Group Theory in Quantum Mechanics

Vibrational modes and symmetry reciprocity: Induced reps

(Int.J.Mol.Sci, 14, 714(2013) p.755-774, QTCA Unit 5 Ch. 15) (PSDS - Ch. 4)
Review: Hamiltonian local-symmetry eigensolution in global and local $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis
Molecular vibrational modes vs. Hamiltonian eigenmodes
Molecular K-matrix construction
$D_{3} \supset C_{2}\left(i_{3}\right)$ local-symmetry K-matrix eigensolutions
D_{3}-direct-connection K-matrix eigensolutions
$D_{3} \supset C_{3}\left(\mathbf{r}^{ \pm 1}\right)$ local symmetry K-matrix eigensolutions
Applied symmetry reduction and splitting
Subduced irep $D^{\alpha}\left(D_{3}\right) \downarrow C_{2}=d^{0_{2}} \oplus d^{l^{2}} \oplus$.. correlation
Subduced irep $D^{\alpha}\left(D_{3}\right) \downarrow C_{3}=d^{0_{3}} \oplus d^{l_{3}} \oplus$.. correlation
Spontaneous symmetry breaking and clustering: Frobenius Reciprocity, band structure
Induced rep $d^{a}\left(C_{2}\right) \uparrow D_{3}=D^{\alpha} \oplus D^{\beta} \oplus$.. correlation
Induced rep da $\left(C_{3}\right) \uparrow D_{3}=D^{\alpha} \oplus D^{\beta} \oplus$.. correlation
D_{6} symmetry and Hexagonal Bands
Cross product of the C_{2} and D_{3} characters gives all $D_{6}=D_{3} \times C_{2}$ characters and ireps
Induced rep da $\left(C_{2}\right) \uparrow D_{6}=D^{\alpha} \oplus D^{\beta} \oplus$.. correlation
Induced rep da $d^{a}\left(C_{6}\right) \uparrow D_{6}=D^{\alpha} \oplus D^{\beta} \oplus$.. correlation

1 Review: Hamiltonian local-symmetry eigensolution in global and local $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis

```
Molecular vibrational modes vs. Hamiltonian eigenmodes
Molecular K-matrix construction
\(D_{3} \supset C_{2}\left(i_{3}\right)\) local-symmetry \(K\)-matrix eigensolutions
\(D_{3}\)-direct-connection K-matrix eigensolutions
\(D_{3} \supset C_{3}\left(\mathbf{r}^{ \pm 1}\right)\) local symmetry \(K\)-matrix eigensolutions
```

Applied symmetry reduction and splitting
Subduced irep $D^{\alpha}\left(D^{3}\right) \downarrow C_{2}=d^{0_{2}} \oplus d^{l_{2}} \oplus$.. correlation
Subduced irep $D^{\alpha}\left(D^{3}\right) \downarrow C_{3}=d^{0^{3}} \oplus d^{l_{3}} \oplus$.. correlation
Spontaneous symmetry breaking and clustering: Frobenius Reciprocity, band structure
Induced rep $d^{a}\left(C_{2}\right) \uparrow D^{3}=D^{\alpha} \oplus D^{\beta} \oplus .$. correlation
Induced rep da $\left(C_{3}\right) \uparrow D^{3}=D^{\alpha} \oplus D^{\beta} \oplus$.. correlation
D_{6} symmetry and Hexagonal Bands
Cross product of the C_{2} and D_{3} characters gives all $D_{6}=D_{3} \times C_{2}$ characters and ireps

Compare Global vs Local $|\mathbf{g}\rangle$-basis vs. Global vs Local $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis

Review excerpts of Lecture 16

D_{3} global projector product table

D_{3}	\mathbb{P}_{1}^{4}	$\mathbf{P}_{x x}^{E} \mathbf{P}_{x}^{E}$	$\mathbf{P}_{y x}^{E} \mathbf{P}_{y y}^{E}$
$\mathbf{P}_{x x}^{A_{1}}$			
P_{50}^{42}	$\mathbb{P}_{\text {v2 }}^{4}$		
\mathbb{P}_{x}^{E}		$\mathbf{P}_{x x}^{E} \mathbf{P}_{x y}^{E}$	
$\mathbf{p}_{\underline{x}}^{E}$		$\mathbf{P}_{y x}^{E} \mathbf{P}_{y y}^{E}$	
$\mathbb{R}_{\text {c }}^{E}$			$\mathbf{P}_{x x}^{E} \mathbf{P}_{x y}^{E}$
\mathbf{P}_{y}^{E}			$\mathbf{P}_{y}^{E} \mathbf{P}_{y}^{E}$

Change Global to Local by switching $\mathbf{P}_{a b}^{(m)} \mathbf{P}_{d a}^{(n)}=\delta^{m n} b_{b c} \mathbf{P}_{a d}^{(m)}$

...column-P with column-P ${ }^{\dagger}$

and row-P with row-P ${ }^{\dagger}$
D_{3} local projector product table
D_{3} global-g group matrices in $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis

Global g-matrix component

$$
\left\langle\begin{array}{c|c}
\mu \\
m^{\prime} n
\end{array}\right| \mathbf{g}\left|\begin{array}{l}
\mu \\
m n
\end{array}\right\rangle=D_{m^{\prime} m}^{\mu}(g)
$$

D_{3} local- $\overline{\mathbf{g}}$ group matrices in $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis

$$
R^{P}(\overline{\mathrm{~g}})=T R^{G}(\overline{\mathrm{~g}}) T^{\dagger}=
$$

$$
\left|\begin{array}{lllll}
\left|\mathbf{P}_{x x}^{A_{1}}\right\rangle & \left|\mathbf{P}_{y y}^{A_{2}}\right\rangle & \left|\mathbf{P}_{x x}^{E_{1}}\right\rangle & \left|\mathbf{P}_{y x}^{E_{1}}\right\rangle & \left|\mathbf{P}_{x y}^{E_{1}}\right\rangle
\end{array}\right| \begin{array}{|l}
\left.\mathbf{P}_{y y}^{E_{1}}\right\rangle
\end{array}
$$

$$
-\left(\begin{array}{c|c|cc|cc}
D^{A_{1}{ }^{*}}(\mathbf{g}) & \cdot & \cdot & \cdot & \cdot & \cdot \\
\hline \cdot & D^{A_{2}{ }^{*}}(\mathbf{g}) & \cdot & \cdot & \cdot & \cdot \\
\hline \cdot & \cdot & D_{x x}^{E_{1}{ }^{*}}(\mathbf{g}) & \cdot & D_{x y}^{E_{1}{ }^{*}}(\mathbf{g}) & \cdot \\
\cdot & \cdot & \cdot & D_{x x}^{E_{1}{ }^{*}}(\mathbf{g}) & \cdot & D_{x y}^{E_{1}{ }^{*}}(\mathbf{g}) \\
\hline \cdot & \cdot & D_{y x}^{E_{1}{ }^{*}}(\mathbf{g}) & \cdot & D_{y y}^{E_{1}{ }^{*}}(\mathbf{g}) & \cdot \\
\cdot & \cdot & \cdot & D_{y x}^{E_{1}{ }^{*}}(\mathbf{g}) & \cdot & D_{y y}^{E_{1}{ }^{*}}(\mathbf{g})
\end{array}\right)
$$

$$
\bar{R}^{P}(\overline{\mathbf{g}})=\bar{T} R^{G}(\overline{\mathbf{g}}) \bar{T}^{\dagger}=
$$

$$
\left|\mathbf{P}_{x x}^{A_{1}}\right\rangle \quad\left|\mathbf{P}_{y y}^{A_{2}}\right\rangle
$$

$\left(\begin{array}{c|c|cc|cc}D^{A_{1}{ }^{*}}(\mathbf{g}) & \cdot & \cdot & \cdot & \cdot & \cdot \\ \hline \cdot & D^{A_{2}{ }^{*}}(\mathbf{g}) & \cdot & \cdot & \cdot & \cdot \\ \hline \cdot & \cdot & D_{x x}^{E_{1}{ }^{*}}(\mathbf{g}) & D_{x y}^{E_{1}{ }^{*}}(\mathbf{g}) & \cdot & \cdot \\ \cdot & \cdot & D_{y x}^{E_{1}{ }^{*}}(\mathbf{g}) & D_{y y}^{E_{1}{ }^{*}}(\mathbf{g}) & \cdot & \cdot \\ \hline \cdot & \cdot & \cdot & \cdot & D_{x x}^{E_{1}{ }^{*}}(\mathbf{g}) & D_{x y}^{E_{1}{ }^{*}}(\mathbf{g}) \\ \cdot & \cdot & \cdot & \cdot & D_{y x}^{E_{1}{ }^{*}}(\mathbf{g}) & D_{y y}^{E_{1}{ }^{*}}(\mathbf{g})\end{array}\right)$

Local $\overline{\mathbf{g}}$-matrix component

$$
\left\langle\begin{array}{l}
\mu \\
m n^{\prime}
\end{array}\right| \overline{\mathbf{g}}\left|\begin{array}{l}
\mu \\
m n
\end{array}\right\rangle=D_{n n^{\prime}}^{\mu}\left(g^{-1}\right)=D_{n^{\prime} n}^{\mu^{*}}(g)
$$

D_{3} Hamiltonian local- \mathbf{H} matrices in $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis

Review excerpts of Lecture 16
$\underset{|\mathbf{g}\rangle \text {-basis: }}{\mathbf{H} \text { matrix in }}(\mathbf{H})_{G}=\sum_{g=1}^{o_{G}} r_{g} \overline{\mathbf{g}}=\left(\begin{array}{llllll}r_{0} & r_{2} & r_{1} & i_{1} & i_{2} & i_{3} \\ r_{1} \\ r_{0} & r_{0} & r_{1} & i_{3} & i_{1} & i_{2} \\ r_{2} & r_{1} & r_{0} & i_{2} & i_{3} & i_{1} \\ i_{i} & i_{3} & i_{2} & r_{0} & r_{1} & r_{2} \\ i_{2} & i_{1} & i_{3} & r_{2} & r_{0} & r_{1} \\ i_{3} & i_{2} & i_{1} & r_{1} & r_{2} & r_{0}\end{array}\right)$.

$$
\left|\mathbf{P}_{x x}^{4}\right\rangle\left|\mathbf{P}_{y y}^{b}\right\rangle\left|\mathbf{P}_{x x}^{E_{x y}}\right\rangle\left|\mathbf{P}_{x y}^{E_{y}}\right\rangle\left|\mathbf{P}_{x y}^{E}\right\rangle\left|\mathbf{P}_{x y}^{E_{y}}\right\rangle
$$

$H^{A_{1}}=r_{0} D^{A_{1}^{*}}(1)+r_{1} D^{A_{1}^{*}}\left(r^{1}\right)+r_{1}^{*} D^{A_{1}{ }^{*}}\left(r^{2}\right)+i_{1} D^{A_{1}^{*},}\left(i_{1}\right)+i_{2} D^{A_{1,}^{*},}\left(i_{2}\right)+i_{3} D^{A_{1}{ }^{*}}\left(i_{3}\right)=r_{0}+r_{1}+r_{1}^{*}+i_{1}+i_{2}+i_{3} \quad=r_{0}+2 r_{1}+2 i_{12}+i_{3}$
$H^{A_{2}}=r_{0} D^{A_{2}{ }^{*}}(1)+r_{1} D^{A_{2}{ }^{*}}\left(r^{1}\right)+r_{1}^{*} D^{A_{2}{ }^{*}}\left(r^{2}\right)+i_{1} D^{A_{2}{ }^{*}}\left(i_{1}\right)+i_{2} D^{A_{2}{ }^{*}}\left(i_{2}\right)+i_{3} D^{A_{2}{ }^{*}}\left(i_{3}\right)=r_{0}+r_{1}+r_{1}^{*}-i_{1}-i_{2}-i_{3}$ $=r_{0}+2 r_{1}-2 i_{12}-i_{3}$
$H_{x x}^{\varepsilon_{1}}=r_{0} D_{x x}^{t^{*}}(1)+r_{1} D_{x x}^{\varepsilon^{*}}\left(r^{1}\right)+r_{1}^{*} D_{x x}^{\varepsilon^{*}}\left(r^{2}\right)+i_{1} D_{x x}^{t^{*}}\left(i_{1}\right)+i_{2} D_{x x}^{t^{*}}\left(i_{2}\right)+i_{3} D_{x x}^{\varepsilon^{*}}\left(i_{3}\right)=\left(2 r_{0}-r_{1}-r_{1}^{*}-i_{1}-i_{2}+2 i_{3}\right) / 2 \quad=r_{0}-r_{1} \quad-i_{12}+i_{3}$
$H_{x y}^{\varepsilon_{1}}=r_{0} D_{x y}^{t^{*}}(1)+r_{1} D_{x y}^{t^{*}}\left(r^{1}\right)+r_{1}^{*} D_{x y}^{\varepsilon^{*}}\left(r^{2}\right)+i_{1} D_{x y}^{t^{*}}\left(i_{1}\right)+i_{2} D_{x y}^{t^{*}}\left(i_{2}\right)+i_{3} D_{x y}^{t^{*}}\left(i_{3}\right)=\sqrt{3}\left(-r_{1}+r_{1}^{*}-i_{1}+i_{2}\right) / 2=H_{y x}^{E^{*}}=0$
$H_{y y}^{\varepsilon_{1}}=r_{0} D_{y y}^{t^{*}}(1)+r_{1} D_{y y}^{t^{*}}\left(r^{1}\right)+r_{1}^{*} D_{y y}^{\varepsilon^{\varepsilon^{*}}}\left(r^{2}\right)+i_{1} D_{y y}^{t^{*}}\left(i_{1}\right)+i_{2} D_{y y}^{t^{*}}\left(i_{2}\right)+i_{3} D_{y y}^{t^{*}}\left(i_{3}\right)=\left(2 r_{0}-r_{1}-r_{1}^{*}+i_{1}+i_{2}-2 i_{3}\right) / 2 \quad=r_{0}-r_{1}+i_{12}-i_{3}$
$C_{2}=\left\{\mathbf{1}, \mathbf{i}_{3}\right\}$
Local symmetry
determines all levels and eigenvectors with just 4 real parameters

$$
=\left(\begin{array}{cc}
r_{0}-r_{1}-i_{12}+i_{3} & 0 \\
0 & r_{0}-r_{1}-i_{12}-i_{3}
\end{array}\right)_{\text {For: } r_{1}=r_{1}^{*} \text { and }: i_{1}=i_{2}} \begin{aligned}
& \text { Choosing local } C_{2}=\left\{\mathbf{1}, \mathbf{i}_{3}\right\} \text { symmetry with } \\
& \text { local } \\
& \text { symstraints } r_{1}=r_{1} *=r_{2} \text { and } i_{1}=i_{2}
\end{aligned}
$$

Review excerpts of Lecture $16 \quad \mathbf{P}_{m M}^{(\mu)}=\frac{\ell_{G}^{(\mu)}}{\sigma_{g}} D_{m n}^{(\mu)}(\mathbf{g}) \mathbf{g}$
Spectral Efficiency: Same $D(a)_{m n}$ projectors give a lot!

