Group Theory in Quantum Mechanics Lecture 17 (3.20.15)

Vibrational modes and symmetry reciprocity: Induced reps

(Int.J.Mol.Sci, 14, 714(2013) p.755-774, QTCA Unit 5 Ch. 15)

(PSDS - Ch. 4)

Review: Hamiltonian local-symmetry eigensolution in global and local $|\mathbf{P}^{(\mu)}\rangle$ -basis

Molecular vibrational modes vs. Hamiltonian eigenmodes Molecular K-matrix construction $D_3 \supset C_2(i_3)$ local-symmetry K-matrix eigensolutions D_3 -direct-connection K-matrix eigensolutions $D_3 \supset C_3(\mathbf{r}^{\pm 1})$ local symmetry K-matrix eigensolutions

Applied symmetry reduction and splitting Subduced irep $D^{\alpha}(D_3) \downarrow C_2 = d^{0_2} \oplus d^{1_2} \oplus ...$ correlation Subduced irep $D^{\alpha}(D_3) \downarrow C_3 = d^{0_3} \oplus d^{1_3} \oplus ...$ correlation

Spontaneous symmetry breaking and clustering: Frobenius Reciprocity, band structure Induced rep $d^a(C_2)\uparrow D_3 = D^{\alpha}\oplus D^{\beta}\oplus...$ correlation Induced rep $d^a(C_3)\uparrow D_3 = D^{\alpha}\oplus D^{\beta}\oplus...$ correlation

D₆ symmetry and Hexagonal Bands

Cross product of the C_2 and D_3 characters gives all $D_6 = D_3 \times C_2$ characters and ireps Induced rep $d^a(C_2)\uparrow D_6 = D^{\alpha} \oplus D^{\beta} \oplus ...$ correlation Induced rep $d^a(C_6)\uparrow D_6 = D^{\alpha} \oplus D^{\beta} \oplus ...$ correlation

Review: Hamiltonian local-symmetry eigensolution in global and local $|\mathbf{P}^{(\mu)}\rangle$ -basis

Molecular vibrational modes vs. Hamiltonian eigenmodes Molecular K-matrix construction $D_3 \supset C_2(i_3)$ local-symmetry K-matrix eigensolutions D_3 -direct-connection K-matrix eigensolutions $D_3 \supset C_3(\mathbf{r}^{\pm 1})$ local symmetry K-matrix eigensolutions

Applied symmetry reduction and splitting Subduced irep $D^{\alpha}(D^3) \downarrow C_2 = d^{0_2} \oplus d^{1_2} \oplus ...$ correlation Subduced irep $D^{\alpha}(D^3) \downarrow C_3 = d^{0_3} \oplus d^{1_3} \oplus ...$ correlation

Spontaneous symmetry breaking and clustering: Frobenius Reciprocity, band structure Induced rep $d^{a}(C_{2})\uparrow D^{3} = D^{\alpha}\oplus D^{\beta}\oplus..$ correlation Induced rep $d^{a}(C_{3})\uparrow D^{3} = D^{\alpha}\oplus D^{\beta}\oplus..$ correlation

*D*₆ symmetry and Hexagonal Bands

Cross product of the C_2 and D_3 characters gives all $D_6 = D_3 \times C_2$ characters and ireps

 D_3 global-g group matrices in $|\mathbf{P}^{(\mu)}\rangle$ -basis

*D*₃ *local*- $\overline{\mathbf{g}}$ group matrices in $|\mathbf{P}^{(\mu)}\rangle$ -basis

$R^P(\mathbf{g}) = TR$	$R^G(\mathbf{g})T^{\dagger} =$	=					$R^P\left(\overline{\mathbf{g}}\right) = TR$	$G\left(\overline{\mathbf{g}}\right)T^{\dagger} =$				
$\left \mathbf{P}_{xx}^{\mathcal{A}_{l}}\right\rangle$	$\left \mathbf{P}_{yy}^{A_2}\right\rangle$	$\left \mathbf{P}_{xx}^{E_{1}}\right\rangle$	$\left \mathbf{P}_{yx}^{E_{1}}\right\rangle$	$\left \mathbf{P}_{xy}^{E_{1}}\right\rangle$	$\left \mathbf{P}_{yy}^{E_1}\right\rangle$		$\left \mathbf{P}_{xx}^{A_{\mathrm{l}}}\right\rangle$	$\left \mathbf{P}_{yy}^{A_{2}}\right\rangle$	$\left \mathbf{P}_{xx}^{E_{1}}\right\rangle$	$\left \mathbf{P}_{yx}^{E_{1}}\right\rangle$	$\left \mathbf{P}_{xy}^{E_{1}}\right\rangle$	$\left \mathbf{P}_{yy}^{E_{1}}\right\rangle$
$\int D^{A_1}(\mathbf{g})$					•		$\left(D^{A_{l}*}(\mathbf{g}) \right)$		•			•
	$D^{A_2}(\mathbf{g})$		•			$ \mathbf{P}^{(\mu)}\rangle$ -base		$D^{A_2^*}(\mathbf{g})$	•			•
		$D_{xx}^{E_1}(\mathbf{g})$	$D_{xy}^{E_1}$			ordering to			$D_{xx}^{E_1^*}(\mathbf{g})$		$D_{xy}^{E_1^*}(\mathbf{g})$	
		$D_{yx}^{E_1}(\mathbf{g})$	$D_{yy}^{E_1}$			<i>concentrate</i>				$D_{xx}^{E_1^*}(\mathbf{g})$		$D_{xy}^{E_1^*}(\mathbf{g})$
				$D_{xx}^{E_1}(\mathbf{g})$	$D_{xy}^{E_1}$	D-matrices			$D_{yx}^{E_1^*}(\mathbf{g})$		$D_{yy}^{E_1^*}(\mathbf{g})$	
				$D_{yx}^{E_1}(\mathbf{g})$	$D_{yy}^{E_1}$					$D_{yx}^{E_1^*}(\mathbf{g})$		$D_{yy}^{E_1^*}(\mathbf{g})$
$\overline{D}^{P}(z) = \overline{T}$	$\mathbf{p}G(z)\overline{\tau}^{\dagger}$			\checkmark			$\overline{p}^{P}(\overline{z}) = \overline{T}p^{P}(\overline{z})$	$G(=)\overline{\tau}^{\dagger}$			\checkmark	
$R (\mathbf{g}) = II$	$\mathbf{x} \left(\mathbf{g} \right) I =$	=	, ↓,	↓ ↓ ,			$K(\mathbf{g}) = IK$	$(\mathbf{g})I =$			\mathcal{I}	I .
$\left \mathbf{P}_{xx}^{A_{\mathrm{l}}}\right\rangle$	$\left \mathbf{P}_{yy}^{A_2}\right\rangle$	$\left \mathbf{P}_{xx}^{E_{1}}\right\rangle$	$\left \mathbf{P}_{xy}^{E_{1}}\right\rangle$	$\left \mathbf{P}_{yx}^{E_{1}}\right\rangle$	$\left \mathbf{P}_{yy}^{E_{1}}\right\rangle$		$\left \mathbf{P}_{xx}^{A_{1}}\right\rangle$	$\left \mathbf{P}_{yy}^{A_2}\right\rangle$	$\left \mathbf{P}_{xx}^{E_{1}}\right\rangle$	$\left \mathbf{P}_{xy}^{E_{1}}\right\rangle$	$\left \mathbf{P}_{yx}^{E_{1}}\right\rangle$	$\left \mathbf{P}_{yy}^{E_{1}}\right\rangle$
$\left(D^{A_{l}}(\mathbf{g}) \right)$						$ \mathbf{D}(\mathbf{u})\rangle \mathbf{h} = \mathbf{r} \mathbf{r} \mathbf{c}$	$\left(D^{A_{l}^{*}}(\mathbf{g}) \right)$					•
	$D^{A_2}(\mathbf{g})$					$ \mathbf{P}^{(\mu)}\rangle$ -Dase		$D^{A_2^*}(\mathbf{g})$				
		$D_{xx}^{E_1}(\mathbf{g})$		$D_{xy}^{E_1}(\mathbf{g})$		concentrate			$D_{xx}^{E_1^*}(\mathbf{g})$	$D_{xy}^{E_1^*}(\mathbf{g})$		
			$D_{xx}^{E_1}$		$D_{xy}^{E_1}$	$local-\overline{\mathbf{g}}$			$D_{yx}^{E_1^*}(\mathbf{g})$	$D_{yy}^{E_1^*}(\mathbf{g})$		
•		$D_{yx}^{E_1}(\mathbf{g})$		$D_{yy}^{E_1}\left(\mathbf{g}\right)$		and					$D_{xx}^{E_1^*}(\mathbf{g})$	$D_{xy}^{E_1^*}(\mathbf{g})$
			$D_{yx}^{E_1}$		$D_{yy}^{E_1}$	H -matrices			•		$D_{yx}^{E_1^*}(\mathbf{g})$	$D_{yy}^{E_1^*}(\mathbf{g})$
Global g- n	natrix o	<i>lobal</i> g-matrix component <i>Local</i> g-matrix component										
/ 11												

