Group Theory in Quantum Mechanics

Local-symmetry eigensolutions and wave modes

(Int.J.Mol.Sci, 14, 714(2013) p.755-774, QTCA Unit 5 Ch. 15) (PSDS - Ch. 4)
Review Stage 1: Group Center: Class-sums κ_{g}, characters $\chi^{\mu}(\mathbf{g})$, and All-Commuting Projectors \mathbb{P}^{μ} Review Stage 2: Group operators \mathbf{g} and Mutually-Commuting projectors $\mathbf{P}^{\mu_{k k}}$
Review Stage 3: Weyl g-expansion in irreps $D_{j k}^{\mu_{j k}}(g)$ and Non-Commuting projectors $\mathbf{P}^{\mu_{j k}}$
Simple matrix algebra $\mathbf{P}^{\mu}{ }_{a b} \mathbf{P}^{\nu}{ }_{c d}=\delta^{\mu \nu} \delta_{b c} \mathbf{P}^{\mu}{ }_{a d}$
$\mathbf{P}^{\mu}{ }_{j k}$ transforms right-and-left
$\mathbf{P}^{\mu}{ }_{j k}$-expansion in \mathbf{g}-operators
Example of D_{3} transformation by matrix $D^{E_{j k}}\left(\mathbf{r}^{1}\right)$
Details of Mock-Mach relativity-duality for D_{3} groups and representations Lab-fixed(Extrinsic-Global) vs. Body-fixed (Intrinsic-Local)

Review Stage 1: Group Center:Class-sums κ_{g}, characters $\chi^{\mu}(\mathbf{g})$, and All-Commuting Projectors \mathbb{P}^{μ} Review Stage 2: Group operators \mathbf{g} and Mutually-Commuting projectors $\mathbf{P}^{\mu_{k k}}$

 Review Stage 3: Weyl \mathbf{g}-expansion in irreps $D^{\mu}{ }_{j k}(\mathrm{~g})$ and Non-Commuting projectors $\mathbf{P}^{\mu_{j k}}$ Simple matrix algebra $\mathbf{P}^{\mu}{ }_{a b} \mathbf{P}^{\nu}{ }_{c d}=\delta^{\mu \nu} \delta_{b c} \mathbf{P}^{\mu}{ }_{a d}$$\mathbf{P}^{\mu_{j k}}$ transforms right-and-left
$\mathbf{P}^{\mu_{j k}}$-expansion in \mathbf{g}-operators
Example of D_{3} transformation by matrix $D_{j k}^{E_{j k}}\left(\mathbf{r}^{1}\right)$
Details of Mock-Mach relativity-duality for D_{3} groups and representations
Lab-fixed(Extrinsic-Global) vs. Body-fixed (Intrinsic-Local)
Compare Global vs Local $|\mathbf{g}\rangle$-basis and Global vs Local $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis
Hamiltonian and D_{3} group matrices in global and local $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis
Global vs. Local block rearrangement
Hamiltonian local-symmetry eigensolution
Molecular vibrational mode eigensolution
Local symmetry limit
Global symmetry limit (free or "genuine" modes)

Review Stage 1: Group Center:Class-sums κ_{g}, characters $\chi^{\mu}(\mathbf{g})$, and All-Commuting Projectors \mathbb{P}^{μ}

$$
\kappa_{\mathbf{g}}=\sum_{\mu}^{{ }^{\circ} \kappa_{g} \chi_{g}^{\mu}}{\ell^{\mu}}^{\mu}
$$

$$
\mathbb{P}^{\mu}=\sum_{\text {classes } \kappa_{\mathrm{g}}} \frac{\ell^{\mu}}{{ }^{\circ} G} \chi_{g}^{\mu^{*}} \kappa_{\mathrm{g}}
$$

Review Stage 1: Group Center:Class-sums κ_{g}, characters $\chi^{\mu}(\mathbf{g})$, and All-Commuting Projectors \mathbb{P}^{μ}

$$
\kappa_{\mathrm{g}}=\sum_{\mu} \frac{{ }^{\circ} \kappa_{g} \chi_{g}^{\mu}}{\ell^{\mu}} \mathbb{P}^{\mu}
$$

Characters: $\chi_{g}^{\mu} \equiv \operatorname{Tr} D^{\mu}(\mathrm{g})=\chi^{\mu}(\mathrm{g})=\chi^{\mu}\left(\mathbf{h g h}^{-1}\right)$

Review Stage 1: Group Center:Class-Sums κ_{g}, characters $\chi^{\mu}(\mathbf{g})$, and All-Commuting Projectors \mathbb{P}^{μ}

$$
\begin{aligned}
& \kappa_{\mathrm{g}}=\sum_{\mu} \frac{{ }^{\circ} \kappa_{g} \chi_{g}^{\mu}}{\ell^{\mu}} \mathbb{P}^{\mu} \\
& \text { Characters: } \chi_{g}^{\mu} \equiv \operatorname{Tr} D^{\mu}(\mathrm{g})=\chi^{\mu}(\mathrm{g})=\chi^{\mu}\left(\mathbf{h g h}^{-1}\right) \\
& \mathbb{P}^{\mu}=\sum_{\text {classes } \mathbf{k}_{\mathrm{g}}} \frac{\ell^{\mu}}{}{ }^{\mu} \chi_{g}^{\mu^{*}} \mathbf{k}_{\mathrm{g}} \\
& \text { See Lect. } 15 \text { p. } 20 \\
& \mathbf{\kappa}_{1}=1 \cdot \mathbf{P}^{A_{1}}+1 \cdot \mathbf{P}^{A_{2}}+1 \cdot \mathbf{P}^{E} \\
& \boldsymbol{\kappa}_{r}=2 \cdot \mathbf{P}^{A_{1}}+2 \cdot \mathrm{P}^{A_{2}}-1 \cdot \mathbb{P}^{E} \\
& \mathbf{\kappa}_{i}=3 \cdot \mathbf{P}^{A_{1}}-3 \cdot \mathrm{P}^{A_{2}}+0 \cdot \mathrm{P}^{E} \\
& \text { Use } \chi_{\mathrm{g}}^{4_{1}{ }^{*}}=\ell^{A_{1}}=1 \\
& \text { to find } \mathbf{P}^{A_{1}} \text { coefficients } \\
& \kappa_{\mathrm{g}}={ }^{\circ}{ }_{K_{g}} \mathbf{P}^{4_{1}}+\ldots \\
& D_{3} \text { examples }
\end{aligned}
$$

Review Stage 1: Group Center:Class-sums κ_{g}, characters $\chi^{\mu}(\mathbf{g})$, and All-Commuting Projectors \mathbb{P}^{μ}

$$
\kappa_{\mathrm{g}}=\sum_{\mu}^{{ }^{\circ} \kappa_{g} \chi_{g}^{\mu}} \ell^{\mu} \mathbb{P}^{\mu}
$$

Characters: $\chi_{g}^{\mu} \equiv \operatorname{Tr} D^{\mu}(\mathrm{g})=\chi^{\mu}(\mathrm{g})=\chi^{\mu}\left(\mathbf{h g h}^{-1}\right)$
$\mathbb{P}^{\mu}=\sum_{\text {classes } \mathbf{k}_{\mathrm{g}}} \frac{\ell^{\mu}}{}{ }^{\mu} \chi_{g}^{\mu^{*}} \mathbf{k}_{\mathrm{g}}$
See Lect. 15 p. 20

$:$| $\boldsymbol{\kappa}_{1}=1 \cdot \mathbf{P}^{A_{1}}+1 \cdot \mathbf{P}^{A_{2}}+1 \cdot P E$ | χ_{k}^{α} | χ_{1}^{α} | χ_{r}^{α} | χ_{i}^{α} |
| :--- | :---: | :---: | :---: | :---: |
| $\alpha=A_{1}$ | 1 | 1 | 1 | |
| $\boldsymbol{\kappa}_{r}=2 \cdot \mathbf{P}^{A_{1}}+2 \cdot \mathbf{P}^{A_{2}}-1 \cdot P E$ | $\alpha=A_{2}$ | 1 | 1 | -1 |
| $\boldsymbol{\kappa}_{i}=3 \cdot \mathbf{P}^{A_{1}}-3 \cdot \mathbf{P}^{A_{2}}+0 \cdot P^{E}$ | $\alpha=E$ | 2 | -1 | 0 |

Use $\chi_{\mathrm{g}}^{A_{1}{ }^{*}}=\ell^{A_{1}}=1$

$$
\begin{aligned}
& \mathbf{P}^{A_{1}}=\left(\mathbf{\kappa}_{1}+\mathbf{\kappa}_{r}+\mathbf{\kappa}_{i}\right) / 6=\left(\mathbf{1}+\mathbf{r}+\mathbf{r}^{2}+\mathbf{i}_{1}+\mathbf{i}_{2}+\mathbf{i}_{\mathbf{3}}\right) / 6 \\
& \mathrm{P}^{A_{2}}=\left(\mathbf{\kappa}_{1}+\mathbf{\kappa}_{r}-\mathbf{\kappa}_{i}\right) / 6=\left(\mathbf{1}+\mathbf{r}+\mathbf{r}^{2}-\mathbf{i}_{1}-\mathbf{i}_{2}-\mathbf{i}_{3}\right) / 6 \\
& \mathbb{P} E=\left(2 \mathbf{k}_{1}-\mathbf{\kappa}_{r}+0\right) / 3=\left(2 \mathbf{1}-\mathbf{r}-\mathbf{r}^{2}\right) / 3 \\
&\left.\uparrow_{1}\right) \\
& \text { Use } \chi_{(\alpha)}^{(\alpha)^{*}}=\ell^{(\alpha)} \\
& \text { to find } \kappa_{1} \text { coefficients } \\
& \mathbf{P}^{(\alpha)}=\frac{\left(\ell^{(\alpha)}\right)^{2}}{}{ }^{\circ} \kappa_{1}+\ldots
\end{aligned}
$$

to find $\mathbf{P}^{A_{1}}$ coefficients
$\kappa_{\mathrm{g}}={ }^{\circ} \kappa_{g} \mathbf{P}^{4_{1}}+\ldots$

D3 examples

Review Stage 1: Group Center:Class-sums κ_{g}, characters $\chi^{\mu}(\mathbf{g})$, and All-Commuting Projectors \mathbb{P}^{μ} Review Stage 2: Group operators \mathbf{g} and Mutually-Commuting projectors $\mathbf{P}^{\mu}{ }_{k k}$ Review Stage 3: Weyl \mathbf{g}-expansion in irreps $D^{\mu}{ }_{j k}(g)$ and Non-Commuting projectors $\mathbf{P}^{\mu}{ }_{j k}$ Simple matrix algebra $\mathbf{P}^{\mu}{ }_{a b} \mathbf{P}^{\nu}{ }_{c d}=\delta^{\mu \nu} \delta_{b c} \mathbf{P}^{\mu}{ }_{a d}$
$\mathbf{P}^{\mu}{ }_{j k}$ transforms right-and-left
$\mathbf{P}^{\mu_{j k}}$-expansion in \mathbf{g}-operators
Example of D_{3} transformation by matrix $D^{E_{j k}}\left(\mathbf{r}^{1}\right)$
Details of Mock-Mach relativity-duality for D_{3} groups and representations
Lab-fixed(Extrinsic-Global) vs. Body-fixed (Intrinsic-Local)
Compare Global vs Local $|\mathbf{g}\rangle$-basis and Global vs Local $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis
Hamiltonian and D_{3} group matrices in global and local $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis
Global vs. Local block rearrangement
Hamiltonian local-symmetry eigensolution
Molecular vibrational mode eigensolution
Local symmetry limit
Global symmetry limit (free or "genuine" modes)

Review Stage 1: Group Center:Class-sums κ_{g}, characters $\chi^{\mu}(\mathbf{g})$, and All-Commuting Projectors \mathbb{P}^{μ}

$$
\kappa_{\mathrm{g}}=\sum_{\mu}^{{ }^{\circ} \kappa_{g} \chi_{g}^{\mu}} \ell^{\mu} \mathbb{P}^{\mu}
$$

Characters: $\chi_{g}^{\mu} \equiv \operatorname{Tr} D^{\mu}(\mathrm{g})=\chi^{\mu}(\mathrm{g})=\chi^{\mu}\left(\mathbf{h g h}^{-1}\right)$

$$
\mathbb{P}^{\mu}=\sum_{\text {classes } \mathbf{k}_{\mathrm{g}}} \frac{\ell^{\mu}}{{ }^{\mu}} \chi_{g}^{\mu^{*}} \mathbf{\kappa}_{\mathrm{g}}
$$

Review Stage 2: Group operators \mathbf{g} and Mutually-Commuting projectors $\mathbf{P}^{\mu_{k k}}$

$$
\left.\mathbb{P}^{\mu}=\mathbf{P}^{\mu}{ }_{11}+\mathbf{P}^{\mu}{ }_{22}+\ldots \mathbf{P}_{\ell^{\mu} \ell^{\mu}}^{\mu_{1}} \quad \text { (Mutually-commuting Projectors } \mathbf{P}^{\mu}{ }_{m m}\right)
$$

\mathbb{P}^{μ} splits into a number ℓ^{μ} of irreducible $\mathbf{P}^{\mu}{ }_{j j}$ where $\ell^{\mu}=$ dimension of irrep D^{μ}

Review Stage 1: Group Center:Class-sums κ_{g}, characters $\chi^{\mu}(\mathbf{g})$, and All-Commuting Projectors \mathbb{P}^{μ}

$$
\kappa_{\mathbf{g}}=\sum_{\mu} \frac{{ }^{\circ} \kappa_{g} \chi_{g}^{\mu}}{\ell^{\mu}} \mathbb{P}^{\mu}
$$

Characters: $\chi_{g}^{\mu} \equiv \operatorname{Tr} D^{\mu}(\mathrm{g})=\chi^{\mu}(\mathrm{g})=\chi^{\mu}\left(\mathbf{h g h ^ { - 1 }}\right)$

$$
\mathbb{P}^{\mu}=\sum_{\text {classes } \mathbf{k}_{\mathrm{g}}} \frac{\ell^{\mu}}{{ }^{\mu}} \chi_{g}^{\mu^{*}} \boldsymbol{\kappa}_{\mathrm{g}}
$$

Review Stage 2: Group operators \mathbf{g} and Mutually-Commuting projectors $\mathbf{P}^{\mu_{k k}}$

$$
\left.\mathbb{P}^{\mu}=\mathbf{P}^{\mu}{ }_{11}+\mathbf{P}^{\mu}{ }_{22}+\ldots \mathbf{P}_{\ell^{\mu} \ell^{\mu}}^{\mu_{1}} \quad \text { (Mutually-commuting Projectors } \mathbf{P}^{\mu}{ }_{m m}\right)
$$

\mathbb{P}^{μ} splits into a number ℓ^{μ} of irreducible $\mathbf{P}^{\mu}{ }_{j j}$ where $\ell^{\mu}=$ dimension of irrep D^{μ} and sum of ℓ^{μ} \mathbb{P}^{μ} splitting NOT unique if $\ell^{\mu}>1 \ldots$. is RANK of D_{3}

Example:
The splittable all-commuting projector in D_{3}

$$
\mathbb{P} E=\left(2 \mathbf{\kappa}_{1}-\boldsymbol{\kappa}_{r}+0\right) / 3=\left(2 \mathbf{1}-\mathbf{r}-\mathbf{r}^{2}\right) / 3
$$

Review Stage 1: Group Center:Class-sums κ_{g}, characters $\chi^{\mu}(\mathbf{g})$, and All-Commuting Projectors \mathbb{P}^{μ}

$$
\kappa_{\mathrm{g}}=\sum_{\mu} \frac{{ }^{\circ} \kappa_{g} \chi_{g}^{\mu}}{\ell^{\mu}} \mathbb{P}^{\mu}
$$

Characters: $\chi_{g}^{\mu} \equiv \operatorname{Tr} D^{\mu}(\mathrm{g})=\chi^{\mu}(\mathrm{g})=\chi^{\mu}\left(\mathbf{h g h ^ { - 1 }}\right)$

$$
\mathbb{P}^{\mu}=\sum_{\text {classes }_{\mathrm{g}}} \frac{\ell^{\mu}}{{ }^{\mu} G} \chi_{g}^{\mu^{*}} \mathbf{\kappa}_{\mathrm{g}}
$$

Review Stage 2: Group operators \mathbf{g} and Mutually-Commuting projectors $\mathbf{P}^{\mu_{k k}}$

$$
\left.\mathbb{P}^{\mu}=\mathbf{P}^{\mu}{ }_{11}+\mathbf{P}^{\mu}{ }_{22}+\ldots \mathbf{P}_{\ell^{\mu} \ell^{\mu}}^{\mu_{1}} \quad \text { (Mutually-commuting Projectors } \mathbf{P}^{\mu}{ }_{m m}\right)
$$

\mathbb{P}^{μ} splits into a number ℓ^{μ} of irreducible $\mathbf{P}_{j j}^{\mu}$ where $\ell^{\mu}=$ dimension of irrep $D^{\mu} \quad$ and sum of ℓ^{μ}
\mathbb{P}^{μ} splitting NOT unique if $\ell^{\mu}>1 \ldots$.
...OR...
Splitting by $C_{2}=\left\{\mathbf{1}, \mathbf{i}_{3}\right\} \quad$ (See Lect. 15 p. 80)
$\mathbf{P}_{0_{2}, 0_{2}}^{E}=\mathbf{P}_{x, x}^{E}=\mathbb{P} E_{\left(\mathbf{1}+\mathbf{i}_{3}\right) / 2}$
$\left.\mathbf{P}_{i_{2}, l_{2}}^{E}=\mathbf{P}_{y, y}^{E}=\mathbb{P} E_{1} \mathbf{1}-\mathbf{i}_{3}\right) / 2$

Example:
The splittable all-commuting projector in D_{3}

$$
\mathbb{P} E=\left(2 \mathbf{\kappa}_{1}-\boldsymbol{\kappa}_{r}+0\right) / 3=\left(2 \mathbf{1}-\mathbf{r}-\mathbf{r}^{2}\right) / 3
$$

Review Stage 1: Group Center:Class-sums κ_{g}, characters $\chi^{\mu}(\mathbf{g})$, and All-Commuting Projectors \mathbb{P}^{μ}

$$
\mathfrak{K}_{\mathbf{g}}=\sum_{\mu}^{{ }^{\circ} \kappa_{g} \chi_{g}^{\mu}}{\ell^{\mu}}^{\mu}
$$

Characters: $\chi_{g}^{\mu} \equiv \operatorname{Tr} D^{\mu}(\mathrm{g})=\chi^{\mu}(\mathrm{g})=\chi^{\mu}\left(\mathbf{h g h ^ { - 1 }}\right)$

$$
\mathbb{P}^{\mu}=\sum_{\text {classes }_{\mathrm{g}}} \frac{\ell^{\mu}}{}{ }^{\mu} \chi_{g}^{\mu^{*}} \mathbf{x}_{\mathrm{g}}
$$

Review Stage 2: Group operators \mathbf{g} and Mutually-Commuting projectors $\mathbf{P}^{\mu} k k$

$$
\left.\mathbb{P}^{\mu}=\mathbf{P}^{\mu}{ }_{11}+\mathbf{P}^{\mu}{ }_{22}+\ldots \mathbf{P}_{\ell^{\mu} \ell^{\mu}}^{\mu_{1}} \quad \text { (Mutually-commuting Projectors } \mathbf{P}^{\mu}{ }_{m m}\right)
$$

\mathbb{P}^{μ} splits into a number ℓ^{μ} of irreducible $\mathbf{P}_{j j}^{\mu}$ where $\ell^{\mu}=$ dimension of irrep $D^{\mu} \quad$ and sum of ℓ^{μ} \mathbb{P}^{μ} splitting NOT unique if $\ell^{\mu}>1 \ldots$.
Splitting by $C_{2}=\left\{\mathbf{1}, \mathbf{i}_{3}\right\} \quad$ (See Lect. 15 p. 80)
$\mathbf{P}_{0_{2}, 0_{2}}^{E}=\mathbf{P}_{x, x}^{E}=\mathbb{P} E_{\left(\mathbf{1}+\mathbf{i}_{3}\right) / 2}$
$\left.\mathbf{P}_{1,2,2}^{E}=\mathbf{P}_{y, y}^{E}=\mathbb{P} E_{1} \mathbf{-} \mathbf{i}_{3}\right) / 2$
Product algebra on group table:

The splittable all-commuting projector in D_{3}

$$
\mathbb{P} E=\left(2 \boldsymbol{\kappa}_{1}-\boldsymbol{\kappa}_{r}+0\right) / 3=\left(2 \mathbf{1}-\mathbf{r}-\mathbf{r}^{2}\right) / 3
$$

Review Stage 1: Group Center:Class-sums κ_{g}, characters $\chi^{\mu}(\mathbf{g})$, and All-Commuting Projectors \mathbb{P}^{μ}

$$
\mathbf{K}_{\mathbf{g}}=\sum_{\mu}^{{ }^{\circ} \kappa_{g} \chi_{g}^{\mu}} \mathbb{Q}^{\mu} \mathbb{P}^{\mu}
$$

Characters: $\chi_{g}^{\mu} \equiv \operatorname{Tr} D^{\mu}(\mathrm{g})=\chi^{\mu}(\mathrm{g})=\chi^{\mu}\left(\mathbf{h g h ^ { - 1 }}\right)$

$$
\mathbb{P}^{\mu}=\sum_{\text {classes } \mathbf{k}_{\mathrm{g}}} \frac{\ell^{\mu}}{{ }^{\mu}} \chi_{g}^{\mu^{*}} \boldsymbol{\kappa}_{\mathrm{g}}
$$

Review Stage 2: Group operators \mathbf{g} and Mutually-Commuting projectors $\mathbf{P}^{\mu} k k$

$$
\left.\mathbb{P}^{\mu}=\mathbf{P}^{\mu}{ }_{11}+\mathbf{P}^{\mu}{ }_{22}+\ldots \mathbf{P}_{\ell^{\mu} \ell^{\mu}}^{\mu_{1}} \quad \text { (Mutually-commuting Projectors } \mathbf{P}^{\mu}{ }_{m m}\right)
$$

\mathbb{P}^{μ} splits into a number ℓ^{μ} of irreducible $\mathbf{P}^{\mu}{ }_{j j}$ where $\ell^{\mu}=$ dimension of irrep D^{μ} \mathbb{P}^{μ} splitting NOT unique if $\ell^{\mu}>1 \ldots$.
Splitting by $C_{2}=\{\mathbf{1}, \mathbf{i} 3\} \quad$ (See Lect. 15 p. 80)
$\left.\mathbf{P}_{0_{2}, 0_{2}}^{E}=\mathbf{P}_{x, x}^{E}=\mathbb{P} E_{\left(1+\mathbf{i}_{3}\right.}^{3}\right) / 2=\left(2 \mathbf{1}-\mathbf{r}^{1}-\mathbf{r}^{2}-\mathbf{i}_{1}-\mathbf{i}_{2}+2 \mathbf{i}_{3}\right) / 6$
$\mathbf{P}_{1_{2}, l_{2}}^{E}=\mathbf{P}_{y, y}^{E}=\mathbb{P} F_{1}\left(\mathbf{1}-\mathbf{i}_{3}\right) / 2=\left(2 \mathbf{1}-\mathbf{r}^{1}-\mathbf{r}^{2}+\mathbf{i}_{1}+\mathbf{i}_{2}-2 \mathbf{i}_{3}\right) / 6$
Product algebra on group table:

The splittable all-commuting projector in D_{3}

$$
\mathbb{P} E=\left(2 \mathbf{\kappa}_{1}-\boldsymbol{\kappa}_{r}+0\right) / 3=\left(2 \mathbf{1}-\mathbf{r}-\mathbf{r}^{2}\right) / 3
$$

Review Stage 1: Group Center:Class-sums κ_{g}, characters $\chi^{\mu}(\mathbf{g})$, and All-Commuting Projectors \mathbb{P}^{μ}

$$
\kappa_{\mathrm{g}}=\sum_{\mu} \frac{{ }^{\circ} \kappa_{g} \chi_{g}^{\mu}}{\ell^{\mu}} \mathbb{P}^{\mu}
$$

Characters: $\chi_{g}^{\mu} \equiv \operatorname{Tr} D^{\mu}(\mathrm{g})=\chi^{\mu}(\mathrm{g})=\chi^{\mu}\left(\mathbf{h g h ^ { - 1 }}\right)$

$$
\mathbb{P}^{\mu}=\sum_{\text {classes } \kappa_{g}} \frac{\ell^{\mu}}{{ }^{\circ} G} \chi_{g}^{\mu^{*}} \kappa_{\mathrm{g}}
$$

Review Stage 2: Group operators \mathbf{g} and Mutually-Commuting projectors $\mathbf{P}^{\mu} k k$

$$
\left.\mathbb{P}^{\mu}=\mathbf{P}^{\mu}{ }_{11}+\mathbf{P}^{\mu}{ }_{22}+\ldots \mathbf{P}_{\ell^{\mu} \ell^{\mu}}^{\mu_{1}} \quad \text { (Mutually-commuting Projectors } \mathbf{P}^{\mu_{m m}}\right)
$$

\mathbb{P}^{μ} splits into a number ℓ^{μ} of irreducible $\mathbf{P}_{j j}^{\mu}$ where $\ell^{\mu}=$ dimension of irrep D^{μ} and sum of ℓ^{μ}
\mathbb{P}^{μ} splitting NOT unique if $\ell^{\mu}>1 \ldots$.
Splitting by $C_{2}=\left\{\mathbf{1}, \mathbf{i}_{3}\right\} \quad$ (See Lect. 15 p. 80)
$\mathbf{P}_{0_{2}, 0_{2}}^{E}=\mathbf{P}_{x, x}^{E}=\mathbb{P} E_{\left(\mathbf{1}+\mathbf{i}_{3}\right) / 2=\left(21-\mathbf{r}^{1}-\mathbf{r}^{2}-\mathbf{i}_{1}-\mathbf{i}_{2}+2 \mathbf{i}_{3}\right) / 6}$
$\mathbf{P}_{12,2}^{E}=\mathbf{P}_{y, y}^{E}=\mathbb{P} F_{1}\left(\mathbf{1}-\mathbf{i}_{3}\right) / 2=\left(2 \mathbf{1}-\mathbf{r}^{1}-\mathbf{r}^{2}+\mathbf{i}_{1}+\mathbf{i}_{2}-2 \mathbf{i}_{3}\right) / 6$

Splitting by $C_{3}=\left\{\mathbf{1}, \mathbf{r}^{1}, \mathbf{r}^{2}\right\} \quad$ (See Lect. 15 p. 84)
$\left.\mathbf{P}_{13,13}^{E}=\mathbf{P}_{+1_{3},+13}^{E}=\mathbb{P} E_{(\mathbf{1}+\varepsilon} \mathbf{r}^{1}+\varepsilon^{*} \mathbf{r}^{2}\right) / 3$
$\mathbf{P}_{23,23}^{E}=\mathbf{P}_{-1-1,1_{3}}^{E}=\mathbb{P} F_{\left(1+\varepsilon^{*} \mathbf{r}^{1}+\varepsilon \mathbf{r}^{2}\right) / 3}$

Product algebra on group table:

(1				$\pm \mathbf{i 3}) / 2$	
(1) 21	21	$\mathrm{r}^{2} \quad \mathrm{r}$	i_{1}	i_{2}	$\pm 2 \mathbf{i}_{3}$
$\begin{gathered} \left(\frac{1}{3}\right)-\mathbf{r} \\ -\mathbf{r}^{2} \end{gathered}$	$\begin{gathered} -\mathbf{r} \\ -\mathbf{r}^{2} \end{gathered}$	$\begin{array}{ll} 1 & \mathrm{r}^{2} \\ \mathrm{r} & \mathbb{1} \end{array}$	\mathbf{i}_{3} i_{2}		$\begin{aligned} & \mp \mathbf{i}_{2} \\ & \mp \mathbf{i}_{1} \end{aligned}$
	i_{1} i_{2} i_{3}	$\begin{array}{ll}\mathbf{i}_{3} & \mathbf{i}_{2} \\ \mathbf{i}_{1} & \mathbf{i}_{3} \\ \mathbf{i}_{2} & \mathbf{i}_{1}\end{array}$	1 r^{2} r	r 1 1 \mathbf{r}^{2}	r^{2} r 1

Example:

$\left[\left(2-\varepsilon-\varepsilon^{*}\right) \mathbf{1}+\left(2 \varepsilon^{*}-1-\varepsilon\right) \mathbf{r}+\left(2 \varepsilon-\varepsilon^{*}-1\right) \mathbf{r}^{2}\right] / 3 \cdot 3$							
(21	21	$2 \varepsilon \mathbf{r}^{2}$	$2 \varepsilon^{*} \mathbf{r}$			i_{3}	
$\left(\frac{1}{3}\right) \mathbf{- r}$	-r	$-\varepsilon 1$	$-\varepsilon^{*} \mathbf{r}^{2}$			i_{2}	
$-\mathbf{r}^{2}$	$-\mathbf{r}^{2}$	$-\varepsilon \mathbf{r}$	$-\varepsilon^{* 1}$			\mathbf{i}_{1}	(1)
	i_{1}	i_{3}	i_{2}			${ }^{2}$	(3.3)
	i_{2}	1	i_{3}			r	
	i_{3}	i_{2}	\mathbf{i}_{1}		r	1	

The splittable all-commuting projector in D_{3}

$$
\mathbb{P} E=\left(2 \boldsymbol{\kappa}_{1}-\boldsymbol{\kappa}_{r}+0\right) / 3=\left(2 \mathbf{1}-\mathbf{r}-\mathbf{r}^{2}\right) / 3
$$

Review Stage 1: Group Center:Class-sums κ_{g}, characters $\chi^{\mu}(\mathbf{g})$, and All-Commuting Projectors \mathbb{P}^{μ}

$$
\kappa_{\mathrm{g}}=\sum_{\mu} \frac{{ }^{\circ} \kappa_{g} \chi_{g}^{\mu}}{\ell^{\mu}} \mathbb{P}^{\mu}
$$

Characters: $\chi_{g}^{\mu} \equiv \operatorname{Tr} D^{\mu}(\mathrm{g})=\chi^{\mu}(\mathrm{g})=\chi^{\mu}\left(\mathbf{h g h ^ { - 1 }}\right)$

$$
\mathbb{P}^{\mu}=\sum_{\text {classes } \kappa_{\mathrm{g}}} \frac{\ell^{\mu}}{{ }^{\circ} G} \chi_{g}^{\mu^{*}} \boldsymbol{\kappa}_{\mathrm{g}}
$$

Review Stage 2: Group operators \mathbf{g} and Mutually-Commuting projectors $\mathbf{P}^{\mu} k k$

$$
\left.\mathbb{P}^{\mu}=\mathbf{P}^{\mu}{ }_{11}+\mathbf{P}^{\mu}{ }_{22}+\ldots \mathbf{P}_{\ell^{\mu} \ell^{\mu}}^{\mu_{1}} \quad \text { (Mutually-commuting Projectors } \mathbf{P}^{\mu_{m m}}\right)
$$

\mathbb{P}^{μ} splits into a number ℓ^{μ} of irreducible $\mathbf{P}_{j j}^{\mu}$ where $\ell^{\mu}=$ dimension of irrep D^{μ} and sum of ℓ^{μ}
\mathbb{P}^{μ} splitting NOT unique if $\ell^{\mu}>1 \ldots$.
Splitting by $C_{2}=\left\{\mathbf{1}, \mathbf{i}_{3}\right\} \quad$ (See Lect. 15 p. 80)
$\mathbf{P}_{0_{2}, 0_{2}}^{E}=\mathbf{P}_{x, x}^{E}=\mathbb{P} E_{\left(\mathbf{1}+\mathbf{i}_{3}\right) / 2=\left(21-\mathbf{r}^{1}-\mathbf{r}^{2}-\mathbf{i}_{1}-\mathbf{i}_{2}+2 \mathbf{i}_{3}\right) / 6}$
$\mathbf{P}_{12,2}^{E}=\mathbf{P}_{y, y}^{E}=\mathbb{P} F_{1}\left(\mathbf{1}-\mathbf{i}_{3}\right) / 2=\left(2 \mathbf{1}-\mathbf{r}^{1}-\mathbf{r}^{2}+\mathbf{i}_{1}+\mathbf{i}_{2}-2 \mathbf{i}_{3}\right) / 6$
Product algebra on group table:

The splittable all-commuting projector in D_{3}

$$
\mathbb{P} E=\left(2 \mathbf{\kappa}_{1}-\boldsymbol{\kappa}_{r}+0\right) / 3=\left(2 \mathbf{1}-\mathbf{r}-\mathbf{r}^{2}\right) / 3
$$

Review Stage 1: Group Center:Class-sums κ_{g}, characters $\chi^{\mu}(\mathbf{g})$, and All-Commuting Projectors \mathbb{P}^{μ}

$$
\kappa_{\mathrm{g}}=\sum_{\mu} \frac{{ }^{\circ} \kappa_{g} \chi_{g}^{\mu}}{\ell^{\mu}} \mathbb{P}^{\mu}
$$

Characters: $\chi_{g}^{\mu} \equiv \operatorname{Tr} D^{\mu}(\mathrm{g})=\chi^{\mu}(\mathrm{g})=\chi^{\mu}\left(\mathbf{h g h ^ { - 1 }}\right)$

$$
\mathbb{P}^{\mu}=\sum_{\text {classes } \boldsymbol{\kappa}_{\mathrm{g}}} \frac{\ell^{\mu}}{{ }^{\circ} G} \chi_{g}^{\mu^{*}} \boldsymbol{\kappa}_{\mathrm{g}}
$$

