \ m' \ n'}} \sum_{\substack{n' \ n'}}^{\ell^{\mu}} D_{m'n'}^{\mu'}(g) \delta^{\mu'\mu} \delta_{n'm} \mathbf{P}_{m'n}^{\mu}$$
$$= \sum_{\substack{n' \ m' \ m' \ m'}}^{\ell^{\mu}} D_{m'm}^{\mu}(g) \mathbf{P}_{m'n}^{\mu}$$

Left-action transforms irep-ket $\mathbf{g}\Big|_{mn}^{\mu} = \frac{\mathbf{g}\mathbf{P}_{mn}^{\mu}|\mathbf{1}}{norm}$.

$$\mathbf{g}\Big|_{mn}^{\mu}\Big\rangle = \sum_{m'}^{\ell^{\mu}} D_{m'm}^{\mu}(g)\Big|_{m'n}^{\mu}\Big\rangle$$

$$A \text{ simple irep expression...}$$

$$\Big\langle \mu_{m'n}\Big|\mathbf{g}\Big|_{mn}^{\mu}\Big\rangle = D_{m'm}^{\mu}(g)$$

$$\dots requires \ proper \ normalization: \ \left\langle \begin{array}{l} \mu'\\m'n' \end{array} \right| \left| \begin{array}{l} \mu\\mn \end{array} \right\rangle = \frac{\left\langle \mathbf{1} \right| \mathbf{P}_{n'm'}^{\mu'}}{norm.} \frac{\mathbf{P}_{mn}^{\mu} \left| \mathbf{1} \right\rangle}{norm^{*}.}$$

$$= \delta^{\mu'\mu} \delta_{m'm} \frac{\left\langle \mathbf{1} \right| \mathbf{P}_{n'n}^{\mu'} \right| \mathbf{1} \right\rangle}{|norm.|^{2}}$$

$$= \delta^{\mu'\mu} \delta_{m'm} \delta_{n'n}$$

$$|norm.|^{2} = \left\langle \mathbf{1} \right| \mathbf{P}_{nn}^{\mu} \left| \mathbf{1} \right\rangle$$

Spectral decomposition defines *left and right irep transformation* due to spectrally decomposed **g** acting on left and right side of projector \mathbf{P}^{μ}_{mn} .

Use \mathbf{P}_{mn}^{μ} -orthonormality $\mathbf{P}_{m'n'}^{\mu'}\mathbf{P}_{mn}^{\mu} = \delta^{\mu'\mu}\delta_{n'm}\mathbf{P}_{m'n}^{\mu}$ *(Simple matrix algebra)*

$$\mathbf{g}\mathbf{P}_{mn}^{\mu} = \left(\sum_{\substack{\mu' \\ \mu' }} \sum_{\substack{n' \\ m' }}^{\ell^{\mu}} \sum_{\substack{n' \\ n' }}^{\ell^{\mu}} D_{m'n'}^{\mu'}(g) \mathbf{P}_{m'n'}^{\mu'}\right) \mathbf{P}_{mn}^{\mu}$$
$$= \sum_{\substack{\mu' \\ \mu' }} \sum_{\substack{n' \\ n' }}^{\ell^{\mu}} D_{m'n'}^{\mu'}(g) \delta^{\mu'\mu} \delta_{n'm} \mathbf{P}_{m'n}^{\mu}$$
$$= \sum_{\substack{n' \\ m' }}^{\ell^{\mu}} D_{m'm}^{\mu}(g) \mathbf{P}_{m'n}^{\mu}$$

Left-action transforms irep-ket $\mathbf{g}\Big|_{mn}^{\mu} = \frac{\mathbf{g}\mathbf{P}_{mn}^{\mu}|\mathbf{1}}{norm}$

$$\mathbf{g}\Big|_{mn}^{\mu}\Big\rangle = \sum_{m'}^{\ell^{\mu}} D_{m'm}^{\mu}(g)\Big|_{m'n}^{\mu}\Big\rangle$$

$$A \text{ simple irep expression...}$$

$$\Big\langle \mu_{m'n}\Big|\mathbf{g}\Big|_{mn}^{\mu}\Big\rangle = D_{m'm}^{\mu}(g)$$

$$\dots requires proper normalization: \left\langle \begin{array}{l} \mu'\\ m'n' \end{array} \right| \left| \begin{array}{l} \mu\\ mn \end{array} \right\rangle = \frac{\left\langle \mathbf{1} \right| \mathbf{P}_{n'm'}^{\mu'}}{norm} \frac{\mathbf{P}_{mn}^{\mu} \left| \mathbf{1} \right\rangle}{norm^{*}}.$$
$$= \delta^{\mu'\mu} \delta_{m'm} \frac{\left\langle \mathbf{1} \right| \mathbf{P}_{n'n}^{\mu'} \right| \mathbf{1} \right\rangle}{|norm.|^{2}}$$
$$= \delta^{\mu'\mu} \delta_{m'm} \delta_{n'n}$$
$$|norm.|^{2} = \left\langle \mathbf{1} \right| \mathbf{P}_{nn}^{\mu} \left| \mathbf{1} \right\rangle$$

$$\mathbf{P}_{mn}^{\mu}\mathbf{g} = \mathbf{P}_{mn}^{\mu} \left(\sum_{\substack{\mu' \ m' \ m' \ n'}} \sum_{\substack{n' \ m' \ n'}}^{\ell^{\mu}} D_{m'n'}^{\mu'}(g) \mathbf{P}_{m'n'}^{\mu'} \right)$$
$$= \sum_{\substack{\mu' \ m' \ n'}} \sum_{\substack{n' \ n'}}^{\ell^{\mu}} D_{m'n'}^{\mu'}(g) \delta^{\mu'\mu} \delta_{nm'} \mathbf{P}_{mn'}^{\mu}$$
$$= \sum_{\substack{\ell'' \ n' \ n'}}^{\ell^{\mu}} D_{nn'}^{\mu}(g) \mathbf{P}_{mn'}^{\mu}$$

 $\mathbf{g} = \left| \sum_{\mu'} \sum_{m'}^{\ell^{\mu}} \sum_{n'}^{\ell^{\mu}} D_{m'n'}^{\mu'} \left(\mathbf{g} \right) \mathbf{P}_{m'n'}^{\mu'} \right|$

Spectral decomposition defines *left and right irep transformation* due to spectrally decomposed g acting on left and right side of projector \mathbf{P}_{mn}^{μ} .

 $\mathbf{g}\Big|_{mn}^{\mu}\Big\rangle = \sum_{m'}^{\ell^{\mu}} D_{m'm}^{\mu} \left(\mathbf{g}\right)\Big|_{m'n}^{\mu}\Big\rangle$ A simple irep expression...

 $\left\langle \begin{array}{c} \mu \\ m'n \end{array} \middle| \mathbf{g} \middle| \begin{array}{c} \mu \\ mn \end{array} \right\rangle = D^{\mu}_{m'm} \left(\mathbf{g} \right)$

... requires proper normalization: $\left\langle \begin{array}{c} \mu' \\ m'n' \end{array} \middle| \begin{array}{c} \mu \\ mn \end{array} \right\rangle = \frac{\left\langle \mathbf{1} \middle| \mathbf{P}_{n'm'}^{\mu'} - \mathbf{P}_{mn}^{\mu} \middle| \mathbf{1} \right\rangle}{norm *}$ $=\delta^{\mu'\mu}\delta_{m'm}\frac{\langle \mathbf{1}|\mathbf{P}_{n'n}^{\mu'}|\mathbf{1}\rangle}{|norm|^2}$ $=\delta^{\mu'\mu}\delta_{m'm}\delta_{n'n}$ $|norm.|^2 = \langle \mathbf{1} | \mathbf{P}_{nn}^{\mu} | \mathbf{1} \rangle$

 $\mathbf{g} = \left[\sum_{\mu'} \sum_{m'}^{\ell^{\mu}} \sum_{n'}^{\ell^{\mu}} D_{m'n'}^{\mu'} \left(\mathbf{g} \right) \mathbf{P}_{m'n'}^{\mu'} \right]$

norm

Spectral decomposition defines *left and right irep transformation* due to spectrally decomposed **g** acting on left and right side of projector \mathbf{P}_{mn}^{μ} .

$$\mathbf{g}\mathbf{P}_{mn}^{\mu} = \begin{pmatrix} \sum_{\mu'} \sum_{n'}^{\ell^{\mu}} \sum_{n'}^{\ell^{\mu}} D_{m'n'}^{\mu'}(g) \mathbf{P}_{m'n'}^{\mu'} \end{pmatrix} \mathbf{P}_{mn}^{\mu} \qquad (Simple matrix algebra) \\ \mathbf{Usc} \mathbf{P}_{mn}^{\mu} - orthonormality \\ \mathbf{P}_{m'n}^{\mu'} - \mathbf{P}_{mn'}^{\mu} - \mathbf{O}_{m'n'}^{\mu'} \mathbf{P}_{m'n}^{\mu} \\ \mathbf{P}_{m'n'}^{\mu'} \mathbf{P}_{mn'}^{\mu} = \delta^{\mu'\mu} \delta_{n'm'} \mathbf{P}_{m'n'}^{\mu} \\ \mathbf{P}_{m'n'}^{\mu'} \mathbf{P}_{mn'}^{\mu} = \delta^{\mu'\mu} \delta_{n'm'} \mathbf{P}_{m'n'}^{\mu} \\ = \sum_{\mu'} \sum_{n'}^{\ell^{\mu}} \sum_{n'}^{\ell^{\mu}} D_{m'n'}^{\mu'}(g) \delta^{\mu'\mu} \delta_{n'm'} \mathbf{P}_{m'n}^{\mu} \\ = \sum_{m'}^{\ell^{\mu}} D_{m'm'}^{\mu}(g) \mathbf{P}_{m'n}^{\mu} \\ \mathbf{P}_{m'n'}^{\mu'} \mathbf{P}_{mn'}^{\mu} = \mathbf{P}_{nm}^{\mu} \\ \mathbf{P}_{mn'}^{\mu'} \mathbf{P}_{mn'}^{\mu} = \delta^{\mu'\mu} \delta_{n'm'} \mathbf{P}_{mn'}^{\mu} \\ \mathbf{P}_{mn'}^{\mu'} \mathbf{P}_{mn'}^{\mu} = \mathbf{P}_{nm}^{\mu} \\ \mathbf{P}_{mn'}^{\mu'} \mathbf{P}_{mn'}^{\mu'} \mathbf{P}_{mn'}^{\mu'} \\ \mathbf{P}_{mn'}^{\mu'} \mathbf{P}_{mn'}^{\mu'} = \mathbf{P}_{nm}^{\mu} \\ \mathbf{P}_{mn'}^{\mu'} \mathbf{P}_{mn'}^{\mu'} \mathbf{P}_{mn'}^{\mu'} \\ \mathbf{P}_{mn'}^{\mu'} \mathbf{P}_{mn'}^{\mu'} = \mathbf{P}_{nm}^{\mu} \\ \mathbf{P}_{mn'}^{\mu'} \mathbf{P}_{mn'}^{\mu'} \mathbf{P}_{mn'}^{\mu'} \\ \mathbf{P}_{mn'}^{\mu'} \mathbf{P}_{mn'}^{\mu'} \mathbf{P}_{mn'}^{\mu'} \\ \mathbf{P}_{mn'}^{\mu'} \mathbf{P}_{mn'}^{\mu'} = \mathbf{P}_{nm}^{\mu'} \\ \mathbf{P}_{mn'}^{\mu'} \mathbf{P}_{mn'}^{\mu'} \mathbf{P}_{mn'}^{\mu'} \mathbf{P}_{mn'}^{\mu'} \mathbf{P}_{mn'}^{\mu'} \\ \mathbf{P}_{mn'}^{\mu'} \mathbf{P}_{mn'}^{\mu'} \mathbf{P}_{mn'}^{\mu'} \\ \mathbf{P}_{mn'}^{\mu'} \mathbf{P}_{mn'}^{\mu'} \mathbf{P}_{mn'}^{\mu'} \mathbf{P}_{mn'}^{\mu'} \\ \mathbf{P}_{mn'}^{\mu'} \mathbf{P}_{mn'}^{\mu'} \mathbf{P}_{mn'}^{\mu'} \mathbf{P}_{mn'}^{\mu'} \mathbf{P}_{mn'}^{\mu'} \\ \mathbf{P}_{mn'}^{\mu'} \mathbf{P}_{m$$

$$= \delta^{\mu'\mu} \delta_{m'm} \frac{\langle \mathbf{1} | \mathbf{P}_{n'n}^{\mu'} | \mathbf{1} \rangle}{|norm.|^2}$$

$$= \delta^{\mu \mu} \delta_{m'm} \delta_{n'n}$$

 $| norm. |^2 = \langle \mathbf{1} | \mathbf{P}_{nn}^{\mu} | \mathbf{1} \rangle$

 $\mathbf{g} = \left(\sum_{\mu'} \sum_{m'}^{\ell^{\mu}} \sum_{n'}^{\ell^{\mu}} D_{m'n'}^{\mu'} \left(\mathbf{g} \right) \mathbf{P}_{m'n'}^{\mu'} \right)$

Spectral decomposition defines *left and right irep transformation* due to spectrally decomposed **g** acting on left and right side of projector \mathbf{P}^{μ}_{mn} .

 $\mathbf{g} = \left(\begin{array}{ccc} \sum_{\mu'} & \ell^{\mu} & \ell^{\mu} \\ \sum_{\mu'} & \sum_{n'} & \sum_{n'} D_{m'n'}^{\mu'} \left(g \right) \mathbf{P}_{m'n'}^{\mu'} \end{array} \right)$

Spectral decomposition defines *left and right irep transformation* due to spectrally decomposed **g** acting on left and right side of projector \mathbf{P}^{μ}_{mn} .

 $\mathbf{g} = \left(\sum_{\mu'} \sum_{m'}^{\ell^{\mu}} \sum_{n'}^{\ell^{\mu}} D_{m'n'}^{\mu'} \left(g \right) \mathbf{P}_{m'n'}^{\mu'} \right)$

Review Stage 1: Group Center: Class-sums κ_g , characters $\chi^{\mu}(g)$, and All-Commuting Projectors \mathbb{P}^{μ} Review Stage 2: Group operators g and Mutually-Commuting projectors \mathbf{P}^{μ}_{kk} Review Stage 3: Weyl g-expansion in irreps $D^{\mu}_{jk}(g)$ and Non-Commuting projectors \mathbf{P}^{μ}_{jk}

Simple matrix algebra $\mathbf{P}^{\mu}_{ab} \mathbf{P}^{\nu}_{cd} = \delta^{\mu\nu} \delta_{bc} \mathbf{P}^{\mu}_{ad}$

 \mathbf{P}^{μ}_{jk} transforms right-and-left

 \mathbf{P}^{μ}_{jk} -expansion in **g**-operators Example of D_3 transformation by matrix $D^E_{jk}(\mathbf{r}^1)$

Hamiltonian and D_3 group matrices in global and local $|\mathbf{P}^{(\mu)}\rangle$ -basis Global vs. Local block rearrangement Hamiltonian local-symmetry eigensolution Molecular vibrational mode eigensolution Local symmetry limit Global symmetry limit (free or "genuine" modes) \mathbf{P}^{μ}_{jk} -expansion in **g**-operators Need inverse of Weyl form: **g** Derive coefficients $p^{\mu}_{mn}(g)$ of inverse Weyl expansion: $\mathbf{P}^{\mu}_{mn} = \sum_{\mathbf{g}}^{\circ G} p^{\mu}_{mn}(g) \mathbf{g}$

$$\mathbf{g} = \left(\sum_{\mu'} \sum_{m'}^{\ell^{\mu}} \sum_{n'}^{\ell^{\mu}} D_{m'n'}^{\mu'} \left(\mathbf{g} \right) \mathbf{P}_{m'n'}^{\mu'} \right)$$
\mathbf{P}^{μ}_{jk} -expansion in **g**-operators Need inverse of Weyl form: Derive coefficients $p^{\mu}_{mn}(g)$ of inverse Weyl expansion: $\mathbf{P}^{\mu}_{mn} = \sum_{\mathbf{g}}^{\circ G} p^{\mu}_{mn}(g) \mathbf{g}$

$$\mathbf{g} = \begin{pmatrix} \sum_{\mu'} & \sum_{m'}^{\ell^{\mu}} & \sum_{n'}^{\ell^{\mu}} D_{m'n'}^{\mu'}(g) \mathbf{P}_{m'n'}^{\mu'} \\ \mu' & \mu' & \mu' \end{pmatrix}$$

Left action by operator **f** in group $G = \{1, ..., f, g, h, ...\}$:

$$\mathbf{f} \cdot \mathbf{P}_{mn}^{\mu} = \sum_{\mathbf{g}}^{\circ \mathbf{G}} p_{mn}^{\mu}(\mathbf{g}) \mathbf{f} \cdot \mathbf{g}$$

 $\mathbf{P}^{\mu}_{jk} - expansion in \mathbf{g} - operators \quad Need inverse of Weyl form: \mathbf{g} = \left(\sum_{\mu'} \sum_{m'}^{\ell^{\mu}} \sum_{n'}^{\ell^{\mu}} D_{m'n'}^{\mu'}(g) \mathbf{P}_{m'n'}^{\mu'}\right)$ Derive coefficients $p_{mn}^{\mu}(g)$ of inverse Weyl expansion: $\mathbf{P}_{mn}^{\mu} = \sum_{g}^{\circ G} p_{mn}^{\mu}(g) \mathbf{g}$

Left action by operator **f** in group $G = \{1, ..., f, g, h, ...\}$:

$$\mathbf{f} \cdot \mathbf{P}_{mn}^{\mu} = \sum_{\mathbf{g}}^{\circ \mathbf{G}} p_{mn}^{\mu} (\mathbf{g}) \mathbf{f} \cdot \mathbf{g} = \sum_{\mathbf{h}}^{\circ \mathbf{G}} p_{mn}^{\mu} (\mathbf{f}^{-1}\mathbf{h}) \mathbf{h} \text{ , where: } \mathbf{h} = \mathbf{f} \cdot \mathbf{g}, \text{ or: } \mathbf{g} = \mathbf{f}^{-1}\mathbf{h},$$

 $\mathbf{P}^{\mu}_{jk} \text{-expansion in g-operators} \quad \text{Need inverse of Weyl form:} \quad \mathbf{g} = \left(\sum_{\mu'} \sum_{m'}^{\ell^{\mu}} \sum_{n'}^{\mu'} D_{m'n'}^{\mu'}(g) \mathbf{P}_{m'n'}^{\mu'}\right)$ Derive coefficients $p^{\mu}_{mn}(g)$ of inverse Weyl expansion: $\mathbf{P}^{\mu}_{mn} = \sum_{\mathbf{g}}^{\circ G} p^{\mu}_{mn}(g) \mathbf{g}$

Left action by operator **f** in group $G = \{1, ..., f, g, h, ...\}$:

$$\mathbf{f} \cdot \mathbf{P}_{mn}^{\mu} = \sum_{\mathbf{g}}^{\circ \mathbf{G}} p_{mn}^{\mu}(\mathbf{g}) \mathbf{f} \cdot \mathbf{g} = \sum_{\mathbf{h}}^{\circ \mathbf{G}} p_{mn}^{\mu}(\mathbf{f}^{-1}\mathbf{h}) \mathbf{h} \text{, where: } \mathbf{h} = \mathbf{f} \cdot \mathbf{g}, \text{ or: } \mathbf{g} = \mathbf{f}^{-1}\mathbf{h},$$

Regular representation $TraceR(\mathbf{h})$ is zero except for $TraceR(\mathbf{1}) = {}^{\circ}G$

 $\mathbf{P}^{\mu}{}_{jk} \text{-expansion in } \mathbf{g}\text{-operators} \text{ Need inverse of Weyl form: } \mathbf{g} = \left(\sum_{\mu'} \sum_{n'}^{\ell^{\mu}} \sum_{n'}^{\mu'} D_{m'n'}^{\mu'}(g) \mathbf{P}_{m'n'}^{\mu'}\right)$ Derive coefficients $p_{mn}^{\mu}(g)$ of inverse Weyl expansion: $\mathbf{P}_{mn}^{\mu} = \sum_{\mathbf{g}}^{G} p_{mn}^{\mu}(g) \mathbf{g}$ Left action by operator \mathbf{f} in group $G = \{\mathbf{1}, \dots, \mathbf{f}, \mathbf{g}, \mathbf{h}, \dots\}$: $\mathbf{f} \cdot \mathbf{P}_{mn}^{\mu} = \sum_{\mathbf{g}}^{S} p_{mn}^{\mu}(g) \mathbf{f} \cdot \mathbf{g} = \sum_{\mathbf{h}}^{S} p_{mn}^{\mu}(\mathbf{f}^{-1}\mathbf{h}) \mathbf{h} \text{ , where: } \mathbf{h} = \mathbf{f} \cdot \mathbf{g}, \text{ or: } \mathbf{g} = \mathbf{f}^{-1}\mathbf{h},$ Regular representation $TraceR(\mathbf{h})$ is zero except for $TraceR(\mathbf{1}) = {}^{\circ}G$ $Trace R(\mathbf{f} \cdot \mathbf{P}_{mn}^{\mu'}) = \sum_{\mathbf{h}}^{S} p_{mn}^{\mu}(\mathbf{f}^{-1}\mathbf{h}) TraceR(\mathbf{h})$

Regular	· representat	tion of $D_2 \sim C$	$_{2}$ in the group-	$ \mathbf{g}\rangle$ basis		
$R^G(1) =$	$R^G(\mathbf{r}) =$	$R^G(\mathbf{r}^2) =$	$R^{G}(\mathbf{i}) =$	$R^G(\mathbf{i}) =$	$R^G(\mathbf{i}) =$	$1 \mathbf{r}^2 \mathbf{r} \mathbf{i}_1 \mathbf{i}_2 (\mathbf{i}_3)$
(1	(\cdot, \cdot)	(\cdot, \cdot)	$(\cdot) (\cdot \cdot \cdot 1)$	(-2)	$1 \cdot (\cdot \cdot \cdot$	$ \mathbf{r} 1 \mathbf{r}^2 \mathbf{i}_3 \mathbf{i}_1 \mathbf{i}_2$
. 1	1	1 .		1	$\cdot 1 \cdot \cdot \cdot \cdot 1 \cdot $	$ \mathbf{r}^2 \mathbf{r} \mathbf{i}_2 \mathbf{i}_3 \mathbf{i}_1 $
1 .		1		. 1 1	$\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot (1 \cdot \cdot \cdot \cdot \cdot \cdot (1 \cdot $	i_1 i_3 i_2 1 r r^2
· · · 1	•••• ' ••••••	1 .	$\cdot 1 \mathbf{i} 1 \cdot \cdot \cdot$	$\cdot \cdot \cdot \cdot \cdot \cdot \cdot 1 \cdot \cdot$	$\cdot \cdot $	$ \mathbf{i}_{2} \mathbf{i}_{2$
		. 1 1	· · · 1 · ·	1	$\cdot \cdot \cdot \left \cdot \cdot \cdot (1) \cdot \cdot \cdot \right $	$\begin{bmatrix} \mathbf{i}_{2} & \mathbf{i}_{1} & \mathbf{i}_{2} \\ \mathbf{i}_{2} & \mathbf{i}_{2} & \mathbf{i}_{1} \end{bmatrix} \mathbf{r} = \mathbf{r}^{2} 1$
$(\cdot \cdot $	$\cdot \mathbf{I} \cdot \mathbf{I}$	$\cdot \cdot $	$\left[1 \right] \left(\cdot \right) \left(\cdot$	$\cdot \cdot $	$\cdot \cdot $	

 $\mathbf{P}^{\mu}{}_{jk} - expansion in \mathbf{g} - operators \quad Need inverse of Weyl form: \mathbf{g} = \left(\sum_{\mu'} \sum_{n'}^{\ell'} \sum_{n'}^{\mu'} D_{m'n'}^{\mu'}(g) \mathbf{P}_{m'n'}^{\mu'}\right)$ Derive coefficients $p^{\mu}_{mn}(g)$ of inverse Weyl expansion: $\mathbf{P}^{\mu}_{mn} = \sum_{\mathbf{g}}^{\circ G} p^{\mu}_{mn}(g) \mathbf{g}$ Left action by operator \mathbf{f} in group $G = \{\mathbf{1}, ..., \mathbf{f}, \mathbf{g}, \mathbf{h}, ...\}$: $\mathbf{f} \cdot \mathbf{P}^{\mu}_{mn} = \sum_{\mathbf{g}}^{\circ G} p^{\mu}_{mn}(g) \mathbf{f} \cdot \mathbf{g} = \sum_{\mathbf{h}}^{\circ G} p^{\mu}_{mn}(\mathbf{f}^{-1}\mathbf{h}) \mathbf{h} , \text{ where: } \mathbf{h} = \mathbf{f} \cdot \mathbf{g}, \text{ or: } \mathbf{g} = \mathbf{f}^{-1}\mathbf{h},$ Regular representation $TraceR(\mathbf{h})$ is zero except for $TraceR(\mathbf{1}) = ^{\circ G}$ $Trace R(\mathbf{f} \cdot \mathbf{P}^{\mu}_{mn}) = \sum_{\mathbf{h}}^{\circ G} p^{\mu}_{mn}(\mathbf{f}^{-1}\mathbf{h}) TraceR(\mathbf{h}) = p^{\mu}_{mn}(\mathbf{f}^{-1}\mathbf{1}) TraceR(\mathbf{1})$