$$\begin{array}{l} D_{3} Hamiltonian \, |ocal - \mathbf{H} \, matrices \, in \, |\mathbf{P}^{(h)}\rangle - basis \\ Review \, excerpts \, of \, Lecture \, 16 \\ \mathbf{H} \, matrix \, in \\ |\mathbf{g}\rangle - basis: \\ (\mathbf{H})_{G} = \sum_{g=1}^{o_{G}} r_{g} \overline{\mathbf{g}} = \left(\begin{array}{c} \left[\frac{r_{0}}{r_{2}} - \frac{r_{1}}{r_{1}} + \frac{1}{2} - \frac{1}{s_{1}} \right] \\ \frac{r_{1}}{r_{2}} - r_{1} - r_{0} \, i_{2} \, i_{3} \\ i_{1} & i_{2} & r_{0} - r_{1} \\ i_{1} & i_{3} & i_{2} - r_{0} - r_{1} \\ i_{3} & i_{2} & i_{1} - r_{1} - r_{2} \\ r_{2} & i_{1} & r_{1} - r_{2} - r_{0} \end{array} \right) \\ \mathbf{H}_{matrix} \left(\mathbf{H} \right)_{\mu} = \overline{r} (\mathbf{H})_{\sigma} \overline{r}^{\dagger} = \left(\begin{array}{c} \left[\frac{H^{A}}{r_{0}} & \cdot & \cdot & \cdot \\ \cdot & H^{A}_{n} & - \frac{r_{1}}{r_{n}} & \cdot \\ \cdot & H^{A}_{n} & H^{A}_{n} \\ \cdot & \cdot & \cdot \\ \cdot & H^{A}_{n} & H^{A}_{n} \end{array} \right) \\ \mathbf{H}_{matrix} \left(\mathbf{H} \right)_{\mu} = \overline{r} (\mathbf{H})_{\sigma} \overline{r}^{\dagger} = \left(\begin{array}{c} \left[\frac{H^{A}}{r_{0}} & \cdot & \cdot & \cdot \\ \cdot & H^{A}_{n} & H^{A}_{n} \\ \cdot & \cdot & \cdot \\ \cdot & H^{A}_{n} & H^{A}_{n} \\ \cdot & \cdot & \cdot \\ \cdot & H^{A}_{n} & H^{A}_{n} \end{array} \right) \\ \mathbf{H}_{matrix} \left(\mathbf{H} \right)_{\mu} = \overline{r} (\mathbf{H})_{\sigma} \overline{r}^{\dagger} = \left(\begin{array}{c} \left[\frac{H^{A}}{r_{n}} & \cdot & \cdot & \cdot \\ \cdot & H^{A}_{n} & H^{A}_{n} \\ \cdot & \cdot & \cdot \\ \cdot & H^{A}_{n} & H^{A}_{n} \\ \cdot & \cdot & \cdot \\ \end{array} \right) \\ \mathbf{H}_{matrix} \left(\mathbf{H} \right)_{\mu} = \overline{r} (\mathbf{H})_{\sigma} \overline{r}^{\dagger} = \left(\begin{array}{c} \left[\frac{H^{A}}{r_{n}} & \frac{r_{0}}{r_{n}} \\ \cdot & \cdot & \cdot \\ \cdot & H^{A}_{n} & H^{A}_{n} \\ \cdot & \cdot \\ \cdot & \cdot & H^{A}_{n} & H^{A}_{n} \\ \cdot & \cdot & \cdot \\ \end{array} \right) \\ \mathbf{H}_{matrix} \left(\mathbf{H} \right)_{\mu} = \overline{r} (\mathbf{H})_{\sigma} \overline{r}^{\dagger} = \left(\begin{array}{c} \left[\frac{H^{A}}{r_{n}} & \frac{r_{0}}{r_{n}} \\ \cdot & \frac{r_{0}}{r_{n}} \\ \mathbf{H}_{n}^{A} & H^{A}_{n} \\ \mathbf{H}_{n}^{A} = \left[\left(\mathbf{H} \right)_{\mu} \left[\frac{P^{A}}{r_{n}} \right] \right] \right) = \left(\begin{array}{c} \left[\mathbf{H} \right]_{\mu} \left[\frac{P^{A}}{r_{n}} \right] \\ \mathbf{H}_{n}^{A} = \left[\frac{P^{A}}{r_{n}} \right] \\ \mathbf{H}_{n}^{A} = \left[\frac{P^{A}}{r_{n}} \right] \\ \mathbf{H}_{n}^{A} = \left[\frac{P^{A}}{r_{n}} \right] \right] \\ \mathbf{H}_{n}^{A} = \left[\frac{P^{A}}{r_{n}} \right] \\$$

Sunday, March 29, 2015

Review excerpts of Lecture 16

Review excerpts of Lecture 16

Review excerpts of Lecture 16

When there is no there, there...

Review: Hamiltonian local-symmetry eigensolution in global and local $|\mathbf{P}^{(\mu)}\rangle$ *-basis*

Molecular vibrational modes vs. Hamiltonian eigenmodes Molecular K-matrix construction $D_3 \supset C_2(i_3)$ local-symmetry K-matrix eigensolutions D_3 -direct-connection K-matrix eigensolutions $D_3 \supset C_3(\mathbf{r}^{\pm 1})$ local symmetry K-matrix eigensolutions

Applied symmetry reduction and splitting Subduced irep $D^{\alpha}(D^3) \downarrow C_2 = d^{0_2} \oplus d^{1_2} \oplus ...$ correlation Subduced irep $D^{\alpha}(D^3) \downarrow C_3 = d^{0_3} \oplus d^{1_3} \oplus ...$ correlation

Spontaneous symmetry breaking and clustering: Frobenius Reciprocity, band structure Induced rep $d^{a}(C_{2})\uparrow D^{3} = D^{\alpha} \oplus D^{\beta} \oplus ...$ correlation Induced rep $d^{a}(C_{3})\uparrow D^{3} = D^{\alpha} \oplus D^{\beta} \oplus ...$ correlation

D₆ symmetry and Hexagonal Bands

Cross product of the C_2 and D_3 characters gives all $D_6 = D_3 \times C_2$ characters and ireps

Classical equations of coupled harmonic motion are Newtonian $\mathbf{F}=\mathbf{M}\cdot\mathbf{a}$ relations of *n*-dimensional force vector \mathbf{F} , acceleration vector \mathbf{a} , and mass operator $\mathbf{M}=M\cdot\mathbf{1}$ for D_3 -symmetry. Force \mathbf{F} is a (-)derivative of potential V(x) that becomes a $\mathbf{F}=-\mathbf{K}\cdot\mathbf{x}$ matrix expression.

$$-M\partial_t^2 x^a = \frac{\partial V}{\partial x^a} = \sum_b K_{ab} x^b$$

Classical equations of coupled harmonic motion are Newtonian $\mathbf{F}=\mathbf{M}\cdot\mathbf{a}$ relations of *n*-dimensional force vector \mathbf{F} , acceleration vector \mathbf{a} , and mass operator $\mathbf{M}=M\cdot\mathbf{1}$ for D_3 -symmetry. Force \mathbf{F} is a (-)derivative of potential V(x) that becomes a $\mathbf{F}=-\mathbf{K}\cdot\mathbf{x}$ matrix expression.

$$-M\partial_t^2 x^a = \frac{\partial V}{\partial x^a} = \sum_b K_{ab} x^b$$

Compare classical equation to Schrodinger's equation for quantum motion. †

$$i\hbar\partial_t\psi^a = \sum_b H_{ab}\psi^b$$

Classical equations of coupled harmonic motion are Newtonian $\mathbf{F}=\mathbf{M}\cdot\mathbf{a}$ relations of *n*-dimensional force vector \mathbf{F} , acceleration vector \mathbf{a} , and mass operator $\mathbf{M}=M\cdot\mathbf{1}$ for D_3 -symmetry. Force \mathbf{F} is a (-)derivative of potential V(x) that becomes a $\mathbf{F}=-\mathbf{K}\cdot\mathbf{x}$ matrix expression.

$$-M\partial_t^2 x^a = \frac{\partial V}{\partial x^a} = \sum_b K_{ab} x^b$$

Compare classical equation to Schrodinger's equation for quantum motion. †

$$i\hbar\partial_t\psi^a = \sum_b H_{ab}\psi^b$$

Squared time generator $(i\hbar\partial_t = \mathbf{H})^2$ has classical form with $K = H^2$ and $M = \hbar^2$.

$$-\hbar^2 \partial_t^2 \psi^a = \sum_b K_{ab} \psi^b$$
 where: $K = H^2$

Classical equations of coupled harmonic motion are Newtonian $\mathbf{F}=\mathbf{M}\cdot\mathbf{a}$ relations of *n*-dimensional force vector \mathbf{F} , acceleration vector \mathbf{a} , and mass operator $\mathbf{M}=M\cdot\mathbf{1}$ for D_3 -symmetry. Force \mathbf{F} is a (-)derivative of potential V(x) that becomes a $\mathbf{F}=-\mathbf{K}\cdot\mathbf{x}$ matrix expression.

$$-M\partial_t^2 x^a = \frac{\partial V}{\partial x^a} = \sum_b K_{ab} x^b$$

Compare classical equation to Schrodinger's equation for quantum motion. †

$$i\hbar\partial_t\psi^a = \sum_b H_{ab}\psi^b$$

Squared time generator $(i\hbar\partial_t = \mathbf{H})^2$ has classical form with $K = H^2$ and $M = \hbar^2$.

$$-\hbar^2 \partial_t^2 \psi^a = \sum_b K_{ab} \psi^b$$
 where: $K = H^2$

 (\mathbf{H}/\hbar) -eigenvalues are quantum angular frequencies $\epsilon_m/\hbar = \omega_m$. (Like Planck axiom: $\epsilon = \hbar \omega$.)

Classical equations of coupled harmonic motion are Newtonian $\mathbf{F}=\mathbf{M}\cdot\mathbf{a}$ relations of *n*-dimensional force vector \mathbf{F} , acceleration vector \mathbf{a} , and mass operator $\mathbf{M}=M\cdot\mathbf{1}$ for D_3 -symmetry. Force \mathbf{F} is a (-)derivative of potential V(x) that becomes a $\mathbf{F}=-\mathbf{K}\cdot\mathbf{x}$ matrix expression.

$$-M\partial_t^2 x^a = \frac{\partial V}{\partial x^a} = \sum_b K_{ab} x^b$$

Compare classical equation to Schrodinger's equation for quantum motion. †

$$i\hbar\partial_t\psi^a = \sum_b H_{ab}\psi^b$$

Squared time generator $(i\hbar\partial_t = \mathbf{H})^2$ has classical form with $K = H^2$ and $M = \hbar^2$.

$$-\hbar^2 \partial_t^2 \psi^a = \sum_b K_{ab} \psi^b$$
 where: $K = H^2$

 (\mathbf{H}/\hbar) -eigenvalues are quantum angular frequencies $\epsilon_m/\hbar = \omega_m$. (Like Planck axiom: $\epsilon = \hbar \omega$.) (\mathbf{K}/M) -eigenvalues are classical squared frequencies $k_m/M = \omega_m^2$.(Like Hooke's law: $k/M = \omega^2$.)

Classical equations of coupled harmonic motion are Newtonian $\mathbf{F}=\mathbf{M}\cdot\mathbf{a}$ relations of *n*-dimensional force vector \mathbf{F} , acceleration vector \mathbf{a} , and mass operator $\mathbf{M}=M\cdot\mathbf{1}$ for D_3 -symmetry. Force \mathbf{F} is a (-)derivative of potential V(x) that becomes a $\mathbf{F}=-\mathbf{K}\cdot\mathbf{x}$ matrix expression.

$$-M\partial_t^2 x^a = \frac{\partial V}{\partial x^a} = \sum_b K_{ab} x^b$$

Compare classical equation to Schrodinger's equation for quantum motion. †

$$i\hbar\partial_t\psi^a = \sum_b H_{ab}\psi^b$$

Squared time generator $(i\hbar\partial_t = \mathbf{H})^2$ has classical form with $K = H^2$ and $M = \hbar^2$.

$$-\hbar^2 \partial_t^2 \psi^a = \sum_b K_{ab} \psi^b$$
 where: $K = H^2$

 (\mathbf{H}/\hbar) -eigenvalues are quantum angular frequencies $\epsilon_m/\hbar = \omega_m$. (Like Planck axiom: $\epsilon = \hbar \omega$.) (\mathbf{K}/M) -eigenvalues are classical squared frequencies $k_m/M = \omega_m^2$.(Like Hooke's law: $k/M = \omega^2$.) Apart from normalization, eigenvectors of \mathbf{H} and \mathbf{K} are the same.