-Local symmetery eigenvalue formulae (L.S. => off-diagonal zero.)
$C_{2}=\left\{\mathbf{1}, \mathbf{i}_{3}\right\}$
Local symmetry
determines all levels and eigenvectors with just 4 real parameters

$$
\begin{aligned}
r_{1}=r_{2}=r_{1} *= & \quad i_{1}=i_{2}=i_{1} *=i \\
& A_{1} \text {-level: } H+2 r+2 i+i_{3} \\
\text { gives: } & A_{1} \text {-level: } H+2 r-2 i-\dot{i}_{3} \\
& E_{x} \text {-level: } H-r-i+i_{3} \\
& E_{y} \text {-level: } H-r+i-i_{3}
\end{aligned}
$$

Review excerpts of Lecture 16
Global (LAB) sym
$\stackrel{i}{i}_{3}\left|{ }_{l e b}^{(m)}\right\rangle=\dot{\mathbf{i}}_{3} \mathbf{P}_{e b}^{(m)}|1\rangle$

$$
\left.=\left.(-1)^{e}\right|^{(m)}\right\rangle
$$

$D_{3}>C_{2} \mathbf{i}_{3}$ projector states
$|(m)\rangle=\mathbf{P}(m)|1\rangle \quad \quad \quad \overline{\mathbf{i}}_{3}|(m)\rangle=\overline{\mathbf{i}}_{3} \mathbf{P}_{e b}^{(m)}|1\rangle=\mathbf{P}_{e b}^{(m)} \overline{\mathbf{i}}_{3}|1\rangle$ $\left.=\mathbf{P}_{e b}^{(m)} \mathbf{i}_{\mathbf{1}^{+}}{ }^{\dagger}|1\rangle=\left.(-1)^{b}\right|^{(m)}\right\rangle$

Local $\overline{\mathbf{g}}$ commute through to the "inside" to be a g

$\mathrm{P}_{y, y}^{A}=\frac{1}{\mathbf{1}} \mathbf{r}^{1} \mathbf{r}^{2} \quad \mathbf{i}_{1} \mathbf{i}_{2} \mathbf{i}_{3}$
$\mathbb{P}_{x, y}^{E}=\left(\begin{array}{lllll}0 & -1 & 1 & -1+1 & 0\end{array}\right) / \sqrt{3} / 2$
$\mathrm{P}_{y, y}^{E}=\left(\begin{array}{lll}2-1-1+1+1-2) / 6\end{array}\right.$

$$
\begin{aligned}
& \mathbf{P}_{x, x}^{E}=\begin{array}{llllll}
=\left(\begin{array}{lllll}
2 & -1 & -1 & -1 & -1
\end{array}\right) / 6
\end{array} \\
& \left.\mathbb{P}_{y, x}^{E}=\begin{array}{llllll}
0 & 1 & -1 & -1 & +1 & 0
\end{array}\right) / \sqrt{3} / 2 \\
& \hline
\end{aligned}
$$

(x) symmetry

Review excerpts of Lecture 16

Global (LAB) symmetry $\quad D_{3}>C_{2} \mathbf{i}_{3}$ projector states

$$
\left.\left.\left.\mathbf{i}_{3}\left({ }^{(n)}\right)\right\rangle=\mathbf{i}_{3} \mathbf{P}_{e b}^{(n)}\right] 1\right\rangle
$$

$$
=\left(-\left.(-)^{e}\right|^{(m)}\right\rangle
$$

$$
\left|{ }_{e b}^{(m)}\right\rangle=\mathbf{P}_{e b}^{(m)}|1\rangle
$$

Local (BOD) symmetry

$$
\begin{aligned}
& \overline{\overline{\mathbf{i}}_{3}} \mid e b \\
& =(m)\rangle=\overline{\mathbf{i}}_{3} \mathbf{P}_{e b}^{(m)}|1\rangle=\mathbf{P}_{e b}^{(m)} \overline{\mathbf{i}_{3}}|1\rangle \\
& =\mathbf{P}_{e b}^{(m)}{ }^{\boldsymbol{i}}{ }_{3}^{\dagger}|1\rangle=(-1)^{b}|(m)\rangle
\end{aligned}
$$

When there is no there, there...
Nobody Home
where LOCAL and GLOBAL

Review: Hamiltonian local-symmetry eigensolution in global and local $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis
\rightarrow
Molecular vibrational modes vs. Hamiltonian eigenmodes
Molecular K-matrix construction
$D_{3} \supset C_{2}\left(i_{3}\right)$ local-symmetry K-matrix eigensolutions
D_{3}-direct-connection K-matrix eigensolutions
$D_{3} \supset C_{3}\left(\mathbf{r}^{ \pm 1}\right)$ local symmetry K-matrix eigensolutions

Applied symmetry reduction and splitting
Subduced irep $D^{\alpha}\left(D^{3}\right) \downarrow C_{2}=d^{0_{2}} \oplus d^{1_{2}} \oplus$. . correlation
Subduced irep $D^{\alpha}\left(D^{3}\right) \downarrow C_{3}=d^{03} \oplus d^{13} \oplus$.. correlation

Spontaneous symmetry breaking and clustering: Frobenius Reciprocity, band structure
Induced rep $d^{a}\left(C_{2}\right) \uparrow D^{3}=D^{\alpha} \oplus D^{\beta} \oplus$.. correlation
Induced rep $d^{a}\left(C_{3}\right) \uparrow D^{3}=D^{\alpha} \oplus D^{\beta} \oplus$.. correlation
D_{6} symmetry and Hexagonal Bands
Cross product of the C_{2} and D_{3} characters gives all $D_{6}=D_{3} \times C_{2}$ characters and ireps

Molecular vibrational modes vs. Hamiltonian eigenmodes
Classical equations of coupled harmonic motion are Newtonian $\mathbf{F}=\mathbf{M} \cdot \mathbf{a}$ relations of n-dimensional force vector \mathbf{F}, acceleration vector \mathbf{a}, and mass operator $\mathbf{M}=M \cdot 1$ for D_{3}-symmetry. Force \mathbf{F} is a (-)derivative of potential $V(x)$ that becomes a $\mathbf{F}=-\mathbf{K} \cdot \mathbf{x}$ matrix expression.

$$
-M \partial_{t}^{2} x^{a}=\frac{\partial V}{\partial x^{a}}=\sum_{b} K_{a b} x^{b}
$$

Classical equations of coupled harmonic motion are Newtonian $\mathbf{F}=\mathbf{M} \cdot \mathbf{a}$ relations of n-dimensional force vector \mathbf{F}, acceleration vector \mathbf{a}, and mass operator $\mathbf{M}=M \cdot \mathbf{1}$ for D_{3}-symmetry. Force \mathbf{F} is a (-)derivative of potential $V(x)$ that becomes a $\mathbf{F}=-\mathbf{K} \cdot \mathbf{x}$ matrix expression.

$$
-M \partial_{t}^{2} x^{a}=\frac{\partial V}{\partial x^{a}}=\sum_{b} K_{a b} x^{b}
$$

Compare classical equation to Schrodinger's equation for quantum motion. ${ }^{\dagger}$

$$
i \hbar \partial_{t} \psi^{a}=\sum_{b} H_{a b} \psi^{b}
$$

Classical equations of coupled harmonic motion are Newtonian $\mathbf{F}=\mathbf{M} \cdot \mathbf{a}$ relations of n-dimensional force vector \mathbf{F}, acceleration vector \mathbf{a}, and mass operator $\mathbf{M}=M \cdot \mathbf{1}$ for D_{3}-symmetry. Force \mathbf{F} is a (-)derivative of potential $V(x)$ that becomes a $\mathbf{F}=-\mathbf{K} \cdot \mathbf{x}$ matrix expression.

$$
-M \partial_{t}^{2} x^{a}=\frac{\partial V}{\partial x^{a}}=\sum_{b} K_{a b} x^{b}
$$

Compare classical equation to Schrodinger's equation for quantum motion. ${ }^{\dagger}$

$$
i \hbar \partial_{t} \psi^{a}=\sum_{b} H_{a b} \psi^{b}
$$

Squared time generator $\left(i \hbar \partial_{t}=\mathbf{H}\right)^{2}$ has classical form with $K=H^{2}$ and $M=\hbar^{2}$.

$$
-\hbar^{2} \partial_{t}^{2} \psi^{a}=\sum_{b} K_{a b} \psi^{b} \text { where: } K=H^{2}
$$

Classical equations of coupled harmonic motion are Newtonian $\mathbf{F}=\mathbf{M} \cdot \mathbf{a}$ relations of n-dimensional force vector \mathbf{F}, acceleration vector \mathbf{a}, and mass operator $\mathbf{M}=M \cdot \mathbf{1}$ for D_{3}-symmetry. Force \mathbf{F} is a (-)derivative of potential $V(x)$ that becomes a $\mathbf{F}=-\mathbf{K} \cdot \mathbf{x}$ matrix expression.

$$
-M \partial_{t}^{2} x^{a}=\frac{\partial V}{\partial x^{a}}=\sum_{b} K_{a b} x^{b}
$$

Compare classical equation to Schrodinger's equation for quantum motion. ${ }^{\dagger}$

$$
i \hbar \partial_{t} \psi^{a}=\sum_{b} H_{a b} \psi^{b}
$$

Squared time generator $\left(i \hbar \partial_{t}=\mathbf{H}\right)^{2}$ has classical form with $K=H^{2}$ and $M=\hbar^{2}$.

$$
-\hbar^{2} \partial_{t}^{2} \psi^{a}=\sum_{b} K_{a b} \psi^{b} \text { where: } K=H^{2}
$$

(\mathbf{H} / \hbar)-eigenvalues are quantum angular frequencies $\epsilon_{m} / \hbar=\omega_{m}$. (Like Planck axiom: $\epsilon=\hbar \omega$.)

Classical equations of coupled harmonic motion are Newtonian $\mathbf{F}=\mathbf{M} \cdot \mathbf{a}$ relations of n-dimensional force vector \mathbf{F}, acceleration vector \mathbf{a}, and mass operator $\mathbf{M}=M \cdot \mathbf{1}$ for D_{3}-symmetry. Force \mathbf{F} is a (-)derivative of potential $V(x)$ that becomes a $\mathbf{F}=-\mathbf{K} \cdot \mathbf{x}$ matrix expression.

$$
-M \partial_{t}^{2} x^{a}=\frac{\partial V}{\partial x^{a}}=\sum_{b} K_{a b} x^{b}
$$

Compare classical equation to Schrodinger's equation for quantum motion. ${ }^{\dagger}$

$$
i \hbar \partial_{t} \psi^{a}=\sum_{b} H_{a b} \psi^{b}
$$

Squared time generator $\left(i \hbar \partial_{t}=\mathbf{H}\right)^{2}$ has classical form with $K=H^{2}$ and $M=\hbar^{2}$.

$$
-\hbar^{2} \partial_{t}^{2} \psi^{a}=\sum_{b} K_{a b} \psi^{b} \text { where: } K=H^{2}
$$

(\mathbf{H} / \hbar)-eigenvalues are quantum angular frequencies $\epsilon_{m} / \hbar=\omega_{m}$. (Like Planck axiom: $\epsilon=\hbar \omega$.) (\mathbf{K} / M)-eigenvalues are classical squared frequencies $k_{m} / M=\omega_{m}^{2}$. (Like Hooke's law: $k / M=\omega^{2}$.)