 $\mathbf{P}^{\mu}{}_{jk} \text{ -expansion in g-operators Need inverse of Weyl form:} \mathbf{g} = \left(\sum_{\mu'} \sum_{m'}^{\ell^{\mu}} \sum_{n'}^{\ell^{\mu}} D_{m'n'}^{\mu'}(g) \mathbf{P}_{m'n'}^{\mu'}\right)$ Derive coefficients $p_{mn}^{\mu}(g)$ of inverse Weyl expansion: $\mathbf{P}_{mn}^{\mu} = \sum_{g}^{\circ G} p_{mn}^{\mu}(g) \mathbf{g}$ Left action by operator **f** in group $G = \{\mathbf{1}, ..., \mathbf{f}, \mathbf{g}, \mathbf{h}, ...\}$: $\mathbf{f} \cdot \mathbf{P}_{mn}^{\mu} = \sum_{g}^{\circ G} p_{mn}^{\mu}(g) \mathbf{f} \cdot \mathbf{g} = \sum_{h=2}^{\circ G} p_{mn}^{\mu}(\mathbf{f}^{-1}\mathbf{h}) \mathbf{h} \text{ , where: } \mathbf{h} = \mathbf{f} \cdot \mathbf{g}, \text{ or: } \mathbf{g} = \mathbf{f}^{-1}\mathbf{h},$ Regular representation $TraceR(\mathbf{h})$ is zero except for $TraceR(\mathbf{1}) = {}^{\circ G} \mathbf{G}$ $Trace R(\mathbf{f} \cdot \mathbf{P}_{mn}^{\mu'}) = \sum_{h=2}^{\circ G} p_{mn}^{\mu}(\mathbf{f}^{-1}\mathbf{h}) TraceR(\mathbf{h}) = p_{mn}^{\mu}(\mathbf{f}^{-1}\mathbf{1}) TraceR(\mathbf{1}) = p_{mn}^{\mu}(\mathbf{f}^{-1}) \circ \mathbf{G}$

Regular	representati	on of $D_{2} \sim C$	₃ , in the group-	\mathbf{g} basis			
$R^G(1) =$	$R^{G}(\mathbf{r}) =$	$R^G(\mathbf{r}^2) =$	$R^G(\mathbf{i}) =$	$R^G(\mathbf{i}) = R^G(\mathbf{i})$	i)=	$1 \mathbf{r}^2 \mathbf{r}$	i ₁ i ₂ i ₃
$(1 \cdot \cdot \cdot \cdot \cdot)$	$(\cdot \cdot \cdot) (\cdot \cdot \cdot 1 \cdot \cdot \cdot)$	$(\cdot \cdot \cdot) (\cdot \cdot 1 \cdot \cdot \cdot)$	(\cdot, \cdot) $(\cdot, \cdot, 1, \cdot)$	$(\cdot, \cdot, \cdot$	$(\cdot \cdot $	r 1 r ²	$\mathbf{i}_3 \mathbf{i}_1 \mathbf{i}_2$
. 1	1		1		$\cdot \cdot \cdot \cdot 1 \cdot \cdot$	$ {\bf r}^2 {\bf r} {\bf 1} $	\mathbf{i}_2 (\mathbf{i}_3) \mathbf{i}_1
1				1 1	$\left \begin{array}{ccc} \cdot & \cdot & \cdot \end{array} \right $	i ₁ (i ₃) i ₂	$1 \mathbf{r} \mathbf{r}^2$
· · · 1 ·	$\cdot \cdot $	$\left \begin{array}{c} \cdot \end{array} \right ^2 \cdot \cdot \cdot \cdot \cdot$	$\cdot 1 1 \cdot \cdot \cdot \cdot$	· ' · · 1 · · · '	$\left \begin{array}{ccc} \cdot (1) \cdot \cdot \cdot \cdot \end{array} \right $	\mathbf{i}_2 \mathbf{i}_1 \mathbf{i}_3	r^2 1 r
	$\left[\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\cdot 1 \cdot \cdot \cdot 1$	$\cdot \cdot \cdot \mid \cdot \cdot$		$\left \begin{array}{ccc} \cdot & (1) \cdot & \cdot & \cdot \\ \hline \end{array}\right $	$\begin{vmatrix} \mathbf{i}_2 \\ \mathbf{i}_3 \end{vmatrix} \begin{vmatrix} \mathbf{i}_1 \\ \mathbf{i}_2 \end{vmatrix}$	\mathbf{r} \mathbf{r}^2 1
$(\cdot \cdot \cdot \cdot \cdot \cdot$	\cdot	•••••••••••••••••••••••••••••••••••••••	$1 \cdot (\cdot \cdot 1 \cdot \cdot \cdot)$.)(. 1)(

 $\mathbf{P}^{\mu}_{jk} - expansion in \mathbf{g} - operators \quad Need inverse of Weyl form: \quad \mathbf{g} = \left[\sum_{\mu'} \sum_{m'}^{\ell^{\mu}} \sum_{n'}^{\ell^{\mu}} D_{m'n'}^{\mu'}(g) \mathbf{P}_{m'n'}^{\mu'}\right]$ Derive coefficients $p^{\mu}_{mn}(g)$ of inverse Weyl expansion: $\mathbf{P}^{\mu}_{mn} = \sum_{\mathbf{g}}^{\circ G} p^{\mu}_{mn}(g) \mathbf{g}$

Left action by operator **f** in group $G = \{1, ..., f, g, h, ...\}$:

$$\mathbf{F} \cdot \mathbf{P}_{mn}^{\mu} = \sum_{\mathbf{g}}^{\mathbf{G}} p_{mn}^{\mu} (\mathbf{g}) \mathbf{f} \cdot \mathbf{g} = \sum_{\mathbf{h}}^{\mathbf{G}} p_{mn}^{\mu} (\mathbf{f}^{-1}\mathbf{h}) \mathbf{h} \text{, where: } \mathbf{h} = \mathbf{f} \cdot \mathbf{g}, \text{ or: } \mathbf{g} = \mathbf{f}^{-1}\mathbf{h},$$

Regular representation $TraceR(\mathbf{h})$ is zero except for $TraceR(\mathbf{1}) = {}^{\circ}G$

Trace
$$R(\mathbf{f} \cdot \mathbf{P}_{mn}^{\mu}) = \sum_{\mathbf{h}}^{\circ G} p_{mn}^{\mu} (\mathbf{f}^{-1}\mathbf{h}) Trace R(\mathbf{h}) = p_{mn}^{\mu} (\mathbf{f}^{-1}\mathbf{1}) Trace R(\mathbf{1}) = p_{mn}^{\mu} (\mathbf{f}^{-1})^{\circ G}$$

Regular representation $TraceR(\mathbf{P}_{mn}^{\mu})$ is irep dimension $\ell^{(\mu)}$ for diagonal \mathbf{P}_{mm}^{μ} or zero otherwise:

 $\mathbf{P}^{\mu}_{jk} - expansion in \mathbf{g} - operators \quad Need inverse of Weyl form: \quad \mathbf{g} = \left[\sum_{\mu'} \sum_{m'}^{\ell^{\mu}} \sum_{n'}^{\ell^{\mu}} D_{m'n'}^{\mu'}(g) \mathbf{P}_{m'n'}^{\mu'}\right]$ Derive coefficients $p^{\mu}_{mn}(g)$ of inverse Weyl expansion: $\mathbf{P}^{\mu}_{mn} = \sum_{\mathbf{g}}^{\circ G} p^{\mu}_{mn}(g) \mathbf{g}$

Left action by operator **f** in group $G = \{1, ..., f, g, h, ...\}$:

$$\mathbf{f} \cdot \mathbf{P}_{mn}^{\mu} = \sum_{\mathbf{g}}^{G} p_{mn}^{\mu}(g) \mathbf{f} \cdot \mathbf{g} = \sum_{\mathbf{h}}^{G} p_{mn}^{\mu}(\mathbf{f}^{-1}\mathbf{h}) \mathbf{h} \text{, where: } \mathbf{h} = \mathbf{f} \cdot \mathbf{g}, \text{ or: } \mathbf{g} = \mathbf{f}^{-1}\mathbf{h},$$

Regular representation $TraceR(\mathbf{h})$ is zero except for $TraceR(\mathbf{1}) = {}^{\circ}G$

Trace
$$R(\mathbf{f} \cdot \mathbf{P}_{mn}^{\mu}) = \sum_{\mathbf{h}}^{\circ G} p_{mn}^{\mu} (\mathbf{f}^{-1}\mathbf{h}) Trace R(\mathbf{h}) = p_{mn}^{\mu} (\mathbf{f}^{-1}\mathbf{1}) Trace R(\mathbf{1}) = p_{mn}^{\mu} (\mathbf{f}^{-1})^{\circ G}$$

Regular representation $TraceR(\mathbf{P}_{mn}^{\mu})$ is irep dimension $\ell^{(\mu)}$ for diagonal \mathbf{P}_{mm}^{μ} or zero otherwise: $Trace R(\mathbf{P}_{mn}^{\mu}) = \delta_{mn} \ell^{(\mu)}$

 $\mathbf{P}^{\mu}_{jk} - expansion in \mathbf{g} - operators \quad Need inverse of Weyl form: \mathbf{g} = \left| \sum_{\mu'} \sum_{m'}^{\ell^{\mu}} \sum_{n'}^{\ell^{\mu}} D_{m'n'}^{\mu'}(g) \mathbf{P}_{m'n'}^{\mu'} \right|$ Derive coefficients $p_{mn}^{\mu}(g)$ of inverse Weyl expansion: $\mathbf{P}_{mn}^{\mu} = \sum_{n=1}^{G} p_{mn}^{\mu}(g) \mathbf{g}$ Left action by operator **f** in group $G = \{1, ..., f, g, h, ...\}$: $\mathbf{f} \cdot \mathbf{P}_{mn}^{\mu} = \sum_{a}^{G} p_{mn}^{\mu}(\mathbf{g}) \mathbf{f} \cdot \mathbf{g} = \sum_{b}^{G} p_{mn}^{\mu}(\mathbf{f}^{-1}\mathbf{h}) \mathbf{h} \text{, where: } \mathbf{h} = \mathbf{f} \cdot \mathbf{g}, \text{ or: } \mathbf{g} = \mathbf{f}^{-1}\mathbf{h},$ Regular representation $TraceR(\mathbf{h})$ is zero except for $TraceR(\mathbf{1}) = {}^{\circ}G$ Trace $R(\mathbf{f} \cdot \mathbf{P}_{mn}^{\mu}) = \sum_{\mathbf{h}}^{G} p_{mn}^{\mu} (\mathbf{f}^{-1}\mathbf{h}) Trace R(\mathbf{h}) = p_{mn}^{\mu} (\mathbf{f}^{-1}\mathbf{1}) Trace R(\mathbf{1}) = p_{mn}^{\mu} (\mathbf{f}^{-1})^{\circ} G$ Regular representation $TraceR(\mathbf{P}_{mn}^{\mu})$ is irrep dimension $\ell^{(\mu)}$ for diagonal \mathbf{P}_{mm}^{μ} or zero otherwise: Trace $R(\mathbf{P}_{mn}^{\mu}) = \delta_{mn} \ell^{(\mu)}$ Solving for $p_{mn}^{\mu}(g)$: $p_{mn}^{\mu}(\mathbf{f}) = \frac{1}{\mathbf{C}} \operatorname{Trace} R(\mathbf{f}^{-1} \cdot \mathbf{P}_{mn}^{\mu})$ Regular representation of $D_3 \sim C_{3v}$ in the Projector- $|\mathbf{P}^{\mu}_{mn}\rangle$ basis $= D_{xx}^{A_1}(g)\mathbf{P}^{A_1} + D_{yy}^{A_2}(g)\mathbf{P}^{A_2} + D_{xx}^{E}(g)\mathbf{P}_{xx}^{E} + D_{xy}^{E}(g)\mathbf{P}_{xy}^{E} + D_{yx}^{E}(g)\mathbf{P}_{yx}^{E} + D_{yy}^{E}(g)\mathbf{P}_{yy}^{E}$ Wednesday, April 1, 2015 45

 $\mathbf{P}^{\mu}_{jk} - expansion in \mathbf{g} - operators \quad Need inverse of Weyl form: \mathbf{g} = \left| \sum_{\mu'} \sum_{m'}^{\ell^{\mu}} \sum_{n'}^{\ell^{\mu}} D_{m'n'}^{\mu'}(g) \mathbf{P}_{m'n'}^{\mu'} \right|$ Derive coefficients $p_{mn}^{\mu}(g)$ of inverse Weyl expansion: $\mathbf{P}_{mn}^{\mu} = \sum_{n=1}^{\infty} p_{mn}^{\mu}(g) \mathbf{g}$ Left action by operator **f** in group $G = \{1, ..., f, g, h, ...\}$: $\mathbf{f} \cdot \mathbf{P}_{mn}^{\mu} = \sum_{\mathbf{g}}^{\mathbf{G}} p_{mn}^{\mu} (\mathbf{g}) \mathbf{f} \cdot \mathbf{g} = \sum_{\mathbf{h}}^{\mathbf{G}} p_{mn}^{\mu} (\mathbf{f}^{-1}\mathbf{h}) \mathbf{h} \text{, where: } \mathbf{h} = \mathbf{f} \cdot \mathbf{g}, \text{ or: } \mathbf{g} = \mathbf{f}^{-1}\mathbf{h},$ Regular representation $TraceR(\mathbf{h})$ is zero except for $TraceR(\mathbf{1}) = {}^{\circ}G$ Trace $R(\mathbf{f} \cdot \mathbf{P}_{mn}^{\mu}) = \sum_{\mathbf{h}}^{G} p_{mn}^{\mu} (\mathbf{f}^{-1}\mathbf{h}) Trace R(\mathbf{h}) = p_{mn}^{\mu} (\mathbf{f}^{-1}\mathbf{1}) Trace R(\mathbf{1}) = p_{mn}^{\mu} (\mathbf{f}^{-1})^{\circ} G$ Regular representation $TraceR(\mathbf{P}_{mn}^{\mu})$ is irrep dimension $\ell^{(\mu)}$ for diagonal \mathbf{P}_{mm}^{μ} or zero otherwise: Trace $R(\mathbf{P}_{mn}^{\mu}) = \delta_{mn} \ell^{(\mu)}$ Solving for $p_{mn}^{\mu}(g)$: $p_{mn}^{\mu}(\mathbf{f}) = \frac{1}{\mathcal{O}(\mathbf{f})} Trace R(\mathbf{f}^{-1} \cdot \mathbf{P}_{mn}^{\mu})$ Use left-action: $\mathbf{f}^{-1} \cdot \mathbf{P}_{mn}^{\mu} = \sum_{m'}^{\ell^{(\mu)}} D_{m'm}^{\mu}(\mathbf{f}^{-1}) \mathbf{P}_{m'n}^{\mu}$ Regular representation of $D_3 \sim C_{3v}$ in the Projector- $|\mathbf{P}^{\mu}_{mn}\rangle$ basis $= D_{xx}^{A_1}(g)\mathbf{P}^{A_1} + D_{yy}^{A_2}(g)\mathbf{P}^{A_2} + D_{xx}^{E}(g)\mathbf{P}_{xx}^{E} + D_{xy}^{E}(g)\mathbf{P}_{xy}^{E} + D_{yx}^{E}(g)\mathbf{P}_{yx}^{E} + D_{yy}^{E}(g)\mathbf{P}_{yy}^{E}$

Wednesday, April 1, 2015

 $\mathbf{P}^{\mu}_{jk} - expansion in \mathbf{g} - operators \quad Need inverse of Weyl form: \mathbf{g} = \left| \sum_{\mu'} \sum_{m'}^{\ell^{\mu}} \sum_{n'}^{\ell^{\mu}} D_{m'n'}^{\mu'}(g) \mathbf{P}_{m'n'}^{\mu'} \right|$ Derive coefficients $p_{mn}^{\mu}(g)$ of inverse Weyl expansion: $\mathbf{P}_{mn}^{\mu} = \sum_{n=1}^{\infty} p_{mn}^{\mu}(g) \mathbf{g}$ Left action by operator **f** in group $G = \{1, ..., f, g, h, ...\}$: $\mathbf{f} \cdot \mathbf{P}_{mn}^{\mu} = \sum_{\mathbf{g}}^{G} p_{mn}^{\mu} (\mathbf{g}) \mathbf{f} \cdot \mathbf{g} = \sum_{\mathbf{h}}^{O} p_{mn}^{\mu} (\mathbf{f}^{-1}\mathbf{h}) \mathbf{h} \text{, where: } \mathbf{h} = \mathbf{f} \cdot \mathbf{g}, \text{ or: } \mathbf{g} = \mathbf{f}^{-1}\mathbf{h},$ Regular representation $TraceR(\mathbf{h})$ is zero except for $TraceR(\mathbf{1}) = {}^{\circ}G$ Trace $R(\mathbf{f} \cdot \mathbf{P}_{mn}^{\mu}) = \sum_{\mathbf{h}}^{G} p_{mn}^{\mu} (\mathbf{f}^{-1}\mathbf{h}) Trace R(\mathbf{h}) = p_{mn}^{\mu} (\mathbf{f}^{-1}\mathbf{1}) Trace R(\mathbf{1}) = p_{mn}^{\mu} (\mathbf{f}^{-1})^{\circ} G$ Regular representation $TraceR(\mathbf{P}_{mn}^{\mu})$ is irrep dimension $\ell^{(\mu)}$ for diagonal \mathbf{P}_{mm}^{μ} or zero otherwise: Trace $R(\mathbf{P}_{mn}^{\mu}) = \delta_{mn} \ell^{(\mu)}$ Solving for $p_{mn}^{\mu}(g)$: $p_{mn}^{\mu}(\mathbf{f}) = \frac{1}{C} Trace R(\mathbf{f}^{-1} \cdot \mathbf{P}_{mn}^{\mu})$ Use left-action: $\mathbf{f}^{-1} \cdot \mathbf{P}_{mn}^{\mu} = \sum_{m'}^{\ell^{(\mu)}} D_{m'm}^{\mu}(\mathbf{f}^{-1}) \mathbf{P}_{m'n}^{\mu}$ $=\frac{1}{2}\sum_{m'm}^{\ell^{(\mu)}} D^{\mu}_{m'm} \left(\mathbf{f}^{-1}\right) Trace R\left(\mathbf{P}^{\mu}_{m'n}\right)$ $= D_{xx}^{A_1}(g) \mathbf{P}^{A_1} + D_{yy}^{A_2}(g) \mathbf{P}^{A_2} + D_{xx}^{E}(g) \mathbf{P}_{xx}^{E} + D_{xy}^{E}(g) \mathbf{P}_{xy}^{E} + D_{yx}^{E}(g) \mathbf{P}_{yx}^{E} + D_{yy}^{E}(g) \mathbf{P}_{yy}^{E}$ Wednesday, April 1, 2015

 $\mathbf{P}^{\mu}_{jk} - expansion in \mathbf{g} - operators \quad Need inverse of Weyl form: \mathbf{g} = \left| \sum_{\mu'} \sum_{m'}^{\ell^{\mu}} \sum_{n'}^{\ell^{\mu}} D_{m'n'}^{\mu'}(g) \mathbf{P}_{m'n'}^{\mu'} \right|$ Derive coefficients $p_{mn}^{\mu}(g)$ of inverse Weyl expansion: $\mathbf{P}_{mn}^{\mu} = \sum_{n=1}^{\infty} p_{mn}^{\mu}(g) \mathbf{g}$ Left action by operator **f** in group $G = \{1, ..., f, g, h, ...\}$: $\mathbf{f} \cdot \mathbf{P}_{mn}^{\mu} = \sum_{\mathbf{g}}^{G} p_{mn}^{\mu} (\mathbf{g}) \mathbf{f} \cdot \mathbf{g} = \sum_{\mathbf{h}}^{O} p_{mn}^{\mu} (\mathbf{f}^{-1}\mathbf{h}) \mathbf{h} \text{, where: } \mathbf{h} = \mathbf{f} \cdot \mathbf{g}, \text{ or: } \mathbf{g} = \mathbf{f}^{-1}\mathbf{h},$ Regular representation $TraceR(\mathbf{h})$ is zero except for $TraceR(\mathbf{1}) = {}^{\circ}G$ Trace $R(\mathbf{f} \cdot \mathbf{P}_{mn}^{\mu}) = \sum_{\mathbf{h}}^{G} p_{mn}^{\mu} (\mathbf{f}^{-1}\mathbf{h}) Trace R(\mathbf{h}) = p_{mn}^{\mu} (\mathbf{f}^{-1}\mathbf{1}) Trace R(\mathbf{1}) = p_{mn}^{\mu} (\mathbf{f}^{-1})^{\circ} G$ Regular representation $TraceR(\mathbf{P}_{mn}^{\mu})$ is irrep dimension $\ell^{(\mu)}$ for diagonal \mathbf{P}_{mm}^{μ} or zero otherwise: Trace $R(\mathbf{P}_{mn}^{\mu}) = \delta_{mn} \ell^{(\mu)}$ Solving for $p_{mn}^{\mu}(g)$: $p_{mn}^{\mu}(\mathbf{f}) = \frac{1}{C} Trace R(\mathbf{f}^{-1} \cdot \mathbf{P}_{mn}^{\mu})$ Use left-action: $\mathbf{f}^{-1} \cdot \mathbf{P}_{mn}^{\mu} = \sum_{m'}^{\ell^{(\mu)}} D_{m'm}^{\mu}(\mathbf{f}^{-1}) \mathbf{P}_{m'n}^{\mu}$ $= \frac{1}{2} \sum_{m'm}^{\ell^{(\mu)}} D^{\mu}_{m'm} \left(\mathbf{f}^{-1} \right) Trace \ R\left(\mathbf{P}^{\mu}_{m'n} \right) \qquad \qquad \text{Use: } Trace \ R(\mathbf{P}^{\mu}_{mn}) = \delta_{mn} \ell^{(\mu)}$ $= D_{xx}^{A_1}(g) \mathbf{P}^{A_1} + D_{yy}^{A_2}(g) \mathbf{P}^{A_2} + D_{xx}^{E}(g) \mathbf{P}_{xx}^{E} + D_{xy}^{E}(g) \mathbf{P}_{xy}^{E} + D_{yx}^{E}(g) \mathbf{P}_{yx}^{E} + D_{yy}^{E}(g) \mathbf{P}_{yy}^{E}$ Wednesday, April 1, 2015 48

 $\mathbf{P}^{\mu}_{jk} \text{-expansion in g-operators} \quad \text{Need inverse of Weyl form:} \quad \mathbf{g} = \left| \sum_{\mu'} \sum_{m'}^{\ell^{\mu}} \sum_{n'}^{\ell^{\mu}} D_{m'n'}^{\mu'}(g) \mathbf{P}_{m'n'}^{\mu'} \right|$ Derive coefficients $p_{mn}^{\mu}(g)$ of inverse Weyl expansion: $\mathbf{P}_{mn}^{\mu} = \sum_{a}^{o} p_{mn}^{\mu}(g) \mathbf{g}$ Left action by operator **f** in group $G = \{1, ..., f, g, h, ...\}$: $\mathbf{f} \cdot \mathbf{P}_{mn}^{\mu} = \sum_{\mathbf{g}}^{G} p_{mn}^{\mu} (\mathbf{g}) \mathbf{f} \cdot \mathbf{g} = \sum_{\mathbf{h}}^{G} p_{mn}^{\mu} (\mathbf{f}^{-1}\mathbf{h}) \mathbf{h} \text{, where: } \mathbf{h} = \mathbf{f} \cdot \mathbf{g}, \text{ or: } \mathbf{g} = \mathbf{f}^{-1}\mathbf{h},$ Regular representation $TraceR(\mathbf{h})$ is zero except for $TraceR(\mathbf{1}) = {}^{\circ}G$ Trace $R(\mathbf{f} \cdot \mathbf{P}_{mn}^{\mu}) = \sum_{\mathbf{h}}^{G} p_{mn}^{\mu} (\mathbf{f}^{-1}\mathbf{h}) Trace R(\mathbf{h}) = p_{mn}^{\mu} (\mathbf{f}^{-1}\mathbf{1}) Trace R(\mathbf{1}) = p_{mn}^{\mu} (\mathbf{f}^{-1})^{\circ} G$ Regular representation $TraceR(\mathbf{P}_{mn}^{\mu})$ is irrep dimension $\ell^{(\mu)}$ for diagonal \mathbf{P}_{mm}^{μ} or zero otherwise: Trace $R(\mathbf{P}_{mn}^{\mu}) = \delta_{mn} \ell^{(\mu)}$ Solving for $p_{mn}^{\mu}(g)$: $p_{mn}^{\mu}(\mathbf{f}) = \frac{1}{\circ \mathbf{C}} Trace R(\mathbf{f}^{-1} \cdot \mathbf{P}_{mn}^{\mu})$ Use left-action: $\mathbf{f}^{-1} \cdot \mathbf{P}_{mn}^{\mu} = \sum_{m'}^{\ell^{(\mu)}} D_{m'm}^{\mu}(\mathbf{f}^{-1}) \mathbf{P}_{m'n}^{\mu}$ $=\frac{1}{2C}\sum_{n=1}^{\ell(\mu)}D_{m'm}^{\mu}(\mathbf{f}^{-1}) Trace R(\mathbf{P}_{m'n}^{\mu})$ Use: Trace $R(\mathbf{P}_{mn}^{\mu}) = \delta_{mn} \ell^{(\mu)}$ $=\frac{\ell^{(\mu)}}{\Omega}D_{nm}^{\mu}(\mathbf{f}^{-1})$