Classical equations of coupled harmonic motion are Newtonian $\mathbf{F}=\mathbf{M}\cdot\mathbf{a}$ relations of *n*-dimensional force vector \mathbf{F} , acceleration vector \mathbf{a} , and mass operator $\mathbf{M}=M\cdot\mathbf{1}$ for D_3 -symmetry. Force \mathbf{F} is a (-)derivative of potential V(x) that becomes a $\mathbf{F}=-\mathbf{K}\cdot\mathbf{x}$ matrix expression.

$$-M\partial_t^2 x^a = \frac{\partial V}{\partial x^a} = \sum_b K_{ab} x^b$$

Compare classical equation to Schrodinger's equation for quantum motion. †

$$i\hbar\partial_t\psi^a = \sum_b H_{ab}\psi^b$$

Squared time generator $(i\hbar\partial_t = \mathbf{H})^2$ has classical form with $K = H^2$ and $M = \hbar^2$.

$$-\hbar^2 \partial_t^2 \psi^a = \sum_b K_{ab} \psi^b$$
 where: $K = H^2$

 (\mathbf{H}/\hbar) -eigenvalues are quantum angular frequencies $\epsilon_m/\hbar = \omega_m$. (Like Planck axiom: $\epsilon = \hbar \omega$.) (\mathbf{K}/M) -eigenvalues are classical squared frequencies $k_m/M = \omega_m^2$.(Like Hooke's law: $k/M = \omega^2$.) Apart from normalization, eigenvectors of \mathbf{H} and \mathbf{K} are the same.

And, each eigenvalue set corresponds to its respective energy spectrum.

Review: Hamiltonian local-symmetry eigensolution in global and local $|\mathbf{P}^{(\mu)}\rangle$ *-basis*

Molecular vibrational modes vs. Hamiltonian eigenmodes Molecular K-matrix construction $D_3 \supset C_2(i_3)$ local-symmetry K-matrix eigensolutions D_3 -direct-connection K-matrix eigensolutions $D_3 \supset C_3(\mathbf{r}^{\pm 1})$ local symmetry K-matrix eigensolutions

Applied symmetry reduction and splitting Subduced irep $D^{\alpha}(D^3) \downarrow C_2 = d^{0_2} \oplus d^{1_2} \oplus ...$ correlation Subduced irep $D^{\alpha}(D^3) \downarrow C_3 = d^{0_3} \oplus d^{1_3} \oplus ...$ correlation

Spontaneous symmetry breaking and clustering: Frobenius Reciprocity, band structure Induced rep $d^{a}(C_{2})\uparrow D^{3} = D^{\alpha} \oplus D^{\beta} \oplus ...$ correlation Induced rep $d^{a}(C_{3})\uparrow D^{3} = D^{\alpha} \oplus D^{\beta} \oplus ...$ correlation

*D*₆ symmetry and Hexagonal Bands

Cross product of the C_2 and D_3 characters gives all $D_6 = D_3 \times C_2$ characters and ireps

Classical modes are eigenvectors of force-field matrix K or operator \mathbf{K} .

Harmonic potential $V(\mathbf{x})$ is a quadratic K-form of coordinates x_a based on six D_3 -labeled axes $\hat{\mathbf{x}}^a$ or $|a\rangle$.

$$V(x) = \sum_{(k)} \frac{1}{2} \langle x | \mathbf{K} | x \rangle \quad \text{where:} \quad |x\rangle = \sum_{a} x_{a} | a \rangle , \quad (a,b) = (1, r^{1}, r^{2}, i_{1}, i_{2}, i_{3})$$

Classical modes are eigenvectors of force-field matrix K or operator \mathbf{K} .

Harmonic potential $V(\mathbf{x})$ is a quadratic K-form of coordinates x_a based on six D_3 -labeled axes $\hat{\mathbf{x}}^a$ or $|a\rangle$.

$$V(x) = \sum_{(k)} \frac{1}{2} \langle x | \mathbf{K} | x \rangle \quad \text{where:} \quad |x\rangle = \sum_{a} x_{a} | a \rangle , \quad (a,b) = (1, r^{1}, r^{2}, i_{1}, i_{2}, i_{3})$$

Classical modes are eigenvectors of force-field matrix K or operator \mathbf{K} .

Harmonic potential $V(\mathbf{x})$ is a quadratic K-form of coordinates x_a based on six D_3 -labeled axes $\hat{\mathbf{x}}^a$ or $|a\rangle$.

$$V(x) = \sum_{(k)} \frac{1}{2} \langle x | \mathbf{K} | x \rangle \quad \text{where:} \quad |x\rangle = \sum_{a} x_{a} | a \rangle , \quad (a,b) = (1, r^{1}, r^{2}, i_{1}, i_{2}, i_{3})$$

Classical modes are eigenvectors of force-field matrix K or operator \mathbf{K} .

Harmonic potential $V(\mathbf{x})$ is a quadratic K-form of coordinates x_a based on six D_3 -labeled axes $\hat{\mathbf{x}}^a$ or $|a\rangle$.

$$V(x) = \sum_{(k)} \frac{1}{2} \langle x | \mathbf{K} | x \rangle \quad \text{where:} \quad |x\rangle = \sum_{a} x_a | a \rangle , \quad (a,b) = (1, r^1, r^2, i_1, i_2, i_3)$$

Classical modes are eigenvectors of force-field matrix K or operator \mathbf{K} .

Harmonic potential $V(\mathbf{x})$ is a quadratic K-form of coordinates x_a based on six D_3 -labeled axes $\hat{\mathbf{x}}^a$ or $|a\rangle$.

$$V(x) = \sum_{(k)} \frac{1}{2} \langle x | \mathbf{K} | x \rangle \quad \text{where:} \quad |x\rangle = \sum_{a} x_a | a \rangle , \quad (a,b) = (1, r^1, r^2, i_1, i_2, i_3)$$

Classical modes are eigenvectors of force-field matrix K or operator \mathbf{K} .

Harmonic potential $V(\mathbf{x})$ is a quadratic K-form of coordinates x_a based on six D_3 -labeled axes $\hat{\mathbf{x}}^a$ or $|a\rangle$.

$$V(x) = \sum_{(k)} \frac{1}{2} \langle x | \mathbf{K} | x \rangle \quad \text{where:} \quad |x\rangle = \sum_{a} x_{a} | a \rangle , \quad (a,b) = (1, r^{1}, r^{2}, i_{1}, i_{2}, i_{3})$$

$$V(x) = \frac{1}{2} \sum_{a,b} K_{ab} x_a x_a \quad \text{where:} \quad K_{ab} = \begin{cases} \sum_{\substack{(k) \\ (k)}} \frac{k}{2} (\hat{\mathbf{k}}_a \bullet \hat{\mathbf{x}}^a)^2 & if: a = b \\ -\sum_{\substack{(k)}} k (\hat{\mathbf{k}}_a \bullet \hat{\mathbf{x}}^a) (\hat{\mathbf{k}}_b \bullet \hat{\mathbf{x}}^b) & if: a \neq b \end{cases}$$

Classical modes are eigenvectors of force-field matrix K or operator \mathbf{K} .

Harmonic potential $V(\mathbf{x})$ is a quadratic K-form of coordinates x_a based on six D_3 -labeled axes $\hat{\mathbf{x}}^a$ or $|a\rangle$.

$$V(x) = \sum_{(k)} \frac{1}{2} \langle x | \mathbf{K} | x \rangle \quad \text{where:} \quad |x\rangle = \sum_{a} x_a | a \rangle , \quad (a,b) = (1, r^1, r^2, i_1, i_2, i_3)$$

$$V(x) = \frac{1}{2} \sum_{a,b} K_{ab} x_a x_a \quad \text{where:} \quad K_{ab} = \begin{cases} \sum_{(k)} \frac{k}{2} (\hat{\mathbf{k}}_a \bullet \hat{\mathbf{x}}^a)^2 & if: a = b \\ -\sum_{(k)} k (\hat{\mathbf{k}}_a \bullet \hat{\mathbf{x}}^a) (\hat{\mathbf{k}}_b \bullet \hat{\mathbf{x}}^b) & if: a \neq b \end{cases}$$
$$V(x) = \sum_{(k)} \frac{k}{2} (\Delta \ell_k)^2 = \sum_{(k)} \frac{k}{2} \sum_{a,b} (\hat{\mathbf{k}}_a \bullet \mathbf{x}^a - \hat{\mathbf{k}}_b \bullet \mathbf{x}^b)^2$$
$$= \sum_{(k)} \frac{k}{2} \sum_{a} (\hat{\mathbf{k}}_a \bullet \hat{\mathbf{x}}^a)^2 x_a^2 - \sum_{(k)} k \sum_{a \neq b} (\hat{\mathbf{k}}_a \bullet \hat{\mathbf{x}}^a) (\hat{\mathbf{k}}_b \bullet \hat{\mathbf{x}}^b) x_a x_b$$

Classical modes are eigenvectors of force-field matrix K or operator \mathbf{K} .

Harmonic potential $V(\mathbf{x})$ is a quadratic K-form of coordinates x_a based on six D_3 -labeled axes $\hat{\mathbf{x}}^a$ or $|a\rangle$.

$$V(x) = \sum_{(k)} \frac{1}{2} \langle x | \mathbf{K} | x \rangle \quad \text{where:} \quad |x\rangle = \sum_{a} x_{a} | a \rangle , \quad (a,b) = (1, r^{1}, r^{2}, i_{1}, i_{2}, i_{3})$$

Each **K** component $K_{ab} = \langle a | \mathbf{K} | b \rangle$ is a sum over spring k-constants that connect axis- \mathbf{x}^a to axis- \mathbf{x}^b multiplied by factor $(\hat{\mathbf{k}}_a \bullet \hat{\mathbf{x}}^a)(\hat{\mathbf{k}}_b \bullet \hat{\mathbf{x}}^b)$ for projecting spring-k's end vectors $\hat{\mathbf{k}}_a$ and $\hat{\mathbf{k}}_b$ onto $\hat{\mathbf{x}}^a$ and $\hat{\mathbf{x}}^b$ at respective connections.

$$V(x) = \frac{1}{2} \sum_{a,b} K_{ab} x_a x_a \quad \text{where:} \quad K_{ab} = \begin{cases} \sum_{(k)} \frac{k}{2} (\mathbf{k}_a \bullet \hat{\mathbf{x}}^a)^2 & if: a = b \\ -\sum_{(k)} k (\hat{\mathbf{k}}_a \bullet \hat{\mathbf{x}}^a) (\hat{\mathbf{k}}_b \bullet \hat{\mathbf{x}}^b) & if: a \neq b \end{cases}$$

$$V(x) = \sum_{(k)} \frac{k}{2} (\Delta \ell_k)^2 = \sum_{(k)} \frac{k}{2} \sum_{a,b} (\hat{\mathbf{k}}_a \bullet \mathbf{x}^a - \hat{\mathbf{k}}_b \bullet \mathbf{x}^b)^2$$

$$= \sum_{(k)} \frac{k}{2} \sum_{a} (\hat{\mathbf{k}}_a \bullet \hat{\mathbf{x}}^a)^2 x_a^2 - \sum_{(k)} k \sum_{a \neq b} (\hat{\mathbf{k}}_a \bullet \hat{\mathbf{x}}^a) (\hat{\mathbf{k}}_b \bullet \hat{\mathbf{x}}^b) x_a x_b$$

$$D_3 C_2^{>(i_3) model}$$
Direct connection $D_3 model$

Local D₃ C₂ (i_3) model k_{i_3} k_{i_12} k_{i_12} k_{i_12} k_{i_12} k_{i_12} k_{i_12} k_{i_12} k_{i_12} k_{i_1} k_{i_2} k_{i_1} k_{i_1} k_{i_1} k_{i_2} k_{i_1} k_{i_1} k_{i_2} k_{i_1} k_{i_1} k_{i_2} k_{i_1} k_{i_1} k_{i_2} k_{i_3} k_{i_3}