Classical equations of coupled harmonic motion are Newtonian $\mathbf{F}=\mathbf{M} \cdot \mathbf{a}$ relations of n-dimensional force vector \mathbf{F}, acceleration vector \mathbf{a}, and mass operator $\mathbf{M}=M \cdot \mathbf{1}$ for D_{3}-symmetry. Force \mathbf{F} is a (-)derivative of potential $V(x)$ that becomes a $\mathbf{F}=-\mathbf{K} \cdot \mathbf{x}$ matrix expression.

$$
-M \partial_{t}^{2} x^{a}=\frac{\partial V}{\partial x^{a}}=\sum_{b} K_{a b} x^{b}
$$

Compare classical equation to Schrodinger's equation for quantum motion. ${ }^{\dagger}$

$$
i \hbar \partial_{t} \psi^{a}=\sum_{b} H_{a b} \psi^{b}
$$

Squared time generator $\left(i \hbar \partial_{t}=\mathbf{H}\right)^{2}$ has classical form with $K=H^{2}$ and $M=\hbar^{2}$.

$$
-\hbar^{2} \partial_{t}^{2} \psi^{a}=\sum_{b} K_{a b} \psi^{b} \text { where: } K=H^{2}
$$

(\mathbf{H} / \hbar)-eigenvalues are quantum angular frequencies $\epsilon_{m} / \hbar=\omega_{m}$. (Like Planck axiom: $\epsilon=\hbar \omega$.) (\mathbf{K} / M)-eigenvalues are classical squared frequencies $k_{m} / M=\omega_{m}^{2}$. (Like Hooke's law: $k / M=\omega^{2}$.) Apart from normalization, eigenvectors of \mathbf{H} and \mathbf{K} are the same.

Classical equations of coupled harmonic motion are Newtonian $\mathbf{F}=\mathbf{M} \cdot \mathbf{a}$ relations of n-dimensional force vector \mathbf{F}, acceleration vector \mathbf{a}, and mass operator $\mathbf{M}=M \cdot \mathbf{1}$ for D_{3}-symmetry. Force \mathbf{F} is a (-)derivative of potential $V(x)$ that becomes a $\mathbf{F}=-\mathbf{K} \cdot \mathbf{x}$ matrix expression.

$$
-M \partial_{t}^{2} x^{a}=\frac{\partial V}{\partial x^{a}}=\sum_{b} K_{a b} x^{b}
$$

Compare classical equation to Schrodinger's equation for quantum motion. ${ }^{\dagger}$

$$
i \hbar \partial_{t} \psi^{a}=\sum_{b} H_{a b} \psi^{b}
$$

Squared time generator $\left(i \hbar \partial_{t}=\mathbf{H}\right)^{2}$ has classical form with $K=H^{2}$ and $M=\hbar^{2}$.

$$
-\hbar^{2} \partial_{t}^{2} \psi^{a}=\sum_{b} K_{a b} \psi^{b} \text { where: } K=H^{2}
$$

(\mathbf{H} / \hbar)-eigenvalues are quantum angular frequencies $\epsilon_{m} / \hbar=\omega_{m}$. (Like Planck axiom: $\epsilon=\hbar \omega$.) (\mathbf{K} / M)-eigenvalues are classical squared frequencies $k_{m} / M=\omega_{m}^{2}$. Like Hooke's law: $k / M=\omega^{2}$.) Apart from normalization, eigenvectors of \mathbf{H} and \mathbf{K} are the same.
And, each eigenvalue set corresponds to its respective energy spectrum.
\dagger Recall U(2) vs R(3) Schrodinger vs Classical analogs in Lectures 6-7

Review: Hamiltonian local-symmetry eigensolution in global and local $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis

Molecular vibrational modes vs. Hamiltonian eigenmodes
Molecular K-matrix construction
$D_{3} \supset C_{2}\left(i_{3}\right)$ local-symmetry K-matrix eigensolutions
D_{3}-direct-connection K-matrix eigensolutions
$D_{3} \supset C_{3}\left(\mathbf{r}^{ \pm 1}\right)$ local symmetry K-matrix eigensolutions

Applied symmetry reduction and splitting
Subduced irep $D^{\alpha}\left(D^{3}\right) \downarrow C_{2}=d^{0_{2}} \oplus d^{1_{2}} \oplus .$. correlation
Subduced irep $D^{\alpha}\left(D^{3}\right) \downarrow C_{3}=d^{03} \oplus d^{13} \oplus$.. correlation

Spontaneous symmetry breaking and clustering: Frobenius Reciprocity, band structure
Induced rep $d^{a}\left(C_{2}\right) \uparrow D^{3}=D^{\alpha} \oplus D^{\beta} \oplus$.. correlation
Induced rep $d^{a}\left(C_{3}\right) \uparrow D^{3}=D^{\alpha} \oplus D^{\beta} \oplus$.. correlation
D_{6} symmetry and Hexagonal Bands
Cross product of the C_{2} and D_{3} characters gives all $D_{6}=D_{3} \times C_{2}$ characters and ireps

Molecular K-matrix construction

Classical modes are eigenvectors of force-field matrix K or operator \mathbf{K}.
Harmonic potential $V(\mathbf{x})$ is a quadratic K-form of coordinates x_{a} based on $\operatorname{six} D_{3}$-labeled axes $\hat{\mathbf{x}}^{a}$ or $|a\rangle$.

$$
V(x)=\sum_{(k)} \frac{1}{2}\langle x| \mathbf{K}|x\rangle \quad \text { where: } \quad|x\rangle=\sum_{a} x_{a}|a\rangle, \quad(a, b)=\left(1, r^{1}, r^{2}, i_{1}, i_{2}, i_{3}\right)
$$

Molecular K-matrix construction

Classical modes are eigenvectors of force-field matrix K or operator \mathbf{K}.
Harmonic potential $V(\mathbf{x})$ is a quadratic K-form of coordinates x_{a} based on $\operatorname{six} D_{3}$-labeled axes $\hat{\mathbf{x}}^{a}$ or $|a\rangle$.

$$
V(x)=\sum_{(k)} \frac{1}{2}\langle x| \mathbf{K}|x\rangle \quad \text { where: } \quad|x\rangle=\sum_{a} x_{a}|a\rangle, \quad(a, b)=\left(1, r^{1}, r^{2}, i_{1}, i_{2}, i_{3}\right)
$$

Each \mathbf{K} component $K_{a b}=\langle a| \mathbf{K}|b\rangle$ is a sum over spring k-constants that connect axis- \mathbf{x}^{a} to axis- \mathbf{x}^{b} multiplied by factor $\left(\hat{\mathbf{k}}_{a} \bullet \hat{\mathbf{x}}^{a}\right)\left(\hat{\mathbf{k}}_{b} \bullet \hat{\mathbf{x}}^{b}\right)$ for projecting spring- k 's end vectors $\hat{\mathbf{k}}_{a}$ and $\hat{\mathbf{k}}_{b}$ onto $\hat{\mathbf{x}}^{a}$ and $\hat{\mathbf{x}}^{b}$ at respective connections.

Molecular K-matrix construction

Classical modes are eigenvectors of force-field matrix K or operator \mathbf{K}.
Harmonic potential $V(\mathbf{x})$ is a quadratic K-form of coordinates x_{a} based on $\operatorname{six} D_{3}$-labeled axes $\hat{\mathbf{x}}^{a}$ or $|a\rangle$.

$$
V(x)=\sum_{(k)} \frac{1}{2}\langle x| \mathbf{K}|x\rangle \quad \text { where: } \quad|x\rangle=\sum_{a} x_{a}|a\rangle, \quad(a, b)=\left(1, r^{1}, r^{2}, i_{1}, i_{2}, i_{3}\right)
$$

Each \mathbf{K} component $K_{a b}=\langle a| \mathbf{K}|b\rangle$ is a sum over spring k-constants that connect axis- \mathbf{x}^{a} to axis- \mathbf{x}^{b} multiplied by factor $\left(\hat{\mathbf{k}}_{a} \bullet \hat{\mathbf{x}}^{a}\right)\left(\hat{\mathbf{k}}_{b} \bullet \hat{\mathbf{x}}^{b}\right)$ for projecting spring- k 's end vectors $\hat{\mathbf{k}}_{a}$ and $\hat{\mathbf{k}}_{b}$ onto $\hat{\mathbf{x}}^{a}$ and $\hat{\mathbf{x}}^{b}$ at respective connections.

Coupling $K_{a b}=\langle a| \mathbf{K}|b\rangle$
Sum $k \cdot\left(\hat{\mathbf{k}}_{a} \cdot \hat{\mathbf{x}}^{a}\right)\left(\hat{\mathbf{k}}_{b} \cdot \hat{\mathbf{x}}^{b}\right)$ for each spring- k

Molecular K-matrix construction

Classical modes are eigenvectors of force-field matrix K or operator \mathbf{K}.
Harmonic potential $V(\mathbf{x})$ is a quadratic K-form of coordinates x_{a} based on $\operatorname{six} D_{3}$-labeled axes $\hat{\mathbf{x}}^{a}$ or $|a\rangle$.

$$
V(x)=\sum_{(k)} \frac{1}{2}\langle x| \mathbf{K}|x\rangle \quad \text { where: } \quad|x\rangle=\sum_{a} x_{a}|a\rangle, \quad(a, b)=\left(1, r^{1}, r^{2}, i_{1}, i_{2}, i_{3}\right)
$$

Each \mathbf{K} component $K_{a b}=\langle a| \mathbf{K}|b\rangle$ is a sum over spring k-constants that connect axis- \mathbf{x}^{a} to axis- \mathbf{x}^{b} multiplied by factor $\left(\hat{\mathbf{k}}_{a} \bullet \hat{\mathbf{x}}^{a}\right)\left(\hat{\mathbf{k}}_{b} \bullet \hat{\mathbf{x}}^{b}\right)$ for projecting spring- k 's end vectors $\hat{\mathbf{k}}_{a}$ and $\hat{\mathbf{k}}_{b}$ onto $\hat{\mathbf{x}}^{a}$ and $\hat{\mathbf{x}}^{b}$ at respective connections.

Coupling $K_{a b}=\langle a| \mathbf{K}|b\rangle$
Sum $k \cdot\left(\hat{\mathbf{k}}_{a} \cdot \hat{\mathbf{x}}^{a}\right)\left(\hat{\mathbf{k}}_{b} \cdot \hat{\mathbf{x}}^{b}\right)$ for each spring-k connecting coordinate lines x_{a} to x_{b}

Diagonal $K_{a a}=\langle a| \mathbf{K}|a\rangle$
Sum $-\frac{1}{2} k \cdot\left(\hat{\mathbf{k}}_{a} \cdot \hat{\mathbf{x}}^{a}\right)^{2}$ for each spring-k connected to coordinate line x_{a}

Molecular K-matrix construction

Classical modes are eigenvectors of force-field matrix K or operator \mathbf{K}.
Harmonic potential $V(\mathbf{x})$ is a quadratic K-form of coordinates x_{a} based on six D_{3}-labeled axes $\hat{\mathbf{x}}^{a}$ or $|a\rangle$.

$$
V(x)=\sum_{(k)} \frac{1}{2}\langle x| \mathbf{K}|x\rangle \quad \text { where: } \quad|x\rangle=\sum_{a} x_{a}|a\rangle, \quad(a, b)=\left(1, r^{1}, r^{2}, i_{1}, i_{2}, i_{3}\right)
$$

Each \mathbf{K} component $K_{a b}=\langle a| \mathbf{K}|b\rangle$ is a sum over spring k-constants that connect axis- \mathbf{x}^{a} to axis- \mathbf{x}^{b} multiplied by factor $\left(\hat{\mathbf{k}}_{a} \bullet \hat{\mathbf{x}}^{a}\right)\left(\hat{\mathbf{k}}_{b} \bullet \hat{\mathbf{x}}^{b}\right)$ for projecting spring- k 's end vectors $\hat{\mathbf{k}}_{a}$ and $\hat{\mathbf{k}}_{b}$ onto $\hat{\mathbf{x}}^{a}$ and $\hat{\mathbf{x}}^{b}$ at respective connections.