 $\mathbf{P}^{\mu}_{jk} \text{-expansion in } \mathbf{g} \text{-operators} \quad \text{Need inverse of Weyl form:} \quad \mathbf{g} = \left| \sum_{u'} \sum_{m'}^{\ell^{\mu}} \sum_{n'}^{\ell^{\mu}} D_{m'n'}^{\mu'}(g) \mathbf{P}_{m'n'}^{\mu'} \right|$ Derive coefficients $p_{mn}^{\mu}(g)$ of inverse Weyl expansion: $\mathbf{P}_{mn}^{\mu} = \sum_{r=1}^{G} p_{mn}^{\mu}(g) \mathbf{g}$ Left action by operator **f** in group $G = \{1, ..., f, g, h, ...\}$: $\mathbf{f} \cdot \mathbf{P}_{mn}^{\mu} = \sum_{\mathbf{g}}^{G} p_{mn}^{\mu} (\mathbf{g}) \mathbf{f} \cdot \mathbf{g} = \sum_{\mathbf{h}}^{G} p_{mn}^{\mu} (\mathbf{f}^{-1}\mathbf{h}) \mathbf{h} \text{, where: } \mathbf{h} = \mathbf{f} \cdot \mathbf{g}, \text{ or: } \mathbf{g} = \mathbf{f}^{-1}\mathbf{h},$ Regular representation $TraceR(\mathbf{h})$ is zero except for $TraceR(\mathbf{1}) = {}^{\circ}G$ Trace $R(\mathbf{f} \cdot \mathbf{P}_{mn}^{\mu}) = \sum_{\mathbf{h}}^{G} p_{mn}^{\mu} (\mathbf{f}^{-1}\mathbf{h}) Trace R(\mathbf{h}) = p_{mn}^{\mu} (\mathbf{f}^{-1}\mathbf{1}) Trace R(\mathbf{1}) = p_{mn}^{\mu} (\mathbf{f}^{-1})^{\circ} G$ Regular representation $TraceR(\mathbf{P}_{mn}^{\mu})$ is irrep dimension $\ell^{(\mu)}$ for diagonal \mathbf{P}_{mm}^{μ} or zero otherwise: Trace $R(\mathbf{P}_{mn}^{\mu}) = \delta_{mn} \ell^{(\mu)}$ Solving for $p_{mn}^{\mu}(g)$: $p_{mn}^{\mu}(\mathbf{f}) = \frac{1}{C} Trace R(\mathbf{f}^{-1} \cdot \mathbf{P}_{mn}^{\mu})$ Use left-action: $\mathbf{f}^{-1} \cdot \mathbf{P}_{mn}^{\mu} = \sum_{m'}^{\ell^{(\mu)}} D_{m'm}^{\mu}(\mathbf{f}^{-1}) \mathbf{P}_{m'n}^{\mu}$ $=\frac{1}{2}\sum_{\mu'm}^{\ell^{(\mu)}} D^{\mu}_{m'm} \left(\mathbf{f}^{-1}\right) Trace R\left(\mathbf{P}^{\mu}_{m'n}\right)$ Use: Trace $R(\mathbf{P}_{mn}^{\mu}) = \delta_{mn} \ell^{(\mu)}$ $=\frac{\ell^{(\mu)}}{c}D_{nm}^{\mu}\left(\mathbf{f}^{-1}\right)$ $\mathbf{P}_{mn}^{\mu} = \frac{\ell^{(\mu)}}{\mathbf{G}} \sum_{\sigma}^{G} D_{nm}^{\mu} \left(g^{-1}\right) \mathbf{g}$

 $\mathbf{P}^{\mu}_{jk} \text{-expansion in } \mathbf{g} \text{-operators} \quad \text{Need inverse of Weyl form:} \quad \mathbf{g} = \left| \sum_{u'} \sum_{m'}^{\ell^{\mu}} \sum_{n'}^{\ell^{\mu}} D_{m'n'}^{\mu'}(g) \mathbf{P}_{m'n'}^{\mu'} \right|$ Derive coefficients $p_{mn}^{\mu}(g)$ of inverse Weyl expansion: $\mathbf{P}_{mn}^{\mu} = \sum_{n=1}^{S} p_{mn}^{\mu}(g) \mathbf{g}$ Left action by operator **f** in group $G = \{1, ..., f, g, h, ...\}$: $\mathbf{f} \cdot \mathbf{P}_{mn}^{\mu} = \sum_{\alpha}^{G} p_{mn}^{\mu}(\mathbf{g}) \mathbf{f} \cdot \mathbf{g} = \sum_{\mathbf{h}}^{G} p_{mn}^{\mu}(\mathbf{f}^{-1}\mathbf{h}) \mathbf{h} \text{, where: } \mathbf{h} = \mathbf{f} \cdot \mathbf{g}, \text{ or: } \mathbf{g} = \mathbf{f}^{-1}\mathbf{h},$ Regular representation $TraceR(\mathbf{h})$ is zero except for $TraceR(\mathbf{1}) = {}^{\circ}G$ Trace $R(\mathbf{f} \cdot \mathbf{P}_{mn}^{\mu}) = \sum_{\mathbf{h}}^{G} p_{mn}^{\mu} (\mathbf{f}^{-1}\mathbf{h}) Trace R(\mathbf{h}) = p_{mn}^{\mu} (\mathbf{f}^{-1}\mathbf{1}) Trace R(\mathbf{1}) = p_{mn}^{\mu} (\mathbf{f}^{-1})^{\circ} G$ Regular representation $TraceR(\mathbf{P}_{mn}^{\mu})$ is irrep dimension $\ell^{(\mu)}$ for diagonal \mathbf{P}_{mm}^{μ} or 0 for off-diagonal \mathbf{P}_{mn}^{μ} Trace $R(\mathbf{P}_{mn}^{\mu}) = \delta_{mn} \ell^{(\mu)}$ Solving for $p_{mn}^{\mu}(g)$: $p_{mn}^{\mu}(\mathbf{f}) = \frac{1}{C} Trace R(\mathbf{f}^{-1} \cdot \mathbf{P}_{mn}^{\mu})$ Use left-action: $\mathbf{f}^{-1} \cdot \mathbf{P}_{mn}^{\mu} = \sum_{m'}^{\ell^{(\mu)}} D_{m'm}^{\mu}(\mathbf{f}^{-1}) \mathbf{P}_{m'n}^{\mu}$ $= \frac{1}{2} \sum_{m'}^{\ell(\mu)} D^{\mu}_{m'm} \left(\mathbf{f}^{-1} \right) Trace R\left(\mathbf{P}^{\mu}_{m'n} \right) \qquad \text{Use: } Trace R(\mathbf{P}^{\mu}_{mn}) = \delta_{mn} \ell^{(\mu)}$ $=\frac{\ell^{(\mu)}}{{}^{\circ}G}D_{nm}^{\mu}\left(\mathbf{f}^{-1}\right) \qquad \left(=\frac{\ell^{(\mu)}}{{}^{\circ}G}D_{mn}^{\mu*}\left(\mathbf{f}\right) \quad \text{for unitary } D_{nm}^{\mu}\right)$ $\mathbf{P}_{mn}^{\mu} = \frac{\ell^{(\mu)}}{{}^{\circ}G} \sum_{\mathbf{g}}^{\circ} D_{nm}^{\mu} \left(g^{-1}\right) \mathbf{g} \qquad \left[\mathbf{P}_{mn}^{\mu} = \frac{\ell^{(\mu)}}{{}^{\circ}G} \sum_{\mathbf{g}}^{\circ} D_{mn}^{\mu^{*}} \left(g\right) \mathbf{g} \quad \text{for unitary } D_{nm}^{\mu}$

Review Stage 1: Group Center: Class-sums κ_g , characters $\chi^{\mu}(g)$, and All-Commuting Projectors \mathbb{P}^{μ} Review Stage 2: Group operators g and Mutually-Commuting projectors \mathbf{P}^{μ}_{kk} Review Stage 3: Weyl g-expansion in irreps $D^{\mu}_{jk}(g)$ and Non-Commuting projectors \mathbf{P}^{μ}_{jk} Simple matrix algebra $\mathbf{P}^{\mu}_{ab} \mathbf{P}^{\nu}_{cd} = \delta^{\mu\nu} \delta_{bc} \mathbf{P}^{\mu}_{ad}$ \mathbf{P}^{μ}_{jk} transforms right-and-left \mathbf{P}^{μ}_{jk} -expansion in g-operators Example of D_3 transformation by matrix $D^E_{jk}(\mathbf{r}^1)$

Details of Mock-Mach relativity-duality for D₃ groups and representations Lab-fixed(Extrinsic-Global) vs. Body-fixed (Intrinsic-Local) Compare Global vs Local $|\mathbf{g}\rangle$ -basis and Global vs Local $|\mathbf{P}^{(\mu)}\rangle$ -basis

Hamiltonian and D₃ group matrices in global and local $|\mathbf{P}^{(\mu)}\rangle$ -basis Global vs. Local block rearrangement Hamiltonian local-symmetry eigensolution Molecular vibrational mode eigensolution Local symmetry limit Global symmetry limit (free or "genuine" modes) Example of D₃ transformation by matrix $D^{E}_{jk}(\mathbf{r}^{1})$ $\mathbf{r}^{1} |\mathbf{P}_{11}^{E_{1}}\rangle = \mathbf{r}^{1}\mathbf{P}_{11}^{E_{1}} |\mathbf{1}\rangle/\sqrt{3} = \mathbf{r}^{1}(\mathbf{1} - \frac{1}{2}\mathbf{r}^{2} - \frac{1}{2}\mathbf{i}_{1} - \frac{1}{2}\mathbf{i}_{2} + \mathbf{i}_{3})|\mathbf{1}\rangle/\sqrt{3}$ given: $norm_{.}^{E_{1}} = \sqrt{\frac{\ell^{E_{1}}}{\circ G}} = \sqrt{\frac{2}{6}} = \sqrt{\frac{1}{3}}$

*Example of D*₃ *transformation by matrix*
$$D^{E}_{jk}(\mathbf{r}^{1})$$

$$\mathbf{r}^{1} | \mathbf{P}_{11}^{E_{1}} \rangle = \mathbf{r}^{1} \mathbf{P}_{11}^{E_{1}} | \mathbf{1} \rangle / \sqrt{3} = \mathbf{r}^{1} (\mathbf{1} - \frac{1}{2} \mathbf{r}^{1} - \frac{1}{2} \mathbf{r}^{2} - \frac{1}{2} \mathbf{i}_{1} - \frac{1}{2} \mathbf{i}_{2} + \mathbf{i}_{3}) | \mathbf{1} \rangle / \sqrt{3} \text{ given: } norm_{.}^{E_{1}} = \sqrt{\frac{\ell^{E_{1}}}{\circ G}} = \sqrt{\frac{2}{6}} = \sqrt{\frac{1}{3}}$$
$$= (\mathbf{r}^{1} - \frac{1}{2} \mathbf{r}^{2} - \frac{1}{2} \mathbf{1} - \frac{1}{2} \mathbf{i}_{3} - \frac{1}{2} \mathbf{i}_{1} + \mathbf{i}_{2}) | \mathbf{1} \rangle / \sqrt{3}$$

$$\begin{aligned} \text{Example of } D_3 \text{ transformation by matrix } D^E_{jk}(\mathbf{r}^1) \\ \mathbf{r}^1 \Big| \mathbf{P}_{11}^{E_1} \Big\rangle &= \mathbf{r}^1 \mathbf{P}_{11}^{E_1} \Big| \mathbf{1} \Big\rangle / \sqrt{3} = \mathbf{r}^1 (\mathbf{1} - \frac{1}{2} \mathbf{r}^1 - \frac{1}{2} \mathbf{r}^2 - \frac{1}{2} \mathbf{i}_1 - \frac{1}{2} \mathbf{i}_2 + \mathbf{i}_3 \Big| \mathbf{1} \Big\rangle / \sqrt{3} \quad \text{given: } norm_{-}^{E_1} &= \sqrt{\frac{\ell^{E_1}}{\circ G}} = \sqrt{\frac{2}{6}} = \sqrt{\frac{1}{3}} \\ &= \mathbf{r}^1 \begin{pmatrix} 1 \\ -\frac{1}{2} \\ -\frac{1}{2} \\ -\frac{1}{2} \\ -\frac{1}{2} \\ -\frac{1}{2} \\ 1 \end{pmatrix} \stackrel{\mathbf{1}}{=} (-\frac{1}{2}\mathbf{1} + \mathbf{r}^1 - \frac{1}{2} \mathbf{r}^2 - \frac{1}{2} \mathbf{i}_1 + \mathbf{i}_2 - \frac{1}{2} \mathbf{i}_3 \Big| \mathbf{1} \Big\rangle / \sqrt{3} = \begin{pmatrix} -\frac{1}{2} \\ 1 \\ -\frac{1}{2} \\ -\frac{1}{2} \\ -\frac{1}{2} \\ 1 \\ -\frac{1}{2} \\ -\frac{1}{2} \\ 1 \\ -\frac{1}{2} \\ -\frac{1}{2} \\ 1 \\ -\frac{1}{2} \\ -\frac{1}{2} \\ -\frac{1}{2} \\ 1 \\ -\frac{1}{2} \\ -\frac{1}{$$

$$\begin{aligned} \frac{Example of D_3 transformation by matrix D^{E}_{jk}(\mathbf{r}^{1})}{\mathbf{r}^{1} \left| \mathbf{P}_{11}^{E_{1}} \right\rangle &= \mathbf{r}^{1} \mathbf{P}_{11}^{E_{1}} \left| \mathbf{1} \right\rangle \sqrt{3} = \mathbf{r}^{1} (\mathbf{1} - \frac{1}{2} \mathbf{r}^{1} - \frac{1}{2} \mathbf{r}^{2} - \frac{1}{2} \mathbf{i}_{1} - \frac{1}{2} \mathbf{i}_{2} + \mathbf{i}_{3} \right) \left| \mathbf{1} \right\rangle \sqrt{3}} \quad \text{given: } norm_{.}^{E_{1}} = \sqrt{\frac{e^{E_{1}}}{3}} = \sqrt{\frac{2}{6}} = \sqrt{\frac{1}{3}} \\ &= \mathbf{r}^{1} \left(\begin{array}{c} 1\\ -\frac{1}{2}\\ -\frac{1}{2}\\ -\frac{1}{2}\\ -\frac{1}{2}\\ -\frac{1}{2}\\ 1 \end{array} \right)^{\frac{1}{\sqrt{3}}} = (-\frac{1}{2}\mathbf{1} + \mathbf{r}^{1} - \frac{1}{2} \mathbf{r}^{2} - \frac{1}{2} \mathbf{i}_{1} + \mathbf{i}_{2} - \frac{1}{2} \mathbf{i}_{3} \right) \left| \mathbf{1} \right\rangle \sqrt{3} = \left(\begin{array}{c} -\frac{1}{2}\\ 1\\ -\frac{1}{2}\\ -\frac{1}{2}\\ 1\\ -\frac{1}{2} \end{array} \right)^{\frac{1}{\sqrt{3}}} \\ &= \mathbf{r}^{E_{1}} \left| \mathbf{1} \right\rangle \sqrt{3} = (\theta + \frac{\sqrt{3}}{2} \mathbf{r}^{1} - \frac{\sqrt{3}}{2} \mathbf{r}^{2} - \frac{\sqrt{3}}{2} \mathbf{i}_{1} + \frac{\sqrt{3}}{2} \mathbf{i}_{2} + \theta \right) \left| \mathbf{1} \right\rangle \sqrt{3} = \left(\begin{array}{c} 0\\ +\frac{1}{2}\\ -\frac{1}{2}\\ -\frac{1}{2}\\ -\frac{1}{2}\\ -\frac{1}{2}\\ +\frac{1}{2}\\ 0 \end{array} \right) \\ &= \left(\begin{array}{c} 1\\ \frac{1}{e^{2}} - \frac{1}{e^{2}} \mathbf{i}_{1} + \frac{1}{e^{2}} \mathbf{i}_{1} - \frac{1}{e^{2}} \mathbf{i}_{2} \mathbf{i}_{2} + \theta \right) \left| \mathbf{1} \right\rangle \sqrt{3} = \left(\begin{array}{c} 0\\ +\frac{1}{2}\\ -\frac{1}{2}\\ -\frac{1}{2}\\ +\frac{1}{2}\\ 0 \end{array} \right) \\ &= \left(\begin{array}{c} 1\\ \frac{1}{e^{2}} - \frac{1}{e^{2}} \mathbf{i}_{1} + \frac{1}{e^{2}} \mathbf{i}_{1} \mathbf{i}_$$

 \mathbf{i}_3 \mathbf{i}_2 \mathbf{i}_1 \mathbf{r}^2

r

1

$$\mathbf{r}^{|} | \mathbf{P}_{11}^{E_{1}} \rangle = \mathbf{r}^{|} \mathbf{P}_{11}^{E_{1}} | \mathbf{1} \rangle \sqrt{3} = \mathbf{r}^{|} (\mathbf{1} - \frac{1}{2} \mathbf{r}^{|} - \frac{1}{2} \mathbf{i}_{2}^{|} - \frac{1}{2} \mathbf{i}_{2} + \mathbf{i}_{3}) | \mathbf{1} \rangle \sqrt{3} \quad norm_{}^{E_{1}} = \sqrt{\frac{\ell}{c_{G}}^{E_{1}}} = \sqrt{\frac{2}{c_{G}}} = \sqrt{\frac{1}{3}}$$

$$= \mathbf{r}^{|} \begin{pmatrix} \mathbf{1} \\ -\frac{1}{2} \\ -\frac{1}{2$$

$$\mathbf{r}^{T} | \mathbf{P}_{11}^{E_{1}} \rangle = \mathbf{r}^{T} \mathbf{P}_{11}^{E_{1}} | \mathbf{1} \rangle \sqrt{3} = \mathbf{r}^{T} (\mathbf{1} - \frac{1}{2} \mathbf{r}^{2} - \frac{1}{2} \mathbf{i}_{1} - \frac{1}{2} \mathbf{i}_{2} + \mathbf{i}_{3} | \mathbf{1} \rangle \sqrt{3} \quad norm_{.}^{E_{1}} = \sqrt{\frac{\ell^{E_{1}}}{\circ G}} = \sqrt{\frac{2}{6}} = \sqrt{\frac{1}{3}}$$

$$= (\mathbf{r}^{1} - \frac{1}{2} \mathbf{r}^{2} - \frac{1}{2} \mathbf{1} - \frac{1}{2} \mathbf{i}_{3} - \frac{1}{2} \mathbf{i}_{1} + \mathbf{i}_{2} | \mathbf{1} \rangle \sqrt{3}$$

$$= (\mathbf{r}^{1} - \frac{1}{2} \mathbf{r}^{2} - \frac{1}{2} \mathbf{1} - \frac{1}{2} \mathbf{i}_{3} - \frac{1}{2} \mathbf{i}_{1} + \mathbf{i}_{2} | \mathbf{1} \rangle \sqrt{3}$$

$$= (\mathbf{r}^{1} - \frac{1}{2} \mathbf{r}^{2} - \frac{1}{2} \mathbf{1} - \frac{1}{2} \mathbf{i}_{3} - \frac{1}{2} \mathbf{i}_{1} + \mathbf{i}_{2} - \frac{1}{2} \mathbf{i}_{3} | \mathbf{1} \rangle \sqrt{3}$$

$$= (\mathbf{r}^{1} - \frac{1}{2} \mathbf{r}^{2} - \frac{1}{2} \mathbf{i}_{1} + \mathbf{r}^{2} - \frac{1}{2} \mathbf{i}_{1} + \mathbf{i}_{2} - \frac{1}{2} \mathbf{i}_{3} | \mathbf{1} \rangle \sqrt{3}$$

$$= (\mathbf{r}^{1} - \frac{1}{2} \mathbf{r}^{2} - \frac{1}{2} \mathbf{i}_{1} + \mathbf{r}^{2} - \frac{1}{2} \mathbf{i}_{1} + \mathbf{i}_{2} - \frac{1}{2} \mathbf{i}_{3} | \mathbf{1} \rangle \sqrt{3}$$

$$= (\mathbf{r}^{1} - \frac{1}{2} \mathbf{r}^{2} - \frac{1}{2} \mathbf{i}_{1} + \mathbf{r}^{2} - \frac{1}{2} \mathbf{i}_{1} + \mathbf{i}_{2} - \frac{1}{2} \mathbf{i}_{3} | \mathbf{1} \rangle \sqrt{3}$$

$$= (\mathbf{r}^{1} - \frac{1}{\sqrt{3}} = (-\frac{1}{2} \mathbf{r} + \mathbf{r}^{1} - \frac{1}{2} \mathbf{r}^{2} - \frac{1}{2} \mathbf{i}_{1} + \mathbf{i}_{2} - \frac{1}{2} \mathbf{i}_{3} | \mathbf{1} \rangle \sqrt{3}$$

$$= (\mathbf{r}^{1} - \frac{1}{\sqrt{3}} = (-\frac{1}{2} \mathbf{r} + \mathbf{r}^{1} - \frac{1}{2} \mathbf{r}^{2} - \frac{1}{2} \mathbf{i}_{1} + \mathbf{i}_{2} - \frac{1}{2} \mathbf{i}_{3} | \mathbf{i}_{1} \rangle \sqrt{3}$$

$$= (\mathbf{r}^{1} - \frac{1}{\sqrt{3}} = (-\frac{1}{2} \mathbf{r} + \frac{1}{\sqrt{3}} \mathbf{r}^{2} - \frac{1}{2} \mathbf{i}_{1} + \mathbf{i}_{2} - \frac{1}{2} \mathbf{i}_{3} | \mathbf{i}_{1} \rangle \sqrt{3}$$

$$= (\mathbf{r}^{1} - \frac{1}{\sqrt{3}} \mathbf{r} + \frac{1}{\sqrt{3}} \mathbf{r}$$

Review Stage 1: Group Center: Class-sums κ_{g} , characters $\chi^{\mu}(\mathbf{g})$, and All-Commuting *Projectors* \mathbb{P}^{μ}

Review Stage 2: Group operators **g** *and Mutually-Commuting projectors* \mathbf{P}^{μ}_{kk} Review Stage 3: Weyl g-expansion in irreps $D^{\mu}_{jk}(g)$ and Non-Commuting projectors \mathbf{P}^{μ}_{jk} Simple matrix algebra $\mathbf{P}^{\mu}_{ab} \mathbf{P}^{\nu}_{cd} = \delta^{\mu\nu} \delta_{bc} \mathbf{P}^{\mu}_{ad}$ \mathbf{P}^{μ}_{ik} transforms right-and-left \mathbf{P}^{μ}_{ik} -expansion in **g**-operators *Example of D*₃ *transformation by matrix* $D^{E}_{ik}(\mathbf{r}^{1})$

Details of Mock-Mach relativity-duality for D₃ groups and representations Lab-fixed(Extrinsic-Global) vs. Body-fixed (Intrinsic-Local) *Compare Global vs Local* $|\mathbf{g}\rangle$ *-basis and Global vs Local* $|\mathbf{P}^{(\mu)}\rangle$ *-basis*

Hamiltonian and D₃ group matrices in global and local $|\mathbf{P}^{(\mu)}\rangle$ -basis Global vs. Local block rearrangement Hamiltonian local-symmetry eigensolution Molecular vibrational mode eigensolution Local symmetry limit Global symmetry limit (free or "genuine" modes)

Details of Mock-Mach relativity-duality for D₃ groups and representations

"Give me a place to stand... and I will move the Earth" Archimedes 287-212 B.C.E

Ideas of duality/relativity go way back (... VanVleck, Casimir..., Mach, Newton, Archimedes...)

Lab-fixed (Extrinsic-Global) \mathbf{R} , \mathbf{S} , vs. Body-fixed (Intrinsic-Local) $\mathbf{\bar{R}}$, $\mathbf{\bar{S}}$, vs.

all **R**,**S**,.. commute with all **R**,**S**,..