Sunday, March 29, 2015

26

1>

i₃|1>

 $\mathbf{r}^{\mathbf{l}}$

i₁|1

Review: Hamiltonian local-symmetry eigensolution in global and local $|\mathbf{P}^{(\mu)}\rangle$ *-basis*

Molecular vibrational modes vs. Hamiltonian eigenmodes Molecular K-matrix construction $D_3 \supset C_2(i_3)$ local-symmetry K-matrix eigensolutions D_3 -direct-connection K-matrix eigensolutions $D_3 \supset C_3(\mathbf{r}^{\pm 1})$ local symmetry K-matrix eigensolutions

Applied symmetry reduction and splitting Subduced irep $D^{\alpha}(D^3) \downarrow C_2 = d^{0_2} \oplus d^{1_2} \oplus ...$ correlation Subduced irep $D^{\alpha}(D^3) \downarrow C_3 = d^{0_3} \oplus d^{1_3} \oplus ...$ correlation

Spontaneous symmetry breaking and clustering: Frobenius Reciprocity, band structure Induced rep $d^{a}(C_{2})\uparrow D^{3} = D^{\alpha}\oplus D^{\beta}\oplus..$ correlation Induced rep $d^{a}(C_{3})\uparrow D^{3} = D^{\alpha}\oplus D^{\beta}\oplus..$ correlation

*D*₆ symmetry and Hexagonal Bands

Cross product of the C_2 *and* D_3 *characters gives all* $D_6 = D_3 \times C_2$ *characters and ireps*

 $D_{3} \supset C_{2}(i_{3}) \text{ local-symmetry vibrational K-matrix eigensolutions}$ Generic K-matrix (Top row) $\langle \mathbf{1} | \mathbf{K} | \mathbf{g}_{b} \rangle = \begin{bmatrix} r_{0} & r_{1} & r_{2} & i_{1} & i_{2} & i_{3} \end{bmatrix}$

 $D_3 \supset C_2(i_3)$ local-symmetry vibrational K-matrix

1st-row parameters $g_b = \langle \mathbf{1} | \mathbf{K} | \mathbf{g}_b \rangle = K_{1b}$ of the force matrix K_{ab} :

Local D₃ C₂ (i_3) model $|\mathbf{r}^1\rangle$ k_{i_3} k_{i_12} k_{i_12} k_{i_12} k_{i_12} k_{i_2} k_{i_1} k_{i_2} k_{i_1} k_{i_2} k_{i_1} k_{i_2} k_{i_3} k_{i_3}

 $D_3 \supset C_2(i_3)$ model has internal $[k_r(\text{angular}), k_i(\text{radial})]$ and external $[k_3(\text{angular}), k_0(\text{radial})]$ constants between masses and lab frame.

 $D_{3} \supset C_{2}(i_{3}) \text{ local-symmetry vibrational K-matrix eigensolutions}$ Generic K-matrix (Top row) $\langle \mathbf{1} | \mathbf{K} | \mathbf{g}_{b} \rangle = \begin{bmatrix} r_{0} & r_{1} & r_{2} & i_{1} & i_{2} & i_{3} \end{bmatrix}$

 $D_3 \supset C_2(i_3)$ local-symmetry vibrational K-matrix

1st-row parameters $g_b = \langle \mathbf{1} | \mathbf{K} | \mathbf{g}_b \rangle = K_{1b}$ of the force matrix K_{ab} :

 $D_3 \supset C_2(i_3)$ model has internal $[k_r(\text{angular}), k_i(\text{radial})]$ and external $[k_3(\text{angular}), k_0(\text{radial})]$ constants between masses and lab frame.

$ g_b angle$	1 angle	$\left \mathbf{r}^{1} ight angle$	$\left \mathbf{r}^{2} ight angle$	$ {f i}_1 angle$	$ {f i}_2 angle$	$ {f i}_3 angle$
	$k_i/2$	$k_i/2$	$k_i/2$	$k_i/2$	$k_i/2$	$k_i/2$
$1 \mathbf{K} a_1 $	$+k_r$	$-k_r/2$	$-k_r/2$	$+k_r/2$	$+k_r/2$	$-k_r$
$ \mathbf{I} \mathbf{I} g_b =$	$+k_{3}$	+0	+0	+0	+0	$-k_3$
	$+k_{0}/2$	+0	+0	+0	+0	$+k_{0}/2$

 $D_{3} \supset C_{2}(i_{3}) \text{ local-symmetry vibrational K-matrix eigensolutions}$ Generic K-matrix (Top row) $\langle \mathbf{1} | \mathbf{K} | \mathbf{g}_{b} \rangle = \begin{bmatrix} r_{0} & r_{1} & r_{2} & i_{1} & i_{2} & i_{3} \end{bmatrix}$

 $D_3 \supset C_2(i_3)$ local-symmetry vibrational K-matrix

1st-row parameters $g_b = \langle \mathbf{1} | \mathbf{K} | \mathbf{g}_b \rangle = K_{1b}$ of the force matrix K_{ab} :

 $D_3 \supset C_2(i_3)$ model has internal $[k_r(\text{angular}), k_i(\text{radial})]$ and external $[k_3(\text{angular}), k_0(\text{radial})]$ constants between masses and lab frame.

 $D_3 \supset C_2(i_3)$ local-symmetry vibrational K-matrix eigenvalues $K_m/M = \omega_m^2$

Review: Hamiltonian local-symmetry eigensolution in global and local $|\mathbf{P}^{(\mu)}\rangle$ *-basis*

 Molecular vibrational modes vs. Hamiltonian eigenmodes Molecular K-matrix construction
 D₃⊃C₂(i₃) local-symmetry K-matrix eigensolutions
 D₃-direct-connection K-matrix eigensolutions
 D₃⊃C₃(**r**^{±1}) local symmetry K-matrix eigensolutions

+

Applied symmetry reduction and splitting Subduced irep $D^{\alpha}(D^3) \downarrow C_2 = d^{0_2} \oplus d^{1_2} \oplus ...$ correlation Subduced irep $D^{\alpha}(D^3) \downarrow C_3 = d^{0_3} \oplus d^{1_3} \oplus ...$ correlation

Spontaneous symmetry breaking and clustering: Frobenius Reciprocity, band structure Induced rep $d^{a}(C_{2})\uparrow D^{3} = D^{\alpha}\oplus D^{\beta}\oplus..$ correlation Induced rep $d^{a}(C_{3})\uparrow D^{3} = D^{\alpha}\oplus D^{\beta}\oplus..$ correlation

*D*₆ symmetry and Hexagonal Bands

Cross product of the C_2 and D_3 characters gives all $D_6 = D_3 \times C_2$ characters and ireps

*D*₃-direct-connection *K*-matrix eigensolutions *Generic* **K**-matrix (*Top row*) $\langle \mathbf{1} | \mathbf{K} | \mathbf{g}_b \rangle = \begin{bmatrix} r_0 & r_1 & r_2 & i_1 & i_2 & i_3 \end{bmatrix}$

*D*₃-direct-connection vibrational K-matrix

 $D_{3}\text{-direct-connection K-matrix eigensolutions}$ Generic K-matrix (Top row) $\langle \mathbf{1} | \mathbf{K} | \mathbf{g}_{b} \rangle = \begin{bmatrix} r_{0} & r_{1} & r_{2} & i_{1} & i_{2} & i_{3} \end{bmatrix}$

Generic K-matrix D₃ projections

$$\begin{array}{lll}
K_{xx}^{A_{1}} &= & r_{0}+r_{1}+r_{1}^{*}+i_{1}+i_{2}+i_{3} \\
K_{yy}^{A_{2}} &= & r_{0}+r_{1}+r_{1}^{*}-i_{1}-i_{2}-i_{3} \\
K_{xx}^{E_{1}} & K_{xy}^{E_{1}} \\
K_{yx}^{E_{1}} & K_{yy}^{E_{1}} \end{array} \right) = \frac{1}{2} \left(\begin{array}{ccc} 2r_{0}-r_{1}-r_{1}^{*}-i_{1}-i_{2}+2i_{3} & \sqrt{3}(-r_{1}+r_{1}^{*}-i_{1}+i_{2}) \\
\sqrt{3}(-r_{1}^{*}+r_{1}-i_{1}+i_{2}) & 2r_{0}-r_{1}-r_{1}^{*}+i_{1}+i_{2}-2i_{3} \\
\end{array}\right)$$

$D_{3}\text{-direct-connect}$ $Generic \mathbf{K}\text{-matrix}$ $\langle 1 \mathbf{K} \mathbf{g}_{b} \rangle = \begin{bmatrix} r_{0} \end{bmatrix}$	$\begin{array}{c} ction \ K-matrix \\ ix \ (Top \ row) \\ r_1 r_2 i_1 a \end{array}$	$\begin{bmatrix} eigensolution \\ 2 \end{bmatrix}$	ONS	$\mathbf{r}^{1} 1\rangle$	$ 1\rangle \cos 15^\circ = \sqrt{[(1)]} \\ = (1/2)\sqrt{(2+\gamma)} \\ k_1$	$(1+\cos 30^{\circ})/2]$ $\sqrt{3}=\sin 75^{\circ}$
$\begin{array}{c} Generic \ \mathbf{K}\text{-matrix}\\ K_{xx}^{A_1} &=\\ K_{xx}^{A_2} &= \end{array}$	$x D_3 projection$ $r_0 + r_1 + r_0 + r_1 + r_0 + r_1 + r_1 + r_0 + r_1 + r_1$	$r_1^* + i_1 + i_2 + i_3$ $r_1^* - i_1 - i_2 - i_3$				75°
$ \begin{pmatrix} yy \\ K_{xx}^{E_1} & K_{xy}^{E_1} \\ K_{yx}^{E_1} & K_{yy}^{E_1} \end{pmatrix} = \frac{1}{2} \left(\begin{array}{c} \\ D_{2} \\ \end{array} \right) $	$2r_{0} - r_{1} - r_{1}^{*} - i_{1} - i_{2} + \sqrt{3}(-r_{1}^{*} + r_{1} - i_{1} + r_{1} - i_{1}$	$-2i_3 \sqrt{3}(-i_2) 2r_0 - r_1 - i_2$	$r_1 + r_1^* - i_1 + i_2$) $r_1^* + i_1 + i_2 - 2i_3$	$\mathbf{i}_{1} 1$	$ \mathbf{r}^{2} > \frac{\sin 15^{\circ} = \sqrt{[0]}}{=(1/2)\sqrt{(2-1)}}$	$i_3 1\rangle$ (1-cos 30°)/2] $\sqrt{3}=\cos 75^\circ$
$ g_b\rangle$	1 angle	$ \mathbf{r}^1\rangle$	$\ket{\mathbf{r}^2}$	$ {f i}_1 angle$	$ \mathbf{i}_2 angle$	$ {f i}_3 angle$
$\langle 1 \mathbf{K} g_b \rangle =$	$k_1(\cos^2 75^\circ + \cos^2 15^\circ) = k_1$	$k_1 \cos 75^\circ$ $\cdot \cos 15^\circ$ $= \frac{k_1}{4}$	$k_1 \cos 15^\circ$ $\cdot \cos 75^\circ$ $= \frac{k_1}{4}$	$ \frac{k_1 \cos 15^\circ}{\cdot \cos 15^\circ} = \frac{k_1(2 - \sqrt{3})}{4} $	$k_1 \cos 75^\circ$ $\cdot \cos 75^\circ$ $= \frac{k_1(2 + \sqrt{3})}{4}$	$k_1(\cos^2 75^\circ) - \cos^2 15^\circ) = \frac{k_1}{2}$