Coupling $K_{a b}=\langle a| \mathbf{K}|b\rangle$
Sum $k \cdot\left(\hat{\mathbf{k}}_{a} \cdot \hat{\mathbf{x}}^{a}\right)\left(\hat{\mathbf{k}}_{b} \cdot \hat{\mathbf{x}}^{b}\right)$ for each spring-k connecting coordinate lines x_{a} to x_{b}

Diagonal $K_{a a}=\langle a| \mathbf{K}|a\rangle$ Sum $-\frac{1}{2} k \cdot\left(\hat{\mathbf{k}}_{a} \cdot \hat{\mathbf{x}}^{a}\right)^{2}$ for each spring- k connected to coordinate line x_{a}

Molecular K-matrix construction

Classical modes are eigenvectors of force-field matrix K or operator \mathbf{K}.
Harmonic potential $V(\mathbf{x})$ is a quadratic K-form of coordinates x_{a} based on six D_{3}-labeled axes $\hat{\mathbf{x}}^{a}$ or $|a\rangle$.

$$
V(x)=\sum_{(k)} \frac{1}{2}\langle x| \mathbf{K}|x\rangle \quad \text { where: } \quad|x\rangle=\sum_{a} x_{a}|a\rangle, \quad(a, b)=\left(1, r^{1}, r^{2}, i_{1}, i_{2}, i_{3}\right)
$$

Each \mathbf{K} component $K_{a b}=\langle a| \mathbf{K}|b\rangle$ is a sum over spring k-constants that connect axis- \mathbf{x}^{a} to axis- \mathbf{x}^{b} multiplied by factor $\left(\hat{\mathbf{k}}_{a} \bullet \hat{\mathbf{x}}^{a}\right)\left(\hat{\mathbf{k}}_{b} \bullet \hat{\mathbf{x}}^{b}\right)$ for projecting spring- k 's end vectors $\hat{\mathbf{k}}_{a}$ and $\hat{\mathbf{k}}_{b}$ onto $\hat{\mathbf{x}}^{a}$ and $\hat{\mathbf{x}}^{b}$ at respective connections.

$$
V(x)=\frac{1}{2} \sum_{a, b} K_{a b} x_{a} x_{a} \quad \text { where: } K_{a b}=\left\{\begin{array}{cc}
\sum_{(k)} \frac{k}{2}\left(\hat{\mathbf{k}}_{a} \bullet \hat{\mathbf{x}}^{a}\right)^{2} & \text { if }: a=b \\
-\sum_{(k)} k\left(\hat{\mathbf{k}}_{a} \bullet \hat{\mathbf{x}}^{a}\right)\left(\hat{\mathbf{k}}_{b} \bullet \hat{\mathbf{x}}^{b}\right) & \text { if }: a \neq b
\end{array}\right.
$$

Molecular K-matrix construction

Classical modes are eigenvectors of force-field matrix K or operator \mathbf{K}.
Harmonic potential $V(\mathbf{x})$ is a quadratic K-form of coordinates x_{a} based on six D_{3}-labeled axes $\hat{\mathbf{x}}^{a}$ or $|a\rangle$.

$$
V(x)=\sum_{(k)} \frac{1}{2}\langle x| \mathbf{K}|x\rangle \quad \text { where: } \quad|x\rangle=\sum_{a} x_{a}|a\rangle, \quad(a, b)=\left(1, r^{1}, r^{2}, i_{1}, i_{2}, i_{3}\right)
$$

Each \mathbf{K} component $K_{a b}=\langle a| \mathbf{K}|b\rangle$ is a sum over spring k-constants that connect axis- \mathbf{x}^{a} to axis- \mathbf{x}^{b} multiplied by factor $\left(\hat{\mathbf{k}}_{a} \bullet \hat{\mathbf{x}}^{a}\right)\left(\hat{\mathbf{k}}_{b} \bullet \hat{\mathbf{x}}^{b}\right)$ for projecting spring- k 's end vectors $\hat{\mathbf{k}}_{a}$ and $\hat{\mathbf{k}}_{b}$ onto $\hat{\mathbf{x}}^{a}$ and $\hat{\mathbf{x}}^{b}$ at respective connections.

$$
\begin{aligned}
V(x) & =\frac{1}{2} \sum_{a, b} K_{a b} x_{a} x_{a} \quad \text { where: } K_{a b}= \begin{cases}\sum_{(k)} \frac{k}{2}\left(\hat{\mathbf{k}}_{a} \bullet \hat{\mathbf{x}}^{a}\right)^{2} & \text { if }: a=b \\
-\sum_{(k)} k\left(\hat{\mathbf{k}}_{a} \bullet \hat{\mathbf{x}}^{a}\right)\left(\hat{\mathbf{k}}_{b} \bullet \hat{\mathbf{x}}^{b}\right) & \text { if }: a \neq b\end{cases} \\
V(x) & =\sum_{(k)} \frac{k}{2}\left(\Delta \ell_{k}\right)^{2}=\sum_{(k)} \frac{k}{2} \sum_{a, b}\left(\hat{\mathbf{k}}_{a} \bullet \mathbf{x}^{a}-\hat{\mathbf{k}}_{b} \bullet \mathbf{x}^{b}\right)^{2} \\
& =\sum_{(k)} \frac{k}{2} \sum_{a}\left(\hat{\mathbf{k}}_{a} \bullet \hat{\mathbf{x}}^{a}\right)^{2} x_{a}^{2}-\sum_{(k)} k \sum_{a \neq b}\left(\hat{\mathbf{k}}_{a} \bullet \hat{\mathbf{x}}^{a}\right)\left(\hat{\mathbf{k}}_{b} \bullet \hat{\mathbf{x}}^{b}\right) x_{a} x_{b}
\end{aligned}
$$

Molecular K-matrix construction

Classical modes are eigenvectors of force-field matrix K or operator \mathbf{K}.
Harmonic potential $V(\mathbf{x})$ is a quadratic K-form of coordinates x_{a} based on six D_{3}-labeled axes $\hat{\mathbf{x}}^{a}$ or $|a\rangle$.

$$
V(x)=\sum_{(k)} \frac{1}{2}\langle x| \mathbf{K}|x\rangle \quad \text { where: } \quad|x\rangle=\sum_{a} x_{a}|a\rangle, \quad(a, b)=\left(1, r^{1}, r^{2}, i_{1}, i_{2}, i_{3}\right)
$$

Each \mathbf{K} component $K_{a b}=\langle a| \mathbf{K}|b\rangle$ is a sum over spring k-constants that connect axis- \mathbf{x}^{a} to axis- \mathbf{x}^{b} multiplied by factor $\left(\hat{\mathbf{k}}_{a} \bullet \hat{\mathbf{x}}^{a}\right)\left(\hat{\mathbf{k}}_{b} \bullet \hat{\mathbf{x}}^{b}\right)$ for projecting spring- k 's end vectors $\hat{\mathbf{k}}_{a}$ and $\hat{\mathbf{k}}_{b}$ onto $\hat{\mathbf{x}}^{a}$ and $\hat{\mathbf{x}}^{b}$ at respective connections.

$$
\begin{aligned}
V(x) & =\frac{1}{2} \sum_{a, b} K_{a b} x_{a} x_{a} \quad \text { where: } K_{a b}=\left\{\begin{array}{cc}
\sum_{(k)} \frac{k}{2}\left(\hat{\mathbf{k}}_{a} \bullet \hat{\mathbf{x}}^{a}\right)^{2} & \text { if }: a=b \\
-\sum_{(k)} k\left(\hat{\mathbf{k}}_{a} \bullet \hat{\mathbf{x}}^{a}\right)\left(\hat{\mathbf{k}}_{b} \bullet \hat{\mathbf{x}}^{b}\right) & \text { if }: a \neq b
\end{array}\right. \\
V(x) & =\sum_{(k)} \frac{k}{2}\left(\Delta \ell_{k}\right)^{2}=\sum_{(k)} \frac{k}{2} \sum_{a, b}\left(\hat{\mathbf{k}}_{a} \bullet \mathbf{x}^{a}-\hat{\mathbf{k}}_{b} \bullet \mathbf{x}^{b}\right)^{2} \\
& =\sum_{(k)} \frac{k}{2} \sum_{a}\left(\hat{\mathbf{k}}_{a} \bullet \hat{\mathbf{x}}^{a}\right)^{2} x_{a}^{2}-\sum_{(k)} k \sum_{a \neq b}\left(\hat{\mathbf{k}}_{a} \bullet \hat{\mathbf{x}}^{a}\right)\left(\hat{\mathbf{k}}_{b} \bullet \hat{\mathbf{x}}^{b}\right) x_{a} x_{b}
\end{aligned}
$$

Direct connection D_{3} model

Review: Hamiltonian local-symmetry eigensolution in global and local $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis

Molecular vibrational modes vs. Hamiltonian eigenmodes
Molecular K-matrix construction
$\square D_{3} \supset C_{2}\left(i_{3}\right)$ local-symmetry K-matrix eigensolutions
D_{3}-direct-connection K-matrix eigensolutions
$D_{3} \supset C_{3}\left(\mathbf{r}^{ \pm 1}\right)$ local symmetry K-matrix eigensolutions
Applied symmetry reduction and splitting
Subduced irep $D^{\alpha}\left(D^{3}\right) \downarrow C_{2}=d^{0^{2}} \oplus d^{l^{2}} \oplus$.. correlation
Subduced irep $D^{\alpha}\left(D^{3}\right) \downarrow C_{3}=d^{0^{3}} \oplus d^{l^{3}} \oplus$.. correlation
Spontaneous symmetry breaking and clustering: Frobenius Reciprocity, band structure
Induced rep $d^{a}\left(C_{2}\right) \uparrow D^{3}=D^{\alpha} \oplus D^{\beta} \oplus$.. correlation
Induced rep da $\left(C_{3}\right) \uparrow D^{3}=D^{\alpha} \oplus D^{\beta} \oplus$.. correlation
D_{6} symmetry and Hexagonal Bands
Cross product of the C_{2} and D_{3} characters gives all $D_{6}=D_{3} \times C_{2}$ characters and ireps Generic K-matrix (Top row)
$\langle\mathbf{1}| \mathbf{K}\left|\mathbf{g}_{b}\right\rangle=\left[\begin{array}{llllll}r_{0} & r_{1} & r_{2} & i_{1} & i_{2} & i_{3}\end{array}\right]$
$D_{3} \supset C_{2}\left(i_{3}\right)$ local-symmetry vibrational K-matrix
$1^{\text {st }}$-row parameters $g_{b}=\langle\mathbf{1}| \mathbf{K}\left|\mathbf{g}_{b}\right\rangle=K_{1 b}$ of the force matrix $K_{a b}$:
Local $D_{3} C_{2} \supset\left(i_{3}\right)$ model

$D_{3} \supset C_{2}\left(i_{3}\right)$ model has internal $\left[k_{r}\right.$ (angular), k_{i} (radial)] and external $\left[k_{3}\right.$ (angular), k_{0} (radial) $]$ constants between masses and lab frame.
$D_{3} \supset C_{2}\left(i_{3}\right)$ local-symmetry vibrational K-matrix eigensolutions Generic K-matrix (Top row)
$\langle\mathbf{1}| \mathbf{K}\left|\mathbf{g}_{b}\right\rangle=\left[\begin{array}{llllll}r_{0} & r_{1} & r_{2} & i_{1} & i_{2} & i_{3}\end{array}\right]$
$D_{3} \supset C_{2}\left(i_{3}\right)$ local-symmetry vibrational K-matrix
$1^{\text {st }}$ _row parameters $g_{b}=\langle\mathbf{1}| \mathbf{K}\left|\mathbf{g}_{b}\right\rangle=K_{1 b}$ of the force matrix $K_{a b}$:
Local $D_{3} C_{2} \supset\left(i_{3}\right)$ model

$D_{3} \supset C_{2}\left(i_{3}\right)$ model has internal $\left[k_{r}\right.$ (angular), k_{i} (radial)] and external $\left[k_{3}\right.$ (angular), k_{0} (radial)] constants between masses and lab frame.

$\left\|g_{b}\right\rangle$	$\|\mathbf{1}\rangle$	$\left\|\mathbf{r}^{1}\right\rangle$	$\left\|\mathbf{r}^{2}\right\rangle$	$\left\|\mathbf{i}_{1}\right\rangle$	$\left\|\mathbf{i}_{2}\right\rangle$
$\langle\mathbf{1}\| \mathbf{K}\left\|g_{b}\right\rangle=$	$k_{i} / 2$ $+k_{r}$ $+k_{3}$ $+k_{0} / 2$	$k_{i} / 2$ $-k_{r} / 2$ +0 +0	$k_{i} / 2$ $-k_{r} / 2$ +0 +0	$k_{i} / 2$ $+k_{r} / 2$ +0 +0	$k_{i} / 2$ $+k_{r} / 2$ +0 +0

$D_{3} \supset C_{2}\left(i_{3}\right)$ local-symmetry vibrational K-matrix eigensolutions Generic K-matrix (Top row)
$\langle\mathbf{1}| \mathbf{K}\left|\mathbf{g}_{b}\right\rangle=\left[\begin{array}{llllll}r_{0} & r_{1} & r_{2} & i_{1} & i_{2} & i_{3}\end{array}\right]$
$D_{3} \supset C_{2}\left(i_{3}\right)$ local-symmetry vibrational K-matrix
$1^{s t}$-row parameters $g_{b}=\langle\mathbf{1}| \mathbf{K}\left|\mathbf{g}_{b}\right\rangle=K_{1 b}$ of the force matrix $K_{a b}$:
Local $D_{3} C_{2} \supset\left(i_{3}\right)$ model

$D_{3} \supset C_{2}\left(i_{3}\right)$ model has internal $\left[k_{r}\right.$ (angular), k_{i} (radial)] and external $\left[k_{3}\right.$ (angular), k_{0} (radial)] constants between masses and lab frame.