Review Stage 2: Group operators \mathbf{g} and Mutually-Commuting projectors $\mathbf{P}^{\mu}{ }_{k k}$

$$
\left.\mathbb{P}^{\mu}=\mathbf{P}^{\mu}{ }_{11}+\mathbf{P}^{\mu}{ }_{22}+\ldots \mathbf{P}_{\ell^{\mu} \ell^{\mu}}^{\mu_{1}} \quad \text { (Mutually-commuting Projectors } \mathbf{P}^{\mu_{m m}}\right)
$$

\mathbb{P}^{μ} splits into a number ℓ^{μ} of irreducible $\mathbf{P}_{j j}^{\mu}$ where $\ell^{\mu}=$ dimension of irrep D^{μ} and sum of ℓ^{μ}
\mathbb{P}^{μ} splitting NOT unique if $\ell^{\mu}>1 \ldots$.
Splitting by $C_{2}=\left\{\mathbf{1}, \mathbf{i}_{3}\right\} \quad$ (See Lect. 15 p. 80)
$\mathbf{P}_{0_{2}, 0_{2}}^{E}=\mathbf{P}_{x, x}^{E}=\mathbb{P} E_{\left(\mathbf{1}+\mathbf{i}_{3}\right) / 2=\left(21-\mathbf{r}^{1}-\mathbf{r}^{2}-\mathbf{i}_{1}-\mathbf{i}_{2}+2 \mathbf{i}_{3}\right) / 6}$
$\left.\mathbf{P}_{12,2}^{E}=\mathbf{P}_{y, y}^{E}=P F_{1}-\mathbf{i}_{3}\right) / 2=\left(2 \mathbf{1}-\mathbf{r}^{1}-\mathbf{r}^{2}+\mathbf{i}_{1}+\mathbf{i}_{2}-2 \mathbf{i}_{3}\right) / 6$
Product algebra on group table:

(1				
$\left(\frac{1}{3}\right)_{-\mathbf{r}}^{2 \mathbf{1}}-\mathbf{r}$	21	$\mathrm{r}^{2} \mathrm{r}$	i_{1}	$i_{2} \quad \pm 2 \mathbf{i}_{3}$
	-r	$1 \mathrm{r}^{2}$		$i_{1} \quad \mp \mathbf{i}_{2}$
	-r ${ }^{2}$			$\mathrm{i}_{3} \quad \mp \mathbf{i}_{1}$
	i_{1}	$i_{3} \quad i_{2}$		r r ${ }^{2}$
	i_{2}	$\mathrm{i}_{1} \quad \mathrm{i}_{3}$	r^{2}	1 r
	i_{3}			$\mathrm{r}^{2} \quad 1$

...OR...
Splitting by $C_{3}=\left\{\mathbf{1}, \mathbf{r}^{1}, \mathbf{r}^{2}\right\} \quad($ See Lect. 15 p. 84)

$$
\left.\mathbf{P}_{2_{3}, 2_{3}}^{E}=\mathbf{P}_{-1_{3}, 1_{3}}^{E}=\mathbb{P} F_{\mathbf{1}}+\varepsilon^{*} \mathbf{r}^{1}+\varepsilon \mathbf{r}^{2}\right) / 3=\left(\mathbf{1}+\varepsilon^{*} \mathbf{r}^{1}+\varepsilon \mathbf{r}^{2}\right) / 3
$$

The splittable all-commuting projector in D_{3}

$$
\mathbb{P} E=\left(2 \mathbf{\kappa}_{1}-\boldsymbol{\kappa}_{r}+0\right) / 3=\left(2 \mathbf{1}-\mathbf{r}-\mathbf{r}^{2}\right) / 3
$$

Review Stage 1: Group Center:Class-sums κ_{g},characters $\chi^{\mu}(\mathbf{g})$, and All-Commuting Projectors \mathbb{P}^{μ} Review Stage 2: Group operators \mathbf{g} and Mutually-Commuting projectors $\mathbf{P}^{\mu_{k k}}$
Review Stage 3: Weyl g-expansion in irreps $D^{\mu}{ }_{j k}(g)$ and Non-Commuting projectors $\mathbf{P}^{\mu_{j k}}$
Simple matrix algebra $\mathbf{P}^{\mu}{ }_{a b} \mathbf{P}^{\nu}{ }_{c d}=\delta^{\mu \nu} \delta_{b c} \mathbf{P}^{\mu}{ }_{a d}$
$\mathbf{P}^{\mu_{j k}}$ transforms right-and-left
$\mathbf{P}^{\mu}{ }_{j k}$-expansion in \mathbf{g}-operators
Example of D_{3} transformation by matrix $D_{j k}^{E_{j k}}\left(\mathbf{r}^{1}\right)$
Details of Mock-Mach relativity-duality for D_{3} groups and representations
Lab-fixed(Extrinsic-Global) vs. Body-fixed (Intrinsic-Local)
Compare Global vs Local $|\mathbf{g}\rangle$-basis and Global vs Local $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis
Hamiltonian and D_{3} group matrices in global and local $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis
Global vs. Local block rearrangement
Hamiltonian local-symmetry eigensolution
Molecular vibrational mode eigensolution
Local symmetry limit
Global symmetry limit (free or "genuine" modes)

Review Stage 1: Group Center:Class-sums κ_{g}, characters $\chi^{\mu}(\mathbf{g})$, and All-Commuting Projectors \mathbb{P}^{μ}

$$
\kappa_{\mathrm{g}}=\sum_{\mu} \frac{{ }^{\circ} \kappa_{g} \chi_{g}^{\mu}}{\ell^{\mu}} \mathbb{P}^{\mu}
$$

Characters: $\chi_{g}^{\mu} \equiv \operatorname{Tr} D^{\mu}(\mathrm{g})=\chi^{\mu}(\mathrm{g})=\chi^{\mu}\left(\mathbf{h g h ^ { - 1 }}\right)$

$$
\mathbb{P}^{\mu}=\sum_{\text {classes } \mathbf{k}_{\mathrm{g}}} \frac{\ell^{\mu}}{{ }^{\mu}} \chi_{g}^{\mu^{*}} \mathbf{\kappa}_{\mathrm{g}}
$$

Review Stage 2: Group operators \mathbf{g} and Mutually-Commuting projectors $\mathbf{P}^{\mu_{k k}}$

$$
\left.\mathbb{P}^{\mu}=\mathbf{P}^{\mu}{ }_{11}+\mathbf{P}^{\mu}{ }_{22}+\ldots \mathbf{P}_{\ell^{\mu} \ell^{\mu}}^{\mu_{1}} \quad \text { (Mutually-commuting Projectors } \mathbf{P}^{\mu}{ }_{m m}\right)
$$

\mathbb{P}^{μ} splits into a number ℓ^{μ} of irreducible $\mathbf{P}^{\mu}{ }_{j j}$ where $\ell^{\mu}=$ dimension of irrep D^{μ}
Review Stage 3: Weyl g-expansion in irreps $D_{j k}^{\mu}(g)$ and Non-Commuting projectors $\mathbf{P}_{j k}{ }_{j k}$
Group g-expansion in Projectors $\mathbf{P}^{\mu}{ }_{m n} \quad$ Projector $\mathbf{P}^{\mu}{ }_{m n}$ expansion in Group \mathbf{g}

$$
\mathbf{g}=\left(\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\ell^{\prime}} \sum_{n^{\prime}}^{\mu^{\prime}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\right)
$$

Review Stage 1: Group Center:Class-sums κ_{g}, characters $\chi^{\mu}(\mathbf{g})$, and All-Commuting Projectors \mathbb{P}^{μ}

$$
\mathbf{K}_{\mathbf{g}}=\sum_{\mu} \frac{{ }^{\circ} \kappa_{g} \chi_{g}^{\mu}}{\ell^{\mu}} \mathbb{P}^{\mu}
$$

Characters: $\chi_{g}^{\mu} \equiv \operatorname{Tr} D^{\mu}(\mathrm{g})=\chi^{\mu}(\mathrm{g})=\chi^{\mu}\left(\mathbf{h g h ^ { - 1 }}\right)$

$$
\mathbb{P}^{\mu}=\sum_{\text {classes } \boldsymbol{\kappa}_{\mathrm{g}}} \frac{\ell^{\mu}}{{ }^{\mu} G} \chi_{g}^{\mu^{*}} \boldsymbol{\kappa}_{\mathrm{g}}
$$

Review Stage 2: Group operators \mathbf{g} and Mutually-Commuting projectors $\mathbf{P}^{\mu} k k$

$$
\left.\mathbb{P}^{\mu}=\mathbf{P}^{\mu}{ }_{11}+\mathbf{P}^{\mu}{ }_{22}+\ldots \mathbf{P}_{\ell^{\mu} \ell^{\mu}}^{\mu_{1}} \quad \text { (Mutually-commuting Projectors } \mathbf{P}^{\mu}{ }_{m m}\right)
$$

\mathbb{P}^{μ} splits into a number ℓ^{μ} of irreducible $\mathbf{P}^{\mu}{ }_{j j}$ where $\ell^{\mu}=$ dimension of irrep D^{μ}
Review Stage 3: Weyl g-expansion in irreps $D_{j k}(g)$ and Non-Commuting projectors $\mathbf{P}_{j k}$
Group \mathbf{g}-expansion in Projectors $\mathbf{P}^{\mu}{ }_{m n} \quad$ Projector $\mathbf{P}^{\mu}{ }_{m n}$ expansion in Group \mathbf{g}

$$
\begin{aligned}
& \mathbf{g}=\left(\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\ell^{\mu}} \sum_{n^{\prime}}^{\ell^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\right) \begin{array}{l}
\text { The } \mathbf{g}=\mathbf{1} \cdot \mathbf{g} \cdot \mathbf{1} \text { development }: \\
\text { (Lecture 15 p.90-97) }
\end{array} \\
& \mathbf{g}=\mathbf{1} \cdot \mathbf{g} \cdot \mathbf{1}=\left(\mathbf{P}_{x, x}^{A_{1}}+\mathbf{P}_{y, y}^{t_{2}}+\mathbf{P}_{x, x}^{E}+\mathbf{P}_{y, y}^{E}\right) \cdot \mathbf{g} \cdot\left(\mathbf{P}_{x, x}^{A_{1}}+\mathbf{P}_{y, y}^{t_{2}}+\mathbf{P}_{x, x}^{E}+\mathbf{P}_{y, y}^{E}\right) \\
& \mathbf{g}=\mathbf{1} \cdot \mathbf{g} \cdot \mathbf{1}=\mathbf{P}_{x, x}^{A_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{x, x}^{A_{1}}+0 \quad+0 \quad+0 \\
& +0+\mathbf{P}_{v, v}^{A_{2}} \mathbf{g} \cdot \mathbf{P}_{v, y}^{A_{2}}+0+0 \\
& +0+0+\mathbf{P}_{x, x}^{E} \cdot \mathbf{g} \cdot \mathbf{P}_{x, x}^{E}+\mathbf{P}_{x, x}^{E} \cdot \mathbf{g} \cdot \mathbf{P}_{y, y}^{E} \\
& +0+0+\mathbf{P}_{y, y}^{E} \cdot \mathbf{g} \cdot \mathbf{P}_{x, x}^{E}+\mathbf{P}_{y, y}^{E} \cdot \mathbf{g} \cdot \mathbf{P}_{y, y}^{E}
\end{aligned}
$$

Review Stage 1: Group Center:Class-sums κ_{g}, characters $\chi^{\mu}(\mathbf{g})$, and All-Commuting Projectors \mathbb{P}^{μ}

$$
\mathbf{K}_{\mathbf{g}}=\sum_{\mu} \frac{{ }^{\circ} \kappa_{g} \chi_{g}^{\mu}}{\ell^{\mu}} \mathbb{P}^{\mu}
$$

Characters: $\chi_{g}^{\mu} \equiv \operatorname{Tr} D^{\mu}(\mathrm{g})=\chi^{\mu}(\mathrm{g})=\chi^{\mu}\left(\mathbf{h g h ^ { - 1 }}\right)$

$$
\mathbb{P}^{\mu}=\sum_{\text {classes } \kappa_{\mathrm{g}}} \frac{\ell^{\mu}}{{ }^{\circ} G} \chi_{g}^{\mu^{*}} \boldsymbol{\kappa}_{\mathrm{g}}
$$

Review Stage 2: Group operators \mathbf{g} and Mutually-Commuting projectors $\mathbf{P}^{\mu}{ }_{k k}$

$$
\mathbb{P}^{\mu}=\mathbf{P}^{\mu}{ }_{11}+\mathbf{P}^{\mu}{ }_{22}+\ldots \mathbf{P}_{\ell^{\mu} \ell^{\mu}}^{\mu^{\prime}} \quad \text { (Mutually-commuting Projectors } \mathbf{P}_{m m}^{\mu} \text {) }
$$

\mathbb{P}^{μ} splits into a number ℓ^{μ} of irreducible $\mathbf{P}^{\mu}{ }_{j j}$ where $\ell^{\mu}=$ dimension of irrep D^{μ}
Review Stage 3: Weyl \mathbf{g}-expansion in irreps $D_{j k}^{\mu}(g)$ and Non-Commuting projectors $\mathbf{P}_{j k}$
Group \mathbf{g}-expansion in Projectors $\mathbf{P}^{\mu}{ }_{m n} \quad$ Projector $\mathbf{P}^{\mu}{ }_{m n}$ expansion in Group \mathbf{g}

$$
\mathbf{g}=\left(\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\ell^{\prime}} \sum_{n^{\prime}}^{\ell^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\right) \begin{aligned}
& \text { The } \mathbf{g}=\mathbf{1} \cdot \mathbf{g} \cdot \mathbf{1} \text { development: } 15 p \cdot 90-97)
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{g}=\mathbf{1} \cdot \mathbf{g} \cdot \mathbf{1}=\left(\mathbf{P}_{x, x}^{A_{1}}+\mathbf{P}_{y, y}^{A_{2}}+\mathbf{P}_{x, x}^{E}+\mathbf{P}_{y, y}^{E}\right) \cdot \mathbf{g} \cdot\left(\mathbf{P}_{x, x}^{A_{1}}+\mathbf{P}_{y, y}^{A_{2}}+\mathbf{P}_{x, x}^{E}+\mathbf{P}_{y, y}^{E}\right) \\
& \mathbf{g}=\mathbf{1} \cdot \mathbf{g} \cdot \mathbf{1}=D^{A_{1}}(\mathbf{g}) \mathbf{P}_{x, x}^{A_{1}}+0 \quad+0 \quad+0 \\
& +0+D^{A_{2}}(\mathbf{g}) \mathbf{P}_{y, y}^{A_{2}}+0+0 \\
& +0+0+D_{x, x}^{E}(\mathbf{g}) \mathbf{P}_{x, x}^{E}+D_{x, y}^{E}(\mathbf{g}) \mathbf{P}_{x, y}^{E} \\
& \text { where: } \quad+0+0+D_{y, x}^{E}(\mathbf{g}) \mathbf{P}_{y, x}^{E}+D_{y, y}^{E}(\mathbf{g}) \mathbf{P}_{y, y}^{E}
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{P}_{x, x}^{A_{1}} \mathbf{g} \cdot \mathbf{P}_{x, x}^{A_{1}} & =D^{A_{1}}(\mathbf{g}) \mathbf{P}_{x, x}^{A_{1}} & \mathbf{P}_{y, y}^{4_{2}} \mathbf{g} \cdot \mathbf{P}_{y, y}^{4_{2}}=D^{A_{2}}(\mathbf{g}) \mathbf{P}_{y,}^{4_{2}} \\
\mathbf{P}_{x, x}^{E} \mathbf{g} \cdot \mathbf{P}_{x, x}^{E} & =D_{x, x}^{E}(\mathbf{g}) \mathbf{P}_{x, x}^{E} & \mathbf{P}_{x, x}^{E} \cdot \mathbf{g} \cdot \mathbf{P}_{y, y}^{E}=D_{x, y}^{E}(\mathbf{g}) \mathbf{P}_{x, y}^{E} \\
\mathbf{P}_{y, y}^{E} \cdot \mathbf{g} \cdot \mathbf{P}_{x, x}^{E} & =D_{y, x}^{E}(\mathbf{g}) \mathbf{P}_{y, x}^{E} & \mathbf{P}_{y, y}^{E}, \mathbf{g} \cdot \mathbf{P}_{E, y}^{E}=D_{y, y}^{E}(\mathbf{g}) \mathbf{P}_{y, y}^{E}
\end{aligned}
$$

Review Stage 1: Group Center:Class-sums κ_{g},characters $\chi^{\mu}(\mathbf{g})$, and All-Commuting Projectors \mathbb{P}^{μ} Review Stage 2: Group operators \mathbf{g} and Mutually-Commuting projectors $\mathbf{P}^{\mu_{k k}}$
Review Stage 3: Weyl g-expansion in irreps $D^{\mu}{ }_{j k}(g)$ and Non-Commuting projectors $\mathbf{P}^{\mu_{j k}}$
\boldsymbol{P} Simple matrix algebra $\mathbf{P}^{\mu}{ }_{a b} \mathbf{P}^{\nu}{ }_{c d}=\delta^{\mu \nu} \delta_{b c} \mathbf{P}^{\mu}{ }_{a d}$
$\mathbf{P}^{\mu_{j k}}$ transforms right-and-left
$\mathbf{P}^{\mu_{j k}}$-expansion in \mathbf{g}-operators
Example of D_{3} transformation by matrix $D^{E_{j k}}\left(\mathbf{r}^{1}\right)$
Details of Mock-Mach relativity-duality for D_{3} groups and representations
Lab-fixed(Extrinsic-Global) vs. Body-fixed (Intrinsic-Local)
Compare Global vs Local $|\mathbf{g}\rangle$-basis and Global vs Local $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis
Hamiltonian and D_{3} group matrices in global and local $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis
Global vs. Local block rearrangement
Hamiltonian local-symmetry eigensolution
Molecular vibrational mode eigensolution
Local symmetry limit
Global symmetry limit (free or "genuine" modes)
where:

$$
+D_{y x}^{E_{1}}(g) \mathbf{P}_{y x}^{E_{1}}+D_{y y}^{E_{1}}(g) \mathbf{P}_{y y}^{E_{1}}
$$

$$
\begin{array}{rllll}
\mathbf{P}_{x x}^{A_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{x x}^{A_{1}}= & D_{x x}^{A_{1}}(g) \mathbf{P}_{x x}^{A_{1}}, \quad \mathbf{P}_{y y}^{A_{2}} \cdot \mathbf{g} \cdot \mathbf{P}_{y y}^{A_{2}}=D_{y y}^{A_{2}}(g) \mathbf{P}_{y y}^{A_{2}}, \quad & \mathbf{P}_{x x}^{E_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{x x}^{E_{1}}=D_{x x}^{E_{1}}(g) \mathbf{P}_{x x}^{E_{1}}, \quad & \mathbf{P}_{x x}^{E_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{y y}^{E_{1}}=D_{x y}^{E_{1}}(g) \mathbf{P}_{x y}^{E_{1}} \\
& \text { For split idempotents } & \mathbf{P}_{y y}^{E_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{x x}^{E_{1}}=D_{y x}^{E_{1}}(g) \mathbf{P}_{x x}^{E_{1}}, & \mathbf{P}_{y y}^{E_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{y y}^{E_{1}}=D_{y y}^{E_{1}}(g) \mathbf{P}_{y y}^{E_{1}}
\end{array}
$$

Besides four idempotent projectors $\quad \mathbf{P}^{A_{1}}, \mathbf{P}^{A_{2}}, \mathbf{P}_{x x}^{E_{1}}$, and $\mathbf{P}_{y y}^{E_{1}}$ there arise two nilpotent projectors $\mathbf{P}_{y x}^{E_{1}}$ and $\mathbf{P}_{x y}^{E_{1}}$

Idempotent projector orthogonality

$$
\mathbf{P}_{i} \mathbf{P}_{j}=\delta_{i j} \mathbf{P}_{i}=\mathbf{P}_{j} \mathbf{P}_{i}
$$

Generalizes to idempotent/nilpotent orthogonality known as Simple Matrix Algebra:

$$
\mathbf{P}_{j k}^{\mu} \mathbf{P}_{m n}^{v}=\delta^{\mu v} \delta_{k m} \mathbf{P}_{j n}^{\mu}
$$

$\underset{\mathbf{g}=}{\text { Coefficients }} D_{m n}^{\mu}(g)_{\mathbf{r}^{1}}$ are irreducible representations (ireps) of \mathbf{g}

Group product table boils down to simple projector matrix algebra

	$\mathbf{P}_{x x}^{A_{1}}$	$\mathbf{P}_{y y}^{A_{2}}$	$\mathbf{P}_{x x}^{E_{1}}$	$\mathbf{P}_{x y}^{E_{1}}$	$\mathbf{P}_{y x}^{E_{1}}$	$\mathbf{P}_{y y}^{E_{1}}$
$\mathbf{P}_{x x}^{A_{1}}$	$\mathbf{P}_{x x}^{A_{1}}$	
$\mathbf{P}_{3}^{A_{2}}$		$\mathbf{P}_{y y}^{A_{2}}$.	.	.	
$\begin{aligned} & \mathbf{P}_{x x}^{E_{1}} \\ & \mathbf{P}_{y x}^{E_{1}} \end{aligned}$.	.	$\mathbf{P}_{x x}^{E_{1}}$ $\mathbf{P}_{y x}^{E_{1}}$	$\begin{aligned} & \mathbf{P}_{x y}^{E_{1}} \\ & \mathbf{P}_{x y}^{E_{1}} \end{aligned}$.	
$\begin{gathered} \mathbf{P}_{x y}^{E_{1}} \\ \mathbf{i}_{\mathbf{3}} \mathbf{P}_{y y}^{E_{1}} \end{gathered}$.	.	.		$\mathbf{P}_{x x}^{E_{1}}$ $\mathbf{P}_{y x}^{E_{1}}$	$\begin{aligned} & \mathbf{P}_{x y}^{E_{1}} \\ & \mathbf{P}_{y, 1}^{E_{1}} \end{aligned}$
$\begin{gathered} 1 \\ -1 \end{gathered}$						
$\left.\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right)$						

Review Stage 1: Group Center:Class-sums κ_{g},characters $\chi^{\mu}(\mathbf{g})$, and All-Commuting Projectors \mathbb{P}^{μ} Review Stage 2: Group operators \mathbf{g} and Mutually-Commuting projectors $\mathbf{P}^{\mu}{ }_{k k}$
Review Stage 3: Weyl g-expansion in irreps $D^{\mu}{ }_{j k}(g)$ and Non-Commuting projectors $\mathbf{P}^{\mu_{j k}}$
Simple matrix algebra $\mathbf{P}^{\mu}{ }_{a b} \mathbf{P}^{\nu}{ }_{c d}=\delta^{\mu \nu} \delta_{b c} \mathbf{P}^{\mu}{ }_{a d}$
7
$\mathbf{P}^{\mu}{ }_{j k}$ transforms right-and-left
$\mathbf{P}^{\mu_{j k}}$-expansion in \mathbf{g}-operators
Example of D_{3} transformation by matrix $D_{j k}^{E_{j k}}\left(\mathbf{r}^{1}\right)$
Details of Mock-Mach relativity-duality for D_{3} groups and representations
Lab-fixed(Extrinsic-Global) vs. Body-fixed (Intrinsic-Local)
Compare Global vs Local $|\mathbf{g}\rangle$-basis and Global vs Local $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis
Hamiltonian and D_{3} group matrices in global and local $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis
Global vs. Local block rearrangement
Hamiltonian local-symmetry eigensolution
Molecular vibrational mode eigensolution
Local symmetry limit
Global symmetry limit (free or "genuine" modes)
$\mathbf{P}_{j k} \mu_{\text {transforms right-and-left }}$
Spectral decomposition defines left and right irep transformation due to spectrally decomposed g acting on left and right side of projector $\mathbf{P}^{\mu}{ }_{m n}$.
$\mathbf{g} \mathbf{P}_{m n}^{\mu}=\left(\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\ell^{\mu}} \sum_{n^{\prime}}^{\ell^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\right) \mathbf{P}_{m n}^{\mu}$
$\mathbf{P}_{j k} \mu_{\text {transforms right-and-left }}$
Spectral decomposition defines left and right irep transformation due to spectrally decomposed g acting on left and right side of projector $\mathbf{P}^{\mu}{ }_{m n}$.
$\mathbf{P}_{j k} \mu_{\text {transforms right-and-left }}$
Spectral decomposition defines left and right irep transformation due to spectrally decomposed g acting on left and right side of projector $\mathbf{P}^{\mu}{ }_{m n}$.

$$
\begin{aligned}
& \mathbf{g} \mathbf{P}_{m n}^{\mu}=\left(\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\ell^{\mu}} \sum_{n^{\prime}}^{\ell^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\right) \mathbf{P}_{m n \ldots \ldots}^{\mu} \\
& =\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\ell^{\mu}} \sum_{n^{\prime}}^{\ell^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \delta^{\mu^{\prime} \mu} \delta_{n^{\prime} m} \mathbf{P}_{m^{\prime} n \ldots}^{\mu} \\
& =\sum_{m^{\prime}}^{\ell^{\mu}} D_{m^{\prime} m}^{\mu}(g) \mathbf{P}_{m^{\prime} n}^{\mu} \\
& \begin{array}{c}
\text { Use } \mathbf{P}_{m n}^{\mu} \text {-orthonormality } \\
\mathbf{P}_{m^{\prime} n^{\prime} \mathbf{P}_{m n}^{\mu}=\delta^{\mu^{\prime} \mu} \delta_{n^{\prime} m} \mathbf{P}_{m^{\prime} n}^{\mu}}^{\mu} \\
\text { (Simple matrix algebra) }
\end{array}
\end{aligned}
$$

$$
\mathbf{g}=\left(\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\ell^{\mu}} \sum_{n^{\prime}}^{\ell^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\right)
$$

$\mathbf{P}_{j k}{ }_{j k}$ transforms right-and-left
Spectral decomposition defines left and right irep transformation due to spectrally decomposed g acting on left and right side of projector $\mathbf{P}^{\mu}{ }_{m n}$.

$$
\begin{aligned}
\mathbf{g} \mathbf{P}_{m n}^{\mu} & =\left(\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\ell^{\mu}} \sum_{n^{\prime}}^{\ell^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\right) \mathbf{P}_{m n \ldots \ldots \ldots}^{\mu} \\
& =\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\ell^{\mu}} \sum_{n^{\prime}}^{\ell^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \delta^{\mu^{\prime} \mu} \boldsymbol{\delta}_{n^{\prime} \prime}^{\boldsymbol{P}_{m^{\prime} n}^{\prime}} \mathbf{P}_{n}^{\mu} \\
& =\sum_{m^{\prime}}^{\ell^{\mu}} D_{m^{\prime} m}^{\mu}(g) \mathbf{P}_{m^{\prime} n}^{\mu}
\end{aligned}
$$

Left-action transforms irep-ket $\mathbf{g}\left|\begin{array}{l}\mu \\ m n\end{array}\right\rangle=\frac{\mathbf{g P}_{m n}^{\mu}|\mathbf{1}\rangle}{n o r m}$.

$$
\mathbf{g}\left|\begin{array}{c}
\mu \\
m n
\end{array}\right\rangle=\sum_{m^{\prime}}^{\ell^{\mu}} D_{m^{\prime} m}^{\mu}(g)\left|\begin{array}{l}
\mu \\
m^{\prime} n
\end{array}\right\rangle
$$

$\mathbf{P}_{j k}{ }_{j k}$ transforms right-and-left

$$
\mathbf{g}=\left(\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\mu^{\mu}} \sum_{n^{\prime}}^{\ell^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\right)
$$

Spectral decomposition defines left and right irep transformation due to spectrally decomposed g acting on left and right side of projector $\mathbf{P}^{\mu}{ }_{m n}$.

$$
\begin{aligned}
\mathbf{g P}_{m n}^{\mu} & =\left(\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\ell^{\mu}} \sum_{n^{\prime}}^{\ell^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\right) \mathbf{P}_{m n \ldots \ldots \ldots}^{\mu} \\
& =\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\ell^{\mu}} \sum_{n^{\prime}}^{\ell^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \delta^{\mu^{\prime} \mu} \boldsymbol{\delta}_{n^{\prime} \prime}^{\boldsymbol{P}_{n}} \mathbf{P}_{m^{\prime} n \ldots}^{\mu} \\
& =\sum_{m^{\prime}}^{\ell^{\mu}} D_{m^{\prime} m}^{\mu}(g) \mathbf{P}_{m^{\prime} n}^{\mu}
\end{aligned}
$$

$$
\underbrace{\left.\begin{array}{l}
\text { Use } \mathbf{P}_{m n}^{\mu} \text {-orthonormality } \\
\mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}} \mathbf{P}_{m n}^{\mu}=\delta^{\mu^{\prime} \mu} \delta_{n^{\prime} m} \mathbf{P}_{m^{\prime}}^{\mu}
\end{array}\right)}_{\text {(Simple matrix algebra) }}
$$

Left-action transforms irep-ket $\mathbf{g}\left|\begin{array}{c}\mu n \\ m\end{array}\right\rangle=\frac{\mathbf{g P}_{m n}^{\mu}|\mathbf{1}\rangle}{n o r m}$.

$$
\mathbf{g}\left|\begin{array}{c}
\mu \\
m n
\end{array}\right\rangle=\sum_{m^{\prime}}^{\ell^{\mu}} D_{m^{\prime} m}^{\mu}(g)\left|\begin{array}{l}
\mu \\
m^{\prime} n
\end{array}\right\rangle
$$

A simple irep expression...

$$
\left\langle\begin{array}{l}
\mu \\
m^{\prime} n
\end{array}\right| \mathbf{g}\left|\begin{array}{c}
\mu \\
m n
\end{array}\right\rangle=D_{m^{\prime} m}^{\mu}(g)
$$

$\mathbf{P}_{j k}{ }_{j k}$ transforms right-and-left
Spectral decomposition defines left and right irep transformation due to spectrally decomposed g acting on left and right side of projector $\mathbf{P}^{\mu}{ }_{m n}$.

$$
\begin{aligned}
& \mathbf{g} \mathbf{P}_{m n}^{\mu}=\left(\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\ell^{\mu}} \sum_{n^{\prime}}^{\ell^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \underset{m^{\prime} n^{\prime}}{\mathbf{n}^{\prime}}\right) \mathbf{P}_{m}^{\mu} \ldots \ldots \ldots \\
& =\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\ell^{\mu}} \sum_{n^{\prime}}^{\ell^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \delta^{\mu^{\prime} \mu} \delta_{n^{\prime} m}^{{ }_{m}} \mathbf{P}_{m^{\prime} n \ldots}^{\mu} \\
& =\sum_{m^{\prime}}^{\ell^{\mu}} D_{m^{\prime} m}^{\mu}(g) \mathbf{P}_{m^{\prime} n}^{\mu} \\
& \begin{array}{c}
\text { Use } \mathbf{P}_{m n}^{\mu} \text {-orthonormality } \\
\mathbf{P}_{m^{\prime} n^{\prime} \mathbf{P}_{m n}^{\mu^{\prime}} \mathbf{P}^{\mu}=\delta^{\mu^{\prime} \mu} \delta_{n^{\prime} m} \mathbf{P}_{m^{\prime} n}^{\mu}}^{\text {(Simple matrix algebra) }}
\end{array}
\end{aligned}
$$

Left-action transforms irep-ket $\mathbf{g}\left|\begin{array}{l}\mu \\ m n\end{array}\right\rangle=\frac{\mathbf{g P}_{m n}^{\mu}|\mathbf{1}\rangle}{n o r m}$.

$$
\mathbf{g}\left|\begin{array}{c}
\mu \\
m n
\end{array}\right\rangle=\sum_{m^{\prime}}^{\ell^{\mu}} D_{m^{\prime} m}^{\mu}(g)\left|\begin{array}{l}
\mu \\
m^{\prime} n
\end{array}\right\rangle
$$

A simple irep expression...

$$
\left\langle\begin{array}{l}
\mu \\
m^{\prime} n
\end{array}\right| \mathbf{g}\left|\begin{array}{c}
\mu \\
m n
\end{array}\right\rangle=D_{m^{\prime} m}^{\mu}(g)
$$

...requires proper normalization: $\left\langle\left.\begin{array}{l}\mu^{\prime} \\ m^{\prime} n^{\prime}\end{array} \right\rvert\, \begin{array}{l}\mu \\ m n\end{array}\right\rangle=\frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} m^{\prime}}^{\mu^{\prime}}}{\text { norm. }} \frac{\mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle}{\text { norm }{ }^{\mu} \text {. }}$

$$
\begin{aligned}
& =\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} n}^{\mu^{\prime}}|\mathbf{1}\rangle}{\mid \text { norm. }\left.\right|^{2}} \\
& =\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n}
\end{aligned}
$$

$\mathbf{P}_{j k}{ }_{j k}$ transforms right-and-left
Spectral decomposition defines left and right irep transformation due to spectrally decomposed g acting on left and right side of projector $\mathbf{P}^{\mu}{ }_{m n}$.

$$
\begin{aligned}
\mathbf{g} \mathbf{P}_{m n}^{\mu} & =\left(\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\ell^{\mu}} \sum_{n^{\prime}}^{\ell^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\right) \mathbf{P}_{m n}^{\mu} \\
& =\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\ell^{\mu}} \sum_{n^{\prime}}^{\ell^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \delta^{\mu^{\prime} \mu} \delta_{n^{\prime} m} \mathbf{P}_{m^{\prime} n}^{\mu} \\
& =\sum_{m^{\prime}}^{\ell^{\mu}} D_{m^{\prime} m}^{\mu}(g) \mathbf{P}_{m^{\prime} n}^{\mu}
\end{aligned}
$$

$$
\underbrace{\left.\begin{array}{l}
\text { Use } \mathbf{P}_{m n}^{\mu} \text {-orthonormality } \\
\mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}} \mathbf{P}_{m n}^{\mu}=\delta^{\mu^{\prime} \mu} \delta_{n^{\prime} m} \mathbf{P}_{m^{\prime} n}^{\mu}
\end{array}\right)}_{\text {(Simple matrix algebra) }}
$$