$$\begin{array}{c|c} D_{3}\text{-direct-connection K-matrix eigensolutions} \\ \hline Generic K-matrix (Top row) \\ \langle \mathbf{1} | \mathbf{K} | \mathbf{g}_{b} \rangle = \begin{bmatrix} r_{0} & r_{1} & r_{2} & i_{1} & i_{2} & i_{3} \end{bmatrix} \\ \hline Generic K-matrix D_{3} projections \\ K_{xx}^{A} & = & r_{0}+r_{1}+r_{1}^{*}+i_{1}+i_{2}+i_{3} \\ K_{yx}^{A} & = & r_{0}+r_{1}+r_{1}^{*}+i_{1}+i_{2}+i_{3} \\ K_{yx}^{A} & = & r_{0}+r_{1}+r_{1}^{*}-i_{1}-i_{2}-i_{3} \\ \hline K_{xx}^{E_{1}} & K_{yy}^{E_{1}} \\ \hline K_{yx}^{E_{1}} & K_{yy}^{E_{1}} \\ \hline \\ K_{yx}^{E_{1}} & K_{yy}^{E_{1}} \\ \hline \\ B_{3} - r_{1}^{*}+r_{1}-i_{1}+i_{2} \\ \hline \\ G_{3} - r_{1}^{*}+r_{1}-i_{1}+$$

*D*₃-direct-connection vibrational K-matrix eigenvalues $K_m/M = \omega_m^2$

$$K_{xx}^{A_{1}} = 3k_{1}$$

$$K_{yy}^{A_{2}} = 0$$

$$\begin{pmatrix} K_{xx}^{E_{1}} & K_{xy}^{E_{1}} \\ K_{yx}^{E_{1}} & K_{yy}^{E_{1}} \end{pmatrix} = \begin{pmatrix} \frac{3k_{1}}{4} & \frac{3k_{1}}{4} \\ \frac{3k_{1}}{4} & \frac{3k_{1}}{4} \\ \frac{3k_{1}}{4} & \frac{3k_{1}}{4} \end{pmatrix}$$

$$\begin{array}{c|c} D_{3}-direct-connection K-matrix eigensolutions \\ \hline Generic K-matrix (Top row) \\ \langle 1|\mathbf{K}|\mathbf{g}_{b} \rangle = \begin{bmatrix} r_{0} & r_{1} & r_{2} & i_{1} & i_{2} & i_{3} \\ r_{0} + r_{1} + r_{1}^{*} + i_{1} + i_{2} + i_{3} \\ K_{xx}^{A} & = & r_{0} + r_{1} + r_{1}^{*} + i_{1} + i_{2} + i_{3} \\ K_{xy}^{B} & = & r_{0} + r_{1} + r_{1}^{*} + i_{1} + i_{2} + i_{3} \\ K_{xx}^{E} & K_{xy}^{E} \\ K_{yx}^{E} & K_{yy}^{E} \end{bmatrix} = \frac{1}{2} \begin{pmatrix} 2r_{0} - r_{1} - r_{1}^{*} - i_{1} - i_{2} + 2i_{3} & \sqrt{3}(-r_{1} + r_{1}^{*} - i_{1} + i_{2}) \\ \sqrt{3}(-r_{1}^{*} + r_{1} - i_{1} + i_{2}) & 2r_{0} - r_{1} - r_{1}^{*} + i_{1} + i_{2} - 2i_{3} \\ \sqrt{3}(-r_{1}^{*} + r_{1} - i_{1} + i_{2}) & 2r_{0} - r_{1} - r_{1}^{*} + i_{1} + i_{2} - 2i_{3} \\ \end{pmatrix} \\ \hline D_{3}-direct-connection vibrational K-matrix \\ |g_{b}\rangle & |1\rangle & |r^{1}\rangle & |r^{2}\rangle \\ \langle 1|\mathbf{K}|g_{b}\rangle = \begin{pmatrix} k_{1}(\cos^{2} 75^{\circ}) \\ -k_{1} \\ k_{1}(\cos^{2} 75^{\circ}) \\ -k_{1} \\ k_{1} \\ k_{1}(\cos^{2} 75^{\circ}) \\ -k_{1} \\ k_{1} \\ k_{1} \\ k_{1}(\cos^{2} 75^{\circ}) \\ k_{1} \\ k_{1} \\ k_{1} \\ k_{1} \\ k_{1} \\ k_{1} \\ k_{2} \\ \end{pmatrix} \\ \hline k_{1}(\cos^{2} 75^{\circ}) \\ k_{1} \\ k_{1}(\cos^{2} 75^{\circ}) \\ k_{1}(\cos^{2} 75^{\circ}) \\ k_{1}(\cos^{2} 75^{\circ}) \\ k_{1} \\ k_{1}(\cos^{2} 75^{\circ}) \\ k_{1}(\cos^{2} 75^{\circ})$$

*D*₃-direct-connection vibrational K-matrix eigenvalues $K_m/M = \omega_m^2$

$$K_{xx}^{A_{1}} = 3k_{1}$$

$$K_{yy}^{A_{2}} = 0$$

$$\begin{pmatrix} K_{xx}^{E_{1}} & K_{xy}^{E_{1}} \\ K_{yx}^{E_{1}} & K_{yy}^{E_{1}} \end{pmatrix} = \begin{pmatrix} \frac{3k_{1}}{4} & \frac{3k_{1}}{4} \\ \frac{3k_{1}}{4} & \frac{3k_{1}}{4} \\ \frac{3k_{1}}{4} & \frac{3k_{1}}{4} \end{pmatrix}$$

 E_1 Eigenvectors in terms of $D_3 \supset C_2(i_3)$ E_1 -vectors

$$\mathbf{K} \begin{vmatrix} E_{1} \\ g(+) \end{vmatrix} = \mathbf{K} \left(\begin{vmatrix} E_{1} \\ g\mathbf{X} \end{vmatrix} + \begin{vmatrix} E_{1} \\ g\mathbf{Y} \end{vmatrix} \right) \frac{1}{\sqrt{2}} = \frac{3k_{1}}{2} \begin{vmatrix} E_{1} \\ g(+) \end{vmatrix},$$
$$\mathbf{K} \begin{vmatrix} E_{1} \\ g(-) \end{vmatrix} = \mathbf{K} \left(\begin{vmatrix} E_{1} \\ g\mathbf{X} \end{vmatrix} - \begin{vmatrix} E_{1} \\ g\mathbf{Y} \end{vmatrix} \right) \frac{1}{\sqrt{2}} = 0 \begin{vmatrix} E_{1} \\ g(-) \end{vmatrix}, g = (\mathbf{x} \text{ or } \mathbf{y}).$$

Review: Hamiltonian local-symmetry eigensolution in global and local $|\mathbf{P}^{(\mu)}\rangle$ *-basis*

 Molecular vibrational modes vs. Hamiltonian eigenmodes Molecular K-matrix construction
 D₃⊃C₂(i₃) local-symmetry K-matrix eigensolutions
 D₃→direct-connection K-matrix eigensolutions
 D₃⊃C₃(**r**^{±1}) local symmetry K-matrix eigensolutions

Applied symmetry reduction and splitting Subduced irep $D^{\alpha}(D^3) \downarrow C_2 = d^{0_2} \oplus d^{1_2} \oplus ...$ correlation Subduced irep $D^{\alpha}(D^3) \downarrow C_3 = d^{0_3} \oplus d^{1_3} \oplus ...$ correlation

Spontaneous symmetry breaking and clustering: Frobenius Reciprocity, band structure Induced rep $d^{a}(C_{2})\uparrow D^{3} = D^{\alpha} \oplus D^{\beta} \oplus ...$ correlation Induced rep $d^{a}(C_{3})\uparrow D^{3} = D^{\alpha} \oplus D^{\beta} \oplus ...$ correlation

D₆ symmetry and Hexagonal Bands

Cross product of the C_2 and D_3 characters gives all $D_6 = D_3 \times C_2$ characters and ireps

$$\begin{aligned} D_{3} \supset C_{3}(\mathbf{r}^{\perp l}) \ \text{local symmetry K-matrix eigensolutions} \\ \hline Generic \, \mathbf{K}\text{-matrix (Top row)} \\ \langle \mathbf{1} | \, \mathbf{K} | \, \mathbf{g}_{b} \rangle &= \begin{bmatrix} r_{0} & r_{1} & r_{2} & i_{1} & i_{2} & i_{3} \end{bmatrix} \\ \hline \mathbf{1} | \, \mathbf{K}_{C_{3}} | \, \mathbf{g}_{b} \rangle &= \begin{bmatrix} r_{0} & ir & -ir & 0 & 0 & 0 \end{bmatrix} \\ \hline \mathbf{1} | \, \mathbf{K}_{C_{3}} | \, \mathbf{g}_{b} \rangle &= \begin{bmatrix} r_{0} & ir & -ir & 0 & 0 & 0 \end{bmatrix} \\ \hline \mathbf{1} | \, \mathbf{K}_{C_{3}} | \, \mathbf{g}_{b} \rangle &= \begin{bmatrix} r_{0} & ir & -ir & 0 & 0 & 0 \end{bmatrix} \\ \hline \mathbf{1} | \, \mathbf{K}_{C_{3}} | \, \mathbf{g}_{b} \rangle &= \begin{bmatrix} r_{0} & ir & -ir & 0 & 0 & 0 \end{bmatrix} \\ \hline \mathbf{1} | \, \mathbf{K}_{C_{3}} | \, \mathbf{g}_{b} \rangle &= \begin{bmatrix} r_{0} & ir & -ir & 0 & 0 & 0 \end{bmatrix} \\ \hline \mathbf{1} | \, \mathbf{K}_{C_{3}} | \, \mathbf{g}_{b} \rangle &= \begin{bmatrix} r_{0} & ir & -ir & 0 & 0 & 0 \end{bmatrix} \\ \hline \mathbf{1} | \, \mathbf{K}_{C_{3}} | \, \mathbf{g}_{b} \rangle &= \begin{bmatrix} r_{0} & ir & -ir & 0 & 0 & 0 \end{bmatrix} \\ \hline \mathbf{1} | \, \mathbf{K}_{C_{3}} | \, \mathbf{g}_{b} \rangle &= \begin{bmatrix} r_{0} & ir & -ir & 0 & 0 & 0 \end{bmatrix} \\ \hline \mathbf{1} | \, \mathbf{K}_{C_{3}} | \, \mathbf{g}_{b} \rangle &= \begin{bmatrix} r_{0} & ir & -ir & 0 & 0 & 0 \end{bmatrix} \\ \hline \mathbf{1} | \, \mathbf{K}_{C_{3}} | \, \mathbf{g}_{b} \rangle &= \begin{bmatrix} r_{0} & ir & -ir & 0 & 0 & 0 \\ \mathbf{K}_{A_{1}}^{A_{1}} &= & r_{0} + r_{1} + r_{1}^{*} + i_{1} + i_{2} + i_{3} & = r_{0} \\ \hline \mathbf{K}_{A_{2}}^{A_{2}} &= & r_{0} + r_{1} + r_{1}^{*} - i_{1} - i_{2} - i_{3} & = r_{0} \\ \hline \mathbf{K}_{A_{2}}^{A_{2}} &= & r_{0} + r_{1} + r_{1}^{*} - i_{1} - i_{2} - i_{3} & = r_{0} \\ \hline \mathbf{K}_{A_{2}}^{A_{2}} &= & r_{0} + r_{1} + r_{1}^{*} - i_{1} - i_{2} - i_{3} & = r_{0} \\ \hline \mathbf{K}_{A_{2}}^{A_{2}} &= & r_{0} + r_{1} + r_{1}^{*} - i_{1} - i_{2} - i_{3} & = r_{0} \\ \hline \mathbf{K}_{A_{2}}^{A_{2}} &= & r_{0} + r_{0} + r_{1}^{*} - r_{1}^{*} - i_{1} - i_{2} - i_{3} & = r_{0} \\ \hline \mathbf{K}_{A_{2}}^{A_{2}} &= & r_{0} + r_{0} + r_{1}^{*} - r_{1}^{*} - i_{1} - i_{2} - i_{3} \\ \hline \mathbf{K}_{A_{2}}^{B_{2}} &= & r_{0} + r_{0} + r_{1}^{*} - r_{1}^{$$