$\left\|g_{b}\right\rangle$	1)	$\left\|\mathbf{r}^{1}\right\rangle$	$\left.\mathbf{r}^{2}\right\rangle$	$\left\|\mathbf{i}_{1}\right\rangle$	$\left\|\mathbf{i}_{2}\right\rangle$	$\left\|\mathbf{i}_{3}\right\rangle$
$\langle\mathbf{1}\| \mathbf{K}\left\|g_{b}\right\rangle=$	$k_{i} / 2$ $+k_{r}$ $+k_{3}$ $+k_{0} / 2$	$k_{i} / 2$ $-k_{r} / 2$ +0 +0	$k_{i} / 2$ $-k_{r} / 2$ +0 +0	$k_{i} / 2$ $+k_{r} / 2$ +0 +0	$k_{i} / 2$ $+k_{r} / 2$ +0 +0	$k_{i} / 2$ $-k_{r}$ $-k_{3}$ $+k_{0} / 2$

$D_{3} \supset C_{2}\left(i_{3}\right)$ local-symmetry vibrational K-matrix eigenvalues $K_{m} / M=\omega_{m}{ }^{2}$

$$
\begin{array}{cccc}
K_{x x}^{A_{1}} & = & r_{0}+r_{1}+r_{1}^{*}+i_{1}+i_{2}+i_{3} & =k_{0}+3 k_{i} \\
K_{y y}^{A_{2}} & = & r_{0}+r_{1}+r_{1}^{*}-i_{1}-i_{2}-i_{3} & 3 k_{3} \\
\left(\begin{array}{cc}
K_{x x}^{E_{1}} & K_{x y}^{E_{1}} \\
K_{y x}^{E_{1}} & K_{y y}^{E_{1}}
\end{array}\right)= & \frac{1}{2}\left(\begin{array}{cc}
2 r_{0}-r_{1}-r_{1}^{*}-i_{1}-i_{2}+2 i_{3} & \sqrt{3}\left(-r_{1}+r_{1}^{*}-i_{1}+i_{2}\right) \\
\sqrt{3}\left(-r_{1}^{*}+r_{1}-i_{1}+i_{2}\right) & 2 r_{0}-r_{1}-r_{1}^{*}+i_{1}+i_{2}-2 i_{3}
\end{array}\right)=\left(\begin{array}{cc}
k_{0} & 0 \\
0 & k_{3}+2 k_{r}
\end{array}\right)
\end{array}
$$

Review: Hamiltonian local-symmetry eigensolution in global and local $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis

Molecular vibrational modes vs. Hamiltonian eigenmodes
Molecular K-matrix construction
$D_{3} \supset C_{2}\left(i_{3}\right)$ local-symmetry K-matrix eigensolutions
D_{3}-direct-connection K-matrix eigensolutions
$D_{3} \supset C_{3}\left(\mathbf{r}^{ \pm 1}\right)$ local symmetry K-matrix eigensolutions
Applied symmetry reduction and splitting
Subduced irep $D^{\alpha}\left(D^{3}\right) \downarrow C_{2}=d^{0^{2}} \oplus d^{l^{2}} \oplus$.. correlation
Subduced irep $D^{\alpha}\left(D^{3}\right) \downarrow C_{3}=d^{0_{3}} \oplus d^{l_{3}} \oplus$.. correlation
Spontaneous symmetry breaking and clustering: Frobenius Reciprocity, band structure
Induced rep $d^{a}\left(C_{2}\right) \uparrow D^{3}=D^{\alpha} \oplus D^{\beta} \oplus$.. correlation
Induced rep da $\left(C_{3}\right) \uparrow D^{3}=D^{\alpha} \oplus D^{\beta} \oplus$.. correlation
D_{6} symmetry and Hexagonal Bands
Cross product of the C_{2} and D_{3} characters gives all $D_{6}=D_{3} \times C_{2}$ characters and ireps
D_{3}-direct-connection K-matrix eigensolutions Generic K-matrix (Top row)
$\langle\mathbf{1}| \mathbf{K}\left|\mathbf{g}_{b}\right\rangle=\left[\begin{array}{llllll}r_{0} & r_{1} & r_{2} & i_{1} & i_{2} & i_{3}\end{array}\right]$
D_{3}-direct-connection vibrational K-matrix

D3-direct-connection K-matrix eigensolutions

Generic K-matrix (Top row)
$\langle\mathbf{1}| \mathbf{K}\left|\mathbf{g}_{b}\right\rangle=\left[\begin{array}{llllll}r_{0} & r_{1} & r_{2} & i_{1} & i_{2} & i_{3}\end{array}\right]$
Generic K-matrix D3 projections

| $K_{x x}^{A_{1}}$ | $=$ | $r_{0}+r_{1}+r_{1}^{*}+i_{1}+i_{2}+i_{3}$ |
| :---: | :---: | :---: | :---: |
| $K_{y y}^{x y}$ | $=$ | $r_{0}+r_{1}+r_{1}^{*}-i_{1}-i_{2}-i_{3}$ |\(\left(\begin{array}{cc}K_{x x}^{E_{1}} \& K_{x y}^{E_{y}}

K_{y x}^{E_{1}} \& K_{y y}^{E_{1}}\end{array}\right)=\frac{1}{2}\left($$
\begin{array}{cc}2 r_{0}-r_{1}-r_{1}^{*}-i_{1}-i_{2}+2 i_{3} & \sqrt{3}\left(-r_{1}+r_{1}^{*}-i_{1}+i_{2}\right) \\
\sqrt{3}\left(-r_{1}^{*}+r_{1}-i_{1}+i_{2}\right) & 2 r_{0}-r_{1}-r_{1}^{*}+i_{1}+i_{2}-2 i_{3}\end{array}
$$\right)\).

D3-direct-connection K-matrix eigensolutions

Generic \mathbf{K}-matrix (Top row)
$\langle\mathbf{1}| \mathbf{K}\left|\mathbf{g}_{b}\right\rangle=\left[\begin{array}{llllll}r_{0} & r_{1} & r_{2} & i_{1} & i_{2} & i_{3}\end{array}\right]$
Generic K-matrix D3 projections

$$
\left.\begin{array}{rlcc}
K_{x x}^{A_{1}} & = & r_{0}+r_{1}+r_{1}^{*}+i_{1}+i_{2}+i_{3} \\
K_{x y}^{x+} & = & r_{0}+r_{1}+r_{1}^{*}-i_{1}-i_{2}-i_{3} \\
K_{x x}^{E_{1}} & K_{x y}^{E_{1}} \\
K_{y x}^{E_{1}} & K_{y y}^{E_{1}}
\end{array}\right)=\frac{1}{2}\left(\begin{array}{cc}
2 r_{0}-r_{1}-r_{1}^{*}-i_{1}-i_{2}+2 i_{3} & \sqrt{3}\left(-r_{1}+r_{1}^{*}-i_{1}+i_{2}\right) \\
\sqrt{3}\left(-r_{1}^{*}+r_{1}-i_{1}+i_{2}\right) & 2 r_{0}-r_{1}-r_{1}^{*}+i_{1}+i_{2}-2 i_{3}
\end{array}\right) .
$$

D_{3}-direct-connection vibrational K-matrix

$\left\|g_{b}\right\rangle$	\|1)	$\left\|\mathbf{r}^{1}\right\rangle$	$\left.\mathrm{r}^{2}\right\rangle$	$\left\|\mathbf{i}_{1}\right\rangle$	$\left\|i_{2}\right\rangle$	$\left\|i_{3}\right\rangle$	
$\langle\mathbf{1}\| \mathbf{K}\left\|g_{b}\right\rangle=$	$k_{1}\left(\cos ^{2} 75^{\circ}\right.$ $\left.+\cos ^{2} 15^{\circ}\right)$ $=k_{1}$	\|l	l $k_{1} \cos 75^{\circ}$	$k_{1} \cos 15^{\circ}$ $\cdot \cos 75^{\circ}$ $=\frac{k_{1}}{4}$	$\left\lvert\, \begin{aligned} & k_{1} \cos 15^{\circ} \\ & -\cos 15^{\circ} \\ & =\frac{k_{1}(2-\sqrt{3})}{4}\end{aligned}\right.$	$\left\lvert\, \begin{aligned} & k_{1} \cos 75^{\circ} \\ & \cdot \cos 75^{\circ} \\ & =\frac{k_{1}(2+\sqrt{3})}{4}\end{aligned}\right.$	$\|$$k_{1}\left(\cos ^{2} 75^{\circ}\right.$ $\left.-\cos ^{2} 15^{\circ}\right)$ $=\frac{k_{1}}{2}$

D3-direct-connection K-matrix eigensolutions

 Generic \mathbf{K}-matrix (Top row)$$
\langle\mathbf{1}| \mathbf{K}\left|\mathbf{g}_{b}\right\rangle=\left[\begin{array}{llllll}
r_{0} & r_{1} & r_{2} & i_{1} & i_{2} & i_{3}
\end{array}\right]
$$

Generic K-matrix D3 projections

$$
\left.\begin{array}{ccc}
K_{x x}^{A_{1}} & = & r_{0}+r_{1}+r_{1}^{*}+i_{1}+i_{2}+i_{3} \\
K_{y y} & = & r_{0}+r_{1}+r_{1}^{*}-i_{1}-i_{2}-i_{3} \\
K_{x x}^{E_{y}} & K_{x y}^{E_{1}} \\
K_{y x}^{E_{1}} & K_{y y}^{E_{1}}
\end{array}\right)=\frac{1}{2}\left(\begin{array}{cc}
2 r_{0}-r_{1}-r_{1}^{*}-i_{1}-i_{2}+2 i_{3} & \sqrt{3}\left(-r_{1}+r_{1}^{*}-i_{1}+i_{2}\right) \\
\sqrt{3}\left(-r_{1}^{*}+r_{1}-i_{1}+i_{2}\right) & 2 r_{0}-r_{1}-r_{1}^{*}+i_{1}+i_{2}-2 i_{3}
\end{array}\right) .
$$

D_{3}-direct-connection vibrational K-matrix

$\left.g_{b}\right\rangle$	1)	$\left.\mathbf{r}^{1}\right\rangle$	$\left.\mathbf{r a}^{2}\right\rangle$	$\left\|\mathbf{i}_{1}\right\rangle$	$\left\|\mathbf{i}_{2}\right\rangle$	$\left\|i_{3}\right\rangle$
$\langle\mathbf{1}\| \mathbf{K}\left\|g_{b}\right\rangle=$	$k_{1}\left(\cos ^{2} 75^{\circ}\right.$ $\left.+\cos ^{2} 15^{\circ}\right)$ $=k_{1}$	\|lor $\mathbf{k}_{1} \cos 75^{\circ}$	$k_{1} \cos 15^{\circ}$ $\cdot \cos 75^{\circ}$ $=\frac{k_{1}}{4}$	\| $\left\lvert\, \begin{aligned} & k_{1} \cos 15^{\circ} \\ & -\cos 15^{\circ} \\ & =\frac{k_{1}(2-\sqrt{3})}{4}\end{aligned}\right.$	$\left\{\begin{array}{l} k_{1} \cos 75^{\circ} \\ -\cos 75^{\circ} \\ =\frac{k_{1}(2+\sqrt{3})}{4} \end{array}\right.$	$\left\lvert\, \begin{aligned} & k_{1}\left(\cos ^{2} 75^{\circ}\right. \\ & \left.-\cos ^{2} 15^{\circ}\right) \\ & =\frac{k_{1}}{2}\end{aligned}\right.$

D_{3}-direct-connection vibrational K-matrix eigenvalues $K_{m} / M=\omega_{m}{ }^{2}$

$$
\begin{array}{rll}
K_{x x}^{A_{1}} & = & 3 k_{1} \\
K_{y y}^{A_{2}} & = & 0 \\
\left(\begin{array}{ll}
K_{x x}^{E_{1}} & K_{x y}^{E_{1}} \\
K_{y x}^{E_{1}} & K_{y y}^{E_{1}}
\end{array}\right) & =\left(\begin{array}{cc}
\frac{3 k_{1}}{4} & \frac{3 k_{1}}{4} \\
\frac{3 k_{1}}{4} & \frac{3 k_{1}}{4}
\end{array}\right)
\end{array}
$$

D_{3}-direct-connection K-matrix eigensolutions Generic K-matrix (Top row)

$$
\langle\mathbf{1}| \mathbf{K}\left|\mathbf{g}_{b}\right\rangle=\left[\begin{array}{llllll}
r_{0} & r_{1} & r_{2} & i_{1} & i_{2} & i_{3}
\end{array}\right]
$$

Generic K-matrix D_{3} projections

$\left.\begin{array}{ccc}K_{x x}^{A_{1}} & = & r_{0}+r_{1}+r_{1}^{*}+i_{1}+i_{2}+i_{3} \\ K_{y y}^{x_{2}} & = & r_{0}+r_{1}+r_{1}^{*}-i_{1}-i_{2}-i_{3} \\ K_{x x}^{E_{1}} & K_{x y}^{E_{1}} \\ K_{y x}^{E_{1}} & K_{y y}^{E_{1}}\end{array}\right)=\frac{1}{2}\left(\begin{array}{cc}2 r_{0}-r_{1}-r_{1}^{*}-i_{1}-i_{2}+2 i_{3} & \sqrt{3}\left(-r_{1}+r_{1}^{*}-i_{1}+i_{2}\right) \\ \sqrt{3}\left(-r_{1}^{*}+r_{1}-i_{1}+i_{2}\right) & 2 r_{0}-r_{1}-r_{1}^{*}+i_{1}+i_{2}-2 i_{3}\end{array}\right)$.

