
Group Theory in Quantum Mechanics
Lecture 16 (3.19.15) 

Local-symmetry eigensolutions and wave modes
(Int.J.Mol.Sci, 14, 714(2013) p.755-774 , QTCA Unit 5 Ch. 15 )

(PSDS - Ch. 4 )

Review Stage 1: Group Center: Class-sums κg , characters χµ(g), and All-Commuting Projectors Pµ

Review Stage 2: Group operators g and Mutually-Commuting projectors Pµkk

Review Stage 3: Weyl g-expansion in irreps Dµjk(g) and Non-Commuting projectors Pµjk

                   Simple matrix algebra Pµab Pνcd = δµνδbcPµad

                  Pµjk transforms right-and-left
                  Pµjk -expansion in g-operators
                  Example of D3 transformation by matrix DEjk(r1)

Details of Mock-Mach relativity-duality for D3 groups and representations
        Lab-fixed(Extrinsic-Global) vs. Body-fixed (Intrinsic-Local)
        Compare Global vs Local ⏐g〉-basis and Global vs Local ⏐P(µ)〉-basis
                   
Hamiltonian and D3 group matrices in global and local ⏐P(µ)〉-basis
      Global vs. Local block rearrangement 
         Hamiltonion eigen-matrix calculation      
        Hamiltonian local-symmetry eigensolution
        (Vibrations treated in following Lecture 17)
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Review Stage 1: Group Center:Class-sums κg ,characters χµ(g), and All-Commuting Projectors Pµ

Review Stage 2: Group operators g and Mutually-Commuting projectors Pµkk

Review Stage 3: Weyl g-expansion in irreps Dµjk(g) and Non-Commuting projectors Pµjk

                   Simple matrix algebra Pµab Pνcd = δµνδbcPµad

                  Pµjk transforms right-and-left
                  Pµjk -expansion in g-operators
                  Example of D3 transformation by matrix DEjk(r1)

Details of Mock-Mach relativity-duality for D3 groups and representations
        Lab-fixed(Extrinsic-Global) vs. Body-fixed (Intrinsic-Local)
        Compare Global vs Local ⏐g〉-basis and Global vs Local ⏐P(µ)〉-basis
                   
Hamiltonian and D3 group matrices in global and local ⏐P(µ)〉-basis
      Global vs. Local block rearrangement      
        Hamiltonian local-symmetry eigensolution
        Molecular vibrational mode eigensolution
               Local symmetry limit
               Global symmetry limit (free or “genuine” modes) 
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µ

°Gclassesκg
∑ χg

µ*κg    Pµ =
   
κg =

°κ gχg
µ

µµ
∑   Pµ

Review Stage 1: Group Center:Class-sums κg ,characters χµ(g), and All-Commuting Projectors Pµ
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µ

°Gclassesκg
∑ χg

µ*κg    Pµ =
   
κg =

°κ gχg
µ

µµ
∑   Pµ

   
 Characters:  χg

µ ≡ TrDµ g( ) = χ µ g( ) = χ µ hgh−1( )
Review Stage 1: Group Center:Class-sums κg ,characters χµ(g), and All-Commuting Projectors Pµ
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µ

°Gclassesκg
∑ χg

µ*κg    Pµ =
   
κg =

°κ gχg
µ

µµ
∑   Pµ

   
 Characters:  χg

µ ≡ TrDµ g( ) = χ µ g( ) = χ µ hgh−1( )

   

κ1 = 1·P A1 + 1·P A2 +  1·PE

κ r = 2·P A1 + 2·P A2 − 1·PE

κ i = 3·P A1 − 3·P A2 + 0·PE

See Lect.15 p. 20

    

Use χg
A1*=A1 = 1

to find P A1 coefficients
κg=°κ gP A1+...

D3 examplesD3 examples

PE
PE
PE

Review Stage 1: Group Center:Class-sums κg ,characters χµ(g), and All-Commuting Projectors Pµ
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µ

°Gclassesκg
∑ χg

µ*κg    Pµ =
   
κg =

°κ gχg
µ

µµ
∑   Pµ

   
 Characters:  χg

µ ≡ TrDµ g( ) = χ µ g( ) = χ µ hgh−1( )

   

κ1 = 1·P A1 + 1·P A2 +  1·PE

κ r = 2·P A1 + 2·P A2 − 1·PE

κ i = 3·P A1 − 3·P A2 + 0·PE

See Lect.15 p. 20

   

P A1 = (κ1 + κ r + κ i )/6 = (1+ r + r2 + i1 + i2 + i3)/6
P A2 = (κ1 + κ r − κ i )/6 = (1+ r + r2 − i1 − i2 − i3)/6
PE = (2κ1 − κ r + 0)/3= (21− r − r2 )/3

χ k
α χ1

α χ r
α χ i

α

α = A1 1 1 1
α = A2 1 1 −1
α = E 2 −1 0

See Lect.15 p. 23-24

    

Use χ1
(α )*=(α )

to find κ1 coefficients

P(α )=((α ) )2

°G
κ1+...

    

Use χg
A1*=A1 = 1

to find P A1 coefficients
κg=°κ gP A1+...

D3 examples

PE
PE
PE PE

Review Stage 1: Group Center:Class-sums κg ,characters χµ(g), and All-Commuting Projectors Pµ
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Review Stage 1: Group Center:Class-sums κg ,characters χµ(g), and All-Commuting Projectors Pµ

Review Stage 2: Group operators g and Mutually-Commuting projectors Pµkk

Review Stage 3: Weyl g-expansion in irreps Dµjk(g) and Non-Commuting projectors Pµjk

                   Simple matrix algebra Pµab Pνcd = δµνδbcPµad

                  Pµjk transforms right-and-left
                  Pµjk -expansion in g-operators
                  Example of D3 transformation by matrix DEjk(r1)

Details of Mock-Mach relativity-duality for D3 groups and representations
        Lab-fixed(Extrinsic-Global) vs. Body-fixed (Intrinsic-Local)
        Compare Global vs Local ⏐g〉-basis and Global vs Local ⏐P(µ)〉-basis
                   
Hamiltonian and D3 group matrices in global and local ⏐P(µ)〉-basis
      Global vs. Local block rearrangement      
        Hamiltonian local-symmetry eigensolution
        Molecular vibrational mode eigensolution
               Local symmetry limit
               Global symmetry limit (free or “genuine” modes) 
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µ

°Gclassesκg
∑ χg

µ*κg    Pµ =
   
κg =

°κ gχg
µ

µµ
∑   Pµ

   
 Characters:  χg

µ ≡ TrDµ g( ) = χ µ g( ) = χ µ hgh−1( )

Pµ splits into a number µ of irreducible Pµjj where µ=dimension of irrep Dµ  

Review Stage 2: Group operators g and Mutually-Commuting projectors Pµkk

Pµ = Pµ
11+ Pµ

22+... Pµ
µµ              (Mutually-commuting Projectors Pµmm)

Review Stage 1: Group Center:Class-sums κg ,characters χµ(g), and All-Commuting Projectors Pµ
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µ

°Gclassesκg
∑ χg

µ*κg    Pµ =
   
κg =

°κ gχg
µ

µµ
∑   Pµ

   
 Characters:  χg

µ ≡ TrDµ g( ) = χ µ g( ) = χ µ hgh−1( )

Pµ splits into a number µ of irreducible Pµjj where µ=dimension of irrep Dµ  

Pµ splitting NOT unique if  µ >1….

   = (2κ1 − κ r + 0)/3= (21− r − r2 )/3PE

Example: 
The splittable all-commuting projector in D3

Review Stage 1: Group Center:Class-sums κg ,characters χµ(g), and All-Commuting Projectors Pµ

Review Stage 2: Group operators g and Mutually-Commuting projectors Pµkk

Pµ = Pµ
11+ Pµ

22+... Pµ
µµ              (Mutually-commuting Projectors Pµmm)

and sum of  µ 

is RANK of D3
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µ

°Gclassesκg
∑ χg

µ*κg    Pµ =
   
κg =

°κ gχg
µ

µµ
∑   Pµ

   
 Characters:  χg

µ ≡ TrDµ g( ) = χ µ g( ) = χ µ hgh−1( )

Pµ splits into a number µ of irreducible Pµjj where µ=dimension of irrep Dµ  

P02 ,02
E =Px,x

E =PE(1+i3)/2 = (21−r
1−r2−i1−i2+2i3)/6

P12 ,12
E =Py,y

E =PE(1−i3)/2 = (21−r
1−r2+i1+i2−2i3)/6

Pµ splitting NOT unique if  µ >1….
Splitting by C2={1,i3} (See Lect.15 p. 80)

...OR...

PE

PE

   = (2κ1 − κ r + 0)/3= (21− r − r2 )/3PE

Example: 
The splittable all-commuting projector in D3

Review Stage 1: Group Center:Class-sums κg ,characters χµ(g), and All-Commuting Projectors Pµ

Review Stage 2: Group operators g and Mutually-Commuting projectors Pµkk

Pµ = Pµ
11+ Pµ

22+... Pµ
µµ              (Mutually-commuting Projectors Pµmm)

and sum of  µ 

is RANK of D3

10Wednesday, April 1, 2015



    

µ

°Gclassesκg
∑ χg

µ*κg    Pµ =
   
κg =

°κ gχg
µ

µµ
∑   Pµ

   
 Characters:  χg

µ ≡ TrDµ g( ) = χ µ g( ) = χ µ hgh−1( )

Pµ splits into a number µ of irreducible Pµjj where µ=dimension of irrep Dµ  

Pµ splitting NOT unique if  µ >1….
Splitting by C2={1,i3} (See Lect.15 p. 80)

...OR...

Product algebra on group table:

 

21 r2 r i1 i2 ±2i3
-r 1 r2 i3 i1 i2
-r2 r 1 i2 i3 i1
i1 i3 i2 1 r r2

i2 i1 i3 r2 1 r
i3 i2 i1 r r2 1

1
6

⎛
⎝⎜

⎞
⎠⎟

21
-r
-r2

1
3

⎛
⎝⎜

⎞
⎠⎟

(1                     ±i3)/2

   = (2κ1 − κ r + 0)/3= (21− r − r2 )/3PE

Example: 
The splittable all-commuting projector in D3

Review Stage 1: Group Center:Class-sums κg ,characters χµ(g), and All-Commuting Projectors Pµ

Review Stage 2: Group operators g and Mutually-Commuting projectors Pµkk

Pµ = Pµ
11+ Pµ

22+... Pµ
µµ              (Mutually-commuting Projectors Pµmm)

and sum of  µ 

is RANK of D3

P02 ,02
E =Px,x

E =PE(1+i3)/2 = (21−r
1−r2−i1−i2+2i3)/6

P12 ,12
E =Py,y

E =PE(1−i3)/2 = (21−r
1−r2+i1+i2−2i3)/6

PE

PE
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µ

°Gclassesκg
∑ χg

µ*κg    Pµ =
   
κg =

°κ gχg
µ

µµ
∑   Pµ

   
 Characters:  χg

µ ≡ TrDµ g( ) = χ µ g( ) = χ µ hgh−1( )

Pµ splits into a number µ of irreducible Pµjj where µ=dimension of irrep Dµ  

P02 ,02
E =Px,x

E =PE(1+i3)/2 = (21−r
1−r2−i1−i2+2i3)/6

P12 ,12
E =Py,y

E =PE(1−i3)/2 = (21−r
1−r2+i1+i2−2i3)/6

Pµ splitting NOT unique if  µ >1….
Splitting by C2={1,i3} (See Lect.15 p. 80)

...OR...

PE

PE

Product algebra on group table:

 

21 r2 r i1 i2 ±2i3
-r 1 r2 i3 i1 i2
-r2 r 1 i2 i3 i1
i1 i3 i2 1 r r2

i2 i1 i3 r2 1 r
i3 i2 i1 r r2 1

1
6

⎛
⎝⎜

⎞
⎠⎟

21
-r
-r2

1
3

⎛
⎝⎜

⎞
⎠⎟

(1                     ±i3)/2

   = (2κ1 − κ r + 0)/3= (21− r − r2 )/3PE

Example: 
The splittable all-commuting projector in D3

Review Stage 1: Group Center:Class-sums κg ,characters χµ(g), and All-Commuting Projectors Pµ

Review Stage 2: Group operators g and Mutually-Commuting projectors Pµkk

Pµ = Pµ
11+ Pµ

22+... Pµ
µµ              (Mutually-commuting Projectors Pµmm)

and sum of  µ 

is RANK of D3
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µ

°Gclassesκg
∑ χg

µ*κg    Pµ =
   
κg =

°κ gχg
µ

µµ
∑   Pµ

   
 Characters:  χg

µ ≡ TrDµ g( ) = χ µ g( ) = χ µ hgh−1( )

Pµ splits into a number µ of irreducible Pµjj where µ=dimension of irrep Dµ  

Pµ splitting NOT unique if  µ >1….
Splitting by C2={1,i3} (See Lect.15 p. 80)

...OR...
Splitting by C3={1,r1,r2} (See Lect.15 p. 84)

   = (2κ1 − κ r + 0)/3= (21− r − r2 )/3PE

Example: 
The splittable all-commuting projector in D3

Product algebra on group table:

 

21 r2 r i1 i2 ±2i3
-r 1 r2 i3 i1 i2
-r2 r 1 i2 i3 i1
i1 i3 i2 1 r r2

i2 i1 i3 r2 1 r
i3 i2 i1 r r2 1

1
6

⎛
⎝⎜

⎞
⎠⎟

(1                     ±i3)/2
21
-r
-r2

1
3

⎛
⎝⎜

⎞
⎠⎟

21 2εr2 2ε *r i1 i2 i3
-r -ε1 -ε *r2 i3 i1 i2
-r2 -εr -ε *1 i2 i3 i1
i1 i3 i2 1 r r2

i2 i1 i3 r2 1 r
i3 i2 i1 r r2 1

1
3⋅3

⎛
⎝⎜

⎞
⎠⎟

21
-r
-r2

1
3

⎛
⎝⎜

⎞
⎠⎟

(2-ε-ε *)1+(2ε *-1-ε )r +(2ε-ε *-1)r2⎡⎣ ⎤⎦ /3⋅3

P13,13
E =P+13,+13

E =PE(1+ε r1+ε *r2 )/3= (1+ε r1+ε *r2)/3

P23,23
E =P-13,-13

E =PE(1+ε *r1+ε r2 )/3= (1+ε *r1+ε r2)/3

PE

PE

Review Stage 1: Group Center:Class-sums κg ,characters χµ(g), and All-Commuting Projectors Pµ

Review Stage 2: Group operators g and Mutually-Commuting projectors Pµkk

Pµ = Pµ
11+ Pµ

22+... Pµ
µµ              (Mutually-commuting Projectors Pµmm)

and sum of  µ 

is RANK of D3

P02 ,02
E =Px,x

E =PE(1+i3)/2 = (21−r
1−r2−i1−i2+2i3)/6

P12 ,12
E =Py,y

E =PE(1−i3)/2 = (21−r
1−r2+i1+i2−2i3)/6

PE

PE
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µ

°Gclassesκg
∑ χg

µ*κg    Pµ =
   
κg =

°κ gχg
µ

µµ
∑   Pµ

   
 Characters:  χg

µ ≡ TrDµ g( ) = χ µ g( ) = χ µ hgh−1( )

Pµ splits into a number µ of irreducible Pµjj where µ=dimension of irrep Dµ  

Pµ splitting NOT unique if  µ >1….
Splitting by C2={1,i3} (See Lect.15 p. 80)

...OR...

P13,13
E =P+13,+13

E =PE(1+ε r1+ε *r2 )/3= (1+ε r1+ε *r2)/3

P23,23
E =P-13,-13

E =PE(1+ε *r1+ε r2 )/3= (1+ε *r1+ε r2)/3

Splitting by C3={1,r1,r2} (See Lect.15 p. 84)

PE

PE

   = (2κ1 − κ r + 0)/3= (21− r − r2 )/3PE

Example: 
The splittable all-commuting projector in D3

Product algebra on group table:

 

21 r2 r i1 i2 ±2i3
-r 1 r2 i3 i1 i2
-r2 r 1 i2 i3 i1
i1 i3 i2 1 r r2

i2 i1 i3 r2 1 r
i3 i2 i1 r r2 1

1
6

⎛
⎝⎜

⎞
⎠⎟

(1                     ±i3)/2
21
-r
-r2

1
3

⎛
⎝⎜

⎞
⎠⎟

21 2εr2 2ε *r i1 i2 i3
-r -ε1 -ε *r2 i3 i1 i2
-r2 -εr -ε *1 i2 i3 i1
i1 i3 i2 1 r r2

i2 i1 i3 r2 1 r
i3 i2 i1 r r2 1

1
3⋅3

⎛
⎝⎜

⎞
⎠⎟

21
-r
-r2

1
3

⎛
⎝⎜

⎞
⎠⎟

(2-ε-ε *)1+ε *(2-ε-ε *)r +ε(2-ε-ε *)r2⎡⎣ ⎤⎦ /3⋅3

(2-ε-ε *)1+(2ε *-1-ε )r +(2ε-ε *-1)r2⎡⎣ ⎤⎦ /3⋅3

Review Stage 1: Group Center:Class-sums κg ,characters χµ(g), and All-Commuting Projectors Pµ

Review Stage 2: Group operators g and Mutually-Commuting projectors Pµkk

Pµ = Pµ
11+ Pµ

22+... Pµ
µµ              (Mutually-commuting Projectors Pµmm)

and sum of  µ 

is RANK of D3

P02 ,02
E =Px,x

E =PE(1+i3)/2 = (21−r
1−r2−i1−i2+2i3)/6

P12 ,12
E =Py,y

E =PE(1−i3)/2 = (21−r
1−r2+i1+i2−2i3)/6

PE

PE
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µ

°Gclassesκg
∑ χg

µ*κg    Pµ =
   
κg =

°κ gχg
µ

µµ
∑   Pµ

   
 Characters:  χg

µ ≡ TrDµ g( ) = χ µ g( ) = χ µ hgh−1( )

Pµ splits into a number µ of irreducible Pµjj where µ=dimension of irrep Dµ  

Pµ splitting NOT unique if  µ >1….
Splitting by C2={1,i3} (See Lect.15 p. 80)

...OR...

P13,13
E =P+13,+13

E =PE(1+ε r1+ε *r2 )/3= (1+ε r1+ε *r2)/3

P23,23
E =P-13,-13

E =PE(1+ε *r1+ε r2 )/3= (1+ε *r1+ε r2)/3

Splitting by C3={1,r1,r2} (See Lect.15 p. 84)

PE

PE

   = (2κ1 − κ r + 0)/3= (21− r − r2 )/3PE

Example: 
The splittable all-commuting projector in D3

Product algebra on group table:

 

21 r2 r i1 i2 ±2i3
-r 1 r2 i3 i1 i2
-r2 r 1 i2 i3 i1
i1 i3 i2 1 r r2

i2 i1 i3 r2 1 r
i3 i2 i1 r r2 1

1
6

⎛
⎝⎜

⎞
⎠⎟

(1                     ±i3)/2
21
-r
-r2

1
3

⎛
⎝⎜

⎞
⎠⎟

21 2εr2 2ε *r i1 i2 i3
-r -ε1 -ε *r2 i3 i1 i2
-r2 -εr -ε *1 i2 i3 i1
i1 i3 i2 1 r r2

i2 i1 i3 r2 1 r
i3 i2 i1 r r2 1

1
3⋅3

⎛
⎝⎜

⎞
⎠⎟

21
-r
-r2

1
3

⎛
⎝⎜

⎞
⎠⎟

        (3)1+        ε *(3)r +        ε(3)r2⎡⎣ ⎤⎦ /3⋅3
(2-ε-ε *)1+ε *(2-ε-ε *)r +ε(2-ε-ε *)r2⎡⎣ ⎤⎦ /3⋅3
(2-ε-ε *)1+(2ε *-1-ε )r +(2ε-ε *-1)r2⎡⎣ ⎤⎦ /3⋅3

Review Stage 1: Group Center:Class-sums κg ,characters χµ(g), and All-Commuting Projectors Pµ

Review Stage 2: Group operators g and Mutually-Commuting projectors Pµkk

Pµ = Pµ
11+ Pµ

22+... Pµ
µµ              (Mutually-commuting Projectors Pµmm)

and sum of  µ 

is RANK of D3

P02 ,02
E =Px,x

E =PE(1+i3)/2 = (21−r
1−r2−i1−i2+2i3)/6

P12 ,12
E =Py,y

E =PE(1−i3)/2 = (21−r
1−r2+i1+i2−2i3)/6

PE

PE
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Review Stage 1: Group Center:Class-sums κg ,characters χµ(g), and All-Commuting Projectors Pµ

Review Stage 2: Group operators g and Mutually-Commuting projectors Pµkk

Review Stage 3: Weyl g-expansion in irreps Dµjk(g) and Non-Commuting projectors Pµjk

                   Simple matrix algebra Pµab Pνcd = δµνδbcPµad

                  Pµjk transforms right-and-left
                  Pµjk -expansion in g-operators
                  Example of D3 transformation by matrix DEjk(r1)

Details of Mock-Mach relativity-duality for D3 groups and representations
        Lab-fixed(Extrinsic-Global) vs. Body-fixed (Intrinsic-Local)
        Compare Global vs Local ⏐g〉-basis and Global vs Local ⏐P(µ)〉-basis
                   
Hamiltonian and D3 group matrices in global and local ⏐P(µ)〉-basis
      Global vs. Local block rearrangement      
        Hamiltonian local-symmetry eigensolution
        Molecular vibrational mode eigensolution
               Local symmetry limit
               Global symmetry limit (free or “genuine” modes) 
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g =

′µ
∑

′m

µ

∑ D ′m ′n
′µ g( )

′n

µ

∑ P ′m ′n
′µ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

    

µ

°Gclassesκg
∑ χg

µ*κg    Pµ =
   
κg =

°κ gχg
µ

µµ
∑   Pµ

   
 Characters:  χg

µ ≡ TrDµ g( ) = χ µ g( ) = χ µ hgh−1( )

Pµ splits into a number µ of irreducible Pµjj where µ=dimension of irrep Dµ  

Group g-expansion in Projectors Pµmn Projector Pµmn expansion in Group g 

Review Stage 1: Group Center:Class-sums κg ,characters χµ(g), and All-Commuting Projectors Pµ

Review Stage 2: Group operators g and Mutually-Commuting projectors Pµkk

Pµ = Pµ
11+ Pµ

22+... Pµ
µµ              (Mutually-commuting Projectors Pµmm)

Review Stage 3: Weyl g-expansion in irreps Dµjk(g) and Non-Commuting projectors Pµjk
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g =

′µ
∑

′m

µ

∑ D ′m ′n
′µ g( )

′n

µ

∑ P ′m ′n
′µ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

    

µ

°Gclassesκg
∑ χg

µ*κg    Pµ =
   
κg =

°κ gχg
µ

µµ
∑   Pµ

   
 Characters:  χg

µ ≡ TrDµ g( ) = χ µ g( ) = χ µ hgh−1( )

Pµ splits into a number µ of irreducible Pµjj where µ=dimension of irrep Dµ  

Group g-expansion in Projectors Pµmn Projector Pµmn expansion in Group g 

g = 1 ⋅g ⋅1 = Px,x
A1 ⋅g ⋅Px,x

A1 +        0         +        0       +        0        

                     +   0     +  Py,y
A2⋅g ⋅Py,y

A2 +        0        +        0

                     +   0       +       0       + Px,x
E ⋅g ⋅Px,x

E + Px,x
E ⋅g ⋅Py,y

E       

                     +   0       +       0       + Py,y
E ⋅g ⋅Px,x

E + Py,y
E ⋅g ⋅Py,y

E

(Lecture 15 p. 90-97)

g = 1 ⋅g ⋅1 = (Px,x
A1 + Py,y

A2 + Px,x
E + Py,y

E ) ⋅g ⋅(Px,x
A1 + Py,y

A2 + Px,x
E + Py,y

E )

The g=1·g·1 development: Weyl development follows...