$$\begin{aligned} D_{3} \supset C_{3}(\mathbf{r}^{-l}) \text{ local symmetry K-matrix eigensolutions} \\ \langle \mathbf{1} | \mathbf{K} | \mathbf{g}_{b} \rangle &= \begin{bmatrix} r_{0} & r_{1} & r_{2} & i_{1} & i_{2} & i_{3} \end{bmatrix} \\ \langle \mathbf{1} | \mathbf{K}_{C_{3}} | \mathbf{g}_{b} \rangle &= \begin{bmatrix} r_{0} & ir & -ir & 0 & 0 & 0 \end{bmatrix} \\ D_{3} \supset C_{3}(\mathbf{r}^{-l}) \text{ local symmetry vibrational K-matrix Set: } r_{1} &= r = -r_{2}^{*}, \text{ and: } i_{1} &= i_{2} &= i_{3} &= 0 \\ K_{xx}^{A_{1}} &= r_{0} + r_{1} + r_{1}^{*} + i_{1} + i_{2} + i_{3} &= r_{0} \\ K_{xy}^{A_{2}} &= r_{0} + r_{1} + r_{1}^{*} - i_{1} - i_{2} - i_{3} &= r_{0} \\ \begin{pmatrix} K_{xx}^{E_{1}} & K_{xy}^{E_{1}} \\ K_{yx}^{E_{1}} & K_{yy}^{E_{1}} \end{pmatrix} &= \frac{1}{2} \begin{pmatrix} 2r_{0} - r_{1} - r_{1}^{*} - i_{1} - i_{2} + 2i_{3} & \sqrt{3}(-r_{1} + r_{1}^{*} - i_{1} + i_{2}) \\ \sqrt{3}(-r_{1}^{*} + r_{1} - i_{1} + i_{2}) & 2r_{0} - r_{1} - r_{1}^{*} + i_{1} + i_{2} - 2i_{3} \end{pmatrix} \begin{pmatrix} r_{0} & -ir \frac{\sqrt{3}}{2} \\ +ir \frac{\sqrt{3}}{2} & r_{0} \end{pmatrix} \end{aligned}$$

 $D_3 \supset C_3(\mathbf{r}^{\pm 1})$ local symmetry vibrational K-matrix eigenvalues $K_m/M = \omega_m^2$

$$\begin{aligned} D_{3} \supset C_{3}(\mathbf{r}^{\perp l}) \text{ local symmetry K-matrix eigensolutions} \\ \langle \mathbf{1} | \mathbf{K} | \mathbf{g}_{b} \rangle &= \begin{bmatrix} r_{0} & r_{1} & r_{2} & i_{1} & i_{2} & i_{3} \end{bmatrix} \\ \langle \mathbf{1} | \mathbf{K}_{C_{3}} | \mathbf{g}_{b} \rangle &= \begin{bmatrix} r_{0} & ir & -ir & 0 & 0 & 0 \end{bmatrix} \\ D_{3} \supset C_{3}(\mathbf{r}^{\perp l}) \text{ local symmetry vibrational K-matrix Set: } r_{1} &= r = -r_{2}^{*}, \text{ and: } i_{1} &= i_{2} &= i_{3} &= 0 \\ K_{xx}^{A_{1}} &= r_{0} + r_{1} + r_{1}^{*} + i_{1} + i_{2} + i_{3} &= r_{0} \\ K_{xx}^{A_{2}} &= r_{0} + r_{1} + r_{1}^{*} - i_{1} - i_{2} - i_{3} &= r_{0} \\ \begin{pmatrix} K_{xx}^{E_{1}} & K_{xy}^{E_{1}} \\ K_{yx}^{E_{1}} & K_{yy}^{E_{1}} \end{pmatrix} &= \frac{1}{2} \begin{pmatrix} 2r_{0} - r_{1} - r_{1}^{*} - i_{1} - i_{2} + 2i_{3} & \sqrt{3}(-r_{1} + r_{1}^{*} - i_{1} + i_{2}) \\ \sqrt{3}(-r_{1}^{*} + r_{1} - i_{1} + i_{2}) & 2r_{0} - r_{1} - r_{1}^{*} + i_{1} + i_{2} - 2i_{3} \end{pmatrix} \begin{pmatrix} r_{1} & r_{1} & r_{1} & \frac{\sqrt{3}}{2} \\ r_{2} & r_{0} \end{pmatrix} \end{aligned}$$

 $D_3 \supset C_3(\mathbf{r}^{\pm 1})$ local symmetry vibrational K-matrix eigenvalues $K_m/M = \omega_m^2$

Review: Hamiltonian local-symmetry eigensolution in global and local $|\mathbf{P}^{(\mu)}\rangle$ *-basis*

Molecular vibrational modes vs. Hamiltonian eigenmodes Molecular K-matrix construction $D_3 \supset C_2(i_3)$ local-symmetry K-matrix eigensolutions D_3 -direct-connection K-matrix eigensolutions $D_3 \supset C_3(\mathbf{r}^{\pm 1})$ local symmetry K-matrix eigensolutions

Applied symmetry reduction and splitting Subduced irep $D^{\alpha}(D^3) \downarrow C_2 = d^{0_2} \oplus d^{1_2} \oplus ...$ correlation Subduced irep $D^{\alpha}(D^3) \downarrow C_3 = d^{0_3} \oplus d^{1_3} \oplus ...$ correlation

Spontaneous symmetry breaking and clustering: Frobenius Reciprocity, band structure Induced rep $d^{a}(C_{2})\uparrow D^{3} = D^{\alpha}\oplus D^{\beta}\oplus..$ correlation Induced rep $d^{a}(C_{3})\uparrow D^{3} = D^{\alpha}\oplus D^{\beta}\oplus..$ correlation

*D*₆ symmetry and Hexagonal Bands

Cross product of the C_2 and D_3 characters gives all $D_6 = D_3 \times C_2$ characters and ireps

$D_3 \supset C_2$	\mathbf{P}^{lpha} relabel/split	D^{α} relabel/reduce	ω^{α} relabel/split
A_1	$\mathbf{P}^{A_1} = \mathbf{P}^{A_1} \mathbf{P}^{0_2} = \mathbf{P}^{A_1}_{0_2 0_2}$	$\Rightarrow D^{A_1} \downarrow C_2 \sim d^{0_2}$	$\Rightarrow \omega^{A_1} \rightarrow \omega^{0_2}$
A_2	$\mathbf{P}^{A_2} = \mathbf{P}^{A_2} \mathbf{P}^{1_2} = \mathbf{P}^{A_2}_{1_2 1_2}$	$\Rightarrow D^{A_2} \downarrow C_2 \sim d^{1_2}$	$\Rightarrow \omega^{A_2} \rightarrow \omega^{1_2}$
E_1	$\mathbf{P}^{E_1} = \mathbf{P}^{E_1} \mathbf{P}^{0_2} + \mathbf{P}^{E_1} \mathbf{P}^{1_2}$	$\Rightarrow D^{E_1} \downarrow C_2 \sim$	$\Rightarrow \omega^{E_1} \rightarrow \omega^{0_2}$
	$= \mathbf{P}_{0_{2}0_{2}}^{E_{1}} + \mathbf{P}_{1_{2}1_{2}}^{E_{1}}$	$d^{0_2} \oplus d^{1_2}$	$\searrow \omega^{1_2}$

$D_3 \supset C_2$	\mathbf{P}^{α} relabel/split	D^{α} relabel/reduce	ω^{lpha} relabel/split
A_1	$\mathbf{P}^{A_1} = \mathbf{P}^{A_1} \mathbf{P}^{0_2} = \mathbf{P}^{A_1}_{0_2 0_2}$	$\Rightarrow D^{A_1} \downarrow C_2 \sim d^{0_2}$	$\Rightarrow \omega^{A_1} \rightarrow \omega^{0_2}$
A_2	$\mathbf{P}^{A_2} = \mathbf{P}^{A_2} \mathbf{P}^{1_2} = \mathbf{P}^{A_2}_{1_2 1_2}$	$\Rightarrow D^{A_2} \downarrow C_2 \sim d^{1_2}$	$\Rightarrow \omega^{A_2} \rightarrow \omega^{I_2}$
E_1	$\mathbf{P}^{E_1} = \mathbf{P}^{E_1} \mathbf{P}^{0_2} + \mathbf{P}^{E_1} \mathbf{P}^{1_2}$	$\Rightarrow D^{E_1} \downarrow C_2 \sim$	$\Rightarrow \omega^{E_1} \rightarrow \omega^{0_2}$
	$= \mathbf{P}_{0_{2}0_{2}}^{E_{1}} + \mathbf{P}_{1_{2}1_{2}}^{E_{1}}$	$d^{0_2} \oplus d^{1_2}$	$\searrow \omega^{l_2}$