D_{3}-direct-connection vibrational K-matrix

$\left.g_{b}\right\rangle$	\|1 ${ }^{\text {c }}$	$\left.\mathbf{r}^{1}\right\rangle$	$\left.\mathrm{r}^{2}\right\rangle$	$\left\|\mathbf{i}_{1}\right\rangle$	$\left\|\mathbf{i}_{2}\right\rangle$	$\left\|\mathbf{i}_{3}\right\rangle$
$\langle\mathbf{1}\| \mathbf{K}\left\|g_{b}\right\rangle=$	$k_{1}\left(\cos ^{2} 75^{\circ}\right.$ $\left.+\cos ^{2} 15^{\circ}\right)$ $=k_{1}$	($k_{1} \cos 75$	\|l $\begin{aligned} & k_{1} \cos 15^{\circ} \\ & \cdot \cos 75^{\circ} \\ & =\frac{k_{1}}{4}\end{aligned}$	$\left\lvert\, \begin{aligned} & k_{1} \cos 15^{\circ} \\ & \cdot \cos 15^{\circ} \\ & =\frac{k_{1}(2-\sqrt{3})}{4}\end{aligned}\right.$	$\left\lvert\, \begin{aligned} & k_{1} \cos 75^{\circ} \\ & \cdot \cos 75^{\circ} \\ & =\frac{k_{1}(2+\sqrt{3})}{4}\end{aligned}\right.$	$\|$$k_{1}\left(\cos ^{2} 75^{\circ}\right.$ $\left.-\cos ^{2} 15^{\circ}\right)$ $=$ k_{1}

D_{3}-direct-connection vibrational K-matrix eigenvalues $K_{m} / M=\omega_{m}{ }^{2}$

$$
\begin{aligned}
K_{x x}^{A_{1}} & =3 k_{1} & E_{1} \text { Eigenvectors in terms of } D_{3} \supset C_{2}\left(i_{3}\right) E_{1} \text {-vectors } \\
K_{y y}^{k_{y}} & =0 & \left.\left.\mathbf{K} \left\lvert\, \begin{array}{c}
E_{1} \\
g(+)
\end{array}\right.\right)=\mathbf{K}\left(\left\lvert\, \begin{array}{c}
E_{1} \\
g x
\end{array}\right.\right)+\left|\begin{array}{c}
E_{1} \\
g y
\end{array}\right\rangle\right) \frac{1}{\sqrt{2}}=\frac{3 k_{1}}{2}\left|\begin{array}{c}
E_{1} \\
g(+)
\end{array}\right\rangle, \\
\left(\begin{array}{cc}
K_{x x}^{E_{1}} & K_{x y}^{E_{1}} \\
K_{y x}^{E_{1}} & K_{y y}^{E_{1}}
\end{array}\right) & =\left(\begin{array}{cc}
\frac{3 k_{1}}{4} & \frac{3 k_{1}}{4} \\
\frac{3 k_{1}}{4} & \frac{3 k_{1}}{4}
\end{array}\right) & \left.\left.\left.\mathbf{K} \left\lvert\, \begin{array}{c}
E_{1} \\
g(-)
\end{array}\right.\right)=\mathbf{K}\left(\left\lvert\, \begin{array}{c}
E_{1} \\
g x
\end{array}\right.\right)-\left|\begin{array}{c}
E_{1} \\
g y
\end{array}\right\rangle\right) \frac{1}{\sqrt{2}}=0 \left\lvert\, \begin{array}{c}
E_{1} \\
g(-)
\end{array}\right.\right), g=(x \text { or } y) .
\end{aligned}
$$

Mixed local symmetry D_{3} model

E_{1} Eigenvalues: $\frac{3 k_{1}}{2}$

Low-frequency modes

Review: Hamiltonian local-symmetry eigensolution in global and local $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis

Molecular vibrational modes vs. Hamiltonian eigenmodes
Molecular K-matrix construction
$D_{3} \supset C_{2}\left(i_{3}\right)$ local-symmetry K-matrix eigensolutions
D_{3}-direct-connection K-matrix eigensolutions
\rightarrow
$D_{3} \supset C_{3}\left(\mathbf{r}^{ \pm 1}\right)$ local symmetry K-matrix eigensolutions
Applied symmetry reduction and splitting
Subduced irep $D^{\alpha}\left(D^{3}\right) \downarrow C_{2}=d^{0_{2}} \oplus d^{1_{2}} \oplus$.. correlation
Subduced irep $D^{\alpha}\left(D^{3}\right) \downarrow C_{3}=d^{0_{3}} \oplus d^{l_{3}} \oplus$.. correlation

Spontaneous symmetry breaking and clustering: Frobenius Reciprocity, band structure
Induced rep $d^{a}\left(C_{2}\right) \uparrow D^{3}=D^{\alpha} \oplus D^{\beta} \oplus$.. correlation
Induced rep $d^{a}\left(C_{3}\right) \uparrow D^{3}=D^{\alpha} \oplus D^{\beta} \oplus$. correlation
D_{6} symmetry and Hexagonal Bands
Cross product of the C_{2} and D_{3} characters gives all $D_{6}=D_{3} \times C_{2}$ characters and ireps

$D_{3} \supset C_{3}\left(\mathbf{r}^{ \pm 1}\right)$ local symmetry K-matrix eigensolutions

 Generic K-matrix (Top row)
$\langle\mathbf{1}| \mathbf{K}\left|\mathbf{g}_{b}\right\rangle=\left[\begin{array}{llllll}r_{0} & r_{1} & r_{2} & i_{1} & i_{2} & i_{3}\end{array}\right]$

$\langle\mathbf{1}| \mathbf{K}_{C_{3}}\left|\mathbf{g}_{b}\right\rangle=\left[\begin{array}{llllll}r_{0} & \text { ir } & \text {-ir } & 0 & 0 & 0\end{array}\right]$

$D_{3} \supset C_{3}\left(\mathbf{r}^{ \pm 1}\right)$ local symmetry vibrational K-matrix Set: $r_{1}=r=-r_{2}^{*}$, and: $i_{1}=i_{2}=i_{3}=0$

$$
\begin{array}{rlrl}
K_{x x}^{A_{1}} & = & r_{0}+r_{1}+r_{1}^{*}+i_{1}+i_{2}+i_{3} & \\
K_{y y}^{A_{2}} & = & r_{0} \\
\left(\begin{array}{cc}
r_{0}+r_{1}+r_{1}^{*}-i_{1}-i_{2}-i_{3} & \\
K_{x x}^{E_{1}} & K_{x y}^{E_{1}} \\
K_{y x}^{E_{1}} & K_{y y}^{E_{1}}
\end{array}\right)= & =r_{0} \\
\end{array}
$$

$\langle\mathbf{1}| \mathbf{K}\left|\mathbf{g}_{b}\right\rangle=\left[\begin{array}{llllll}r_{0} & r_{1} & r_{2} & i_{1} & i_{2} & i_{3}\end{array}\right]$

$D_{3} \supset C_{3}\left(\mathbf{r}^{ \pm 1}\right)$ local symmetry vibrational K-matrix Set: $r_{1}=r=-r_{2}^{*}$, and: $i_{1}=i_{2}=i_{3}=0$

$$
\begin{array}{lll}
K_{x x}^{A_{1}}= & r_{0}+r_{1}+r_{1}^{*}+i_{1}+i_{2}+i_{3} & =r_{0} \\
K_{y y}^{A_{2}}= & r_{0}+r_{1}+r_{1}^{*}-i_{1}-i_{2}-i_{3} & =r_{0}
\end{array}
$$

$$
\left(\begin{array}{cc}
K_{x x}^{E_{1}} & K_{x y}^{E_{1}} \\
K_{y x}^{E_{1}} & K_{y y}^{E_{1}}
\end{array}\right)=\frac{1}{2}\left(\begin{array}{cc}
2 r_{0}-r_{1}-r_{1}^{*}-i_{1}-i_{2}+2 i_{3} & \sqrt{3}\left(-r_{1}+r_{1}^{*}-i_{1}+i_{2}\right) \\
\sqrt{3}\left(-r_{1}^{*}+r_{1}-i_{1}+i_{2}\right) & 2 r_{0}-r_{1}-r_{1}^{*}+i_{1}+i_{2}-2 i_{3}
\end{array}\right)_{\substack{r_{i}=r=-r_{2}^{*} \\
i_{1}=i_{2} i_{3}=0}}=\left(\begin{array}{cc}
r_{0} & -i r \frac{\sqrt{3}}{2} \\
+i r \frac{\sqrt{3}}{2} & r_{0}
\end{array}\right)
$$

$D_{3} \supset C_{3}\left(\mathbf{r}^{ \pm 1}\right)$ local symmetry vibrational K-matrix eigenvalues $K_{m} / M=\omega_{m^{2}}{ }^{2}$

$$
\begin{array}{rll}
K_{x x}^{A_{1}} & = & r_{0} \\
K_{y y}^{A_{2}} & = & r_{0}
\end{array}
$$

$$
\left(\begin{array}{ll}
K_{x x}^{E_{1}} & K_{x y}^{E_{1}} \\
K_{y x}^{E_{1}} & K_{y y}^{E_{1}}
\end{array}\right)=\left(\begin{array}{cc}
r_{0} & -i r \frac{\sqrt{3}}{2} \\
+i r \frac{\sqrt{3}}{2} & r_{0}
\end{array}\right) \Rightarrow\left(\begin{array}{cc}
r_{0}+r \frac{\sqrt{3}}{2} & 0 \\
0 & r_{0}-r \frac{\sqrt{3}}{2}
\end{array}\right)
$$

$\langle\mathbf{1}| \mathbf{K}\left|\mathbf{g}_{b}\right\rangle=\left[\begin{array}{llllll}r_{0} & r_{1} & r_{2} & i_{1} & i_{2} & i_{3}\end{array}\right]$

$\langle\mathbf{1}| \mathbf{K}_{C_{3}}\left|\mathbf{g}_{b}\right\rangle=\left[\begin{array}{llllll}r_{0} & \text { ir } & -i r & 0 & 0 & 0\end{array}\right]$

$D_{3} \supset C_{3}\left(\mathbf{r}^{ \pm 1}\right)$ local symmetry vibrational K-matrix Set: $\quad r_{1}=r=-r_{2}^{*}$, and: $i_{1}=i_{2}=i_{3}=0$

$$
\begin{array}{lll}
K_{x x}^{A_{1}}= & r_{0}+r_{1}+r_{1}^{*}+i_{1}+i_{2}+i_{3} & =r_{0} \\
K_{y y}^{A_{2}}= & r_{0}+r_{1}+r_{1}^{*}-i_{1}-i_{2}-i_{3} & =r_{0}
\end{array}
$$

$$
\left(\begin{array}{cc}
K_{x x}^{E_{1}} & K_{x y}^{E_{1}} \\
K_{y x}^{E_{1}} & K_{y y}^{E_{1}}
\end{array}\right)=\frac{1}{2}\left(\begin{array}{cc}
2 r_{0}-r_{1}-r_{1}^{*}-i_{1}-i_{2}+2 i_{3} & \sqrt{3}\left(-r_{1}+r_{1}^{*}-i_{1}+i_{2}\right) \\
\sqrt{3}\left(-r_{1}^{*}+r_{1}-i_{1}+i_{2}\right) & 2 r_{0}-r_{1}-r_{1}^{*}+i_{1}+i_{2}-2 i_{3}
\end{array}\right)_{\substack{r_{i}=r=-r_{2}^{*} \\
i_{1}=i_{2} i_{3}=0}}=\left(\begin{array}{cc}
r_{0} & -i r \frac{\sqrt{3}}{2} \\
+i r \frac{\sqrt{3}}{2} & r_{0}
\end{array}\right)
$$

$D_{3} \supset C_{3}\left(\mathbf{r}^{ \pm 1}\right)$ local symmetry vibrational K-matrix eigenvalues $K_{m} / M=\omega_{m^{2}}{ }^{2}$

$$
\begin{array}{lll}
K_{x x}^{A_{1}} & = & r_{0} \\
K_{y y}^{A_{2}} & = & r_{0}
\end{array}
$$

$$
\left(\begin{array}{ll}
K_{x x}^{E_{1}} & K_{x y}^{E_{1}} \\
K_{y x}^{E_{1}} & K_{y y}^{E_{1}}
\end{array}\right)=\left(\begin{array}{cc}
r_{0} & -i r \frac{\sqrt{3}}{2} \\
+i r \frac{\sqrt{3}}{2} & r_{0}
\end{array}\right) \Rightarrow\left(\begin{array}{cc}
r_{0}+r \frac{\sqrt{3}}{2} & 0 \\
0 & r_{0}-r \frac{\sqrt{3}}{2}
\end{array}\right)
$$

$$
\begin{aligned}
& \mathbf{K}\left|\begin{array}{c}
E_{1} \\
g(1)_{3}
\end{array}\right\rangle=\mathbf{K}\left(\left|\begin{array}{c}
E_{1} \\
g x
\end{array}\right\rangle+i\left|\begin{array}{c}
E_{1} \\
g y
\end{array}\right|\right) \frac{1}{\sqrt{2}}=+r \frac{\sqrt{3}}{2}\left|\begin{array}{c}
E_{1} \\
g(1)_{3}
\end{array}\right\rangle, \\
& \mathbf{K}\left|\begin{array}{c}
E_{1} \\
g(2)_{3}
\end{array}\right\rangle=\mathbf{K}\left(\left|\begin{array}{c}
E_{1} \\
g x
\end{array}\right\rangle-i\left|\begin{array}{c}
E_{1} \\
g y
\end{array}\right\rangle\right) \frac{1}{\sqrt{2}}=-r \frac{\sqrt{3}}{2}\left|\begin{array}{c}
E_{1} \\
g(2)_{3}
\end{array}\right\rangle .
\end{aligned}
$$

E_{1} Eigenvectors in terms of $D_{3} \supset C_{2}\left(i_{3}\right) E_{1}$-vectors
$\mathbf{K}\left|\begin{array}{c}E_{1} \\ g(1)_{3}\end{array}\right\rangle=\mathbf{K}\left(\left|\begin{array}{c}E_{1} \\ g x\end{array}\right\rangle+i\left|\begin{array}{c}E_{1} \\ g y\end{array}\right\rangle\right) \frac{1}{\sqrt{2}}=+r \frac{\sqrt{3}}{2}\left|\begin{array}{c}E_{1} \\ g(1)_{3}\end{array}\right\rangle$,
Strong
C_{3} coupling
limit

$\left.\mathbf{K}\left|\begin{array}{c}E_{1} \\ g(2)_{3}\end{array}\right\rangle=\mathbf{K}\left(\left\lvert\, \begin{array}{c}E_{1} \\ g x\end{array}\right.\right)-i\left|\begin{array}{l}E_{1} \\ g y\end{array}\right\rangle\right) \frac{1}{\sqrt{2}}=-r \frac{\sqrt{3}}{2}\left|\begin{array}{c}E_{1} \\ g(2)_{3}\end{array}\right\rangle$.