Review Stage 1: Group Center:Class-sums κg ,characters χµ(g), and All-Commuting Projectors Pµ

Review Stage 2: Group operators g and Mutually-Commuting projectors Pµkk

Pµ = Pµ
11+ Pµ

22+... Pµ
µµ              (Mutually-commuting Projectors Pµmm)

Review Stage 3: Weyl g-expansion in irreps Dµjk(g) and Non-Commuting projectors Pµjk
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g =

′µ
∑

′m

µ

∑ D ′m ′n
′µ g( )

′n

µ

∑ P ′m ′n
′µ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

    

µ

°Gclassesκg
∑ χg

µ*κg    Pµ =
   
κg =

°κ gχg
µ

µµ
∑   Pµ

   
 Characters:  χg

µ ≡ TrDµ g( ) = χ µ g( ) = χ µ hgh−1( )

Pµ splits into a number µ of irreducible Pµjj where µ=dimension of irrep Dµ  

Group g-expansion in Projectors Pµmn Projector Pµmn expansion in Group g 

g = 1 ⋅g ⋅1 = (Px,x
A1 + Py,y

A2 + Px,x
E + Py,y

E ) ⋅g ⋅(Px,x
A1 + Py,y

A2 + Px,x
E + Py,y

E )
g = 1 ⋅g ⋅1 = DA1 (g)Px,x

A1 +         0         +        0       +        0        

                     +   0     +  DA2 (g)Py,y
A2 +        0        +        0

                     +   0       +       0       + Dx,x
E (g)Px,x

E + Dx,y
E (g)Px,y

E       

                     +   0       +       0       + Dy,x
E (g)Py,x

E + Dy,y
E (g)Py,y

E

The g=1·g·1 development:
(Lecture 15 p. 90-97)

where:
Px,x
A1 ⋅g ⋅Px,x

A1 = DA1 (g)Px,x
A1       Py,y

A2⋅g ⋅Py,y
A2 = DA2 (g)Py,y

A2

Px,x
E ⋅g ⋅Px,x

E = Dx,x
E (g)Px,x

E Px,x
E ⋅g ⋅Py,y

E = Dx,y
E (g)Px,y

E

Py,y
E ⋅g ⋅Px,x

E = Dy,x
E (g)Py,x

E Py,y
E ⋅g ⋅Py,y

E = Dy,y
E (g)Py,y

E

Weyl development follows...

Review Stage 1: Group Center:Class-sums κg ,characters χµ(g), and All-Commuting Projectors Pµ

Review Stage 2: Group operators g and Mutually-Commuting projectors Pµkk

Pµ = Pµ
11+ Pµ

22+... Pµ
µµ              (Mutually-commuting Projectors Pµmm)

Review Stage 3: Weyl g-expansion in irreps Dµjk(g) and Non-Commuting projectors Pµjk
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Review Stage 1: Group Center:Class-sums κg ,characters χµ(g), and All-Commuting Projectors Pµ

Review Stage 2: Group operators g and Mutually-Commuting projectors Pµkk

Review Stage 3: Weyl g-expansion in irreps Dµjk(g) and Non-Commuting projectors Pµjk

                   Simple matrix algebra Pµab Pνcd = δµνδbcPµad

                  Pµjk transforms right-and-left
                  Pµjk -expansion in g-operators
                  Example of D3 transformation by matrix DEjk(r1)

Details of Mock-Mach relativity-duality for D3 groups and representations
        Lab-fixed(Extrinsic-Global) vs. Body-fixed (Intrinsic-Local)
        Compare Global vs Local ⏐g〉-basis and Global vs Local ⏐P(µ)〉-basis
                   
Hamiltonian and D3 group matrices in global and local ⏐P(µ)〉-basis
      Global vs. Local block rearrangement      
        Hamiltonian local-symmetry eigensolution
        Molecular vibrational mode eigensolution
               Local symmetry limit
               Global symmetry limit (free or “genuine” modes) 
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g = 1⋅g⋅1=
µ
∑

m
∑ Dmn

µ g( )
n
∑ Pmn

µ = Dxx
A1 g( )P A1 + Dyy

A2 g( )P A2 + Dxx
E1 g( )Pxx

E1 + Dxy
E1 g( )Pxy

E1  

                                                                                               + Dyx
E1 g( )Pyx

E1 + Dyy
E1 g( )Pyy

E1

Besides four idempotent projectors 

    there arise two nilpotent projectors           

   

Pxx
A1 Pyy

A2 Pxx
E1 Pxy

E1 Pyx
E1 Pyy

E1

Pxx
A1 Pxx

A1 ⋅ ⋅ ⋅ ⋅ ⋅

Pyy
A2 ⋅ Pyy

A2 ⋅ ⋅ ⋅ ⋅

Pxx
E1 ⋅ ⋅ Pxx

E1 Pxy
E1 ⋅ ⋅

Pyx
E1 ⋅ ⋅ Pyx

E1 Pyy
E1 ⋅ ⋅

Pxy
E1 ⋅ ⋅ ⋅ ⋅ Pxx

E1 Pxy
E1

Pyy
E1 ⋅ ⋅ ⋅ ⋅ Pyx

E1 Pyy
E1

Weyl expansion of g in irep Dµjk(g)Pµjk
Irreducible idempotent completeness                                         completely expands group by g=1·g·1

   

 where:  

      Pxx
A1⋅g⋅Pxx

A1=Dxx
A1 g( )Pxx

A1,     Pyy
A2⋅g⋅Pyy

A2 =Dyy
A2 g( )Pyy

A2 ,     Pxx
E1⋅g⋅Pxx

E1=Dxx
E1 g( )Pxx

E1,     Pxx
E1⋅g⋅Pyy

E1=Dxy
E1 g( )Pxy

E1

                                                                                      ,     Pyy
E1⋅g⋅Pxx

E1=Dyx
E1 g( )Pyx

E1,     Pyy
E1⋅g⋅Pyy

E1=Dyy
E1 g( )Pyy

E1

   
1= P A1 + P A2 + Pxx

E1 + Pyy
E1

For irreducible class idempotents
sub-indices xx or yy are optional

“g-equals-1·g·1-trick”

Pi Pj = δij Pi = Pj Pi 

  
Pjk
µ Pmn

ν = δ µνδ kmPjn
µ

Idempotent projector orthogonality…

Generalizes to idempotent/nilpotent orthogonality
known as Simple Matrix Algebra:

   
P A1,P A2,Pxx

E1, and Pyy
E1 Group product table boils down

to simple projector matrix algebra

Coefficients               are irreducible representations (ireps) of g
 
Dmn

µ g( ) irreducible representations (ireps)

   
Pyx

E1, and Pxy
E1

Previous notation:

0202       xxPE1=PE1 PE1=PE1 0212         xy
PE1=PE1 1202         yx PE1=PE1 1212         yy

   

g = 1 r1 r2 i1 i2 i3

D A1 g( ) =
D A2 g( ) =
Dx,y

E1 g( ) =

1
1

1 ⋅
⋅ 1

⎛

⎝⎜
⎞

⎠⎟

1
1

−2
1 − 2

3

2
3 −2

1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
1

−2
1

2
3

− 2
3 −2

1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
−1

−2
1 − 2

3

− 2
3

2
1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
−1

−2
1

2
3

2
3

2
1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
−1

1 0
0 −1

⎛

⎝⎜
⎞

⎠⎟

For split idempotents
sub-indices xx or yy are essential
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Review Stage 1: Group Center:Class-sums κg ,characters χµ(g), and All-Commuting Projectors Pµ

Review Stage 2: Group operators g and Mutually-Commuting projectors Pµkk

Review Stage 3: Weyl g-expansion in irreps Dµjk(g) and Non-Commuting projectors Pµjk

                   Simple matrix algebra Pµab Pνcd = δµνδbcPµad

                  Pµjk transforms right-and-left
                  Pµjk -expansion in g-operators
                  Example of D3 transformation by matrix DEjk(r1)

Details of Mock-Mach relativity-duality for D3 groups and representations
        Lab-fixed(Extrinsic-Global) vs. Body-fixed (Intrinsic-Local)
        Compare Global vs Local ⏐g〉-basis and Global vs Local ⏐P(µ)〉-basis
                   
Hamiltonian and D3 group matrices in global and local ⏐P(µ)〉-basis
      Global vs. Local block rearrangement      
        Hamiltonian local-symmetry eigensolution
        Molecular vibrational mode eigensolution
               Local symmetry limit
               Global symmetry limit (free or “genuine” modes) 
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Pµjk transforms right-and-left
Spectral decomposition defines left and right irep transformation due to 
spectrally decomposed g acting on left and right side of projector Pµ

mn.

    

gPmn
µ =

′µ
∑

′m

µ

∑ D ′m ′n
′µ g( )

′n

µ

∑ P ′m ′n
′µ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

Pmn
µ

        
          

   
g =

′µ
∑

′m

µ

∑ D ′m ′n
′µ g( )

′n

µ

∑ P ′m ′n
′µ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

   

Use Pmn
µ -orthonormality

P ′m ′n
′µ Pmn

µ = δ ′µ µδ ′n mP ′m n
µ

(Simple matrix algebra)
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Pµjk transforms right-and-left
Spectral decomposition defines left and right irep transformation due to 
spectrally decomposed g acting on left and right side of projector Pµ

mn.

    

gPmn
µ =

′µ
∑

′m

µ

∑ D ′m ′n
′µ g( )

′n

µ

∑ P ′m ′n
′µ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

Pmn
µ

          =
′µ

∑
′m

µ

∑ D ′m ′n
′µ g( )

′n

µ

∑ δ ′µ µδ ′n mP ′m n
µ

          

   
g =

′µ
∑

′m

µ

∑ D ′m ′n
′µ g( )

′n

µ

∑ P ′m ′n
′µ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

   

Use Pmn
µ -orthonormality

P ′m ′n
′µ Pmn

µ = δ ′µ µδ ′n mP ′m n
µ

(Simple matrix algebra)
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Pµjk transforms right-and-left
Spectral decomposition defines left and right irep transformation due to 
spectrally decomposed g acting on left and right side of projector Pµ

mn.

    

gPmn
µ =

′µ
∑

′m

µ

∑ D ′m ′n
′µ g( )

′n

µ

∑ P ′m ′n
′µ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

Pmn
µ

          =
′µ

∑
′m

µ

∑ D ′m ′n
′µ g( )

′n

µ

∑ δ ′µ µδ ′n mP ′m n
µ

          =
′m

µ

∑ D ′m m
µ g( ) P ′m n

µ

   
g =

′µ
∑

′m

µ

∑ D ′m ′n
′µ g( )

′n

µ

∑ P ′m ′n
′µ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

   

Use Pmn
µ -orthonormality

P ′m ′n
′µ Pmn

µ = δ ′µ µδ ′n mP ′m n
µ

(Simple matrix algebra)
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Pµjk transforms right-and-left

Left-action transforms irep-ket 

Spectral decomposition defines left and right irep transformation due to 
spectrally decomposed g acting on left and right side of projector Pµ

mn.

    

gPmn
µ =

′µ
∑

′m

µ

∑ D ′m ′n
′µ g( )

′n

µ

∑ P ′m ′n
′µ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

Pmn
µ

          =
′µ

∑
′m

µ

∑ D ′m ′n
′µ g( )

′n

µ

∑ δ ′µ µδ ′n mP ′m n
µ

          =
′m

µ

∑ D ′m m
µ g( ) P ′m n

µ

   
g mn

µ =
norm.
gPmn

µ 1

   
g mn

µ = D ′m m
µ g( )

′m

µ

∑ ′m n
µ

   
g =

′µ
∑

′m

µ

∑ D ′m ′n
′µ g( )

′n

µ

∑ P ′m ′n
′µ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

   

Use Pmn
µ -orthonormality

P ′m ′n
′µ Pmn

µ = δ ′µ µδ ′n mP ′m n
µ

(Simple matrix algebra)
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Pµjk transforms right-and-left

Left-action transforms irep-ket 

Spectral decomposition defines left and right irep transformation due to 
spectrally decomposed g acting on left and right side of projector Pµ

mn.

    

gPmn
µ =

′µ
∑

′m

µ

∑ D ′m ′n
′µ g( )

′n

µ

∑ P ′m ′n
′µ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

Pmn
µ

          =
′µ

∑
′m

µ

∑ D ′m ′n
′µ g( )

′n

µ

∑ δ ′µ µδ ′n mP ′m n
µ

          =
′m

µ

∑ D ′m m
µ g( ) P ′m n

µ

   
g mn

µ =
norm.
gPmn

µ 1

   
g mn

µ = D ′m m
µ g( )

′m

µ

∑ ′m n
µ

  ′m n
µ g mn

µ = D ′m m
µ g( )

A simple irep expression...

   
g =

′µ
∑

′m

µ

∑ D ′m ′n
′µ g( )

′n

µ

∑ P ′m ′n
′µ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

   

Use Pmn
µ -orthonormality

P ′m ′n
′µ Pmn

µ = δ ′µ µδ ′n mP ′m n
µ

(Simple matrix algebra)
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Pµjk transforms right-and-left

Left-action transforms irep-ket 

Spectral decomposition defines left and right irep transformation due to 
spectrally decomposed g acting on left and right side of projector Pµ

mn.

    

gPmn
µ =

′µ
∑

′m

µ

∑ D ′m ′n
′µ g( )

′n

µ

∑ P ′m ′n
′µ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

Pmn
µ

          =
′µ

∑
′m

µ

∑ D ′m ′n
′µ g( )

′n

µ

∑ δ ′µ µδ ′n mP ′m n
µ

          =
′m

µ

∑ D ′m m
µ g( ) P ′m n

µ

   
g mn

µ =
norm.
gPmn

µ 1

   
g mn

µ = D ′m m
µ g( )

′m

µ

∑ ′m n
µ

  ′m n
µ g mn

µ = D ′m m
µ g( )

A simple irep expression...

   

′m ′n
′µ

mn
µ =

1 P ′n ′m
′µ

norm.
Pmn
µ 1

norm*.

               = δ ′µ µδ ′m m
1 P ′n n

′µ 1

| norm. |2

               = δ ′µ µδ ′m mδ ′n n

 ...requires proper normalization:

   
g =

′µ
∑

′m

µ

∑ D ′m ′n
′µ g( )

′n

µ

∑ P ′m ′n
′µ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

   

Use Pmn
µ -orthonormality

P ′m ′n
′µ Pmn

µ = δ ′µ µδ ′n mP ′m n
µ

(Simple matrix algebra)
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Pµjk transforms right-and-left

Left-action transforms irep-ket 

Spectral decomposition defines left and right irep transformation due to 
spectrally decomposed g acting on left and right side of projector Pµ

mn.

    

gPmn
µ =

′µ
∑

′m

µ

∑ D ′m ′n
′µ g( )

′n

µ

∑ P ′m ′n
′µ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

Pmn
µ

          =
′µ

∑
′m

µ

∑ D ′m ′n
′µ g( )

′n

µ

∑ δ ′µ µδ ′n mP ′m n
µ

          =
′m

µ

∑ D ′m m
µ g( ) P ′m n

µ

   
g mn

µ =
norm.
gPmn

µ 1

   
g mn

µ = D ′m m
µ g( )

′m

µ

∑ ′m n
µ

  ′m n
µ g mn

µ = D ′m m
µ g( )

A simple irep expression...

   

′m ′n
′µ

mn
µ =

1 P ′n ′m
′µ

norm.
Pmn
µ 1

norm*.

               = δ ′µ µδ ′m m
1 P ′n n

′µ 1

| norm. |2

               = δ ′µ µδ ′m mδ ′n n

 ...requires proper normalization:

   
| norm. |2= 1 Pnn

µ 1

   
g =

′µ
∑

′m

µ

∑ D ′m ′n
′µ g( )

′n

µ

∑ P ′m ′n
′µ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

   

Use Pmn
µ -orthonormality

P ′m ′n
′µ Pmn

µ = δ ′µ µδ ′n mP ′m n
µ

(Simple matrix algebra)
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Pµjk transforms right-and-left

Left-action transforms irep-ket 

Spectral decomposition defines left and right irep transformation due to 
spectrally decomposed g acting on left and right side of projector Pµ

mn.

    

gPmn
µ =

′µ
∑

′m

µ

∑ D ′m ′n
′µ g( )

′n

µ

∑ P ′m ′n
′µ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

Pmn
µ

          =
′µ

∑
′m

µ

∑ D ′m ′n
′µ g( )

′n

µ

∑ δ ′µ µδ ′n mP ′m n
µ

          =
′m

µ

∑ D ′m m
µ g( ) P ′m n

µ

   
g mn

µ =
norm.
gPmn

µ 1

   
g mn

µ = D ′m m
µ g( )

′m

µ

∑ ′m n
µ

  ′m n
µ g mn

µ = D ′m m
µ g( )

A simple irep expression...

   

′m ′n
′µ

mn
µ =

1 P ′n ′m
′µ

norm.
Pmn
µ 1

norm*.

               = δ ′µ µδ ′m m
1 P ′n n

′µ 1

| norm. |2

               = δ ′µ µδ ′m mδ ′n n

 ...requires proper normalization:

   
| norm. |2= 1 Pnn

µ 1

    

Pmn
µ g = Pmn

µ

′µ
∑

′m

µ

∑ D ′m ′n
′µ g( )

′n

µ

∑ P ′m ′n
′µ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

          =
′µ

∑
′m

µ

∑ D ′m ′n
′µ g( )

′n

µ

∑ δ ′µ µδn ′m Pm ′n
µ

          =
′n

µ

∑ Dn ′n
µ g( ) Pm ′n

µ

   
g =

′µ
∑

′m

µ

∑ D ′m ′n
′µ g( )

′n

µ

∑ P ′m ′n
′µ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

   

Use Pmn
µ -orthonormality

P ′m ′n
′µ Pmn

µ = δ ′µ µδ ′n mP ′m n
µ

(Simple matrix algebra)
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Pµjk transforms right-and-left

Left-action transforms irep-ket 

Spectral decomposition defines left and right irep transformation due to 
spectrally decomposed g acting on left and right side of projector Pµ

mn.

    

gPmn
µ =

′µ
∑

′m

µ

∑ D ′m ′n
′µ g( )

′n

µ

∑ P ′m ′n
′µ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

Pmn
µ

          =
′µ

∑
′m

µ

∑ D ′m ′n
′µ g( )

′n

µ

∑ δ ′µ µδ ′n mP ′m n
µ

          =
′m

µ

∑ D ′m m
µ g( ) P ′m n

µ

    

Pmn
µ g = Pmn

µ

′µ
∑

′m

µ

∑ D ′m ′n
′µ g( )

′n

µ

∑ P ′m ′n
′µ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

          =
′µ

∑
′m

µ

∑ D ′m ′n
′µ g( )

′n

µ

∑ δ ′µ µδn ′m Pm ′n
µ

          =
′n

µ

∑ Dn ′n
µ g( ) Pm ′n

µ

   
g mn

µ =
norm.
gPmn

µ 1
Right-action transforms irep-bra 

   
mn
µ g† =

norm*
1 Pnm

µ g†

   
g mn

µ = D ′m m
µ g( )

′m

µ

∑ ′m n
µ

  ′m n
µ g mn

µ = D ′m m
µ g( )

A simple irep expression...

   

′m ′n
′µ

mn
µ =

1 P ′n ′m
′µ

norm.
Pmn
µ 1

norm*.