Left-action transforms irep-ket $\mathbf{g}\left|\begin{array}{l}\mu \\ m n\end{array}\right\rangle=\frac{\mathbf{g P}_{m n}^{\mu}|\mathbf{1}\rangle}{n o r m}$.

$$
\mathbf{g}\left|\begin{array}{l}
\mu \\
m n
\end{array}\right\rangle=\sum_{m^{\prime}}^{\ell^{\mu}} D_{m^{\prime} m}^{\mu}(g)\left|\begin{array}{l}
\mu \\
m^{\prime} n
\end{array}\right\rangle
$$

A simple irep expression...

$$
\left\langle\begin{array}{l}
\mu \\
m^{\prime} n
\end{array}\right| \mathbf{g}\left|\begin{array}{c}
\mu \\
m n
\end{array}\right\rangle=D_{m^{\prime} m}^{\mu}(g)
$$

...requires proper normalization: $\left\langle\left.\begin{array}{l}\mu^{\prime} \\ m^{\prime} n^{\prime}\end{array} \right\rvert\, \begin{array}{l}\mu \\ m n\end{array}\right\rangle=\frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} m^{\prime}}^{\mu^{\prime}}, \frac{\mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle}{\text { norm. }} \text { norm*. }}{\text { norm }}$

$$
\begin{aligned}
& =\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} n}^{\mu^{\prime}}|\mathbf{1}\rangle}{\mid \text { norm. }\left.\right|^{2}} \\
& =\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n}
\end{aligned}
$$

$$
\mid \text { norm. }\left.\right|^{2}=\langle\mathbf{1}| \mathbf{P}_{n n}^{\mu}|\mathbf{1}\rangle
$$

$\mathbf{P}_{j k}{ }_{j k}$ transforms right-and-left

$$
\mathbf{g}=\left(\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\mu^{\mu}} \sum_{n^{\prime}}^{\ell^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\right)
$$

Spectral decomposition defines left and right irep transformation due to spectrally decomposed g acting on left and right side of projector $\mathbf{P}^{\mu}{ }_{m n}$.

$$
\begin{aligned}
& \mathbf{g} \mathbf{P}_{m n}^{\mu}=\left(\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\ell^{\mu}} \sum_{n^{\prime}}^{\ell^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\right) \mathbf{P}_{m n}^{\mu} \\
& \text { Use } \mathbf{P}_{m n}^{\mu} \text {-orthonormality } \\
& \underbrace{\mu^{\prime}}_{m^{\prime} n^{\prime} \mathbf{P}_{m n}}=\delta^{\mu^{\prime} \mu} \delta_{n^{\prime} m} \mathbf{P}_{m^{\prime} n}^{\mu}) \\
& \text { (Simple matrix algebra) }
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{P}_{m n}^{\mu} \mathbf{g} & =\mathbf{P}_{m n}^{\mu}\left(\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\ell^{\mu}} \sum_{n^{\prime}}^{\mu^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\right) \\
& =\sum_{\mu^{\prime}}^{\ell^{\prime}} \sum_{m^{\prime}}^{\mu^{\mu}} \sum_{n^{\prime}}^{{ }^{\prime}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \delta^{\mu^{\prime} \mu} \delta_{n m^{\prime}} \mathbf{P}_{m n^{\prime}}^{\mu} \\
& =\sum_{n^{\prime}}^{\ell^{\prime}} D_{n n^{\prime}}^{\mu}(g) \mathbf{P}_{m n^{\prime}}^{\mu}
\end{aligned}
$$

Left-action transforms irep-ket $\mathbf{g}\left|\begin{array}{c}\mu \\ m\end{array}\right\rangle=\frac{\mathbf{g P}_{m n}^{\mu}|\mathbf{1}\rangle}{\text { norm. }}$

$$
\mathbf{g}\left|\begin{array}{l}
\mu \\
m n
\end{array}\right\rangle=\sum_{m^{\prime}}^{\ell^{\mu}} D_{m^{\prime} m}^{\mu}(g)\left|\begin{array}{l}
\mu \\
m^{\prime} n
\end{array}\right\rangle
$$

A simple irep expression...

$$
\left\langle\begin{array}{l}
\mu \\
m^{\prime} n
\end{array}\right| \mathbf{g}\left|\begin{array}{l}
\mu \\
m n
\end{array}\right\rangle=D_{m^{\prime} m}^{\mu}(g)
$$

...requires proper normalization: $\left\langle\left.\begin{array}{l}\mu^{\prime} \\ m^{\prime} n^{\prime}\end{array} \right\rvert\, \begin{array}{l}\mu \\ m n\end{array}\right\rangle=\frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} m^{\prime}}^{\mu^{\prime}}}{\text { norm. }} \frac{\mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle}{\text { norm }{ }^{\mu} \text {. }}$

$$
\begin{aligned}
& =\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} n}^{\mu^{\prime}}|\mathbf{1}\rangle}{\mid \text { norm. }\left.\right|^{2}} \\
& =\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n} \\
\mid \text { norm. }\left.\right|^{2} & =\langle\mathbf{1}| \mathbf{P}_{n n}^{\mu}|\mathbf{1}\rangle
\end{aligned}
$$

$\mathbf{P}_{j k}{ }_{j k}$ transforms right-and-left
Spectral decomposition defines left and right irep transformation due to spectrally decomposed g acting on left and right side of projector $\mathbf{P}^{\mu}{ }_{m n}$.

$$
\begin{aligned}
& \mathbf{g}_{m n}^{\mu}=\left(\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\mu^{\prime}} \sum_{n^{\prime}}^{\mu^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\right) \mathbf{P}_{m n}^{\mu} \\
& \text { (Simple matrix algebra) } \\
& \begin{array}{l}
\text { Use } \mathbf{P}_{m n}^{\mu} \text {-orthonormality } \\
\mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}} \mathbf{P}_{m n}^{\mu}=\delta^{\mu^{\prime} \mu} \delta_{n^{\prime} m} \mathbf{P}_{m^{\prime} n}^{\mu}
\end{array} \\
& \mathbf{P}_{m n}^{\mu} \mathbf{g}=\mathbf{P}_{m n}^{\mu}\left(\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\ell^{\mu}} \sum_{n^{\prime}}^{\ell^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\right) \\
& =\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\ell^{\prime}} \sum_{n^{\prime}}^{\mu^{\prime}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \delta^{\mu^{\prime} \mu} \delta_{n^{\prime} m} \mathbf{P}_{m^{\prime} n}^{\mu} \\
& =\sum_{m^{\prime}}^{\ell^{\mu}} D_{m^{\prime} m}^{\mu}(g) \mathbf{P}_{m^{\prime} n}^{\mu} \\
& \text { Projector conjugation } \\
& (|m\rangle\langle n|)^{\dagger}=|n\rangle\langle m| \\
& \left(\mathbf{P}_{m n}^{\mu}\right)^{\dagger}=\mathbf{P}_{n m}^{\mu} \\
& =\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\ell^{\mu}} \sum_{n^{\prime}}^{\mu^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \delta^{\mu^{\prime} \mu} \delta_{n m^{\prime}} \mathbf{P}_{m n^{\prime}}^{\mu} \\
& =\sum_{n^{\prime}}^{\ell^{\mu}} D_{n n^{\prime}}^{\mu}(g) \mathbf{P}_{m n^{\prime}}^{\mu}
\end{aligned}
$$

$$
\mathbf{g}\left|\begin{array}{l}
\mu \\
m_{n}
\end{array}\right\rangle=\sum_{m^{\prime}}^{\mu^{\mu}} D_{m^{\prime} m}^{\mu}(g)\left|\begin{array}{l}
\mu \\
m^{\prime} n
\end{array}\right\rangle
$$

A simple irep expression...

$$
\left\langle\begin{array}{l}
\mu \\
m^{\prime} n
\end{array}\right| \mathbf{g}\left|\begin{array}{c}
\mu \\
m n
\end{array}\right\rangle=D_{m^{\prime} m}^{\mu}(g)
$$

...requires proper normalization: $\left\langle\left.\begin{array}{l}\mu^{\prime} \\ m^{\prime} n^{\prime}\end{array} \right\rvert\, \begin{array}{l}\mu \\ m n\end{array}\right\rangle=\frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} m^{\prime}}^{\mu^{\prime}}}{\text { norm. }} \frac{\mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle}{\text { norm* }}$.

$$
\begin{aligned}
& =\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} n}^{\mu^{\prime}}|\mathbf{1}\rangle}{\mid \text { norm. }\left.\right|^{2}} \\
& =\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n} \\
\mid \text { norm. }\left.\right|^{2} & =\langle\mathbf{1}| \mathbf{P}_{n n}^{\mu}|\mathbf{1}\rangle
\end{aligned}
$$

$\mathbf{P}_{j k}{ }_{j k}$ transforms right-and-left
Spectral decomposition defines left and right irep transformation due to spectrally decomposed g acting on left and right side of projector $\mathbf{P}^{\mu}{ }_{m n}$.

$$
\begin{aligned}
& \mathbf{g}_{m n}^{\mu}=\left(\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\mu^{\prime}} \sum_{n^{\prime}}^{\mu^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\right) \mathbf{P}_{m n}^{\mu} \\
& \text { (Simple matrix algebra) } \\
& \begin{array}{l}
\text { Use } \mathbf{P}_{m n}^{\mu} \text {-orthonormality } \\
\mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}} \mathbf{P}_{m n}^{\mu}=\delta^{\mu^{\prime} \mu} \delta_{n^{\prime} m} \mathbf{P}_{m^{\prime} n}^{\mu}
\end{array} \\
& \mathbf{P}_{m n}^{\mu} \mathbf{g}=\mathbf{P}_{m n}^{\mu}\left(\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\mu^{\mu}} \sum_{n^{\prime}}^{\ell^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\right) \\
& =\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\ell^{\prime}} \sum_{n^{\prime}}^{\mu^{\prime}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \delta^{\mu^{\prime} \mu} \delta_{n^{\prime} m} \mathbf{P}_{m^{\prime} n}^{\mu} \\
& =\sum_{m^{\prime}}^{\ell^{\mu}} D_{m^{\prime} m}^{\mu}(g) \mathbf{P}_{m^{\prime} n}^{\mu} \\
& \text { Projector conjugation } \\
& (|m\rangle\langle n|)^{\dagger}=|n\rangle\langle m| \\
& \left(\mathbf{P}_{m n}^{\mu}\right)^{\dagger}=\mathbf{P}_{n m}^{\mu} \\
& =\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\ell^{\mu}} \sum_{n^{\prime}}^{\mu^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \delta^{\mu^{\prime} \mu} \delta_{n m^{\prime}} \mathbf{P}_{m n^{\prime}}^{\mu} \\
& =\sum_{n^{\prime}}^{\ell^{\mu}} D_{n n^{\prime}}^{\mu}(g) \mathbf{P}_{m n^{\prime}}^{\mu}
\end{aligned}
$$

$$
\mathbf{g}\left|\begin{array}{c}
\mu \\
m_{n}
\end{array}\right\rangle=\sum_{m^{\prime}}^{\mu^{\mu}} D_{m^{\prime} m}^{\mu}(g)\left|\begin{array}{l}
\mu \\
m^{\prime} n
\end{array}\right\rangle
$$

$$
\left\langle\begin{array}{l}
\mu \\
m n
\end{array}\right| \mathbf{g}^{\dagger}=\left\langle\begin{array}{l}
\mu \\
m^{\prime} n
\end{array}\right| \sum_{m^{\prime}}^{\ell^{\mu}} D_{m^{\prime} m}^{\mu}\left(\mathbf{g}^{\dagger}\right)
$$

A simple irep expression...

$$
\left\langle\begin{array}{l}
\mu \\
m^{\prime} n
\end{array}\right| \mathbf{g}\left|\begin{array}{c}
\mu \\
m n
\end{array}\right\rangle=D_{m^{\prime} m}^{\mu}(g)
$$

$$
\begin{aligned}
& =\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} n}^{\mu^{\prime}}|\mathbf{1}\rangle}{\mid \text { norm. }\left.\right|^{2}} \\
& =\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n} \\
\mid \text { norm. }\left.\right|^{2} & =\langle\mathbf{1}| \mathbf{P}_{n n}^{\mu}|\mathbf{1}\rangle
\end{aligned}
$$

$\mathbf{P}_{j k}{ }_{j k}$ transforms right-and-left
Spectral decomposition defines left and right irep transformation due to

$$
\mathbf{g}=\left(\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\ell^{\mu}} \sum_{n^{\prime}}^{\ell^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\right)
$$ spectrally decomposed g acting on left and right side of projector $\mathbf{P}^{\mu}{ }_{m n}$.

Left-action transforms irep-ket $\left.\mathrm{g} \left\lvert\, \begin{array}{c}\mu \\ m n\end{array}\right.\right)=\frac{\mathbf{g P}_{p m}^{\mu}|\mathbf{1}\rangle}{\text { norm. }} \quad$ Right-action transforms irep-bra $\left\langle\left\langle\begin{array}{l}\mu n \\ m\end{array}\right| \mathrm{g}^{\dagger}=\frac{\left\langle 1 \mathbf{l}_{n m}^{\mu} \mathrm{g}^{\dagger}\right.}{\text { norm }^{\dagger}}\right.$

$$
\mathbf{g}\left|\begin{array}{l}
\mu \\
m_{n}
\end{array}\right\rangle=\sum_{m^{\prime}}^{\mu^{\mu}} D_{m^{\prime} m}^{\mu}(g)\left|\begin{array}{l}
\mu \\
m^{\prime} n
\end{array}\right\rangle
$$

A simple irep expression...

$$
\left\langle{ }_{m^{\prime} n}^{\mu}\right| \mathrm{g}\left|\begin{array}{l}
\mu \\
{ }_{m n}
\end{array}\right\rangle=D_{m^{\prime} m}^{\mu}(g)
$$

$$
\left\langle\begin{array}{l}
\mu \\
m n
\end{array}\right| \mathbf{g}^{\dagger}=\left\langle\begin{array}{l}
\mu \\
m^{\prime} n
\end{array}\right| \sum_{m^{\prime}}^{\ell^{\mu}} D_{m^{\prime} m}^{\mu}\left(\mathbf{g}^{\dagger}\right)
$$

A conjugate irep expression...

$$
\left\langle\left.\left\langle\begin{array}{l}
\mu \\
m
\end{array}\right| g^{\dagger} \right\rvert\, \begin{array}{l}
\mu \\
m^{\prime} n
\end{array}\right\rangle=D_{m^{\prime} m}^{\mu}\left(g^{\dagger}\right)
$$

...requires proper normalization: $\left\langle\begin{array}{l}\mu_{m^{\prime} n^{\prime}}^{\prime} \mid\end{array}{ }_{m n}^{\mu}\right\rangle=\frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} m^{\prime}}^{\mu^{\prime}}}{\text { norm. }} \frac{\mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle}{\text { norm }}$..

$$
\begin{aligned}
& =\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} n}^{\mu^{\prime}}|\mathbf{1}\rangle}{\mid \text { norm. }\left.\right|^{2}} \\
& =\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n} \\
\mid \text { norm. }\left.\right|^{2} & =\langle\mathbf{1}| \mathbf{P}_{n n}^{\mu}|\mathbf{1}\rangle
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{g}_{m n}^{\mu}=\left(\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\mu^{\prime}} \sum_{n^{\prime}}^{\mu^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\right) \mathbf{P}_{m n}^{\mu} \\
& \text { (Simple matrix algebra) } \\
& \begin{array}{l}
\text { Use } \mathbf{P}_{m n}^{\mu} \text {-orthonormality } \\
\mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}} \mathbf{P}_{m n}^{\mu}=\delta^{\mu^{\prime} \mu} \delta_{n^{\prime} m} \mathbf{P}_{m^{\prime} n}^{\mu}
\end{array} \\
& \mathbf{P}_{m n}^{\mu} \mathbf{g}=\mathbf{P}_{m n}^{\mu}\left(\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\ell^{\prime}} \sum_{n^{\prime}}^{\ell^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\right) \\
& =\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\ell^{\prime}} \sum_{n^{\prime}}^{\mu^{\prime}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \delta^{\mu^{\prime} \mu} \delta_{n^{\prime} m} \mathbf{P}_{m^{\prime} n}^{\mu} \\
& =\sum_{m^{\prime}}^{\ell^{\mu}} D_{m^{\prime} m}^{\mu}(g) \mathbf{P}_{m^{\prime} n}^{\mu} \\
& \begin{array}{c}
\text { Projector conjugation } \\
(|m\rangle\langle n|)^{\dagger}=|n\rangle\langle m| \\
\left(\mathbf{P}_{m n}^{\mu}\right)^{\dagger}=\mathbf{P}_{n m}^{\mu}
\end{array} \\
& =\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\ell^{\prime}} \sum_{n^{\prime}}^{\mu^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \delta^{\mu^{\prime} \mu} \delta_{n m^{\prime}} \mathbf{P}_{m n^{\prime}}^{\mu} \\
& =\sum_{n^{\prime}}^{\ell^{\mu}} D_{n n^{\prime}}^{\mu}(g) \mathbf{P}_{m n^{\prime}}^{\mu}
\end{aligned}
$$

$\mathbf{P}_{j k}{ }_{j k}$ transforms right-and-left

$$
\mathbf{g}=\left(\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\mu^{\prime}} \sum_{n^{\prime}}^{\ell^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\right)
$$

Spectral decomposition defines left and right irep transformation due to spectrally decomposed g acting on left and right side of projector $\mathbf{P}^{\mu}{ }_{m n}$.

$$
\left.\begin{array}{rlrl}
\mathbf{g} \mathbf{P}_{m n}^{\mu} & =\left(\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\ell^{\mu}} \sum_{n^{\prime}}^{\ell^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\right) \mathbf{P}_{m n}^{\mu} & \begin{array}{c}
\text { Use } \mathbf{P}_{m n}^{\mu} \text {-orthonormality } \\
\mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}} \mathbf{P}_{m n}^{\mu}=\delta^{\mu^{\prime} \mu} \delta_{n^{\prime} m} \mathbf{P}_{m^{\prime} n}^{\mu}
\end{array} & \mathbf{P}_{m n}^{\mu} \mathbf{g}=\mathbf{P}_{m n}^{\mu}\left(\sum_{\mu^{\prime}} \sum_{m^{\prime}}^{\ell^{\mu}} \sum_{n^{\prime}}^{\ell^{\mu}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\right.
\end{array}\right)
$$

Left-action transforms irep-ket $\left.\mathrm{g} \left\lvert\, \begin{array}{c}\mu \\ m n\end{array}\right.\right)=\frac{\mathbf{g P}_{p m}^{\mu}|\mathbf{1}\rangle}{\text { norm. }} \quad$ Right-action transforms irep-bra $\left\langle\left\langle\begin{array}{l}\mu n \\ m\end{array}\right| \mathrm{g}^{\dagger}=\frac{\left\langle 1 \mathbf{l}_{n m}^{\mu} \mathrm{g}^{\dagger}\right.}{\text { norm }^{\dagger}}\right.$

$$
\mathbf{g}\left|\begin{array}{l}
\mu \\
m n
\end{array}\right\rangle=\sum_{m^{\prime}}^{\mu^{\prime}} D_{m^{\prime} m}^{\mu}(g)\left|\begin{array}{l}
\mu \\
m^{\prime} n
\end{array}\right\rangle
$$

A simple irep expression...

$$
\left\langle{ }_{m^{\prime} n}^{\mu}\right| \mathbf{g}\left|\begin{array}{l}
\mu \\
m n
\end{array}\right\rangle=D_{m^{\prime} m}^{\mu}(g)
$$

$$
\left\langle\begin{array}{l}
\mu \\
m n
\end{array}\right| \mathbf{g}^{\dagger}=\left\langle\begin{array}{l}
\mu \\
m^{\prime} n
\end{array}\right| \sum_{m^{\prime}}^{\ell^{\mu}} D_{m^{\prime} m}^{\mu}\left(\mathbf{g}^{\dagger}\right)
$$

A conjugate irep expression...

$$
\left\langle{ }_{m n}^{\mu}\right| g^{\dagger}\left|\begin{array}{l}
\mu \\
m^{\prime} n
\end{array}\right\rangle=D_{m^{\prime} m}^{\mu}\left(g^{\dagger}\right)
$$

...requires proper normalization: $\left\langle\left.\begin{array}{l}\mu^{\prime}, \\ m^{\prime} n^{\prime}\end{array} \right\rvert\, \begin{array}{c}\mu \\ m n\end{array}\right\rangle=\frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} m^{\prime}}^{\mu^{\prime}}}{\text { norm. }} \frac{\mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle}{\text { norm* }}$.

$$
\begin{aligned}
& =\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} n}^{\mu^{\prime}}|\mathbf{1}\rangle}{\mid \text { norm. }\left.\right|^{2}} \\
& =\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n} \\
\mid \text { norm. }\left.\right|^{2} & =\langle\mathbf{1}| \mathbf{P}_{n n}^{\mu}|\mathbf{1}\rangle
\end{aligned}
$$

Review Stage 1: Group Center:Class-sums κ_{g},characters $\chi^{\mu}(\mathbf{g})$, and All-Commuting Projectors \mathbb{P}^{μ} Review Stage 2: Group operators \mathbf{g} and Mutually-Commuting projectors $\mathbf{P}^{\mu}{ }_{k k}$ Review Stage 3: Weyl g-expansion in irreps $D^{\mu}{ }_{j k}(g)$ and Non-Commuting projectors $\mathbf{P}^{\mu_{j k}}$ Simple matrix algebra $\mathbf{P}^{\mu}{ }_{a b} \mathbf{P}^{\nu}{ }_{c d}=\delta^{\mu \nu} \delta_{b c} \mathbf{P}^{\mu}{ }_{a d}$ $\mathbf{P}^{\mu}{ }_{j k}$ transforms right-and-left

> Details of Mock-Mach relativity-duality for D_{3} groups and representations
> Lab-fixed(Extrinsic-Global) vs. Body-fixed (Intrinsic-Local)
> Compare Global vs Local $|\mathbf{g}\rangle$-basis and Global vs Local $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis

Hamiltonian and D_{3} group matrices in global and local $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis
Global vs. Local block rearrangement
Hamiltonian local-symmetry eigensolution
Molecular vibrational mode eigensolution
Local symmetry limit
Global symmetry limit (free or "genuine" modes)
$\mathbf{P}_{j k}^{\mu}$-expansion in \mathbf{g}-operators \quad Need inverse of Weyl form: $\quad \mathbf{g}=\left(\sum_{\mu^{\prime}}^{\mu_{m^{\prime}} \sum_{n^{\prime}}^{\prime \mu}} \sum_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\right)$ Derive coefficients $p_{m n}^{\mu}(\mathrm{g})$ of inverse Weyl expansion: $\mathbf{P}_{m n}^{\mu}=\sum_{\mathrm{g}}^{\circ}{ }^{\circ} p_{m n}^{\mu}(g) \mathrm{g}$
$\mathbf{P}_{j k}^{\mu}$-expansion in \mathbf{g}-operators \quad Need inverse of Weyl form: $\quad \mathbf{g}=\left(\sum_{\mu^{\prime}}^{\mu_{m^{\prime}} \sum_{n^{\prime}}^{\prime \prime}} \sum_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\right)$ Derive coefficients $p_{m n}^{\mu}(\mathrm{g})$ of inverse Weyl expansion: $\mathbf{P}_{m n}^{\mu}=\sum_{\mathrm{g}}^{\circ}{ }^{\circ} p_{m n}^{\mu}(g) \mathrm{g}$
Left action by operator \mathbf{f} in group $G=\{\mathbf{1}, \ldots, \mathbf{f}, \mathbf{g}, \mathbf{h}, \ldots\}$:

$$
\mathbf{f} \cdot \mathbf{P}_{m n}^{\mu}=\sum_{\mathrm{g}}^{\circ} p_{m n}^{\mu}(g) \mathbf{f} \cdot \mathbf{g}
$$

$\mathbf{P}_{j k}^{\mu}$-expansion in \mathbf{g}-operators \quad Need inverse of Weyl form: $\quad \mathbf{g}=\left(\sum_{\mu^{\prime}}^{\mu_{m^{\prime}} \sum_{n^{\prime}}^{\prime \prime}} \sum_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\right)$ Derive coefficients $p_{m n}^{\mu}(g)$ of inverse Weyl expansion: $\mathbf{P}_{m n}^{\mu}=\sum_{\mathrm{g}}^{\circ} p_{m n}^{\mu}(g) \mathrm{g}$
Left action by operator \mathbf{f} in group $G=\{\mathbf{1}, \ldots, \mathbf{f}, \mathbf{g}, \mathbf{h}, \ldots\}$:

$$
\mathbf{f} \cdot \mathbf{P}_{m n}^{\mu}=\sum_{\mathrm{g}}^{\circ} p_{m n}^{\mu}(g) \mathbf{f} \cdot \mathbf{g}=\sum_{\mathbf{h}}^{\circ} G p_{m n}^{\mu}\left(\mathbf{f}^{-1} \mathbf{h}\right) \mathbf{h} \text {, where: } \mathbf{h}=\mathbf{f} \cdot \mathrm{g} \text {, or: } \mathrm{g}=\mathbf{f}^{-1} \mathbf{h},
$$

$\mathbf{P}^{\mu}{ }_{j k}$-expansion in \mathbf{g}-operators \quad Need inverse of Weyl form: $\quad \mathbf{g}=\left(\sum_{\mu^{\prime}}^{\mu^{\prime}} \sum_{m^{\prime}}^{\mu^{\prime}} \sum_{n^{\prime}}^{\mu^{\prime}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\right)$ Derive coefficients $p_{m n}^{\mu}(\mathrm{g})$ of inverse Weyl expansion: $\mathbf{P}_{m n}^{\mu}=\sum_{\mathrm{g}}^{{ }_{\mathrm{g}}^{G}} p_{m n}^{\mu}(\mathrm{g}) \mathrm{g}$
Left action by operator \mathbf{f} in group $G=\{\mathbf{1}, \ldots, \mathbf{f}, \mathbf{g}, \mathbf{h}, \ldots\}$:

$$
\mathbf{f} \cdot \mathbf{P}_{m n}^{\mu}=\sum_{\mathrm{g}}^{\circ} p_{m n}^{\mu}(g) \mathbf{f} \cdot \mathbf{g}=\sum_{\mathbf{h}}^{\circ} G p_{m n}^{\mu}\left(\mathbf{f}^{-1} \mathbf{h}\right) \mathbf{h} \text {, where: } \mathbf{h}=\mathbf{f} \cdot \mathbf{g} \text {, or: } \mathrm{g}=\mathbf{f}^{-1} \mathbf{h},
$$

Regular representation $\operatorname{Trace} R(\mathbf{h})$ is zero except for $\operatorname{Trace} R(\mathbf{1})={ }^{\circ} G$

Regular representation of $D_{3} \sim C_{3 v}$ in the group- $|\mathbf{g}\rangle$ basis

$$
\begin{aligned}
& R^{G}(\mathbf{l})=\quad R^{G}(\mathbf{r})=\quad R^{G}\left(\mathbf{r}^{2}\right)=\quad R^{G}(\mathbf{i})=\quad R^{G}(\mathbf{i})= \\
& R^{G}\left(\mathbf{i}_{3}\right)=
\end{aligned}
$$

$\mathbf{1}$	\mathbf{r}^{2}	\mathbf{r}	\mathbf{i}_{1}	\mathbf{i}_{2}	\mathbf{i}_{3}
\mathbf{r}	$\mathbf{1}$	\mathbf{r}^{2}	\mathbf{i}_{13}	\mathbf{i}_{1}	\mathbf{i}_{2}
\mathbf{r}^{2}	\mathbf{r}	$\mathbf{1}$	\mathbf{i}_{2}	\mathbf{i}_{3}	\mathbf{i}_{1}
\mathbf{i}_{1}	\mathbf{i}_{3}	\mathbf{i}_{2}	$\mathbf{1}$	\mathbf{r}	\mathbf{r}^{2}
\mathbf{i}_{2}	\mathbf{i}_{1}	\mathbf{i}_{3}	\mathbf{r}^{2}	$\mathbf{1}$	\mathbf{r}
\mathbf{i}_{13}	\mathbf{i}_{2}	\mathbf{i}_{1}	\mathbf{r}	\mathbf{r}^{2}	$\mathbf{1}$

$\mathbf{P}^{\mu}{ }_{j k}$-expansion in \mathbf{g}-operators Need inverse of Weyl form: $\mathbf{g}=\left(\sum_{\mu^{\prime}}^{\mu^{\prime}} \sum_{m^{\prime}}^{\mu_{n}^{\prime}} \sum_{n^{\prime}}^{\mu_{m n^{\prime}}^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\right)$ Derive coefficients $p_{m n}^{\mu}(\mathrm{g})$ of inverse Weyl expansion: $\mathbf{P}_{m n}^{\mu}=\sum_{\mathrm{g}}{ }^{G} p_{m n}^{\mu}(\mathrm{g}) \mathrm{g}$
Left action by operator \mathbf{f} in group $G=\{\mathbf{1}, \ldots, \mathbf{f}, \mathbf{g}, \mathbf{h}, \ldots\}$:

$$
\mathbf{f} \cdot \mathbf{P}_{m n}^{\mu}=\sum_{\mathrm{g}}^{\circ} p_{m n}^{\mu}(g) \mathbf{f} \cdot \mathbf{g}=\sum_{\mathbf{h}}^{\circ} p_{m n}^{\mu}\left(\mathbf{f}^{-1} \mathbf{h}\right) \mathbf{h} \text {, where: } \mathbf{h}=\mathbf{f} \cdot \mathrm{g}, \text { or: } \mathrm{g}=\mathbf{f}^{-1} \mathbf{h},
$$

Regular representation $\operatorname{Trace} R(\mathbf{h})$ is zero except for $\operatorname{Trace} R(\mathbf{1})={ }^{\circ} G$

$$
\operatorname{Trace} R\left(\mathbf{f} \cdot \mathbf{P}_{m n}^{\mu}\right)=\sum_{\mathbf{h}}^{\vdots} p_{m n}^{\mu}\left(\mathbf{f}^{-1} \mathbf{h}\right) \operatorname{Trace} R(\mathbf{h})
$$

Regular representation of $D_{3} \sim C_{3 v}$ in the group- $|\mathbf{g}\rangle$ basis

$$
\begin{aligned}
& R^{G}(\mathbb{l})=\quad R^{G}(\mathbf{r})=\quad R^{G}\left(\mathbf{r}^{2}\right)=\quad R^{G}(\mathbf{i})=\quad R^{G}(\mathbf{i})=
\end{aligned}
$$

$\mathbf{P}^{\mu}{ }_{j k}$-expansion in \mathbf{g}-operators Need inverse of Weyl form: $\mathbf{g}=\left(\sum_{\mu^{\prime}}^{\mu^{\prime}} \sum_{m^{\prime}}^{\mu_{n}^{\prime}} \sum_{n^{\prime}}^{\mu_{m n^{\prime}}} D^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\right)$ Derive coefficients $p_{m n}^{\mu}(g)$ of inverse Weyl expansion: $\mathbf{P}_{m n}^{\mu}=\sum_{\mathrm{g}}^{\circ} p_{m n}^{\mu}(g) \mathrm{g}$
Left action by operator \mathbf{f} in group $G=\{\mathbf{1}, \ldots, \mathbf{f}, \mathbf{g}, \mathbf{h}, \ldots\}$:

$$
\mathbf{f} \cdot \mathbf{P}_{m n}^{\mu}=\sum_{\mathrm{g}}^{\circ} p_{m n}^{\mu}(g) \mathbf{f} \cdot \mathbf{g}=\sum_{\mathbf{h}}^{\circ} p_{m n}^{\mu}\left(\mathbf{f}^{-1} \mathbf{h}\right) \mathbf{h} \text {, where: } \mathbf{h}=\mathbf{f} \cdot \mathrm{g}, \text { or: } \mathrm{g}=\mathbf{f}^{-1} \mathbf{h},
$$

Regular representation $\operatorname{Trace} R(\mathbf{h})$ is zero except for $\operatorname{Trace} R(\mathbf{1})={ }^{\circ} G$

$$
\operatorname{Trace} R\left(\mathbf{f} \cdot \mathbf{P}_{m n}^{\mu}\right)=\sum_{\mathbf{h}}^{\circ} p_{m n}^{\mu}\left(\mathbf{f}^{-1} \mathbf{h}\right) \operatorname{TraceR}(\mathbf{h})=p_{m n}^{\mu}\left(\mathbf{f}^{-1} \mathbf{1}\right) \operatorname{TraceR}(\mathbf{1})
$$

Regular representation of $D_{3} \sim C_{3 v}$ in the group- $|\mathbf{g}\rangle$ basis

$$
\begin{aligned}
& R^{G}(\mathbb{l})=\quad R^{G}(\mathbf{r})=\quad R^{G}\left(\mathbf{r}^{2}\right)=\quad R^{G}(\mathbf{i})=\quad R^{G}(\mathbf{i})=
\end{aligned}
$$