Review: Hamiltonian local-symmetry eigensolution in global and local $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis

Molecular vibrational modes vs. Hamiltonian eigenmodes
Molecular K-matrix construction
$D_{3} \supset C_{2}\left(i_{3}\right)$ local-symmetry K-matrix eigensolutions
D3-direct-connection K-matrix eigensolutions
$D_{3} \supset C_{3}\left(\mathbf{r}^{ \pm 1}\right)$ local symmetry K-matrix eigensolutions
\rightarrow Applied symmetry reduction and splitting
Subduced irep $D^{\alpha}\left(D^{3}\right) \downarrow C_{2}=d^{0_{2}} \oplus d^{1_{2}} \oplus$.. correlation
Subduced irep $D^{\alpha}\left(D^{3}\right) \downarrow C_{3}=d^{0_{3}} \oplus d^{1_{3}} \oplus$.. correlation

Spontaneous symmetry breaking and clustering: Frobenius Reciprocity, band structure
Induced rep d $d^{a}\left(C_{2}\right) \uparrow D^{3}=D^{\alpha} \oplus D^{\beta} \oplus$. correlation
Induced rep $d^{a}\left(C_{3}\right) \uparrow D^{3}=D^{\alpha} \oplus D^{\beta} \oplus$.. correlation
D_{6} symmetry and Hexagonal Bands
Cross product of the C_{2} and D_{3} characters gives all $D_{6}=D_{3} \times C_{2}$ characters and ireps

Applied symmetry reduction and splitting: Subduced irep $D^{\alpha}\left(D^{3}\right) \downarrow C_{2}=d^{02} \oplus d^{l^{2}} \oplus$.. correlation

Applied symmetry reduction and splitting: Subduced irep $D^{\alpha}\left(D^{3}\right) \downarrow C_{2}=d^{0} \oplus d^{l^{2}} \oplus$.. correlation

$$
\begin{aligned}
& D_{3} \supset C_{2} \quad \mathbf{P}^{\alpha} \text { relabel/split } \quad D^{\alpha} \text { relabel/reduce } \quad{ }^{\alpha} \text { relabel/split } \\
& A_{1} \quad \mathbf{P}^{A_{1}}=\mathbf{P}^{4} \mathbf{P}^{\mathbf{0}_{2}}=\mathbf{P}_{0,2}^{A_{0}} \quad \Rightarrow D^{A_{1}} \downarrow C_{2} \sim d^{0_{2}} \quad \Rightarrow \omega^{A_{1}} \rightarrow \omega^{0_{2}}
\end{aligned}
$$

$$
\begin{aligned}
& E_{1} \quad \mathbf{P}^{E_{1}}=\mathbf{P}^{E_{1}} \mathbf{P}^{\mathbf{0}_{2}}+\mathbf{P}^{E_{1}} \mathbf{P}^{1_{2}} \Rightarrow D^{E_{1}} \downarrow C_{2} \sim \quad \Rightarrow \boldsymbol{\omega}^{E_{1}} \rightarrow \omega^{0_{2}} \\
& =\mathbf{P}_{0_{2} 0_{2}}^{E_{1}}+\mathbf{P}_{l_{2}}^{E_{1}} \quad d^{t_{2}} \oplus d^{l_{2}} \quad \searrow \omega^{l_{2}}
\end{aligned}
$$

Applied symmetry reduction and splitting: Subduced irep $D^{\alpha}\left(D^{3}\right) \downarrow C_{2}=d^{02} \oplus d^{12} \oplus$.. correlation

$$
\begin{aligned}
& D_{3} \supset C_{2} \quad \mathbf{P}^{\alpha} \text { relabel/split } \quad D^{\alpha} \text { relabel/reduce } \quad{ }^{\alpha} \text { relabel/split } \\
& A_{1} \quad \mathbf{P}^{A_{1}}=\mathbf{P}^{4} \mathbf{P}^{\mathbf{0}_{2}}=\mathbf{P}_{0_{2} 0_{2}}^{A_{1}} \quad \Rightarrow D^{A_{1}} \downarrow C_{2} \sim d^{0_{2}} \quad \Rightarrow \omega^{A_{1}} \rightarrow \omega^{0_{2}} \\
& A_{2} \quad \mathbf{P}^{4_{2}}=\mathbf{P}^{t^{4}} \mathbf{P}^{b_{1}}=\mathbf{P}_{1 l_{2}}^{b_{2}} \quad \Rightarrow D^{a^{2}} \downarrow C_{2} \sim d^{l_{2}} \quad \Rightarrow \boldsymbol{\omega}^{a_{2}} \rightarrow \boldsymbol{\omega}^{1_{2}} \\
& E_{1} \quad \mathbf{P}^{E_{1}}=\mathbf{P}^{E_{E_{2}}} \mathbf{P}^{0_{2}}+\mathbf{P}^{E_{1}} \mathbf{P}^{1_{2}} \quad \Rightarrow D^{E_{1}} \downarrow C_{2} \sim \quad \Rightarrow \boldsymbol{\omega}^{E_{1}} \rightarrow \omega^{0_{2}} \\
& =\mathbf{P}_{0_{2} 0_{2}}^{E_{1}}+\mathbf{P}_{l_{12}}^{E_{1}} \quad d^{0_{2}} \oplus d^{l_{2}} \quad \searrow \omega^{1_{2}}
\end{aligned}
$$

$D_{3} \supset C_{2}$	0_{2}	1_{2}
A_{1}	1	\cdot
A_{2}	\cdot	1
E_{1}	1	1

Applied symmetry reduction and splitting: Subduced irep $D^{\alpha}\left(D^{3}\right) \downarrow C_{2}=d^{0} \oplus d^{l^{2}} \oplus$.. correlation

$D_{3} \supset C_{2}$	$\mathbf{P}^{\text {r relabel/split }}$	D^{α} relabel/reduce	ω^{α} relabel/split
A_{1}	$\mathbf{P}^{4}=\mathbf{P}^{4} \mathbf{P}^{\mathbf{0}_{2}}=\mathbf{P}_{0_{2} 0_{2}}^{4}$	$\Rightarrow D^{A_{1}} \downarrow C_{2} \sim d^{0_{2}}$	$\Rightarrow \omega^{A_{1}} \rightarrow \omega^{0_{2}}$
A_{2}	$\mathbf{P}^{\downarrow}=\mathbf{P}^{\dagger} \mathbf{P}^{\downarrow}=\mathbf{P}^{4}$	$\Rightarrow D^{\natural} \downarrow C_{2} \sim d^{\downarrow}$	$\Rightarrow \boldsymbol{\omega}^{4_{2}} \rightarrow \boldsymbol{\omega}^{1_{2}}$
E_{1}	$\mathbf{P}^{E_{1}}=\mathbf{P}^{E_{1}} \mathbf{P}^{0_{2}}+\mathbf{P}^{E_{E_{2}} \mathbf{P}^{1_{2}}}$	$\Rightarrow D^{E_{1}} \downarrow C_{2} \sim$	$\Rightarrow \omega^{E_{1}} \rightarrow \omega^{0_{2}}$
	$=\mathbf{P}_{0,0,2}^{E_{2}}+\mathbf{P}_{\mathrm{P}_{1,1} E_{1}}^{E_{1}}$	$d^{0} \oplus d^{1}$	$\searrow \omega$

$D_{3} \supset C_{2}$	0_{2}	1_{2}
A_{1}	1	\cdot
A_{2}	\cdot	1
E_{1}	1	1

Applied symmetry reduction and splitting: Subduced irep $D^{\alpha}\left(D^{3}\right) \downarrow C_{3}=d^{0_{3}} \oplus d^{13} \oplus$.. correlation

Applied symmetry reduction and splitting: Subduced irep $D^{\alpha}\left(D^{3}\right) \downarrow C_{2}=d^{0} \oplus d^{l^{2}} \oplus$.. correlation

$$
\begin{aligned}
& D_{3} \supset C_{2} \quad \mathbf{P}^{\alpha} \text { relabel/split } \quad D^{\alpha} \text { relabel/reduce } \quad{ }^{\alpha} \text { relabel/split } \\
& A_{1} \quad \mathbf{P}^{A_{1}}=\mathbf{P}^{4} \mathbf{P}^{\mathbf{0}_{2}}=\mathbf{P}_{0_{2} 0_{2}}^{A_{0}} \quad \Rightarrow D^{A_{1}} \downarrow C_{2} \sim d^{0_{2}} \quad \Rightarrow \omega^{A_{1}} \rightarrow \omega^{0_{2}}
\end{aligned}
$$

$$
\begin{aligned}
& E_{1} \quad \mathbf{P}^{E_{1}}=\mathbf{P}^{E_{E_{2}}} \mathbf{P}^{0_{2}}+\mathbf{P}^{E_{1}} \mathbf{P}^{1_{2}} \quad \Rightarrow D^{E_{1}} \downarrow C_{2} \sim \quad \Rightarrow \boldsymbol{\omega}^{E_{1}} \rightarrow \omega^{0_{2}}
\end{aligned}
$$

$D_{3} \supset C_{2}$	0_{2}	1_{2}
A_{1}	1	\cdot
A_{2}	\cdot	1
E_{1}	1	1

Applied symmetry reduction and splitting: Subduced irep $D^{\alpha}\left(D^{3}\right) \downarrow C_{3}=d^{0_{3}} \oplus d^{13} \oplus$.. correlation

$D_{3} \supset C_{3}$	\mathbf{P}^{α} relabel/split	D^{α} relabel/reduce	ω^{α} relabel/split
A_{1}	$\mathbf{P}^{4}=\mathbf{P}^{4} \mathbf{P}^{\mathbf{0}_{3}{ }^{3}}=\mathbf{P}_{0,0}^{4}{ }_{0}^{4}$	$\Rightarrow D^{4} \downarrow C_{3} \sim d^{0_{3}}$	$\Rightarrow \omega^{4} \rightarrow \omega^{0_{3}}$
A_{2}	$\mathbf{P}^{4}=\mathbf{P}^{4} \mathbf{P}^{\mathbf{0}_{3}}=\mathbf{P}_{0,00_{3}}^{\lambda_{3}}$	$\Rightarrow D^{12} \downarrow C_{3} \sim d^{0_{3}}$	$\Rightarrow \omega^{\lambda_{2}} \rightarrow \omega^{0_{3}}$
E_{1}		$\Rightarrow D^{E_{1}} \downarrow C_{3} \sim$	$\Rightarrow \omega^{E_{1}} \rightarrow \omega^{1_{3}}$
	$=\mathbf{P}_{1 l_{3}}^{E_{1}}+\mathbf{P}_{2,3}^{E_{1}}$	$d^{13} \oplus d^{23}$	$\downarrow \omega^{23}$

Applied symmetry reduction and splitting: Subduced irep $D^{\alpha}\left(D^{3}\right) \downarrow C_{2}=d^{02} \oplus d^{l_{2}} \oplus$.. correlation