               = δ ′µ µδ ′m m
1 P ′n n

′µ 1

| norm. |2

               = δ ′µ µδ ′m mδ ′n n

 ...requires proper normalization:

   
| norm. |2= 1 Pnn

µ 1

   
g =

′µ
∑

′m

µ

∑ D ′m ′n
′µ g( )

′n

µ

∑ P ′m ′n
′µ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

   

Use Pmn
µ -orthonormality

P ′m ′n
′µ Pmn

µ = δ ′µ µδ ′n mP ′m n
µ

Projector conjugation

   

m n( )† = n m

   Pmn
µ( )† = Pnm

µ

(Simple matrix algebra)
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Pµjk transforms right-and-left

Left-action transforms irep-ket 

Spectral decomposition defines left and right irep transformation due to 
spectrally decomposed g acting on left and right side of projector Pµ

mn.

    

gPmn
µ =

′µ
∑

′m

µ

∑ D ′m ′n
′µ g( )

′n

µ

∑ P ′m ′n
′µ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

Pmn
µ

          =
′µ

∑
′m

µ

∑ D ′m ′n
′µ g( )

′n

µ

∑ δ ′µ µδ ′n mP ′m n
µ

          =
′m

µ

∑ D ′m m
µ g( ) P ′m n

µ

    

Pmn
µ g = Pmn

µ

′µ
∑

′m

µ

∑ D ′m ′n
′µ g( )

′n

µ

∑ P ′m ′n
′µ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

          =
′µ

∑
′m

µ

∑ D ′m ′n
′µ g( )

′n

µ

∑ δ ′µ µδn ′m Pm ′n
µ

          =
′n

µ

∑ Dn ′n
µ g( ) Pm ′n

µ

   
g mn

µ =
norm.
gPmn

µ 1
Right-action transforms irep-bra 

   
mn
µ g† =

norm*
1 Pnm

µ g†

   
g mn

µ = D ′m m
µ g( )

′m

µ

∑ ′m n
µ

  ′m n
µ g mn

µ = D ′m m
µ g( )
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′m ′n
′µ

mn
µ =

1 P ′n ′m
′µ

norm.
Pmn
µ 1

norm*.

               = δ ′µ µδ ′m m
1 P ′n n

′µ 1

| norm. |2

               = δ ′µ µδ ′m mδ ′n n

 ...requires proper normalization:

   
| norm. |2= 1 Pnn

µ 1

    
mn
µ g† = ′m n

µ D ′m m
µ g†( )

′m

µ

∑

   
g =

′µ
∑

′m

µ

∑ D ′m ′n
′µ g( )

′n

µ

∑ P ′m ′n
′µ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

   

Use Pmn
µ -orthonormality

P ′m ′n
′µ Pmn

µ = δ ′µ µδ ′n mP ′m n
µ

Projector conjugation

   

m n( )† = n m

   Pmn
µ( )† = Pnm

µ

(Simple matrix algebra)
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Pµjk transforms right-and-left

Left-action transforms irep-ket 

Spectral decomposition defines left and right irep transformation due to 
spectrally decomposed g acting on left and right side of projector Pµ

mn.
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⎟⎟
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 ...requires proper normalization:

   
| norm. |2= 1 Pnn

µ 1

    
mn
µ g† = ′m n
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⎜⎜

⎞
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⎟⎟

   

Use Pmn
µ -orthonormality

P ′m ′n
′µ Pmn
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µ

Projector conjugation

   

m n( )† = n m

   Pmn
µ( )† = Pnm

µ

(Simple matrix algebra)
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Spectral decomposition defines left and right irep transformation due to 
spectrally decomposed g acting on left and right side of projector Pµ
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⎟⎟
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µ

′µ
∑
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µ

∑ D ′m ′n
′µ g( )

′n

µ

∑ P ′m ′n
′µ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

          =
′µ

∑
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µ

∑ D ′m ′n
′µ g( )
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µ

∑ δ ′µ µδn ′m Pm ′n
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µ

∑ Dn ′n
µ g( ) Pm ′n

µ
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µ =
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Right-action transforms irep-bra 

   
mn
µ g† =
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1 Pnm

µ g†
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µ = D ′m m
µ g( )

′m

µ

∑ ′m n
µ

  ′m n
µ g mn

µ = D ′m m
µ g( )

A simple irep expression...

   

′m ′n
′µ

mn
µ =

1 P ′n ′m
′µ

norm.
Pmn
µ 1

norm*.

               = δ ′µ µδ ′m m
1 P ′n n

′µ 1

| norm. |2

               = δ ′µ µδ ′m mδ ′n n

 ...requires proper normalization:

   
| norm. |2= 1 Pnn

µ 1

    
mn
µ g† = ′m n

µ D ′m m
µ g†( )

′m

µ

∑

   mn
µ g†

′m n
µ = D ′m m

µ g†( )

  

= Dm ′m
µ* g( )

if D is unitary

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

   
g =

′µ
∑

′m

µ

∑ D ′m ′n
′µ g( )

′n

µ

∑ P ′m ′n
′µ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

   

Use Pmn
µ -orthonormality

P ′m ′n
′µ Pmn

µ = δ ′µ µδ ′n mP ′m n
µ

Projector conjugation

   

m n( )† = n m

   Pmn
µ( )† = Pnm

µ

A conjugate irep expression...

(Simple matrix algebra)
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Review Stage 1: Group Center:Class-sums κg ,characters χµ(g), and All-Commuting Projectors Pµ

Review Stage 2: Group operators g and Mutually-Commuting projectors Pµkk

Review Stage 3: Weyl g-expansion in irreps Dµjk(g) and Non-Commuting projectors Pµjk

                   Simple matrix algebra Pµab Pνcd = δµνδbcPµad

                  Pµjk transforms right-and-left
                  Pµjk -expansion in g-operators
                  Example of D3 transformation by matrix DEjk(r1)

Details of Mock-Mach relativity-duality for D3 groups and representations
        Lab-fixed(Extrinsic-Global) vs. Body-fixed (Intrinsic-Local)
        Compare Global vs Local ⏐g〉-basis and Global vs Local ⏐P(µ)〉-basis
                   
Hamiltonian and D3 group matrices in global and local ⏐P(µ)〉-basis
      Global vs. Local block rearrangement      
        Hamiltonian local-symmetry eigensolution
        Molecular vibrational mode eigensolution
               Local symmetry limit
               Global symmetry limit (free or “genuine” modes) 
                            

35Wednesday, April 1, 2015



Pµjk -expansion in g-operators
   
g =

′µ
∑

′m

µ

∑ D ′m ′n
′µ g( )

′n

µ

∑ P ′m ′n
′µ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ Need inverse of Weyl form:

  
Pmn
µ = pmn

µ g( )
g

°G
∑ gDerive coefficients             of inverse Weyl expansion:

 
pmn
µ g( )
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Left action by operator f in group G ={1,…, f, g, h,…}: 

Pµjk -expansion in g-operators
   
g =

′µ
∑

′m

µ

∑ D ′m ′n
′µ g( )

′n

µ

∑ P ′m ′n
′µ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ Need inverse of Weyl form:

  
Pmn
µ = pmn

µ g( )
g

°G
∑ gDerive coefficients             of inverse Weyl expansion:

 
pmn
µ g( )

  
f ⋅Pmn

µ = pmn
µ g( )

g

°G
∑ f ⋅g
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Left action by operator f in group G ={1,…, f, g, h,…}: 

Pµjk -expansion in g-operators
   
g =

′µ
∑

′m

µ

∑ D ′m ′n
′µ g( )

′n

µ

∑ P ′m ′n
′µ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ Need inverse of Weyl form:

  
Pmn
µ = pmn

µ g( )
g

°G
∑ gDerive coefficients             of inverse Weyl expansion:

 
pmn
µ g( )

   
f ⋅Pmn

µ = pmn
µ g( )

g

°G
∑ f ⋅g = pmn

µ f −1h( )
h

°G
∑ h  , where: h = f ⋅g,  or: g = f −1h,
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Left action by operator f in group G ={1,…, f, g, h,…}: 

Regular representation TraceR(h) is zero except for TraceR(1)= °G

Pµjk -expansion in g-operators
   
g =

′µ
∑

′m

µ

∑ D ′m ′n
′µ g( )

′n

µ

∑ P ′m ′n
′µ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ Need inverse of Weyl form:

  
Pmn
µ = pmn

µ g( )
g

°G
∑ gDerive coefficients             of inverse Weyl expansion:

 
pmn
µ g( )

   
f ⋅Pmn

µ = pmn
µ g( )

g

°G
∑ f ⋅g = pmn

µ f −1h( )
h

°G
∑ h  , where: h = f ⋅g,  or: g = f −1h,

1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

RG (1) = RG (r) = RG (r2) = RG (i1) = RG (i2) = RG (i3) =
Regular representation of D3~C3v

1 r r i i i
r 1 r i i i
r r 1 i i i
i i i 1 r r
i i i r 1 r
i i i r r 1

2

2
2

2
2

2

1 2 3

3 1 2

2 3 1

1 3 2

2 1 3

3 2 1

in the group-|g〉 basis
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Left action by operator f in group G ={1,…, f, g, h,…}: 

Regular representation TraceR(h) is zero except for TraceR(1)= °G

Pµjk -expansion in g-operators
   
g =

′µ
∑

′m

µ

∑ D ′m ′n
′µ g( )

′n

µ

∑ P ′m ′n
′µ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ Need inverse of Weyl form:

  
Pmn
µ = pmn

µ g( )
g

°G
∑ gDerive coefficients             of inverse Weyl expansion:

 
pmn
µ g( )

   
f ⋅Pmn

µ = pmn
µ g( )

g

°G
∑ f ⋅g = pmn

µ f −1h( )
h

°G
∑ h  , where: h = f ⋅g,  or: g = f −1h,

   
Trace R f ⋅Pmn

µ( ) = pmn
µ f −1h( )

h

°G
∑ TraceR h( )

1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

RG (1) = RG (r) = RG (r2) = RG (i1) = RG (i2) = RG (i3) =
Regular representation of D3~C3v

1 r r i i i
r 1 r i i i
r r 1 i i i
i i i 1 r r
i i i r 1 r
i i i r r 1

2

2
2

2
2

2

1 2 3

3 1 2

2 3 1

1 3 2

2 1 3

3 2 1

in the group-|g〉 basis
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Left action by operator f in group G ={1,…, f, g, h,…}: 

Regular representation TraceR(h) is zero except for TraceR(1)= °G

Pµjk -expansion in g-operators
   
g =

′µ
∑

′m

µ

∑ D ′m ′n
′µ g( )

′n

µ

∑ P ′m ′n
′µ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ Need inverse of Weyl form:

  
Pmn
µ = pmn

µ g( )
g

°G
∑ gDerive coefficients             of inverse Weyl expansion:

 
pmn
µ g( )

   
f ⋅Pmn

µ = pmn
µ g( )

g

°G
∑ f ⋅g = pmn

µ f −1h( )
h

°G
∑ h  , where: h = f ⋅g,  or: g = f −1h,

   
Trace R f ⋅Pmn

µ( ) = pmn
µ f −1h( )

h

°G
∑ TraceR h( ) = pmn

µ f −11( )TraceR 1( )

1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

RG (1) = RG (r) = RG (r2) = RG (i1) = RG (i2) = RG (i3) =
Regular representation of D3~C3v

1 r r i i i
r 1 r i i i
r r 1 i i i
i i i 1 r r
i i i r 1 r
i i i r r 1

2

2
2

2
2

2

1 2 3

3 1 2

2 3 1

1 3 2

2 1 3

3 2 1

in the group-|g〉 basis

41Wednesday, April 1, 2015



Left action by operator f in group G ={1,…, f, g, h,…}: 

Regular representation TraceR(h) is zero except for TraceR(1)= °G

Pµjk -expansion in g-operators
   
g =

′µ
∑

′m

µ

∑ D ′m ′n
′µ g( )

′n

µ

∑ P ′m ′n
′µ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ Need inverse of Weyl form:

  
Pmn
µ = pmn

µ g( )
g

°G
∑ gDerive coefficients             of inverse Weyl expansion:

 
pmn
µ g( )

   
f ⋅Pmn

µ = pmn
µ g( )

g

°G
∑ f ⋅g = pmn

µ f −1h( )
h

°G
∑ h  , where: h = f ⋅g,  or: g = f −1h,

   
Trace R f ⋅Pmn

µ( ) = pmn
µ f −1h( )

h

°G
∑ TraceR h( ) = pmn

µ f −11( )TraceR 1( ) = pmn
µ f −1( )°G

1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

RG (1) = RG (r) = RG (r2) = RG (i1) = RG (i2) = RG (i3) =
Regular representation of D3~C3v

1 r r i i i
r 1 r i i i
r r 1 i i i
i i i 1 r r
i i i r 1 r
i i i r r 1

2

2
2

2
2

2

1 2 3

3 1 2

2 3 1

1 3 2

2 1 3

3 2 1

in the group-|g〉 basis
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Left action by operator f in group G ={1,…, f, g, h,…}: 

Regular representation TraceR(h) is zero except for TraceR(1)= °G

Pµjk -expansion in g-operators
   
g =

′µ
∑

′m

µ

∑ D ′m ′n
′µ g( )

′n

µ

∑ P ′m ′n
′µ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ Need inverse of Weyl form:

  
Pmn
µ = pmn

µ g( )
g

°G
∑ gDerive coefficients             of inverse Weyl expansion:

 
pmn
µ g( )

   
f ⋅Pmn

µ = pmn
µ g( )

g

°G
∑ f ⋅g = pmn

µ f −1h( )
h

°G
∑ h  , where: h = f ⋅g,  or: g = f −1h,

   
Trace R f ⋅Pmn

µ( ) = pmn
µ f −1h( )

h

°G
∑ TraceR h( ) = pmn

µ f −11( )TraceR 1( ) = pmn
µ f −1( )°G

Regular representation TraceR(       ) is irep dimension (µ) for diagonal       or zero otherwise:  Pmn
µ

  Pmm
µ

gg = PP PP PP
A1 A2 E

xx+ + + + +

D
D
D

D

xx

yy

xx

yy

⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ D ⋅ ⋅

⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

=

1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

+

⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

+

⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

+

⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅

⋅
⋅ ⋅

⋅ ⋅ ⋅
1

⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

+

⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅

1
⋅

⋅ ⋅ ⋅ ⋅
⋅

⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

+

⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

A1
A2

E
xy

Dyx
D

D
xx

yy

DE
xy

Dyx

PP
E
xy PP

E
yx PP

E
yy

1

(g)
Dxx
A1(g) Dyy

A2(g) Dxx
E
(g) Dxy

E
(g) Dyx

E
(g) Dyy

E
(g)

1
1

1

Dxx
A1 Dyy

A2 Dxx
E

Dxy
E Dyx

E Dyy
E
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Left action by operator f in group G ={1,…, f, g, h,…}: 

Regular representation TraceR(h) is zero except for TraceR(1)= °G

Pµjk -expansion in g-operators
   
g =

′µ
∑

′m

µ

∑ D ′m ′n
′µ g( )

′n

µ

∑ P ′m ′n
′µ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ Need inverse of Weyl form:

  
Pmn
µ = pmn

µ g( )
g

°G
∑ gDerive coefficients             of inverse Weyl expansion:

 
pmn
µ g( )

   
f ⋅Pmn

µ = pmn
µ g( )

g

°G
∑ f ⋅g = pmn

µ f −1h( )
h

°G
∑ h  , where: h = f ⋅g,  or: g = f −1h,

   
Trace R f ⋅Pmn

µ( ) = pmn
µ f −1h( )

h

°G
∑ TraceR h( ) = pmn

µ f −11( )TraceR 1( ) = pmn
µ f −1( )°G

Regular representation TraceR(       ) is irep dimension (µ) for diagonal       or zero otherwise:  Pmn
µ

  Pmm
µ

    Trace R(Pmn
µ )=δmn

(µ)

gg = PP PP PP
A1 A2 E

xx+ + + + +

D
D
D

D

xx

yy

xx

yy

⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ D ⋅ ⋅

⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

=

1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

+

⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

+

⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

+

⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅

⋅
⋅ ⋅

⋅ ⋅ ⋅
1

⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

+

⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅

1
⋅

⋅ ⋅ ⋅ ⋅
⋅

⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

+

⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

A1
A2

E
xy

Dyx
D

D
xx

yy

DE
xy

Dyx

PP
E
xy PP

E
yx PP

E
yy

1

(g)
Dxx
A1(g) Dyy

A2(g) Dxx
E
(g) Dxy

E
(g) Dyx

E
(g) Dyy

E
(g)

1
1

1

Dxx
A1 Dyy

A2 Dxx
E

Dxy
E Dyx

E Dyy
E
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Left action by operator f in group G ={1,…, f, g, h,…}: 

Regular representation TraceR(h) is zero except for TraceR(1)= °G

Pµjk -expansion in g-operators
   
g =

′µ
∑

′m

µ

∑ D ′m ′n
′µ g( )

′n

µ

∑ P ′m ′n
′µ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ Need inverse of Weyl form:

  
Pmn
µ = pmn

µ g( )
g

°G
∑ gDerive coefficients             of inverse Weyl expansion:

 
pmn
µ g( )

   
f ⋅Pmn

µ = pmn
µ g( )

g

°G
∑ f ⋅g = pmn

µ f −1h( )
h

°G
∑ h  , where: h = f ⋅g,  or: g = f −1h,

   
Trace R f ⋅Pmn

µ( ) = pmn
µ f −1h( )

h

°G
∑ TraceR h( ) = pmn

µ f −11( )TraceR 1( ) = pmn
µ f −1( )°G

Regular representation TraceR(       ) is irep dimension (µ) for diagonal       or zero otherwise:  Pmn
µ

  Pmm
µ

    Trace R(Pmn
µ )=δmn

(µ)

Solving for             :
 
pmn
µ g( )

   

pmn
µ f( ) = 1

°G
Trace R f −1 ⋅Pmn

µ( )
            
                   

gg = PP PP PP
A1 A2 E

xx+ + + + +

D
D
D

D

xx

yy

xx

yy

⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ D ⋅ ⋅

⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

=

1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

+

⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

+

⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

+

⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅

⋅
⋅ ⋅

⋅ ⋅ ⋅
1

⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

+

⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅

1
⋅

⋅ ⋅ ⋅ ⋅
⋅

⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

+

⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

A1
A2

E
xy

Dyx
D

D
xx

yy

DE
xy

Dyx

PP
E
xy PP

E
yx PP

E
yy

1

(g)
Dxx
A1(g) Dyy

A2(g) Dxx
E
(g) Dxy

E
(g) Dyx

E
(g) Dyy

E
(g)

1
1

1

Dxx
A1 Dyy

A2 Dxx
E

Dxy
E Dyx

E Dyy
E
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Left action by operator f in group G ={1,…, f, g, h,…}: 

Regular representation TraceR(h) is zero except for TraceR(1)= °G

Pµjk -expansion in g-operators
   
g =

′µ
∑

′m

µ

∑ D ′m ′n
′µ g( )

′n

µ

∑ P ′m ′n
′µ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ Need inverse of Weyl form:

  
Pmn
µ = pmn

µ g( )
g

°G
∑ gDerive coefficients             of inverse Weyl expansion:

 
pmn
µ g( )

   
f ⋅Pmn

µ = pmn
µ g( )

g

°G
∑ f ⋅g = pmn

µ f −1h( )
h

°G
∑ h  , where: h = f ⋅g,  or: g = f −1h,

   
Trace R f ⋅Pmn

µ( ) = pmn
µ f −1h( )

h

°G
∑ TraceR h( ) = pmn

µ f −11( )TraceR 1( ) = pmn
µ f −1( )°G

Regular representation TraceR(       ) is irep dimension (µ) for diagonal       or zero otherwise:  Pmn
µ

  Pmm
µ

    Trace R(Pmn
µ )=δmn

(µ)

Solving for             :
 
pmn
µ g( )

   

pmn
µ f( ) = 1

°G
Trace R f −1 ⋅Pmn

µ( )
            
                   

    
Use left-action: f −1⋅Pmn

µ = D ′m m
µ f −1( )

′m

(µ )

∑ P ′m n
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⎜
⎜
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Regular representation of D3~C3v in the Projector-|Pµmn〉 basis
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Left action by operator f in group G ={1,…, f, g, h,…}: 

Regular representation TraceR(h) is zero except for TraceR(1)= °G

Pµjk -expansion in g-operators
   
g =

′µ
∑

′m

µ

∑ D ′m ′n
′µ g( )

′n

µ

∑ P ′m ′n
′µ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ Need inverse of Weyl form:

  
Pmn
µ = pmn

µ g( )
g

°G
∑ gDerive coefficients             of inverse Weyl expansion:

 
pmn
µ g( )

   
f ⋅Pmn

µ = pmn
µ g( )

g

°G
∑ f ⋅g = pmn

µ f −1h( )
h

°G
∑ h  , where: h = f ⋅g,  or: g = f −1h,

   
Trace R f ⋅Pmn

µ( ) = pmn
µ f −1h( )

h

°G
∑ TraceR h( ) = pmn

µ f −11( )TraceR 1( ) = pmn
µ f −1( )°G

Regular representation TraceR(       ) is irep dimension (µ) for diagonal       or zero otherwise:  Pmn
µ

  Pmm
µ

    Trace R(Pmn
µ )=δmn

(µ)

Solving for             :
 
pmn
µ g( )

    

pmn
µ f( ) = 1

°G
Trace R f −1 ⋅Pmn

µ( )
            = 1

°G
D ′m m

µ f −1( )
′m

(µ )

∑ Trace R P ′m n
µ( )

                   

    
Use left-action: f −1⋅Pmn

µ = D ′m m
µ f −1( )

′m
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∑ P ′m n
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Left action by operator f in group G ={1,…, f, g, h,…}: 