$\mathbf{P}^{\mu}{ }_{j k}$-expansion in \mathbf{g}-operators Need inverse of Weyl form: $\mathbf{g}=\left(\sum_{\mu^{\prime}}^{\mu^{\prime}} \sum_{m^{\prime}}^{\mu_{n}^{\prime}} \sum_{n^{\prime}}^{\mu_{m n^{\prime}}} D^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\right)$ Derive coefficients $p_{m n}^{\mu}(g)$ of inverse Weyl expansion: $\mathbf{P}_{m n}^{\mu}=\sum_{\mathrm{g}}^{\circ} p_{m n}^{\mu}(g) \mathrm{g}$
Left action by operator \mathbf{f} in group $G=\{\mathbf{1}, \ldots, \mathbf{f}, \mathbf{g}, \mathbf{h}, \ldots\}$:

$$
\mathbf{f} \cdot \mathbf{P}_{m n}^{\mu}=\sum_{\mathrm{g}}^{\circ} p_{m n}^{\mu}(g) \mathbf{f} \cdot \mathbf{g}=\sum_{\mathbf{h}}^{\circ} p_{m n}^{\mu}\left(\mathbf{f}^{-1} \mathbf{h}\right) \mathbf{h} \text {, where: } \mathbf{h}=\mathbf{f} \cdot \mathrm{g} \text {, or: } \mathrm{g}=\mathbf{f}^{-1} \mathbf{h},
$$

Regular representation $\operatorname{Trace} R(\mathbf{h})$ is zero except for $\operatorname{Trace} R(\mathbf{1})={ }^{\circ} G$

$$
\operatorname{Trace} R\left(\mathbf{f} \cdot \mathbf{P}_{m n}^{\mu}\right)=\sum_{\mathbf{h}}^{\vdots} p_{m n}^{\mu}\left(\mathbf{f}^{-1} \mathbf{h}\right) \operatorname{TraceR}(\mathbf{h})=p_{m n}^{\mu}\left(\mathbf{f}^{-1} \mathbf{1}\right) \operatorname{Trace} R(\mathbf{1})=p_{m n}^{\mu}\left(\mathbf{f}^{-1}\right){ }^{\circ} G
$$

Regular representation of $D_{3} \sim C_{3 v}$ in the group- $|\mathbf{g}\rangle$ basis

$$
\begin{aligned}
& R^{G}(\mathbb{l})=\quad R^{G}(\mathbf{r})=\quad R^{G}\left(\mathbf{r}^{2}\right)=\quad R^{G}(\mathbf{i})=\quad R^{G}(\mathbf{i})=
\end{aligned}
$$

$\mathbf{P}^{\mu}{ }_{j k}$-expansion in \mathbf{g}-operators \quad Need inverse of Weyl form: $\quad \mathbf{g}=\left(\sum_{\mu^{\prime}}^{\mu^{\prime}} \sum_{m^{\prime}}^{\mu^{\prime}} \sum_{n^{\prime}}^{\mu^{\prime}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\right)$ Derive coefficients $p_{m n}^{\mu}(\mathrm{g})$ of inverse Weyl expansion: $\mathbf{P}_{m n}^{\mu}=\sum_{\mathrm{g}}^{\circ} p_{m n}^{\mu}(g) \mathrm{g}$
Left action by operator \mathbf{f} in group $G=\{\mathbf{1}, \ldots, \mathbf{f}, \mathbf{g}, \mathbf{h}, \ldots\}$:

$$
\mathbf{f} \cdot \mathbf{P}_{m n}^{\mu}=\sum_{\mathrm{g}}^{\circ} p_{m n}^{\mu}(g) \mathbf{f} \cdot \mathbf{g}=\sum_{\mathbf{h}}^{\circ} p_{m n}^{\mu}\left(\mathbf{f}^{-1} \mathbf{h}\right) \mathbf{h} \text {, where: } \mathbf{h}=\mathbf{f} \cdot \mathbf{g} \text {, or: } \mathrm{g}=\mathbf{f}^{-1} \mathbf{h},
$$

Regular representation $\operatorname{Trace} R(\mathbf{h})$ is zero except for $\operatorname{Trace} R(\mathbf{1})={ }^{\circ} G$

$$
\operatorname{Trace} R\left(\mathbf{f} \cdot \mathbf{P}_{m n}^{\mu}\right)=\sum_{\mathbf{h}}^{\circ} p_{m n}^{\mu}\left(\mathbf{f}^{-1} \mathbf{h}\right) \operatorname{TraceR}(\mathbf{h})=p_{m n}^{\mu}\left(\mathbf{f}^{-1} \mathbf{1}\right) \operatorname{Trace} R(\mathbf{1})=p_{m n}^{\mu}\left(\mathbf{f}^{-1}\right){ }^{\circ} G
$$

Regular representation $\operatorname{Trace} R\left(\mathbf{P}_{m n}^{\mu}\right)$ is irep dimension $\ell^{(\mu)}$ for diagonal $\mathbf{P}_{m m}^{\mu}$ or zero otherwise:

Regular representation of $D_{3} \sim C_{3 v}$ in the Projector $-\left|\mathbf{P}^{{ }^{\mu}}{ }_{m n}\right\rangle$ basis

$\mathbf{P}^{\mu}{ }_{j k}$-expansion in \mathbf{g}-operators \quad Need inverse of Weyl form: $\quad \mathbf{g}=\left(\sum_{\mu^{\prime}}^{\mu^{\prime}} \sum_{m^{\prime}}^{\mu^{\prime}} \sum_{n^{\prime}}^{\mu^{\prime}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\right)$ Derive coefficients $p_{m n}^{\mu}(\mathrm{g})$ of inverse Weyl expansion: $\mathbf{P}_{m n}^{\mu}=\sum_{\mathrm{g}}^{\circ} p_{m n}^{\mu}(g) \mathrm{g}$
Left action by operator \mathbf{f} in group $G=\{\mathbf{1}, \ldots, \mathbf{f}, \mathbf{g}, \mathbf{h}, \ldots\}$:

$$
\mathbf{f} \cdot \mathbf{P}_{m n}^{\mu}=\sum_{\mathrm{g}}^{\circ} p_{m n}^{\mu}(g) \mathbf{f} \cdot \mathrm{g}=\sum_{\mathbf{h}}^{\circ} G p_{m n}^{\mu}\left(\mathbf{f}^{-1} \mathbf{h}\right) \mathbf{h} \text {, where: } \mathbf{h}=\mathbf{f} \cdot \mathrm{g} \text {, or: } \mathrm{g}=\mathbf{f}^{-1} \mathbf{h},
$$

Regular representation $\operatorname{Trace} R(\mathbf{h})$ is zero except for $\operatorname{Trace} R(\mathbf{1})={ }^{\circ} G$

$$
\operatorname{Trace} R\left(\mathbf{f} \cdot \mathbf{P}_{m n}^{\mu}\right)=\sum_{\mathbf{h}}^{\circ} p_{m n}^{\mu}\left(\mathbf{f}^{-1} \mathbf{h}\right) \operatorname{TraceR}(\mathbf{h})=p_{m n}^{\mu}\left(\mathbf{f}^{-1} \mathbf{1}\right) \operatorname{Trace} R(\mathbf{1})=p_{m n}^{\mu}\left(\mathbf{f}^{-1}\right){ }^{\circ} G
$$

Regular representation $\operatorname{Trace} R\left(\mathbf{P}_{m n}^{\mu}\right)$ is irep dimension $\ell^{(\mu)}$ for diagonal $\mathbf{P}_{m m}^{\mu}$ or zero otherwise:

$$
\text { Trace } R\left(\mathbf{P}_{m n}^{\mu}\right)=\delta_{m n} \ell^{(\mu)}
$$

Regular representation of $D_{3} \sim C_{3 v}$ in the Projector $-\left|\mathbf{P}^{\mu}{ }_{m n}\right\rangle$ basis

$\mathbf{P}^{\mu}{ }_{j k}$-expansion in \mathbf{g}-operators \quad Need inverse of Weyl form: $\mathbf{g}=\left(\sum_{\mu^{\prime}}^{\mu^{\prime}} \sum_{m^{\prime}}^{\mu_{n}^{\prime}} \sum_{n^{\prime}}^{\mu_{m^{\prime} n^{\prime}}} D^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\right)$ Derive coefficients $p_{m n}^{\mu}(\mathrm{g})$ of inverse Weyl expansion: $\mathbf{P}_{m n}^{\mu}=\sum_{\mathrm{g}}^{{ }_{\mathrm{g}}} p_{m n}^{\mu}(\mathrm{g}) \mathrm{g}$
Left action by operator \mathbf{f} in group $G=\{\mathbf{1}, \ldots, \mathbf{f}, \mathbf{g}, \mathbf{h}, \ldots\}$:

$$
\mathbf{f} \cdot \mathbf{P}_{m n}^{\mu}=\sum_{\mathrm{g}}^{\circ} p_{m n}^{\mu}(g) \mathbf{f} \cdot \mathbf{g}=\sum_{\mathbf{h}}^{\circ} p_{m n}^{\mu}\left(\mathbf{f}^{-1} \mathbf{h}\right) \mathbf{h} \text {, where: } \mathbf{h}=\mathbf{f} \cdot \mathbf{g} \text {, or: } \mathrm{g}=\mathbf{f}^{-1} \mathbf{h},
$$

Regular representation $\operatorname{Trace} R(\mathbf{h})$ is zero except for $\operatorname{Trace} R(\mathbf{1})={ }^{\circ} G$

$$
\operatorname{Trace} R\left(\mathbf{f} \cdot \mathbf{P}_{m n}^{\mu}\right)^{1}=\sum_{\mathbf{h}}^{\circ} p_{m n}^{\mu}\left(\mathbf{f}^{-1} \mathbf{h}\right) \operatorname{TraceR}(\mathbf{h})=p_{m n}^{\mu}\left(\mathbf{f}^{-1} \mathbf{1}\right) \operatorname{TraceR}(\mathbf{1})=p_{m n}^{\mu}\left(\mathbf{f}^{-1}\right)^{\circ} G
$$

Regular representation $\operatorname{Trace} R\left(\mathbf{P}_{m n}^{\mu}\right)$ is irep dimension $\ell^{(\mu)}$ for diagonal $\mathbf{P}_{m m}^{\mu}$ or zero otherwise:

$$
\text { Trace } R\left(\mathbf{P}_{m n}^{\mu}\right)=\delta_{m n} \ell^{(\mu)}
$$

Solving for $p_{m n}^{\mu}(g): p_{m n}^{\mu}(\mathbf{f})=\frac{1}{{ }^{\circ} G} \operatorname{Trace} R\left(\mathbf{f}^{-1} \cdot \mathbf{P}_{m n}^{\mu}\right.$

Regular representation of $D_{3} \sim C_{3 v}$ in the Projector $-\left|\mathbf{P}^{\mu}{ }_{m n}\right\rangle$ basis

$\mathbf{P}_{j k}^{\mu_{j k}}$-expansion in \mathbf{g}-operators \quad Need inverse of Weyl form: $\mathbf{g}=\left(\sum_{\mu^{\prime}}^{\mu^{\prime}} \sum_{m^{\prime}}^{\mu_{n^{\prime}}^{\prime}} \sum_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\right)$ Derive coefficients $p_{m n}^{\mu}(\mathrm{g})$ of inverse Weyl expansion: $\mathbf{P}_{m n}^{\mu}=\sum_{\mathrm{g}}^{{ }_{\mathrm{g}}} p_{m n}^{\mu}(\mathrm{g}) \mathrm{g}$
Left action by operator \mathbf{f} in group $G=\{\mathbf{1}, \ldots, \mathbf{f}, \mathbf{g}, \mathbf{h}, \ldots\}$:

$$
\mathbf{f} \cdot \mathbf{P}_{m n}^{\mu}=\sum_{\mathrm{g}}^{\circ} p_{m n}^{\mu}(g) \mathbf{f} \cdot \mathbf{g}=\sum_{\mathbf{h}}^{\circ} p_{m n}^{\mu}\left(\mathbf{f}^{-1} \mathbf{h}\right) \mathbf{h} \text {, where: } \mathbf{h}=\mathbf{f} \cdot \mathbf{g} \text {, or: } \mathrm{g}=\mathbf{f}^{-1} \mathbf{h},
$$

Regular representation $\operatorname{Trace} R(\mathbf{h})$ is zero except for $\operatorname{Trace} R(\mathbf{1})={ }^{\circ} G$

$$
\operatorname{Trace} R\left(\mathbf{f} \cdot \mathbf{P}_{m n}^{\mu}\right)^{1}=\sum_{\mathbf{h}}^{\circ} p_{m n}^{\mu}\left(\mathbf{f}^{-1} \mathbf{h}\right) \operatorname{TraceR}(\mathbf{h})=p_{m n}^{\mu}\left(\mathbf{f}^{-1} \mathbf{1}\right) \operatorname{TraceR}(\mathbf{1})=p_{m n}^{\mu}\left(\mathbf{f}^{-1}\right)^{\circ} G
$$

Regular representation $\operatorname{Trace} R\left(\mathbf{P}_{m n}^{\mu}\right)$ is irep dimension $\ell^{(\mu)}$ for diagonal $\mathbf{P}_{m m}^{\mu}$ or zero otherwise:

$$
\text { Trace } R\left(\mathbf{P}_{m n}^{\mu}\right)=\delta_{m n} \ell^{(\mu)}
$$

Solving for $p_{m n}^{\mu}(g): p_{m n}^{\mu}(\mathbf{f})=\frac{1}{{ }^{\circ} G} \operatorname{Trace} R\left(\mathbf{f}^{-1} \cdot \mathbf{P}_{m n}^{\mu}\right) \quad$ Use left-action: $\mathbf{f}^{-1} \cdot \mathbf{P}_{m n}^{\mu}=\sum_{m^{\prime}}^{\ell^{(\mu)}} D_{m^{\prime} m}^{\mu}\left(\mathbf{f}^{-1}\right) \mathbf{P}_{m^{\prime} n}^{\mu}$

Regular representation of $D_{3} \sim C_{3 v}$ in the Projector $-\left|\mathbf{P}^{{ }^{\mu}}{ }_{m n}\right\rangle$ basis

$\mathbf{P}_{j k}^{\mu}$-expansion in \mathbf{g}-operators \quad Need inverse of Weyl form: $\quad \mathbf{g}=\left(\sum_{\mu^{\prime}}^{\mu_{m^{\prime}} \sum_{n^{\prime}}^{\prime \prime}} \sum_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\right)$ Derive coefficients $p_{m n}^{\mu}(\mathrm{g})$ of inverse Weyl expansion: $\mathbf{P}_{m n}^{\mu}=\sum_{\mathrm{g}}^{{ }_{\mathrm{g}}} p_{m n}^{\mu}(\mathrm{g}) \mathrm{g}$
Left action by operator \mathbf{f} in group $G=\{\mathbf{1}, \ldots, \mathbf{f}, \mathbf{g}, \mathbf{h}, \ldots\}$:

$$
\mathbf{f} \cdot \mathbf{P}_{m n}^{\mu}=\sum_{\mathrm{g}}^{\circ} p_{m n}^{\mu}(g) \mathbf{f} \cdot \mathbf{g}=\sum_{\mathbf{h}}^{\circ} p_{m n}^{\mu}\left(\mathbf{f}^{-1} \mathbf{h}\right) \mathbf{h} \text {, where: } \mathbf{h}=\mathbf{f} \cdot \mathbf{g} \text {, or: } \mathrm{g}=\mathbf{f}^{-1} \mathbf{h},
$$

Regular representation $\operatorname{Trace} R(\mathbf{h})$ is zero except for $\operatorname{Trace} R(\mathbf{1})={ }^{\circ} G$

$$
\operatorname{Trace} R\left(\mathbf{f} \cdot \mathbf{P}_{m n}^{\mu}\right)^{1}=\sum_{\mathbf{h}}^{\circ} p_{m n}^{\mu}\left(\mathbf{f}^{-1} \mathbf{h}\right) \operatorname{TraceR}(\mathbf{h})=p_{m n}^{\mu}\left(\mathbf{f}^{-1} \mathbf{1}\right) \operatorname{TraceR}(\mathbf{1})=p_{m n}^{\mu}\left(\mathbf{f}^{-1}\right)^{\circ} G
$$

Regular representation $\operatorname{Trace} R\left(\mathbf{P}_{m n}^{\mu}\right)$ is irep dimension $\ell^{(\mu)}$ for diagonal $\mathbf{P}_{m m}^{\mu}$ or zero otherwise:

$$
\text { Trace } R\left(\mathbf{P}_{m n}^{\mu}\right)=\delta_{m n} \ell^{(\mu)}
$$

Solving for $p_{m n}^{\mu}(g): p_{m n}^{\mu}(\mathbf{f})=\frac{1}{{ }^{G} G} \operatorname{Trace} R\left(\mathbf{f}^{-1} \cdot \mathbf{P}_{m n}^{\mu}\right) \quad \quad$ Use left-action: $\mathbf{f}^{-1} \cdot \mathbf{P}_{m n}^{\mu}=\sum_{m^{\prime}}^{\ell^{(\mu)}} D_{m^{\prime} m}^{\mu}\left(\mathbf{f}^{-1}\right) \mathbf{P}_{m^{\prime} n}^{\mu}$

$$
=\frac{1}{{ }^{\circ} G} \sum_{m^{\prime}}^{\ell^{(\mu)}} D_{m^{\prime} m}^{\mu}\left(\mathbf{f}^{-1}\right) \text { Trace } R\left(\mathbf{P}_{m^{\prime} n}^{\mu}\right)
$$

 Derive coefficients $p_{m n}^{\mu}(\mathrm{g})$ of inverse Weyl expansion: $\mathbf{P}_{m n}^{\mu}=\sum_{\mathrm{g}}^{{ }_{\mathrm{g}}} p_{m n}^{\mu}(\mathrm{g}) \mathrm{g}$
Left action by operator \mathbf{f} in group $G=\{\mathbf{1}, \ldots, \mathbf{f}, \mathbf{g}, \mathbf{h}, \ldots\}$:

$$
\mathbf{f} \cdot \mathbf{P}_{m n}^{\mu}=\sum_{\mathrm{g}}^{\circ} p_{m n}^{\mu}(g) \mathbf{f} \cdot \mathbf{g}=\sum_{\mathbf{h}}^{\circ} p_{m n}^{\mu}\left(\mathbf{f}^{-1} \mathbf{h}\right) \mathbf{h} \text {, where: } \mathbf{h}=\mathbf{f} \cdot \mathbf{g} \text {, or: } \mathrm{g}=\mathbf{f}^{-1} \mathbf{h},
$$

Regular representation $\operatorname{Trace} R(\mathbf{h})$ is zero except for $\operatorname{Trace} R(\mathbf{1})={ }^{\circ} G$

$$
\operatorname{Trace} R\left(\mathbf{f} \cdot \mathbf{P}_{m n}^{\mu}\right)^{1}=\sum_{\mathbf{h}}^{\circ} p_{m n}^{\mu}\left(\mathbf{f}^{-1} \mathbf{h}\right) \operatorname{TraceR}(\mathbf{h})=p_{m n}^{\mu}\left(\mathbf{f}^{-1} \mathbf{1}\right) \operatorname{TraceR}(\mathbf{1})=p_{m n}^{\mu}\left(\mathbf{f}^{-1}\right)^{\circ} G
$$

Regular representation $\operatorname{Trace} R\left(\mathbf{P}_{m n}^{\mu}\right)$ is irep dimension $\ell^{(\mu)}$ for diagonal $\mathbf{P}_{m m}^{\mu}$ or zero otherwise:

$$
\operatorname{Trace} R\left(\mathbf{P}_{m n}^{\mu}\right)=\delta_{m n}{ }^{(\mu)}
$$

Solving for $p_{m n}^{\mu}(g): p_{m n}^{\mu}(\mathbf{f})=\frac{1}{{ }^{G} G} \operatorname{Trace} R\left(\mathbf{f}^{-1} \cdot \mathbf{P}_{m n}^{\mu}\right) \quad \quad$ Use left-action: $\mathbf{f}^{-1} \cdot \mathbf{P}_{m n}^{\mu}=\sum_{m^{\prime}}^{\ell^{(\mu)}} D_{m^{\prime} m}^{\mu}\left(\mathbf{f}^{-1}\right) \mathbf{P}_{m^{\prime} n}^{\mu}$

$$
=\frac{1}{{ }^{\circ} G} \sum_{m^{\prime}}^{\ell^{(\mu)}} D_{m^{\prime} m}^{\mu}\left(\mathbf{f}^{-1}\right) \operatorname{Trace} R\left(\mathbf{P}_{m^{\prime} n}^{\mu}\right) \quad \text { Use: } \operatorname{Trace} R\left(\mathbf{P}_{m n}^{\mu}\right)=\delta_{m \eta}{ }^{(\mu)}
$$

$\mathbf{P}^{\mu}{ }_{j k}$-expansion in \mathbf{g}-operators Need inverse of Weyl form: $\mathbf{g}=\left(\sum_{\mu^{\prime}}^{\mu^{\prime}} \sum_{m^{\prime}}^{\mu_{n}^{\prime}} \sum_{n^{\prime}}^{\mu_{m n^{\prime}}} D^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\right)$ Derive coefficients $p_{m n}^{\mu}(g)$ of inverse Weyl expansion: $\mathbf{P}_{m n}^{\mu}=\sum_{\mathrm{g}}^{\circ} p_{m n}^{\mu}(g) \mathrm{g}$
Left action by operator \mathbf{f} in group $G=\{\mathbf{1}, \ldots, \mathbf{f}, \mathbf{g}, \mathbf{h}, \ldots\}$:

$$
\mathbf{f} \cdot \mathbf{P}_{m n}^{\mu}=\sum_{\mathrm{g}}^{\circ} p_{m n}^{\mu}(g) \mathbf{f} \cdot \mathbf{g}=\sum_{\mathbf{h}}^{\circ} G p_{m n}^{\mu}\left(\mathbf{f}^{-1} \mathbf{h}\right) \mathbf{h} \text {, where: } \mathbf{h}=\mathbf{f} \cdot \mathbf{g} \text {, or: } \mathrm{g}=\mathbf{f}^{-1} \mathbf{h},
$$

Regular representation $\operatorname{Trace} R(\mathbf{h})$ is zero except for $\operatorname{Trace} R(\mathbf{1})={ }^{\circ} G$

$$
\operatorname{Trace} R\left(\mathbf{f} \cdot \mathbf{P}_{m n}^{\mu}\right)^{i}=\sum_{\mathbf{h}}^{\circ} p_{m n}^{\mu}\left(\mathbf{f}^{-1} \mathbf{h}\right) \operatorname{Trace} R(\mathbf{h})=p_{m n}^{\mu}\left(\mathbf{f}^{-1} \mathbf{1}\right) \operatorname{Trace} R(\mathbf{1})=p_{m n}^{\mu}\left(\mathbf{f}^{-1}\right)^{\circ} G
$$

Regular representation $\operatorname{Trace} R\left(\mathbf{P}_{m n}^{\mu}\right)$ is irep dimension $\ell^{(\mu)}$ for diagonal $\mathbf{P}_{m m}^{\mu}$ or zero otherwise:

$$
\operatorname{Trace} R\left(\mathbf{P}_{m n}^{\mu}\right)=\delta_{m n}{ }^{(\mu)}
$$

Solving for $p_{m n}^{\mu}(g): p_{m n}^{\mu}(\mathbf{f})=\frac{1}{{ }^{\circ} G} \operatorname{Trace} R\left(\mathbf{f}^{-1} \cdot \mathbf{P}_{m n}^{\mu}\right) \quad$ Use left-action: $\mathbf{f}^{-1} \cdot \mathbf{P}_{m n}^{\mu}=\sum_{m^{\prime}}^{\ell^{(\mu)}} D_{m^{\prime} m}^{\mu}\left(\mathbf{f}^{-1}\right) \mathbf{P}_{m^{\prime} n}^{\mu}$

$$
\begin{aligned}
& =\frac{1}{{ }^{\circ} G} \sum_{m^{\prime}}^{(\mu)} D_{m^{\prime} m}^{\mu}\left(\mathbf{f}^{-1}\right) \operatorname{Trace} R\left(\mathbf{P}_{m^{\prime} n}^{\mu}\right) \\
& =\frac{\ell^{(\mu)}}{{ }^{\circ} G} D_{n m}^{\mu}\left(\mathbf{f}^{-1}\right)
\end{aligned}
$$

$\mathbf{P}^{\mu k}$-expansion in \mathbf{g}-operators \quad Need inverse of Weyl form: $\quad \mathbf{g}=\left(\sum_{\mu^{\prime}}^{\mu^{\prime}} \sum_{m^{\prime}}^{\mu^{\prime}} \sum_{n^{\prime}}^{\mu^{\prime}} D_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\right)$ Derive coefficients $p_{m n}^{\mu}(g)$ of inverse Weyl expansion: $\mathbf{P}_{m n}^{\mu}=\sum_{\mathrm{g}}^{\circ} p_{m n}^{\mu}(g) \mathrm{g}$
Left action by operator \mathbf{f} in group $G=\{\mathbf{1}, \ldots, \mathbf{f}, \mathbf{g}, \mathbf{h}, \ldots\}$:

$$
\mathbf{f} \cdot \mathbf{P}_{m n}^{\mu}=\sum_{\mathrm{g}}^{\circ} p_{m n}^{\mu}(g) \mathbf{f} \cdot \mathrm{g}=\sum_{\mathbf{h}}^{\circ} G p_{m n}^{\mu}\left(\mathbf{f}^{-1} \mathbf{h}\right) \mathbf{h} \text {, where: } \mathbf{h}=\mathbf{f} \cdot \mathrm{g} \text {, or: } \mathrm{g}=\mathbf{f}^{-1} \mathbf{h},
$$

Regular representation $\operatorname{Trace} R(\mathbf{h})$ is zero except for $\operatorname{Trace} R(\mathbf{1})={ }^{\circ} G$

$$
\operatorname{Trace} R\left(\mathbf{f} \cdot \mathbf{P}_{m n}^{\mu}\right)^{1}=\sum_{\mathbf{h}}^{\circ} p_{m n}^{\mu}\left(\mathbf{f}^{-1} \mathbf{h}\right) \operatorname{TraceR}(\mathbf{h})=p_{m n}^{\mu}\left(\mathbf{f}^{-1} \mathbf{1}\right) \operatorname{TraceR}(\mathbf{1})=p_{m n}^{\mu}\left(\mathbf{f}^{-1}\right)^{\circ} G
$$

Regular representation $\operatorname{Trace} R\left(\mathbf{P}_{m n}^{\mu}\right)$ is irep dimension $\ell^{(\mu)}$ for diagonal $\mathbf{P}_{m m}^{\mu}$ or zero otherwise:

$$
\text { Trace } R\left(\mathbf{P}_{m n}^{\mu}\right)=\delta_{m n} \ell^{(\mu)}
$$

Solving for $p_{m n}^{\mu}(g): p_{m n}^{\mu}(\mathbf{f})=\frac{1}{{ }^{\circ} G} \operatorname{Trace} R\left(\mathbf{f}^{-1} \cdot \mathbf{P}_{m n}^{\mu}\right) \quad$ Use left-action: $\mathbf{f}^{-1} \cdot \mathbf{P}_{m n}^{\mu}=\sum_{m^{\prime}}^{\ell^{(\mu)}} D_{m^{\prime} m}^{\mu}\left(\mathbf{f}^{-1}\right) \mathbf{P}_{m^{\prime} n}^{\mu}$

$$
\begin{aligned}
& =\frac{1}{{ }^{\circ} G} \sum_{m^{\prime}}^{(\mu)} D_{m^{\prime} m}^{\mu}\left(\mathbf{f}^{-1}\right) \operatorname{Trace} R\left(\mathbf{P}_{m^{\prime} n}^{\mu}\right) \quad \text { Use: Trace } R\left(\mathbf{P}_{m n}^{\mu}\right)=\delta_{m n} \ell^{(\mu)} \\
& =\frac{\ell^{(\mu)}}{{ }^{\circ} G} D_{n m}^{\mu}\left(\mathbf{f}^{-1}\right)
\end{aligned}
$$

$$
\mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}{ }^{\circ} G}{{ }^{\circ} G} \sum_{\mathbf{g}}^{\mu} D_{n m}^{\mu}\left(g^{-1}\right) \mathbf{g}
$$

$\mathbf{P}^{\mu}{ }_{j k}$-expansion in \mathbf{g}-operators \quad Need inverse of Weyl form: $\mathbf{g}=\left(\sum_{\mu^{\prime}}^{\mu_{m^{\prime}} \sum_{n^{\prime}}^{\prime \prime}} \sum_{m^{\prime} n^{\prime}}^{\mu^{\prime}}(g) \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}}\right)$ Derive coefficients $p_{m n}^{\mu}(g)$ of inverse Weyl expansion: $\mathbf{P}_{m n}^{\mu}=\sum_{\mathrm{g}}^{\circ} p_{m n}^{\mu}(g) \mathrm{g}$
Left action by operator \mathbf{f} in group $G=\{\mathbf{1}, \ldots, \mathbf{f}, \mathbf{g}, \mathbf{h}, \ldots\}$:

$$
\mathbf{f} \cdot \mathbf{P}_{m n}^{\mu}=\sum_{\mathrm{g}}^{\circ} p_{m n}^{\mu}(g) \mathbf{f} \cdot \mathbf{g}=\sum_{\mathbf{h}}^{\circ} p_{m n}^{\mu}\left(\mathbf{f}^{-1} \mathbf{h}\right) \mathbf{h} \text {, where: } \mathbf{h}=\mathbf{f} \cdot \mathrm{g}, \text { or: } \mathbf{g}=\mathbf{f}^{-1} \mathbf{h},
$$

Regular representation $\operatorname{Trace} R(\mathbf{h})$ is zero except for $\operatorname{Trace} R(\mathbf{1})={ }^{\circ} G$

$$
\operatorname{Trace} R\left(\mathbf{f} \cdot \mathbf{P}_{m n}^{\mu}\right)^{1}=\sum_{\mathbf{h}}^{\circ} p_{m n}^{\mu}\left(\mathbf{f}^{-1} \mathbf{h}\right) \operatorname{TraceR}(\mathbf{h})=p_{m n}^{\mu}\left(\mathbf{f}^{-1} \mathbf{1}\right) \operatorname{TraceR}(\mathbf{1})=p_{m n}^{\mu}\left(\mathbf{f}^{-1}\right)^{\circ} G
$$

Regular representation $\operatorname{Trace} R\left(\mathbf{P}_{m n}^{\mu}\right)$ is irep dimension $\ell^{(\mu)}$ for diagonal $\mathbf{P}_{m m}^{\mu}$ or 0 for off-diagonal $\mathbf{P}_{m n}^{\mu}$

$$
\text { Trace } R\left(\mathbf{P}_{m n}^{\mu}\right)=\delta_{m n} \ell^{(\mu)}
$$

Solving for $p_{m n}^{\mu}(g): p_{m n}^{\mu}(\mathbf{f})=\frac{1}{{ }^{\circ} G} \operatorname{Trace} R\left(\mathbf{f}^{-1} \cdot \mathbf{P}_{m n}^{\mu}\right) \quad \quad$ Use left-action: $\mathbf{f}^{-1} \cdot \mathbf{P}_{m n}^{\mu} \sum_{m^{\prime}}^{\ell(\mu)} D_{m^{\prime} m}^{\mu}\left(\mathbf{f}^{-1}\right) \mathbf{P}_{m^{\prime} n}^{\mu}$

$$
\begin{aligned}
& =\frac{1}{{ }^{\circ} G} \sum_{m^{\prime}}^{\ell^{(\mu)}} D_{m^{\prime} m}^{\mu}\left(\mathbf{f}^{-1}\right) \operatorname{Trace} R\left(\mathbf{P}_{m^{\prime} n}^{\mu}\right) \quad \text { Use: } \operatorname{Trace} R\left(\mathbf{P}_{m n}^{\mu}\right)=\delta_{m n} \ell^{(\mu)} \\
& =\frac{\ell^{(\mu)}}{{ }^{\circ} G} D_{n m}^{\mu}\left(\mathbf{f}^{-1}\right) \quad\left(=\frac{\ell^{(\mu)}}{{ }^{\circ} G} D_{m n}^{\mu^{*}}(\mathbf{f}) \text { for unitary } D_{n m}^{\mu}\right) \\
& \mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}{ }^{\circ} G}{{ }^{\circ} G} \sum_{\mathrm{g}} D_{n m}^{\mu}\left(g^{-1}\right) \mathrm{g} \quad\left(\mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}{ }^{\circ} G}{{ }^{\circ} G} \sum_{\mathrm{g}} D_{m n}^{\mu^{*}}(g) \mathrm{g} \quad \text { for unitary } D_{n m}^{\mu}\right.
\end{aligned}
$$

Review Stage 1: Group Center:Class-sums κ_{g},characters $\chi^{\mu}(\mathbf{g})$, and All-Commuting Projectors \mathbb{P}^{μ} Review Stage 2: Group operators \mathbf{g} and Mutually-Commuting projectors $\mathbf{P}^{\mu}{ }_{k k}$ Review Stage 3: Weyl \mathbf{g}-expansion in irreps $D^{\mu}{ }_{j k}(g)$ and Non-Commuting projectors $\mathbf{P}^{\mu}{ }_{j k}$ Simple matrix algebra $\mathbf{P}^{\mu}{ }_{a b} \mathbf{P}^{\nu}{ }_{c d}=\delta^{\mu \nu} \delta_{b c} \mathbf{P}^{\mu}{ }_{a d}$
$\mathbf{P}^{\mu_{j k}}$ transforms right-and-left $\mathbf{P}^{\mu_{j k}}$-expansion in \mathbf{g}-operators
\rightarrow Example of D_{3} transformation by matrix $D^{E_{j k}}\left(\mathbf{r}^{1}\right)<$

Details of Mock-Mach relativity-duality for D_{3} groups and representations

Lab-fixed(Extrinsic-Global) vs. Body-fixed (Intrinsic-Local)
Compare Global vs Local $|\mathbf{g}\rangle$-basis and Global vs Local $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis
Hamiltonian and D_{3} group matrices in global and local $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis
Global vs. Local block rearrangement
Hamiltonian local-symmetry eigensolution
Molecular vibrational mode eigensolution
Local symmetry limit
Global symmetry limit (free or "genuine" modes)