$D_{3} \supset C_{2}$	\mathbf{P}^{α} relabel/split	$\underline{D^{\alpha} \text { relabel/reduce }}$	ω^{α} relabel/split	$D_{3} \supset C_{2}$	$0_{2} \quad 12$
A_{1}	$\mathbf{P}^{4}=\mathbf{P}^{4} \mathbf{P}^{\mathbf{0}_{2}}=\mathbf{P}_{0_{2} 0_{2}}^{4}$	$\Rightarrow D^{1} \downarrow C_{2} \sim d^{0_{2}}$	$\Rightarrow \omega^{A_{1}} \rightarrow \omega^{0_{2}}$	A_{1}	1
A_{2}	$\mathbf{P}^{t}=\mathbf{P}^{4} \mathbf{P}^{l^{2}}=\mathbf{P}^{\text {b }}$	$\Rightarrow D^{\natural} \downarrow C_{2} \sim d^{\downarrow}$	$\Rightarrow \omega^{4_{2}} \rightarrow \omega^{1_{2}}$	A_{2}	1
E_{1}	$\mathbf{P}^{E_{1}}=\mathbf{P}^{E_{1}} \mathbf{P}^{0_{2}}+\mathbf{P}^{E_{E_{2}} \mathbf{P}^{1_{2}}}$	$\Rightarrow D^{E_{1}} \downarrow C_{2} \sim$	$\Rightarrow \omega^{E_{1}} \rightarrow \omega^{0_{2}}$	E_{1}	$1 \quad 1$
	$=\mathbf{P}_{0,2}^{E_{2}} \underline{1}_{1}+\mathbf{P}_{12}^{E_{1}}$	$d^{0_{2}} \oplus d^{1}$	$\downarrow \omega^{\prime}$		

Applied symmetry reduction and splitting: Subduced irep $D^{\alpha}\left(D^{3}\right) \downarrow C_{3}=d^{0^{3}} \oplus d^{l_{3}} \oplus$.. correlation

$D_{3} \supset C_{3}$	$\frac{\mathbf{P}^{\alpha} \text { relabel/split }}{\mathbf{P}^{4} \mathbf{P}^{4} \mathbf{P}^{\mathbf{0}^{3}} \mathbf{P}^{4}}$	D^{α} relabel/reduce	$\omega^{\alpha} \mathrm{relabel} /$ split	$D_{3} \supset C_{3}$				23
A_{1}	$\mathbf{P}^{4}=\mathbf{P}^{4} \mathbf{P}^{\mathbf{0}_{3}}=\mathbf{P}_{0,00_{3}}^{4_{4}^{4}}$	$\Rightarrow D^{4} \downarrow C_{3} \sim d^{0_{3}}$	$\Rightarrow \omega^{A_{1}} \rightarrow \omega^{0_{3}}$	$\frac{A_{1}}{}$	1			
A_{2}	$\mathbf{P}^{4}=\mathbf{P}^{t} \mathbf{P}^{\mathbf{0}_{3}{ }_{3}}=\mathbf{P}_{0,0}^{4} 0_{3}^{4}$	$\Rightarrow D^{12} \downarrow C_{3} \sim d^{0_{3}}$	$\Rightarrow \omega^{1_{2}} \rightarrow \omega^{0_{3}}$	${ }_{\text {A }}^{1}$	1			
E_{1}		$\begin{aligned} & \Rightarrow D^{E_{1}} \downarrow C_{3} \sim \\ & \quad d^{l^{13}} \oplus d^{2_{3}} \end{aligned}$	$\begin{aligned} \Rightarrow \omega^{E_{1}} & \rightarrow \omega^{1_{3}} \\ & \searrow \omega^{2_{3}} \end{aligned}$	E_{1}			1	1

Review: Hamiltonian local-symmetry eigensolution in global and local $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis
Molecular vibrational modes vs. Hamiltonian eigenmodes
Molecular K-matrix construction
$D_{3} \supset C_{2}\left(i_{3}\right)$ local-symmetry K-matrix eigensolutions
D_{3}-direct-connection K-matrix eigensolutions
$D_{3} \supset C_{3}\left(\mathbf{r}^{ \pm 1}\right)$ local symmetry K-matrix eigensolutions
Applied symmetry reduction and splitting
Subduced irep $D^{\alpha}\left(D^{3}\right) \downarrow C_{2}=d^{0_{2}} \oplus d^{l^{2}} \oplus$.. correlation
Subduced irep $D^{\alpha}\left(D^{3}\right) \downarrow C_{3}=d^{0_{3}} \oplus d^{l_{3}} \oplus$.. correlation
T
Spontaneous symmetry breaking and clustering: Frobenius Reciprocity, band structure
Induced rep $d^{a}\left(C_{2}\right) \uparrow D^{3}=D^{\alpha} \oplus D^{\beta} \oplus$.. correlation

Induced rep da $\left(C_{3}\right) \uparrow D^{3}=D^{\alpha} \oplus D^{\beta} \oplus$.. correlation
D_{6} symmetry and Hexagonal Bands
Cross product of the C_{2} and D_{3} characters gives all $D_{6}=D_{3} \times C_{2}$ characters and ireps

Applied symmetry reduction and splitting: Subduced irep $D^{\alpha}\left(D^{3}\right) \downarrow C_{2}=d^{02} \oplus d^{l^{2}} \oplus$.. correlation

$D_{3} \supset C_{2}$	$\mathbf{P}^{\text {a }}$ relabel/split	D^{α} relabel/reduce	ω^{α} relabel/split	$D_{3} \supset C_{2}$	$\mathrm{O}_{2} 1_{2}$	
A_{1}	$\mathbf{P}^{4_{1}}=\mathbf{P}^{4} \mathbf{P}^{\mathbf{0}_{2}}=\mathbf{P}_{0,2}^{4}{ }_{0}^{4}$	$\Rightarrow D^{A} \downarrow C_{2} \sim d^{0_{2}}$	$\Rightarrow \omega^{A_{1}} \rightarrow \omega^{0_{2}}$	A_{1}	1 .	$D^{A_{1}}\left(D_{3}\right) \downarrow C_{2} \sim d^{0_{2}}$
A_{2}		$\Rightarrow D^{4} \downarrow C_{2} \sim d^{12}$	$\Rightarrow \boldsymbol{\omega}^{4_{2}} \rightarrow \boldsymbol{\omega}^{l_{2}}$	A_{2}	1	$D^{A_{2}}\left(D_{3}\right) \downarrow C_{2} \sim d^{l_{2}}$
E_{1}	$\mathbf{P}^{E_{1}} \mathbf{P}^{E_{1}} \mathbf{P}^{0_{2}}+\mathbf{P}_{\boldsymbol{E}_{1}}^{\mathbf{P}_{2}}$	$\Rightarrow D^{E_{1}} \downarrow C_{2} \sim$	$\Rightarrow \omega^{E_{1}} \rightarrow \omega^{0_{2}}$	E_{1}	11	$D^{E_{1}}\left(D_{3}\right) \downarrow C_{2} \sim d^{0_{2}} \oplus d^{1}$
	$=\mathbf{P}_{0,2}^{E_{2}}+\mathbf{P}_{1 l_{12}}^{E_{1}}$	$d^{00_{2}} \oplus d$	$\searrow \omega^{12}$	$d^{0_{2}}\left(C_{2}\right) \uparrow D_{3}$		
ntaneous symmetry breaking				$\sim D^{A_{1}} \oplus D^{E_{1}}$		
clustering: Induced rep $d^{a}\left(C_{2}\right) \uparrow D^{3}=D^{\alpha} \oplus D^{\beta} \oplus .$. correlatio				$d^{l_{2}}\left(C_{2}\right) \uparrow D_{3}$		
				$\sim D^{A_{2}} \oplus D^{E_{1}}$		

and clustering: Induced rep $d^{a}\left(C_{2}\right) \uparrow D^{3}=D^{\alpha} \oplus D^{\beta} \oplus$. correlation

$$
\begin{aligned}
& d^{l_{2}}\left(C_{2}\right) \uparrow D_{3} \\
& \sim D^{A_{2}} \oplus D^{E_{1}}
\end{aligned}
$$

Applied symmetry reduction and splitting: Subduced irep $D^{\alpha}\left(D^{3}\right) \downarrow C_{3}=d^{03} \oplus d^{13} \oplus$.. correlation

Frobenius Reciprocity Theorem

Number of D^{α} in $d^{k}(K) \uparrow G=$ Number of d^{k} in $D^{\alpha}(G) \downarrow K$

Frobenius Reciprocity Theorem

$$
\text { Number of } D^{\alpha} \text { in } d^{k}(K) \uparrow G=\text { Number of } d^{k} \text { in } D^{\alpha}(G) \downarrow K
$$

.. and regular representation

$D_{3} \supset C_{1}$	$0_{1}=1_{1}$
A_{1}	1
A_{2}	1
E_{1}	2

Frobenius Reciprocity Theorem

$$
\text { Number of } D^{\alpha} \text { in } d^{k}(K) \uparrow G=\text { Number of } d^{k} \text { in } D^{\alpha}(G) \downarrow K
$$

.. and regular representation

$D_{3} \supset C_{1}$	$0_{1}=1_{1}$						
A_{1}	1						
A_{2}	1						
E_{1}	2	\quad	$D_{3} \supset C_{2}$	0_{2}	1_{2}		
:---:	:---:	:---:	:---:				
A_{1}	1	\cdot					
A_{2}	\cdot	1					
E_{1}	1	1	\quad	$D_{3} \supset C_{3}$	0_{3}	1_{3}	2_{3}
:---:	:---:	:---:	:---:				
A_{1}	1	\cdot	\cdot				
A_{2}	1	\cdot	\cdot				
E_{1}	\cdot	1	1				

Review: Hamiltonian local-symmetry eigensolution in global and local $\left|\mathbf{P}^{(\mu)}\right\rangle$-basis
Molecular vibrational modes vs. Hamiltonian eigenmodes
Molecular K-matrix construction
$D_{3} \supset C_{2}\left(i_{3}\right)$ local-symmetry K-matrix eigensolutions
D_{3}-direct-connection K-matrix eigensolutions
$D_{3} \supset C_{3}\left(\mathbf{r}^{ \pm 1}\right)$ local symmetry K-matrix eigensolutions

Applied symmetry reduction and splitting
Subduced irep $D^{\alpha}\left(D^{3}\right) \downarrow C_{2}=d^{0_{2}} \oplus d^{1_{2}} \oplus .$. correlation
Subduced irep $D^{\alpha}\left(D^{3}\right) \downarrow C_{3}=d^{03} \oplus d^{13} \oplus$.. correlation

Spontaneous symmetry breaking and clustering: Frobenius Reciprocity, band structure
Induced rep $d^{a}\left(C_{2}\right) \uparrow D^{3}=D^{\alpha} \oplus D^{\beta} \oplus$.. correlation
Induced rep $d^{a}\left(C_{3}\right) \uparrow D^{3}=D^{\alpha} \oplus D^{\beta} \oplus$.. correlation
$1 D_{6}$ symmetry and Hexagonal Bands
Cross product of the C_{2} and D_{3} characters gives all $D_{6}=D_{3} \times C_{2}$ characters and ireps

D_{6} symmetry and Hexagonal Bands

D_{6} is the outer product (\times) product $D_{3} \times C_{2}$ of D_{3} and C_{2}. (Requires C_{2} to commute with all of D_{3}.) $D_{6}=D_{3} \times C_{2}=\left\{\mathbf{1}, \mathbf{r}, \mathbf{r}^{2}, \mathbf{i}_{1}, \mathbf{i}_{2}, \mathbf{i}_{3}\right\} \times\left\{\mathbf{1}, \mathbf{R}_{z}\right\}$
\times product and D_{6} operators. Define hexagonal generator \mathbf{h} of subgroup $C_{6}=\left\{\mathbf{1}, \mathbf{h}, \mathbf{h}^{2}, \mathbf{h}^{3}, \mathbf{h}^{4} \mathbf{h}^{5}\right\}$

$$
\left.\begin{array}{l}
D_{6}=D_{3} \times C_{2}=\left\{\mathbf{1}, \mathbf{r}, \mathbf{r}^{2}, \mathbf{i}_{1}, \mathbf{i}_{2}, \mathbf{i}_{3}, \mathbf{1} \cdot \mathbf{R}_{\mathrm{z}}, \mathbf{r} \cdot \mathbf{R}_{\mathrm{z}}, \mathbf{r}^{2} \cdot \mathbf{R}^{\mathrm{z}}, \mathbf{i}_{1} \cdot \mathbf{R}_{\mathrm{z}}, \mathbf{i}_{2} \cdot \mathbf{R}_{\mathrm{z}}, \mathbf{i}_{3} \cdot \mathbf{R}_{z}\right\} \\
D_{6}=D_{3} \times C_{2}=\left\{\mathbf{1}, \mathbf{h}^{2}, \mathbf{h}^{4}, \mathbf{i}_{1}, \mathbf{i}_{2}, \mathbf{i}_{3}, \mathbf{h}^{3}, \mathbf{h}^{5}, \quad \mathbf{h}, \quad \mathbf{j}_{1}, \quad \mathbf{j}_{2}, \quad \mathbf{j}_{3}\right.
\end{array}\right\}
$$

Electrostatic potential $V(\phi)$ doesn't care which way is "up." Wells remain wells, and barriers remain barriers under all $D 6$ operations.

Cross product of the C_{2} and D_{3} characters gives all $D_{6}=D_{3} \times C_{2}$ characters.

"Always-the-same vs Back-and-forth"
(Recall $C_{2} \times C_{2}=D_{2}$ characters made of two C_{2} groups)

Unit translation
or determines A_{p} vs B_{p} $(+1)$ vs (-1)

Cross product of the C_{2} and D_{3} ireps gives all $D_{6}=D_{3} \times C_{2}$ ireps.

Odd vs Even

Cross product of the C_{2} and D_{3} ireps gives all $D_{6}=D_{3} \times C_{2}$ ireps.