Regular representation TraceR(h) is zero except for TraceR(1)= °G

Pµjk -expansion in g-operators
   
g =

′µ
∑

′m

µ

∑ D ′m ′n
′µ g( )

′n

µ

∑ P ′m ′n
′µ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ Need inverse of Weyl form:

  
Pmn
µ = pmn

µ g( )
g

°G
∑ gDerive coefficients             of inverse Weyl expansion:

 
pmn
µ g( )

   
f ⋅Pmn

µ = pmn
µ g( )

g

°G
∑ f ⋅g = pmn

µ f −1h( )
h

°G
∑ h  , where: h = f ⋅g,  or: g = f −1h,

   
Trace R f ⋅Pmn

µ( ) = pmn
µ f −1h( )

h

°G
∑ TraceR h( ) = pmn

µ f −11( )TraceR 1( ) = pmn
µ f −1( )°G

Regular representation TraceR(       ) is irep dimension (µ) for diagonal       or zero otherwise:  Pmn
µ

  Pmm
µ

    Trace R(Pmn
µ )=δmn

(µ)

Solving for             :
 
pmn
µ g( )

    

pmn
µ f( ) = 1

°G
Trace R f −1 ⋅Pmn

µ( )
            = 1

°G
D ′m m

µ f −1( )
′m

(µ )

∑ Trace R P ′m n
µ( )

                   

    
Use left-action: f −1⋅Pmn

µ = D ′m m
µ f −1( )

′m

(µ )

∑ P ′m n
µ

    Use:  Trace R(Pmn
µ )=δmn

(µ)
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Left action by operator f in group G ={1,…, f, g, h,…}: 

Regular representation TraceR(h) is zero except for TraceR(1)= °G

Pµjk -expansion in g-operators
   
g =

′µ
∑

′m

µ

∑ D ′m ′n
′µ g( )

′n

µ

∑ P ′m ′n
′µ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ Need inverse of Weyl form:

  
Pmn
µ = pmn

µ g( )
g

°G
∑ gDerive coefficients             of inverse Weyl expansion:

 
pmn
µ g( )

   
f ⋅Pmn

µ = pmn
µ g( )

g

°G
∑ f ⋅g = pmn

µ f −1h( )
h

°G
∑ h  , where: h = f ⋅g,  or: g = f −1h,

   
Trace R f ⋅Pmn

µ( ) = pmn
µ f −1h( )

h

°G
∑ TraceR h( ) = pmn

µ f −11( )TraceR 1( ) = pmn
µ f −1( )°G

Regular representation TraceR(       ) is irep dimension (µ) for diagonal       or zero otherwise:  Pmn
µ

  Pmm
µ

    Trace R(Pmn
µ )=δmn

(µ)

Solving for             :
 
pmn
µ g( )

    

pmn
µ f( ) = 1

°G
Trace R f −1 ⋅Pmn

µ( )
            = 1

°G
D ′m m

µ f −1( )
′m

(µ )

∑ Trace R P ′m n
µ( )

             = 
(µ )

°G
Dnm

µ f −1( )        

    
Use left-action: f −1⋅Pmn

µ = D ′m m
µ f −1( )

′m

(µ )

∑ P ′m n
µ

    Use:  Trace R(Pmn
µ )=δmn

(µ)
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Left action by operator f in group G ={1,…, f, g, h,…}: 

Regular representation TraceR(h) is zero except for TraceR(1)= °G

Pµjk -expansion in g-operators
   
g =

′µ
∑

′m

µ

∑ D ′m ′n
′µ g( )

′n

µ

∑ P ′m ′n
′µ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ Need inverse of Weyl form:

  
Pmn
µ = pmn

µ g( )
g

°G
∑ gDerive coefficients             of inverse Weyl expansion:

 
pmn
µ g( )

   
f ⋅Pmn

µ = pmn
µ g( )

g

°G
∑ f ⋅g = pmn

µ f −1h( )
h

°G
∑ h  , where: h = f ⋅g,  or: g = f −1h,

   
Trace R f ⋅Pmn

µ( ) = pmn
µ f −1h( )

h

°G
∑ TraceR h( ) = pmn

µ f −11( )TraceR 1( ) = pmn
µ f −1( )°G

Regular representation TraceR(       ) is irep dimension (µ) for diagonal       or zero otherwise:  Pmn
µ

  Pmm
µ

    Trace R(Pmn
µ )=δmn

(µ)

Solving for             :
 
pmn
µ g( )

    

pmn
µ f( ) = 1

°G
Trace R f −1 ⋅Pmn

µ( )
            = 1

°G
D ′m m

µ f −1( )
′m

(µ )

∑ Trace R P ′m n
µ( )

             = 
(µ )

°G
Dnm

µ f −1( )        

    
Pmn
µ = 

(µ )

°G
Dnm

µ g−1( )
g

°G
∑ g   

    
Use left-action: f −1⋅Pmn

µ = D ′m m
µ f −1( )

′m

(µ )

∑ P ′m n
µ

    Use:  Trace R(Pmn
µ )=δmn

(µ)
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Left action by operator f in group G ={1,…, f, g, h,…}: 

Regular representation TraceR(h) is zero except for TraceR(1)= °G

Pµjk -expansion in g-operators
   
g =

′µ
∑

′m

µ

∑ D ′m ′n
′µ g( )

′n

µ

∑ P ′m ′n
′µ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ Need inverse of Weyl form:

  
Pmn
µ = pmn

µ g( )
g

°G
∑ gDerive coefficients             of inverse Weyl expansion:

 
pmn
µ g( )

   
f ⋅Pmn

µ = pmn
µ g( )

g

°G
∑ f ⋅g = pmn

µ f −1h( )
h

°G
∑ h  , where: h = f ⋅g,  or: g = f −1h,

   
Trace R f ⋅Pmn

µ( ) = pmn
µ f −1h( )

h

°G
∑ TraceR h( ) = pmn

µ f −11( )TraceR 1( ) = pmn
µ f −1( )°G

    Trace R(Pmn
µ )=δmn

(µ)

Solving for             :
 
pmn
µ g( )

    

pmn
µ f( ) = 1

°G
Trace R f −1 ⋅Pmn

µ( )
            = 1

°G
D ′m m

µ f −1( )
′m

(µ )

∑ Trace R P ′m n
µ( )

             = 
(µ )

°G
Dnm

µ f −1( )         = 
(µ )

°G
Dmn

µ* f( )    for unitary Dnm
µ  

⎛

⎝
⎜

⎞

⎠
⎟

    
Pmn
µ = 

(µ )

°G
Dnm

µ g−1( )
g

°G
∑ g    Pmn

µ = 
(µ )

°G
Dmn

µ*
g( )

g

°G
∑ g   for unitary Dnm

µ  
⎛

⎝
⎜

⎞

⎠
⎟

    
Use left-action: f −1⋅Pmn

µ = D ′m m
µ f −1( )

′m

(µ )

∑ P ′m n
µ

    Use:  Trace R(Pmn
µ )=δmn

(µ)

Regular representation TraceR(       ) is irep dimension (µ) for diagonal        or 0 for off-diagonal   Pmn
µ

  Pmm
µ

  Pmn
µ
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Review Stage 1: Group Center:Class-sums κg ,characters χµ(g), and All-Commuting Projectors Pµ

Review Stage 2: Group operators g and Mutually-Commuting projectors Pµkk

Review Stage 3: Weyl g-expansion in irreps Dµjk(g) and Non-Commuting projectors Pµjk

                   Simple matrix algebra Pµab Pνcd = δµνδbcPµad

                  Pµjk transforms right-and-left
                  Pµjk -expansion in g-operators
                  Example of D3 transformation by matrix DEjk(r1)

Details of Mock-Mach relativity-duality for D3 groups and representations
        Lab-fixed(Extrinsic-Global) vs. Body-fixed (Intrinsic-Local)
        Compare Global vs Local ⏐g〉-basis and Global vs Local ⏐P(µ)〉-basis
                   
Hamiltonian and D3 group matrices in global and local ⏐P(µ)〉-basis
      Global vs. Local block rearrangement      
        Hamiltonian local-symmetry eigensolution
        Molecular vibrational mode eigensolution
               Local symmetry limit
               Global symmetry limit (free or “genuine” modes) 
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r1 P11
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1 i1 −2
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D3 Group 
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Fig. 3.4.3
PSDS Ch.3
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Review Stage 1: Group Center:Class-sums κg ,characters χµ(g), and All-Commuting 
Projectors Pµ

Review Stage 2: Group operators g and Mutually-Commuting projectors Pµkk

Review Stage 3: Weyl g-expansion in irreps Dµjk(g) and Non-Commuting projectors Pµjk

                   Simple matrix algebra Pµab Pνcd = δµνδbcPµad

                  Pµjk transforms right-and-left
                  Pµjk -expansion in g-operators
                  Example of D3 transformation by matrix DEjk(r1)

Details of Mock-Mach relativity-duality for D3 groups and representations
        Lab-fixed(Extrinsic-Global) vs. Body-fixed (Intrinsic-Local)
        Compare Global vs Local ⏐g〉-basis and Global vs Local ⏐P(µ)〉-basis
                   
Hamiltonian and D3 group matrices in global and local ⏐P(µ)〉-basis
      Global vs. Local block rearrangement      
        Hamiltonian local-symmetry eigensolution
        Molecular vibrational mode eigensolution
               Local symmetry limit
               Global symmetry limit (free or “genuine” modes) 
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Details of Mock-Mach relativity-duality for D3 groups and representations

Ideas of duality/relativity go way back (...VanVleck, Casimir..., Mach, Newton, Archimedes...)

Lab-fixed(Extrinsic-Global)R,S,..vs.Body-fixed (Intrinsic-Local)R,S,..

...But how do you actually make the R and R operations?

“Give me a place to stand...
and I will move the Earth”

Archimedes 287-212 B.C.E

allR,S,..
commute with
allR,S,..

R|1〉=R-1|1〉
S|1〉=S-1|1〉
...for one state |1) only!

...

“Mock-Mach”
relativity principles
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wave packet fixed
while lab axes move

i2|1〉= |i2〉

wave packet moves
with lab axes fixed

i2|1〉=|i2〉i2

i2i3

i1

xx

yy

i1

i3

|i2〉 (After i2 )

|1〉

Lab-fixed (Extrinsic-Global) operations&axes fixed

r

i3

i2
i1

i1 D3r2

r(120°)

(-120°) or (240°) 1 r2 r i1 i2 i3
r 1 r2 i3 i1 i2
r2 r 1 i2 i3 i1
i1 i3 i2 1 r r2

i2 i1 i3 r2 1 r

i3 i2 i1 r r2 1

Details of RELATIVITY-DUALITY for D3

|11〉
i2
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x

y
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i3 i1
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〉 (After i2 )

i3 x

y

i1

|1〉

i3

y

i1

x

|i2〉

i3
i1
i2

After i2
(veiwed in
lab frame)

Body-fixed (Intrinsic-Local) operations appear
to move their rotation axes (relative to lab)

After i1i2
(veiwed in
lab frame)

i1i2|1〉=i1 |i2〉=r |1〉=r2 |1〉

...but, THEY OBEY THE
SAME GROUP TABLE. i1i2 = r

implies:
i1i2 = r

D3-defined
local-wave
bases

i3 i1

i2

i2
i1i2|1〉=i1 |i2〉
wave packet fixed
while lab axes move

i3

y
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x
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i2 wave packet moves
with lab axes fixed
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x

y
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|i2〉 (After i1i2 )
i2

|r〉

62Wednesday, April 1, 2015



wave packet fixed
while lab axes move

i2|1〉= |i2〉

wave packet moves
with lab axes fixed

i2|1〉=|i2〉i2

i2i3

i1

xx

yy

i1

i3

|i2〉 (After i2 )

|1〉

Lab-fixed (Extrinsic-Global) operations&axes fixed

r

i3

i2
i1

i1 D3r2

r(120°)

(-120°) or (240°) 1 r2 r i1 i2 i3
r 1 r2 i3 i1 i2
r2 r 1 i2 i3 i1
i1 i3 i2 1 r r2

i2 i1 i3 r2 1 r

i3 i2 i1 r r2 1

Details of RELATIVITY-DUALITY for D3

|11〉
i2

i3

i1

|i3〉

|i2〉

|i1〉
|r2〉

|r〉

x

y

i1

i3

yx

i3 i1

i2

|i2
〉 (After i2 )

i3 x

y

i1

|1〉

i3

y

i1

x

|i2〉

i3
i1
i2

After i2
(veiwed in
lab frame)

Body-fixed (Intrinsic-Local) operations appear
to move their rotation axes (relative to lab)

After i1i2
(veiwed in
lab frame)

i1i2|1〉=i1 |i2〉=r |1〉=r2 |1〉

...but, THEY OBEY THE
SAME GROUP TABLE. i1i2 = r

implies:
i1i2 = r

D3-defined
local-wave
bases

i3 i1

i2

i2
i1i2|1〉=i1 |i2〉
wave packet fixed
while lab axes move

i3

y

i1

x

i2
i3

i1
i2

i2

i3

y

i1

x

i2

i3
i1

i2

After i1i2

i2 wave packet moves
with lab axes fixed

i1i2|1〉=r|1〉=|r〉
i2

x

y

i1

i3

|i2〉 (After i1i2 )
i2

|r〉

63Wednesday, April 1, 2015



wave packet fixed
while lab axes move

i2|1〉= |i2〉

wave packet moves
with lab axes fixed

i2|1〉=|i2〉i2

i2i3

i1

xx

yy

i1

i3

|i2〉 (After i2 )

|1〉

Lab-fixed (Extrinsic-Global) operations&axes fixed

r

i3

i2
i1

i1 D3r2

r(120°)

(-120°) or (240°) 1 r2 r i1 i2 i3
r 1 r2 i3 i1 i2
r2 r 1 i2 i3 i1
i1 i3 i2 1 r r2

i2 i1 i3 r2 1 r

i3 i2 i1 r r2 1

Details of RELATIVITY-DUALITY for D3

|11〉
i2

i3

i1

|i3〉

|i2〉

|i1〉
|r2〉

|r〉

x

y

i1

i3

yx

i3 i1

i2

|i2
〉 (After i2 )

i3 x

y

i1

|1〉

i3

y

i1

x

|i2〉

i3
i1
i2

After i2
(veiwed in
lab frame)

Body-fixed (Intrinsic-Local) operations appear
to move their rotation axes (relative to lab)

After i1i2
(veiwed in
lab frame)

i1i2|1〉=i1 |i2〉=r |1〉=r2 |1〉

...but, THEY OBEY THE
SAME GROUP TABLE. i1i2 = r

implies:
i1i2 = r

D3-defined
local-wave
bases

i3 i1

i2

i2
i1i2|1〉=i1 |i2〉
wave packet fixed
while lab axes move

i3

y

i1

x

i2
i3

i1
i2

i2

i3

y

i1

x

i2

i3
i1

i2

After i1i2

i2 wave packet moves
with lab axes fixed

i1i2|1〉=r|1〉=|r〉
i2

x

y

i1

i3

|i2〉 (After i1i2 )
i2

|r〉
r

64Wednesday, April 1, 2015



wave packet fixed
while lab axes move

i2|1〉= |i2〉

wave packet moves
with lab axes fixed

i2|1〉=|i2〉i2

i2i3

i1

xx

yy

i1

i3

|i2〉 (After i2 )

|1〉

Lab-fixed (Extrinsic-Global) operations&axes fixed

r

i3

i2
i1

i1 D3r2

r(120°)

(-120°) or (240°) 1 r2 r i1 i2 i3
r 1 r2 i3 i1 i2
r2 r 1 i2 i3 i1
i1 i3 i2 1 r r2

i2 i1 i3 r2 1 r

i3 i2 i1 r r2 1

Details of RELATIVITY-DUALITY for D3

|11〉
i2

i3

i1

|i3〉

|i2〉

|i1〉
|r2〉

|r〉

x

y

i1

i3

yx

i3 i1

i2

|i2
〉 (After i2 )

i3 x

y

i1

|1〉

i3

y

i1

x

|i2〉

i3
i1
i2

After i2
(veiwed in
lab frame)

Body-fixed (Intrinsic-Local) operations appear
to move their rotation axes (relative to lab)

After i1i2
(veiwed in
lab frame)

i1i2|1〉=i1 |i2〉=r |1〉=r2 |1〉

...but, THEY OBEY THE
SAME GROUP TABLE. i1i2 = r

implies:
i1i2 = r

D3-defined
local-wave
bases

i3 i1

i2

i2
i1i2|1〉=i1 |i2〉
wave packet fixed
while lab axes move
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wave packet fixed
while lab axes move
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wave packet moves
with lab axes fixed
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Details of RELATIVITY-DUALITY for D3
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Body-fixed (Intrinsic-Local) operations appear
to move their rotation axes (relative to lab)
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(veiwed in
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...but, THEY OBEY THE
SAME GROUP TABLE. i1i2 = r

implies:
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wave packet fixed
while lab axes move
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wave packet moves
with lab axes fixed
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Lab-fixed (Extrinsic-Global) operations&axes fixed
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i3 i2 i1 r r2 1

Details of RELATIVITY-DUALITY for D3
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Body-fixed (Intrinsic-Local) operations appear
to move their rotation axes (relative to lab)

After i1i2
(veiwed in
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i1i2|1〉=i1 |i2〉=r |1〉=r2 |1〉

...but, THEY OBEY THE
SAME GROUP TABLE. i1i2 = r

implies:
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D3-defined
local-wave
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wave packet fixed
while lab axes move

i2|1〉= |i2〉

wave packet moves
with lab axes fixed

i2|1〉=|i2〉i2
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i1
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|i2〉 (After i2 )

|1〉

Lab-fixed (Extrinsic-Global) operations&axes fixed
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(-120°) or (240°) 1 r2 r i1 i2 i3
r 1 r2 i3 i1 i2
r2 r 1 i2 i3 i1
i1 i3 i2 1 r r2

i2 i1 i3 r2 1 r

i3 i2 i1 r r2 1

Details of RELATIVITY-DUALITY for D3
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Body-fixed (Intrinsic-Local) operations appear
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i1i2|1〉=i1 |i2〉=r |1〉=r2 |1〉

...but, THEY OBEY THE
SAME GROUP TABLE. i1i2 = r

implies:
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D3-defined
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wave packet fixed
while lab axes move

i2|1〉= |i2〉

wave packet moves
with lab axes fixed

i2|1〉=|i2〉i2

i2i3
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i3

|i2〉 (After i2 )

|1〉

Lab-fixed (Extrinsic-Global) operations&axes fixed
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(-120°) or (240°) 1 r2 r i1 i2 i3
r 1 r2 i3 i1 i2
r2 r 1 i2 i3 i1
i1 i3 i2 1 r r2

i2 i1 i3 r2 1 r

i3 i2 i1 r r2 1

Details of RELATIVITY-DUALITY for D3
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to move their rotation axes (relative to lab)
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...but, THEY OBEY THE
SAME GROUP TABLE. i1i2 = r

implies:
i1i2 = r

D3-defined
local-wave
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wave packet fixed
while lab axes move

i2|1〉= |i2〉

wave packet moves
with lab axes fixed

i2|1〉=|i2〉i2

i2i3
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yy

i1

i3

|i2〉 (After i2 )

|1〉

Lab-fixed (Extrinsic-Global) operations&axes fixed

r
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i1 D3r2

r(120°)

(-120°) or (240°) 1 r2 r i1 i2 i3
r 1 r2 i3 i1 i2
r2 r 1 i2 i3 i1
i1 i3 i2 1 r r2

i2 i1 i3 r2 1 r

i3 i2 i1 r r2 1

Details of RELATIVITY-DUALITY for D3
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After i2
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Body-fixed (Intrinsic-Local) operations appear
to move their rotation axes (relative to lab)

After i1i2
(veiwed in
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i1i2|1〉=i1 |i2〉=r |1〉=r2 |1〉

...but, THEY OBEY THE
SAME GROUP TABLE. i1i2 = r

implies:
i1i2 = r

D3-defined
local-wave
bases

i3 i1

i2

i2
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...and Mock-Mach principle g⏐1〉=g-1⏐1〉

r-1=r2

r

r
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Review Stage 1: Group Center:Class-sums κg ,characters χµ(g), and All-Commuting 
Projectors Pµ

Review Stage 2: Group operators g and Mutually-Commuting projectors Pµkk

Review Stage 3: Weyl g-expansion in irreps Dµjk(g) and Non-Commuting projectors Pµjk

                   Simple matrix algebra Pµab Pνcd = δµνδbcPµad

                  Pµjk transforms right-and-left
                  Pµjk -expansion in g-operators
                  Example of D3 transformation by matrix DEjk(r1)

Details of Mock-Mach relativity-duality for D3 groups and representations
        Lab-fixed(Extrinsic-Global) vs. Body-fixed (Intrinsic-Local)
        Compare Global vs Local ⏐g〉-basis and Global vs Local ⏐P(µ)〉-basis
                   
Hamiltonian and D3 group matrices in global and local ⏐P(µ)〉-basis
      Global vs. Local block rearrangement      
        Hamiltonian local-symmetry eigensolution
        Molecular vibrational mode eigensolution
               Local symmetry limit
               Global symmetry limit (free or “genuine” modes) 
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1 r r i i i
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r r 1 i i i
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i i i r 1 r
i i i r r 1
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2
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1 2 3

3 1 2

2 3 1

1 3 2
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3 2 1

1 r r i i i
r 1 r i i i
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i i i 1 r r
i i i r 1 r
i i i r r 1

2
2

2
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2
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1 2 3

2 3 1

3 1 2

1 2 3

3

3 1 2

2 2

DD33 llooccaall
ggrroouupp
ttaabbllee

DD33 gglloobbaall
ggrroouupp
pprroodduucctt
ttaabbllee

CChhaannggee GGlloobbaall ttoo LLooccaall bbyy sswwiittcchhiinngg
......ccoolluummnn--gg wwiitthh ccoolluummnn--gg†

........aanndd rrooww--gg wwiitthh rrooww--gg†

JJuusstt sswwiittcchh r wwiitthh r =r2..† (all others are
self-conjugate)

Compare Global vs Local ⏐g〉-basis vs. Global vs Local ⏐P(µ)〉-basis
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PP(m)PP(n)== δmnδ PP(m)ab cd bc ad
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⋅ ⋅ ⋅ ⋅
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DD33 llooccaall
ggrroouupp
ttaabbllee

PP(m)PP(n)== δmnδ PP(m)ab cd bc ad

DD33 gglloobbaall
ggrroouupp
pprroodduucctt
ttaabbllee

CChhaannggee GGlloobbaall ttoo LLooccaall bbyy sswwiittcchhiinngg
......ccoolluummnn--PP wwiitthh ccoolluummnn--PP†

........aanndd rrooww--PP wwiitthh rrooww--PP†

JJuusstt sswwiittcchh r wwiitthh r =r2..