Example of D_{3} transformation by matrix $D^{E_{j k}}\left(\mathbf{r}^{1}\right)$
$\mathbf{r}^{1}\left|\mathbf{P}_{11}^{E_{1}}\right\rangle=\mathbf{r}^{1} \mathbf{P}_{11}^{E_{1}}|\mathbf{1}\rangle / \sqrt{3}=\mathbf{r}^{1}\left(\mathbf{1}-\frac{1}{2} \mathbf{r}^{1}-\frac{1}{2} \mathbf{r}^{2}-\frac{1}{2} \mathbf{i}_{1}-\frac{1}{2} \mathbf{i}_{2}+\mathbf{i}_{3}\right)|\mathbf{1}\rangle / \sqrt{3}$ given: norm ${ }^{E_{1}}=\sqrt{\frac{\ell^{E_{1}}}{{ }^{\circ} G}}=\sqrt{\frac{2}{6}}=\sqrt{\frac{1}{3}}$

Example of D_{3} transformation by matrix $D^{E_{j k}}\left(\mathbf{r}^{1}\right)$

$$
\begin{aligned}
\mathbf{r}^{1}\left|\mathbf{P}_{11}^{E_{1}}\right\rangle=\mathbf{r}^{1} \mathbf{P}_{11}^{E_{1}}|\mathbf{1}\rangle / \sqrt{3} & =\mathbf{r}^{1}\left(\mathbf{1}-\frac{1}{2} \mathbf{r}^{1}-\frac{1}{2} \mathbf{r}^{2}-\frac{1}{2} \mathbf{i}_{1}-\frac{1}{2} \mathbf{i}_{2}+\mathbf{i}_{3}\right)|\mathbf{1}\rangle / \sqrt{3} \text { given: norm}{ }^{E_{1}}=\sqrt{\frac{\ell^{E_{1}}}{{ }^{\circ} G}}=\sqrt{\frac{2}{6}}=\sqrt{\frac{1}{3}} \\
& =\left(\mathbf{r}^{1}-\frac{1}{2} \mathbf{r}^{2}-\frac{1}{2} \mathbf{1}-\frac{1}{2} \mathbf{i}_{3}-\frac{1}{2} \mathbf{i}_{1}+\mathbf{i}_{2}\right)|\mathbf{1}\rangle / \sqrt{3}
\end{aligned}
$$

Example of D_{3} transformation by matrix $D^{E}{ }_{j k}\left(\mathbf{r}^{1}\right)$

$$
\begin{aligned}
& \mathbf{r}^{1}\left|\mathbf{P}_{11}^{E_{1}}\right\rangle=\mathbf{r}^{1} \mathbf{P}_{11}^{E_{1}}|\mathbf{1}\rangle / \sqrt{3}=\mathbf{r}^{1}\left(\mathbf{1}-\frac{1}{2} \mathbf{r}^{1}-\frac{1}{2} \mathbf{r}^{2}-\frac{1}{2} \mathbf{i}_{1}-\frac{1}{2} \mathbf{i}_{2}+\mathbf{i}_{3}\right)|\mathbf{1}\rangle / \sqrt{3} \text { given: norm }{ }^{E_{1}}=\sqrt{\frac{\ell^{E_{1}}}{{ }^{\circ} G}}=\sqrt{\frac{2}{6}}=\sqrt{\frac{1}{3}} \\
& \left.\left.=\mathbf{r}^{1}\left(\begin{array}{c}
1 \\
-\frac{1}{2} \\
-\frac{1}{2} \\
-\frac{1}{2} \\
-\frac{1}{2} \\
1
\end{array}\right) \frac{1}{\sqrt{3}}=\left(-\frac{1}{2} \mathbf{1}+\mathbf{r}^{1}-\frac{1}{2} \mathbf{r}^{2}-\frac{1}{2} \mathbf{1}-\frac{1}{2} \mathbf{i}_{3}-\frac{1}{2} \mathbf{i}_{1}+\mathbf{i}_{2}\right)|\mathbf{1}\rangle / \sqrt{3} \mathbf{i}_{1}+\mathbf{i}_{2}-\frac{1}{2} \mathbf{i}_{3}\right) \mid \mathbf{1}\right) / \sqrt{3}=\left(\begin{array}{c}
-\frac{1}{2} \\
1 \\
-\frac{1}{2} \\
-\frac{1}{2} \\
1 \\
-\frac{1}{2}
\end{array}\right) \frac{1}{\sqrt{3}}
\end{aligned}
$$

$\mathbf{1}$	\mathbf{r}^{2}	\mathbf{r}	\mathbf{i}_{1}	\mathbf{i}_{2}	\mathbf{i}_{3}
\mathbf{r}	$\mathbf{1}$	\mathbf{r}^{2}	\mathbf{i}_{3}	\mathbf{i}_{1}	\mathbf{i}_{2}
\mathbf{r}^{2}	\mathbf{r}	$\mathbf{1}$	\mathbf{i}_{2}	\mathbf{i}_{3}	\mathbf{i}_{1}
\mathbf{i}_{1}	\mathbf{i}_{3}	\mathbf{i}_{2}	$\mathbf{1}$	\mathbf{r}	\mathbf{r}^{2}
\mathbf{i}_{2}	\mathbf{i}_{1}	\mathbf{i}_{3}	\mathbf{r}^{2}	$\mathbf{1}$	\mathbf{r}
\mathbf{i}_{3}	\mathbf{i}_{2}	\mathbf{i}_{1}	\mathbf{r}	\mathbf{r}^{2}	$\mathbf{1}$

Example of D_{3} transformation by matrix $D^{E}{ }_{j k}\left(\mathbf{r}^{1}\right)$
$\mathbf{r}^{1}\left|\mathbf{P}_{11}^{E_{1}}\right\rangle=\mathbf{r}^{1} \mathbf{P}_{11}^{E_{1}}|\mathbf{1}\rangle / \sqrt{3}=\mathbf{r}^{1}\left(\mathbf{1}-\frac{1}{2} \mathbf{r}^{1}-\frac{1}{2} \mathbf{r}^{2}-\frac{1}{2} \mathbf{i}_{1}-\frac{1}{2} \mathbf{i}_{2}+\mathbf{i}_{3}\right)|\mathbf{1}\rangle / \sqrt{3}$ given: norm${ }^{E_{1}}=\sqrt{\frac{\ell^{E_{1}}}{{ }^{\circ} G}}=\sqrt{\frac{2}{6}}=\sqrt{\frac{1}{3}}$

$$
\left.\left.\left.=\mathbf{r}^{1}\left(\begin{array}{c}
1 \\
-\frac{1}{2} \\
-\frac{1}{2} \\
-\frac{1}{2} \\
-\frac{1}{2} \\
1
\end{array}\right) \frac{1}{\sqrt{3}}=\left(-\frac{1}{2} \mathbf{1}+\mathbf{r}^{1}-\frac{1}{2} \mathbf{r}^{2}-\frac{1}{2} \mathbf{1}-\frac{1}{2} \mathbf{i}_{3}-\frac{1}{2} \mathbf{i}_{1}+\mathbf{i}_{2}\right) \right\rvert\, \mathbf{1}\right) / \sqrt{3} \mathbf{i}_{1}+\mathbf{i}_{2}-\frac{1}{2} \mathbf{i}_{3}\right)|\mathbf{1}\rangle / \sqrt{3}=\left(\begin{array}{c}
-\frac{1}{2} \\
1 \\
-\frac{1}{2} \\
-\frac{1}{2} \\
1 \\
-\frac{1}{2}
\end{array}\right) \frac{1}{\sqrt{3}}
$$

$$
\left|\mathbf{P}_{21}^{E_{1}}\right\rangle=\mathbf{P}_{21}^{E_{1}}|\mathbf{1}\rangle \sqrt{3}=\left(0+\frac{\sqrt{3}}{2} \mathbf{r}^{1}-\frac{\sqrt{3}}{2} \mathbf{r}^{2}-\frac{\sqrt{3}}{2} \mathbf{i}_{1}+\frac{\sqrt{3}}{2} \mathbf{i}_{2}+0\right)|\mathbf{1}\rangle \sqrt{3}=\left(\begin{array}{c}
0 \\
+\frac{1}{2} \\
-\frac{1}{2} \\
-\frac{1}{2} \\
+\frac{1}{2} \\
0
\end{array}\right)
$$

$\mathbf{1}$	\mathbf{r}^{2}	\mathbf{r}	\mathbf{i}_{1}	\mathbf{i}_{2}	\mathbf{i}_{3}
\mathbf{r}	$\mathbf{1}$	\mathbf{r}^{2}	\mathbf{i}_{3}	\mathbf{i}_{1}	\mathbf{i}_{2}
\mathbf{r}^{2}	\mathbf{r}	$\mathbf{1}$	\mathbf{i}_{2}	\mathbf{i}_{3}	\mathbf{i}_{1}
\mathbf{i}_{1}	\mathbf{i}_{3}	\mathbf{i}_{2}	$\mathbf{1}$	\mathbf{r}	\mathbf{r}^{2}
\mathbf{i}_{2}	\mathbf{i}_{1}	\mathbf{i}_{3}	\mathbf{r}^{2}	$\mathbf{1}$	\mathbf{r}
\mathbf{i}_{3}	\mathbf{i}_{2}	\mathbf{i}_{1}	\mathbf{r}	\mathbf{r}^{2}	$\mathbf{1}$

Example of D_{3} transformation by matrix $D^{E}{ }_{j k}\left(\mathbf{r}^{1}\right)$
$\mathbf{r}^{1}\left|\mathbf{P}_{11}^{E_{1}}\right\rangle=\mathbf{r}^{1} \mathbf{P}_{11}^{E_{1}}|\mathbf{1}\rangle / \sqrt{3}=\mathbf{r}^{1}\left(\mathbf{1}-\frac{1}{2} \mathbf{r}^{1}-\frac{1}{2} \mathbf{r}^{2}-\frac{1}{2} \mathbf{i}_{1}-\frac{1}{2} \mathbf{i}_{2}+\mathbf{i}_{3}\right)|\mathbf{1}\rangle / \sqrt{3}$ given: norm${ }^{E_{1}}=\sqrt{\frac{\ell^{E_{1}}}{{ }^{\circ} G}}=\sqrt{\frac{2}{6}}=\sqrt{\frac{1}{3}}$

$$
\left.=\mathbf{r}^{1}\left(\begin{array}{c}
1 \\
-\frac{1}{2} \\
-\frac{1}{2} \\
-\frac{1}{2} \\
-\frac{1}{2} \\
1 \\
\vdots
\end{array}\right) \frac{1}{\sqrt{3}}=\left(-\frac{1}{2} \mathbf{1}+\mathbf{r}^{1}-\frac{1}{2} \mathbf{r}^{2}-\frac{1}{2} \mathbf{1}-\frac{1}{2} \mathbf{r}_{3}-\frac{1}{2} \mathbf{i}_{1}+\mathbf{i}_{2}\right)|\mathbf{1}\rangle / \sqrt{3} \mathbf{i}_{1}+\mathbf{i}_{2}-\frac{1}{2} \mathbf{i}_{3}\right)|\mathbf{1}\rangle / \sqrt{3}=\left(\begin{array}{c}
-\frac{1}{2} \\
1 \\
-\frac{1}{2} \\
-\frac{1}{2} \\
1 \\
\vdots \\
-\frac{1}{2} \vdots
\end{array}\right) \frac{1}{\sqrt{3}}
$$

- product of this \bullet th $\vdots=\left\langle\mathbf{P}_{11}^{E_{1}}\right| \mathbf{r}^{1}\left|\mathbf{P}_{11}^{E_{1}}\right\rangle=\left(-\frac{1}{2}-\frac{1}{2}+\frac{1}{4}+\frac{1}{4}-\frac{1}{2}-\frac{1}{2}\right) / \sqrt{3} \sqrt{3}=-\frac{3}{2} / 3=-1 / 2$

$\mathbf{1}$	\mathbf{r}^{2}	\mathbf{r}	\mathbf{i}_{1}	\mathbf{i}_{2}	\mathbf{i}_{3}
\mathbf{r}	$\mathbf{1}$	\mathbf{r}^{2}	\mathbf{i}_{3}	\mathbf{i}_{1}	\mathbf{i}_{2}
\mathbf{r}^{2}	\mathbf{r}	$\mathbf{1}$	\mathbf{i}_{2}	\mathbf{i}_{3}	\mathbf{i}_{1}
\mathbf{i}_{1}	\mathbf{i}_{3}	\mathbf{i}_{2}	$\mathbf{1}$	\mathbf{r}	\mathbf{r}^{2}
\mathbf{i}_{2}	\mathbf{i}_{1}	\mathbf{i}_{3}	\mathbf{r}^{2}	$\mathbf{1}$	\mathbf{r}
\mathbf{i}_{3}	\mathbf{i}_{2}	\mathbf{i}_{1}	\mathbf{r}	\mathbf{r}^{2}	$\mathbf{1}$

${ }^{\bullet}$ product of thìis \bullet that $=\left\langle\mathbf{P}_{21}^{E_{1}}\right| \mathbf{r}^{1}\left|\mathbf{P}_{11}^{E_{1}}\right\rangle=\left(0+\frac{1}{2}+\frac{1}{4}+\frac{1}{4}+\frac{1}{2}+0\right) / \sqrt{3}=\frac{3}{2} / \sqrt{3}=\sqrt{3} / 2$

$$
\begin{aligned}
& \left.\mathbf{r}^{1}\left|\mathbf{P}_{11}^{E_{1}}\right\rangle=\mathbf{r}^{\prime} \mathbf{P}_{11}^{E_{1}} \mathbf{1}\right\rangle / \sqrt{3}=\mathbf{r}^{1}\left(\mathbf{1}-\frac{1}{2} \mathbf{r}^{1}-\frac{1}{2} \mathbf{r}^{2}-\frac{1}{2} \mathbf{i}_{1}-\frac{1}{2} \mathbf{i}_{2}+\mathbf{i}_{3}\right)|\mathbf{1}\rangle \sqrt{3} \text { norm }{ }^{E_{1}}=\sqrt{\frac{\ell^{E_{1}}}{G} G}=\sqrt{\frac{2}{6}}=\sqrt{\frac{1}{3}}
\end{aligned}
$$

$$
\left|\mathbf{P}_{21}^{E_{1}}\right\rangle=\mathbf{P}_{21}^{E_{1}}|\mathbf{i}\rangle \sqrt{3}=\left(0+\frac{\sqrt{3}}{2} \mathbf{r}^{1}-\frac{\sqrt{3}}{2} \mathbf{r}^{2}-\frac{\sqrt{3}}{2} \mathbf{i}_{1}+\frac{\sqrt{3}}{2} \mathbf{i}_{2}+0\right)|\mathbf{1}\rangle \sqrt{3}=
$$

- product of this othat $=\left\langle\mathbf{P}_{21}^{E_{1}}\right| \mathbf{r}^{1}\left|\mathbf{P}_{11}^{E_{1}}\right\rangle=\left(0+\frac{1}{2}+\frac{1}{4}+\frac{1}{4}+\frac{1}{2}+0\right) / \sqrt{3}=\frac{3}{2} / \sqrt{3}=\sqrt{3} / 2=D_{21}^{E_{1}}\left(r^{1}\right)$

$$
\mathbf{r}^{1}\left|\mathbf{P}_{11}^{E_{1}}\right\rangle=\mathbf{r}^{1} \mathbf{P}_{11}^{E_{1}}|\mathbf{1}\rangle \sqrt{3}=\mathbf{r}^{1}\left(\mathbf{1}-\frac{1}{2} \mathbf{r}^{1}-\frac{1}{2} \mathbf{r}^{2}-\frac{1}{2} \mathbf{i}_{1}-\frac{1}{2} \mathbf{i}_{2}+\mathbf{i}_{3}\right)|\mathbf{1}\rangle / \sqrt{3} \text { norm }{ }^{E_{1}}=\sqrt{\frac{\ell^{E_{1}}}{{ }^{G_{G}}}}=\sqrt{\frac{2}{6}}=\sqrt{\frac{1}{3}}
$$

Fig. 3.4.3
PSDS Ch. 3
$=\left(-\frac{1}{2}\right)$

$\sqrt{3} / 2=D_{21}^{E_{1}}\left(r^{1}\right)$

Review Stage 1: Group Center:Class-sums κg,characters $\chi^{\mu}(\mathbf{g})$, and All-Commuting

```
Projectors IPH
```

Review Stage 2: Group operators \mathbf{g} and Mutually-Commuting projectors $\mathbf{P}^{\mu}{ }_{k k}$
Review Stage 3: Weyl \mathbf{g}-expansion in irreps $D^{\mu}{ }_{j k}(g)$ and Non-Commuting projectors $\mathbf{P}^{\mu}{ }_{j k}$

```
    Simple matrix algebra }\mp@subsup{\mathbf{P}}{}{\mu}\mp@subsup{}{ab}{}\mp@subsup{\mathbf{P}}{}{v}\mp@subsup{}{cd}{}=\mp@subsup{\delta}{}{\mu\nu}\mp@subsup{\delta}{bc}{}\mp@subsup{\mathbf{P}}{}{\mu}\mp@subsup{}{ad}{
    P }\mp@subsup{}{jk}{}\mathrm{ transforms right-and-left
    P}\mp@subsup{}{jk}{jk}\mathrm{ -expansion in g-operators
    Example of D}\mp@subsup{D}{3}{}\mathrm{ transformation by matrix D D E jk( (r+1)
```

Details of Mock-Mach relativity-duality for D_{3} groups and representations
Lab-fixed(Extrinsic-Global) vs. Body-fixed (Intrinsic-Local)
Compare Global vs Local $|\mathbf{g}\rangle$-basis and Global vs Local $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis

```
Hamiltonian and D3 group matrices in global and local |\mp@subsup{\mathbf{P}}{}{(\mu)}\rangle\mathrm{ -basis}
    Global vs. Local block rearrangement
        Hamiltonian local-symmetry eigensolution
        Molecular vibrational mode eigensolution
            Local symmetry limit
            Global symmetry limit (free or "genuine" modes)
```

> "Give me a place to stand... and I will move the Earth"

Archimedes 287-212 B.C.E
Ideas of duality/relativity go way back (...vanvleck, Casimiri... Mach, Newton, Archimedes..)

Lab-fixed(Extrinsic-Global)R,S,..vs. Body-fixed (Intrinsic-Local) $\overline{\mathbf{R}}, \overline{\mathbf{S}}$...

$$
\begin{gathered}
\text { all } \mathbf{R}, \mathbf{S}, . . \\
\text { commute with } \\
\text { all } \overline{\mathbf{R}}, \overline{\mathbf{S}}, . . \\
\text { "Mock-Mach" } \\
\text { relativity principles } \\
\mathbf{R}|1\rangle=\overline{\mathbf{R}}^{-1}|1\rangle \\
\mathrm{S}|1\rangle=\overline{\mathbf{S}}^{-1}|1\rangle \\
\vdots
\end{gathered}
$$

...for one state |1) only!
...But how do you actually make the \mathbf{R} and $\overline{\mathbf{R}}$ operations?

Lab-fixed (Extrinsic-Global) operations\&axes fixed

Lab-fixed (Extrinsic-Global) operations\&axes fixed

$\mathbf{1}$	\mathbf{r}^{2}	\mathbf{r}	\mathbf{i}_{1}	\mathbf{i}_{2}	\mathbf{i}_{3}
\mathbf{r}	1	\mathbf{r}^{2}	\mathbf{i}_{3}	\mathbf{i}_{1}	\mathbf{i}_{2}
\mathbf{r}^{2}	\mathbf{r}	$\mathbf{1}$	\mathbf{i}_{2}	\mathbf{i}_{3}	\mathbf{i}_{1}
\mathbf{i}_{1}	\mathbf{i}_{3}	\mathbf{i}_{2}	$\mathbf{1}$	\mathbf{r}	\mathbf{r}^{2}
\mathbf{i}_{2}	\mathbf{i}_{1}	\mathbf{i}_{3}	\mathbf{r}^{2}	$\mathbf{1}$	\mathbf{r}
\mathbf{i}_{3}	\mathbf{i}_{2}	\mathbf{i}_{1}	\mathbf{r}	\mathbf{r}^{2}	$\mathbf{1}$

Body-fixed (Intrinsic-Local) operations appear to move their rotation axes (relative to lab)

$$
\mathbf{i}_{1} \mathbf{i}_{2}=\mathbf{r}
$$

Lab-fixed (Extrinsic-Global) operations\&axes fixed

Body-fixed (Intrinsic-Local) operations appear to move their rotation axes (relative to lab)

$\mathrm{i}_{1} \mathrm{i}_{2}=\mathbf{r}$

Lab-fixed (Extrinsic-Global) operations\&axes fixed

1	\mathbf{r}^{2}	\mathbf{r}	\mathbf{i}_{1}	\mathbf{i}_{2}	\mathbf{i}_{3}
\mathbf{r}	1	\mathbf{r}^{2}	\mathbf{i}_{3}	\mathbf{i}_{1}	\mathbf{i}_{2}
\mathbf{r}^{2}	\mathbf{r}	$\mathbf{1}$	\mathbf{i}_{2}	\mathbf{i}_{3}	\mathbf{i}_{1}
$\overline{\mathbf{i}_{1}}$	\mathbf{i}_{3}	\mathbf{i}_{2}	1	$\mathbf{1}$	\mathbf{r}
\mathbf{r}^{2}					
\mathbf{i}_{2}	\mathbf{i}_{1}	\mathbf{i}_{3}	\mathbf{r}^{2}	1	$\mathbf{1}$
\mathbf{i}_{3}	\mathbf{i}_{2}	\mathbf{i}_{1}	\mathbf{r}	\mathbf{r}^{2}	1

$\mathrm{i}_{1} \mathbf{i}_{2}=\mathbf{r}$
Body-fixed (Intrinsic-Local) operations appear to move their rotation axes (relative to lab)

1	\mathbf{r}^{2}	\mathbf{r}	\mathbf{i}_{1}	\mathbf{i}_{2}	\mathbf{i}_{3}
\mathbf{r}	1	\mathbf{r}^{2}	\mathbf{i}_{3}	\mathbf{i}_{1}	\mathbf{i}_{2}
\mathbf{r}^{2}	\mathbf{r}	$\mathbf{1}$	\mathbf{i}_{2}	\mathbf{i}_{3}	\mathbf{i}_{1}
\boldsymbol{i}	\mathbf{i}_{3}	\mathbf{i}_{2}	1	$\mathbf{1}$	\mathbf{r}
\mathbf{r}^{2}					
\mathbf{i}_{2}	\mathbf{i}_{1}	\mathbf{i}_{3}	\mathbf{r}^{2}	1	$\mathbf{1}$
\mathbf{i}_{3}	\mathbf{i}_{2}	\mathbf{i}_{1}	\mathbf{r}	\mathbf{r}^{2}	1

Lab-fixed (Extrinsic-Global) operations\&axes fixed

Body-fixed (Intrinsic-Local) operations appear to move their rotation axes (relative to lab)

...but, THEY OBEY THE SAME GROUP TABLE.

$$
i
$$

Lab-fixed (Extrinsic-Global) operations\&axes fixed

Body-fixed (Intrinsic-Local) operations appear to move their rotation axes (relative to lab)

...but, THEY OBEY THE SAME GROUP TABLE. $\quad \mathrm{i}_{1} \mathrm{i}_{2}=\mathrm{r}$
implies:
...and Mock-Mach principle $\overline{\mathbf{g}}|\mathbf{1}\rangle=\mathbf{g}^{-1}|\mathbf{1}\rangle \quad \overline{\mathbf{i}}_{1} \overline{\mathrm{i}}_{2}=\overline{\mathbf{r}}$

Review Stage 1: Group Center:Class-sums κ_{g}, characters $\chi^{\mu}(\mathrm{g})$, and All-Commuting

```
Projectors IPH
```

Review Stage 2: Group operators \mathbf{g} and Mutually-Commuting projectors $\mathbf{P}^{\mu}{ }_{k k}$
Review Stage 3: Weyl \mathbf{g}-expansion in irreps $D_{j k}^{\mu}(g)$ and Non-Commuting projectors $\mathbf{P}^{\mu_{j k}}$

```
    Simple matrix algebra }\mp@subsup{\mathbf{P}}{}{\mu}\mp@subsup{}{ab}{}\mp@subsup{\mathbf{P}}{}{\nu}\mp@subsup{}{cd}{}=\mp@subsup{\delta}{}{\mu\nu}\mp@subsup{\delta}{bc}{}\mp@subsup{\mathbf{P}}{}{\mu}\mp@subsup{}{ad}{
    P }\mp@subsup{}{jk}{}\mathrm{ transforms right-and-left
    P}\mp@subsup{}{jk}{jk}\mathrm{ -expansion in g-operators
    Example of D}\mp@subsup{D}{3}{}\mathrm{ transformation by matrix D D Ejk([्N
```

Details of Mock-Mach relativity-duality for D3 groups and representations
\square Lab-fixed(Extrinsic-Global) vs. Body-fixed (Intrinsic-Local) Compare Global vs Local $|\mathbf{g}\rangle$-basis and Global vs Local $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis

```
Hamiltonian and D3 group matrices in global and local |\mp@subsup{\mathbf{P}}{}{(\mu)}\rangle\mathrm{ -basis}
    Global vs. Local block rearrangement
        Hamiltonian local-symmetry eigensolution
        Molecular vibrational mode eigensolution
            Local symmetry limit
            Global symmetry limit (free or "genuine" modes)
```

Compare Global vs Local $|\mathbf{g}\rangle$-basis vs. Global vs Local $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis

D_{3} global	$\mathbf{1}$	\mathbf{r}^{2}	\mathbf{r}	\mathbf{i}_{1}	\mathbf{i}_{2}	\mathbf{i}_{3}
group	\mathbf{r}	$\mathbf{1}$	\mathbf{r}^{2}	\mathbf{i}_{3}	\mathbf{i}_{1}	\mathbf{i}_{2}
product	\mathbf{r}^{2}	\mathbf{r}	$\mathbf{1}$	\mathbf{i}_{2}	\mathbf{i}_{3}	\mathbf{i}_{1}
\mathbf{i}_{1}	\mathbf{i}_{3}	\mathbf{i}_{2}	$\mathbf{1}$	\mathbf{r}	\mathbf{r}^{2}	
table	\mathbf{i}_{2}	\mathbf{i}_{1}	\mathbf{i}_{13}	\mathbf{r}^{2}	$\mathbf{1}$	\mathbf{r}
\mathbf{i}_{13}	\mathbf{i}_{2}	\mathbf{i}_{1}	\mathbf{r}	\mathbf{r}^{2}	$\mathbf{1}$	

Change Global to Local by switching
...column-g with column-g ${ }^{\dagger}$
....and row-g with row-g ${ }^{\dagger}$

Compare Global vs Local $|\mathbf{g}\rangle$-basis vs. Global vs Local $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis

D_{3} global	1	$\mathbf{r}^{2} \mathrm{r}$	$\mathbf{i}_{1} \quad \mathbf{i}_{2} \quad\left(\mathbf{i}_{3}\right.$
group	r	$1 \mathrm{r}^{2}$	
product	\mathbf{r}^{2}	r 1	$\mathrm{i}_{2}\left(\mathrm{i}_{3} \mathrm{i}_{1} \mathbf{i}_{1}\right.$
	1 \mathbf{i}_{1} \mathbf{i}_{2} \mathbf{i}_{13}	$\begin{array}{\|ll} \hline\left(\mathbf{i}_{3}\right) & \mathbf{i}_{2} \\ \mathbf{i}_{1} & \mathbf{i}_{13} \\ \mathbf{i}_{2} & \mathbf{i}_{1} \\ \hline \end{array}$	$\begin{array}{ccc}1 & r & r^{2} \\ \mathbf{r}^{2} & 1 & r \\ r & r^{2} & 1\end{array}$

D_{3} global		${ }^{4}$		
projector	\mathbb{P}^{4}	\mathbb{P}_{4}^{4}		
product	$\mathbf{P}_{x}^{E x}$		$\mathbb{P}_{x x}^{E} \mathbf{P}_{\mathbf{P}_{y}^{E}}^{E}$	
	$\mathrm{P}^{\text {E }}$		$\mathbf{p}_{y x}^{E} \mathbf{P}_{v y}^{E}$	
table	$\mathbf{R}^{\text {E }}$			$\mathbf{P}_{x x}^{E} \mathbb{P}_{x}^{E}$
	$\mathbf{P}_{\text {E }}^{\text {E }}$			$\mathbf{P}_{y}^{E} \mathbf{P}_{y}^{E}$

$\mathbf{P}_{a b}^{(n)} \mathbf{P}_{c d}^{(n)}=\delta^{n n} \delta_{b c} \mathbf{P}_{a d}^{(m)}$

...column-P with column-P ${ }^{\dagger}$

and row-P with row-P ${ }^{\dagger}$
D_{3} local projector product table

Compare Global vs Local |gो-basis

Example of RELATIVITY-DUALITY for $D_{3} \sim C_{3 v}$

To represent external $\left\{. . \mathbf{T}, \mathbf{U}, \mathbf{V}, \ldots\right.$. \} switch $\mathbf{g} \mathbf{g}^{\dagger}$ on top of group table

| | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1}$ | \mathbf{r}^{2} | \mathbf{r} | \mathbf{i}_{1} | \mathbf{i}_{2} | \mathbf{i}_{13} |
| \mathbf{r} | $\mathbf{1}$ | \mathbf{r}^{2} | \mathbf{i}_{3} | \mathbf{i}_{1} | \mathbf{i}_{2} |
| \mathbf{r}^{2} | \mathbf{r} | $\mathbf{1}$ | \mathbf{i}_{2} | \mathbf{i}_{3} | \mathbf{i}_{1} |
| \mathbf{i}_{1} | \mathbf{i}_{13} | \mathbf{i}_{2} | $\mathbf{1}$ | \mathbf{r} | \mathbf{r}^{2} |
| \mathbf{i}_{2} | \mathbf{i}_{1} | \mathbf{i}_{3} | \mathbf{r}^{2} | $\mathbf{1}$ | \mathbf{r} |
| \mathbf{i}_{13} | \mathbf{i}_{2} | \mathbf{i}_{1} | \mathbf{r} | \mathbf{r}^{2} | $\mathbf{1}$ |

D_{3} global
gg ${ }^{\dagger}$-table

Compare Global vs Local |gो-basis

Example of RELATIVITY-DUALITY for $D_{3} \sim C_{3 v}$

To represent external $\left\{. . \mathrm{T}, \mathbf{U}, \mathbf{V}, \ldots\right.$ \} switch $\mathbf{g} \mathbf{g}^{\dagger}$ on top of group table
$\frac{\text { RESULT T: }}{\operatorname{Any} R(\mathrm{~T})}$
commute (Even if T and U do not...)
with any $R(\mathrm{U})$..

$\left.R^{G}\left(\mathbf{i}_{1}\right)=\quad R^{G}(\mathbf{i})_{2}\right) \quad R^{G}\left(\mathbf{i} \mathbf{i}_{3}=\right.$

D_{3} global sg ${ }^{\dagger}$-table

To represent internal $\{. . \overline{\mathbf{T}}, \overline{\mathbf{U}}, \overline{\mathbf{V}}, \ldots\}$ switch $\mathbf{g} \leftrightarrows \mathbf{g}^{\dagger}$ on side of group table g † g-table

$\mathbf{1}$	\mathbf{r}	\mathbf{r}^{2}	\mathbf{i}_{1}	\mathbf{i}_{2}	$\left(\mathbf{i}_{3}\right)$
\mathbf{r}^{2}	$\mathbf{1}$	\mathbf{r}	\mathbf{i}_{2}	\mathbf{i}_{3}	\mathbf{i}_{1}
\mathbf{r}	\mathbf{r}^{2}	$\mathbf{1}$	\mathbf{i}_{3}	\mathbf{i}_{1}	\mathbf{i}_{2}
\mathbf{i}_{1}	\mathbf{i}_{2}	$\left(\mathbf{i}_{3}\right)$	$\mathbf{1}$	\mathbf{r}	\mathbf{r}^{2}
\mathbf{i}_{2}	\mathbf{i}_{3}	\mathbf{i}_{2}	\mathbf{r}^{2}	$\mathbf{1}$	\mathbf{r}
\mathbf{l}_{3}	\mathbf{i}_{1}	\mathbf{i}_{2}	\mathbf{r}	\mathbf{r}^{2}	$\mathbf{1}$

Review Stage 1: Group Center:Class-sums κ_{g}, characters $\chi^{\mu}(\mathbf{g})$, and All-Commuting
Projectors \mathbb{P}^{μ}
Review Stage 2: Group operators \mathbf{g} and Mutually-Commuting projectors $\mathbf{P}^{\mu_{k k}}$
Review Stage 3: Weyl g-expansion in irreps $D_{j k}^{\mu}(g)$ and Non-Commuting projectors $\mathbf{P}^{\mu_{j k}}$

```
    Simple matrix algebra }\mp@subsup{\mathbf{P}}{}{\mu}\mp@subsup{}{ab}{}\mp@subsup{\mathbf{P}}{}{v}\mp@subsup{}{cd}{}=\mp@subsup{\delta}{}{\mu\nu}\mp@subsup{\delta}{bc}{}\mp@subsup{\mathbf{P}}{}{\mu}\mp@subsup{}{ad}{
    P }\mp@subsup{}{jk}{}\mathrm{ transforms right-and-left
    P}\mp@subsup{}{jk}{jk}\mathrm{ -expansion in g-operators
```


Details of Mock-Mach relativity-duality for D_{3} groups and representations Lab-fixed(Extrinsic-Global) vs. Body-fixed (Intrinsic-Local)
$\boldsymbol{\square}$ Compare Global vs Local $|\mathbf{g}\rangle$-basis and Global vs Local $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis

```
Hamiltonian and D3 group matrices in global and local |\mp@subsup{\mathbf{P}}{}{(\mu)}\rangle\mathrm{ -basis}
    Global vs. Local block rearrangement
    Hamiltonian local-symmetry eigensolution
    Molecular vibrational mode eigensolution
    Local symmetry limit
    Global symmetry limit (free or "genuine" modes)
```

Compare Global $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis vs Local $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis

Matrix "Placeholders" $\mathbf{P}_{a b}^{(m)}$ for GLOBAL \mathbf{g} operators in ${\underset{E}{E}}^{D_{3}}$

Global

$\mathbf{P}^{\prime} \mathbf{P}$ form	$\mathbf{P}_{x x}^{A_{1}}$	$\mathbf{P}_{y y}^{A_{2}}$	$\mathbf{P}_{x x}^{E_{1}}$	$\mathbf{P}_{x y}^{E_{1}}$	$\mathbf{P}_{y x}^{E_{1}}$	$\mathbf{P}_{y y}^{E_{1}}$
$\mathbf{P}_{x x}^{A_{1}}$	$\mathbf{P}_{x x}^{A_{1}}$	\cdot	\cdot	\cdot	\cdot	\cdot
$\mathbf{P}_{y y}^{A_{2}}$	\cdot	$\mathbf{P}_{y y}^{A_{2}}$	\cdot	\cdot	\cdot	\cdot
$\mathbf{P}_{x x}^{E_{1}}$	\cdot	\cdot	$\mathbf{P}_{x x}^{E_{1}}$	$\mathbf{P}_{x y}^{E_{1}}$	\cdot	\cdot
$\mathbf{P}_{y x}^{E_{1}}$	\cdot	\cdot	$\mathbf{P}_{y x}^{E_{1}}$	$\mathbf{P}_{y y}^{E_{1}}$	\cdot	\cdot
$\mathbf{P}_{x y}^{E_{1}}$	\cdot	\cdot	\cdot	\cdot	$\mathbf{P}_{x x}^{E_{1}}$	$\mathbf{P}_{x y}^{E_{1}}$
$\mathbf{P}_{y y}^{E_{1}}$	\cdot	\cdot	\cdot	\cdot	$\mathbf{P}_{y x}^{E_{1}}$	$\mathbf{P}_{y y}^{E_{1}}$

Product table entry \mathbf{P}^{E} ab shows location of a 1 in the regular representation $R\left(\mathbf{P}^{E}{ }_{a b}\right)$ of that GLOBAL projection operator.