"Mock-Mach" relativity principles

 $\begin{array}{c} \mathbf{R}|1\rangle = \mathbf{\bar{R}}^{-1}|1\rangle \\ \mathbf{S}|1\rangle = \mathbf{\bar{S}}^{-1}|1\rangle \\ \vdots \end{array}$

... for one state |1) only!

Body Based Operations

...But *how* do you actually *make* the \mathbf{R} and $\mathbf{\bar{R}}$ operations?

Lab-fixed (Extrinsic-Global) operations&axes fixed

Wednesday, April 1, 2015

Review Stage 1: Group Center: Class-sums κ_g , *characters* $\chi^{\mu}(\mathbf{g})$, *and All-Commuting Projectors* \mathbb{P}^{μ}

Review Stage 2: Group operators **g** and Mutually-Commuting projectors \mathbf{P}^{μ}_{kk} Review Stage 3: Weyl **g**-expansion in irreps $D^{\mu}_{jk}(g)$ and Non-Commuting projectors \mathbf{P}^{μ}_{jk} Simple matrix algebra $\mathbf{P}^{\mu}_{ab} \mathbf{P}^{\nu}_{cd} = \delta^{\mu\nu} \delta_{bc} \mathbf{P}^{\mu}_{ad}$ \mathbf{P}^{μ}_{jk} transforms right-and-left \mathbf{P}^{μ}_{jk} -expansion in **g**-operators Example of D_3 transformation by matrix $D^{E}_{jk}(\mathbf{r}^1)$

Details of Mock-Mach relativity-duality for D₃ groups and representations Lab-fixed(Extrinsic-Global) vs. Body-fixed (Intrinsic-Local) Compare Global vs Local $|\mathbf{g}\rangle$ -basis and Global vs Local $|\mathbf{P}^{(\mu)}\rangle$ -basis

+

Hamiltonian and D₃ group matrices in global and local $|\mathbf{P}^{(\mu)}\rangle$ -basis Global vs. Local block rearrangement Hamiltonian local-symmetry eigensolution Molecular vibrational mode eigensolution Local symmetry limit Global symmetry limit (free or "genuine" modes) *Compare Global vs Local* $|\mathbf{g}\rangle$ *-basis vs. Global vs Local* $|\mathbf{P}^{(\mu)}\rangle$ *-basis*

Change Global to Local by switching ...column-g with column-g[†] ...and row-g with row-g[†]

Compare Global vs Local $|\mathbf{g}\rangle$ *-basis vs. Global vs Local* $|\mathbf{P}^{(\mu)}\rangle$ *-basis*

 $D_3 \begin{bmatrix} \mathbf{P}_{xx}^{A_1} & \mathbf{P}_{yy}^{A_2} & \mathbf{P}_{xx}^{E} & \mathbf{P}_{xy}^{E} & \mathbf{P}_{yx}^{E} & \mathbf{P}_{yy}^{E} \end{bmatrix}$ $\mathbf{P}_{xx}^{\mathcal{A}_1} | \mathbf{P}_{xx}^{\mathcal{A}_1}$ D₃ global D₂ global $\mathbf{P}_{yy}^{A_2}$ $i_1 i_2 (i_3)$ projector $\mathbf{P}_{xx}^E \ \mathbf{P}_{xy}^E$ (\mathbf{i}_{3}) r group product $\frac{\mathbf{P}_{yx}^{E}}{\mathbf{P}_{xy}^{E}}$ $\mathbf{P}_{yx}^E \mathbf{P}_{yy}^E$ \mathbf{r}^2 \mathbf{i}_2 (\mathbf{i}_3) product table **i**1 (**i**3) **i**2 \mathbf{P}_{xx}^{E} table \mathbf{i} \mathbf{j} \mathbf{r}^2 **i**2 **i**7 \mathbf{P}_{v}^{E} \mathbf{P}_{v}^{E} \mathbf{P}_{v}^{E} \mathbf{r} \mathbf{r}^2 $\mathbf{P}_{ab}^{(m)}\mathbf{P}_{cd}^{(n)} = \delta^{mn}\delta_{ba}$ $\mathbf{P}^{(m)}$ Change Global to Local by switching ...column-P with column-P[†] (Just switch \mathbf{P}_{yx}^{E} with $\mathbf{P}_{yx}^{E'} = \mathbf{P}_{xy}^{E}$ and row-P with row-P[†] Just switch **r** with $\mathbf{r}^{\dagger} = \mathbf{r}^2$. (all others are self-conjugate) \mathbf{P}_{VX}^{-} D₃ local D₃ local projector \mathbf{P}_{xx}^{E} \mathbf{r}^2 group (**i**₃) \mathbf{P}_{xx}^E product **(i**₃) table **i**₂ $\mathbf{P}_{yx}^{\vec{E}}$ table \mathbf{r}^2 \mathbf{i}_2 **(i**3) \mathbf{P}_{yy}^E **r**² r $\mathbf{\overline{P}}_{ab}^{(m)}\mathbf{\overline{P}}_{cd}^{(n)} = \delta^{mn}\delta_{b}$ $\mathbf{\overline{P}}_{ad}^{(m)}$

Review Stage 1: Group Center: Class-sums κ_g , *characters* $\chi^{\mu}(g)$, *and All-Commuting Projectors* \mathbb{P}^{μ}

Review Stage 2: Group operators **g** and Mutually-Commuting projectors \mathbf{P}^{μ}_{kk} Review Stage 3: Weyl **g**-expansion in irreps $D^{\mu}_{jk}(g)$ and Non-Commuting projectors \mathbf{P}^{μ}_{jk} Simple matrix algebra $\mathbf{P}^{\mu}_{ab} \mathbf{P}^{\nu}_{cd} = \delta^{\mu\nu} \delta_{bc} \mathbf{P}^{\mu}_{ad}$ \mathbf{P}^{μ}_{jk} transforms right-and-left \mathbf{P}^{μ}_{jk} -expansion in **g**-operators Example of D₃ transformation by matrix $D^{E}_{jk}(\mathbf{r}^{1})$

 Details of Mock-Mach relativity-duality for D₃ groups and representations Lab-fixed(Extrinsic-Global) vs. Body-fixed (Intrinsic-Local)
 Compare Global vs Local |g⟩-basis and Global vs Local |P^(µ)⟩-basis

Hamiltonian and D₃ group matrices in global and local $|\mathbf{P}^{(\mu)}\rangle$ -basis Global vs. Local block rearrangement Hamiltonian local-symmetry eigensolution Molecular vibrational mode eigensolution Local symmetry limit Global symmetry limit (free or "genuine" modes)

Compare Global $|\mathbf{P}^{(\mu)}\rangle$ *-basis vs Local* $|\mathbf{P}^{(\mu)}\rangle$ *-basis*

Global

P [†] P form	$\mathbf{P}_{xx}^{A_1}$	$\mathbf{P}_{yy}^{A_2}$	$\mathbf{P}_{xx}^{E_1}$	$\mathbf{P}_{xy}^{E_1}$	$\mathbf{P}_{yx}^{E_1}$	$\mathbf{P}_{yy}^{E_1}$
$\mathbf{P}_{xx}^{A_1}$	$\mathbf{P}_{xx}^{A_1}$	•	•	•	•	•
$\mathbf{P}_{yy}^{A_2}$	•	$\mathbf{P}_{yy}^{A_2}$	•	•	•	•
$\mathbf{P}_{xx}^{E_1}$	•	•	$\mathbf{P}_{xx}^{E_1}$	$\mathbf{P}_{xy}^{E_1}$	•	•
$\mathbf{P}_{yx}^{E_1}$			$\mathbf{P}_{yx}^{E_1}$	$\mathbf{P}_{yy}^{E_1}$		
$\mathbf{P}_{xy}^{E_1}$	•	•	•	•	$\mathbf{P}_{xx}^{E_1}$	$\mathbf{P}_{xy}^{E_1}$
$\mathbf{P}_{yy}^{E_1}$					$\mathbf{P}_{yx}^{E_1}$	$\mathbf{P}_{yy}^{E_1}$

Product table entry \mathbf{P}^{E}_{ab} shows location of a 1 in the regular representation $R(\mathbf{P}^{E}_{ab})$ of that GLOBAL projection operator.

Compare Global $|\mathbf{P}^{(\mu)}\rangle$ *-basis vs Local* $|\mathbf{P}^{(\mu)}\rangle$ *-basis*

Product table entry \mathbf{P}^{E}_{ab} shows location of a 1 in the regular representation $R(\mathbf{P}^{E}_{ab})$ of that LOCAL projection operator.

$\overline{\mathbf{P}}_{ab}^{(m)}$...for LOCAL $\overline{\mathbf{g}}$ operators in \overline{D}_3

Compare Global $|\mathbf{P}^{(\mu)}\rangle$ *-basis vs Local* $|\mathbf{P}^{(\mu)}\rangle$ *-basis*

Wednesday, April 1, 2015

Review Stage 1: Group Center: Class-sums κ_{g} , *characters* $\chi^{\mu}(g)$, and All-Commuting *Projectors* \mathbb{P}^{μ}

Review Stage 2: Group operators **g** and Mutually-Commuting projectors \mathbf{P}^{μ}_{kk} Review Stage 3: Weyl **g**-expansion in irreps $D^{\mu}_{jk}(g)$ and Non-Commuting projectors \mathbf{P}^{μ}_{jk} Simple matrix algebra $\mathbf{P}^{\mu}_{ab} \mathbf{P}^{\nu}_{cd} = \delta^{\mu\nu} \delta_{bc} \mathbf{P}^{\mu}_{ad}$ \mathbf{P}^{μ}_{jk} transforms right-and-left \mathbf{P}^{μ}_{jk} -expansion in **g**-operators Example of D_3 transformation by matrix $D^{E}_{jk}(\mathbf{r}^1)$

Details of Mock-Mach relativity-duality for D₃ groups and representations Lab-fixed(Extrinsic-Global) vs. Body-fixed (Intrinsic-Local) Compare Global vs Local $|\mathbf{g}\rangle$ -basis and Global vs Local $|\mathbf{P}^{(\mu)}\rangle$ -basis

 \rightarrow

Hamiltonian and D₃ group matrices in global and local $|\mathbf{P}^{(\mu)}\rangle$ -basis Global vs. Local block rearrangement Hamiltonion eigen-matrix calculation Hamiltonian local-symmetry eigensolution Molecular vibrational mode eigensolution Local symmetry limit Global symmetry limit (free or "genuine" modes)

For unitary $D^{(\mu)}$: (p.51) $|\mathbf{P}^{(\mu)}\rangle$ -basis are projected by $\mathbf{P}_{mn}^{\mu} = \frac{\ell^{(\mu)}}{{}^{\circ}G} \sum_{\mathbf{g}}^{\circ} D_{mn}^{\mu^{*}}(g) \mathbf{g} = \mathbf{P}_{nm}^{\mu^{\dagger}}$ acting on original ket $|\mathbf{1}\rangle$

For unitary $D^{(\mu)}$: (p.51) $|\mathbf{P}^{(\mu)}\rangle$ -basis are projected by $\mathbf{P}_{mn}^{\mu} = \frac{\ell^{(\mu)}}{{}^{\circ}G} \sum_{\mathbf{g}}^{\circ} D_{mn}^{\mu^{*}}(g) \mathbf{g} = \mathbf{P}_{nm}^{\mu^{\dagger}}$ acting on original ket $|\mathbf{1}\rangle$ to give: $|\frac{\mu}{mn}\rangle = \mathbf{P}_{mn}^{\mu} |\mathbf{1}\rangle \frac{1}{norm}$

For unitary
$$D^{(\mu)}$$
: $(p.51)$
 $|\mathbf{P}^{(\mu)}\rangle$ -basis are projected by $\mathbf{P}_{mn}^{\mu} = \frac{\ell^{(\mu)}}{^{\circ}G} \sum_{\mathbf{g}}^{G} D_{mn}^{\mu^{*}}(g) \mathbf{g} = \mathbf{P}_{nm}^{\mu^{\dagger}}$ acting on original ket $|\mathbf{1}\rangle$ to give:
 $|\overset{\mu}{_{mn}}\rangle = \mathbf{P}_{mn}^{\mu} |\mathbf{1}\rangle \frac{1}{_{norm}} = \frac{\ell^{(\mu)}}{^{\circ}G \cdot norm} \sum_{\mathbf{g}}^{^{\circ}G} D_{mn}^{\mu^{*}}(g) |\mathbf{g}\rangle$

For unitary
$$D^{(\mu)}$$
: $(p.51)$
 $|\mathbf{P}^{(\mu)}\rangle$ -basis are projected by $\mathbf{P}_{mn}^{\mu} = \frac{\ell^{(\mu)}}{^{\circ}G} \sum_{\mathbf{g}}^{^{\circ}G} D_{mn}^{\mu^{*}}(g) \mathbf{g} = \mathbf{P}_{nm}^{\mu^{\dagger}}$ acting on original ket $|\mathbf{1}\rangle$ to give:
 $|\overset{\mu}{_{mn}}\rangle = \mathbf{P}_{mn}^{\mu} |\mathbf{1}\rangle \frac{1}{norm} = \frac{\ell^{(\mu)}}{^{\circ}G \cdot norm} \sum_{\mathbf{g}}^{^{\circ}G} D_{mn}^{\mu^{*}}(g) |\mathbf{g}\rangle$ subject to normalization:
 $\langle \overset{\mu'}{_{m'n'}} |\overset{\mu}{_{mn}}\rangle = \frac{\langle \mathbf{1} | \mathbf{P}_{n'm'}^{\mu'} \mathbf{P}_{mn}^{\mu} |\mathbf{1}\rangle}{norm^{2}}$

For unitary
$$D^{(\mu)}$$
: $(p.51)$
 $|\mathbf{P}^{(\mu)}\rangle$ -basis are projected by $\mathbf{P}_{mn}^{\mu} = \frac{\ell^{(\mu)}}{{}^{\circ}G} \sum_{\mathbf{g}}^{\circ} D_{mn}^{\mu^{*}}(g) \mathbf{g} = \mathbf{P}_{nm}^{\mu^{\dagger}} acting on original ket |\mathbf{1}\rangle to give:$
 $|\overset{\mu}{mn}\rangle = \mathbf{P}_{mn}^{\mu} |\mathbf{1}\rangle \frac{1}{norm} = \frac{\ell^{(\mu)}}{{}^{\circ}G \cdot norm} \sum_{\mathbf{g}}^{\circ} D_{mn}^{\mu^{*}}(g) |\mathbf{g}\rangle$ subject to normalization:
 $\langle \overset{\mu'}{m'n'} | \overset{\mu}{mn} \rangle = \frac{\langle \mathbf{1} | \mathbf{P}_{n'm'}^{\mu'} \mathbf{P}_{mn}^{\mu} | \mathbf{1} \rangle}{norm^{2}} = \delta^{\mu'\mu} \delta_{m'm} \frac{\langle \mathbf{1} | \mathbf{P}_{n'n}^{\mu} | \mathbf{1} \rangle}{norm^{2}}$

For unitary
$$D^{(\mu)}$$
: $(p.51)$
 $|\mathbf{P}^{(\mu)}\rangle$ -basis are projected by $\mathbf{P}_{mn}^{\mu} = \frac{\ell^{(\mu)}}{^{\circ}G} \sum_{\mathbf{g}}^{^{\circ}G} D_{mn}^{\mu^{*}}(g) \mathbf{g} = \mathbf{P}_{nm}^{\mu^{\dagger}} acting on original ket |\mathbf{1}\rangle to give:$
 $|\overset{\mu}{_{mn}}\rangle = \mathbf{P}_{mn}^{\mu}|\mathbf{1}\rangle \frac{1}{norm} = \frac{\ell^{(\mu)}}{^{\circ}G} \sum_{\mathbf{g}}^{^{\circ}G} D_{mn}^{\mu^{*}}(g)|\mathbf{g}\rangle$ subject to normalization:
 $\langle \overset{\mu'}{_{m'n'}} |\overset{\mu}{_{mn}}\rangle = \frac{\langle \mathbf{1} | \mathbf{P}_{n'm'}^{\mu'} \mathbf{P}_{mn}^{\mu} | \mathbf{1} \rangle}{norm^{2}} = \delta^{\mu'\mu} \delta_{m'm} \frac{\langle \mathbf{1} | \mathbf{P}_{n'n}^{\mu} | \mathbf{1} \rangle}{norm^{2}} = \delta^{\mu'\mu} \delta_{m'm} \delta_{n'n}$ where: $norm = \sqrt{\langle \mathbf{1} | \mathbf{P}_{nn}^{\mu} | \mathbf{1} \rangle} = \sqrt{\frac{\ell^{(\mu)}}{^{\circ}G}}$

For unitary
$$D^{(\mu)}$$
: $(p.51)$
 $|\mathbf{P}^{(\mu)}\rangle$ -basis are projected by $\mathbf{P}_{mn}^{\mu} = \frac{\ell^{(\mu)}}{^{\circ}G} \sum_{\mathbf{g}}^{^{\circ}G} D_{mn}^{\mu^{*}}(g) \mathbf{g} = \mathbf{P}_{nm}^{\mu^{\dagger}} acting on original ket |\mathbf{1}\rangle to give:$
 $|\frac{\mu}{mn}\rangle = \mathbf{P}_{mn}^{\mu}|\mathbf{1}\rangle \frac{1}{norm} = \frac{\ell^{(\mu)}}{^{\circ}G} \sum_{\mathbf{g}}^{^{\circ}G} D_{mn}^{\mu^{*}}(g)|\mathbf{g}\rangle$ subject to normalization:
 $\langle \mu'_{m'n'}|\frac{\mu}{mn}\rangle = \frac{\langle \mathbf{1}|\mathbf{P}_{n'm'}^{\mu'}\mathbf{P}_{mn}^{\mu}|\mathbf{1}\rangle}{norm^{2}} = \delta^{\mu'\mu}\delta_{m'm}\frac{\langle \mathbf{1}|\mathbf{P}_{n'n}^{\mu}|\mathbf{1}\rangle}{norm^{2}} = \delta^{\mu'\mu}\delta_{m'm}\delta_{n'n}$ where: $norm = \sqrt{\langle \mathbf{1}|\mathbf{P}_{nn}^{\mu}|\mathbf{1}\rangle} = \sqrt{\frac{\ell^{(\mu)}}{^{\circ}G}}$

Left-action of global **g** on irep-ket $\left| \begin{array}{c} \mu \\ mn \end{array} \right\rangle$ $\mathbf{g} \left| \begin{array}{c} \mu \\ mn \end{array} \right\rangle = \sum_{m'}^{\ell^{\mu}} D_{m'm}^{\mu} \left(g \right) \left| \begin{array}{c} \mu \\ m'n \end{array} \right\rangle$

For unitary
$$D^{(\mu)}$$
: $(p.51)$
 $|\mathbf{P}^{(\mu)}\rangle$ -basis are projected by $\mathbf{P}_{mn}^{\mu} = \frac{\ell^{(\mu)}}{^{\circ}G} \sum_{\mathbf{g}}^{^{\circ}G} D_{mn}^{\mu^{*}}(g) \mathbf{g} = \mathbf{P}_{nm}^{\mu^{\dagger}} acting on original ket |\mathbf{1}\rangle to give:$
 $|\overset{\mu}{mn}\rangle = \mathbf{P}_{mn}^{\mu}|\mathbf{1}\rangle \frac{1}{norm} = \frac{\ell^{(\mu)}}{^{\circ}G \cdot norm} \sum_{\mathbf{g}}^{^{\circ}G} D_{mn}^{\mu^{*}}(g)|\mathbf{g}\rangle$ subject to normalization:
 $\langle \overset{\mu'}{mn'}|\overset{\mu}{mn}\rangle = \frac{\langle \mathbf{1}|\mathbf{P}_{n'm'}^{\mu'}\mathbf{P}_{mn}^{\mu}|\mathbf{1}\rangle}{norm^{2}} = \delta^{\mu'\mu}\delta_{m'm} \frac{\langle \mathbf{1}|\mathbf{P}_{n'n}^{\mu}|\mathbf{1}\rangle}{norm^{2}} = \delta^{\mu'\mu}\delta_{m'm}\delta_{n'n}$ where: $norm = \sqrt{\langle \mathbf{1}|\mathbf{P}_{nn}^{\mu}|\mathbf{1}\rangle} = \sqrt{\frac{\ell^{(\mu)}}{^{\circ}G}}$

Left-action of global **g** on irep-ket
$$\left| \begin{array}{c} \mu \\ mn \end{array} \right\rangle$$

 $\mathbf{g} \left| \begin{array}{c} \mu \\ mn \end{array} \right\rangle = \sum_{m'}^{\ell^{\mu}} D_{m'm}^{\mu}(g) \left| \begin{array}{c} \mu \\ m'n \end{array} \right\rangle$

Matrix is same as given on p.27

 $\left\langle \begin{array}{c} \mu\\ m'n \end{array} \middle| \mathbf{g} \middle| \begin{array}{c} \mu\\ mn \end{array} \right\rangle = D^{\mu}_{m'm} \left(\mathbf{g} \right)$

For unitary
$$D^{(\mu)}$$
: $(p.51)$
 $|\mathbf{P}^{(\mu)}\rangle$ -basis are projected by $\mathbf{P}_{mn}^{\mu} = \frac{\ell^{(\mu)}}{^{\circ}G} \sum_{\mathbf{g}}^{^{\circ}G} D_{mn}^{\mu^{*}}(\mathbf{g}) \mathbf{g} = \mathbf{P}_{nm}^{\mu^{\dagger}} acting on original ket |\mathbf{1}\rangle$ to give:
 $|\overset{\mu}{mn}\rangle = \mathbf{P}_{mn}^{\mu} |\mathbf{1}\rangle \frac{1}{norm} = \frac{\ell^{(\mu)}}{^{\circ}G \cdot norm} \sum_{\mathbf{g}}^{^{\circ}G} D_{mn}^{\mu^{*}}(\mathbf{g}) |\mathbf{g}\rangle$ subject to normalization:
 $\langle \overset{\mu'}{m'n'} | \overset{\mu}{mn}\rangle = \frac{\langle \mathbf{1} | \mathbf{P}_{n'm'}^{\mu'} \mathbf{P}_{mn}^{\mu} |\mathbf{1}\rangle}{norm^{2}} = \delta^{\mu'\mu} \delta_{m'm} \frac{\langle \mathbf{1} | \mathbf{P}_{n'n}^{\mu} |\mathbf{1}\rangle}{norm^{2}} = \delta^{\mu'\mu} \delta_{m'm} \delta_{n'n}$ where: $norm = \sqrt{\langle \mathbf{1} | \mathbf{P}_{nn}^{\mu} |\mathbf{1}\rangle} = \sqrt{\frac{\ell^{(\mu)}}{^{\circ}G}}$
Left-action of global \mathbf{g} on irep-ket $| \overset{\mu}{mn} \rangle$ Left-action of local $\overline{\mathbf{g}}$ on irep-ket $| \overset{\mu}{mn} \rangle$ is quite different
 $\mathbf{g} | \overset{\mu}{mn} \rangle = \frac{\xi_{m'}^{\mu} D_{m'm}^{\mu}(\mathbf{g}) | \overset{\mu}{m'n} \rangle$
Matrix is same as given on p.27
 $\langle \overset{\mu}{mn'} | \mathbf{g} | \overset{\mu}{mn} \rangle = D_{m'm}^{\mu}(\mathbf{g})$

For unitary
$$D^{(\mu)}$$
: $(p, 51)$
 $|\mathbf{P}^{(\mu)}\rangle$ -basis are projected by $\mathbf{P}_{mn}^{\mu} = \frac{\ell^{(\mu)}}{{}^{\circ}G} \sum_{\mathbf{g}}^{\circ} D_{mn}^{\mu^{*}}(g) |\mathbf{g}\rangle = \mathbf{P}_{mm}^{\mu^{\dagger}} acting on original ket |\mathbf{1}\rangle$ to give:
 $|\frac{\mu}{mn}\rangle = \mathbf{P}_{mn}^{\mu} |\mathbf{1}\rangle \frac{1}{norm} = \frac{\ell^{(\mu)}}{{}^{\circ}G \cdot norm} \sum_{\mathbf{g}}^{\circ} D_{mn}^{\mu^{*}}(g) |\mathbf{g}\rangle$ subject to normalization:
 $\langle \frac{\mu'}{m'n'} |\frac{\mu}{mn}\rangle = \frac{\langle \mathbf{1} | \mathbf{P}_{n'm'}^{\mu} \mathbf{P}_{mn}^{\mu} |\mathbf{1}\rangle}{norm^{2}} = \delta^{\mu'\mu} \delta_{m'm} \frac{\langle \mathbf{1} | \mathbf{P}_{n'n}^{\mu} |\mathbf{1}\rangle}{norm^{2}} = \delta^{\mu'\mu} \delta_{m'm} \delta_{n'n}$ where: $norm = \sqrt{\langle \mathbf{1} | \mathbf{P}_{mn}^{\mu} |\mathbf{1}\rangle} = \sqrt{\frac{\ell^{(\mu)}}{{}^{\circ}G}}$
Left-action of global \mathbf{g} on irep-ket $|\frac{\mu}{mn}\rangle$ Left-action of local $\mathbf{\overline{g}}$ on irep-ket $|\frac{\mu}{mn}\rangle$ is quite different
 $\mathbf{g} |\frac{\mu}{mn}\rangle = \frac{\mathbf{g}_{m'}^{\mu} D_{m'm}^{\mu}(g) |\frac{\mu}{m'n}\rangle$
Matrix is same as given on p.27
 $\langle \frac{\mu}{m'n} | \mathbf{g} |\frac{\mu}{mn}\rangle = D_{m'm}^{\mu}(g)$
 $= \mathbf{P}_{mm}^{\mu} \mathbf{g}^{-1} |\mathbf{1}\rangle \sqrt{\frac{{}^{\circ}G}{\ell^{(\mu)}}}$
 $(J = \mathbf{g}_{m'n}^{\mu} \mathbf{g}_{m'n}^{-1}) \mathbf{g} |\frac{\mu}{\ell^{(\mu)}}\rangle$