DD33 gglloobbaall
pprroojjeeccttoorr
pprroodduucctt
ttaabbllee

((JJuusstt sswwiittcchh wwiitthh = ..))PPyxE PPyxE
†

†

PP yx
E

DD33 llooccaall
pprroojjeeccttoorr
pprroodduucctt
ttaabbllee

(all others are
self-conjugate)

Compare Global vs Local ⏐g〉-basis vs. Global vs Local ⏐P(µ)〉-basis

73Wednesday, April 1, 2015



Compare Global vs Local ⏐g〉-basis
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RG (1) = RG (r) = RG (r2) = RG (i1) = RG (i2) = RG (i3) =

Example of RELATIVITY-DUALITY for D3~C3v
To represent external {..T,U,V,... }switch g g† on top of group table

DD33 gglloobbaall
gggg††--ttaabbllee
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Compare Global vs Local ⏐g〉-basis
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gg††gg--ttaabbllee

Example of RELATIVITY-DUALITY for D3~C3v
To represent external {..T,U,V,... }switch g g† on top of group table

To represent internal {..T,U,V,... } switch g g† on side of group table

1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ ⋅ 1 ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ 1 ⋅ ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

RG (1) = RG(r) = RG (r2) = RG( i1) = RG ( i2) = RG( i3) =

RESULT:
Any R(T)
commute

with any R(U)...
(Even if T and U do not...)

...and T·U=V if & only if T·U=V.

DD33 gglloobbaall
gggg††--ttaabbllee

|11〉

i2

i3

i1

|i3〉

|i2〉

|i1〉
|r2〉

|r〉

x

y

D
3
-defined

local-wave
bases

1 r r i i i
r 1 r i i i
r r 1 i i i
i i i 1 r r
i i i r 1 r
i i i r r 1

2

2
2

2
2

2

1 2 3

3 1 2

2 3 1

1 3 2

2 1 3

3 2 1

i2

i1

i3
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Review Stage 1: Group Center:Class-sums κg ,characters χµ(g), and All-Commuting 
Projectors Pµ

Review Stage 2: Group operators g and Mutually-Commuting projectors Pµkk

Review Stage 3: Weyl g-expansion in irreps Dµjk(g) and Non-Commuting projectors Pµjk

                   Simple matrix algebra Pµab Pνcd = δµνδbcPµad

                  Pµjk transforms right-and-left
                  Pµjk -expansion in g-operators
                  Example of D3 transformation by matrix DEjk(r1)

Details of Mock-Mach relativity-duality for D3 groups and representations
        Lab-fixed(Extrinsic-Global) vs. Body-fixed (Intrinsic-Local)
        Compare Global vs Local ⏐g〉-basis and Global vs Local ⏐P(µ)〉-basis
                   
Hamiltonian and D3 group matrices in global and local ⏐P(µ)〉-basis
      Global vs. Local block rearrangement      
        Hamiltonian local-symmetry eigensolution
        Molecular vibrational mode eigensolution
               Local symmetry limit
               Global symmetry limit (free or “genuine” modes) 
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Compare Global ⏐P(µ)〉-basis vs Local ⏐P(µ)〉-basis

MMaattrriixx ““PPllaacceehhoollddeerrss”” PP ffoorr GGLLOOBBAALL gg ooppeerraattoorrss iinn DD
33

gg = PP PP PP
A1 A2 E

xx+ + + + +

D

D

D

D

xx

yy

xx

yy

⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ D ⋅ ⋅

⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

=

1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

+

⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

+

⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

+

⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅

⋅
⋅ ⋅

⋅ ⋅ ⋅
1

⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

+

⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅

1
⋅

⋅ ⋅ ⋅ ⋅
⋅

⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

+

⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

A
1

A
2

E

xy
Dyx

D

D

xx

yy

D
E

xy
Dyx

PP
E
xy PP

E
yx PP

E
yy

1

(g)

Dxx
A
1(g) Dyy

A
2(g) Dxx

E
(g) Dxy

E
(g) Dyx

E
(g) Dyy

E
(g)

1
1

1

(m)
ab

Dxx
A
1

Dyy
A
2

Dxx
E

Dxy
E

Dyx
E

Dyy
E

form
P†P Pxx

A1 Pyy
A2 Pxx

E1 Pxy
E1 Pyx

E1 Pyy
E1

Pxx
A1 Pxx

A1 ⋅ ⋅ ⋅ ⋅ ⋅

Pyy
A2 ⋅ Pyy

A2 ⋅ ⋅ ⋅ ⋅

Pxx
E1 ⋅ ⋅ Pxx

E1 Pxy
E1 ⋅ ⋅

Pyx
E1 ⋅ ⋅ Pyx

E1 Pyy
E1 ⋅ ⋅

Pxy
E1 ⋅ ⋅ ⋅ ⋅ Pxx

E1 Pxy
E1

Pyy
E1 ⋅ ⋅ ⋅ ⋅ Pyx

E1 Pyy
E1

Global

Product table entry PEab shows location of a 1
in the regular representation R(PEab) of that
GLOBAL projection operator. 
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Compare Global ⏐P(µ)〉-basis vs Local ⏐P(µ)〉-basis

MMaattrriixx ““PPllaacceehhoollddeerrss”” PP ffoorr GGLLOOBBAALL gg ooppeerraattoorrss iinn DD
33

gg = PP PP PP
A1 A2 E

xx+ + + + +

D

D

D

D

xx

yy

xx

yy

⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ D ⋅ ⋅

⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

=

1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

+

⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

+

⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

+

⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅

⋅
⋅ ⋅

⋅ ⋅ ⋅
1

⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

+

⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅

1
⋅

⋅ ⋅ ⋅ ⋅
⋅

⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

+

⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

A
1

A
2

E

xy
Dyx

D

D

xx

yy

D
E

xy
Dyx

PP
E
xy PP

E
yx PP

E
yy

1

(g)

Dxx
A
1(g) Dyy

A
2(g) Dxx

E
(g) Dxy

E
(g) Dyx

E
(g) Dyy

E
(g)

1
1

1

(m)
ab

gg = P PP PP
A1 A2 E

xx+ + + + +

D

D

D

Dyy

Dyy

xx

yy

xx

⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅

D

⋅

⋅

⋅ ⋅ ⋅
⋅

⋅ ⋅
⋅

⋅

⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

=

1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

+

⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

+

⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
⋅ ⋅ ⋅

⋅
⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

+

⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅

⋅ ⋅
⋅

⋅ ⋅ ⋅
1

⋅

⋅

⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

+

⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅
⋅ ⋅

·
⋅

⋅ ⋅
⋅

⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

+

⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞
⎟
⎟
⎟
⎟
⎟
⎟

A
1

A
2

E

xy
Dyx

Dxx

Dxy

PP
E
xy PP

E
yx PP

E
yy

1

(g)

Dxx
A
1(g) Dyy

A
2(g) Dxx

E
(g) Dxy

E
(g) Dyx

E
(g) Dyy

E
(g)

1 ·

·Dyx

E

E
1 ⋅
⋅ 1

1 ⋅
⋅ 1

E

PP ......ffoorr LLOOCCAALL gg ooppeerraattoorrss iinn DD
33

(m)
ab

Dxx
A
1

Dyy
A
2

Dxx
E

Dxy
E

Dyx
E

Dyy
E

Dxx
A
1

Dyy
A
2

Dxx
E

Dxy
E

Dyx
E

Dyy
E

form
PP† Pxx

A1 Pyy
A2 Pxx

E1 Pyx
E1 Pxy

E1 Pyy
E1

Pxx
A1 Pxx

A1 ⋅ ⋅ ⋅ ⋅ ⋅

Pyy
A2 ⋅ Pyy

A2 ⋅ ⋅ ⋅ ⋅

Pxx
E1 ⋅ ⋅ Pxx

E1 ⋅ Pxy
E1 ⋅

Pxy
E1 ⋅ ⋅ ⋅ Pxx

E1 ⋅ Pxy
E1

Pyx
E1 ⋅ ⋅ Pyx

E1 ⋅ Pyy
E1 ⋅

Pyy
E1 ⋅ ⋅ ⋅ Pyx

E1 ⋅ Pyy
E1

Local

Product table entry PEab shows location of a 1
in the regular representation R(PEab) of that
LOCAL projection operator. 

78Wednesday, April 1, 2015



Compare Global ⏐P(µ)〉-basis vs Local ⏐P(µ)〉-basis

MMaattrriixx ““PPllaacceehhoollddeerrss”” PP ffoorr GGLLOOBBAALL gg ooppeerraattoorrss iinn DD
33

gg = PP PP PP
A1 A2 E

xx+ + + + +

D

D

D

D

xx

yy

xx

yy

⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ D ⋅ ⋅

⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

=

1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

+

⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

+

⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

+

⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅

⋅
⋅ ⋅

⋅ ⋅ ⋅
1

⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

+

⋅ ⋅ ⋅ ⋅ ⋅ ⋅
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Compare Global ⏐P(µ)〉-basis vs Local ⏐P(µ)〉-basis
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Note how any global g-matrix commutes with any local g-matrix
a b ⋅ ⋅
c d ⋅ ⋅
⋅ ⋅ a b
⋅ ⋅ c d

⋅

A ⋅ B ⋅
⋅ A ⋅ B
C D

C D

=

A ⋅ B ⋅
⋅ A ⋅ B
C D

C D

⋅

a b ⋅ ⋅
c d ⋅ ⋅
⋅ ⋅ a b
⋅ ⋅ c d

aA bA aB bB
cA dA cB dB
aC bC aD bD
cC dC cD dD

=

Aa Ab Ba Bb
Ac Ad Bc Bd
Ca Cb Da Db
Cc Cd Dc Dd

For example:

· b
· ·

⎡

⎣
⎢

⎤

⎦
⎥

A ·
· A

⎡

⎣
⎢

⎤

⎦
⎥ =

A ·
· A

⎡

⎣
⎢

⎤

⎦
⎥

· b
· ·

⎡

⎣
⎢

⎤

⎦
⎥

           = · bA
· ·

⎡

⎣
⎢

⎤

⎦
⎥ =

· Ab
· ·

⎡

⎣
⎢

⎤

⎦
⎥

It’s an example of old-fashioned 
Schur’s Lemma 
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Review Stage 1: Group Center:Class-sums κg ,characters χµ(g), and All-Commuting 
Projectors Pµ

Review Stage 2: Group operators g and Mutually-Commuting projectors Pµkk

Review Stage 3: Weyl g-expansion in irreps Dµjk(g) and Non-Commuting projectors Pµjk

                   Simple matrix algebra Pµab Pνcd = δµνδbcPµad

                  Pµjk transforms right-and-left
                  Pµjk -expansion in g-operators
                  Example of D3 transformation by matrix DEjk(r1)

Details of Mock-Mach relativity-duality for D3 groups and representations
        Lab-fixed(Extrinsic-Global) vs. Body-fixed (Intrinsic-Local)
        Compare Global vs Local ⏐g〉-basis and Global vs Local ⏐P(µ)〉-basis
                   
Hamiltonian and D3 group matrices in global and local ⏐P(µ)〉-basis
      Global vs. Local block rearrangement 
         Hamiltonion eigen-matrix calculation      
        Hamiltonian local-symmetry eigensolution
        Molecular vibrational mode eigensolution
               Local symmetry limit
               Global symmetry limit (free or “genuine” modes) 
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⏐P(µ)〉-basis are projected by                                                acting on original ket ⏐1〉 
    
Pmn
µ = 

(µ )

°G
Dmn

µ*
g( )

g

°G
∑ g = Pnm

µ†

Hamiltonian and D3 global-g and local-   group matrices in ⏐P(µ)〉-basis  g

For unitary D(µ): (p.51)
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⏐P(µ)〉-basis are projected by                                                acting on original ket ⏐1〉 to give:
    
Pmn
µ = 

(µ )

°G
Dmn

µ*
g( )

g

°G
∑ g = Pnm

µ†

   mn
µ = Pmn

µ 1
norm

1

Hamiltonian and D3 global-g and local-   group matrices in ⏐P(µ)〉-basis  g

For unitary D(µ): (p.51)
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⏐P(µ)〉-basis are projected by                                                acting on original ket ⏐1〉 to give:
    
Pmn
µ = 

(µ )

°G
Dmn

µ*
g( )

g

°G
∑ g = Pnm

µ†

    
mn
µ = Pmn

µ 1
norm

1
= (µ )

°G ⋅norm
Dmn

µ*
g( )

g

°G
∑ g

Hamiltonian and D3 global-g and local-   group matrices in ⏐P(µ)〉-basis  g

For unitary D(µ): (p.51)

84Wednesday, April 1, 2015



⏐P(µ)〉-basis are projected by                                                acting on original ket ⏐1〉 to give:
    
Pmn
µ = 

(µ )

°G
Dmn

µ*
g( )

g

°G
∑ g = Pnm

µ†

    
mn
µ = Pmn

µ 1
norm

1
= (µ )

°G ⋅norm
Dmn

µ*
g( )

g

°G
∑ g subject to normalization:

   
′m ′n
′µ

mn
µ =

1 P ′n ′m
′µ Pmn

µ 1

norm2

Hamiltonian and D3 global-g and local-   group matrices in ⏐P(µ)〉-basis  g

For unitary D(µ): (p.51)
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⏐P(µ)〉-basis are projected by                                                acting on original ket ⏐1〉 to give:
    
Pmn
µ = 

(µ )

°G
Dmn

µ*
g( )

g

°G
∑ g = Pnm

µ†
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µ = Pmn

µ 1
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1
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°G ⋅norm
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g

°G
∑ g subject to normalization:

   
′m ′n
′µ
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µ =

1 P ′n ′m
′µ Pmn

µ 1

norm2 = δ ′µ µδ ′m m
1 P ′n n

µ 1

norm2

Hamiltonian and D3 global-g and local-   group matrices in ⏐P(µ)〉-basis  g

For unitary D(µ): (p.51)
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⏐P(µ)〉-basis are projected by                                                acting on original ket ⏐1〉 to give:
    
Pmn
µ = 

(µ )

°G
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µ*
g( )

g

°G
∑ g = Pnm

µ†
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µ = Pmn

µ 1
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µ 1

norm2 = δ ′µ µδ ′m m
1 P ′n n

µ 1

norm2 = δ ′µ µδ ′m mδ ′n n
    
norm = 1 Pnn

µ 1 = (µ )

°G
where:

Hamiltonian and D3 global-g and local-   group matrices in ⏐P(µ)〉-basis  g

For unitary D(µ): (p.51)
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⏐P(µ)〉-basis are projected by                                                acting on original ket ⏐1〉 to give:

Left-action of global g on irep-ket 

   
g mn

µ = D ′m m
µ g( )

′m

µ

∑ ′m n
µ

 mn
µ
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∑ g subject to normalization:
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norm = 1 Pnn

µ 1 = (µ )

°G
where:

Hamiltonian and D3 global-g and local-   group matrices in ⏐P(µ)〉-basis  g

For unitary D(µ): (p.51)
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⏐P(µ)〉-basis are projected by                                                acting on original ket ⏐1〉 to give:

Left-action of global g on irep-ket 

   
g mn

µ = D ′m m
µ g( )

′m
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∑ ′m n
µ

  ′m n
µ g mn

µ = D ′m m
µ g( )

Matrix is same as given on p.27 
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norm = 1 Pnn

µ 1 = (µ )

°G
where:

Hamiltonian and D3 global-g and local-   group matrices in ⏐P(µ)〉-basis  g

For unitary D(µ): (p.51)
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⏐P(µ)〉-basis are projected by                                                acting on original ket ⏐1〉 to give:

Left-action of global g on irep-ket 
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µ

∑ ′m n
µ

  ′m n
µ g mn

µ = D ′m m
µ g( )

 mn
µ

    
Pmn
µ = 

(µ )

°G
Dmn

µ*
g( )

g

°G
∑ g = Pnm

µ†

    
mn
µ = Pmn

µ 1
norm

1
= (µ )

°G ⋅norm
Dmn

µ*
g( )

g

°G
∑ g subject to normalization:

   
′m ′n
′µ

mn
µ =

1 P ′n ′m
′µ Pmn

µ 1

norm2 = δ ′µ µδ ′m m
1 P ′n n

µ 1

norm2 = δ ′µ µδ ′m mδ ′n n
    
norm = 1 Pnn

µ 1 = (µ )

°G
where:

Left-action of local    on irep-ket        is quite different 
 mn
µ

 g

    
g mn

µ = gPmn
µ 1

(µ )

°G

    
        = Pmn

µ g 1
(µ )

°G

Use 
Mock-Mach
commutation

and

Hamiltonian and D3 global-g and local-   group matrices in ⏐P(µ)〉-basis  g

For unitary D(µ): (p.51)

Matrix is same as given on p.27 
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⏐P(µ)〉-basis are projected by                                                acting on original ket ⏐1〉 to give:

Left-action of global g on irep-ket 

   
g mn

µ = D ′m m
µ g( )

′m

µ

∑ ′m n
µ

  ′m n
µ g mn

µ = D ′m m
µ g( )

 mn
µ

    
Pmn
µ = 

(µ )

°G
Dmn

µ*
g( )

g

°G
∑ g = Pnm

µ†

    
mn
µ = Pmn

µ 1
norm

1
= (µ )

°G ⋅norm
Dmn

µ*
g( )

g

°G
∑ g subject to normalization:

   
′m ′n
′µ

mn
µ =

1 P ′n ′m
′µ Pmn

µ 1

norm2 = δ ′µ µδ ′m m
1 P ′n n

µ 1

norm2 = δ ′µ µδ ′m mδ ′n n
    
norm = 1 Pnn

µ 1 = (µ )

°G
where:

Left-action of local    on irep-ket        is quite different 
 mn
µ

 g

    
g mn

µ = gPmn
µ 1

(µ )

°G

    
        = Pmn

µ g−1 1
(µ )

°G
    
        = Pmn

µ g 1
(µ )

°G

Use 
Mock-Mach
commutation

and
inverse

Hamiltonian and D3 global-g and local-   group matrices in ⏐P(µ)〉-basis  g

For unitary D(µ): (p.51)

Matrix is same as given on p.27 
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⏐P(µ)〉-basis are projected by                                                acting on original ket ⏐1〉 to give:

Left-action of global g on irep-ket 

   
g mn

µ = D ′m m
µ g( )

′m

µ

∑ ′m n
µ

  ′m n
µ g mn

µ = D ′m m
µ g( )

 mn
µ

    
Pmn
µ = 

(µ )

°G
Dmn

µ*
g( )

g

°G
∑ g = Pnm

µ†

    
mn
µ = Pmn

µ 1
norm

1
= (µ )

°G ⋅norm
Dmn

µ*
g( )

g

°G
∑ g subject to normalization:

   
′m ′n
′µ

mn
µ =

1 P ′n ′m
′µ Pmn

µ 1

norm2 = δ ′µ µδ ′m m
1 P ′n n

µ 1

norm2 = δ ′µ µδ ′m mδ ′n n
    
norm = 1 Pnn

µ 1 = (µ )

°G
where:

Left-action of local    on irep-ket        is quite different 
 mn
µ

 g

    
g mn

µ = gPmn
µ 1

(µ )

°G

    
Pmn
µ g−1= Pmn

µ P ′m ′n
µ D ′m ′n

µ (g−1)
′n =1

µ

∑
′m =1

µ

∑
    
        = Pmn

µ g−1 1
(µ )

°G
    
        = Pmn

µ g 1
(µ )

°G
compute g-1 right action 

Use 
Mock-Mach
commutation

and
inverse

Hamiltonian and D3 global-g and local-   group matrices in ⏐P(µ)〉-basis  g

For unitary D(µ): (p.51)

Matrix is same as given on p.27 
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⏐P(µ)〉-basis are projected by                                                acting on original ket ⏐1〉 to give:

Left-action of global g on irep-ket 

   
g mn

µ = D ′m m
µ g( )

′m

µ

∑ ′m n
µ

  ′m n
µ g mn

µ = D ′m m
µ g( )

 mn
µ

    
Pmn
µ = 

(µ )

°G
Dmn

µ*
g( )

g

°G
∑ g = Pnm

µ†

    
mn
µ = Pmn

µ 1
norm

1
= (µ )

°G ⋅norm
Dmn

µ*
g( )

g

°G
∑ g subject to normalization:

   
′m ′n
′µ

mn
µ =

1 P ′n ′m
′µ Pmn

µ 1

norm2 = δ ′µ µδ ′m m
1 P ′n n

µ 1

norm2 = δ ′µ µδ ′m mδ ′n n
    
norm = 1 Pnn

µ 1 = (µ )

°G
where:

Left-action of local    on irep-ket        is quite different 
 mn
µ

 g

    
g mn

µ = gPmn
µ 1

(µ )

°G

    
Pmn
µ g−1= Pmn

µ P ′m ′n
µ D ′m ′n

µ (g−1)
′n =1

µ

∑
′m =1

µ

∑
    
        = Pmn

µ g−1 1
(µ )

°G
    
        = Pmn

µ g 1
(µ )

°G

    
           =         Pm ′n

µ    Dn ′n
µ (g−1)

′n =1

µ

∑

compute g-1 right action 

Use 
Mock-Mach
commutation

and
inverse

Hamiltonian and D3 global-g and local-   group matrices in ⏐P(µ)〉-basis  g

For unitary D(µ): (p.51)

Matrix is same as given on p.27 

93Wednesday, April 1, 2015



⏐P(µ)〉-basis are projected by                                                acting on original ket ⏐1〉 to give:

Left-action of global g on irep-ket 

   
g mn

µ = D ′m m
µ g( )

′m

µ

∑ ′m n
µ

  ′m n
µ g mn

µ = D ′m m
µ g( )

 mn
µ

    
Pmn
µ = 

(µ )

°G
Dmn

µ*
g( )

g

°G
∑ g = Pnm

µ†

    
mn
µ = Pmn

µ 1
norm

1
= (µ )

°G ⋅norm
Dmn

µ*
g( )

g

°G
∑ g subject to normalization:

   
′m ′n
′µ

mn
µ =

1 P ′n ′m
′µ Pmn

µ 1

norm2 = δ ′µ µδ ′m m
1 P ′n n

µ 1

norm2 = δ ′µ µδ ′m mδ ′n n
    
norm = 1 Pnn

µ 1 = (µ )

°G
where:

Left-action of local    on irep-ket        is quite different 
 mn
µ

 g

    
g mn

µ = gPmn
µ 1

(µ )

°G

    
Pmn
µ g−1= Pmn

µ P ′m ′n
µ D ′m ′n

µ (g−1)
′n =1

µ

∑
′m =1

µ

∑

    
        = Dn ′n

µ (g−1)
′n =1

µ

∑ Pm ′n
µ 1

(µ )

°G
    
        = Pmn

µ g−1 1
(µ )

°G
    
        = Pmn

µ g 1
(µ )

°G

    
           =         Pm ′n

µ    Dn ′n
µ (g−1)

′n =1

µ

∑

compute g-1 right action 

Use 
Mock-Mach
commutation

and
inverse

Hamiltonian and D3 global-g and local-   group matrices in ⏐P(µ)〉-basis  g

For unitary D(µ): (p.51)

Matrix is same as given on p.27 
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⏐P(µ)〉-basis are projected by                                                acting on original ket ⏐1〉 to give:

Left-action of global g on irep-ket 

   
g mn

µ = D ′m m
µ g( )

′m

µ

∑ ′m n
µ

  ′m n
µ g mn

µ = D ′m m
µ g( )

 mn
µ

    
Pmn
µ = 

(µ )

°G
Dmn

µ*
g( )

g

°G
∑ g = Pnm

µ†

    
mn
µ = Pmn

µ 1
norm

1
= (µ )

°G ⋅norm
Dmn

µ*
g( )

g

°G
∑ g subject to normalization:

   
′m ′n
′µ

mn
µ =

1 P ′n ′m
′µ Pmn

µ 1

norm2 = δ ′µ µδ ′m m
1 P ′n n

µ 1

norm2 = δ ′µ µδ ′m mδ ′n n
    
norm = 1 Pnn

µ 1 = (µ )

°G
where:

Left-action of local    on irep-ket        is quite different 
 mn
µ

 g

    
g mn

µ = gPmn
µ 1

(µ )

°G

    
Pmn
µ g−1= Pmn

µ P ′m ′n
µ D ′m ′n

µ (g−1)
′n =1

µ

∑
′m =1

µ

∑

   
        = Dn ′n

µ (g−1)
′n =1

µ

∑ m ′n
µ

    
        = Dn ′n

µ (g−1)
′n =1

µ

∑ Pm ′n
µ 1

(µ )

°G
    
        = Pmn

µ g−1 1
(µ )

°G
    
        = Pmn

µ g 1
(µ )

°G

    
           =         Pm ′n

µ    Dn ′n
µ (g−1)

′n =1

µ

∑

compute g-1 right action 

Use 
Mock-Mach
commutation

and
inverse

Hamiltonian and D3 global-g and local-   group matrices in ⏐P(µ)〉-basis  g

For unitary D(µ): (p.51)

Matrix is same as given on p.27 
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⏐P(µ)〉-basis are projected by                                                acting on original ket ⏐1〉 to give:

Left-action of global g on irep-ket 

   
g mn

µ = D ′m m
µ g( )

′m

µ

∑ ′m n
µ

  ′m n
µ g mn

µ = D ′m m
µ g( )

 mn
µ

    
Pmn
µ = 

(µ )

°G
Dmn

µ*
g( )

g

°G
∑ g = Pnm

µ†

    
mn
µ = Pmn

µ 1
norm

1
= (µ )

°G ⋅norm
Dmn

µ*
g( )

g

°G
∑ g subject to normalization:

   
′m ′n
′µ

mn
µ =

1 P ′n ′m
′µ Pmn

µ 1

norm2 = δ ′µ µδ ′m m
1 P ′n n

µ 1

norm2 = δ ′µ µδ ′m mδ ′n n
    
norm = 1 Pnn

µ 1 = (µ )

°G
where:

Left-action of local    on irep-ket        is quite different 
 mn
µ

 g

    
g mn

µ = gPmn
µ 1

(µ )

°G

   m ′n
µ g mn

µ = Dn ′n
µ (g−1) = D ′n n

µ* (g)

    
Pmn
µ g−1= Pmn

µ P ′m ′n
µ D ′m ′n

µ (g−1)
′n =1

µ

∑
′m =1

µ

∑

   
        = Dn ′n

µ (g−1)
′n =1

µ

∑ m ′n
µ

    
        = Dn ′n

µ (g−1)
′n =1

µ

∑ Pm ′n
µ 1

(µ )

°G
    
        = Pmn

µ g−1 1
(µ )

°G
    
        = Pmn

µ g 1
(µ )

°G

    
           =         Pm ′n

µ    Dn ′n
µ (g−1)

′n =1

µ

∑

Local    -matrix component g

compute g-1 right action 

Use 
Mock-Mach
commutation

and
inverse

Hamiltonian and D3 global-g and local-   group matrices in ⏐P(µ)〉-basis  g

If
D is

unitary

For unitary D(µ): (p.51)

Matrix is same as given on p.27 
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⏐P(µ)〉-basis are projected by                                                acting on original ket ⏐1〉 to give:

Left-action of global g on irep-ket 

   
g mn

µ = D ′m m
µ g( )

′m

µ

∑ ′m n
µ

  ′m n
µ g mn

µ = D ′m m
µ g( )

 mn
µ

    
Pmn
µ = 

(µ )

°G
Dmn

µ*
g( )

g

°G
∑ g = Pnm

µ†

    
mn
µ = Pmn

µ 1
norm

1
= (µ )

°G ⋅norm
Dmn

µ*
g( )

g

°G
∑ g subject to normalization:

   
′m ′n
′µ

mn
µ =

1 P ′n ′m
′µ Pmn

µ 1

norm2 = δ ′µ µδ ′m m
1 P ′n n

µ 1

norm2 = δ ′µ µδ ′m mδ ′n n
    
norm = 1 Pnn

µ 1 = (µ )

°G
where:

Left-action of local    on irep-ket        is quite different 
 mn
µ

 g

    
g mn

µ = gPmn
µ 1

(µ )

°G

    
Pmn
µ g−1= Pmn

µ P ′m ′n
µ D ′m ′n

µ (g−1)
′n =1

µ

∑
′m =1

µ

∑

   
        = Dn ′n

µ (g−1)
′n =1

µ

∑ m ′n
µ

    
        = Dn ′n

µ (g−1)
′n =1

µ

∑ Pm ′n
µ 1

(µ )

°G
    
        = Pmn

µ g−1 1
(µ )

°G
    
        = Pmn

µ g 1
(µ )

°G

    
           =         Pm ′n

µ    Dn ′n
µ (g−1)

′n =1

µ

∑

compute g-1 right action 

Use 
Mock-Mach
commutation

and
inverse

   m ′n
µ g mn

µ = Dn ′n
µ (g−1) = D ′n n

µ* (g)

Local    -matrix component g

  ′m n
µ g mn

µ = D ′m m
µ g( )

Global g-matrix component

Hamiltonian and D3 global-g and local-   group matrices in ⏐P(µ)〉-basis  g

If
D is

unitary

For unitary D(µ): (p.51)

Matrix is same as given on p.27 
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Review Stage 1: Group Center:Class-sums κg ,characters χµ(g), and All-Commuting 
Projectors Pµ

Review Stage 2: Group operators g and Mutually-Commuting projectors Pµkk

Review Stage 3: Weyl g-expansion in irreps Dµjk(g) and Non-Commuting projectors Pµjk

                   Simple matrix algebra Pµab Pνcd = δµνδbcPµad

                  Pµjk transforms right-and-left
                  Pµjk -expansion in g-operators
                  Example of D3 transformation by matrix DEjk(r1)

Details of Mock-Mach relativity-duality for D3 groups and representations
        Lab-fixed(Extrinsic-Global) vs. Body-fixed (Intrinsic-Local)
        Compare Global vs Local ⏐g〉-basis and Global vs Local ⏐P(µ)〉-basis
                   
Hamiltonian and D3 group matrices in global and local ⏐P(µ)〉-basis
      Global vs. Local block rearrangement 
         Hamiltonion eigen-matrix calculation      
        Hamiltonian local-symmetry eigensolution
        Molecular vibrational mode eigensolution
               Local symmetry limit
               Global symmetry limit (free or “genuine” modes) 
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D3 local-   group matrices in ⏐P(µ)〉-basis  g

   

RP g( ) = TRG g( )T † =                                      

  Pxx
A1        Pyy

A2        Pxx
E1     Pyx

E1    Pxy
E1     Pyy

E1     

D A1 g( ) ⋅ ⋅ ⋅ ⋅ ⋅

⋅ D A2 g( ) ⋅ ⋅ ⋅ ⋅

⋅ ⋅ Dxx
E1 g( ) Dxy

E1 ⋅ ⋅

⋅ ⋅ Dyx
E1 g( ) Dyy

E1 ⋅ ⋅

⋅ ⋅ ⋅ ⋅ Dxx
E1 g( ) Dxy

E1

⋅ ⋅ ⋅ ⋅ Dyx
E1 g( ) Dyy

E1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

  ′m n
µ g mn

µ = D ′m m
µ g( )

Global g-matrix component

D3 global-g group matrices in ⏐P(µ)〉-basis 

⏐P(µ)〉-base
ordering to
concentrate

global-g 
D-matrices

   m ′n
µ g mn

µ = Dn ′n
µ (g−1) = D ′n n

µ* (g)

Local    -matrix component g If
D is

unitary

99Wednesday, April 1, 2015



D3 local-   group matrices in ⏐P(µ)〉-basis  g

   

RP g( ) = TRG g( )T † =                                      

  Pxx
A1        Pyy

A2        Pxx
E1     Pyx

E1    Pxy
E1     Pyy

E1     

D A1 g( ) ⋅ ⋅ ⋅ ⋅ ⋅

⋅ D A2 g( ) ⋅ ⋅ ⋅ ⋅

⋅ ⋅ Dxx
E1 g( ) Dxy

E1 ⋅ ⋅

⋅ ⋅ Dyx
E1 g( ) Dyy

E1 ⋅ ⋅

⋅ ⋅ ⋅ ⋅ Dxx
E1 g( ) Dxy

E1

⋅ ⋅ ⋅ ⋅ Dyx
E1 g( ) Dyy

E1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

   

RP g( ) = TRG g( )T † =                                     

  Pxx
A1            Pyy

A2          Pxx
E1         Pyx

E1         Pxy
E1         Pyy

E1     

D A1* g( ) ⋅ ⋅ ⋅ ⋅ ⋅

⋅ D A2* g( ) ⋅ ⋅ ⋅ ⋅

⋅ ⋅ Dxx
E1* g( ) ⋅ Dxy

E1* g( ) ⋅

⋅ ⋅ ⋅ Dxx
E1* g( ) ⋅ Dxy

E1* g( )
⋅ ⋅ Dyx

E1* g( ) ⋅ Dyy
E1* g( ) ⋅

⋅ ⋅ ⋅ Dyx
E1* g( ) ⋅ Dyy

E1* g( )

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

  ′m n
µ g mn

µ = D ′m m
µ g( )

Global g-matrix component

D3 global-g group matrices in ⏐P(µ)〉-basis 

⏐P(µ)〉-base
ordering to
concentrate

global-g 
D-matrices

here
Local    -matrix
is not concentrated g

   m ′n
µ g mn

µ = Dn ′n
µ (g−1) = D ′n n

µ* (g)

Local    -matrix component g If
D is

unitary
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RP g( ) = TRG g( )T † =                                      

  Pxx
A1        Pyy

A2        Pxx
E1     Pxy

E1     Pyx
E1     Pyy

E1     

D A1 g( ) ⋅ ⋅ ⋅ ⋅ ⋅

⋅ D A2 g( ) ⋅ ⋅ ⋅ ⋅

⋅ ⋅ Dxx
E1 g( ) ⋅ Dxy

E1 g( ) ⋅

⋅ ⋅ ⋅ Dxx
E1 ⋅ Dxy

E1

⋅ ⋅ Dyx
E1 g( ) ⋅ Dyy

E1 g( ) ⋅

⋅ ⋅ ⋅ Dyx
E1 ⋅ Dyy

E1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

D3 local-   group matrices in ⏐P(µ)〉-basis  g

   

RP g( ) = TRG g( )T † =                                      

  Pxx
A1        Pyy

A2        Pxx
E1     Pyx

E1    Pxy
E1     Pyy

E1     

D A1 g( ) ⋅ ⋅ ⋅ ⋅ ⋅

⋅ D A2 g( ) ⋅ ⋅ ⋅ ⋅

⋅ ⋅ Dxx
E1 g( ) Dxy

E1 ⋅ ⋅

⋅ ⋅ Dyx
E1 g( ) Dyy

E1 ⋅ ⋅

⋅ ⋅ ⋅ ⋅ Dxx
E1 g( ) Dxy

E1

⋅ ⋅ ⋅ ⋅ Dyx
E1 g( ) Dyy

E1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

   

RP g( ) = TRG g( )T † =                                     

  Pxx
A1            Pyy

A2          Pxx
E1         Pyx

E1         Pxy
E1         Pyy

E1     

D A1* g( ) ⋅ ⋅ ⋅ ⋅ ⋅

⋅ D A2* g( ) ⋅ ⋅ ⋅ ⋅

⋅ ⋅ Dxx
E1* g( ) ⋅ Dxy

E1* g( ) ⋅

⋅ ⋅ ⋅ Dxx
E1* g( ) ⋅ Dxy

E1* g( )
⋅ ⋅ Dyx

E1* g( ) ⋅ Dyy
E1* g( ) ⋅

⋅ ⋅ ⋅ Dyx
E1* g( ) ⋅ Dyy

E1* g( )

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

  ′m n
µ g mn

µ = D ′m m
µ g( )

Global g-matrix component

D3 global-g group matrices in ⏐P(µ)〉-basis 

⏐P(µ)〉-base
ordering to
concentrate

global-g 
D-matrices

here
Local    -matrix
is not concentrated g

here
global g-matrix
is not concentrated

   m ′n
µ g mn

µ = Dn ′n
µ (g−1) = D ′n n

µ* (g)

Local    -matrix component g If
D is

unitary
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D3 local-   group matrices in ⏐P(µ)〉-basis  g

   

RP g( ) = TRG g( )T † =                                      

  Pxx
A1        Pyy

A2        Pxx
E1     Pyx

E1    Pxy
E1     Pyy

E1     

D A1 g( ) ⋅ ⋅ ⋅ ⋅ ⋅

⋅ D A2 g( ) ⋅ ⋅ ⋅ ⋅

⋅ ⋅ Dxx
E1 g( ) Dxy

E1 ⋅ ⋅

⋅ ⋅ Dyx
E1 g( ) Dyy

E1 ⋅ ⋅

⋅ ⋅ ⋅ ⋅ Dxx
E1 g( ) Dxy

E1

⋅ ⋅ ⋅ ⋅ Dyx
E1 g( ) Dyy

E1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

RP g( ) = TRG g( )T † =                                      

  Pxx
A1        Pyy

A2        Pxx
E1     Pxy

E1     Pyx
E1     Pyy

E1     

D A1 g( ) ⋅ ⋅ ⋅ ⋅ ⋅

⋅ D A2 g( ) ⋅ ⋅ ⋅ ⋅

⋅ ⋅ Dxx
E1 g( ) ⋅ Dxy

E1 g( ) ⋅

⋅ ⋅ ⋅ Dxx
E1 ⋅ Dxy

E1

⋅ ⋅ Dyx
E1 g( ) ⋅ Dyy

E1 g( ) ⋅

⋅ ⋅ ⋅ Dyx
E1 ⋅ Dyy

E1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

   

RP g( ) = TRG g( )T † =                                     

  Pxx
A1            Pyy

A2          Pxx
E1         Pyx

E1         Pxy
E1         Pyy

E1     

D A1* g( ) ⋅ ⋅ ⋅ ⋅ ⋅

⋅ D A2* g( ) ⋅ ⋅ ⋅ ⋅

⋅ ⋅ Dxx
E1* g( ) ⋅ Dxy

E1* g( ) ⋅

⋅ ⋅ ⋅ Dxx
E1* g( ) ⋅ Dxy

E1* g( )
⋅ ⋅ Dyx

E1* g( ) ⋅ Dyy
E1* g( ) ⋅

⋅ ⋅ ⋅ Dyx
E1* g( ) ⋅ Dyy

E1* g( )

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

RP g( ) = TRG g( )T † =                                     

  Pxx
A1           Pyy

A2          Pxx
E1        Pxy

E1           Pyx
E1         Pyy

E1     

D A1* g( ) ⋅ ⋅ ⋅ ⋅ ⋅

⋅ D A2* g( ) ⋅ ⋅ ⋅ ⋅

⋅ ⋅ Dxx
E1* g( ) Dxy

E1* g( ) ⋅ ⋅

⋅ ⋅ Dyx
E1* g( ) Dyy

E1* g( ) ⋅ ⋅

⋅ ⋅ ⋅ ⋅ Dxx
E1* g( ) Dxy

E1* g( )
⋅ ⋅ ⋅ ⋅ Dyx

E1* g( ) Dyy
E1* g( )

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

  ′m n
µ g mn

µ = D ′m m
µ g( )

Global g-matrix component

D3 global-g group matrices in ⏐P(µ)〉-basis 

⏐P(µ)〉-base
ordering to
concentrate

global-g 
D-matrices

⏐P(µ)〉-base
ordering to
concentrate

local-
D-matrices

and
H-matrices

 g

   m ′n
µ g mn

µ = Dn ′n
µ (g−1) = D ′n n

µ* (g)

Local    -matrix component g If
D is

unitary
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Review Stage 1: Group Center:Class-sums κg ,characters χµ(g), and All-Commuting 
Projectors Pµ

Review Stage 2: Group operators g and Mutually-Commuting projectors Pµkk

Review Stage 3: Weyl g-expansion in irreps Dµjk(g) and Non-Commuting projectors Pµjk

                   Simple matrix algebra Pµab Pνcd = δµνδbcPµad

                  Pµjk transforms right-and-left
                  Pµjk -expansion in g-operators
                  Example of D3 transformation by matrix DEjk(r1)

Details of Mock-Mach relativity-duality for D3 groups and representations
        Lab-fixed(Extrinsic-Global) vs. Body-fixed (Intrinsic-Local)
        Compare Global vs Local ⏐g〉-basis and Global vs Local ⏐P(µ)〉-basis
                   
Hamiltonian and D3 group matrices in global and local ⏐P(µ)〉-basis
      Global vs. Local block rearrangement 
         Hamiltonion eigen-matrix calculation            
        Hamiltonian local-symmetry eigensolution
        Molecular vibrational mode eigensolution
               Local symmetry limit
               Global symmetry limit (free or “genuine” modes) 
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H( )G = rgg
g=1

oG
∑ =

r0 r2 r1 i1 i2 i3
r1 r0 r1 i3 i1 i2
r2 r1 r0 i2 i3 i1
ii i3 i2 r0 r1 r2

i2 i1 i3 r2 r0 r1
i3 i2 i1 r1 r2 r0

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

H matrix in
⏐g〉-basis:

H matrix in
⏐P(µ)〉-basis:

D3 Hamiltonian local- H matrices in ⏐P(µ)〉-basis 
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Hab
α

= Pma
µ H Pnb

µ

                                 Pxx
A1    Pyy

A2    Pxx
E1 Pxy

E1    Pyx
E1 Pyy

E1     

H( )P = T H( )G T † =

H A1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ H A2 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ Hxx

E1 Hxy
E1 ⋅ ⋅

⋅ ⋅ Hyx
E1 Hyy

E1 ⋅ ⋅

⋅ ⋅ ⋅ ⋅ Hxx
E1 Hxy

E1

⋅ ⋅ ⋅ ⋅ Hyx
E1 Hyy

E1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

   

H( )G = rgg
g=1

oG
∑ =

r0 r2 r1 i1 i2 i3
r1 r0 r1 i3 i1 i2
r2 r1 r0 i2 i3 i1
ii i3 i2 r0 r1 r2

i2 i1 i3 r2 r0 r1
i3 i2 i1 r1 r2 r0

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

H matrix in
⏐g〉-basis:

H matrix in
⏐P(µ)〉-basis:

D3 Hamiltonian local- H matrices in ⏐P(µ)〉-basis 
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Hab
α

= Pma
µ H Pnb

µ

                                 Pxx
A1    Pyy

A2    Pxx
E1 Pxy

E1    Pyx
E1 Pyy

E1     

H( )P = T H( )G T † =

H A1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ H A2 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ Hxx

E1 Hxy
E1 ⋅ ⋅

⋅ ⋅ Hyx
E1 Hyy

E1 ⋅ ⋅

⋅ ⋅ ⋅ ⋅ Hxx
E1 Hxy

E1

⋅ ⋅ ⋅ ⋅ Hyx
E1 Hyy

E1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

   

H( )G = rgg
g=1

oG
∑ =

r0 r2 r1 i1 i2 i3
r1 r0 r1 i3 i1 i2
r2 r1 r0 i2 i3 i1
ii i3 i2 r0 r1 r2

i2 i1 i3 r2 r0 r1
i3 i2 i1 r1 r2 r0

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

H matrix in
⏐g〉-basis:

H matrix in
⏐P(µ)〉-basis:

D3 Hamiltonian local- H matrices in ⏐P(µ)〉-basis 

    
mn
µ = Pmn

µ 1
norm

1
= (µ )

°G ⋅norm
Dmn

µ*
g( )

g

°G
∑ g

    
norm = 1 Pnn

µ 1 = (µ )

°G
(which will cancel out)
So, fuggettabout it!