$D_3 \supset C_2$	02	12
A_1	1	•
A_2	•	1
E_1	1	1

$D_3 \supset C_2$	\mathbf{P}^{α} relabel/split	D^{α} relabel/reduce	ω^{α} relabel/split
A_1	$\mathbf{P}^{A_1} = \mathbf{P}^{A_1} \mathbf{P}^{0_2} = \mathbf{P}^{A_1}_{0_2 0_2}$	$\Rightarrow D^{A_1} \downarrow C_2 \sim d^{0_2}$	$\Rightarrow \omega^{A_1} \rightarrow \omega^{0_2}$
A_2	$\mathbf{P}^{A_2} = \mathbf{P}^{A_2} \mathbf{P}^{1_2} = \mathbf{P}^{A_2}_{1_2 1_2}$	$\Rightarrow D^{A_2} \downarrow C_2 \sim d^{1_2}$	$\Rightarrow \omega^{A_2} \rightarrow \omega^{1_2}$
E_1	$\mathbf{P}^{E_1} = \mathbf{P}^{E_1} \mathbf{P}^{0_2} + \mathbf{P}^{E_1} \mathbf{P}^{1_2}$	$\Rightarrow D^{E_1} \downarrow C_2 \sim$	$\Rightarrow \omega^{E_1} \rightarrow \omega^{0_2}$
	$= \mathbf{P}_{0_{2}0_{2}}^{E_{1}} + \mathbf{P}_{1_{2}1_{2}}^{E_{1}}$	$d^{0_2} \oplus d^{1_2}$	$\searrow \omega^{l_2}$

$D_3 \supset C_2$	\mathbf{P}^{α} relabel/split	D^{α} relabel/reduce	ω^{α} relabel/split
A_1	$\mathbf{P}^{A_1} = \mathbf{P}^{A_1} \mathbf{P}^{0_2} = \mathbf{P}^{A_1}_{0_2 0_2}$	$\Rightarrow D^{A_1} \downarrow C_2 \sim d^{0_2}$	$\Rightarrow \omega^{A_1} \rightarrow \omega^{0_2}$
A_2	$\mathbf{P}^{A_2} = \mathbf{P}^{A_2} \mathbf{P}^{1_2} = \mathbf{P}^{A_2}_{1_2 1_2}$	$\Rightarrow D^{A_2} \downarrow C_2 \sim d^{1_2}$	$\Rightarrow \omega^{A_2} \rightarrow \omega^{I_2}$
E_1	$\mathbf{P}^{E_1} = \mathbf{P}^{E_1} \mathbf{P}^{0_2} + \mathbf{P}^{E_1} \mathbf{P}^{1_2}$	$\Rightarrow D^{E_1} \downarrow C_2 \sim$	$\Rightarrow \omega^{E_1} \rightarrow \omega^{0_2}$
	$= \mathbf{P}_{0_{2}0_{2}}^{E_{1}} + \mathbf{P}_{1_{2}1_{2}}^{E_{1}}$	$d^{0_2} \oplus d^{1_2}$	$\searrow \omega^{1_2}$

$D_3 \supset C_2$	02	12
A_1	1	•
A_2		1
E_1	1	1

Applied symmetry reduction and splitting: Subduced irep $D^{\alpha}(D^3) \downarrow C_3 = d^{0_3} \oplus d^{1_3} \oplus ...$ correlation

$D_3 \supset C_3$	\mathbf{P}^{α} relabel/split	D^{α} relabel/reduce	ω^{α} relabel/split
A_1	$\mathbf{P}^{A_{1}} = \mathbf{P}^{A_{1}} \mathbf{P}^{0_{3}} = \mathbf{P}^{A_{1}}_{0_{3}0_{3}}$	$\Rightarrow D^{\mathbf{A}_1} \downarrow C_3 \sim d^{0_3}$	$\Rightarrow \omega^{A_1} \rightarrow \omega^{0_3}$
A_2	$\mathbf{P}^{A_2} = \mathbf{P}^{A_2} \mathbf{P}^{0_3} = \mathbf{P}^{A_2}_{0_3 0_3}$	$\Rightarrow D^{A_2} \downarrow C_3 \sim d^{0_3}$	$\Rightarrow \omega^{A_2} \rightarrow \omega^{0_3}$
E_1	$\mathbf{P}^{E_1} = \mathbf{P}^{E_1} \mathbf{P}^{1_3} + \mathbf{P}^{E_1} \mathbf{P}^{2_3}$	$\Rightarrow D^{E_1} \downarrow C_3 \sim$	$\Rightarrow \omega^{E_1} \rightarrow \omega^{I_3}$
	$= \mathbf{P}_{1_{3}1_{3}}^{E_{1}} + \mathbf{P}_{2_{3}2_{3}}^{E_{1}}$	$d^{1_3} \oplus d^{2_3}$	$\Delta \omega^{2_3}$

$D_3 \supset C_2$	\mathbf{P}^{α} relabel/split	D^{α} relabel/reduce	ω^{α} relabel/split
A_1	$\mathbf{P}^{A_1} = \mathbf{P}^{A_1} \mathbf{P}^{0_2} = \mathbf{P}^{A_1}_{0_2 0_2}$	$\Rightarrow D^{A_1} \downarrow C_2 \sim d^{0_2}$	$\Rightarrow \omega^{A_1} \rightarrow \omega^{0_2}$
A_2	$\mathbf{P}^{A_2} = \mathbf{P}^{A_2} \mathbf{P}^{1_2} = \mathbf{P}^{A_2}_{1_2 1_2}$	$\Rightarrow D^{A_2} \downarrow C_2 \sim d^{1_2}$	$\Rightarrow \omega^{A_2} \rightarrow \omega^{1_2}$
E_1	$\mathbf{P}^{E_1} = \mathbf{P}^{E_1} \mathbf{P}^{0_2} + \mathbf{P}^{E_1} \mathbf{P}^{1_2}$	$\Rightarrow D^{E_1} \downarrow C_2 \sim$	$\Rightarrow \omega^{E_1} \rightarrow \omega^{0_2}$
	$= \mathbf{P}_{0_{2}0_{2}}^{E_{1}} + \mathbf{P}_{1_{2}1_{2}}^{E_{1}}$	$d^{0_2} \oplus d^{1_2}$	$\supset \omega^{l_2}$

$D_3 \supset C_2$	02	12
A_1	1	•
A_2	•	1
E_1	1	1

Applied symmetry reduction and splitting: Subduced irep $D^{\alpha}(D^3) \downarrow C_3 = d^{0_3} \oplus d^{1_3} \oplus ...$ correlation

$D_3 \supset C_3$	\mathbf{P}^{α} relabel/split	D^{α} relabel/reduce	ω^{α} relabel/split	$D \neg C$	0	1	2
A_1	$\mathbf{P}^{A_{1}} = \mathbf{P}^{A_{1}} \mathbf{P}^{0_{3}} = \mathbf{P}^{A_{1}}_{0_{3}0_{3}}$	$\Rightarrow D^{\mathbf{A}_1} \downarrow C_3 \sim d^{0_3}$	$\Rightarrow \omega^{A_1} \rightarrow \omega^{0_3}$	$\frac{D_3 \Box C_3}{4}$	1	13	23
A_2	$\mathbf{P}^{A_2} = \mathbf{P}^{A_2} \mathbf{P}^{0_3} = \mathbf{P}^{A_2}_{0_2 0_2}$	$\Rightarrow D^{A_2} \downarrow C_3 \sim d^{0_3}$	$\Rightarrow \omega^{A_2} \rightarrow \omega^{0_3}$	A_1	1	•	
E_1	$\mathbf{P}^{E_1} = \mathbf{P}^{E_1} \mathbf{P}^{1_3} + \mathbf{P}^{E_1} \mathbf{P}^{2_3}$	$\Rightarrow D^{E_1} \downarrow C_3 \sim$	$\Rightarrow \omega^{E_1} \rightarrow \omega^{I_3}$	A_2	1	•	•
1	$= \mathbf{P}_{1_{1}1_{2}}^{E_{1}} + \mathbf{P}_{2_{2}2_{3}}^{E_{1}}$	$d^{1_3} \oplus d^{2_3}$	$\searrow \omega^{2_3}$	E_1	•	1	1

Review: Hamiltonian local-symmetry eigensolution in global and local $|\mathbf{P}^{(\mu)}\rangle$ *-basis*

Molecular vibrational modes vs. Hamiltonian eigenmodes Molecular K-matrix construction $D_3 \supset C_2(i_3)$ local-symmetry K-matrix eigensolutions D_3 -direct-connection K-matrix eigensolutions $D_3 \supset C_3(\mathbf{r}^{\pm 1})$ local symmetry K-matrix eigensolutions

Applied symmetry reduction and splitting Subduced irep $D^{\alpha}(D^3) \downarrow C_2 = d^{0_2} \oplus d^{1_2} \oplus ...$ correlation Subduced irep $D^{\alpha}(D^3) \downarrow C_3 = d^{0_3} \oplus d^{1_3} \oplus ...$ correlation

Spontaneous symmetry breaking and clustering: Frobenius Reciprocity, band structure Induced rep $d^{a}(C_{2})\uparrow D^{3} = D^{\alpha}\oplus D^{\beta}\oplus..$ correlation Induced rep $d^{a}(C_{3})\uparrow D^{3} = D^{\alpha}\oplus D^{\beta}\oplus..$ correlation

Cross product of the C_2 and D_3 characters gives all $D_6 = D_3 \times C_2$ characters and ireps

$D_3 \supset C_3$	\mathbf{P}^{α} relabel/split	D^{lpha} relabel/reduce	ω^{α} relabel/split	$D_3 \supset C_3$	03	13	2 ₃	
A_{1}	$\mathbf{P}^{A_{1}} = \mathbf{P}^{A_{1}} \mathbf{P}^{0_{3}} = \mathbf{P}^{A_{1}}_{0_{3}0_{3}}$	$\Rightarrow D^{A_1} \downarrow C_3 \sim d^{0_3}$	$\Rightarrow \omega^{A_1} \rightarrow \omega^{0_3}$	A_1	1	•	•	$D^{\mathbf{A}_1}(D_3) \downarrow C_3 \sim \boldsymbol{d}^{0_3}$
A_2	$\mathbf{P}^{A_2} = \mathbf{P}^{A_2} \mathbf{P}^{0_3} = \mathbf{P}^{A_2}_{0_3 0_3}$	$\Rightarrow D^{A_2} \downarrow C_3 \sim d^{0_3}$	$\Rightarrow \omega^{A_2} \rightarrow \omega^{0_3}$	A_2	1		•	$D^{A_2}(D_3) \downarrow C_3 \sim d^{0_3}$
E_1	$\mathbf{P}^{E_1} = \mathbf{P}^{E_1} \mathbf{P}^{1_3} + \mathbf{P}^{E_1} \mathbf{P}^{2_3}$	$\Rightarrow D^{E_1} \downarrow C_3 \sim$	$\Rightarrow \omega^{E_1} \rightarrow \omega^{1_3}$	E_{1}	•	1	1	$D^{E_1}(D_3) \downarrow C_3 \sim d^{1_3} \oplus d^{2_3}$
	$= \mathbf{P}_{1_3 1_3}^{E_1} + \mathbf{P}_{2_3 2_3}^{E_1}$	$d^{1_3} \oplus d^{2_3}$	$\sum \omega^{2_3}$	$d^{0_3}(C$	$(J_3) \uparrow D$	3		
Spontane	ous symmetry b	reaking		$\sim D^{A_1}$	$\oplus D^A$	$d^{1_3}(0)$	$(C_3) \uparrow L$	D ₃
and clust	ering: Induced r	$rep d^a(C_3) \uparrow D^3 =$	$D^{\alpha} \oplus D^{\beta} \oplus corr$	relation		$\sim D^{E_1}$		
								$d^{2_3}(C_3) \uparrow D_3$
								$\sim D^{E_1}$