For unitary
$$D^{(\mu)}$$
: $(p.51)$
 $|\mathbf{P}^{(\mu)}\rangle$ -basis are projected by $\mathbf{P}_{mn}^{\mu} = \frac{\ell^{(\mu)} \circ_{G}}{\circ_{G}} \sum_{g} D_{mn}^{*}(g) |\mathbf{g}\rangle = \mathbf{P}_{nm}^{\mu\dagger}$ acting on original ket $|\mathbf{1}\rangle$ to give:
 $|\frac{\mu}{mn}\rangle = \mathbf{P}_{mn}^{\mu}|\mathbf{1}\rangle \frac{1}{norm} = \frac{\ell^{(\mu)}}{\circ_{G} \cdot norm} \sum_{g} D_{mn}^{*}(g) |\mathbf{g}\rangle$ subject to normalization:
 $\langle \mu'_{m'n'}|\frac{\mu}{mn}\rangle = \frac{\langle \mathbf{1}|\mathbf{P}_{n'm'}^{\mu'}\mathbf{P}_{mn}^{\mu}|\mathbf{1}\rangle}{norm^{2}} = \delta^{\mu'\mu}\delta_{m'm} \frac{\langle \mathbf{1}|\mathbf{P}_{n'n}^{\mu}|\mathbf{1}\rangle}{norm^{2}} = \delta^{\mu'\mu}\delta_{m'm}\delta_{n'n}$ where: $norm = \sqrt{\langle \mathbf{1}|\mathbf{P}_{nn}^{\mu}|\mathbf{1}\rangle} = \sqrt{\frac{\ell^{(\mu)}}{\circ_{G}}}$
Left-action of global g on irep-ket $|\frac{\mu}{mn}\rangle$ Left-action of local $\mathbf{\overline{g}}$ on irep-ket $|\frac{\mu}{mn}\rangle$ is quite different
 $\mathbf{g}|_{mn}^{\mu}\rangle = \frac{\xi^{\mu}}{m}D_{m'm}^{\mu}(g)|_{m'n}^{\mu'}\rangle$
Matrix is same as given on p.27
 $\langle \mu'_{m'n}|\mathbf{g}|_{mn}^{\mu}\rangle = D_{m'm}^{\mu}(g)$
 $\mathbf{P}_{mn}^{\mu}\mathbf{g}^{-1} = \sum_{m'=1}^{\ell'} \sum_{n'=1}^{\ell'} \mathbf{P}_{mn}^{\mu}\mathbf{P}_{m'n'}^{\mu}D_{m'n'}^{\mu'}(g^{-1})$
 $= \mathbf{P}_{mn}^{\mu}\mathbf{g}^{-1}|\mathbf{1}\rangle\sqrt{\frac{\circ_{G}}{\ell^{(\mu)}}}$ inverse

For unitary
$$D^{(\mu)}$$
: $(p,51)$
 $|\mathbf{P}^{(\mu)}\rangle$ -basis are projected by $\mathbf{P}_{mn}^{\mu} = \frac{\ell^{(\mu)}}{{}^{\circ}G} \sum_{\mathbf{g}}^{G} D_{mn}^{\mu^{*}}(g) \mathbf{g} = \mathbf{P}_{mm}^{\mu^{\dagger}} acting on original ket |\mathbf{1}\rangle$ to give:
 $|\frac{\mu}{mn}\rangle = \mathbf{P}_{mn}^{\mu} |\mathbf{1}\rangle \frac{1}{norm} = \frac{\ell^{(\mu)}}{{}^{\circ}G} \frac{{}^{\circ}G}{norm} \sum_{\mathbf{g}}^{G} D_{mn}^{\mu^{*}}(g) |\mathbf{g}\rangle$ subject to normalization:
 $\langle u'_{m'n'} | \frac{\mu}{mn}\rangle = \frac{\langle \mathbf{1} | \mathbf{P}_{n'm'}^{\mu'} \mathbf{P}_{mn}^{\mu} | \mathbf{1} \rangle}{norm^{2}} = \delta^{\mu'\mu} \delta_{m'm} \frac{\langle \mathbf{1} | \mathbf{P}_{n'n}^{\mu} | \mathbf{1} \rangle}{norm^{2}} = \delta^{\mu'\mu} \delta_{n'm} \delta_{n'n}$ where: $norm = \sqrt{\langle \mathbf{1} | \mathbf{P}_{nn}^{\mu} | \mathbf{1} \rangle} = \sqrt{\frac{\ell^{(\mu)}}{{}^{\circ}G}}$
Left-action of global \mathbf{g} on irep-ket $|\frac{\mu}{mn}\rangle$ Left-action of local $\mathbf{\overline{g}}$ on irep-ket $|\frac{\mu}{mn}\rangle$ is quite different
 $\mathbf{g} | \frac{\mu}{mn}\rangle = \frac{\sum_{m'}^{\mu} D_{m'm}^{\mu}(g) | \frac{\mu'}{m'n}\rangle$
Matrix is same as given on p.27
 $\langle \frac{\mu'}{m'n} | \mathbf{g} | \frac{\mu}{mn}\rangle = D_{m'm}^{\mu}(g)$
 $= \sum_{m'=1}^{\ell} \sum_{m'=1}^{\ell} \sum_{m'=1}^{\mu} P_{mn'}^{\mu} D_{m'n'}^{\mu}(g^{-1})$
 $= \sum_{m'=1}^{\ell} \sum_{m'=1}^{\mu} P_{mm'}^{\mu} D_{m'n'}^{\mu}(g^{-1})$

For unitary
$$D^{(\mu)}$$
: $(p,51)$
 $|\mathbf{P}^{(\mu)}\rangle$ -basis are projected by $\mathbf{P}_{mn}^{\mu} = \frac{\ell^{(\mu)}}{{}^{\circ}G} \sum_{\mathbf{g}}^{\circ} D_{mn}^{\mu^{*}}(g) \mathbf{g} = \mathbf{P}_{mn}^{\mu^{\dagger}} acting on original ket |\mathbf{1}\rangle$ to give:
 $|\frac{\mu}{mn}\rangle = \mathbf{P}_{mn}^{\mu} |\mathbf{1}\rangle \frac{1}{norm} = \frac{\ell^{(\mu)}}{{}^{\circ}G} \frac{\sum_{\mathbf{g}}^{\circ} D_{mn}^{\mu^{*}}(g) |\mathbf{g}\rangle$ subject to normalization:
 $\langle {}^{\mu'}_{m'n'} |\frac{\mu}{mn}\rangle = \frac{\langle \mathbf{1} | \mathbf{P}_{n'm'}^{\mu'} \mathbf{P}_{mn}^{\mu} |\mathbf{1}\rangle}{norm^{2}} = \delta^{\mu'\mu} \delta_{m'm} \frac{\langle \mathbf{1} | \mathbf{P}_{n'n}^{\mu} |\mathbf{1}\rangle}{norm^{2}} = \delta^{\mu'\mu} \delta_{m'm} \delta_{n'n}$ where: $norm = \sqrt{\langle \mathbf{1} | \mathbf{P}_{nn}^{\mu} |\mathbf{1}\rangle} = \sqrt{\frac{\ell^{(\mu)}}{{}^{\circ}G}}$
Left-action of global \mathbf{g} on irep-ket $|\frac{\mu}{mn}\rangle$ Left-action of local $\mathbf{\overline{g}}$ on irep-ket $|\frac{\mu}{mn}\rangle$ is quite different
 $\mathbf{g} |\frac{\mu}{mn}\rangle = \frac{\sum_{n'}^{\mu} D_{m'm}^{\mu}(g) |\frac{\mu'}{m'n}\rangle$
Matrix is same as given on p.27
 $\langle {}^{\mu'}_{m'n} | \mathbf{g} | {}^{\mu}_{mn}\rangle = D_{m'm}^{\mu}(g)$
 $\mathbf{P}_{mn}^{\mu} \mathbf{g}^{-1} = \sum_{n'=1}^{\ell} \sum_{m'=1}^{\ell'} \mathbf{P}_{mn''}^{\mu} D_{m'n'}^{\mu}(g^{-1})$
 $= \sum_{n'=1}^{\ell'} D_{m'n}^{\mu}(g^{-1})$
 $= \sum_{n'=1}^{\ell''} \mathbf{P}_{mn''}^{\mu}(g^{-1})$

For unitary
$$D^{(\mu)}$$
: $(p.51)$
 $|\mathbf{P}^{(\mu)}\rangle$ -basis are projected by $\mathbf{P}_{mn}^{\mu} = \frac{\ell^{(\mu)}}{^{\circ}G} \sum_{g}^{G} D_{mn}^{*}(g) | \mathbf{g} > g = \mathbf{P}_{nm}^{\mu\dagger} acting on original ket | \mathbf{1} \rangle$ to give:
 $\left| \begin{array}{c} \mu\\mn \end{array} \right\rangle = \mathbf{P}_{mn}^{\mu} | \mathbf{1} \right\rangle \frac{1}{norm} = \frac{\ell^{(\mu)}}{^{\circ}G \cdot norm} \sum_{g}^{G} D_{mn}^{*}(g) | \mathbf{g} \rangle \quad subject to normalization:$
 $\left\langle \begin{array}{c} \mu'\\m'n' \end{vmatrix} \left| \begin{array}{c} \mu\\mn \end{matrix} \right\rangle = \frac{\langle \mathbf{1} | \mathbf{P}_{n'n'}^{\mu'} \mathbf{P}_{mn}^{\mu} | \mathbf{1} \rangle}{norm^{2}} = \delta^{\mu'\mu} \delta_{m'm} \frac{\langle \mathbf{1} | \mathbf{P}_{n'n}^{\mu} | \mathbf{1} \rangle}{norm^{2}} = \delta^{\mu'\mu} \delta_{m'm} \delta_{n'n} \quad where: norm = \sqrt{\langle \mathbf{1} | \mathbf{P}_{mn}^{\mu} | \mathbf{1} \rangle} = \sqrt{\frac{\ell^{(\mu)}}{^{\circ}G}}$
Left-action of global \mathbf{g} on irep-ket $\left| \begin{array}{c} \mu\\mn \end{matrix} \rangle$ Left-action of local $\mathbf{\overline{g}}$ on irep-ket $\left| \begin{array}{c} \mu\\mn \end{matrix} \rangle$ is quite different
 $\mathbf{g} \right| \left| \begin{array}{c} \mu\\mn \end{matrix} \rangle = \frac{g}{m} \mathcal{P}_{mn}^{\mu} (g) \right| \left| \begin{array}{c} \mu\\mn \end{matrix} \rangle$
Matrix is same as given on $p.27$
 $\left\langle \begin{array}{c} \mu\\mn \end{matrix} = \frac{\ell^{(\mu)}}{2m} \sum_{m'=1}^{\ell'} \sum_{m'=1}^{\ell'} \mathbf{P}_{mn}^{\mu} \mathbf{P}_{m'n'}^{\mu} D_{m'n'}^{\mu} (g^{-1}) \right|$
 $= \sum_{n'=1}^{\ell'} \left| \begin{array}{c} \mu\\mn \end{matrix} \rangle = \frac{\ell^{\mu}}{2m} \mathcal{D}_{mn'}^{\mu} (g^{-1}) \right| \left| \begin{array}{c} \mu\\mn \end{matrix} \rangle \rangle$

For unitary
$$D^{(\mu)}$$
: $(p,51)$
 $|\mathbf{P}^{(\mu)}\rangle$ -basis are projected by $\mathbf{P}_{nn}^{\mu} = \frac{\ell^{(\mu)} \circ_{G}}{\circ_{G}} \sum_{g} D_{mn}^{\mu^{*}}(g) \mathbf{g} = \mathbf{P}_{nm}^{\mu^{\dagger}} acting on original ket |\mathbf{1}\rangle$ to give:
 $|\overset{\mu}{mn}\rangle = \mathbf{P}_{mn}^{\mu}|\mathbf{1}\rangle \frac{1}{norm} = \frac{\ell^{(\mu)}}{\circ_{G} \cdot norm} \sum_{g} D_{mn}^{\mu^{*}}(g)|\mathbf{g}\rangle$ subject to normalization:
 $\langle \mu'_{n'n'}|\overset{\mu}{mn}\rangle = \frac{\langle \mathbf{1}|\mathbf{P}_{n'm'}^{\mu'}\mathbf{P}_{mn}^{\mu}|\mathbf{1}\rangle}{norm^{2}} = \delta^{\mu'\mu}\delta_{n'm} \frac{\langle \mathbf{1}|\mathbf{P}_{n'n}^{\mu}|\mathbf{1}\rangle}{norm^{2}} = \delta^{\mu'\mu}\delta_{n'm}\delta_{n'n}$ where: $norm = \sqrt{\langle \mathbf{1}|\mathbf{P}_{nn}^{\mu}|\mathbf{1}\rangle} = \sqrt{\frac{\ell^{(\mu)}}{\circ_{G}}}$
Left-action of global g on irep-ket $|\overset{\mu}{mn}\rangle$ Left-action of local $\overline{\mathbf{g}}$ on irep-ket $|\overset{\mu}{mn}\rangle$ is quite different
 $\mathbf{g}|\overset{\mu}{mn}\rangle = \frac{\sigma}{m'} D_{m'm}^{\mu}(g)|\overset{\mu}{mn}\rangle$
Matrix is same as given on p.27
 $\langle \overset{\mu}{mn}|\mathbf{g}|\overset{\mu}{mn}\rangle = D_{m'm}^{\mu}(g)$
 $\mathbf{p}_{nn}^{\mu}\mathbf{g}^{-1} = \sum_{n'=1}^{2}\sum_{m'=1}^{2}\sum_{m'=1}^{2}m'_{mn'}^{\mu}D_{m'n'}^{\mu}(g^{-1})$
 $= \sum_{n'=1}^{2}\sum_{m'=1}^{2}\sum_{m'=1}^{2}m'_{mn'}^{\mu}D_{m'n'}^{\mu}(g^{-1})$
 $= \sum_{n'=1}^{2}D_{nn'}^{\mu}(g^{-1})|\overset{\mu}{mn'}\rangle$
Local $\overline{\mathbf{g}}$ -matrix component
 $\langle \overset{\mu}{mn'}|\overline{\mathbf{g}}|\overset{\mu}{mn}\rangle = D_{mn'}^{\mu}(g^{-1}) = D_{n'n}^{\mu'}(g) \xrightarrow{g}$

For unitary
$$D^{(\mu)}$$
: $(p,51)$
 $|\mathbf{P}^{(\mu)}\rangle$ -basis are projected by $\mathbf{P}_{nn}^{\mu} = \frac{\ell^{(\mu)} \circ_{G}}{\circ_{G}} \sum_{g} D_{mn}^{\mu^{*}}(g) \mathbf{g} = \mathbf{P}_{nm}^{\mu^{*}} acting on original ket |\mathbf{I}\rangle$ to give:
 $|\overset{\mu}{mn}\rangle = \mathbf{P}_{mn}^{\mu}|\mathbf{I}\rangle \frac{1}{norm} = \frac{\ell^{(\mu)}}{\circ_{G} \cdot norm} \sum_{g} D_{mn}^{\mu^{*}}(g)|\mathbf{g}\rangle$ subject to normalization:
 $\langle \overset{\mu'}{mn'}|\overset{\mu}{mn}\rangle = \frac{\langle \mathbf{I}|\mathbf{P}_{n'm'}^{\mu'}\mathbf{P}_{mn}^{\mu}|\mathbf{1}\rangle}{norm^{2}} = \delta^{\mu'\mu}\delta_{m'm}\frac{\langle \mathbf{I}|\mathbf{P}_{n'n}^{\mu}|\mathbf{1}\rangle}{norm^{2}} = \delta^{\mu'\mu}\delta_{m'm}\delta_{n'n}$ where: $norm = \sqrt{\langle \mathbf{I}|\mathbf{P}_{nn}^{\mu}|\mathbf{1}\rangle} = \sqrt{\frac{\ell^{(\mu)}}{\circ_{G}}}$
Left-action of global g on irep-ket $|\overset{\mu}{mn}\rangle$ Left-action of local $\overline{\mathbf{g}}$ on irep-ket $|\overset{\mu}{mn}\rangle$ is quite different
 $\mathbf{g}|\overset{\mu}{mn}\rangle = \overset{\mu''}{\underline{m}}D_{m'm}^{\mu}(g)|\overset{\mu''}{\underline{m}'n}\rangle$
Matrix is same as given on p.27
 $\langle \overset{\mu}{mn}|\mathbf{g}|\overset{\mu}{\underline{m}}\rangle = D_{m'm}^{\mu}(g)$
 $\mathbf{F}_{mn}^{\mu}\mathbf{g}^{-1} = \sum_{n'=1}^{c}\sum_{m'=1}^{c}\sum_{m'=1}^{\mu}\mathbf{P}_{mn}^{\mu}\mathbf{P}_{m'}^{\mu}D_{m'n'}^{\mu}(g^{-1})$
 $=\sum_{n'=1}^{c''}\mathbf{P}_{mn'}^{\mu}D_{mn'}^{\mu}(g^{-1})$
 $=\sum_{n'=1}^{c''}\mathbf{P}_{mn'}^{\mu}\mathbf{P}_{mn'}^{\mu}D_{m'n'}^{\mu}(g^{-1})$
 $=\sum_{n'=1}^{c''}\mathbf{P}_{mn'}^{\mu}\mathbf{P}_{mn'}^{\mu}D_{m'n'}^{\mu}(g^{-1})$
 $=\sum_{n'=1}^{c''}\mathbf{D}_{mn'}^{\mu}(g^{-1}) = D_{m'n'}^{\mu''}g) \overset{J}{D}_{is}$
 $\langle \overset{\mu}{\mu}_{mn'}|\mathbf{g}|\overset{\mu}{\mu}_{m}\rangle = D_{m'm}^{\mu'}(g)$

Review Stage 1: Group Center: Class-sums κ_g , *characters* $\chi^{\mu}(\mathbf{g})$, *and All-Commuting Projectors* \mathbb{P}^{μ}

Review Stage 2: Group operators **g** and Mutually-Commuting projectors \mathbf{P}^{μ}_{kk} Review Stage 3: Weyl **g**-expansion in irreps $D^{\mu}_{jk}(g)$ and Non-Commuting projectors \mathbf{P}^{μ}_{jk} Simple matrix algebra $\mathbf{P}^{\mu}_{ab} \mathbf{P}^{\nu}_{cd} = \delta^{\mu\nu} \delta_{bc} \mathbf{P}^{\mu}_{ad}$ \mathbf{P}^{μ}_{jk} transforms right-and-left \mathbf{P}^{μ}_{jk} -expansion in **g**-operators Example of D_3 transformation by matrix $D^{E}_{jk}(\mathbf{r}^1)$

Details of Mock-Mach relativity-duality for D₃ groups and representations Lab-fixed(Extrinsic-Global) vs. Body-fixed (Intrinsic-Local) Compare Global vs Local $|\mathbf{g}\rangle$ -basis and Global vs Local $|\mathbf{P}^{(\mu)}\rangle$ -basis

 Hamiltonian and D₃ group matrices in global and local |P^(µ)⟩-basis
 Global vs. Local block rearrangement Hamiltonion eigen-matrix calculation Hamiltonian local-symmetry eigensolution Molecular vibrational mode eigensolution Local symmetry limit Global symmetry limit (free or "genuine" modes) D_3 global-g group matrices in $|\mathbf{P}^{(\mu)}\rangle$ -basis

1	$R^P(\mathbf{g}) = TH$	$R^G(\mathbf{g})T^{\dagger} =$	=				
	$\left \mathbf{P}_{xx}^{A_{1}}\right\rangle$	$\left \mathbf{P}_{yy}^{A_{2}}\right\rangle$	$\left \mathbf{P}_{\mathbf{x}\mathbf{x}}^{E_{1}}\right\rangle$	$\left \mathbf{P}_{yx}^{E_{1}}\right\rangle$	$\left \mathbf{P}_{xy}^{E_{1}}\right\rangle$	$\left.\mathbf{P}_{yy}^{E_1}\right\rangle$	
	$D^{A_1}(\mathbf{g})$			•			
	•	$D^{A_2}(\mathbf{g})$	•	•	•		$ \mathbf{P}^{(\mu)}\rangle$ -base
			$D_{xx}^{E_1}(\mathbf{g})$	$D_{xy}^{E_1}$			ordering to
		•	$D_{yx}^{E_1}(\mathbf{g})$	$D_{yy}^{E_1}$			<i>concentrate</i>
				•	$D_{xx}^{E_1}(\mathbf{g})$	$D_{xy}^{E_1}$	D-matrices
	•	•		•	$D_{yx}^{E_1}(\mathbf{g})$	$D_{yy}^{E_1}$	

 D_3 local- $\overline{\mathbf{g}}$ group matrices in $|\mathbf{P}^{(\mu)}\rangle$ -basis

Global g-matrix component

 $\left\langle \begin{array}{c} \mu \\ m'n \end{array} \middle| \mathbf{g} \middle| \begin{array}{c} \mu \\ mn \end{array} \right\rangle = D^{\mu}_{m'm} (g)$

Wednesday, April 1, 2015

Local **g**-*matrix component*

If D is $\begin{pmatrix} \mu \\ mn' \end{pmatrix} = D^{\mu}_{nn'}(g^{-1}) = D^{\mu*}_{n'n}(g)$ unitary

 D_3 global-g group matrices in $|\mathbf{P}^{(\mu)}\rangle$ -basis

 D_3 local- $\overline{\mathbf{g}}$ group matrices in $|\mathbf{P}^{(\mu)}\rangle$ -basis

$R^P(\mathbf{g}) = TH$	$R^G(\mathbf{g})T^{\dagger} =$	=					$R^{P}\left(\overline{\mathbf{g}}\right) = TR^{G}\left(\overline{\mathbf{g}}\right)T^{\dagger} =$					
$\left \mathbf{P}_{xx}^{A_{1}}\right\rangle$	$\left \mathbf{P}_{yy}^{A_{2}}\right\rangle$	$\left \mathbf{P}_{\mathbf{x}\mathbf{x}}^{E_{1}}\right\rangle$	$\left \mathbf{P}_{yx}^{E_{1}}\right\rangle$	$\left \mathbf{P}_{xy}^{E_{1}}\right\rangle$	$\left.\mathbf{P}_{yy}^{E_1}\right\rangle$		$\left \mathbf{P}_{xx}^{A_{\mathrm{l}}}\right\rangle$	$\left \mathbf{P}_{yy}^{A_2}\right\rangle$	$\left \mathbf{P}_{xx}^{E_{1}}\right\rangle$	$\left \mathbf{P}_{y\mathbf{x}}^{E_{1}}\right\rangle$	$\left \mathbf{P}_{xy}^{E_{1}}\right\rangle$	$\left \mathbf{P}_{yy}^{E_{1}}\right\rangle$
$D^{A_1}(\mathbf{g})$	•				•		$\left(D^{A_{l}*}(\mathbf{g}) \right)$				•	.)
•	$D^{A_2}(\mathbf{g})$					$ \mathbf{P}^{(\mu)}\rangle$ -base	•	$D^{A_2^*}(\mathbf{g})$	•	•	•	•
•		$D_{xx}^{E_1}(\mathbf{g})$	$D_{xy}^{E_1}$			ordering to			$D_{xx}^{E_1^*}(\mathbf{g})$		$D_{xy}^{E_1^*}(\mathbf{g})$	
		$D_{yx}^{E_1}(\mathbf{g})$	$D_{yy}^{E_1}$			$\leftarrow \frac{concentrate}{\sigma lobal - \sigma}$				$D_{xx}^{E_1^*}(\mathbf{g})$		$D_{xy}^{E_1^*}(\mathbf{g})$
				$D_{xx}^{E_1}(\mathbf{g})$	$D_{xy}^{E_1}$	D-matrices	•		$D_{yx}^{E_1^*}(\mathbf{g})$		$D_{yy}^{E_1*}(\mathbf{g})$	
				$D_{yx}^{E_1}(\mathbf{g})$	$D_{yy}^{E_1}$				•	$D_{yx}^{E_1^*}(\mathbf{g})$	•	$D_{yy}^{E_1^*}(\mathbf{g})$
									Î			
									here			
								Local	g -matr	<i>ix</i>		

is not concentrated

Global g-matrix component

 $\begin{pmatrix} \mu \\ m'n \end{pmatrix} \mathbf{g} \begin{pmatrix} \mu \\ mn \end{pmatrix}$ $= D^{\mu}_{m'm}(g)$