Compare Global $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis vs Local $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis

Local

\mathbf{P}^{\dagger} form	$\mathbf{P}_{x x}^{A_{1}}$	$\mathbf{P}_{y y}^{A_{2}}$	$\mathbf{P}_{x x}^{E_{1}}$	$\mathbf{P}_{y x}^{E_{1}}$	$\mathbf{P}_{x y}^{E_{1}}$	$\mathbf{P}_{y y}^{E_{1}}$
$\mathbf{P}_{x x}^{A_{1}}$	$\mathbf{P}_{x x}^{A_{1}}$	\cdot	\cdot	\cdot	\cdot	\cdot
$\mathbf{P}_{y y}^{A_{2}}$	\cdot	$\mathbf{P}_{y y}^{A_{2}}$	\cdot	\cdot	\cdot	\cdot
$\mathbf{P}_{x x}^{E_{1}}$	\cdot	\cdot	$\mathbf{P}_{x x}^{E_{1}}$	\cdot	$\mathbf{P}_{x y}^{E_{1}}$	\cdot
$\mathbf{P}_{x y}^{E_{1}}$	\cdot	\cdot	\cdot	$\mathbf{P}_{x x}^{E_{1}}$	\cdot	$\mathbf{P}_{x y}^{E_{1}}$
$\mathbf{P}_{y x}^{E_{1}}$	\cdot	\cdot	$\mathbf{P}_{y x}^{E_{1}}$	\cdot	$\mathbf{P}_{y y}^{E_{1}}$	\cdot
$\mathbf{P}_{y y}^{E_{1}}$	\cdot	\cdot	\cdot	$\mathbf{P}_{y x}^{E_{1}}$	\cdot	$\mathbf{P}_{y y}^{E_{1}}$

Product table entry \mathbf{P}^{E} ab shows location of a 1 in the regular representation $R\left(\mathbf{P}^{E}{ }_{a b}\right)$ of that LOCAL projection operator.
$\overline{\mathbf{P}}_{a b}^{(n)} \ldots$ for LOCAL $\overline{\mathrm{g}}$ operators in \bar{D}_{3}

Compare Global $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis vs Local $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis

Matrix "Placeholders" $\mathbf{P}_{a b}^{(m)}$ for GLOBAL \mathbf{g} operators in ${\underset{E}{E}}^{D_{3}}$

$\overline{\mathbf{P}}_{a b}^{(n)}$...for LOCAL $\overline{\mathbf{g}}$ operators in \bar{D}_{3}

Compare Global $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis vs Local $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis Matrix "Placeholders" $\mathbf{P}_{a b}^{(n)}$ for GLOBAL \mathbf{g} operators in D_{3}

$\overline{\mathbf{P}}_{a b b}^{(0)} .$. for LOCAL $\overline{\bar{g}}$ operators in $\overline{D_{3}}$

Note how any global g-matrix commutes with any local g-matrix

$$
\begin{aligned}
& \left|\begin{array}{cc:cc}
a \boldsymbol{A} & b \boldsymbol{A} & a \boldsymbol{B} & b \boldsymbol{B} \\
c \boldsymbol{A} & d \boldsymbol{A} & c \boldsymbol{B} & d \boldsymbol{B} \\
\hdashline a \boldsymbol{C} & b \boldsymbol{C} & a \boldsymbol{D} & b \boldsymbol{D} \\
c \boldsymbol{C} & d \boldsymbol{C} & c \boldsymbol{D} & d \boldsymbol{D}
\end{array}\right|=\left|\begin{array}{ll:ll}
\boldsymbol{A} a & A b & B a & B b \\
\boldsymbol{A c} & A d & B c & B d \\
\hline \boldsymbol{C a} & \boldsymbol{C b} & \boldsymbol{D} a & \boldsymbol{D} b \\
\boldsymbol{C c} & \boldsymbol{C} d & \boldsymbol{D c} & \boldsymbol{D} d
\end{array}\right|
\end{aligned}
$$

For example:

$$
\begin{gathered}
{\left[\begin{array}{ll}
\cdot & b \\
\cdot & \cdot
\end{array}\right]\left[\begin{array}{cc}
A & \cdot \\
\cdot & A
\end{array}\right]=\left[\begin{array}{cc}
A & \cdot \\
\cdot & A
\end{array}\right]\left[\begin{array}{ll}
\cdot & b \\
\cdot & \cdot
\end{array}\right]} \\
=\left[\begin{array}{cc}
\cdot & b A \\
\cdot & \cdot
\end{array}\right]=\left[\begin{array}{cc}
\cdot & A b \\
\cdot & \cdot
\end{array}\right]
\end{gathered}
$$

It's an example of old-fashioned Schur's Lemma

Review Stage 1: Group Center:Class-sums κ_{g}, characters $\chi^{\mu}(\mathbf{g})$, and All-Commuting
Projectors \mathbb{P}^{μ}
Review Stage 2: Group operators \mathbf{g} and Mutually-Commuting projectors $\mathbf{P}^{\mu}{ }_{k k}$
Review Stage 3: Weyl g-expansion in irreps $D_{j k}^{\mu}(g)$ and Non-Commuting projectors $\mathbf{P}^{\mu_{j k}}$
Simple matrix algebra $\mathbf{P}^{\mu}{ }_{a b} \mathbf{P}^{\nu}{ }_{c d}=\delta^{\mu \nu} \delta_{b c} \mathbf{P}^{\mu}{ }_{a d}$
$\mathbf{P}_{j k}{ }_{j k}$ transforms right-and-left
$\mathbf{P}^{\mu}{ }_{j k}$-expansion in \mathbf{g}-operators
Example of D_{3} transformation by matrix $D^{E_{j k}\left(\mathbb{r}^{1}\right)}$
Details of Mock-Mach relativity-duality for D_{3} groups and representations
Lab-fixed(Extrinsic-Global) vs. Body-fixed (Intrinsic-Local)
Compare Global vs Local $|\mathbf{g}\rangle$-basis and Global vs Local $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis
3
Hamiltonian and D_{3} group matrices in global and local $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis
Global vs. Local block rearrangement
Hamiltonion eigen-matrix calculation
Hamiltonian local-symmetry eigensolution
Molecular vibrational mode eigensolution
Local symmetry limit
Global symmetry limit (free or "genuine" modes)

Hamiltonian and D ${ }_{3}$ global- \mathbf{g} and local- $\overline{\mathbf{g}}$ group matrices in $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis
For unitary $D^{(\mu)}$: (p.51)
$\left|\mathbf{P}^{(\mu)}\right\rangle$-basis are projected by $\mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}{ }^{\circ} G}{{ }^{\circ} G} \sum_{\mathrm{g}} D_{m n}^{\mu^{*}}(g) \mathrm{g}=\mathbf{P}_{n m}^{\mu \dagger}$ acting on original ket $|\mathbf{1}\rangle$

Hamiltonian and D_{3} global-g and local- $\overline{\mathbf{g}}$ group matrices in $\left\langle\mathbf{P}^{(\mu)}\right\rangle$-basis
For unitary $D^{(\mu)}$: (p.51)
$\left|\mathbf{P}^{(\mu)}\right\rangle$-basis are projected by $\mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}{ }^{\circ} G}{{ }^{\circ} G} \sum_{\mathrm{g}} D_{m n}^{\mu^{*}}(g) \mathrm{g}=\mathbf{P}_{n m}^{\mu \dagger}$ acting on original ket $|\mathbf{1}\rangle$ to give: $\left|\begin{array}{l}\mu \\ m n\end{array}\right\rangle=\mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle_{\text {norm }}$

Hamiltonian and D ${ }_{3}$ global- \mathbf{g} and local- $\overline{\mathbf{g}}$ group matrices in $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis
For unitary $D^{(\mu)}$: (p.51)
$\left|\mathbf{P}^{(\mu)}\right\rangle$-basis are projected by $\mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}}{{ }^{\circ} G} \sum_{\mathrm{g}}{ }^{G} D_{m n}^{\mu^{*}}(g) \mathrm{g}=\mathbf{P}_{n m}^{\mu \dagger}$ acting on original ket $|\mathbf{1}\rangle$ to give:
$\left|\begin{array}{l}\mu \\ m n\end{array}\right\rangle=\mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle \frac{1}{\text { norm }}=\frac{\ell^{(\mu)}}{{ }^{\circ} G \cdot \text { norm }} \sum_{\mathrm{g}}^{{ }^{\circ} G} D_{m n}^{\mu^{*}}(g)|\mathrm{g}\rangle$

Hamiltonian and D_{3} global-g and local- $\overline{\mathbf{g}}$ group matrices in $\left\langle\mathbf{P}^{(\mu)}\right\rangle$-basis
For unitary $D^{(\mu)}$: (p.51)
$\left|\mathbf{P}^{(\mu)}\right\rangle$-basis are projected by $\mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}}{{ }^{\circ} G} \sum_{\mathrm{g}}{ }^{G} D_{m n}^{\mu^{*}}(g) \mathrm{g}=\mathbf{P}_{n m}^{\mu \dagger}$ acting on original ket $|\mathbf{1}\rangle$ to give:
$\left|\begin{array}{l}\mu \\ m n\end{array}\right\rangle=\mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle \frac{1}{\text { norm }}=\frac{\ell^{(\mu)}}{{ }^{\circ} G \cdot n o r m} \sum_{\mathrm{g}}^{{ }^{G}} D_{m n}^{\mu^{*}}(\mathrm{~g})|\mathrm{g}\rangle \quad$ subject to normalization:
$\left\langle\left.\begin{array}{l}\mu^{\prime} \\ m^{\prime} n^{\prime}\end{array} \right\rvert\, \begin{array}{l}\mu n \\ m\end{array}\right\rangle=\frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} m^{\prime}}^{\mu^{\prime}} \mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle}{\text { orm }^{2}}$

Hamiltonian and D_{3} global-g and local- $\overline{\mathbf{g}}$ group matrices in $\left\langle\mathbf{P}^{(\mu)}\right\rangle$-basis
For unitary $D^{(\mu)}$: (p.51)
$\left|\mathbf{P}^{(\mu)}\right\rangle$-basis are projected by $\mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}{ }^{\circ} G}{{ }^{\circ} G} \sum_{\mathrm{g}} D_{m n}^{\mu^{*}}(g) \mathrm{g}=\mathbf{P}_{n m}^{\mu \dagger}$ acting on original ket $|\mathbf{1}\rangle$ to give:
$\left|\begin{array}{c}\mu \\ m n\end{array}\right\rangle=\mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle \frac{1}{\text { norm }}=\frac{\ell^{(\mu)}}{{ }^{\circ} G \cdot n o r m} \sum_{\mathrm{g}}^{{ }^{G} G} D_{m n}^{\mu^{*}}(\mathrm{~g})|\mathrm{g}\rangle \quad$ subject to normalization:
$\left\langle\left.\begin{array}{l}\mu^{\prime} \\ m^{\prime} n^{\prime}\end{array} \right\rvert\, \begin{array}{c}\mu \\ m n\end{array}\right\rangle=\frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} m^{\prime}}^{\mu^{\prime}} \mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle}{\text { norm }^{2}}=\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} n}^{\mu}|\mathbf{1}\rangle}{\text { norm }^{2}}$

Hamiltonian and D_{3} global-g and local- $\overline{\mathbf{g}}$ group matrices in $\left\langle\mathbf{P}^{(\mu)}\right\rangle$-basis
For unitary $D^{(\mu)}$: (p.51)
$\left|\mathbf{P}^{(\mu)}\right\rangle$-basis are projected by $\mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}}{{ }^{\circ} G} \sum_{\mathbf{g}}{ }^{G} D_{m n}^{\mu^{*}}(g) \mathrm{g}=\mathbf{P}_{n m}^{\mu \dagger}$ acting on original ket $|\mathbf{1}\rangle$ to give:
$\left|\begin{array}{l}\mu \\ m n\end{array}\right\rangle=\mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle \frac{1}{\text { norm }}=\frac{\ell^{(\mu)}}{{ }^{\circ} G \cdot \text { norm }} \sum_{\mathrm{g}}^{{ }^{\circ} G} D_{m n}^{\mu^{*}}(g)|\mathrm{g}\rangle \quad$ subject to normalization:
$\left\langle\left.\begin{array}{c}\mu^{\prime} \\ m^{\prime} n^{\prime}\end{array} \right\rvert\, \begin{array}{c}\mu \\ \mu n\end{array}\right\rangle=\frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} m^{\prime}}^{\mu^{\prime}} \mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle}{\text { norm }^{2}}=\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} n}^{\mu}|\mathbf{1}\rangle}{\text { norm }^{2}}=\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n} \quad$ where: norm $=\sqrt{\langle\mathbf{1}| \mathbf{P}_{n n}^{\mu}|\mathbf{1}\rangle}=\sqrt{\frac{\ell^{(\mu)}}{{ }^{\circ} G}}$

Hamiltonian and D_{3} global- \mathbf{g} and local- $\overline{\mathbf{g}}$ group matrices in $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis
For unitary $D^{(\mu)}:(p .51)$
$\left|\mathbf{P}^{(\mu)}\right\rangle$-basis are projected by $\mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}{ }^{\circ} G}{} \sum_{\mathrm{g}} D_{m n}^{\mu^{*}}(g) \mathrm{g}=\mathbf{P}_{n m}^{\mu \dagger}$ acting on original ket $|\mathbf{1}\rangle$ to give:
$\left|\begin{array}{l}\mu \\ m n\end{array}\right\rangle=\mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle \frac{1}{\text { norm }}=\frac{\ell^{(\mu)}}{{ }^{\circ} G \cdot \text { norm }} \sum_{\mathrm{g}}^{{ }^{\circ} G} D_{m n}^{\mu^{*}}(g)|\mathrm{g}\rangle \quad$ subject to normalization:
$\left\langle\left.\begin{array}{l}\mu^{\prime} \\ m^{\prime} n^{\prime}\end{array} \right\rvert\, \begin{array}{c}\mu \\ m n\end{array}\right\rangle=\frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} m^{\prime}}^{\mu^{\prime}} \mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle}{\text { norm }^{2}}=\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} n}^{\mu}|\mathbf{1}\rangle}{\text { norm }^{2}}=\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n} \quad$ where: norm $=\sqrt{\langle\mathbf{1}| \mathbf{P}_{n n}^{\mu}|\mathbf{1}\rangle}=\sqrt{\frac{\ell^{(\mu)}}{{ }^{\circ} G}}$
Left-action of global \mathbf{g} on irep-ket $\left|\begin{array}{c}\mu \\ m n\end{array}\right\rangle$
$\mathrm{g}\left|\begin{array}{c}\mu n \\ \mu\end{array}\right\rangle=\sum_{m^{\prime}}^{\ell^{\mu}} D_{m^{\prime} m}^{\mu}(g)\left|\begin{array}{c}\mu \\ m^{\prime} n\end{array}\right\rangle$

Hamiltonian and D_{3} global- \mathbf{g} and local- $\overline{\mathbf{g}}$ group matrices in $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis
For unitary $D^{(\mu)}:(p .51)$
$\left|\mathbf{P}^{(\mu)}\right\rangle$-basis are projected by $\mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}{ }^{\circ} G}{} \sum_{\mathrm{g}} D_{m n}^{\mu^{*}}(g) \mathrm{g}=\mathbf{P}_{n m}^{\mu \dagger}$ acting on original ket $|\mathbf{1}\rangle$ to give:
$\left|\begin{array}{l}\mu \\ m n\end{array}\right\rangle=\mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle \frac{1}{n o r m}=\frac{\ell^{(\mu)}}{{ }^{\circ} G \cdot \text { norm }} \sum_{\mathrm{g}}^{{ }^{\circ} G} D_{m n}^{\mu^{*}}(g)|\mathrm{g}\rangle \quad$ subject to normalization:
$\left\langle\left.\begin{array}{l}\mu^{\prime} \\ m^{\prime} n^{\prime} \mid\end{array} \right\rvert\, \begin{array}{c}\mu \\ m n\end{array}\right\rangle=\frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} m^{\prime}}^{\mu^{\prime}} \mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle}{\text { norm }^{2}}=\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} n}^{\mu}|\mathbf{1}\rangle}{\text { norm }^{2}}=\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n} \quad$ where: norm $=\sqrt{\langle\mathbf{1}| \mathbf{P}_{n n}^{\mu}|\mathbf{1}\rangle}=\sqrt{\frac{\ell^{(\mu)}}{{ }^{\circ} G}}$
Left-action of global \mathbf{g} on irep-ket $\left|\begin{array}{c}\mu \\ m n\end{array}\right\rangle$
$\mathrm{g}\left|\begin{array}{c}\mu \\ m\end{array}\right\rangle=\sum_{m^{\prime}}^{\ell^{\mu}} D_{m^{\prime} m}^{\mu}(g)\left|\begin{array}{c}\mu \\ m^{\prime} n\end{array}\right\rangle$
Matrix is same as given on p. 27
$\left\langle\begin{array}{l}\mu \\ m^{\prime} n\end{array}\right| \mathbf{g}\left|\begin{array}{l}\mu \\ m n\end{array}\right\rangle=D_{m^{\prime} m}^{\mu}(g)$

Hamiltonian and D_{3} global- \mathbf{g} and local- $\overline{\mathbf{g}}$ group matrices in $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis
For unitary $D^{(\mu)}:(p .51)$
$\left|\mathbf{P}^{(\mu)}\right\rangle$-basis are projected by $\mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}{ }^{\circ} G}{} \sum_{\mathrm{g}} D_{m n}^{\mu^{*}}(g) \mathrm{g}=\mathbf{P}_{n m}^{\mu \dagger}$ acting on original ket $|\mathbf{1}\rangle$ to give:
$\left|\begin{array}{l}\mu \\ m n\end{array}\right\rangle=\mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle \frac{1}{n o r m}=\frac{\ell^{(\mu)}}{{ }^{\circ} G \cdot n o r m} \sum_{\mathrm{g}}^{{ }^{\circ} G} D_{m n}^{\mu^{*}}(\mathrm{~g})|\mathrm{g}\rangle \quad$ subject to normalization:
$\left\langle\left.\begin{array}{l}\mu^{\prime} \\ m^{\prime} n^{\prime} \mid\end{array} \right\rvert\, \begin{array}{c}\mu \\ m\end{array}\right\rangle=\frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} m^{\prime}}^{\mu^{\prime}} \mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle}{\text { norm }^{2}}=\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} n}^{\mu}|\mathbf{1}\rangle}{\text { norm }^{2}}=\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n} \quad$ where: norm $=\sqrt{\langle\mathbf{1}| \mathbf{P}_{n n}^{\mu}|\mathbf{1}\rangle}=\sqrt{\frac{\ell^{(\mu)}}{{ }^{\circ} G}}$

Left-action of global \mathbf{g} on irep-ket $\left|\begin{array}{c}\mu \\ m n\end{array}\right\rangle$
$\mathrm{g}\left|\begin{array}{c}\mu \\ m\end{array}\right\rangle=\sum_{m^{\prime}}^{\ell^{\mu}} D_{m^{\prime} m}^{\mu}(g)\left|\begin{array}{|c}\mu \\ m^{\prime} n\end{array}\right\rangle$
Matrix is same as given on p. 27
$\left\langle{ }_{m^{\prime} n}^{\mu}\right| \mathbf{g}\left|\begin{array}{l}\mu n \\ m n\end{array}\right\rangle=D_{m^{\prime} m}^{\mu}(g)$

Left-action of local $\overline{\mathbf{g}}$ on irep-ket $\left.\left.\right|_{m n} ^{\mu}\right\rangle$ is quite different

$$
\begin{aligned}
\overline{\mathbf{g}}\left|\begin{array}{l}
\mu \\
m n
\end{array}\right\rangle & =\overline{\mathbf{g}} \mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle \sqrt{\frac{{ }^{\circ} G}{\ell^{(\mu)}}} \\
& \text { Use } \\
& =\mathbf{P}_{m n}^{\mu} \overline{\mathbf{g}}|\mathbf{1}\rangle \sqrt{\frac{{ }^{\circ} G}{\ell^{(\mu)}}} \quad \begin{array}{c}
\text { Mock-Mach } \\
\text { commutation }
\end{array}
\end{aligned}
$$

Hamiltonian and D_{3} global- \mathbf{g} and local- $\overline{\mathbf{g}}$ group matrices in $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis
For unitary $D^{(\mu)}:(p .51)$
$\left|\mathbf{P}^{(\mu)}\right\rangle$-basis are projected by $\mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}{ }^{\circ} G}{} \sum_{\mathrm{g}} D_{m n}^{\mu^{*}}(g) \mathrm{g}=\mathbf{P}_{n m}^{\mu \dagger}$ acting on original ket $|\mathbf{1}\rangle$ to give:
$\left|\begin{array}{l}\mu \\ m n\end{array}\right\rangle=\mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle \frac{1}{\text { norm }}=\frac{\ell^{(\mu)}}{{ }^{\circ} G \cdot \text { norm }} \sum_{\mathrm{g}}^{{ }_{\mathrm{g}}} D_{m n}^{\mu^{*}}(g)|\mathrm{g}\rangle \quad$ subject to normalization:
$\left\langle\left.\begin{array}{l}\mu^{\prime} \\ m^{\prime} n^{\prime} \mid\end{array} \right\rvert\, \begin{array}{c}\mu \\ m n\end{array}\right\rangle=\frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} m^{\prime}}^{\mu^{\prime}} \mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle}{\text { norm }^{2}}=\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} n}^{\mu}|\mathbf{1}\rangle}{\text { norm }^{2}}=\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n} \quad$ where: norm $=\sqrt{\langle\mathbf{1}| \mathbf{P}_{n n}^{\mu}|\mathbf{1}\rangle}=\sqrt{\frac{\ell^{(\mu)}}{{ }^{\circ} G}}$

Left-action of global \mathbf{g} on irep-ket $\left|\begin{array}{c}\mu \\ m n\end{array}\right\rangle$
$\mathrm{g}\left|\begin{array}{c}\mu n\end{array}\right\rangle=\sum_{m^{\prime}}^{\ell^{\mu}} D_{m^{\prime} m}^{\mu}(g)\left|\begin{array}{c}\mu \\ m^{\prime} n\end{array}\right\rangle$
Matrix is same as given on p. 27
$\left\langle\begin{array}{l}\mu \\ m^{\prime} n\end{array}\right| \mathbf{g}\left|\begin{array}{l}\mu \\ m n\end{array}\right\rangle=D_{m^{\prime} m}^{\mu}(g)$

Left-action of local $\overline{\mathbf{g}}$ on irep-ket $\left.\left.\right|_{m n} ^{\mu}\right\rangle$ is quite different

$$
\begin{aligned}
& \overline{\mathbf{g}}\left|\begin{array}{l}
\mu \\
m n
\end{array}\right\rangle=\overline{\mathbf{g}} \mathbf{p}_{m n}^{\mu}|\mathbf{1}\rangle \sqrt{\frac{{ }^{\circ} G}{\ell^{(\mu)}}} \\
& =\mathbf{P}_{m n}^{\mu} \overline{\mathbf{g}}|\mathbf{1}\rangle \sqrt{\frac{{ }^{\circ} G}{\ell^{(\mu)}}} \begin{array}{c}
\text { Mock-Mach } \\
\stackrel{\text { and }}{\text { commutation }}
\end{array} \\
& =\mathbf{P}_{m n^{\prime}}^{\mu} \mathbf{\sigma}^{-1}|\boldsymbol{1}\rangle \sqrt{\frac{{ }^{\circ} G}{\ell^{(\mu)}}} \stackrel{\text { inverse }}{ }
\end{aligned}
$$

Hamiltonian and D_{3} global-g and local- $\overline{\mathbf{g}}$ group matrices in $\left\langle\mathbf{P}^{(\mu)}\right\rangle$-basis
For unitary $D^{(\mu)}$: (p.51)
$\left|\mathbf{P}^{(\mu)}\right\rangle$-basis are projected by $\mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}{ }^{\circ} G}{} \sum_{\mathrm{g}} D_{m n}^{\mu^{*}}(g) \mathbf{g}=\mathbf{P}_{n m}^{\mu \dagger}$ acting on original ket $|\mathbf{1}\rangle$ to give:
$\left|\begin{array}{l}\mu \\ m n\end{array}\right\rangle=\mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle \frac{1}{\text { norm }}=\frac{\ell^{(\mu)}}{{ }^{\circ} G \cdot \text { norm }} \sum_{\mathrm{g}}^{{ }^{\circ} G} D_{m n}^{\mu^{*}}(g)|\mathrm{g}\rangle \quad$ subject to normalization:
$\left\langle\left.\begin{array}{l}\mu^{\prime} \\ m^{\prime} n^{\prime} \mid\end{array} \right\rvert\, \begin{array}{c}\mu \\ m n\end{array}\right\rangle=\frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} m^{\prime}}^{\mu^{\prime}} \mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle}{\text { norm }^{2}}=\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} n}^{\mu}|\mathbf{1}\rangle}{\text { norm }^{2}}=\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n} \quad$ where: norm $=\sqrt{\langle\mathbf{1}| \mathbf{P}_{n n}^{\mu}|\mathbf{1}\rangle}=\sqrt{\frac{\ell^{(\mu)}}{{ }^{\circ} G}}$

Left-action of global \mathbf{g} on irep-ket $\left|\begin{array}{c}\mu \\ m n\end{array}\right\rangle$
$\mathrm{g}\left|\begin{array}{c}\mu \\ m\end{array}\right\rangle=\sum_{m^{\prime}}^{\ell^{\mu}} D_{m^{\prime} m}^{\mu}(g)\left|\begin{array}{|c}\mu \\ m^{\prime} n\end{array}\right\rangle$
Matrix is same as given on p. 27
$\left\langle\begin{array}{l}\mu \\ m^{\prime} n\end{array}\right| \mathbf{g}\left|\begin{array}{l}\mu \\ m n\end{array}\right\rangle=D_{m^{\prime} m}^{\mu}(g)$

Left-action of local $\overline{\mathbf{g}}$ on irep-ket $\left.\left.\right|_{m n} ^{\mu}\right\rangle$ is quite different

$$
\mathbf{P}_{m n}^{\mu} \mathbf{g}^{-1}=\sum_{m^{\prime}=1}^{\ell_{1}^{\mu}} \sum_{n^{\prime}=1}^{\ell^{\mu}} \mathbf{P}_{m n}^{\mu} \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu} D_{m^{\prime} n^{\prime}}^{\mu}\left(g^{-1}\right)
$$

$$
\overline{\mathbf{g}}\left|\begin{array}{l}
\mu \\
m n
\end{array}\right\rangle=\overline{\mathbf{g}} \mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle \sqrt{\frac{{ }^{\circ} G}{\ell(\mu)}}
$$

$$
\begin{aligned}
& \left.=\mathbf{P}_{m n}^{\mu} \overline{\mathbf{g}}|\mathbf{1}\rangle \sqrt{\frac{{ }_{G}{ }^{(\mu)}}{\ell^{(\mu)}}} \begin{array}{c}
\begin{array}{c}
\text { Mock-Mach } \\
\text { commutation }
\end{array} \\
=\mathbf{P}_{m n}{ }^{\mu} \mathbf{g}^{-1}
\end{array} \mathbf{1}\right\rangle \sqrt{\frac{{ }^{\circ}{ }^{G}}{\ell^{(\mu)}}} \stackrel{\text { inverse }}{\text { inver }}
\end{aligned}
$$

Hamiltonian and D ${ }_{3}$ global- \mathbf{g} and local- $\overline{\mathbf{g}}$ group matrices in $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis
For unitary $D^{(\mu)}$: (p.51)
$\left|\mathbf{P}^{(\mu)}\right\rangle$-basis are projected by $\mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}{ }^{\circ} G}{{ }^{\circ} G} \sum_{\mathrm{g}} D_{m n}^{\mu^{*}}(g) \mathrm{g}=\mathbf{P}_{n m}^{\mu \dagger}$ acting on original ket $|\mathbf{1}\rangle$ to give:
$\left|\begin{array}{l}\mu \\ m n\end{array}\right\rangle=\mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle \frac{1}{\text { norm }}=\frac{\ell^{(\mu)}}{{ }^{\circ} G \cdot \text { norm }} \sum_{\mathrm{g}}^{{ }^{\circ} G} D_{m n}^{\mu^{*}}(\mathrm{~g})|\mathrm{g}\rangle \quad$ subject to normalization:
$\left\langle\left.\begin{array}{l}\mu^{\prime} \\ m^{\prime} n^{\prime}\end{array} \right\rvert\, \begin{array}{c}\mu \\ \mu\end{array}\right\rangle=\frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} m^{\prime}}^{\mu^{\prime}} \mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle}{\text { norm }^{2}}=\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} n}^{\mu}|\mathbf{1}\rangle}{\text { norm }^{2}}=\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n} \quad$ where: norm $=\sqrt{\langle\mathbf{1}| \mathbf{P}_{n n}^{\mu}|\mathbf{1}\rangle}=\sqrt{\frac{\ell^{(\mu)}}{{ }^{\circ} G}}$

Left-action of global \mathbf{g} on irep-ket $\left|\begin{array}{c}\mu \\ m n\end{array}\right\rangle$
$\mathrm{g}\left|\begin{array}{c}\mu \\ m n\end{array}\right\rangle=\sum_{m^{\prime}}^{\ell^{\mu}} D_{m^{\prime} m}^{\mu}(g)\left|\begin{array}{c}\mu \\ m^{\prime} n\end{array}\right\rangle$
Matrix is same as given on p. 27
$\left\langle\begin{array}{l}\mu \\ m^{\prime} n\end{array}\right| \mathbf{g}\left|\begin{array}{l}\mu \\ m n\end{array}\right\rangle=D_{m^{\prime} m}^{\mu}(g)$

Left-action of local $\overline{\mathbf{g}}$ on irep-ket $\left|\begin{array}{c}\mu \\ m n\end{array}\right\rangle$ is quite different

p. 27 ,--...compute g^{-1} right action-
$\begin{aligned} & \mathbf{P}_{m n}^{\mu} \mathrm{g}^{-1}=\sum_{m^{\prime}=1}^{\ell^{\mu}} \sum_{n^{\prime}=1}^{\ell^{\mu}} \mathbf{P}_{m n}^{\mu} \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu} D_{m^{\prime} n^{\prime}}^{\mu}\left(g^{-1}\right) \\ &=\sum_{n^{\prime}=1}^{\ell^{\mu}} \mathbf{P}_{m n^{\prime}}^{\mu} \boldsymbol{i}^{\prime} \\ & D_{n n^{\prime}}^{\mu}\left(g^{-1}\right) \end{aligned}$

$$
\overline{\mathbf{g}}\left|\begin{array}{l}
\mu \\
m n
\end{array}\right\rangle=\overline{\mathbf{g}} \mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle \sqrt{\frac{{ }^{\circ} G}{\ell^{(\mu)}}}
$$

$$
\begin{aligned}
& =\mathbf{P}_{m n}^{\mu} \overline{\mathbf{g}}|\mathbf{1}\rangle \sqrt{\frac{{ }^{\circ} G}{\ell^{(\mu)}}} \stackrel{\begin{array}{c}
\text { Mock-Mach } \\
\text { commutation }
\end{array}}{\text { and }}
\end{aligned}
$$