Frobenius Reciprocity Theorem

Number of D^{α} in $d^{k}(K) \uparrow G =$ Number of d^{k} in $D^{\alpha}(G) \downarrow K$

Frobenius Reciprocity Theorem

Number of D^{α} in $d^{k}(K) \uparrow G =$ Number of d^{k} in $D^{\alpha}(G) \downarrow K$

...and regular representation

$$\begin{array}{c|cccc}
D_3 \supset C_1 & 0_1 = 1_1 \\
\hline
A_1 & 1 \\
A_2 & 1 \\
\hline
E_1 & 2
\end{array}$$

Frobenius Reciprocity Theorem

Number of D^{α} in $d^{k}(K) \uparrow G =$ Number of d^{k} in $D^{\alpha}(G) \downarrow K$

...and regular representation

$D_3 \supset C_1$	$0_1 = 1_1$	$D \neg C$	0	1	$D \rightarrow C$	0	1	2
Δ	1	$D_3 \supset C_2$	\mathbf{U}_2	1 ₂	$D_3 \supset C_3$	U ₃	13	$\boldsymbol{\Sigma}_3$
Λ_{l}	I	A_1	1	•	A_1	1	•	•
A_2	1	A_2		1	A_2	1	•	•
E_1	2	E_1	1	1	E_1	•	1	1

Review: Hamiltonian local-symmetry eigensolution in global and local $|\mathbf{P}^{(\mu)}\rangle$ *-basis*

Molecular vibrational modes vs. Hamiltonian eigenmodes Molecular K-matrix construction $D_3 \supset C_2(i_3)$ local-symmetry K-matrix eigensolutions D_3 -direct-connection K-matrix eigensolutions $D_3 \supset C_3(\mathbf{r}^{\pm 1})$ local symmetry K-matrix eigensolutions

Applied symmetry reduction and splitting Subduced irep $D^{\alpha}(D^3) \downarrow C_2 = d^{0_2} \oplus d^{1_2} \oplus ...$ correlation Subduced irep $D^{\alpha}(D^3) \downarrow C_3 = d^{0_3} \oplus d^{1_3} \oplus ...$ correlation

Spontaneous symmetry breaking and clustering: Frobenius Reciprocity, band structure Induced rep $d^{a}(C_{2})\uparrow D^{3} = D^{\alpha}\oplus D^{\beta}\oplus..$ correlation Induced rep $d^{a}(C_{3})\uparrow D^{3} = D^{\alpha}\oplus D^{\beta}\oplus..$ correlation

D₆ symmetry and Hexagonal Bands

Cross product of the C_2 and D_3 characters gives all $D_6 = D_3 \times C_2$ characters and ireps

D₆ symmetry and Hexagonal Bands

 D_6 is the outer product (×) product $D_3 \times C_2$ of D_3 and C_2 . (Requires C_2 to commute with all of D_3 .) $D_6 = D_3 \times C_2 = \{1, \mathbf{r}, \mathbf{r}^2, \mathbf{i}_1, \mathbf{i}_2, \mathbf{i}_3\} \times \{1, \mathbf{R}_z\}$

× product and D_6 operators. Define *hexagonal generator* **h** of subgroup $C_6 = \{1, h, h^2, h^3, h^4, h^5\}$

Electrostatic potential $V(\phi)$ doesn't care which way is "up." Wells remain wells, and barriers remain barriers under all D6 operations.

Sunday, March 29, 2015

Cross product of the C_2 *and* D_3 *characters gives all* $D_6 = D_3 \times C_2$ *characters.*

	$D_3 \times C_2^z$	1	$\left\{\mathbf{r},\mathbf{r}^{2}\right\}$	$\left\{\mathbf{i}_1,\mathbf{i}_2,\mathbf{i}_3\right\}$	$1 \cdot \mathbf{R}_z$	$\left\{\mathbf{r},\mathbf{r}^{2} ight\}\cdot\mathbf{F}$	$\mathbf{R}_{z} \left\{ \mathbf{i}_{1}, \mathbf{i}_{2}, \mathbf{i}_{3} \right\} \cdot \mathbf{R}_{z}$		
	$A_1 \cdot (A)$	1.1	1.1	1.1	1.1	1.1	1.1		
C_2^z 1 R _z	$A_2 \cdot (A)$	1.1	1.1	-1.1	1.1	1.1	-1.1		
$(A) \begin{vmatrix} 1 & 1 \end{vmatrix} =$	$E_2 \cdot (A)$	2.1	-1.1	0.1	2.1	-1.1	0.1		
(B) 1 -1	$A_1 \cdot (B)$	1.1	1.1	1.1	$1 \cdot (-1)$	$1 \cdot (-1)$	$1 \cdot (-1)$		
	$A_2 \cdot (B)$	1.1	1.1	-1.1	$1 \cdot (-1)$	$1 \cdot (-1)$	-1.(-1)		
	$E_1 \cdot (B)$	2.1	-1.1	0.1	$2 \cdot (-1)$	-1.(-1)	0.(-1)		
	$D_3 \times C_2^z$	1	$\left\{\mathbf{h}^2,\mathbf{h}^4\right\}$	$\{\mathbf{i}_1, \mathbf{i}_2, \mathbf{i}_3\}$	$\left \mathbf{h}^{3} \right $	$\left\{\mathbf{h},\mathbf{h}^{5}\right\}$	$\left\{\mathbf{j}_1, \mathbf{j}_2, \mathbf{j}_3\right\}$		
$\chi_g^{\mu}(D_6) =$	A ₁	1	1	1	1	1	1		
	A_2	1	1	-1	1	1	-1		
	E_2	2	-1	0	2	-1	0		
	<i>B</i> ₂	1	1	1	-1	-1	-1		
	B_1	1	1	-1	-1	-1	1		
	E_1	2	-1	0	-2	1	0		
Unit translation or									
60° hex rotation						h	Oddaa E		
		determines				V			
(+1) vs (-1)						Y -	<i>Y-rotation</i> or 180° flip j 3		
"Always-	-the-san	ie v	s Back	-and-fo	rth"	de	termines		
						X (+	$(1 VS X_2)$		
	$\frac{C_2^z}{(A)} \frac{1}{1} \frac{\mathbf{R}_z}{1} = \chi_g^\mu (D_6) = \chi_g^\mu (D_6) = \mathbf{r}_g^\mu (D_6) = \mathbf{r}_g^$	$\frac{C_2^z}{(A)} \frac{1}{(A)} \frac{R_z}{(A)} = \frac{D_3 \times C_2^z}{A_1 \cdot (A)}$ $\frac{A_2 \cdot (A)}{A_2 \cdot (A)}$ $\frac{E_2 \cdot (A)}{A_1 \cdot (B)}$ $A_2 \cdot (B)$ $E_1 \cdot (B)$ $\frac{D_3 \times C_2^z}{A_1}$ $\chi_g^\mu (D_6) = \frac{E_2}{B_2}$ $\frac{B_1}{E_1}$ E_1	$\frac{C_{2}^{z} 1 \mathbf{R}_{z}}{(A) 1 - 1} = \frac{D_{3} \times C_{2}^{z} 1}{A_{1} \cdot (A) 1 \cdot 1}$ $\frac{A_{2} \cdot (A) 1 \cdot 1}{A_{2} \cdot (A) 1 \cdot 1}$ $\frac{E_{2} \cdot (A) 2 \cdot 1}{A_{1} \cdot (B) 1 \cdot 1}$ $A_{2} \cdot (B) 1 \cdot 1$ $E_{1} \cdot (B) 2 \cdot 1$ $\frac{D_{3} \times C_{2}^{z} 1}{A_{1} 1}$ $A_{2} 1$ $\frac{A_{2} 1}{A_{2} 1}$ $\frac{A_{2} 1}{B_{1} 1}$ $E_{1} 2$ $^{\prime\prime}Always-the-same v.$	$\frac{C_2^z}{(A)} \frac{1}{1 \cdot 1} \frac{R_z}{(B)} = \frac{D_3 \times C_2^z}{A_1 \cdot (A)} \frac{1}{1 \cdot 1} \frac{[\mathbf{r}, \mathbf{r}^2]}{A_2 \cdot (A)} \frac{1}{1 \cdot 1} \frac{1}{1 \cdot 1} \frac{A_2 \cdot (A)}{A_2 \cdot (A)} \frac{1}{1 \cdot 1} \frac{1}{1 \cdot 1} \frac{A_2 \cdot (A)}{A_1 \cdot (B)} \frac{1}{1 \cdot 1} \frac{1}{1 \cdot 1} \frac{A_2 \cdot (B)}{A_1 \cdot 1} \frac{1}{1 \cdot 1} \frac{1}{1 \cdot 1} \frac{A_2 \cdot (B)}{A_1} \frac{1}{1 \cdot 1} \frac{1}{1 \cdot 1} \frac{A_2}{A_2} \frac{1}{1 \cdot 1} \frac{1}{1 \cdot 1} \frac{A_2}{A_2} \frac{1}{1 \cdot 1} \frac{1}{1 \cdot 1} \frac{A_2}{B_2} \frac{1}{1 \cdot 1} \frac{1}{1 \cdot 1} \frac{B_1}{B_1} \frac{1}{1 \cdot 1} \frac{1}{1 \cdot 1} \frac{B_1}{B_1} \frac{1}{2 \cdot 1} \frac{1}{1 \cdot 1} \frac{U_1}{B_1} \frac{1}{2 \cdot 1} \frac{U_1}{B_1} \frac{1}{2 \cdot 1} \frac{U_1}{B_1} \frac{U_1}{A_2} \frac{U_1}{A_1} \frac{U_1}{A_2} \frac$	$\frac{C_2^z}{(A)} \frac{1}{1 - 1} = \frac{D_3 \times C_2^z}{A_1 \cdot (A)} \frac{1}{1 \cdot 1} \frac{1}{1 \cdot 1$	$\frac{C_{2}^{z}}{(A)} \frac{1 \cdot \mathbf{R}_{z}}{(A)} = \frac{D_{3} \times C_{2}^{z}}{(A_{1} \cdot (A))} \frac{1 \cdot \mathbf{R}_{z}}{(A)} \frac{1 \cdot 1}{(A)} \frac{1}{(A)} \mathbf{1$	$\frac{C_{2}^{z}}{(A)} \frac{1}{1} \frac{\mathbf{R}_{z}}{(A)} = \frac{D_{3} \times C_{2}^{z}}{(A_{1} \cdot (A)} \frac{1}{1 \cdot 1} \frac{1}{1 \cdot$		

Cross product of the C_2 *and* D_3 *ireps gives all* $D_6 = D_3 \times C_2$ *ireps.*

"Always-the-same vs Back-and-forth"

Odd vs Even

Cross product of the C_2 *and* D_3 *ireps gives all* $D_6 = D_3 \times C_2$ *ireps.*

and related induced representations