Wednesday, April 1, 2015

Local **g**-*matrix component*

If D is $D = D_{nn'}^{\mu}(g^{-1}) = D_{n'n}^{\mu^*}(g)$ $\begin{pmatrix} \mu \\ mn' \end{pmatrix} \overline{\mathbf{g}} \mid \mu \\ mn \end{pmatrix}$ unitary

 D_3 global-g group matrices in $|\mathbf{P}^{(\mu)}\rangle$ -basis

 D_3 local- $\overline{\mathbf{g}}$ group matrices in $|\mathbf{P}^{(\mu)}\rangle$ -basis

Wednesday, April 1, 2015

unitarv

 D_3 global-g group matrices in $|\mathbf{P}^{(\mu)}\rangle$ -basis

 D_3 local- $\overline{\mathbf{g}}$ group matrices in $|\mathbf{P}^{(\mu)}\rangle$ -basis

ŀ	$R^P(\mathbf{g}) = TH$	$R^G(\mathbf{g})T^{\dagger} =$:					$R^P(\overline{\mathbf{g}}) = TR^{T}$	$G\left(\overline{\mathbf{g}}\right)T^{\dagger} =$				
	$\left \mathbf{P}_{xx}^{A_{1}}\right\rangle$	$\left \mathbf{P}_{yy}^{A_{2}}\right\rangle$	$\left \mathbf{P}_{xx}^{E_1}\right\rangle$	$\left \mathbf{P}_{yx}^{E_{1}}\right\rangle$	$\left \mathbf{P}_{xy}^{E_{1}}\right\rangle \left \mathbf{P}_{yy}^{E_{1}}\right\rangle$	$\left\langle 1\right\rangle$		$\left \mathbf{P}_{xx}^{A_{1}}\right\rangle$	$\left \mathbf{P}_{yy}^{A_2}\right\rangle$	$\left \mathbf{P}_{\boldsymbol{x}\boldsymbol{x}}^{E_{1}}\right\rangle$	$\left \mathbf{P}_{yx}^{E_{1}}\right\rangle$	$\left \mathbf{P}_{xy}^{E_{1}}\right\rangle$	$\left \mathbf{P}_{yy}^{E_{1}}\right\rangle$
	$D^{A_1}(\mathbf{g})$							$\left(D^{A_{l}*}(\mathbf{g}) \right)$.)
		$D^{A_2}(\mathbf{g})$		•		•	$ \mathbf{P}^{(\mu)}\rangle$ -base		$D^{A_2^*}(\mathbf{g})$			•	
			$D_{xx}^{E_1}(\mathbf{g})$	$D_{xy}^{E_1}$		•	ordering to			$D_{xx}^{E_1^*}(\mathbf{g})$		$D_{xy}^{E_1*}(\mathbf{g})$	
			$D_{yx}^{E_1}(\mathbf{g})$	$D_{yy}^{E_1}$			<i>concentrate</i>				$D_{xx}^{E_1^*}(\mathbf{g})$		$D_{xy}^{E_1^*}(\mathbf{g})$
					$D_{xx}^{E_1}(\mathbf{g})$ L	$D_{xy}^{E_1}$	D-matrices			$D_{yx}^{E_1^*}(\mathbf{g})$		$D_{yy}^{E_1^*}(\mathbf{g})$	
					$D_{yx}^{E_1}(\mathbf{g}) L$	$\mathcal{O}_{yy}^{E_1}$					$D_{yx}^{E_1^*}(\mathbf{g})$		$D_{yy}^{E_1^*}(\mathbf{g})$
-	$\overline{P}()$	$G(\cdot) = \dot{\tau}$			$ \rightarrow $			$\overline{\mathbf{P}}^{P}(-)$ $\overline{\mathbf{T}}^{P}(-)$	G (-) a †			\checkmark	
h	$\mathbf{r}(\mathbf{g}) = TT$	$C^{\circ}(\mathbf{g})T^{+} =$	=	, √,	· ↓ (,		$R^{r}\left(\mathbf{g}\right) = TR$	$\left(\mathbf{g} \right) T =$				
	$\left \mathbf{P}_{xx}^{A_{1}}\right\rangle$	$\left \mathbf{P}_{yy}^{A_2}\right\rangle$	$\left \mathbf{P}_{xx}^{E_{1}}\right\rangle$	$\left \mathbf{P}_{xy}^{E_{1}}\right\rangle$	$\left \mathbf{P}_{yx}^{E_{1}}\right\rangle \left \mathbf{P}_{yx}^{E_{1}}\right\rangle$	$\left. \begin{array}{c} E_1 \\ y \end{array} \right\rangle$		$\left \mathbf{P}_{xx}^{\mathcal{A}_{1}}\right\rangle$	$\left \mathbf{P}_{yy}^{A_2}\right\rangle$	$\left \mathbf{P}_{xx}^{E_{1}}\right\rangle$	$\left \mathbf{P}_{xy}^{E_{1}}\right\rangle$	$\left \mathbf{P}_{yx}^{E_{1}}\right\rangle$	$\left \mathbf{P}_{yy}^{E_{1}} \right\rangle$
	$D^{A_{\mathbf{l}}}(\mathbf{g})$					•		$\left(D^{A_{l}*}(\mathbf{g}) \right)$		•]
		$D^{A_2}(\mathbf{g})$	•	•			$ \mathbf{P}^{(\mu)}\rangle$ -base		$D^{A_2^*}(\mathbf{g})$	•	•	•	
	•		$D_{xx}^{E_1}(\mathbf{g})$		$D_{xy}^{E_1}(\mathbf{g})$		concentrate			$D_{xx}^{E_1^*}(\mathbf{g})$	$D_{xy}^{E_1^*}(\mathbf{g})$		
	•		•	$D_{xx}^{E_1}$	· [$D_{xy}^{E_1}$	$local-\overline{\mathbf{g}}$			$D_{yx}^{E_1^*}(\mathbf{g})$	$D_{yy}^{E_1^*}(\mathbf{g})$	•	
	•		$D_{yx}^{E_1}(\mathbf{g})$		$D_{yy}^{E_1}(\mathbf{g})$		and					$D_{xx}^{E_1^*}(\mathbf{g})$	$D_{xy}^{E_1^*}(\mathbf{g})$
	•		•	$D_{yx}^{E_1}$	· I	$\mathcal{D}_{yy}^{E_1}$	H -matrices		$\frac{1}{\alpha}$	atrix of		$D_{yx}^{E_1^*}(\mathbf{g})$	$D_{yy}^{E_1^*}(\mathbf{g})$
Flo	bal g-n	natrix d	compor	nent					ai g-m		ompone	<u>rii</u>	11
	$\left\langle \begin{array}{c} \mu \\ m'n \end{array} \middle \mathbf{g} \middle \begin{array}{c} \mu \\ mn \end{array} \right\rangle = D^{\mu}_{m'm}(\mathbf{g})$								$\left \frac{\mu}{mn'} \right \frac{\mathbf{g}}{\mathbf{g}} \right _{m}^{\mu}$	$ n\rangle = D_n^{\mu}$	${n'}(g^{-1})$	$= D^{\mu^*}_{n'n}($	$(g) \frac{D}{D}$ is unitary

Review Stage 1: Group Center: Class-sums κ_{g} , characters $\chi^{\mu}(\mathbf{g})$, and All-Commuting *Projectors* \mathbb{P}^{μ}

Review Stage 2: Group operators g and Mutually-Commuting projectors \mathbf{P}^{μ}_{kk} *Review Stage 3: Weyl* **g***-expansion in irreps* $D^{\mu}_{jk}(g)$ and Non-Commuting projectors \mathbf{P}^{μ}_{jk} Simple matrix algebra $\mathbf{P}^{\mu}_{ab} \mathbf{P}^{\nu}_{cd} = \delta^{\mu\nu} \delta_{bc} \mathbf{P}^{\mu}_{ad}$ \mathbf{P}^{μ}_{ik} transforms right-and-left \mathbf{P}^{μ}_{ik} -expansion in **g**-operators *Example of D*₃ *transformation by matrix* $D^{E}_{jk}(\mathbf{r}^{1})$

Details of Mock-Mach relativity-duality for D₃ groups and representations Lab-fixed(Extrinsic-Global) vs. Body-fixed (Intrinsic-Local) *Compare Global vs Local* $|\mathbf{g}\rangle$ *-basis and Global vs Local* $|\mathbf{P}^{(\mu)}\rangle$ *-basis*

Hamiltonian and D₃ group matrices in global and local $|\mathbf{P}^{(\mu)}\rangle$ -basis Global vs. Local block rearrangement Hamiltonion eigen-matrix calculation Hamiltonian local-symmetry eigensolution Molecular vibrational mode eigensolution Local symmetry limit Global symmetry limit (free or "genuine" modes)

$$\begin{split} \mathbf{H} \ matrix \ in \\ |\mathbf{g}\rangle \text{-basis:} \\ \left(\mathbf{H}\right)_{G} = \sum_{g=1}^{o_{G}} r_{g} \mathbf{\overline{g}} = \begin{pmatrix} r_{0} & r_{2} & r_{1} & i_{1} & i_{2} & i_{3} \\ r_{1} & r_{0} & r_{1} & i_{3} & i_{1} & i_{2} \\ r_{2} & r_{1} & r_{0} & i_{2} & i_{3} & i_{1} \\ i_{i} & i_{3} & i_{2} & r_{0} & r_{1} & r_{2} \\ i_{2} & i_{1} & i_{3} & r_{2} & r_{0} & r_{1} \\ i_{3} & i_{2} & i_{1} & r_{1} & r_{2} & r_{0} \end{pmatrix} \end{split}$$

H matrix in $|\mathbf{P}^{(\mu)}\rangle$ -basis:

$$\begin{array}{l} \mathbf{H} \ \textit{matrix in} \\ |\mathbf{g}\rangle \textit{-basis:} \\ \left(\mathbf{H}\right)_{G} = \sum_{g=1}^{o_{G}} r_{g} \overline{\mathbf{g}} = \left(\begin{array}{ccccc} r_{0} & r_{2} & r_{1} & i_{1} & i_{2} & i_{3} \\ r_{1} & r_{0} & r_{1} & i_{3} & i_{1} & i_{2} \\ r_{2} & r_{1} & r_{0} & i_{2} & i_{3} & i_{1} \\ i_{i} & i_{3} & i_{2} & r_{0} & r_{1} & r_{2} \\ i_{2} & i_{1} & i_{3} & r_{2} & r_{0} & r_{1} \\ i_{3} & i_{2} & i_{1} & r_{1} & r_{2} & r_{0} \end{array} \right) \\ \left(\mathbf{H} \right)_{P} = \overline{T} \left(\mathbf{H} \right)_{G}$$

 $H_{ab}^{\alpha} = \left\langle \mathbf{P}_{ma}^{\mu} \middle| \mathbf{H} \middle| \mathbf{P}_{nb}^{\mu} \right\rangle$

 $\left| \mathbf{P}_{xx}^{A_{1}} \right\rangle \left| \mathbf{P}_{yy}^{A_{2}} \right\rangle \left| \mathbf{P}_{xx}^{E_{1}} \right\rangle \left| \mathbf{P}_{xy}^{E_{1}} \right\rangle \left| \mathbf{P}_{yx}^{E_{1}} \right\rangle \left| \mathbf{P}_{yy}^{E_{1}} \right\rangle$

 $H_{xy}^{E_1} \ H_{yy}^{E_1}$

 $\left| \mathbf{P}_{yy}^{A_2} \right\rangle \left| \mathbf{P}_{xx}^{E_1} \right\rangle \left| \mathbf{P}_{xy}^{E_1} \right\rangle \left| \mathbf{P}_{yx}^{E_1} \right\rangle \left| \mathbf{P}_{yy}^{E_1} \right\rangle$ $\left|\mathbf{P}_{xx}^{A_{1}}\right\rangle$ H^{A_1} H matrix in $|\mathbf{P}^{(\mu)}\rangle$ -basis: • H^{A_2} • • $H_{xx}^{E_1}$ $H_{xy}^{E_1}$ $H_{yx}^{E_1}$ $\left(\mathbf{H}\right)_{P} = \overline{T}\left(\mathbf{H}\right)_{G} \overline{T}^{\dagger} =$ $H_{_{yy}}^{^{E_1}}$ •

 $H_{ab}^{\alpha} = \left\langle \mathbf{P}_{ma}^{\mu} \middle| \mathbf{H} \middle| \mathbf{P}_{nb}^{\mu} \right\rangle$

$$Let: \left| \begin{array}{l} \mu \\ mn \end{array} \right\rangle = \left| \mathbf{P}_{mn}^{\mu} \right\rangle = \mathbf{P}_{mn}^{\mu} \left| \mathbf{1} \right\rangle \frac{1}{norm} \\ = \frac{\ell^{(\mu)}}{{}^{\circ}G \cdot norm} \sum_{\mathbf{g}}^{\circ} D_{mn}^{\mu} \left(g \right) \left| \mathbf{g} \right\rangle \\ subject \ to \ normalization \ (from \ p. \ 86-96): \\ norm = \sqrt{\left\langle \mathbf{1} \right| \mathbf{P}_{nn}^{\mu} \left| \mathbf{1} \right\rangle} = \sqrt{\frac{\ell^{(\mu)}}{{}^{\circ}G}} \ (which \ will \ cancel \ out) \\ So, \ fuggettabout \ it! \end{cases}$$

$$H_{ab}^{\alpha} = \left\langle \mathbf{P}_{ma}^{\mu} \left| \mathbf{H} \right| \mathbf{P}_{nb}^{\mu} \right\rangle = \left\langle \mathbf{1} \left| \mathbf{P}_{am}^{\mu} \mathbf{H} \mathbf{P}_{nb}^{\mu} \right| \mathbf{1} \right\rangle$$

$$(norm)^{2}$$

$$(m)^{2} \left(|m|^{2} \langle n|)^{\dagger} = |n|^{2} \langle m|$$

$$(m)^{2} \langle n|^{2} = |n|^{2} \langle m|$$

$$(\mathbf{P}_{mn}^{\mu})^{\dagger} = \mathbf{P}_{nm}^{\mu}$$

$$\left| \begin{array}{c} \mu \\ mn \end{array} \right\rangle = \mathbf{P}_{mn}^{\mu} \left| \mathbf{1} \right\rangle \frac{1}{norm} = \frac{\ell^{(\mu)}}{{}^{\circ} \mathbf{G} \cdot norm} \sum_{\mathbf{g}}^{\circ \mathbf{G}} D_{mn}^{\mu^{\ast}}(\mathbf{g}) \left| \mathbf{g} \right\rangle$$

subject to normalization (from p. 86-96):

$$norm = \sqrt{\langle \mathbf{1} | \mathbf{P}_{nn}^{\mu} | \mathbf{1} \rangle} = \sqrt{\frac{\ell^{(\mu)}}{^{\circ}G}} \quad (which will cancel out)$$

So, fuggettabout it!

 $|\mathbf{P}_{xx}^{A_{1}}\rangle |\mathbf{P}_{yy}^{A_{2}}\rangle |\mathbf{P}_{xx}^{E_{1}}\rangle |\mathbf{P}_{yy}^{E_{1}}\rangle |\mathbf{P}_{yy}^{E_{1}}\rangle |\mathbf{P}_{yy}^{E_{1}}\rangle$ $|\mathbf{H} \ matrix \ in \\ |\mathbf{P}^{(\mu)}\rangle - basis:$ $(\mathbf{H})_{P} = \overline{T}(\mathbf{H})_{G} \ \overline{T}^{\dagger} = \begin{pmatrix} \underline{H}^{A_{1}} & \cdot & \cdot & \cdot & \cdot & \cdot \\ \hline \cdot & H^{A_{2}} & \cdot & \cdot & \cdot & \cdot \\ \hline \cdot & H^{A_{2}} & \cdot & \cdot & \cdot & \cdot \\ \hline \cdot & H^{E_{1}}_{xx} & H^{E_{1}}_{xy} & \cdot & \cdot \\ \hline \cdot & H^{E_{1}}_{yx} & H^{E_{1}}_{yy} & \cdot & \cdot \\ \hline \cdot & \cdot & H^{E_{1}}_{yx} & H^{E_{1}}_{yy} & \cdot & \cdot \\ \hline \cdot & \cdot & \cdot & H^{E_{1}}_{xx} & H^{E_{1}}_{xy} \\ \hline \cdot & \cdot & \cdot & \cdot & H^{E_{1}}_{yx} & H^{E_{1}}_{yy} \end{pmatrix}$

$$H_{ab}^{\alpha} = \left\langle \mathbf{P}_{ma}^{\mu} \left| \mathbf{H} \right| \mathbf{P}_{nb}^{\mu} \right\rangle = \left\langle \mathbf{1} \left| \mathbf{P}_{am}^{\mu} \mathbf{H} \mathbf{P}_{nb}^{\mu} \right| \mathbf{1} \right\rangle = \left\langle \mathbf{1} \left| \mathbf{H} \mathbf{P}_{am}^{\mu} \mathbf{P}_{nb}^{\mu} \right| \mathbf{1} \right\rangle$$

$$Mock-Mach$$

$$commutation$$

$$\mathbf{r} \, \mathbf{\overline{r}} = \mathbf{\overline{r}} \, \mathbf{r}$$

$$(p.61)$$

subject to normalization (from p. 86-96): $| \mu_{mn} \rangle = \mathbf{P}_{mn}^{\mu} | \mathbf{1} \rangle \frac{1}{norm} = \frac{\ell^{(\mu)}}{{}^{\circ}G \cdot norm} \sum_{g}^{\circ G} D_{mn}^{\mu^{*}}(g) | \mathbf{g} \rangle$

$$norm = \sqrt{\langle \mathbf{1} | \mathbf{P}_{nn}^{\mu} | \mathbf{1} \rangle} = \sqrt{\frac{\ell^{(\mu)}}{\circ G}} \quad (which will cancel out)$$

So, fuggettabout it!

Wednesday, April 1, 2015

$$\begin{array}{c|c} \mathbf{H} \text{ matrix in} \\ |\mathbf{P}^{(\mu)}\rangle \text{-basis:} \\ (\mathbf{H})_{P} = \overline{T} (\mathbf{H})_{G} \, \overline{T}^{\dagger} = \left(\begin{array}{c|c} H^{A_{1}} & \cdot & \cdot & \cdot & \cdot & \cdot \\ \hline \cdot & H^{A_{2}} & \cdot & \cdot & \cdot & \cdot \\ \hline \cdot & H^{A_{2}} & \cdot & \cdot & \cdot & \cdot \\ \hline \cdot & \cdot & H^{E_{1}}_{xx} & H^{E_{1}}_{xy} & \cdot & \cdot \\ \hline \cdot & \cdot & H^{E_{1}}_{yx} & H^{E_{1}}_{yy} & \cdot & \cdot \\ \hline \cdot & \cdot & \cdot & H^{E_{1}}_{xx} & H^{E_{1}}_{xy} \\ \hline \cdot & \cdot & \cdot & \cdot & H^{E_{1}}_{yx} & H^{E_{1}}_{yy} \end{array} \right)$$

 $\left(\mathbf{H}\right)_{P} = \overline{T}\left(\mathbf{H}\right)_{G} \overline{T}^{\dagger} =$

 $\left| \mathbf{P}_{xx}^{A_{1}} \right\rangle \left| \mathbf{P}_{yy}^{A_{2}} \right\rangle \left| \mathbf{P}_{xx}^{E_{1}} \right\rangle \left| \mathbf{P}_{xy}^{E_{1}} \right\rangle \left| \mathbf{P}_{yx}^{E_{1}} \right\rangle \left| \mathbf{P}_{yy}^{E_{1}} \right\rangle$
D_3 Hamiltonian local- **H** matrices in $|\mathbf{P}^{(\mu)}\rangle$ -basis

$$\begin{array}{c} |\mathbf{P}_{xx}^{A_{1}}\rangle = |\mathbf{P}_{xx}^{A_{2}}\rangle = |\mathbf{P}_{xx}^{A_{1}}\rangle = |\mathbf{P}_{xx}^{A_$$

$$H_{ab}^{\alpha} = \left\langle \mathbf{P}_{ma}^{\mu} \middle| \mathbf{H} \middle| \mathbf{P}_{nb}^{\mu} \right\rangle = \frac{\left\langle \mathbf{1} \middle| \mathbf{P}_{am}^{\mu} \mathbf{H} \mathbf{P}_{nb}^{\mu} \middle| \mathbf{1} \right\rangle}{(norm)^{2}} = \left\langle \mathbf{1} \middle| \mathbf{H} \mathbf{P}_{am}^{\mu} \mathbf{P}_{nb}^{\mu} \middle| \mathbf{1} \right\rangle = \delta_{mn} \left\langle \mathbf{1} \middle| \mathbf{H} \mathbf{P}_{ab}^{\mu} \middle| \mathbf{1} \right\rangle = \sum_{g=1}^{n} \left\langle \mathbf{1} \middle| \mathbf{H} \middle| \mathbf{g} \right\rangle D_{ab}^{\alpha} \left(g \right)$$

$$Use \ \mathbf{P}_{mn}^{\mu} - orthonormality$$

$$\mathbf{P}_{m'n'}^{\mu'} \mathbf{P}_{mn}^{\mu} = \delta^{\mu'\mu} \delta_{n'm} \mathbf{P}_{m'n}^{\mu}$$

$$(p.21)$$

 D_3 Hamiltonian local- **H** matrices in $|\mathbf{P}^{(\mu)}\rangle$ -basis

$$\begin{array}{l} \mathbf{H} \text{ matrix in} \\ |\mathbf{g}\rangle \text{-basis:} \\ (\mathbf{H})_{G} = \sum_{g=1}^{o_{G}} r_{g} \overline{\mathbf{g}} = \begin{pmatrix} r_{0} & r_{2} & r_{1} & i_{1} & i_{2} & i_{3} \\ r_{1} & r_{0} & r_{l} & i_{3} & i_{1} & i_{2} \\ r_{1} & r_{0} & r_{l} & i_{3} & i_{1} & i_{2} \\ r_{2} & r_{1} & r_{0} & i_{2} & i_{3} & i_{1} \\ i_{i} & i_{3} & i_{2} & r_{0} & r_{l} & r_{2} \\ i_{2} & i_{1} & i_{3} & r_{2} & r_{0} & r_{l} \\ i_{3} & i_{2} & i_{1} & r_{1} & r_{2} & r_{0} \end{pmatrix} \\ \end{array} \right) \quad \begin{array}{l} \mathbf{H} \text{ matrix in} \\ |\mathbf{P}^{(\mu)}\rangle \text{-basis:} \\ (\mathbf{H})_{p} = \overline{T}(\mathbf{H})_{G} \overline{T}^{\dagger} = \begin{pmatrix} \frac{H^{A_{1}}}{\cdot} & \cdot & \cdot & \cdot & \cdot \\ \cdot & H^{A_{2}} & \cdot & \cdot & \cdot \\ \cdot & H^{A_{2}} & \cdot & \cdot & \cdot \\ \cdot & H^{A_{2}} & \cdot & \cdot & \cdot \\ \cdot & H^{A_{2}} & \cdot & \cdot & \cdot \\ \cdot & H^{A_{2}} & \cdot & \cdot & \cdot \\ \cdot & H^{A_{2}} & \cdot & \cdot & \cdot \\ \cdot & H^{A_{2}} & \cdot & \cdot & \cdot \\ \cdot & H^{A_{2}} & H^{A_{1}}_{yy} & \cdot & \cdot \\ \cdot & \cdot & H^{A_{2}}_{yx} & H^{A_{1}}_{yy} & \cdot & \cdot \\ \cdot & \cdot & H^{A_{2}}_{yx} & H^{A_{1}}_{yy} & \cdot & \cdot \\ \cdot & \cdot & H^{A_{2}}_{yx} & H^{A_{1}}_{yy} & \cdot & \cdot \\ \cdot & \cdot & H^{A_{2}}_{yx} & H^{A_{1}}_{yy} & \cdot & \cdot \\ \cdot & \cdot & H^{A_{2}}_{yx} & H^{A_{1}}_{yy} & \cdot & \cdot \\ \cdot & \cdot & H^{A_{2}}_{yx} & H^{A_{1}}_{yy} & \cdot & \cdot \\ \cdot & \cdot & H^{A_{2}}_{yx} & H^{A_{1}}_{yy} & \cdot & \cdot \\ \cdot & \cdot & H^{A_{2}}_{yx} & H^{A_{1}}_{yy} & \cdot & \cdot \\ \cdot & \cdot & H^{A_{2}}_{yx} & H^{A_{1}}_{yy} & \cdot & \cdot \\ \cdot & \cdot & H^{A_{2}}_{yx} & H^{A_{1}}_{yy} & \cdot & \cdot \\ \cdot & \cdot & H^{A_{2}}_{yx} & H^{A_{1}}_{yy} & \cdot & \cdot \\ \cdot & \cdot & H^{A_{2}}_{yx} & H^{A_{1}}_{yy} & \cdot & \cdot \\ \cdot & \cdot & H^{A_{2}}_{yx} & H^{A_{1}}_{yy} & H^{A_{2}}_{yy} & H^{A_{2}}_{yy} & H^{A_{1}}_{yy} & \cdot \\ \cdot & \cdot & H^{A_{1}}_{yx} & H^{A_{1}}_{yy} & H^{A_{1}}$$

$$H_{ab}^{\alpha} = \left\langle \mathbf{P}_{ma}^{\mu} \left| \mathbf{H} \right| \mathbf{P}_{nb}^{\mu} \right\rangle = \frac{\left\langle \mathbf{1} \right| \mathbf{P}_{am}^{\mu} \mathbf{H} \mathbf{P}_{nb}^{\mu} \left| \mathbf{1} \right\rangle}{\left(norm \right)^{2}} = \left\langle \mathbf{1} \right| \mathbf{H} \mathbf{P}_{am}^{\mu} \mathbf{P}_{nb}^{\mu} \left| \mathbf{1} \right\rangle} = \delta_{mn} \left\langle \mathbf{1} \right| \mathbf{H} \mathbf{P}_{ab}^{\mu} \left| \mathbf{1} \right\rangle} = \sum_{g=1}^{\circ G} \left\langle \mathbf{1} \right| \mathbf{H} \left| \mathbf{g} \right\rangle D_{ab}^{\mu^{*}} \left(g \right)$$

$$\binom{\mu}{mn} = \mathbf{P}_{mn}^{\mu} |\mathbf{1}\rangle \frac{1}{norm} = \frac{\ell^{(\mu)}}{\mathbf{G} \cdot norm} \sum_{\mathbf{g}}^{\mathbf{G}} D_{mn}^{\mu^*}(g) |\mathbf{g}\rangle$$

subject to normalization (from p. 86-96):

 $norm = \sqrt{\langle \mathbf{1} | \mathbf{P}_{nn}^{\mu} | \mathbf{1} \rangle} = \sqrt{\frac{\ell^{(\mu)}}{\circ G}} \quad (which will cancel out)$ So, fuggettabout it!