Hamiltonian and D ${ }_{3}$ global- \mathbf{g} and local- $\overline{\mathbf{g}}$ group matrices in $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis
For unitary $D^{(\mu)}$: (p.51)
$\left|\mathbf{P}^{(\mu)}\right\rangle$-basis are projected by $\mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}{ }^{\circ} G}{} \sum_{\mathrm{g}} D_{m n}^{\mu^{*}}(g) \mathrm{g}=\mathbf{P}_{n m}^{\mu \dagger}$ acting on original ket $|\mathbf{1}\rangle$ to give:
$\left|\begin{array}{l}\mu \\ m n\end{array}\right\rangle=\mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle \frac{1}{\text { norm }}=\frac{\ell^{(\mu)}}{{ }^{\circ} G \cdot \text { norm }} \sum_{\mathrm{g}}^{{ }^{\circ} G} D_{m n}^{\mu^{*}}(\mathrm{~g})|\mathrm{g}\rangle \quad$ subject to normalization:
$\left\langle\left.\begin{array}{l}\mu^{\prime} \\ m^{\prime} n^{\prime}\end{array} \right\rvert\, \begin{array}{c}\mu \\ \mu\end{array}\right\rangle=\frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} m^{\prime}}^{\mu^{\prime}} \mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle}{\text { norm }^{2}}=\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} n}^{\mu}|\mathbf{1}\rangle}{\text { norm }^{2}}=\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n} \quad$ where: norm $=\sqrt{\langle\mathbf{1}| \mathbf{P}_{n n}^{\mu}|\mathbf{1}\rangle}=\sqrt{\frac{\ell^{(\mu)}}{{ }^{\circ} G}}$
Left-action of global \mathbf{g} on irep-ket $\left|\begin{array}{c}\mu n \\ m\end{array}\right\rangle$ Left-action of local $\overline{\mathbf{g}}$ on irep-ket $\left|\begin{array}{c}\mu \\ m n\end{array}\right\rangle$ is quite different

$$
\mathrm{g}\left|\begin{array}{c}
\mu \\
m n
\end{array}\right\rangle=\sum_{m^{\prime}}^{\ell^{\mu}} D_{m^{\prime} m}^{\mu}(g)\left|\begin{array}{l}
\mu \\
m^{\prime} n
\end{array}\right\rangle
$$

Matrix is same as given on p. 27
$\left\langle\begin{array}{l}\mu \\ m^{\prime} n\end{array}\right| \mathbf{g}\left|\begin{array}{l}\mu \\ m n\end{array}\right\rangle=D_{m^{\prime} m}^{\mu}(g)$

$$
\begin{aligned}
& \overline{\mathbf{g}}\left|\begin{array}{l}
\mu \\
m n
\end{array}\right\rangle=\overline{\mathbf{g}} \mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle \sqrt{\frac{{ }^{\circ} G}{\ell^{(\mu)}}} \\
& =\mathbf{P}_{m n}^{\mu} \overline{\mathbf{g}}|\mathbf{1}\rangle \sqrt{\frac{{ }^{\circ}{ }^{G}}{\ell^{(\mu)}}} \stackrel{\begin{array}{c}
\text { Mock-Mach } \\
\text { commutation }
\end{array}}{\begin{array}{c}
\text { and }
\end{array}} \\
& \begin{array}{l}
=\mathbf{P}_{m n}^{\mu^{\prime}} \mathbf{g}^{-1}|\mathbf{1}\rangle \sqrt{\frac{{ }^{{ }^{G}}}{\ell^{(\mu)}}} \longleftarrow \stackrel{\text { inverse }}{ } \\
=\sum_{n^{\prime}=1}^{\ell^{\mu}} D_{n n^{\prime}}^{\mu}\left(g^{-1}\right) \mathbf{P}_{m n^{\prime}}^{\mu}|\mathbf{1}\rangle \sqrt{\frac{{ }^{G}}{\ell^{(\mu)}}}
\end{array}
\end{aligned}
$$

Hamiltonian and D ${ }_{3}$ global- \mathbf{g} and local- $\overline{\mathbf{g}}$ group matrices in $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis
For unitary $D^{(\mu)}$: (p.51)
$\left|\mathbf{P}^{(\mu)}\right\rangle$-basis are projected by $\mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}{ }^{\circ} G}{} \sum_{\mathrm{g}} D_{m n}^{\mu^{*}}(g) \mathrm{g}=\mathbf{P}_{n m}^{\mu \dagger}$ acting on original ket $|\mathbf{1}\rangle$ to give:
$\left|\begin{array}{l}\mu \\ m n\end{array}\right\rangle=\mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle \frac{1}{\text { norm }}=\frac{\ell^{(\mu)}}{{ }^{\circ} G \cdot n o r m} \sum_{\mathrm{g}}^{{ }^{\circ} G} D_{m n}^{\mu^{*}}(g)|\mathbf{g}\rangle \quad$ subject to normalization:
$\left\langle\left.\begin{array}{l}\mu^{\prime} \\ m^{\prime} n^{\prime}\end{array} \right\rvert\, \begin{array}{c}\mu \\ \mu\end{array}\right\rangle=\frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} m^{\prime}}^{\mu^{\prime}} \mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle}{\text { norm }^{2}}=\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} n}^{\mu}|\mathbf{1}\rangle}{\text { norm }^{2}}=\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n} \quad$ where: norm $=\sqrt{\langle\mathbf{1}| \mathbf{P}_{n n}^{\mu}|\mathbf{1}\rangle}=\sqrt{\frac{\ell^{(\mu)}}{{ }^{\circ} G}}$

Left-action of global \mathbf{g} on irep-ket $\left|\begin{array}{c}\mu \\ m n\end{array}\right\rangle$
$\mathbf{g}\left|\begin{array}{c}\mu \\ m n\end{array}\right\rangle=\sum_{m^{\prime}}^{\ell^{\mu}} D_{m^{\prime} m}^{\mu}(g)\left|\begin{array}{c}\mu \\ m^{\prime} n\end{array}\right\rangle$
Matrix is same as given on p. 27
$\left\langle\begin{array}{l}\mu \\ m^{\prime} n\end{array}\right| \mathbf{g}\left|\begin{array}{l}\mu \\ m n\end{array}\right\rangle=D_{m^{\prime} m}^{\mu}(g)$

Left-action of local $\overline{\mathbf{g}}$ on irep-ket $\left|\begin{array}{l}\mu \\ m\end{array}\right\rangle$ is quite different

$$
\overline{\mathbf{g}}\left|\begin{array}{l}
\mu \\
m n
\end{array}\right\rangle=\overline{\mathbf{g}} \mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle \sqrt{\frac{{ }^{\circ} G}{\ell^{(\mu)}}}
$$

$$
=\mathbf{P}_{m n}^{\mu} \overline{\mathbf{g}}|\mathbf{1}\rangle \sqrt{\frac{{ }^{\circ}{ }^{G}}{\ell(\mu)}} \begin{gathered}
\begin{array}{c}
\text { Mock-Mach } \\
\text { commutation }
\end{array} \\
\text { and }
\end{gathered}
$$

$$
\begin{aligned}
& =\mathbf{P}_{m n}^{\mu_{n}} \mathbf{g}^{-1}|\mathbf{1}\rangle \sqrt{\frac{{ }^{\circ}}{\ell^{(\mu)}}} \longleftrightarrow{ }^{\ell^{\mu}} \\
& =\sum_{n^{\prime}=1} D_{n n^{\prime}}^{\mu}\left(g^{-1}\right) \mathbf{P}_{m n^{\prime}}^{\mu}|\mathbf{1}\rangle \sqrt{\frac{{ }^{G}}{\ell^{(\mu)}}}
\end{aligned}
$$

$$
=\sum_{n^{\prime}=1}^{\ell^{\mu}} D_{n n^{\prime}}^{\mu}\left(g^{-1}\right)\left|\begin{array}{l}
\mu n^{\prime}
\end{array}\right\rangle
$$

Hamiltonian and D ${ }_{3}$ global- \mathbf{g} and local- $\overline{\mathbf{g}}$ group matrices in $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis
For unitary $D^{(\mu)}$: (p.51)
$\left|\mathbf{P}^{(\mu)}\right\rangle$-basis are projected by $\mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}{ }^{\circ} G}{{ }^{\circ} G} D_{\mathrm{g}}^{\mu^{*}}{ }_{m n}(g) \mathrm{g}=\mathbf{P}_{n m}^{\mu \dagger}$ acting on original ket $|\mathbf{1}\rangle$ to give:
$\left|\begin{array}{l}\mu \\ m n\end{array}\right\rangle=\mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle \frac{1}{\text { norm }}=\frac{\ell^{(\mu)}}{{ }^{\circ} G \cdot \text { norm }} \sum_{\mathrm{g}}^{{ }^{\circ} G} D_{m n}^{\mu^{*}}(\mathrm{~g})|\mathrm{g}\rangle \quad$ subject to normalization:
$\left\langle\left.\begin{array}{l}\mu^{\prime} \\ m^{\prime} n^{\prime}\end{array} \right\rvert\, \begin{array}{c}\mu \\ \mu\end{array}\right\rangle=\frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} m^{\prime}}^{\mu^{\prime}} \mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle}{\text { norm }^{2}}=\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} n}^{\mu}|\mathbf{1}\rangle}{\text { norm }^{2}}=\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n} \quad$ where: norm $=\sqrt{\langle\mathbf{1}| \mathbf{P}_{n n}^{\mu}|\mathbf{1}\rangle}=\sqrt{\frac{\ell^{(\mu)}}{{ }^{\circ} G}}$

Left-action of global \mathbf{g} on irep-ket $\left|\begin{array}{c}\mu n \\ m\end{array}\right\rangle$
$\mathbf{g}\left|\begin{array}{c}\mu \\ m n\end{array}\right\rangle=\sum_{m^{\prime}}^{\ell^{\mu}} D_{m^{\prime} m}^{\mu}(g)\left|\begin{array}{c}\mu \\ m^{\prime} n\end{array}\right\rangle$
Matrix is same as given on p. 27
$\left\langle\begin{array}{l}\mu \\ m^{\prime} n\end{array}\right| \mathbf{g}\left|\begin{array}{l}\mu \\ m n\end{array}\right\rangle=D_{m^{\prime} m}^{\mu}(g)$

Left-action of local $\overline{\mathbf{g}}$ on irep-ket $\left|\begin{array}{l}\mu \\ m\end{array}\right\rangle$ is quite different

$$
\overline{\mathbf{g}}\left|\begin{array}{l}
\mu \\
m n
\end{array}\right\rangle=\overline{\mathbf{g}} \mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle \sqrt{\frac{{ }^{\circ} G}{\ell^{(\mu)}}}
$$

$$
=\mathbf{P}_{m n}^{\mu} \overline{\mathbf{g}}|\mathbf{1}\rangle \sqrt{\frac{{ }_{G}{ }^{(\mu)}}{\ell^{(\mu)}}} \begin{gathered}
\begin{array}{c}
\text { Mock-Mach } \\
\text { commutation }
\end{array} \\
\text { and }
\end{gathered}
$$

$$
=\mathbf{P}_{\rho^{\mu}} \mathrm{g}^{\mu} \mathbf{g}^{-1}|\mathbf{1}\rangle \sqrt{\frac{{ }^{\circ} \mathrm{G}}{\ell^{(\mu)}}} \longleftarrow \text { inverse }
$$

$$
=\sum_{n^{\prime}=1}^{\ell^{\mu}} D_{n n^{\prime}}^{\mu}\left(g^{-1}\right) \mathbf{P}_{m n^{\prime}}^{\mu}|\mathbf{1}\rangle \sqrt{\frac{{ }^{\circ} G}{\ell^{(\mu)}}}
$$

$$
=\sum_{n^{\prime}=1}^{\ell^{\mu}} D_{n n^{\prime}}^{\mu}\left(g^{-1}\right)\left|\begin{array}{l}
\mu n^{\prime}
\end{array}\right\rangle
$$

Local $\overline{\mathbf{g}}$-matrix component

$$
\left\langle\begin{array}{l}
\mu \\
m n^{\prime}
\end{array}\right| \overline{\mathbf{g}}\left|\begin{array}{l}
\mu \\
m n
\end{array}\right\rangle=D_{n n^{\prime}}^{\mu}\left(g^{-1}\right)=D_{n^{\prime} n}^{\mu^{*}}(g)
$$

Hamiltonian and D ${ }_{3}$ global- \mathbf{g} and local- $\overline{\mathbf{g}}$ group matrices in $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis
For unitary $D^{(\mu)}$: (p.51)
$\left|\mathbf{P}^{(\mu)}\right\rangle$-basis are projected by $\mathbf{P}_{m n}^{\mu}=\frac{\ell^{(\mu)}{ }^{\circ} G}{{ }^{\circ} G} D_{\mathrm{g}}^{\mu^{*}}{ }_{m n}(g) \mathrm{g}=\mathbf{P}_{n m}^{\mu \dagger}$ acting on original Ret $|\mathbf{1}\rangle$ to give:
$\left|\begin{array}{l}\mu \\ m n\end{array}\right\rangle=\mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle \frac{1}{\text { norm }}=\frac{\ell^{(\mu)}}{{ }^{\circ} G \cdot \text { norm }} \sum_{\mathrm{g}}^{{ }^{\circ} G} D_{m n}^{\mu^{*}}(\mathrm{~g})|\mathrm{g}\rangle \quad$ subject to normalization:
$\left\langle\left.\begin{array}{l}\mu^{\prime} \\ m^{\prime} n^{\prime}\end{array} \right\rvert\, \begin{array}{c}\mu \\ \mu\end{array}\right\rangle=\frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} m^{\prime}}^{\mu^{\prime}} \mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle}{\text { norm }^{2}}=\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \frac{\langle\mathbf{1}| \mathbf{P}_{n^{\prime} n}^{\mu}|\mathbf{1}\rangle}{\text { norm }^{2}}=\delta^{\mu^{\prime} \mu} \delta_{m^{\prime} m} \delta_{n^{\prime} n} \quad$ where: norm $=\sqrt{\langle\mathbf{1}| \mathbf{P}_{n n}^{\mu}|\mathbf{1}\rangle}=\sqrt{\frac{\ell^{(\mu)}}{{ }^{\circ} G}}$

Left-action of global \mathbf{g} on irep-ket $\left|\begin{array}{|c}\mu \\ m n\end{array}\right\rangle$

$$
\mathbf{g}\left|\begin{array}{c}
\mu \\
m n
\end{array}\right\rangle=\sum_{m^{\prime}}^{\ell^{\mu}} D_{m^{\prime} m}^{\mu}(g)\left|\begin{array}{l}
\mu \\
m^{\prime} n
\end{array}\right\rangle
$$

Matrix is same as given on p. 27

Left-action of local $\overline{\mathbf{g}}$ on irep-ket $\left.\left.\right|_{m n} ^{\mu}\right\rangle$ is quite different

$$
\overline{\mathbf{g}}\left|\begin{array}{l}
\mu \\
m n
\end{array}\right\rangle=\overline{\mathbf{g}} \mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle \sqrt{\frac{{ }_{G}}{\ell^{(\mu)}}}
$$

$$
\begin{aligned}
& =\mathbf{P}_{m n}^{\mu} \mathbf{g}^{-1}|\mathbf{1}\rangle \sqrt{\frac{{ }^{\circ}}{\ell^{(\mu)}}} \stackrel{\text { inverse }}{ } \\
& =\sum_{\ell^{\prime}}^{\ell^{\mu}} D_{n n^{\prime}}^{\mu}\left(g^{-1}\right) \mathbf{P}_{m n^{\prime}}^{\mu}|\mathbf{1}\rangle \sqrt{\frac{{ }^{\circ}{ }^{G}}{\ell^{(\mu)}}}
\end{aligned}
$$

Local $\overline{\mathbf{g}}$-matrix component

$$
\left\langle\begin{array}{c}
\mu \\
m n^{\prime}
\end{array}\right| \overline{\mathbf{g}}\left|\begin{array}{c}
\mu \\
m n
\end{array}\right\rangle=D_{n n^{\prime}}^{\mu}\left(g^{-1}\right)=D_{n^{\prime} n}^{\mu^{*}}(g) \underset{\text { unitary }}{\stackrel{l f}{\text { if }}}
$$

$$
=\mathbf{P}_{m n}^{\mu} \overline{\mathbf{g}}|\mathbf{1}\rangle \sqrt{\frac{{ }_{G}{ }^{(\mu)}}{\ell^{(\mu)}}} \begin{gathered}
\begin{array}{c}
\text { Mock-Mach } \\
\text { commutation }
\end{array} \\
\text { and }
\end{gathered}
$$

$$
=\sum_{n^{\prime}=1}^{\ell^{\mu}} D_{n n^{\prime}}^{\mu}\left(g^{-1}\right)\left|{ }_{m n^{\prime}}^{\mu}\right\rangle
$$

Global g-matrix component

$$
\left\langle\begin{array}{l|l|l}
\mu & \mathrm{g} & \mu \\
m^{\prime} n & \mu & m n
\end{array}\right\rangle=D_{m^{\prime} m}^{\mu}(g)
$$

$$
\begin{aligned}
& \mathbf{P}_{m n}^{\mu} \mathbf{g}^{-1}=\sum_{m^{\prime}=1}^{\ell^{\mu}} \sum_{n^{\prime}=1}^{\ell^{\mu}} \mathbf{P}_{m n}^{\mu} \mathbf{P}_{m^{\prime} n^{\prime}}^{\mu} D_{m^{\prime} n^{\prime}}^{\mu}\left(g^{-1}\right) \\
&=\sum_{n^{\prime}=1}^{\ell^{\mu}} \mathbf{P}_{m n^{\prime}}^{\mu} \boldsymbol{P}_{n}^{\prime} \\
& D_{n n^{\prime}}^{\mu}\left(g^{-1}\right)
\end{aligned}
$$

$\left\langle\begin{array}{l}\mu \\ m^{\prime} n\end{array}\right| \mathbf{g}\left|\begin{array}{l}\mu \\ \mu n\end{array}\right\rangle=D_{m^{\prime} m}^{\mu}(g)$

Review Stage 1: Group Center:Class-sums κ_{g}, characters $\chi^{\mu}(\mathrm{g})$, and All-Commuting
Projectors \mathbb{P}^{μ}
Review Stage 2: Group operators \mathbf{g} and Mutually-Commuting projectors $\mathbb{P}^{\mu} k k$
Review Stage 3: Weyl \mathbf{g}-expansion in irreps $D_{j k}^{\mu}(g)$ and Non-Commuting projectors $\mathbf{P}^{\mu_{j k}}$
Simple matrix algebra $\mathbf{P}^{\mu}{ }_{a b} \mathbf{P}^{v}{ }_{c d}=\delta^{\mu \nu} \delta_{b c} \mathbf{P}^{\mu}{ }_{a d}$
$\mathbf{P}^{\mu}{ }_{j k}$ transforms right-and-left
$\mathbf{P}^{\mu}{ }_{j k}$-expansion in \mathbf{g}-operators
Example of D_{3} transformation by matrix $D^{E_{j k}}\left(\mathbf{r}^{1}\right)$
Details of Mock-Mach relativity-duality for D_{3} groups and representations
Lab-fixed(Extrinsic-Global) vs. Body-fixed (Intrinsic-Local)
Compare Global vs Local $|\mathbf{g}\rangle$-basis and Global vs Local $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis
Hamiltonian and D_{3} group matrices in global and local $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis
\rightarrow
Global vs. Local block rearrangement
Hamiltonion eigen-matrix calculation Hamiltonian local-symmetry eigensolution Molecular vibrational mode eigensolution

Local symmetry limit
Global symmetry limit (free or "genuine" modes)

$R^{P}(\mathrm{~g})=T R^{G}(\mathrm{~g}) T^{\dagger}=$				
$\left\|\mathbf{P}_{x x}^{A_{1}}\right\rangle$	$\left\|\mathbf{P}_{y y}^{A_{2}}\right\rangle$	$\left\|\mathbf{P}_{x x}^{E_{1}}\right\rangle \quad\left\|\mathbf{P}_{y x}^{E_{1}}\right\rangle$	$\left\|\mathbf{P}_{x y}^{E_{1}}\right\rangle \quad\left\|\mathbf{P}_{y y}^{E_{1}}\right\rangle$	
$\left(D^{A_{1}}(\mathbf{g})\right.$.)	$\left\|\mathbf{P}^{(\mu)}\right\rangle$-base ordering to concentrate
.	$D^{A_{2}}(\mathbf{g})$.		
.		$\begin{array}{cc}D_{x x}^{E_{1}}(\mathbf{g}) & D_{x y}^{E_{1}} \\ D_{y x}^{E_{1}}(\mathbf{g}) & D_{y y}^{E_{1}}\end{array}$	\cdots	
.	-		$\begin{array}{ccc}D_{x x}^{E_{1}}(\mathbf{g}) & D_{x y}^{E_{1}} \\ D_{y x}^{E_{1}}(\mathbf{g}) & D_{y y}^{E_{1}}\end{array}$	D-matrices

Global g-matrix component

$$
\left\langle\begin{array}{c|c}
\mu \\
m^{\prime} n
\end{array}\right| \mathbf{g}\left|\begin{array}{l}
\mu \\
m n
\end{array}\right\rangle=D_{m^{\prime} m}^{\mu}(g)
$$

Local $\overline{\mathbf{g}}$-matrix component

$$
\left\langle\begin{array}{l}
\mu \\
m n^{\prime}
\end{array}\right| \overline{\mathbf{g}}\left|\begin{array}{l}
\mu \\
m n
\end{array}\right\rangle=D_{n n^{\prime}}^{\mu}\left(g^{-1}\right)=D_{n^{\prime} n}^{\mu^{*}}(g) \begin{gathered}
\text { If } D_{\text {in itary }}
\end{gathered}
$$

D_{3} global-g group matrices in $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis

$$
\begin{aligned}
& R^{P}(\mathbf{g})=T R^{G}(\mathbf{g}) T^{\dagger}= \\
& \left.\left\lvert\, \begin{array}{c|c|cc|cc|}
\left|\mathbf{P}_{x x}^{A_{1}}\right\rangle & \left|\mathbf{P}_{y y}^{A_{2}}\right\rangle & \left|\mathbf{P}_{x x}^{E_{1}}\right\rangle & \left|\mathbf{P}_{y x}^{E_{1}}\right\rangle & \left|\mathbf{P}_{x y}^{E_{1}}\right\rangle & \left|\mathbf{P}_{y y}^{E_{1}}\right\rangle \\
\left(\begin{array}{c|c|cc|cc}
D^{A_{1}}(\mathbf{g}) & \cdot & \cdot & \cdot & \cdot & \cdot \\
\hline \cdot & D^{A_{2}}(\mathbf{g}) & \cdot & \cdot & \cdot & \cdot \\
\hline \cdot & \cdot & D_{x x}^{E_{1}}(\mathbf{g}) & D_{x y}^{E_{1}} & \cdot & \cdot \\
\cdot & \cdot & D_{y x}^{E_{1}}(\mathbf{g}) & D_{y y}^{E_{1}}
\end{array}\right. & \cdot & \cdot \\
\hline \cdot & \cdot & \cdot & \cdot & D_{x x}^{E_{1}}(\mathbf{g}) & D_{x y}^{E_{1}} \\
\cdot & \cdot & \cdot & \cdot & D_{y x}^{E_{1}}(\mathbf{g}) & D_{y y}^{E_{1}}
\end{array}\right.\right)
\end{aligned}
$$

D_{3} local- $\overline{\mathbf{g}}$ group matrices in $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis $R^{P}(\overline{\mathrm{~g}})=T R^{G}(\overline{\mathrm{~g}}) T^{\dagger}=$
$\left(\begin{array}{c|c|cc|cc}D^{A_{1}{ }^{*}}(\mathbf{g}) & \cdot & \cdot & \cdot & \cdot & \cdot \\ \hline \cdot & D^{A_{2}{ }^{*}}(\mathbf{g}) & \cdot & \cdot & \cdot & \cdot \\ \hline \cdot & \cdot & D_{x x}^{E_{1}{ }^{*}}(\mathbf{g}) & \cdot & D_{x y}^{E_{1}{ }^{*}}(\mathbf{g}) & \cdot \\ \cdot & \cdot & \cdot & D_{x x}^{E_{1}{ }^{*}}(\mathbf{g}) & \cdot & D_{x y}^{E_{1}{ }^{*}}(\mathbf{g}) \\ \hline \cdot & \cdot & D_{y x}^{E_{1}{ }^{*}}(\mathbf{g}) & \cdot & D_{y y}^{E^{*}}(\mathbf{g}) & \cdot \\ \cdot & \cdot & \cdot & D_{y x}^{E_{1}{ }^{*}}(\mathbf{g}) & \cdot & D_{y y}^{E_{1}{ }^{*}}(\mathbf{g})\end{array}\right)$
here
Local $\overline{\mathbf{g}}$-matrix
is not concentrated

Global g-matrix component
Local $\overline{\mathbf{g}}$-matrix component

$$
\left\langle\begin{array}{c|c}
\mu \\
m^{\prime} n
\end{array}\right| \mathbf{g}\left|\begin{array}{l}
\mu \\
m n
\end{array}\right\rangle=D_{m^{\prime} m}^{\mu}(g)
$$

$$
\left\langle\begin{array}{l}
\mu \\
m n^{\prime}
\end{array}\right| \overline{\mathbf{g}}\left|\begin{array}{l}
\mu \\
m n
\end{array}\right\rangle=D_{n n^{\prime}}^{\mu}\left(g^{-1}\right)=D_{n^{\prime} n}^{\mu^{*}}(g)
$$

D_{3} global-g group matrices in $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis

$$
\left|\begin{array}{|c}
\left.\mathbf{P}_{x x}^{A_{1}}\right\rangle
\end{array}\right| \begin{array}{|c}
\left.\mathbf{P}_{y y}^{A_{2}}\right\rangle
\end{array}\left|\mathbf{P}_{x x}^{E_{1}}\right\rangle \quad\left|\begin{array}{|}
\mathbf{P}_{x y}^{E_{1}}
\end{array}\right\rangle \quad\left|\begin{array}{|}
\mathbf{P}_{y x}^{E_{1}}
\end{array}\right\rangle \quad\left|\mathbf{P}_{y y}^{E_{1}}\right\rangle
$$

$$
\left(\begin{array}{c|c|cc|cc}
D^{A_{1}}(\mathbf{g}) & \cdot & \cdot & \cdot & \cdot & \cdot \\
\hline \cdot & D^{A_{2}}(\mathbf{g}) & \cdot & \cdot & \cdot & \cdot \\
\hline \cdot & \cdot & D_{x x}^{E_{1}}(\mathbf{g}) & \cdot & D_{x y}^{E_{1}}(\mathbf{g}) & \cdot \\
\cdot & \cdot & \cdot & D_{x x}^{E_{1}} & \cdot & D_{x y}^{E_{1}} \\
\hline \cdot & \cdot & D_{y x}^{E_{1}}(\mathbf{g}) & \cdot & D_{y y}^{E_{1}}(\mathbf{g}) & \cdot \\
\cdot & \cdot & \cdot & D_{y x}^{E_{1}} & \cdot & D_{y y}^{E_{1}}
\end{array}\right)
$$

Global g-matrix component

$$
\left\langle\begin{array}{l|l}
\mu \\
m^{\prime} n
\end{array}\right| \mathbf{g}\left|\begin{array}{l}
\mu \\
m n
\end{array}\right\rangle=D_{m^{\prime} m}^{\mu}(g)
$$

here
global g-matrix
\longleftarrow is not concentrated

Local $\overline{\mathbf{g}}$-matrix component

$$
\left\langle\begin{array}{l}
\mu \\
m n^{\prime}
\end{array}\right| \overline{\mathbf{g}}\left|\begin{array}{l}
\mu \\
m n
\end{array}\right\rangle=D_{n n^{\prime}}^{\mu}\left(g^{-1}\right)=D_{n^{\prime} n}^{\mu^{*}}(g)
$$

$$
\begin{aligned}
& R^{P}(\mathrm{~g})=T R^{G}(\mathrm{~g}) T^{\dagger}= \\
& \left|\begin{array}{|l|l|l|}
\left.\mathbf{P}_{x x}^{A_{1}}\right\rangle
\end{array}\right| \begin{array}{l}
\left.\mathbf{P}_{y y}^{A_{2}}\right\rangle
\end{array}\left|\mathbf{P}_{x x}^{E_{1}}\right\rangle \quad\left|\mathbf{P}_{y x}^{E_{1}}\right\rangle\left|\mathbf{P}_{x y}^{E_{1}}\right\rangle \quad\left|\mathbf{P}_{y y}^{E_{1}}\right\rangle \\
& \left(\begin{array}{c|c|cc|cc}
D^{A_{1}}(\mathbf{g}) & \cdot & \cdot & \cdot & \cdot & \cdot \\
\hline \cdot & D^{A_{2}}(\mathbf{g}) & \cdot & \cdot & \cdot & \cdot \\
\hline \cdot & \cdot & D_{x x}^{E_{1}}(\mathbf{g}) & D_{x y}^{E_{1}} & \cdot & \cdot \\
\cdot & \cdot & D_{y x}^{E_{1}}(\mathbf{g}) & D_{y y}^{E_{1}} & \cdot & \cdot \\
\hline \cdot & \cdot & \cdot & \cdot & D_{x x}^{E_{1}}(\mathbf{g}) & D_{x y}^{E_{1}} \\
\cdot & \cdot & \cdot & \cdot & D_{y x}^{E_{1}}(\mathbf{g}) & D_{y y}^{E_{1}}
\end{array}\right) \\
& \bar{R}^{P}(\mathbf{g})=\bar{T} R^{G}(\mathbf{g}) \bar{T}^{\dagger}=
\end{aligned}
$$

D_{3} global-g group matrices in $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis

Global g-matrix component

$$
\left\langle\begin{array}{c|c}
\mu \\
m^{\prime} n
\end{array}\right| \mathbf{g}\left|\begin{array}{l}
\mu \\
m n
\end{array}\right\rangle=D_{m^{\prime} m}^{\mu}(g)
$$

D_{3} local- $\overline{\mathbf{g}}$ group matrices in $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis $R^{P}(\overline{\mathrm{~g}})=T R^{G}(\overline{\mathrm{~g}}) T^{\dagger}=$

$\left(\begin{array}{c|c|cc|cc}D^{A_{1}{ }^{*}}(\mathbf{g}) & \cdot & \cdot & \cdot & \cdot & \cdot \\ \hline \cdot & D^{A_{2}{ }^{*}}(\mathbf{g}) & \cdot & \cdot & \cdot & \cdot \\ \hline \cdot & \cdot & D_{x x}^{E_{1}{ }^{*}}(\mathbf{g}) & \cdot & D_{x y}^{E_{1}{ }^{*}}(\mathbf{g}) & \cdot \\ \cdot & \cdot & \cdot & D_{x x}^{E_{1}{ }^{*}}(\mathbf{g}) & \cdot & D_{x y}^{E_{1}{ }^{*}}(\mathbf{g}) \\ \hline \cdot & \cdot & D_{y x}^{E_{1}{ }^{*}}(\mathbf{g}) & \cdot & D_{y y}^{E_{1}{ }^{*}}(\mathbf{g}) & \cdot \\ \cdot & \cdot & \cdot & D_{y x}^{E_{1}{ }^{*}}(\mathbf{g}) & \cdot & D_{y y}^{E_{1}{ }^{*}}(\mathbf{g})\end{array}\right)$

$$
\bar{R}^{P}(\overline{\mathrm{~g}})=\bar{T} R^{G}(\overline{\mathrm{~g}}) \bar{T}^{\dagger}=
$$

$$
\left|\mathbf{P}_{x x}^{A_{1}}\right\rangle \quad\left|\mathbf{P}_{y y}^{A_{2}}\right\rangle
$$

$\left(\begin{array}{c|c|cc|cc}D^{A_{1}{ }^{*}}(\mathbf{g}) & \cdot & \cdot & \cdot & \cdot & \cdot \\ \hline \cdot & D^{A_{2}{ }^{*}}(\mathbf{g}) & \cdot & \cdot & \cdot & \cdot \\ \hline \cdot & \cdot & D_{x x}^{E_{1}{ }^{*}}(\mathbf{g}) & D_{x y}^{E_{1}{ }^{*}}(\mathbf{g}) & \cdot & \cdot \\ \cdot & \cdot & D_{y x}^{E_{1}{ }^{*}}(\mathbf{g}) & D_{y y}^{E_{1}{ }^{*}}(\mathbf{g}) & \cdot & \cdot \\ \hline \cdot & \cdot & \cdot & \cdot & D_{x x}^{E_{1}{ }^{*}}(\mathbf{g}) & D_{x y}^{E_{1}{ }^{*}}(\mathbf{g}) \\ & & & & D_{y x}^{E_{1}{ }^{*}}(\mathbf{g}) & D_{y y}^{E_{1}{ }^{*}}(\mathbf{g})\end{array}\right)$

Local $\overline{\mathbf{g}}$-matrix component ${ }^{\text {bx }}$

$$
\left\langle\begin{array}{l}
\mu \\
m n^{\prime}
\end{array}\right| \overline{\mathbf{g}}\left|\begin{array}{l}
\mu \\
m n
\end{array}\right\rangle=D_{n n^{\prime}}^{\mu}\left(g^{-1}\right)=D_{n^{\prime} n}^{\mu^{*}}(g)
$$