Let:
   mn
µ ≡ Pmn

µ = Pmn
µ 1

norm
1

subject to normalization (from p. 86-96):
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Hab
α

= Pma
µ H Pnb

µ = 1 Pam
µ HPnb

µ 1

                                 Pxx
A1    Pyy

A2    Pxx
E1 Pxy

E1    Pyx
E1 Pyy

E1     

H( )P = T H( )G T † =

H A1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ H A2 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ Hxx

E1 Hxy
E1 ⋅ ⋅

⋅ ⋅ Hyx
E1 Hyy

E1 ⋅ ⋅

⋅ ⋅ ⋅ ⋅ Hxx
E1 Hxy

E1

⋅ ⋅ ⋅ ⋅ Hyx
E1 Hyy

E1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

   

H( )G = rgg
g=1

oG
∑ =

r0 r2 r1 i1 i2 i3
r1 r0 r1 i3 i1 i2
r2 r1 r0 i2 i3 i1
ii i3 i2 r0 r1 r2

i2 i1 i3 r2 r0 r1
i3 i2 i1 r1 r2 r0

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

H matrix in
⏐g〉-basis:

H matrix in
⏐P(µ)〉-basis:

D3 Hamiltonian local- H matrices in ⏐P(µ)〉-basis 

    
mn
µ = Pmn

µ 1
norm

1
= (µ )

°G ⋅norm
Dmn

µ*
g( )

g

°G
∑ g

    
norm = 1 Pnn

µ 1 = (µ )

°G
(which will cancel out)
So, fuggettabout it!

   

m n( )† = n m

   Pmn
µ( )† = Pnm

µ

Projector conjugation 
(norm)2

subject to normalization (from p. 86-96):
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Hab
α

= Pma
µ H Pnb

µ = 1 Pam
µ HPnb

µ 1 = 1 HPam
µ Pnb

µ 1

                                 Pxx
A1    Pyy

A2    Pxx
E1 Pxy

E1    Pyx
E1 Pyy

E1     

H( )P = T H( )G T † =

H A1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ H A2 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ Hxx

E1 Hxy
E1 ⋅ ⋅

⋅ ⋅ Hyx
E1 Hyy

E1 ⋅ ⋅

⋅ ⋅ ⋅ ⋅ Hxx
E1 Hxy

E1

⋅ ⋅ ⋅ ⋅ Hyx
E1 Hyy

E1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

   

H( )G = rgg
g=1

oG
∑ =

r0 r2 r1 i1 i2 i3
r1 r0 r1 i3 i1 i2
r2 r1 r0 i2 i3 i1
ii i3 i2 r0 r1 r2

i2 i1 i3 r2 r0 r1
i3 i2 i1 r1 r2 r0

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

H matrix in
⏐g〉-basis:

H matrix in
⏐P(µ)〉-basis:

D3 Hamiltonian local- H matrices in ⏐P(µ)〉-basis 

Mock-Mach
commutation

    
mn
µ = Pmn

µ 1
norm

1
= (µ )

°G ⋅norm
Dmn

µ*
g( )

g

°G
∑ g

    
norm = 1 Pnn

µ 1 = (µ )

°G
(which will cancel out)
So, fuggettabout it!

r r = r r
(p.61)

(norm)2 (norm)2

subject to normalization (from p. 86-96):
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Hab
α

= Pma
µ H Pnb

µ = 1 Pam
µ HPnb

µ 1 = 1 HPam
µ Pnb

µ 1 = δmn 1 HPab
µ 1 = 1 H g

g=1

°G

∑ Dab
α*
g( )

                                 Pxx
A1    Pyy

A2    Pxx
E1 Pxy

E1    Pyx
E1 Pyy

E1     

H( )P = T H( )G T † =

H A1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ H A2 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ Hxx

E1 Hxy
E1 ⋅ ⋅

⋅ ⋅ Hyx
E1 Hyy

E1 ⋅ ⋅

⋅ ⋅ ⋅ ⋅ Hxx
E1 Hxy

E1

⋅ ⋅ ⋅ ⋅ Hyx
E1 Hyy

E1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

   

H( )G = rgg
g=1

oG
∑ =

r0 r2 r1 i1 i2 i3
r1 r0 r1 i3 i1 i2
r2 r1 r0 i2 i3 i1
ii i3 i2 r0 r1 r2

i2 i1 i3 r2 r0 r1
i3 i2 i1 r1 r2 r0

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

H matrix in
⏐g〉-basis:

H matrix in
⏐P(µ)〉-basis:

D3 Hamiltonian local- H matrices in ⏐P(µ)〉-basis 

   

Use Pmn
µ -orthonormality

P ′m ′n
′µ Pmn

µ = δ ′µ µδ ′n mP ′m n
µ

(p.21)

(norm)2 (norm)2 (norm)2
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Hab
α

= Pma
µ H Pnb

µ = 1 Pam
µ HPnb

µ 1 = 1 HPam
µ Pnb

µ 1 = δmn 1 HPab
µ 1 = 1 H g

g=1

°G

∑ Dab
µ*

g( )

                                 Pxx
A1    Pyy

A2    Pxx
E1 Pxy

E1    Pyx
E1 Pyy

E1     

H( )P = T H( )G T † =

H A1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ H A2 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ Hxx

E1 Hxy
E1 ⋅ ⋅

⋅ ⋅ Hyx
E1 Hyy

E1 ⋅ ⋅

⋅ ⋅ ⋅ ⋅ Hxx
E1 Hxy

E1

⋅ ⋅ ⋅ ⋅ Hyx
E1 Hyy

E1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

   

H( )G = rgg
g=1

oG
∑ =

r0 r2 r1 i1 i2 i3
r1 r0 r1 i3 i1 i2
r2 r1 r0 i2 i3 i1
ii i3 i2 r0 r1 r2

i2 i1 i3 r2 r0 r1
i3 i2 i1 r1 r2 r0

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

H matrix in
⏐g〉-basis:

H matrix in
⏐P(µ)〉-basis:

D3 Hamiltonian local- H matrices in ⏐P(µ)〉-basis 

Coefficients               are irreducible representations (ireps) of g
 
Dmn

µ g( )

   

g = 1 r1 r2 i1 i2 i3

D A1 g( ) =
D A2 g( ) =
Dx,y

E1 g( ) =

1
1

1 ⋅
⋅ 1

⎛

⎝⎜
⎞

⎠⎟

1
1

−2
1 − 2

3

2
3 −2

1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
1

−2
1

2
3

− 2
3 −2

1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
−1

−2
1 − 2

3

− 2
3

2
1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
−1

−2
1

2
3

2
3

2
1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
−1

1 0
0 −1

⎛

⎝⎜
⎞

⎠⎟

    
mn
µ = Pmn

µ 1
norm

1
= (µ )

°G ⋅norm
Dmn

µ*
g( )

g

°G
∑ g

    
norm = 1 Pnn

µ 1 = (µ )

°G
(which will cancel out)
So, fuggettabout it!

(norm)2 (norm)2 (norm)2

subject to normalization (from p. 86-96):
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Hab
α

= Pma
µ H Pnb

µ = 1 Pam
µ HPnb

µ 1 = 1 HPam
µ Pnb

µ 1 = δmn 1 HPab
µ 1 = 1 H g

g=1

°G

∑ Dab
µ*

g( ) = rg
g=1

°G

∑ Dab
µ*

g( )

                                 Pxx
A1    Pyy

A2    Pxx
E1 Pxy

E1    Pyx
E1 Pyy

E1     

H( )P = T H( )G T † =

H A1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ H A2 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ Hxx

E1 Hxy
E1 ⋅ ⋅

⋅ ⋅ Hyx
E1 Hyy

E1 ⋅ ⋅

⋅ ⋅ ⋅ ⋅ Hxx
E1 Hxy

E1

⋅ ⋅ ⋅ ⋅ Hyx
E1 Hyy

E1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

   

H( )G = rgg
g=1

oG
∑ =

r0 r2 r1 i1 i2 i3
r1 r0 r1 i3 i1 i2
r2 r1 r0 i2 i3 i1
ii i3 i2 r0 r1 r2

i2 i1 i3 r2 r0 r1
i3 i2 i1 r1 r2 r0

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

H matrix in
⏐g〉-basis:

H matrix in
⏐P(µ)〉-basis:

D3 Hamiltonian local- H matrices in ⏐P(µ)〉-basis 

Coefficients               are irreducible representations (ireps) of g
 
Dmn

µ g( )

   

g = 1 r1 r2 i1 i2 i3

D A1 g( ) =
D A2 g( ) =
Dx,y

E1 g( ) =

1
1

1 ⋅
⋅ 1

⎛

⎝⎜
⎞

⎠⎟

1
1

−2
1 − 2

3

2
3 −2

1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
1

−2
1

2
3

− 2
3 −2

1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
−1

−2
1 − 2

3

− 2
3

2
1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
−1

−2
1

2
3

2
3

2
1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
−1

1 0
0 −1

⎛

⎝⎜
⎞

⎠⎟

    
mn
µ = Pmn

µ 1
norm

1
= (µ )

°G ⋅norm
Dmn

µ*
g( )

g

°G
∑ g

subject to normalization (from p. 86-96):

    
norm = 1 Pnn

µ 1 = (µ )

°G
(which will cancel out)
So, fuggettabout it!

(norm)2 (norm)2 (norm)2
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Hab
α

= Pma
µ H Pnb

µ = 1 Pam
µ HPnb

µ 1 = 1 HPam
µ Pnb

µ 1 = δmn 1 HPab
µ 1 = 1 H g

g=1

°G

∑ Dab
α*
g( ) = rg

g=1

°G

∑ Dab
α*
g( )

                                 Pxx
A1    Pyy

A2    Pxx
E1 Pxy

E1    Pyx
E1 Pyy

E1     

H( )P = T H( )G T † =

H A1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ H A2 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ Hxx

E1 Hxy
E1 ⋅ ⋅

⋅ ⋅ Hyx
E1 Hyy

E1 ⋅ ⋅

⋅ ⋅ ⋅ ⋅ Hxx
E1 Hxy

E1

⋅ ⋅ ⋅ ⋅ Hyx
E1 Hyy

E1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

H A1 = r0D
A1*(1)+ r1D

A1*(r1)+ r1
*DA1*(r2)+ i1D

A1*(i1)+ i2D
A1*(i2)+ i3D

A1*(i3)=r0 +r1+r1
*+i1+i2 +i3   

   

H( )G = rgg
g=1

oG
∑ =

r0 r2 r1 i1 i2 i3
r1 r0 r1 i3 i1 i2
r2 r1 r0 i2 i3 i1
ii i3 i2 r0 r1 r2

i2 i1 i3 r2 r0 r1
i3 i2 i1 r1 r2 r0

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

H matrix in
⏐g〉-basis:

H matrix in
⏐P(µ)〉-basis:

D3 Hamiltonian local- H matrices in ⏐P(µ)〉-basis 

Coefficients               are irreducible representations (ireps) of g
 
Dmn

µ g( )

   

g = 1 r1 r2 i1 i2 i3

D A1 g( ) =
D A2 g( ) =
Dx,y

E1 g( ) =

1
1

1 ⋅
⋅ 1

⎛

⎝⎜
⎞

⎠⎟

1
1

−2
1 − 2

3

2
3 −2

1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
1

−2
1

2
3

− 2
3 −2

1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
−1

−2
1 − 2

3

− 2
3

2
1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
−1

−2
1

2
3

2
3

2
1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
−1

1 0
0 −1

⎛

⎝⎜
⎞

⎠⎟
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Hab
α

= Pma
µ H Pnb

µ = 1 Pam
µ HPnb

µ 1 = 1 HPam
µ Pnb

µ 1 = δmn 1 HPab
µ 1 = 1 H g

g=1

°G

∑ Dab
α*
g( ) = rg

g=1

°G

∑ Dab
α*
g( )

                                 Pxx
A1    Pyy

A2    Pxx
E1 Pxy

E1    Pyx
E1 Pyy

E1     

H( )P = T H( )G T † =

H A1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ H A2 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ Hxx

E1 Hxy
E1 ⋅ ⋅

⋅ ⋅ Hyx
E1 Hyy

E1 ⋅ ⋅

⋅ ⋅ ⋅ ⋅ Hxx
E1 Hxy

E1

⋅ ⋅ ⋅ ⋅ Hyx
E1 Hyy

E1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

H A1 = r0D
A1*(1)+ r1D

A1*(r1)+ r1
*DA1*(r2)+ i1D

A1*(i1)+ i2D
A1*(i2)+ i3D

A1*(i3)  =r0 +r1+r1
*+i1+i2 +i3              

H A2 = r0D
A2*(1)+ r1D

A2*(r1)+ r1
*DA2*(r2)+ i1D

A2*(i1)+i2D
A2*(i2)+i3D

A2*(i3) =r0 +r1+r1
*-i1-i2 -i3   

   

H( )G = rgg
g=1

oG
∑ =

r0 r2 r1 i1 i2 i3
r1 r0 r1 i3 i1 i2
r2 r1 r0 i2 i3 i1
ii i3 i2 r0 r1 r2

i2 i1 i3 r2 r0 r1
i3 i2 i1 r1 r2 r0

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

H matrix in
⏐g〉-basis:

H matrix in
⏐P(µ)〉-basis:

D3 Hamiltonian local- H matrices in ⏐P(µ)〉-basis 

Coefficients               are irreducible representations (ireps) of g
 
Dmn

µ g( )

   

g = 1 r1 r2 i1 i2 i3

D A1 g( ) =
D A2 g( ) =
Dx,y

E1 g( ) =

1
1

1 ⋅
⋅ 1

⎛

⎝⎜
⎞

⎠⎟

1
1

−2
1 − 2

3

2
3 −2

1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
1

−2
1

2
3

− 2
3 −2

1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
−1

−2
1 − 2

3

− 2
3

2
1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
−1

−2
1

2
3

2
3

2
1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
−1

1 0
0 −1

⎛

⎝⎜
⎞

⎠⎟
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Hab
α

= Pma
µ H Pnb

µ = 1 Pam
µ HPnb

µ 1 = 1 HPam
µ Pnb

µ 1 = δmn 1 HPab
µ 1 = 1 H g

g=1

°G

∑ Dab
α*
g( ) = rg

g=1

°G

∑ Dab
α*
g( )

                                 Pxx
A1    Pyy

A2    Pxx
E1 Pxy

E1    Pyx
E1 Pyy

E1     

H( )P = T H( )G T † =

H A1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ H A2 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ Hxx

E1 Hxy
E1 ⋅ ⋅

⋅ ⋅ Hyx
E1 Hyy

E1 ⋅ ⋅

⋅ ⋅ ⋅ ⋅ Hxx
E1 Hxy

E1

⋅ ⋅ ⋅ ⋅ Hyx
E1 Hyy

E1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

H A1 = r0D
A1*(1)+ r1D

A1*(r1)+ r1
*DA1*(r2)+ i1D

A1*(i1)+ i2D
A1*(i2)+ i3D

A1*(i3)  =r0 +r1+r1
*+i1+i2 +i3              

H A2 = r0D
A2*(1)+ r1D

A2*(r1)+ r1
*DA2*(r2)+ i1D

A2*(i1)+i2D
A2*(i2)+i3D

A2*(i3) =r0 +r1+r1
*-i1-i2 -i3                

Hxx
E1 = r0Dxx

E*
(1)+ r1Dxx

E*
(r1)+ r1

*Dxx
E*

(r2)+ i1Dxx
E*

(i1)+ i2Dxx
E*

(i2)+ i3Dxx
E*

(i3)  =(2r0 -r1-r1
*-i1-i2 +2i3)/2 

   

H( )G = rgg
g=1

oG
∑ =

r0 r2 r1 i1 i2 i3
r1 r0 r1 i3 i1 i2
r2 r1 r0 i2 i3 i1
ii i3 i2 r0 r1 r2

i2 i1 i3 r2 r0 r1
i3 i2 i1 r1 r2 r0

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

H matrix in
⏐g〉-basis:

H matrix in
⏐P(µ)〉-basis:

D3 Hamiltonian local- H matrices in ⏐P(µ)〉-basis 

Coefficients               are irreducible representations (ireps) of g
 
Dmn

µ g( )

   

g = 1 r1 r2 i1 i2 i3

D A1 g( ) =
D A2 g( ) =
Dx,y

E1 g( ) =

1
1

1 ⋅
⋅ 1

⎛

⎝⎜
⎞

⎠⎟

1
1

−2
1 − 2

3

2
3 −2

1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
1

−2
1

2
3

− 2
3 −2

1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
−1

−2
1 − 2

3

− 2
3

2
1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
−1

−2
1

2
3

2
3

2
1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
−1

1 0
0 −1

⎛

⎝⎜
⎞

⎠⎟
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Hab
α

= Pma
µ H Pnb

µ = 1 Pam
µ HPnb

µ 1 = 1 HPam
µ Pnb

µ 1 = δmn 1 HPab
µ 1 = 1 H g

g=1

°G

∑ Dab
α*
g( ) = rg

g=1

°G

∑ Dab
α*
g( )

                                 Pxx
A1    Pyy

A2    Pxx
E1 Pxy

E1    Pyx
E1 Pyy

E1     

H( )P = T H( )G T † =

H A1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ H A2 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ Hxx

E1 Hxy
E1 ⋅ ⋅

⋅ ⋅ Hyx
E1 Hyy

E1 ⋅ ⋅

⋅ ⋅ ⋅ ⋅ Hxx
E1 Hxy

E1

⋅ ⋅ ⋅ ⋅ Hyx
E1 Hyy

E1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

H A1 = r0D
A1*(1)+ r1D

A1*(r1)+ r1
*DA1*(r2)+ i1D

A1*(i1)+ i2D
A1*(i2)+ i3D

A1*(i3)  =r0 +r1+r1
*+i1+i2 +i3              

H A2 = r0D
A2*(1)+ r1D

A2*(r1)+ r1
*DA2*(r2)+ i1D

A2*(i1)+i2D
A2*(i2)+i3D

A2*(i3) =r0 +r1+r1
*-i1-i2 -i3                

Hxx
E1 = r0Dxx

E*
(1)+ r1Dxx

E*
(r1)+ r1

*Dxx
E*

(r2)+ i1Dxx
E*

(i1)+ i2Dxx
E*

(i2)+ i3Dxx
E*

(i3)  =(2r0 -r1-r1
*-i1-i2 +2i3)/2      

Hxy
E1 = r0Dxy

E*
(1)+ r1Dxy

E*
(r1)+ r1

*Dxy
E*

(r2)+ i1Dxy
E*

(i1)+ i2Dxy
E*

(i2)+ i3Dxy
E*

(i3)  = 3(-r1+r1
*-i1+i2 )/2 =Hyx

E*  

   

H( )G = rgg
g=1

oG
∑ =

r0 r2 r1 i1 i2 i3
r1 r0 r1 i3 i1 i2
r2 r1 r0 i2 i3 i1
ii i3 i2 r0 r1 r2

i2 i1 i3 r2 r0 r1
i3 i2 i1 r1 r2 r0

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

H matrix in
⏐g〉-basis:

H matrix in
⏐P(µ)〉-basis:

D3 Hamiltonian local- H matrices in ⏐P(µ)〉-basis 

Coefficients               are irreducible representations (ireps) of g
 
Dmn

µ g( )

   

g = 1 r1 r2 i1 i2 i3

D A1 g( ) =
D A2 g( ) =
Dx,y

E1 g( ) =

1
1

1 ⋅
⋅ 1

⎛

⎝⎜
⎞

⎠⎟

1
1

−2
1 − 2

3

2
3 −2

1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
1

−2
1

2
3

− 2
3 −2

1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
−1

−2
1 − 2

3

− 2
3

2
1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
−1

−2
1

2
3

2
3

2
1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
−1

1 0
0 −1

⎛

⎝⎜
⎞

⎠⎟
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Hab
α

= Pma
µ H Pnb

µ = 1 Pam
µ HPnb

µ 1 = 1 HPam
µ Pnb

µ 1 = δmn 1 HPab
µ 1 = 1 H g

g=1

°G

∑ Dab
α*
g( ) = rg

g=1

°G

∑ Dab
α*
g( )

                                 Pxx
A1    Pyy

A2    Pxx
E1 Pxy

E1    Pyx
E1 Pyy

E1     

H( )P = T H( )G T † =

H A1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ H A2 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ Hxx