D_3 Hamiltonian local- **H** matrices in $|\mathbf{P}^{(\mu)}\rangle$ -basis

$$|\mathbf{P}_{xx}^{A_{1}}\rangle |\mathbf{P}_{xx}^{A_{2}}\rangle |\mathbf{P}_{xx}^{E_{1}}\rangle |\mathbf{P}_{xy}^{E_{1}}\rangle |\mathbf{P}_{xy}^{E_{1}}\rangle |\mathbf{P}_{xy}^{E_{1}}\rangle |\mathbf{P}_{yy}^{E_{1}}\rangle$$

$$|\mathbf{H} \ matrix \ in \ |\mathbf{g}\rangle -basis:$$

$$(\mathbf{H})_{G} = \sum_{g=1}^{o} r_{g} \overline{\mathbf{g}} = \begin{pmatrix} \overline{r}_{0} & r_{2} & r_{1} & i_{1} & i_{2} & i_{3} \\ r_{1} & r_{0} & r_{1} & i_{3} & i_{1} & i_{2} \\ r_{2} & r_{1} & r_{0} & i_{2} & i_{3} & i_{1} \\ i_{i} & i_{3} & i_{2} & r_{0} & r_{1} & r_{2} \\ i_{2} & i_{1} & i_{3} & r_{2} & r_{0} & r_{1} \\ i_{3} & i_{2} & i_{1} & r_{1} & r_{2} & r_{0} \end{pmatrix}$$

$$(\mathbf{H})_{p} = \overline{T}(\mathbf{H})_{G} \overline{T}^{\dagger} = \begin{pmatrix} \overline{H^{A_{1}}} & \cdot & \cdot & \cdot & \cdot \\ \cdot & \overline{H^{A_{2}}} & \cdot & \cdot & \cdot & \cdot \\ \cdot & H^{A_{2}} & \cdot & \cdot & \cdot & \cdot \\ \cdot & H^{A_{2}} & \cdot & \cdot & \cdot & \cdot \\ \cdot & H^{A_{2}} & H^{A_{2}} & \cdot & \cdot & \cdot \\ \cdot & H^{A_{2}} & H^{A_{2}} & \cdot & \cdot & \cdot \\ \cdot & H^{A_{2}} & H^{A_{2}} & \cdot & \cdot & \cdot \\ \cdot & H^{A_{2}} & H^{A_{2}} & H^{A_{2}} & \cdot & \cdot \\ \cdot & H^{A_{2}} & H^{A_{2}} & H^{A_{2}} & \cdot & \cdot \\ \cdot & H^{A_{2}} & H$$

$$\left| {}^{\mu}_{mn} \right\rangle = \mathbf{P}^{\mu}_{mn} \left| \mathbf{1} \right\rangle \frac{1}{norm} = \frac{\ell^{(\mu)}}{{}^{\circ}G \cdot norm} \sum_{\mathbf{g}}^{\circ} D^{\mu^{*}}_{mn} \left(\mathbf{g} \right) \left| \mathbf{g} \right\rangle$$

subject to normalization (from p. 86-96):

 $norm = \sqrt{\langle \mathbf{1} | \mathbf{P}_{nn}^{\mu} | \mathbf{1} \rangle} = \sqrt{\frac{\ell^{(\mu)}}{\circ G}} \quad (which will cancel out)$ So, fuggettabout it!

D_3 Hamiltonian local- **H** matrices in $|\mathbf{P}^{(\mu)}\rangle$ -basis $\left| \mathbf{P}_{xx}^{A_1} \right\rangle \left| \left| \mathbf{P}_{yy}^{A_2} \right\rangle \left| \left| \mathbf{P}_{xx}^{E_1} \right\rangle \right| \mathbf{P}_{xy}^{E_1} \right\rangle \left| \left| \mathbf{P}_{yx}^{E_1} \right\rangle \left| \mathbf{P}_{yy}^{E_1} \right\rangle \right\rangle$ H^{A_1} H matrix in H matrix in . $|\mathbf{g}\rangle$ -basis: $|\mathbf{P}^{(\mu)}\rangle$ -basis: H^{A_2} $\left(\mathbf{H}\right)_{G} = \sum_{g=1}^{o} r_{g} \mathbf{\overline{g}} = \begin{vmatrix} \mathbf{1} & \mathbf{1} & \mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{1} \\ \mathbf{r}_{2} & \mathbf{r}_{1} & \mathbf{r}_{0} & \mathbf{i}_{2} & \mathbf{i}_{3} & \mathbf{i}_{1} \\ \mathbf{i}_{i} & \mathbf{i}_{3} & \mathbf{i}_{2} & \mathbf{r}_{0} & \mathbf{r}_{1} & \mathbf{r}_{2} \\ \mathbf{i}_{2} & \mathbf{i}_{1} & \mathbf{i}_{3} & \mathbf{r}_{2} & \mathbf{r}_{0} & \mathbf{r}_{1} \\ \mathbf{i}_{3} & \mathbf{i}_{2} & \mathbf{i}_{1} & \mathbf{r}_{1} & \mathbf{r}_{2} & \mathbf{r}_{0} \end{vmatrix}$ $\left(\mathbf{H}\right)_{P} = \overline{T}\left(\mathbf{H}\right)_{G} \overline{T}^{\dagger} = \begin{vmatrix} \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \end{vmatrix}$ $H_{xv}^{E_1}$ $\cdot \quad H_{xx}^{E_1}$ $H_{yx}^{E_1}$ $H_{yy}^{E_1}$ $H_{ab}^{\alpha} = \left\langle \mathbf{P}_{ma}^{\mu} \left| \mathbf{H} \right| \mathbf{P}_{nb}^{\mu} \right\rangle = \left\langle \mathbf{1} \left| \mathbf{P}_{nb}^{\mu} \right| \mathbf{H} \right\rangle = \left\langle \mathbf{1} \left| \mathbf{H} \mathbf{P}_{am}^{\mu} \mathbf{P}_{nb}^{\mu} \right| \mathbf{1} \right\rangle = \delta_{mn} \left\langle \mathbf{1} \left| \mathbf{H} \mathbf{P}_{ab}^{\mu} \right| \mathbf{1} \right\rangle = \sum_{a=1}^{\circ G} \left\langle \mathbf{1} \left| \mathbf{H} \right| \mathbf{g} \right\rangle D_{ab}^{\alpha^{*}}(g) = \sum_{a=1}^{\circ G} r_{g} D_{ab}^{\alpha^{*}}(g)$ $H^{A_{1}} = r_{0}D^{A_{1}*}(1) + r_{1}D^{A_{1}*}(r^{1}) + r_{1}^{*}D^{A_{1}*}(r^{2}) + i_{1}D^{A_{1}*}(i_{1}) + i_{2}D^{A_{1}*}(i_{2}) + i_{3}D^{A_{1}*}(i_{3}) = r_{0} + r_{1} + r_{1}^{*} + i_{1} + i_{2} + i_{3}$ $H^{A_2} = r_0 D^{A_2^*}(1) + r_1 D^{A_2^*}(r^1) + r_1^* D^{A_2^*}(r^2) + i_1 D^{A_2^*}(i_1) + i_2 D^{A_2^*}(i_2) + i_3 D^{A_2^*}(i_3) = r_0 + r_1 + r_1^* - i_1 - i_2 - i_3$ $H_{rr}^{E_{1}} = r_{0}D_{rr}^{E^{*}}(1) + r_{1}D_{rr}^{E^{*}}(r^{1}) + r_{1}^{*}D_{rr}^{E^{*}}(r^{2}) + i_{1}D_{xx}^{E^{*}}(i_{1}) + i_{2}D_{xx}^{E^{*}}(i_{2}) + i_{3}D_{xx}^{E^{*}}(i_{3}) = (2r_{0}-r_{1}-r_{1}^{*}-i_{1}-i_{2}+2i_{3})/2$ Coefficients $D_{mn}^{\mu}(g)_{r_1}$ are irreducible representations (ireps) of g $D^{A_{l}}(\mathbf{g}) =$ $\begin{array}{c} \begin{pmatrix} 1\\ \hline 2 \\ \hline 2 \\ \hline 2 \\ \hline 3 \\ \hline 2 \\ \hline 5 \\ \hline - 1 \\ \hline 2 \\ \hline - 3 \\ \hline - 3 \\ \hline - 1 \\ \hline 2 \\ \hline - 3 \\ \hline - 1 \\ \hline 2 \\ \hline - 1 \\ \hline \begin{array}{c} \begin{pmatrix} 1\\ \hline 2 \end{pmatrix} & \frac{\sqrt{3}}{2} \\ \sqrt{3} & \frac{1}{2} \end{array}$ $D^{A_2}(\mathbf{g}) =$ $D_{x v}^{E_1}(\mathbf{g}) =$

D_3 Hamiltonian local- **H** matrices in $|\mathbf{P}^{(\mu)}\rangle$ -basis $\left| \mathbf{P}_{xx}^{A_1} \right\rangle \left| \left| \mathbf{P}_{yy}^{A_2} \right\rangle \left| \left| \mathbf{P}_{xx}^{E_1} \right\rangle \right| \mathbf{P}_{xy}^{E_1} \right\rangle \left| \mathbf{P}_{yx}^{E_1} \right\rangle \left| \mathbf{P}_{yy}^{E_1} \right\rangle$ H matrix in H^{A_1} H matrix in $\begin{pmatrix} r_0 & r_2 & r_1 & i_1 & i_2 & i_3 \\ r_1 & r_0 & r_1 & i_3 & i_1 & i_2 \end{pmatrix}$ $\cdot H^{A_2}$ $|\mathbf{g}\rangle$ -basis: $|\mathbf{P}^{(\mu)}\rangle$ -basis: $\left(\mathbf{H}\right)_{G} = \sum_{g=1}^{o} r_{g} \overline{\mathbf{g}} = \begin{vmatrix} \mathbf{1} & \mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{1} \\ \mathbf{r}_{2} & \mathbf{r}_{1} & \mathbf{r}_{0} & \mathbf{i}_{2} & \mathbf{i}_{3} & \mathbf{i}_{1} \\ \mathbf{i}_{i} & \mathbf{i}_{3} & \mathbf{i}_{2} & \mathbf{r}_{0} & \mathbf{r}_{1} & \mathbf{r}_{2} \\ \mathbf{i}_{2} & \mathbf{i}_{1} & \mathbf{i}_{3} & \mathbf{r}_{2} & \mathbf{r}_{0} & \mathbf{r}_{1} \\ \mathbf{i}_{3} & \mathbf{i}_{2} & \mathbf{i}_{1} & \mathbf{r}_{1} & \mathbf{r}_{2} & \mathbf{r}_{0} \end{vmatrix}$ $\left(\mathbf{H}\right)_{P} = \overline{T}\left(\mathbf{H}\right)_{G} \overline{T}^{\dagger} = \begin{vmatrix} \cdot & \cdot & H_{xx}^{E_{1}} \\ \cdot & \cdot & H_{yx}^{E_{1}} \end{vmatrix}$ $H_{xv}^{E_1}$ $H_{_{yy}}^{^{E_1}}$ $H_{ab}^{\alpha} = \left\langle \mathbf{P}_{ma}^{\mu} \left| \mathbf{H} \right| \mathbf{P}_{nb}^{\mu} \right\rangle = \frac{\left\langle \mathbf{1} \right| \mathbf{P}_{am}^{\mu} \mathbf{H} \mathbf{P}_{nb}^{\mu} \left| \mathbf{1} \right\rangle}{\left(norm \right)^{2}} = \delta_{mn} \left\langle \mathbf{1} \right| \mathbf{H} \mathbf{P}_{ab}^{\mu} \left| \mathbf{1} \right\rangle} = \sum_{n=1}^{\circ G} \left\langle \mathbf{1} \right| \mathbf{H} \left| \mathbf{g} \right\rangle D_{ab}^{\alpha^{*}} \left(g \right) = \sum_{n=1}^{\circ G} r_{g} D_{ab}^{\alpha^{*}} \left(g \right)$ $H^{A_{1}} = r_{0}D^{A_{1}*}(1) + r_{1}D^{A_{1}*}(r^{1}) + r_{1}^{*}D^{A_{1}*}(r^{2}) + i_{1}D^{A_{1}*}(i_{1}) + i_{2}D^{A_{1}*}(i_{2}) + i_{3}D^{A_{1}*}(i_{3}) = r_{0} + r_{1} + r_{1}^{*} + i_{1} + i_{2} + i_{3}$ $H^{A_2} = r_0 D^{A_2*}(1) + r_1 D^{A_2*}(r^1) + r_1^* D^{A_2*}(r^2) + i_1 D^{A_2*}(i_1) + i_2 D^{A_2*}(i_2) + i_3 D^{A_2*}(i_3) = r_0 + r_1 + r_1^* - i_1 - i_2 - i_3$ $H_{rr}^{E_{1}} = r_{0}D_{rr}^{E^{*}}(1) + r_{1}D_{rr}^{E^{*}}(r^{1}) + r_{1}^{*}D_{rr}^{E^{*}}(r^{2}) + i_{1}D_{rr}^{E^{*}}(i_{1}) + i_{2}D_{rr}^{E^{*}}(i_{2}) + i_{3}D_{rr}^{E^{*}}(i_{3}) = (2r_{0}-r_{1}-r_{1}^{*}-i_{1}-i_{2}+2i_{3})/2$ $H_{rv}^{E_{1}} = r_{0}D_{rv}^{E^{*}}(1) + r_{1}D_{rv}^{E^{*}}(r^{1}) + r_{1}^{*}D_{rv}^{E^{*}}(r^{2}) + i_{1}D_{rv}^{E^{*}}(i_{1}) + i_{2}D_{rv}^{E^{*}}(i_{2}) + i_{3}D_{rv}^{E^{*}}(i_{3}) = \sqrt{3}(-r_{1}+r_{1}^{*}-i_{1}+i_{2})/2 = H_{yx}^{E^{*}}$ Coefficients $D_{mn}^{\mu}(g)_{\mathbf{r}^1}$ are irreducible representations (ireps) of **g** $D^{A_{l}}(\mathbf{g}) =$ $\begin{pmatrix} 1 \\ 1 \\ \cdot \\ 1 \end{pmatrix} \begin{pmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix} \begin{pmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix} \begin{pmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix} \begin{pmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix} \begin{pmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix} \begin{pmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix} \begin{pmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix} \begin{pmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix} \begin{pmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix} \begin{pmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix} \begin{pmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix} \begin{pmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix} \begin{pmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix} \begin{pmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix} \begin{pmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix} \begin{pmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix} \begin{pmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix} \begin{pmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix} \begin{pmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix} \begin{pmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix} \begin{pmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix} \begin{pmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix} \begin{pmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix} \begin{pmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{\sqrt{3}}{2} \end{pmatrix} \begin{pmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{\sqrt{3}}{2} \end{pmatrix} \begin{pmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{\sqrt{3}}{2} \end{pmatrix} \begin{pmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{\sqrt{3}}{2} \end{pmatrix} \begin{pmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{\sqrt{3}}{2} \end{pmatrix} \begin{pmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{\sqrt{3}}{2} \end{pmatrix} \begin{pmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{\sqrt{3}}{2} \end{pmatrix} \begin{pmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{\sqrt{3}}{2} \end{pmatrix} \begin{pmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{\sqrt{3}}{2} \end{pmatrix} \begin{pmatrix} -\frac{\sqrt{3}}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{\sqrt{3}}{2} \end{pmatrix} \begin{pmatrix} -\frac{\sqrt{3}}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{\sqrt{3}}{2} \end{pmatrix} \begin{pmatrix} -\frac{\sqrt{3}}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{\sqrt{3}}{2} \end{pmatrix} \begin{pmatrix} -\frac{\sqrt{3}}{2} & -\frac{\sqrt{3}}{2} \end{pmatrix} \begin{pmatrix} -\frac{\sqrt{3}}{2}$ $D^{A_2}(\mathbf{g}) =$

D_3 Hamiltonian local- **H** matrices in $|\mathbf{P}^{(\mu)}\rangle$ -basis $\left| \mathbf{P}_{yy}^{A_2} \right\rangle \left| \mathbf{P}_{xx}^{E_1} \right\rangle \left| \mathbf{P}_{xy}^{E_1} \right\rangle \left| \mathbf{P}_{yx}^{E_1} \right\rangle \left| \mathbf{P}_{yy}^{E_1} \right\rangle$ $\left|\mathbf{P}_{xx}^{A_{1}}\right\rangle$ H matrix in H^{A_1} H matrix in $r_0 r_2 r_1 i_1 i_2$ $|\mathbf{g}\rangle$ -basis: $|\mathbf{P}^{(\mu)}\rangle$ -basis: H^{A_2} $r_1 r_0 r_1 i_3 i_1 i_2$ $H_{xx}^{E_1}$ $H_{xv}^{E_1}$ $\left(\mathbf{H} \right)_{G} = \sum_{g=1}^{o} r_{g} \overline{\mathbf{g}} = \begin{vmatrix} r_{2} & r_{1} & r_{0} & i_{2} & i_{3} & i_{1} \\ i_{i} & i_{3} & i_{2} & r_{0} & r_{1} & r_{2} \end{vmatrix}$ $(\mathbf{H})_{P} = \overline{T}(\mathbf{H})_{G} \overline{T}^{\dagger} =$ $H_{yx}^{E_1}$ $H_{_{yy}}^{^{E_1}}$ $H_{xx}^{E_1}$ $\cdot \quad \begin{vmatrix} H_{yx}^{E_1} & H_{yy}^{E_1} \end{vmatrix}$ $H_{ab}^{\alpha} = \left\langle \mathbf{P}_{ma}^{\mu} \left| \mathbf{H} \right| \mathbf{P}_{nb}^{\mu} \right\rangle = \left\langle \mathbf{1} \left| \mathbf{P}_{am}^{\mu} \mathbf{H} \mathbf{P}_{nb}^{\mu} \right| \mathbf{1} \right\rangle = \left\langle \mathbf{1} \left| \mathbf{H} \mathbf{P}_{am}^{\mu} \mathbf{P}_{\underline{nb}}^{\mu} \right| \mathbf{1} \right\rangle = \delta_{mn} \left\langle \mathbf{1} \left| \mathbf{H} \mathbf{P}_{\underline{ab}}^{\mu} \right| \mathbf{1} \right\rangle = \sum_{i=1}^{G} \left\langle \mathbf{1} \left| \mathbf{H} \right| \mathbf{g} \right\rangle D_{ab}^{\alpha^{*}}(g) = \sum_{i=1}^{G} r_{g} D_{ab}^{\alpha^{*}}(g)$ $H^{A_{1}} = r_{0}D^{A_{1}*}(1) + r_{1}D^{A_{1}*}(r^{1}) + r_{1}^{*}D^{A_{1}*}(r^{2}) + i_{1}D^{A_{1}*}(i_{1}) + i_{2}D^{A_{1}*}(i_{2}) + i_{3}D^{A_{1}*}(i_{3}) = r_{0} + r_{1} + r_{1}^{*} + i_{1} + i_{2} + i_{3}$ $H^{A_{2}} = r_{0}D^{A_{2}^{*}}(1) + r_{1}D^{A_{2}^{*}}(r^{1}) + r_{1}^{*}D^{A_{2}^{*}}(r^{2}) + i_{1}D^{A_{2}^{*}}(i_{1}) + i_{2}D^{A_{2}^{*}}(i_{2}) + i_{3}D^{A_{2}^{*}}(i_{3}) = r_{0} + r_{1} + r_{1}^{*} - i_{1} - i_{2} - i_{3}$ $H_{xx}^{E_1} = r_0 D_{xx}^{E^*}(1) + r_1 D_{xx}^{E^*}(r^1) + r_1^* D_{xx}^{E^*}(r^2) + i_1 D_{xx}^{E^*}(i_1) + i_2 D_{xx}^{E^*}(i_2) + i_3 D_{xx}^{E^*}(i_3) = (2r_0 - r_1 - r_1^* - i_1 - i_2 + 2i_3)/2$ $H_{xy}^{E_1} = r_0 D_{xy}^{E^*}(1) + r_1 D_{xy}^{E^*}(r^1) + r_1^* D_{xy}^{E^*}(r^2) + i_1 D_{xy}^{E^*}(i_1) + i_2 D_{xy}^{E^*}(i_2) + i_3 D_{xy}^{E^*}(i_3) = \sqrt{3}(-r_1 + r_1^* - i_1 + i_2)/2 = H_{yx}^{E^*}$ $H_{vv}^{E_{1}} = r_{0}D_{vv}^{E^{*}}(1) + r_{1}D_{vv}^{E^{*}}(r^{1}) + r_{1}^{*}D_{vv}^{E^{*}}(r^{2}) + i_{1}D_{vv}^{E^{*}}(i_{1}) + i_{2}D_{vv}^{E^{*}}(i_{2}) + i_{3}D_{vv}^{E^{*}}(i_{3}) = (2r_{0}-r_{1}-r_{1}^{*}+i_{1}+i_{2}(2i_{3})/2)$ Coefficients $D_{mn}^{\mu}(g)_{r_1}$ are irreducible representations (ireps) of **g** $D^{A_{\mathbf{I}}}(\mathbf{g}) =$ $\begin{array}{c} -\frac{\sqrt{3}}{2} \\ (\frac{1}{2}) \end{array} \begin{pmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & (\frac{1}{2}) \end{pmatrix} \begin{pmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & (\frac{1}{2}) \end{pmatrix} \begin{pmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & (\frac{1}{2}) \end{pmatrix} \begin{pmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & (\frac{1}{2}) \end{pmatrix}$ $D^{A_2}(\mathbf{g}) =$ $\frac{1}{\sqrt{2}}$ $\sqrt{3}$ $\frac{1}{2}$ $D_{\mathbf{x},\mathbf{y}}^{E_1}(\mathbf{g}) =$