D is

Review Stage 1: Group Center:Class-sums κ_{g}, characters $\chi^{\mu}(\mathrm{g})$, and All-Commuting
Projectors \mathbb{P}^{μ}
Review Stage 2: Group operators g and Mutually-Commuting projectors $\mathbb{P}^{\mu_{k k}}$
Review Stage 3: Weyl g-expansion in irreps $D_{j k}^{\mu}(g)$ and Non-Commuting projectors $\mathbf{P}^{\mu}{ }_{j k}$
Simple matrix algebra $\mathbf{P}^{\mu}{ }_{a b} \mathbf{P}^{\nu}{ }_{c d}=\delta^{\mu \nu} \delta_{b c} \mathbf{P}^{\mu}{ }_{a d}$
$\mathbf{P}_{j k}^{\mu_{j k}}$ transforms right-and-left
$\mathbf{P}^{\mu_{j k}}$-expansion in \mathbf{g}-operators
Example of D_{3} transformation by matrix $D^{E_{j k}}\left(\mathbf{r}^{1}\right)$
Details of Mock-Mach relativity-duality for D_{3} groups and representations
Lab-fixed(Extrinsic-Global) vs. Body-fixed (Intrinsic-Local)
Compare Global vs Local $|\mathbf{g}\rangle$-basis and Global vs Local $\left|\mathbf{P}^{(1)}\right\rangle$-basis
Hamiltonian and D_{3} group matrices in global and local $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis
Global vs. Local block rearrangement
Hamiltonion eigen-matrix calculation
Hamiltonian local-symmetry eigensolution
Molecular vibrational mode eigensolution
Local symmetry limit
Global symmetry limit (free or "genuine" modes)
D_{3} Hamiltonian local- \mathbf{H} matrices in $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis

$$
\left.\left.\left|\mathbf{P}_{x x}^{4}\right\rangle\left|\mathbf{P}_{y y}^{b}\right\rangle\left|\mathbf{P}_{x x}^{E_{x}}\right\rangle\left|\mathbf{P}_{x y}^{E_{y}}\right\rangle\left|\mathbf{P}_{x y}^{E}\right\rangle\right\rangle \mathbf{P}_{y y}^{E_{y}}\right\rangle
$$

$$
H_{a b}^{\alpha}=\left\langle\mathbf{P}_{m a}^{\mu}\right| \mathbf{H}\left|\mathbf{P}_{n b}^{\mu}\right\rangle
$$

$$
\left|\mathbf{P}_{x x}^{A_{1}}\right\rangle\left|\mathbf{P}_{y y}^{b_{y}}\right\rangle\left|\mathbf{P}_{x x}^{E_{x}}\right\rangle\left|\mathbf{P}_{x y}^{E_{i}}\right\rangle\left|\mathbf{P}_{y x}^{E_{i}}\right\rangle\left|\mathbf{P}_{y y}^{E_{i}}\right\rangle
$$

$H_{a b}^{\alpha}=\left\langle\mathbf{P}_{n a}^{\mu}\right| \mathbf{H}\left|\mathbf{P}_{n b}^{\mu}\right\rangle$

Let: $\left|\begin{array}{l}\mu \\ m n\end{array}\right\rangle \equiv\left|\mathbf{P}_{m n}^{\mu}\right\rangle=\mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle \frac{1}{\text { norm }}$
$\left|\begin{array}{l}\mu \\ m n\end{array}\right\rangle=\mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle \frac{1}{\text { norm }}=\frac{\ell^{(\mu)}}{{ }^{\circ} G \cdot \text { norm }} \sum_{\mathbf{g}}^{\circ} D_{m n}^{\mu^{*}}(g)|\mathbf{g}\rangle$
subject to normalization (from p. 86-96):
norm $=\sqrt{\langle\mathbf{1}| \mathbf{P}_{n n}^{\mu}|\mathbf{1}\rangle}=\sqrt{\frac{\ell^{(\mu)}}{{ }^{\circ} G}}$ (which will cancel out)

$$
\left|\mathbf{P}_{x x}^{A_{1}}\right\rangle\left|\mathbf{P}_{y y}^{b_{y}}\right\rangle\left|\mathbf{P}_{x x}^{E_{x}}\right\rangle\left|\mathbf{P}_{x y}^{E_{i}}\right\rangle\left|\mathbf{P}_{y x}^{E_{i}}\right\rangle\left|\mathbf{P}_{y y}^{E_{i}}\right\rangle
$$

$\underset{|\mathbf{g}\rangle \text {-basis: }}{\mathbf{H} \text { matrix in }}(\mathbf{H})_{G}=\sum_{g=1}^{o_{G}} r_{g} \overline{\mathbf{g}}=\left(\begin{array}{llllll}r_{0} & r_{2} & r_{1} & i_{1} & i_{2} & i_{3} \\ r_{1} & r_{0} & r_{1} & i_{3} & i_{1} & i_{2} \\ r_{2} & r_{1} & r_{0} & i_{2} & i_{3} & i_{1} \\ i_{i} & i_{3} & i_{2} & r_{0} & r_{1} & r_{2} \\ i_{2} & i_{1} & i_{3} & r_{2} & r_{0} & r_{1} \\ i_{3} & i_{2} & i_{1} & r_{1} & r_{2} & r_{0}\end{array}\right)$

$$
\left.\left.\begin{array}{rl}
H_{a b}^{\alpha}= & \left\langle\mathbf{P}_{m a}^{\mu}\right| \mathbf{H}\left|\mathbf{P}_{n b}^{\mu}\right\rangle=\langle\mathbf{1}| \mathbf{P}_{\text {am }}^{\mu} \mathbf{H} \mathbf{P}_{n b}^{\mu}|\mathbf{1}\rangle \\
(\text { norm })^{2}
\end{array}\right] \begin{array}{c}
\left(\begin{array}{c}
\text { Projector conjugation } \\
(|m\rangle\langle n|)^{\dagger}
\end{array}=|n\rangle\langle m|\right. \\
\left(\mathbf{P}_{m n}^{\mu}\right)^{\dagger}=\mathbf{P}_{n m}^{\mu}
\end{array}\right]
$$

$\left|\begin{array}{l}\mu \\ m n\end{array}\right\rangle=\mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle \frac{1}{\text { norm }}=\frac{\ell^{(\mu)}}{{ }^{\circ} G \cdot \text { norm }} \sum_{\mathrm{g}}^{{ }^{\circ} G} D_{m n}^{\mu^{*}}(g)|\mathrm{g}\rangle$
subject to normalization (from p. 86-96):
norm $=\sqrt{\langle\mathbf{1}| \mathbf{P}_{n n}^{\mu}|\mathbf{1}\rangle}=\sqrt{\frac{\ell^{(\mu)}}{{ }^{(\mu)}}}$ (which will cancel out)

$$
\left|\mathbf{P}_{x x}^{A_{1}}\right\rangle\left|\mathbf{P}_{y y}^{b_{y}}\right\rangle\left|\mathbf{P}_{x x}^{E_{x}}\right\rangle\left|\mathbf{P}_{x y}^{E_{i}}\right\rangle\left|\mathbf{P}_{y x}^{E_{i}}\right\rangle\left|\mathbf{P}_{y y}^{E_{i}}\right\rangle
$$

$$
\begin{array}{r}
H_{a b}^{\alpha}=\left\langle\mathbf{P}_{m a}^{\mu}\right| \mathbf{H}\left|\mathbf{P}_{n b}^{\mu}\right\rangle=\frac{\langle\mathbf{1}| \mathbf{P}_{a m}^{\mu} \mathbf{H P}_{n b}^{\mu}|\mathbf{1}\rangle=\langle\mathbf{1}| \mathbf{H} \mathbf{P}_{a m}^{\mu} \mathbf{P}_{n b}^{\mu}|\mathbf{1}\rangle}{\frac{1}{(n o r m)^{2}}} \\
\text { Mock-Mach } \\
\text { commutation } \\
\mathbf{r} \overline{\mathbf{r}}=\overline{\mathbf{r}} \mathbf{r} \\
(\text { p. } 61)
\end{array}
$$

subject to normalization (from $p .86-96$):
$\left|\begin{array}{l}\mu \\ m n\end{array}\right\rangle=\mathbf{P}_{m n}^{\mu}|\mathbf{1}\rangle \frac{1}{\text { norm }}=\frac{\ell^{(\mu)}}{{ }^{\circ} G \cdot{ }^{\circ}{ }^{\circ} G{ }^{\circ} G} \sum_{\mathrm{g}} D_{m n}^{\mu^{*}}(g)|\mathrm{g}\rangle$
norm $=\sqrt{\langle\mathbf{1}| \mathbf{P}_{n n}^{\mu}|\mathbf{1}\rangle}=\sqrt{\frac{\ell^{(\mu)}}{{ }^{(\mu} G}}$ (wo which will cangetabout it! cancel out)

D_{3} Hamiltonian local- \mathbf{H} matrices in $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis

$H_{a b}^{\alpha}=\left\langle\mathbf{P}_{m a}^{\mu}\right| \mathbf{H}\left|\mathbf{P}_{n b}^{\mu}\right\rangle=\frac{\langle\mathbf{1}| \mathbf{P}_{a m}^{\mu} \mathbf{H} \mathbf{P}_{n b}^{\mu}|\mathbf{1}\rangle=\langle\mathbf{1}| \mathbf{H} \mathbf{P}_{a m}^{\mu} \frac{\mathbf{P}_{n b}^{\mu}}{(n o r m)^{2}}|\mathbf{1}\rangle}{(n o r m)^{2}}=\delta_{m n}\langle\mathbf{1}| \mathbf{H} \mathbf{P}_{\frac{a b}{\mu}|\mathbf{1}\rangle}^{(n o r m)^{2}}$
Use $\mathbf{P}_{m n}^{\mu}$-orthonormality

$$
\mathbf{P}_{m^{\prime} n^{\prime}}^{\mu^{\prime}} \mathbf{P}_{m n}^{\mu}=\delta^{\mu^{\prime} \mu} \delta_{n^{\prime} m} \mathbf{P}_{m^{\prime} n}^{\mu}
$$

$$
(p .21)
$$

$$
\left.\left|\begin{array}{l}
\mu \\
m n
\end{array}\right\rangle=\mathbf{P}_{m n}^{\mu}\left|\mathbf{1} \frac{1}{n o r m}=\frac{\ell^{(\mu)}}{{ }^{(\mu)} \cdot n o r m} \sum_{\mathrm{g}}^{\circ} D_{m n}^{\mu^{*}}(\mathrm{~g})\right| \mathrm{g}\right\rangle
$$

subject to normalization (from p. 86-96):
norm $=\sqrt{|1| \mathbf{P}_{n n}^{\mu}|\mathbf{1}\rangle}=\sqrt{\frac{\ell^{(\mu)}}{{ }^{G}}}$ (which will cancel out)

$$
\left|\mathbf{P}_{x x}^{A_{1}}\right\rangle\left|\mathbf{P}_{y y}^{b_{y}}\right\rangle\left|\mathbf{P}_{x x}^{E_{x}}\right\rangle\left|\mathbf{P}_{x y}^{E_{i}}\right\rangle\left|\mathbf{P}_{y x}^{E_{i}}\right\rangle\left|\mathbf{P}_{y y}^{E_{i}}\right\rangle
$$

$$
\left.\left|\begin{array}{l}
\mu \\
m n
\end{array}\right\rangle=\mathbf{P}_{m n}^{\mu}\left|\mathbf{1} \frac{1}{n o r m}=\frac{\ell^{(\mu)}}{{ }^{(\mu} G \cdot n o r m} \sum_{\mathrm{g}}^{\circ} D_{m n}^{u^{*}}(\mathrm{~g})\right| \mathrm{g}\right\rangle
$$

subject to normalization (from p. 86-96):

$$
\left|\mathbf{P}_{x x}^{A_{1}}\right\rangle\left|\mathbf{P}_{y y}^{b_{y}}\right\rangle\left|\mathbf{P}_{x x}^{E_{x}}\right\rangle\left|\mathbf{P}_{x y}^{E_{i}}\right\rangle\left|\mathbf{P}_{y x}^{E_{i}}\right\rangle\left|\mathbf{P}_{y y}^{E_{i}}\right\rangle
$$

$H^{A_{1}}=r_{0} D^{A_{1}^{*}}(1)+r_{1} D^{A_{1}^{*}}\left(r^{1}\right)+r_{1}^{*} D^{A_{1}^{*}}\left(r^{2}\right)+i_{1} D^{A_{1}^{*}}\left(i_{1}\right)+i_{2} D^{A_{1}^{*}}\left(i_{2}\right)+i_{3} D^{A_{1}{ }^{*}}\left(i_{3}\right)=r_{0}+r_{1}+r_{1}^{*}+i_{1}+i_{2}+i_{3}$
$\underset{\mathbf{g}=}{\text { Coefficients }} D_{m n}^{\mu}(g)_{\mathbf{r}^{1}}$ are irreducible representations (ireps) of $\mathbf{\mathbf { i } _ { \mathbf { 1 } }} \mathbf{i}_{\mathbf{\mathbf { i } _ { 1 }}}$

$$
\left.\left|\mathbf{P}_{x x}^{4}\right\rangle\left|\mathbf{P}_{y y}^{b_{y}}\right\rangle\left|\mathbf{P}_{x x}^{E_{x}}\right\rangle\left|\mathbf{P}_{x y}^{E_{i}}\right\rangle\left|\mathbf{P}_{x y}^{E_{i}}\right\rangle \mathbf{P}_{y y}^{E_{i}}\right\rangle
$$

$$
\begin{aligned}
& H^{A_{1}}=r_{0} D^{A_{1}^{*}}(1)+r_{1} D^{A_{1}^{*}}\left(r^{1}\right)+r_{1}^{*} D^{A_{1}{ }^{*}}\left(r^{2}\right)+i_{1} D^{A_{1}}\left(i_{1}\right)+i_{2} D^{A_{1}{ }^{*}}\left(i_{2}\right)+i_{3} D^{A_{1}^{*}}\left(i_{3}\right)=r_{0}+r_{1}+r_{1}^{*}+i_{1}+i_{2}+i_{3} \\
& \boldsymbol{H}^{A_{2}}=r_{0} D^{A_{2}^{*}}(1)+r_{1} D^{A_{2}^{*}}\left(r^{1}\right)+r_{1}^{*} D^{A_{2}^{*}}\left(r^{2}\right)+i_{1} D^{A_{2}^{*}}\left(i_{1}\right)+i_{2} D^{A_{2}^{*}}\left(i_{2}\right)+i_{3} D^{A_{2}^{*}}\left(i_{3}\right)=r_{0}+r_{1}+r_{1}^{*}-i_{1}-i_{2}-i_{3}
\end{aligned}
$$

$$
\left.\left.\left|\mathbf{P}_{x x}^{4}\right\rangle\left|\mathbf{P}_{y y}^{b}\right\rangle\left|\mathbf{P}_{x x}^{E_{x}}\right\rangle\left|\mathbf{P}_{x y}^{E_{y}}\right\rangle\left|\mathbf{P}_{x y}^{E}\right\rangle\right\rangle \mathbf{P}_{y y}^{E_{y}}\right\rangle
$$

$$
\begin{aligned}
& H^{A_{1}}=r_{0} D^{A_{1}{ }^{*}}(1)+r_{1} D^{A_{1}{ }^{*}}\left(r^{1}\right)+r_{1}^{*} D^{A_{1}{ }^{*}}\left(r^{2}\right)+i_{1} D^{A_{1}{ }^{*}}\left(i_{1}\right)+i_{2} D^{A_{1}{ }^{*}}\left(i_{2}\right)+i_{3} D^{A_{1}{ }^{*}}\left(i_{3}\right)=r_{0}+r_{1}+r_{1}^{*}+i_{1}+i_{2}+i_{3} \\
& H^{A_{2}}=r_{0} D^{A_{2}{ }^{*}}(1)+r_{1} D^{A_{2}{ }^{*}}\left(r^{1}\right)+r_{1}^{*} D^{A_{2}{ }^{*}}\left(r^{2}\right)+i_{1} D^{A_{2}{ }^{*}}\left(i_{1}\right)+i_{2} D^{A_{2}{ }^{*}}\left(i_{2}\right)+i_{3} D^{A_{2}{ }^{*}}\left(i_{3}\right)=r_{0}+r_{1}+r_{1}^{*}-i_{1}-i_{2}-i_{3} \\
& H_{x x}^{E_{1}}=r_{0} D_{x x}^{E^{*}}(1)+r_{1} D_{x x}^{E^{*}}\left(r^{1}\right)+r_{1}^{*} D_{x x}^{E^{*}}\left(r^{2}\right)+i_{1} D_{x x}^{E^{*}}\left(i_{1}\right)+i_{2} D_{x x}^{E^{*}}\left(i_{2}\right)+i_{3} D_{x x}^{E^{*}}\left(i_{3}\right)=\left(2 r_{0}-r_{1}-r_{1}^{*}-i_{1}-i_{2}+2 i_{3}\right) / 2
\end{aligned}
$$

$\underset{\mathrm{g}=}{\text { Coefficients }} D_{m n}^{\mu}(g)_{\mathbf{r}^{1}}$ are irreducible representations (ireps) of $\mathbf{\mathbf { i } _ { \mathbf { i } }}$

$$
\begin{aligned}
& (\mathbf{H})_{P}=\bar{T}(\mathbf{H})_{G} \bar{T}^{\dagger}=
\end{aligned}
$$

$$
\begin{aligned}
& \left.H^{A_{1}}=r_{0} D^{A_{1}^{*}}(1)+r_{1} D^{A_{1}^{*}}{ }^{*} r^{1}\right)+r_{1}^{*} D^{A_{1},}\left(r^{2}\right)+i_{1} D^{A_{1}^{*}}\left(i_{1}\right)+i_{2} D^{A_{1}^{*}}\left(i_{2}\right)+i_{3} D^{A_{1}^{*}}\left(i_{3}\right)=r_{0}+r_{1}+r_{1}^{*}+i_{1}+i_{2}+i_{3} \\
& H^{A_{2}}=r_{0} D^{A_{2}{ }^{*}}(1)+r_{1} D^{A_{2}{ }^{*}}\left(r^{1}\right)+r_{1}^{*} D^{A_{2} *^{*}}\left(r^{2}\right)+i_{1} D^{A_{2}}{ }^{*}\left(i_{1}\right)+i_{2} D^{A_{2}{ }^{*}}\left(i_{2}\right)+i_{3} D^{A_{2}{ }^{*}}\left(i_{3}\right)=r_{0}+r_{1}+r_{1}^{*}-i_{1}-i_{2}-i_{3} \\
& H_{x x}^{\varepsilon_{1}}=r_{0} D_{x x}^{\varepsilon^{*}}(1)+r_{1} D_{x x}^{\varepsilon^{*}}\left(r^{1}\right)+r_{1}^{*} D_{x x}^{\varepsilon^{*}}\left(r^{2}\right)+i_{1} D_{x x}^{L^{*}}\left(i_{1}\right)+i_{2} D_{x x}^{\varepsilon^{*}}\left(i_{2}\right)+i_{3} D_{x x}^{L^{t^{*}}}\left(i_{3}\right)=\left(2 r_{0}-r_{1}-r_{1}^{*}-i_{1}-i_{2}+2 i_{3}\right) / 2 \\
& H_{x y}^{\varepsilon_{1}}=r_{0} D_{x y}^{\varepsilon^{*^{*}}}(1)+r_{1} D_{x y}^{\varepsilon^{*}}\left(r^{1}\right)+r_{1}^{*} D_{x y}^{\varepsilon^{*}}\left(r^{2}\right)+i_{1} D_{x y}^{\varepsilon^{*}}\left(i_{1}\right)+i_{2} D_{x y}^{\varepsilon^{*}}\left(i_{2}\right)+i_{3} D_{x y}^{\ell^{*}}\left(i_{3}\right)=\sqrt{3}\left(-r_{1}+r_{1}^{*}-i_{1}+i_{2}\right) / 2=H_{y x}^{E^{*}}
\end{aligned}
$$

$\mathrm{g}=$	1	r	\mathbf{r}^{2}	i_{1}	i_{2}	\mathbf{i}_{3}
$D^{A_{1}}(\mathbf{g})=$	1	1		$\begin{gathered} 1 \\ -1 \end{gathered}$	$\begin{gathered} 1 \\ -1 \end{gathered}$	1
$\begin{aligned} & D^{A_{2}}(\mathbf{g})= \\ & D_{x, y}^{E_{1}}(\mathbf{g})= \end{aligned}$	$\left(\begin{array}{ll}1 & \left.\begin{array}{l}1 \\ \cdot\end{array}\right)\end{array}\right.$	$\left(\begin{array}{cc}-\frac{1}{2} & -\left(\frac{\sqrt{3}}{2}\right. \\ \frac{\sqrt{3}}{2} & -\frac{1}{2}\end{array}\right)$	$\left(\begin{array}{cc}-\frac{1}{2} & \left(\frac{\sqrt{3}}{2}\right. \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2}\end{array}\right)$	$\left(\begin{array}{cc}-\frac{1}{2} & -\left(\frac{\sqrt{3}}{2}\right. \\ -\frac{\sqrt{3}}{2} & \frac{1}{2}\end{array}\right)$	$\left(\begin{array}{cc}-\frac{1}{2} & \sqrt{3} \\ 2\end{array}\right)$	$\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$

$$
\left|\mathbf{P}_{x x}^{\mathbf{P}_{1}}\right\rangle\left|\mathbf{P}_{y y}^{b}\right\rangle\left|\mathbf{P}_{x x}^{E_{x}}\right\rangle\left|\mathbf{P}_{p_{y}}^{E_{i}}\right\rangle\left|\mathbf{P}_{x y}^{E_{1}}\right\rangle \mid \mathbf{P}_{x y}^{E_{i}}
$$

$$
\begin{aligned}
& (\mathbf{H})_{G}={ }_{g=1}^{o_{G}} r_{g} \overline{\mathbf{g}}=\left(\begin{array}{cccccc}
\because r_{0} \\
|\mathbf{g}\rangle & r_{2} & r_{1} & i_{1} & i_{2} & i_{3} \\
r_{1} & r_{0} & r_{1} & i_{3} & i_{1} & i_{2} \\
r_{2} & r_{1} & r_{0} & i_{2} & i_{3} & i_{1} \\
i_{i} & i_{3} & i_{2} & r_{0} & r_{1} & r_{2} \\
i_{2} & i_{1} & i_{3} & r_{2} & r_{0} & r_{1} \\
i_{3} & i_{2} & i_{1} & r_{1} & r_{2} & r_{0}
\end{array}\right) . \\
& (\mathbf{H})_{P}=\bar{T}(\mathbf{H})_{G} \bar{T}^{\dagger}= \\
& H_{a b}^{\alpha}=\left\langle\mathbf{P}_{m a}^{\mu}\right| \mathbf{H}\left|\mathbf{P}_{n b}^{\mu}\right\rangle=\langle\mathbf{l}| \mathbf{P}_{a m}^{\mu} \mathbf{H} \mathbf{P}_{n b}^{\mu}|\mathbf{1}\rangle=\langle\mathbf{1}| \mathbf{H P}_{a m}^{\mu} \mathbf{P}_{\frac{n}{(n o r m)^{2}}}^{\mu}|\mathbf{1}\rangle=\delta_{m n}\langle\mathbf{1}| \mathbf{H} \underset{\frac{a b}{(n o r m)^{2}}}{\mu}|\mathbf{1}\rangle=\sum_{g=1}^{{ }^{\circ} G}\langle\mathbf{1}| \mathbf{H}|\mathbf{g}\rangle_{a b}^{a^{a^{*}}}(g)=\sum_{g=1}^{{ }^{\circ} G} r_{g} D_{a b}^{a^{*}}(g) \\
& H^{A_{1}}=r_{0} D^{A_{1}{ }^{*}}(1)+r_{1} D^{A_{1}{ }^{*}}\left(r^{1}\right)+r_{1}^{*} D^{A_{1}{ }^{*}}\left(r^{2}\right)+i_{1} D^{A_{1} *}\left(i_{1}\right)+i_{2} D^{A_{1}{ }^{*}}\left(i_{2}\right)+i_{3} D^{A_{1}{ }^{*}}\left(i_{3}\right)=r_{0}+r_{1}+r_{1}^{*}+i_{1}+i_{2}+i_{3} \\
& H^{A_{2}}=r_{0} D^{A_{2}{ }^{*}}(1)+r_{1} D^{A_{2}{ }^{*}}\left(r^{1}\right)+r_{1}^{*} D^{A_{2}{ }^{*}}\left(r^{2}\right)+i_{1} D^{A_{2}{ }^{*}}\left(i_{1}\right)+i_{2} D^{A_{2}{ }^{*}}\left(i_{2}\right)+i_{3} D^{A_{2}{ }^{*}}\left(i_{3}\right)=r_{0}+r_{1}+r_{1}^{*}-i_{1}-i_{2}-i_{3} \\
& H_{x x}^{E_{1}}=r_{0} D_{x x}^{E^{*}}(1)+r_{1} D_{x x}^{E^{*}}\left(r^{1}\right)+r_{1}^{*} D_{x x}^{E^{*}}\left(r^{2}\right)+i_{1} D_{x x}^{E^{*}}\left(i_{1}\right)+i_{2} D_{x x}^{E^{*}}\left(i_{2}\right)+i_{3} D_{x x}^{E^{*}}\left(i_{3}\right)=\left(2 r_{0}-r_{1}-r_{1}^{*}-i_{1}-i_{2}+2 i_{3}\right) / 2 \\
& H_{x y}^{E_{1}}=r_{0} D_{x y}^{E^{*}}(1)+r_{1} D_{x y}^{E^{*}}\left(r^{1}\right)+r_{1}^{*} D_{x y}^{E^{*}}\left(r^{2}\right)+i_{1} D_{x y}^{E^{*}}\left(i_{1}\right)+i_{2} D_{x y}^{E^{*}}\left(i_{2}\right)+i_{3} D_{x y}^{E^{*}}\left(i_{3}\right)=\sqrt{3}\left(-r_{1}+r_{1}^{*}-i_{1}+i_{2}\right) / 2=H_{y x}^{E^{*}} \\
& H_{y y}^{E_{1}}=r_{0} D_{y y}^{E^{E^{*}}}(1)+r_{1} D_{y y}^{E^{*}}\left(r^{1}\right)+r_{1}^{*} D_{y y}^{E^{*}}\left(r^{2}\right)+i_{1} D_{y y}^{E^{E^{*}}}\left(i_{1}\right)+i_{2} D_{y y}^{E^{*}}\left(i_{2}\right)+i_{3} D_{y y}^{E^{*}}\left(i_{3}\right)=\left(2 r_{0}-r_{1}-r_{1}^{*}+i_{1}+i_{2}-2 i_{3}\right) / 2 \\
& \underset{\mathbf{g}=}{\text { Coefficients }} D_{m n}^{\mu}(g)_{\mathbf{r}^{1}} \text { are irreducible representations (ireps) of } \mathbf{\mathbf { r } ^ { 2 }} \mathbf{i}_{\mathbf{i}}
\end{aligned}
$$

$$
\left|\mathbf{P}_{x x}^{\mathbf{P}_{1}}\right\rangle\left|\mathbf{P}_{y y}^{b}\right\rangle\left|\mathbf{P}_{x x}^{E_{i}}\right\rangle\left|\mathbf{P}_{x y}^{E_{i}}\right\rangle\left|\mathbf{P}_{y y}^{E_{i}}\right\rangle\left|\mathbf{P}_{y y}^{E_{i}}\right\rangle
$$

$$
\left(\begin{array}{ll}
H_{x x}^{E_{1}} & H_{x y}^{\varepsilon_{1}} \\
H_{y x}^{\varepsilon_{1}} & H_{y y}^{\varepsilon_{1}}
\end{array}\right)=\frac{1}{2}\left(\begin{array}{cc}
2 r_{0}-r_{1}-r_{1}^{*}-i_{1}-i_{2}+2 i_{3} & \sqrt{3}\left(-r_{1}+r_{1}^{*}-i_{1}+i_{2}\right) \\
\sqrt{3}\left(-r_{1}^{*}+r_{1}-i_{1}+i_{2}\right) & 2 r_{0}-r_{1}-r_{1}^{*}+i_{1}+i_{2}-2 i_{3}
\end{array}\right)
$$

Review Stage 1: Group Center:Class-sums κ_{g}, characters $\chi^{\mu}(\mathrm{g})$, and All-Commuting
Projectors \mathbb{P}^{μ}
Review Stage 2: Group operators g and Mutually-Commuting projectors $\mathbb{P}^{\mu_{k k}}$
Review Stage 3: Weyl g-expansion in irreps $D_{j k}^{\mu}(g)$ and Non-Commuting projectors $\mathbf{P}^{\mu}{ }_{j k}$
Simple matrix algebra $\mathbf{P}^{\mu}{ }_{a b} \mathbf{P}^{\nu}{ }_{c d}=\delta^{\mu \nu} \delta_{b c} \mathbf{P}^{\mu}{ }_{a d}$
$\mathbf{P}_{j k}^{\mu_{j k}}$ transforms right-and-left
$\mathbf{P}^{\mu_{j k}}$-expansion in \mathbf{g}-operators
Example of D_{3} transformation by matrix $D^{E_{j k}}\left(\mathbf{r}^{1}\right)$
Details of Mock-Mach relativity-duality for D_{3} groups and representations
Lab-fixed(Extrinsic-Global) vs. Body-fixed (Intrinsic-Local)
Compare Global vs Local $|\mathbf{g}\rangle$-basis and Global vs Local $\left|\mathbf{P}^{(1)}\right\rangle$-basis
Hamiltonian and D_{3} group matrices in global and local $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis
Global vs. Local block rearrangement
Hamiltonion eigen-matrix calculation
\rightarrow Hamiltonian local-symmetry eigensolution
Molecular vibrational mode eigensolution
Local symmetry limit
Global symmetry limit (free or "genuine" modes)

$$
\left|\mathbf{P}_{x x}^{4}\right\rangle\left|\mathbf{P}_{y y}^{b}\right\rangle\left|\mathbf{P}_{x x}^{E_{x}}\right\rangle\left|\mathbf{P}_{x y}^{E_{y}}\right\rangle\left|\mathbf{P}_{x y}^{E}\right\rangle\left|\mathbf{P}_{x y}^{E_{y}}\right\rangle
$$

$$
\mathbf{P}_{m n}^{(\mu)}=\frac{\ell^{(\mu)}}{{ }^{\circ}} \sum_{\mathrm{g}} D_{m n}^{(\mu)^{*}}(\mathrm{~g}) \mathrm{g}
$$

Spectral Efficiency: Same $D(a)_{m n}$ projectors give a lot!

-Local symmetery eigenvalue formulae (L.S. $=>$ off-diagonal zero.)
$C_{2}=\left\{\mathbf{1}, \mathbf{i}_{3}\right\}$
Local symmetry
determines all levels and eigenvectors with just 4 real parameters

$$
\begin{aligned}
r_{1}=r_{2}=r_{1} *= & \quad i_{1}=i_{2}=i_{1} *=i \\
& A_{1} \text {-level: } H+2 r+2 i+\dot{\zeta}_{3} \\
\text { gives: } & A_{1} \text {-level: } H+2 r-2 i-\dot{i}_{3} \\
& E_{x} \text {-level: } H-r-i+\dot{\zeta}_{3} \\
& E_{y} \text {-level: } H-r+i-i_{3}
\end{aligned}
$$

Global (LAB) symmetry $\quad D_{3}>C_{2} \mathbf{i}_{3}$ projector states

$$
\begin{aligned}
\stackrel{i}{\mathbf{i}}_{3}|(m)\rangle & =\dot{\mathbf{i}}_{3} \mathbf{P}_{e b}^{(m)}|1\rangle \\
& \left.=\left.(-1)^{e}\right|^{(m)}\right\rangle
\end{aligned}
$$

$$
\left|\begin{array}{l}
(m) \\
e b
\end{array}\right\rangle=\mathbf{P}_{e b}^{(m)}|1\rangle
$$

Local (BOD) symmetry

$$
\begin{aligned}
& \overline{\mathbf{i}}_{3}\left|e_{e b}^{(m)}\right\rangle=\overline{\mathbf{i}}_{3} \mathbf{P}_{e b}^{(m)}|1\rangle=\mathbf{P}_{e b}^{(m)} \overline{\mathbf{i}}_{3}|1\rangle \\
& =\mathbf{P}_{e b}^{(m)} \mathbf{I}_{3}^{\dagger}|1\rangle=(-1)^{b}|(m)\rangle
\end{aligned}
$$

Here the "Mock-Mach"

When there is no there, there...

Nobody Home
where LOCAL and GLOBAL

Review Stage 1: Group Center:Class-sums κ_{g}, characters $\chi^{\mu}(\mathbf{g})$, and All-Commuting
Projectors \mathbb{P}^{μ}
Review Stage 2: Group operators \mathbf{g} and Mutually-Commuting projectors $\mathbb{P}^{\mu} k k$
Review Stage 3: Weyl g-expansion in irreps $D_{j k}^{\mu}(g)$ and Non-Commuting projectors $\mathbf{P}^{\mu}{ }_{j k}$
Simple matrix algebra $\mathbf{P}^{\mu}{ }_{a b} \mathbf{P}^{\nu}{ }_{c d}=\delta^{\mu \nu} \delta_{b c} \mathbf{P}^{\mu}{ }_{a d}$
$\mathbf{P}_{j k}^{\mu_{j k}}$ transforms right-and-left
$\mathbf{P}^{\mu_{j k}}$-expansion in \mathbf{g}-operators
Example of D_{3} transformation by matrix $D^{E_{j k}}\left(\mathbf{r}^{1}\right)$
Details of Mock-Mach relativity-duality for D_{3} groups and representations
Lab-fixed(Extrinsic-Global) vs. Body-fixed (Intrinsic-Local)
Compare Global vs Local $|\mathbf{g}\rangle$-basis and Global vs Local $\left|\mathbf{P}^{(1)}\right\rangle$-basis
Hamiltonian and D_{3} group matrices in global and local $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis Global vs. Local block rearrangement
Hamiltonion eigen-matrix calculation
Video Lecture 16
Hamiltonian local-symmetry eigensolution

\rightarrowMolecular vibrational mode eigensolution Local symmetry limit Ended here.

Global symmetry limit (free or "genuine" modes)
Vibrations treated in Lecture 17