E1 Hxy
E1 ⋅ ⋅

⋅ ⋅ Hyx
E1 Hyy

E1 ⋅ ⋅

⋅ ⋅ ⋅ ⋅ Hxx
E1 Hxy

E1

⋅ ⋅ ⋅ ⋅ Hyx
E1 Hyy

E1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

H A1 = r0D
A1*(1)+ r1D

A1*(r1)+ r1
*DA1*(r2)+ i1D

A1*(i1)+ i2D
A1*(i2)+ i3D

A1*(i3)  =r0 +r1+r1
*+i1+i2 +i3              

H A2 = r0D
A2*(1)+ r1D

A2*(r1)+ r1
*DA2*(r2)+ i1D

A2*(i1)+i2D
A2*(i2)+i3D

A2*(i3) =r0 +r1+r1
*-i1-i2 -i3                

Hxx
E1 = r0Dxx

E*
(1)+ r1Dxx

E*
(r1)+ r1

*Dxx
E*

(r2)+ i1Dxx
E*

(i1)+ i2Dxx
E*

(i2)+ i3Dxx
E*

(i3)  =(2r0 -r1-r1
*-i1-i2 +2i3)/2      

Hxy
E1 = r0Dxy

E*
(1)+ r1Dxy

E*
(r1)+ r1

*Dxy
E*

(r2)+ i1Dxy
E*

(i1)+ i2Dxy
E*

(i2)+ i3Dxy
E*

(i3)  = 3(-r1+r1
*-i1+i2 )/2 =Hyx

E*  

Hyy
E1 = r0Dyy

E*
(1)+ r1Dyy

E*
(r1)+ r1

*Dyy
E*

(r2)+ i1Dyy
E*

(i1)+ i2Dyy
E*

(i2)+ i3Dyy
E*

(i3)  =(2r0 -r1-r1
*+i1+i2 -2i3)/2     

   

H( )G = rgg
g=1

oG
∑ =

r0 r2 r1 i1 i2 i3
r1 r0 r1 i3 i1 i2
r2 r1 r0 i2 i3 i1
ii i3 i2 r0 r1 r2

i2 i1 i3 r2 r0 r1
i3 i2 i1 r1 r2 r0

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

H matrix in
⏐g〉-basis:

H matrix in
⏐P(µ)〉-basis:

D3 Hamiltonian local- H matrices in ⏐P(µ)〉-basis 

Coefficients               are irreducible representations (ireps) of g
 
Dmn

µ g( )

   

g = 1 r1 r2 i1 i2 i3

D A1 g( ) =
D A2 g( ) =
Dx,y

E1 g( ) =

1
1

1 ⋅
⋅ 1

⎛

⎝⎜
⎞

⎠⎟

1
1

−2
1 − 2

3

2
3 −2

1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
1

−2
1

2
3

− 2
3 −2

1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
−1

−2
1 − 2

3

− 2
3

2
1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
−1

−2
1

2
3

2
3

2
1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
−1

1 0
0 −1

⎛

⎝⎜
⎞
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Hab
α

= Pma
µ H Pnb

µ = 1 Pam
µ HPnb

µ 1 = 1 HPam
µ Pnb

µ 1 = δmn 1 HPab
µ 1 = 1 H g

g=1

°G

∑ Dab
α*
g( ) = rg

g=1

°G

∑ Dab
α*
g( )

                                 Pxx
A1    Pyy

A2    Pxx
E1 Pxy

E1    Pyx
E1 Pyy

E1     

H( )P = T H( )G T † =

H A1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ H A2 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ Hxx

E1 Hxy
E1 ⋅ ⋅

⋅ ⋅ Hyx
E1 Hyy

E1 ⋅ ⋅

⋅ ⋅ ⋅ ⋅ Hxx
E1 Hxy

E1

⋅ ⋅ ⋅ ⋅ Hyx
E1 Hyy

E1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

H A1 = r0D
A1*(1)+ r1D

A1*(r1)+ r1
*DA1*(r2)+ i1D

A1*(i1)+ i2D
A1*(i2)+ i3D

A1*(i3)  =r0 +r1+r1
*+i1+i2 +i3              

H A2 = r0D
A2*(1)+ r1D

A2*(r1)+ r1
*DA2*(r2)+ i1D

A2*(i1)+i2D
A2*(i2)+i3D

A2*(i3) =r0 +r1+r1
*-i1-i2 -i3                

Hxx
E1 = r0Dxx

E*
(1)+ r1Dxx

E*
(r1)+ r1

*Dxx
E*

(r2)+ i1Dxx
E*

(i1)+ i2Dxx
E*

(i2)+ i3Dxx
E*

(i3)  =(2r0 -r1-r1
*-i1-i2 +2i3)/2      

Hxy
E1 = r0Dxy

E*
(1)+ r1Dxy

E*
(r1)+ r1

*Dxy
E*

(r2)+ i1Dxy
E*

(i1)+ i2Dxy
E*

(i2)+ i3Dxy
E*

(i3)  = 3(-r1+r1
*-i1+i2 )/2 =Hyx

E*  

Hyy
E1 = r0Dyy

E*
(1)+ r1Dyy

E*
(r1)+ r1

*Dyy
E*

(r2)+ i1Dyy
E*

(i1)+ i2Dyy
E*

(i2)+ i3Dyy
E*

(i3)  =(2r0 -r1-r1
*+i1+i2 -2i3)/2     

Hxx
E1 Hxy

E1

Hyx
E1 Hyy

E1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
= 1
2

2r0 -r1-r1
*-i1-i2+2i3 3(-r1+r1

*-i1+i2 )

3(−r1
*+r1-i1+i2 ) 2r0 -r1-r1

*+i1+i2 -2i3

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

   

H( )G = rgg
g=1

oG
∑ =

r0 r2 r1 i1 i2 i3
r1 r0 r1 i3 i1 i2
r2 r1 r0 i2 i3 i1
ii i3 i2 r0 r1 r2

i2 i1 i3 r2 r0 r1
i3 i2 i1 r1 r2 r0

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

H matrix in
⏐g〉-basis:

H matrix in
⏐P(µ)〉-basis:

D3 Hamiltonian local- H matrices in ⏐P(µ)〉-basis 

(norm)2 (norm)2 (norm)2
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Review Stage 1: Group Center:Class-sums κg ,characters χµ(g), and All-Commuting 
Projectors Pµ

Review Stage 2: Group operators g and Mutually-Commuting projectors Pµkk

Review Stage 3: Weyl g-expansion in irreps Dµjk(g) and Non-Commuting projectors Pµjk

                   Simple matrix algebra Pµab Pνcd = δµνδbcPµad

                  Pµjk transforms right-and-left
                  Pµjk -expansion in g-operators
                  Example of D3 transformation by matrix DEjk(r1)

Details of Mock-Mach relativity-duality for D3 groups and representations
        Lab-fixed(Extrinsic-Global) vs. Body-fixed (Intrinsic-Local)
        Compare Global vs Local ⏐g〉-basis and Global vs Local ⏐P(µ)〉-basis
                   
Hamiltonian and D3 group matrices in global and local ⏐P(µ)〉-basis
      Global vs. Local block rearrangement 
         Hamiltonion eigen-matrix calculation           
        Hamiltonian local-symmetry eigensolution
        Molecular vibrational mode eigensolution
               Local symmetry limit
               Global symmetry limit (free or “genuine” modes) 
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Hab
α

= Pma
µ H Pnb

µ = 1 Pam
µ HPnb

µ 1 = 1 HPam
µ Pnb

µ 1 = δmn 1 HPab
µ 1 = 1 H g

g=1

°G

∑ Dab
α*
g( ) = rg

g=1

°G

∑ Dab
α*
g( )

                                 Pxx
A1    Pyy

A2    Pxx
E1 Pxy

E1    Pyx
E1 Pyy

E1     

H( )P = T H( )G T † =

H A1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ H A2 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ Hxx

E1 Hxy
E1 ⋅ ⋅

⋅ ⋅ Hyx
E1 Hyy

E1 ⋅ ⋅

⋅ ⋅ ⋅ ⋅ Hxx
E1 Hxy

E1

⋅ ⋅ ⋅ ⋅ Hyx
E1 Hyy

E1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

H A1 = r0D
A1*(1)+ r1D

A1*(r1)+ r1
*DA1*(r2)+ i1D

A1*(i1)+ i2D
A1*(i2)+ i3D

A1*(i3)  =r0 +r1+r1
*+i1+i2 +i3              =r0 +2r1+2i12 +i3

H A2 = r0D
A2*(1)+ r1D

A2*(r1)+ r1
*DA2*(r2)+ i1D

A2*(i1)+i2D
A2*(i2)+i3D

A2*(i3) =r0 +r1+r1
*-i1-i2 -i3                =r0 +2r1 -2i12 -i3

Hxx
E1 = r0Dxx

E*
(1)+ r1Dxx

E*
(r1)+ r1

*Dxx
E*

(r2)+ i1Dxx
E*

(i1)+ i2Dxx
E*

(i2)+ i3Dxx
E*

(i3)  =(2r0 -r1-r1
*-i1-i2 +2i3)/2      =r0 -r1 -i12 +i3

Hxy
E1 = r0Dxy

E*
(1)+ r1Dxy

E*
(r1)+ r1

*Dxy
E*

(r2)+ i1Dxy
E*

(i1)+ i2Dxy
E*

(i2)+ i3Dxy
E*

(i3)  = 3(-r1+r1
*-i1+i2 )/2 =Hyx

E*  =0

Hyy
E1 = r0Dyy

E*
(1)+ r1Dyy

E*
(r1)+ r1

*Dyy
E*

(r2)+ i1Dyy
E*

(i1)+ i2Dyy
E*

(i2)+ i3Dyy
E*

(i3)  =(2r0 -r1-r1
*+i1+i2 -2i3)/2     =r0 -r1 +i12 -i3

Hxx
E1 Hxy

E1

Hyx
E1 Hyy

E1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
= 1

2
2r0 -r1-r1

*-i1-i2 +2i3 3(-r1+r1
*-i1+i2 )

3(−r1
*+r1-i1+i2 ) 2r0 -r1-r1

*+i1+i2 -2i3

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

                       =
r0 -r1-i12 +i3 0

0 r0 -r1-i12 -i3

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
For:r1 =r1

*and: i1 =i2

   

H( )G = rgg
g=1

oG
∑ =

r0 r2 r1 i1 i2 i3
r1 r0 r1 i3 i1 i2
r2 r1 r0 i2 i3 i1
ii i3 i2 r0 r1 r2

i2 i1 i3 r2 r0 r1
i3 i2 i1 r1 r2 r0

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

H matrix in
⏐g〉-basis:

H matrix in
⏐P(µ)〉-basis:

D3 Hamiltonian local- H matrices in ⏐P(µ)〉-basis 

Choosing local C2={1,i3} symmetry with
local constraints r1=r1*=r2 and i1=i2=i12  

(norm)2 (norm)2 (norm)2
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Hab
α

= Pma
µ H Pnb

µ = 1 Pam
µ HPnb

µ 1 = 1 HPam
µ Pnb

µ 1 = δmn 1 HPab
µ 1 = 1 H g

g=1

°G

∑ Dab
α*
g( ) = rg

g=1

°G

∑ Dab
α*
g( )

                                 Pxx
A1    Pyy

A2    Pxx
E1 Pxy

E1    Pyx
E1 Pyy

E1     

H( )P = T H( )G T † =

H A1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ H A2 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ Hxx

E1 Hxy
E1 ⋅ ⋅

⋅ ⋅ Hyx
E1 Hyy

E1 ⋅ ⋅

⋅ ⋅ ⋅ ⋅ Hxx
E1 Hxy

E1

⋅ ⋅ ⋅ ⋅ Hyx
E1 Hyy

E1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

H A1 = r0D
A1*(1)+ r1D

A1*(r1)+ r1
*DA1*(r2)+ i1D

A1*(i1)+ i2D
A1*(i2)+ i3D

A1*(i3)  =r0 +r1+r1
*+i1+i2 +i3              =r0 +2r1+2i12 +i3

H A2 = r0D
A2*(1)+ r1D

A2*(r1)+ r1
*DA2*(r2)+ i1D

A2*(i1)+i2D
A2*(i2)+i3D

A2*(i3) =r0 +r1+r1
*-i1-i2 -i3                =r0 +2r1 -2i12 -i3

Hxx
E1 = r0Dxx

E*
(1)+ r1Dxx

E*
(r1)+ r1

*Dxx
E*

(r2)+ i1Dxx
E*

(i1)+ i2Dxx
E*

(i2)+ i3Dxx
E*

(i3)  =(2r0 -r1-r1
*-i1-i2 +2i3)/2      =r0 -r1 -i12 +i3

Hxy
E1 = r0Dxy

E*
(1)+ r1Dxy

E*
(r1)+ r1

*Dxy
E*

(r2)+ i1Dxy
E*

(i1)+ i2Dxy
E*

(i2)+ i3Dxy
E*

(i3)  = 3(-r1+r1
*-i1+i2 )/2 =Hyx

E*  =0

Hyy
E1 = r0Dyy

E*
(1)+ r1Dyy

E*
(r1)+ r1

*Dyy
E*

(r2)+ i1Dyy
E*

(i1)+ i2Dyy
E*

(i2)+ i3Dyy
E*

(i3)  =(2r0 -r1-r1
*+i1+i2 -2i3)/2     =r0 -r1 +i12 -i3

Hxx
E1 Hxy

E1

Hyx
E1 Hyy

E1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
= 1

2
2r0 -r1-r1

*-i1-i2 +2i3 3(-r1+r1
*-i1+i2 )

3(−r1
*+r1-i1+i2 ) 2r0 -r1-r1

*+i1+i2 -2i3

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

                       =
r0 -r1-i12 +i3 0

0 r0 -r1-i12 -i3

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
For:r1 =r1

*and: i1 =i2

   

H( )G = rgg
g=1

oG
∑ =

r0 r2 r1 i1 i2 i3
r1 r0 r1 i3 i1 i2
r2 r1 r0 i2 i3 i1
ii i3 i2 r0 r1 r2

i2 i1 i3 r2 r0 r1
i3 i2 i1 r1 r2 r0

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

H matrix in
⏐g〉-basis:

H matrix in
⏐P(µ)〉-basis:

D3 Hamiltonian local- H matrices in ⏐P(µ)〉-basis 

C2={1,i3} 
Local symmetry
determines all levels
and eigenvectors with
just 4 real parameters

(norm)2 (norm)2 (norm)2

Choosing local C2={1,i3} symmetry with
local constraints r1=r1*=r2 and i1=i2=i12  
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PE =( 2 -1 -1 -1 -1 +2)/6
PE =( 0 1 -1 -1 +1 0)/√3/2

x,x

y,x

PA1= ( 1 1 1 1 1 1)/6x,x

PA2= ( 1 1 1 -1 -1 -1)/6y,y

1 r1 r2 i
1
i
2
i
3

PE =( 0 -1 1 -1 +1 0)/√3/2

PE =( 2 -1 -1+1 +1 -2)/6
x,y

y,y

1 r1 r2 i
1
i
2
i
3

1 r1 r2 i
1
i
2
i
3

SSppeeccttrraall EEffffiicciieennccyy:: SSaammee DD((aa))
mmnn
pprroojjeeccttoorrss ggiivvee aa lloott!!

••EEiiggeennssttaatteess ((sshhoowwnn bbeeffoorree))

••CCoommpplleettee HHaammiillttoonniiaann

••LLooccaall ssyymmmmeetteerryy eeiiggeennvvaalluuee ffoorrmmuullaaee

H r r i i i1 2 1 2 3
− − − − +H r r i i i1 2 1 2 3
1
2

1
2

1
2

1
2

√3
2
( + − +r r i i1 2 1 2 )−

√3
2
( − − +r r i i1 2 1 2 )+ − − + + −H r r i i i1 2 1 2 3

1
2

1
2

1
2

1
2

A
1
-block

A
2
-block

(L.S.=> off-diagonal zero.)

H r r i i i1 2 1 2 3⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

3

r1= r2= r1*= r, i1= i2= i1*= i

+ + +r i i2 2 3HA
1
-level:

+ − −r i i2 2 3HA
1
-level:

− − +r i i3HE
x
-level:

− + −r iHE
y
-level: i

gives:

mn
(g)

(µ)

°G mn
PP(µ)= ΣgD

(µ)* g

C2={1,i3} 
Local symmetry
determines all levels
and eigenvectors with
just 4 real parameters
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i2

i3

i1

++
++

+
+

-
+

-
+

-
+

+
+

+

+

- -

-- +
+

- -

-
+

-

-

+

-
+

-

| 〉A1
xx

| 〉A2
yy

| 〉E
xy | 〉E

yy

| 〉E
xx | 〉E

yx

D
3
>C

2
i
3
projector states

|(m)〉 =P(m)|1〉eb eb

ii
3
global (y)

anti-symmetry

ii
3
global (y)

anti-symmetry

ii
3
global

(x) symmetry

ii
3
local

(x) symmetry

ii
3
local (y)

anti-symmetry

Local g commute through
to the “inside” to be a gg†

eb eb

Global (LAB) symmetry

ii
3
|(m)〉 = ii

3
P(m)|1〉

=(-1)e |(m)〉
eb eb eb

eb

Local (BOD) symmetry

ii
3
|(m)〉 = ii

3
P(m)|1〉= P(m)ii

3
|1〉

= P(m)ii
3

†|1〉=(-1)b |(m)〉

i3

1 r1 r2 i
1
i
2
i
3

PA2= ( 1 1 1 -1 -1 -1)/6y,y

PE =( 2 -1 -1 -1 -1 +2)/6
PE =( 0 1 -1 -1 +1 0)/√3/2

x,x

y,x

PA1= ( 1 1 1 1 1 1)/6x,x

PE =( 0 -1 1 -1 +1 0)/√3/2

PE =( 2 -1 -1+1 +1 -2)/6
x,y

y,y

Here the“Mock-Mach”
is being applied!

                                                                DE(1)=        DE(r)=                 DE(r2 )=               DE(i1)=                DE(i2 )=              DE(i3)=

DA1(g) = +1,  DA2(r p ) = +1,   DA2(iq ) = −1     1 0
0 1

⎛
⎝⎜

⎞
⎠⎟

   
−2

1 − 4
3

4
3 −2

1

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

   
−2

1
4
3

− 4
3 −2

1

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

  
−2

1 − 4
3

− 4
3

2
1

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

   
−2

1
4
3

4
3

2
1

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

   1 0
0 −1

⎛
⎝⎜

⎞
⎠⎟
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i2

i3

i1

++
++

+
+

-
+

-
+

-
+

+
+

+

+

- -

-- +
+

- -

-
+

-

-

+

-
+

-

| 〉A1
xx

| 〉A2
yy

| 〉E
xy | 〉E

yy

| 〉E
xx | 〉E

yx

| 〉E1
xy

| 〉E1
xx

| 〉

| 〉A1
xx

| 〉A2
yy

E1
yx

| 〉E1
yy

D
3
>C

2
i
3
projector states

|(m)〉 =P(m)|1〉eb eb

ii
3
global (y)

anti-symmetry

ii
3
global (y)

anti-symmetry

ii
3
global

(x) symmetry

ii
3
local

(x) symmetry

ii
3
local (y)

anti-symmetry

eb eb

Global (LAB) symmetry

ii
3
|(m)〉 = ii

3
P(m)|1〉

=(-1)e |(m)〉
eb eb eb

eb

Local (BOD) symmetry

ii
3
|(m)〉 = ii

3
P(m)|1〉= P(m)ii

3
|1〉

= P(m)ii
3

†|1〉=(-1)b |(m)〉
Here the“Mock-Mach”

is being applied!
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i2

i3

i1

++
++

+
+

-
+

-
+

-
+

+
+

+

+

- -

-- +
+

- -

-
+

-

-

+

-
+

-

| 〉A1
xx

| 〉A2
yy

| 〉E
xy | 〉E

yy

| 〉E
xx | 〉E

yx

| 〉E1
xy

| 〉E1
xx

| 〉

| 〉A1
xx

| 〉A2
yy

E1
yx

| 〉E1
yy

When there is no there, there...

ii3 global (y)
anti-symmetry

ii3 global (y)
anti-symmetry

ii3 global
(x) symmetry

ii3 local
(x) symmetry

ii3 local (y)
anti-symmetry

Nobody Home
where LOCAL
and GLOBAL

clash!clash!!

clash!clash!!

clash!clash!!

clash!clash!!
clash!clash!!
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Review Stage 1: Group Center:Class-sums κg ,characters χµ(g), and All-Commuting 
Projectors Pµ

Review Stage 2: Group operators g and Mutually-Commuting projectors Pµkk

Review Stage 3: Weyl g-expansion in irreps Dµjk(g) and Non-Commuting projectors Pµjk

                   Simple matrix algebra Pµab Pνcd = δµνδbcPµad

                  Pµjk transforms right-and-left
                  Pµjk -expansion in g-operators
                  Example of D3 transformation by matrix DEjk(r1)

Details of Mock-Mach relativity-duality for D3 groups and representations
        Lab-fixed(Extrinsic-Global) vs. Body-fixed (Intrinsic-Local)
        Compare Global vs Local ⏐g〉-basis and Global vs Local ⏐P(µ)〉-basis
                   
Hamiltonian and D3 group matrices in global and local ⏐P(µ)〉-basis
      Global vs. Local block rearrangement 
         Hamiltonion eigen-matrix calculation           
        Hamiltonian local-symmetry eigensolution
        Molecular vibrational mode eigensolution
               Local symmetry limit
               Global symmetry limit (free or “genuine” modes) 
                            

Video Lecture 16
Ended here.
Vibrations treated 
in Lecture 17
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