D_3 Hamiltonian local- **H** matrices in $|\mathbf{P}^{(\mu)}\rangle$ -basis $\left| \mathbf{P}_{xx}^{A_1} \right\rangle \left| \mathbf{P}_{yy}^{A_2} \right\rangle \left| \mathbf{P}_{xx}^{E_1} \right\rangle \left| \mathbf{P}_{xy}^{E_1} \right\rangle \left| \mathbf{P}_{yx}^{E_1} \right\rangle \left| \mathbf{P}_{yy}^{E_1} \right\rangle$ $\begin{array}{c|c} \mathbf{H} \text{ matrix in} \\ |\mathbf{P}^{(\mu)}\rangle \text{-basis:} \\ (\mathbf{H})_{P} = \overline{T}(\mathbf{H})_{G} \,\overline{T}^{\dagger} = \left(\begin{array}{c|c} H^{A_{1}} & \cdot & \cdot & \cdot & \cdot & \cdot \\ \hline \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\ \hline \cdot & H^{A_{2}} & \cdot & \cdot & \cdot & \cdot \\ \hline \cdot & \cdot & H^{E_{1}}_{xx} & H^{E_{1}}_{xy} & \cdot & \cdot \\ \hline \cdot & \cdot & H^{E_{1}}_{yx} & H^{E_{1}}_{yy} & \cdot & \cdot \\ \hline \cdot & \cdot & H^{E_{1}}_{yx} & H^{E_{1}}_{yy} & \cdot & \cdot \\ \hline \cdot & \cdot & H^{E_{1}}_{yx} & H^{E_{1}}_{yy} & \cdot & \cdot \\ \hline \cdot & \cdot & H^{E_{1}}_{yx} & H^{E_{1}}_{yy} & \cdot & \cdot \\ \hline \cdot & \cdot & \cdot & \cdot & \cdot \\ \hline \cdot & \cdot & \cdot & \cdot & \cdot \\ \hline \cdot & \cdot & \cdot & \cdot & \cdot \\ \hline \cdot & \cdot & \cdot & \cdot & \cdot \\ \hline \cdot & \cdot & \cdot & \cdot & \cdot \\ \hline \cdot & \cdot & \cdot & \cdot & \cdot \\ \hline \cdot & \cdot & \cdot & \cdot & \cdot \\ \hline \cdot & \cdot & \cdot & \cdot & \cdot \\ \hline \cdot & \cdot & \cdot & \cdot & \cdot \\ \hline \cdot & \cdot & \cdot & \cdot \\ \hline \cdot & \cdot & \cdot & \cdot \\ \hline \cdot & \cdot & \cdot & \cdot \\ \hline \cdot & \cdot & \cdot & \cdot \\ \hline \cdot & \cdot & \cdot & \cdot \\ \hline \cdot & \cdot & \cdot & \cdot \\ \hline \cdot & \cdot & \cdot & \cdot \\ \hline \cdot & \cdot & \cdot & \cdot \\ \hline \cdot & \cdot & \cdot & \cdot \\ \hline \cdot & \cdot & \cdot & \cdot \\ \hline \cdot & \cdot \\ \hline \cdot & \cdot & \cdot \\ \hline \cdot & \hline \cdot & \cdot \\ \hline \cdot$ $$\begin{split} \mathbf{H} \ matrix \ in \\ |\mathbf{g}\rangle \text{-basis:} \\ \left(\mathbf{H}\right)_{G} = \sum_{g=1}^{o_{G}} r_{g} \mathbf{\overline{g}} = \begin{pmatrix} r_{0} & r_{2} & r_{1} & i_{1} & i_{2} & i_{3} \\ r_{1} & r_{0} & r_{1} & i_{3} & i_{1} & i_{2} \\ r_{2} & r_{1} & r_{0} & i_{2} & i_{3} & i_{1} \\ i_{i} & i_{3} & i_{2} & r_{0} & r_{1} & r_{2} \\ i_{2} & i_{1} & i_{3} & r_{2} & r_{0} & r_{1} \\ i_{3} & i_{2} & i_{1} & r_{1} & r_{2} & r_{0} \end{pmatrix}$$ $H_{ab}^{\alpha} = \left\langle \mathbf{P}_{ma}^{\mu} \left| \mathbf{H} \right| \mathbf{P}_{nb}^{\mu} \right\rangle = \left\langle \mathbf{1} \left| \mathbf{P}_{nb}^{\mu} \right| \mathbf{H} \right\rangle = \left\langle \mathbf{1} \left| \mathbf{H} \mathbf{P}_{am}^{\mu} \mathbf{P}_{nb}^{\mu} \right| \mathbf{1} \right\rangle = \delta_{mn} \left\langle \mathbf{1} \left| \mathbf{H} \mathbf{P}_{ab}^{\mu} \right| \mathbf{1} \right\rangle = \sum_{i=1}^{\circ G} \left\langle \mathbf{1} \left| \mathbf{H} \right| \mathbf{g} \right\rangle D_{ab}^{\alpha^{*}}(g) = \sum_{i=1}^{\circ G} r_{g} D_{ab}^{\alpha^{*}}(g)$ $H^{A_{1}} = r_{0}D^{A_{1}*}(1) + r_{1}D^{A_{1}*}(r^{1}) + r_{1}^{*}D^{A_{1}*}(r^{2}) + i_{1}D^{A_{1}*}(i_{1}) + i_{2}D^{A_{1}*}(i_{2}) + i_{3}D^{A_{1}*}(i_{3}) = r_{0} + r_{1} + r_{1}^{*} + i_{1} + i_{2} + i_{3}$ $H^{A_2} = r_0 D^{A_2^*}(1) + r_1 D^{A_2^*}(r^1) + r_1^* D^{A_2^*}(r^2) + i_1 D^{A_2^*}(i_1) + i_2 D^{A_2^*}(i_2) + i_3 D^{A_2^*}(i_3) = r_0 + r_1 + r_1^* - i_1 - i_2 - i_3$ $H_{rr}^{E_{1}} = r_{0}D_{rr}^{E^{*}}(1) + r_{1}D_{rr}^{E^{*}}(r^{1}) + r_{1}^{*}D_{rr}^{E^{*}}(r^{2}) + i_{1}D_{rr}^{E^{*}}(i_{1}) + i_{2}D_{rr}^{E^{*}}(i_{2}) + i_{3}D_{rr}^{E^{*}}(i_{3}) = (2r_{0}-r_{1}-r_{1}^{*}-i_{1}-i_{2}+2i_{3})/2$ $H_{xy}^{E_1} = r_0 D_{xy}^{E^*}(1) + r_1 D_{xy}^{E^*}(r^1) + r_1^* D_{xy}^{E^*}(r^2) + i_1 D_{xy}^{E^*}(i_1) + i_2 D_{xy}^{E^*}(i_2) + i_3 D_{xy}^{E^*}(i_3) = \sqrt{3}(-r_1 + r_1^* - i_1 + i_2)/2 = H_{yx}^{E^*...}$ $H_{vv}^{E_{1}} = r_{0}D_{vv}^{E^{*}}(1) + r_{1}D_{vv}^{E^{*}}(r^{1}) + r_{1}^{*}D_{vv}^{E^{*}}(r^{2}) + i_{1}D_{vv}^{E^{*}}(i_{1}) + i_{2}D_{vv}^{E^{*}}(i_{2}) + i_{3}D_{vv}^{E^{*}}(i_{3}) = (2r_{0} - r_{1} - r_{1}^{*} + i_{1} + i_{2} - 2i_{3})/2$ $\begin{pmatrix} H_{xx}^{E_{1}} & H_{xy}^{E_{1}} \\ H_{yx}^{E_{1}} & H_{yy}^{E_{1}} \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 2r_{0}-r_{1}-r_{1}^{*}-i_{1}-i_{2}+2i_{3} & \sqrt{3}(-r_{1}+r_{1}^{*}-i_{1}+i_{2}) \\ \sqrt{3}(-r_{1}^{*}+r_{1}-i_{1}+i_{2}) & 2r_{0}-r_{1}-r_{1}^{*}+i_{1}+i_{2}-2i_{3} \end{pmatrix}$

Review Stage 1: Group Center: Class-sums κ_{g} , characters $\chi^{\mu}(\mathbf{g})$, and All-Commuting *Projectors* \mathbb{P}^{μ}

Review Stage 2: Group operators g and Mutually-Commuting projectors \mathbf{P}^{μ}_{kk} *Review Stage 3: Weyl* **g***-expansion in irreps* $D^{\mu}_{jk}(g)$ and Non-Commuting projectors \mathbf{P}^{μ}_{jk} Simple matrix algebra $\mathbf{P}^{\mu}_{ab} \mathbf{P}^{\nu}_{cd} = \delta^{\mu\nu} \delta_{bc} \mathbf{P}^{\mu}_{ad}$ \mathbf{P}^{μ}_{ik} transforms right-and-left \mathbf{P}^{μ}_{ik} -expansion in **g**-operators *Example of D*₃ *transformation by matrix* $D^{E}_{jk}(\mathbf{r}^{1})$

Details of Mock-Mach relativity-duality for D₃ groups and representations Lab-fixed(Extrinsic-Global) vs. Body-fixed (Intrinsic-Local) *Compare Global vs Local* $|\mathbf{g}\rangle$ *-basis and Global vs Local* $|\mathbf{P}^{(\mu)}\rangle$ *-basis*

Hamiltonian and D₃ group matrices in global and local $|\mathbf{P}^{(\mu)}\rangle$ -basis Global vs. Local block rearrangement Hamiltonion eigen-matrix calculation Hamiltonian local-symmetry eigensolution Molecular vibrational mode eigensolution Local symmetry limit Global symmetry limit (free or "genuine" modes)

D_3 Hamiltonian local- **H** matrices in $|\mathbf{P}^{(\mu)}\rangle$ -basis $\left|\mathbf{P}_{xx}^{A_{1}}\right\rangle \left|\mathbf{P}_{yy}^{A_{2}}\right\rangle \left|\mathbf{P}_{xx}^{E_{1}}\right\rangle \left|\mathbf{P}_{xy}^{E_{1}}\right\rangle \left|\mathbf{P}_{yx}^{E_{1}}\right\rangle \left|\mathbf{P}_{yy}^{E_{1}}\right\rangle$ $\begin{array}{c|c} \mathbf{H} \text{ matrix in} \\ |\mathbf{P}^{(\mu)}\rangle \text{-basis:} \\ (\mathbf{H})_{P} = \overline{T}(\mathbf{H})_{G} \overline{T}^{\dagger} = \left(\begin{array}{c|c} H^{A_{1}} & \cdot & \cdot & \cdot & \cdot & \cdot \\ \hline \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\ \hline \cdot & H^{A_{2}} & \cdot & \cdot & \cdot & \cdot \\ \hline \cdot & \cdot & H^{E_{1}}_{xx} & H^{E_{1}}_{xy} & \cdot & \cdot \\ \hline \cdot & \cdot & H^{E_{1}}_{yx} & H^{E_{1}}_{yy} & \cdot & \cdot \\ \hline \cdot & \cdot & H^{E_{1}}_{yx} & H^{E_{1}}_{yy} & \cdot & \cdot \end{array} \right)$ H matrix in $|\mathbf{g}\rangle$ -basis: $\left(\mathbf{H}\right)_{G} = \sum_{g=1}^{o} r_{g} \overline{\mathbf{g}} = \begin{vmatrix} \mathbf{i} & \mathbf{j} \\ r_{2} & r_{1} & r_{0} & i_{2} & i_{3} & i_{1} \\ i_{i} & i_{3} & i_{2} & r_{0} & r_{1} & r_{2} \end{vmatrix}$ $H_{ab}^{\alpha} = \left\langle \mathbf{P}_{ma}^{\mu} \left| \mathbf{H} \right| \mathbf{P}_{nb}^{\mu} \right\rangle = \frac{\left\langle \mathbf{1} \right| \mathbf{P}_{am}^{\mu} \mathbf{H} \mathbf{P}_{nb}^{\mu} \left| \mathbf{1} \right\rangle}{\left(norm\right)^{2}} = \left\langle \mathbf{1} \right| \mathbf{H} \mathbf{P}_{am}^{\mu} \mathbf{P}_{nb}^{\mu} \left| \mathbf{1} \right\rangle} = \delta_{mn} \left\langle \mathbf{1} \right| \mathbf{H} \mathbf{P}_{ab}^{\mu} \left| \mathbf{1} \right\rangle} = \sum_{a=1}^{6} \left\langle \mathbf{1} \right| \mathbf{H} \left| \mathbf{g} \right\rangle D_{ab}^{\alpha^{*}} \left(g \right) = \sum_{a=1}^{6} r_{g} D_{ab}^{\alpha^{*}} \left(g \right)$ $H^{A_{1}} = r_{0}D^{A_{1}*}(1) + r_{1}D^{A_{1}*}(r^{1}) + r_{1}^{*}D^{A_{1}*}(r^{2}) + i_{1}D^{A_{1}*}(i_{1}) + i_{2}D^{A_{1}*}(i_{2}) + i_{3}D^{A_{1}*}(i_{3}) = r_{0} + r_{1} + r_{1}^{*} + i_{1} + i_{2} + i_{3}$ $=r_0+2r_1+2i_{12}+i_3$ $H^{A_{2}} = r_{0}D^{A_{2}*}(1) + r_{1}D^{A_{2}*}(r^{1}) + r_{1}^{*}D^{A_{2}*}(r^{2}) + i_{1}D^{A_{2}*}(i_{1}) + i_{2}D^{A_{2}*}(i_{2}) + i_{3}D^{A_{2}*}(i_{3}) = r_{0} + r_{1} + r_{1}^{*} - i_{1} - i_{2} - i_{3}$ $=r_0+2r_1-2i_{12}-i_3$ $H_{xx}^{E_1} = r_0 D_{xx}^{E^*}(1) + r_1 D_{xx}^{E^*}(r^1) + r_1^* D_{xx}^{E^*}(r^2) + i_1 D_{xx}^{E^*}(i_1) + i_2 D_{xx}^{E^*}(i_2) + i_3 D_{xx}^{E^*}(i_3) = (2r_0 - r_1 - r_1^* - i_1 - i_2 + 2i_3)/2$ $=r_0 -r_1 -i_{12} +i_3$ $H_{xy}^{E_1} = r_0 D_{xy}^{E^*}(1) + r_1 D_{xy}^{E^*}(r^1) + r_1^* D_{xy}^{E^*}(r^2) + i_1 D_{xy}^{E^*}(i_1) + i_2 D_{xy}^{E^*}(i_2) + i_3 D_{xy}^{E^*}(i_3) = \sqrt{3}(-r_1 + r_1^* - i_1 + i_2)/2 = H_{yx}^{E^*}(r^2) + i_1 D_{xy}^{E^*}(r^2) + i_2 D_{xy}^{E^*}(r^2) + i_3 D_{xy}^{E^*}(r^3) = \sqrt{3}(-r_1 + r_1^* - i_1 + i_2)/2 = H_{yx}^{E^*}(r^3)$ =0 $H_{vv}^{E_{1}} = r_{0}D_{vv}^{E^{*}}(1) + r_{1}D_{vv}^{E^{*}}(r^{1}) + r_{1}^{*}D_{vv}^{E^{*}}(r^{2}) + i_{1}D_{vv}^{E^{*}}(i_{1}) + i_{2}D_{vv}^{E^{*}}(i_{2}) + i_{3}D_{vv}^{E^{*}}(i_{3}) = (2r_{0}-r_{1}-r_{1}^{*}+i_{1}+i_{2}-2i_{3})/2$ $=r_0 -r_1 +i_{12} -i_3$ $\begin{pmatrix} H_{xx}^{E_{1}} & H_{xy}^{E_{1}} \\ H_{yx}^{E_{1}} & H_{yy}^{E_{1}} \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 2r_{0}-r_{1}-r_{1}^{*}-i_{1}-i_{2}+2i_{3} & \sqrt{3}(-r_{1}+r_{1}^{*}-i_{1}+i_{2}) \\ \sqrt{3}(-r_{1}^{*}+r_{1}-i_{1}+i_{2}) & 2r_{0}-r_{1}-r_{1}^{*}+i_{1}+i_{2}-2i_{3} \end{pmatrix}$ $= \begin{pmatrix} r_0 - r_1 - i_{12} + i_3 & 0 \\ 0 & r_0 - r_1 - i_{12} - i_3 \end{pmatrix} \begin{pmatrix} Choosing \ local \ C_2 = \{\mathbf{1}, \mathbf{i}_3\} \ symmetry \ with \\ local \ constraints \ r_1 = r_1 * = r_2 \ and \ i_1 = i_2 = i_{12} \end{pmatrix}_{For: r_1 = r_1^* and: i_1 = i_2}$

D_3 Hamiltonian local- **H** matrices in $|\mathbf{P}^{(\mu)}\rangle$ -basis $\left| \mathbf{P}_{xx}^{A_1} \right\rangle \left| \mathbf{P}_{yy}^{A_2} \right\rangle \left| \mathbf{P}_{xx}^{E_1} \right\rangle \left| \mathbf{P}_{xy}^{E_1} \right\rangle \left| \mathbf{P}_{yx}^{E_1} \right\rangle \left| \mathbf{P}_{yy}^{E_1} \right\rangle$ H matrix in H matrix in H^{A_1} $r_0 \quad r_2 \quad r_1 \quad i_1 \quad i_2 \quad i_3$ $|\mathbf{P}^{(\mu)}\rangle$ -basis: $\cdot H^{A_2}$ $|\mathbf{g}\rangle$ -basis: $r_1 r_0 r_1 i_3 i_1 i_2$ $\cdot \quad \cdot \quad H_{_{XX}}^{^{E_1}}$ $\left(\mathbf{H} \right)_{G} = \sum_{g=1}^{o} r_{g} \mathbf{\overline{g}} = \begin{vmatrix} r_{2} & r_{1} & r_{0} & i_{2} & i_{3} & i_{1} \\ i_{i} & i_{3} & i_{2} & r_{0} & r_{1} & r_{2} \end{vmatrix}$ $(\mathbf{H})_{P} = \overline{T}(\mathbf{H})_{G} \overline{T}^{\dagger} =$ $\left| egin{array}{ccc} H^{E_1}_{yx} & H^{E_1}_{yy} \end{array} ight| \cdot$ $H_{xx}^{E_1}$ i_2 i_1 i_3 r_2 r_0 r_1 i_3 i_2 i_1 r_1 r_2 r_0 $H_{yx}^{E_1}$ $H_{yy}^{E_1}$ $H_{ab}^{\alpha} = \left\langle \mathbf{P}_{ma}^{\mu} \left| \mathbf{H} \right| \mathbf{P}_{nb}^{\mu} \right\rangle = \left\langle \mathbf{1} \left| \mathbf{P}_{am}^{\mu} \mathbf{H} \mathbf{P}_{nb}^{\mu} \right| \mathbf{1} \right\rangle = \left\langle \mathbf{1} \left| \mathbf{H} \mathbf{P}_{am}^{\mu} \mathbf{P}_{nb}^{\mu} \right| \mathbf{1} \right\rangle = \delta_{mn} \left\langle \mathbf{1} \left| \mathbf{H} \mathbf{P}_{ab}^{\mu} \right| \mathbf{1} \right\rangle = \sum_{a=1}^{G} \left\langle \mathbf{1} \left| \mathbf{H} \right| \mathbf{g} \right\rangle D_{ab}^{\alpha^{*}}(g) = \sum_{a=1}^{G} r_{g} D_{ab}^{\alpha^{*}}(g)$ $H^{A_{1}} = r_{0}D^{A_{1}*}(1) + r_{1}D^{A_{1}*}(r^{1}) + r_{1}^{*}D^{A_{1}*}(r^{2}) + i_{1}D^{A_{1}*}(i_{1}) + i_{2}D^{A_{1}*}(i_{2}) + i_{3}D^{A_{1}*}(i_{3}) = r_{0} + r_{1} + r_{1}^{*} + i_{1} + i_{2} + i_{3}$ $=r_0+2r_1+2i_{12}+i_3$ $H^{A_2} = r_0 D^{A_2*}(1) + r_1 D^{A_2*}(r^1) + r_1^* D^{A_2*}(r^2) + i_1 D^{A_2*}(i_1) + i_2 D^{A_2*}(i_2) + i_3 D^{A_2*}(i_3) = r_0 + r_1 + r_1^* - i_1 - i_2 - i_3$ $=r_0+2r_1-2i_{12}-i_3$ $H_{xx}^{E_1} = r_0 D_{xx}^{E^*}(1) + r_1 D_{xx}^{E^*}(r^1) + r_1^* D_{xx}^{E^*}(r^2) + i_1 D_{xx}^{E^*}(i_1) + i_2 D_{xx}^{E^*}(i_2) + i_3 D_{xx}^{E^*}(i_3) = (2r_0 - r_1 - r_1^* - i_1 - i_2 + 2i_3)/2$ $=r_0 -r_1 -i_{12} +i_3$ $H_{xy}^{E_{1}} = r_{0}D_{xy}^{E^{*}}(1) + r_{1}D_{xy}^{E^{*}}(r^{1}) + r_{1}^{*}D_{xy}^{E^{*}}(r^{2}) + i_{1}D_{xy}^{E^{*}}(i_{1}) + i_{2}D_{xy}^{E^{*}}(i_{2}) + i_{3}D_{xy}^{E^{*}}(i_{3}) = \sqrt{3}(-r_{1}+r_{1}^{*}-i_{1}+i_{2})/2 = H_{yx}^{E^{*}}(r^{2}) + i_{1}D_{xy}^{E^{*}}(r^{2}) + i_{2}D_{xy}^{E^{*}}(i_{3}) = \sqrt{3}(-r_{1}+r_{1}^{*}-i_{1}+i_{2})/2 = H_{yx}^{E^{*}}(r^{2}) + i_{3}D_{xy}^{E^{*}}(r^{2}) + i_{3}D_{xy}^{E^{$ =0 $H_{yy}^{E_1} = r_0 D_{yy}^{E^*}(1) + r_1 D_{yy}^{E^*}(r^1) + r_1^* D_{yy}^{E^*}(r^2) + i_1 D_{yy}^{E^*}(i_1) + i_2 D_{yy}^{E^*}(i_2) + i_3 D_{yy}^{E^*}(i_3) = (2r_0 - r_1 - r_1^* + i_1 + i_2 - 2i_3)/2$ $=r_0 -r_1 +i_{12} -i_3$ $\begin{pmatrix} H_{xx}^{E_{1}} & H_{xy}^{E_{1}} \\ H_{yx}^{E_{1}} & H_{yy}^{E_{1}} \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 2r_{0}-r_{1}-r_{1}^{*}-i_{1}-i_{2}+2i_{3} & \sqrt{3}(-r_{1}+r_{1}^{*}-i_{1}+i_{2}) \\ \sqrt{3}(-r_{1}^{*}+r_{1}-i_{1}+i_{2}) & 2r_{0}-r_{1}-r_{1}^{*}+i_{1}+i_{2}-2i_{3} \end{pmatrix}$ $C_2 = \{1, i_3\}$ Local symmetry determines all levels $= \begin{pmatrix} r_0 - r_1 - i_{12} + i_3 & 0 \\ 0 & r_0 - r_1 - i_{12} - i_3 \end{pmatrix} \begin{bmatrix} Choosing \ local \ C_2 = \{\mathbf{1}, \mathbf{i}_3\} \ symmetry \ with \\ local \ constraints \ r_1 = r_1 * = r_2 \ and \ i_1 = i_2 = i_{12} \\ * \end{bmatrix}$ and eigenvectors with just 4 real parameters

 $\mathbf{P}_{mn}^{(\mu)} = \frac{\ell^{(\mu)}}{2} \sum_{g} D_{mn}^{(\mu)} g g$

Spectral Efficiency: Same D(a)_{mn} projectors give a lot!

When there is no there, there...

Review Stage 1: Group Center: Class-sums κ_g , *characters* $\chi^{\mu}(\mathbf{g})$, *and All-Commuting Projectors* \mathbb{P}^{μ}

Review Stage 2: Group operators **g** and Mutually-Commuting projectors \mathbf{P}^{μ}_{kk} Review Stage 3: Weyl **g**-expansion in irreps $D^{\mu}_{jk}(g)$ and Non-Commuting projectors \mathbf{P}^{μ}_{jk} Simple matrix algebra $\mathbf{P}^{\mu}_{ab} \mathbf{P}^{\nu}_{cd} = \delta^{\mu\nu} \delta_{bc} \mathbf{P}^{\mu}_{ad}$ \mathbf{P}^{μ}_{jk} transforms right-and-left \mathbf{P}^{μ}_{jk} -expansion in **g**-operators Example of D₃ transformation by matrix $D^{E}_{jk}(\mathbf{r}^{1})$

Details of Mock-Mach relativity-duality for D_3 groups and representations Lab-fixed(Extrinsic-Global) vs. Body-fixed (Intrinsic-Local) Compare Global vs Local $|\mathbf{g}\rangle$ -basis and Global vs Local $|\mathbf{P}^{(\mu)}\rangle$ -basis

Hamiltonian and D_3 group matrices in global and local $|\mathbf{P}^{(\mu)}\rangle$ -basis Global vs. Local block rearrangement Hamiltonion eigen-matrix calculation Hamiltonian local-symmetry eigensolution Molecular vibrational mode eigensolution Local symmetry limit Global symmetry limit (free or "genuine" modes)

Video Lecture 16 Ended here. Vibrations treated in Lecture 17