Group Theory in Quantum Mechanics Lecture 18(3.31.15)

Hexagonal $D_{6} \subset D_{6 h}$ and octahedral-tetrahedral $O \sim T_{d}$ symmetry

(Int.J.Mol.Sci, 14, 714(2013) p.755-774, QTCA Unit 5 Ch. 15)

$$
\text { (PSDS - Ch. } 4 \text {) }
$$

Review: Symmetry reduction and splitting: Subduced irep $D^{\alpha}\left(D_{3}\right) \downarrow C_{2}=d^{0} \oplus d^{12} \oplus$.. correlation Symmetry induction and clustering: Induced rep $d^{a}\left(C_{2}\right) \uparrow D_{3}=D^{\alpha} \oplus D^{\beta} \oplus$.. correlation
Review: Symmetry reduction and splitting: Subduced irep $D^{\alpha}\left(D_{3}\right) \downarrow C_{3}=d^{03} \oplus d^{1{ }^{3}} \oplus$.. correlation Symmetry induction and clustering: Induced rep $d^{c}\left(C_{3}\right) \uparrow D_{3}=D^{\alpha} \oplus D^{\beta} \oplus$.. correlation
$D_{3}-C_{2}$ Coset structure of $d^{m_{2}}\left(C_{2}\right) \uparrow D_{3}$ induced representation basis
D_{3}-Projection of $d^{m_{2}}\left(C_{2}\right) \uparrow D_{3}$ induced representation basis
Derivation of Frobenius reciprocity
$D_{6} \supset D_{2} \supset C_{2}=D_{3} \times C_{2}$ symmetry and outer product geometry
Irreducible characters
Irreducible representations
Correlations with D_{6} characters:
... and $C_{2}\left(\mathbf{i} \mathbf{i}_{3}\right)$ characters...... and $C_{6}\left(\mathbf{1}, \mathbf{h}^{1}, \mathbf{h}^{2}, \ldots\right)$ characters
D_{6} symmetry and induced representation band structure
Introduction to octahedral tetrahedral symmetry $O_{h} \supset O \sim T_{d} \supset T$

Review: Symmetry reduction and splitting: Subduced irep $D^{\alpha}\left(D_{3}\right) \downarrow C_{2}=d^{0} \oplus d^{1_{2}} \oplus$.. correlation
Symmetry induction and clustering: Induced rep $d^{a}\left(C_{2}\right) \uparrow D_{3}=D^{\alpha} \oplus D^{\beta} \oplus$.. correlation Review: Symmetry reduction and splitting: Subduced irep $D^{\alpha}\left(D_{3}\right) \downarrow C_{3}=d^{0_{3}} \oplus d^{1_{3}} \oplus$.. correlation Symmetry induction and clustering: Induced rep $d^{c}\left(C_{3}\right) \uparrow D_{3}=D^{\alpha} \oplus D^{\beta} \oplus$.. correlation
$D_{3}-C_{2}$ Coset structure of $d^{m_{2}}\left(C_{2}\right) \uparrow D_{3}$ induced representation basis
D_{3}-Projection of $d^{m_{2}}\left(C_{2}\right) \uparrow D_{3}$ induced representation basis
Derivation of Frobenius reciprocity
$D_{6} \supset D_{2} \supset C_{2}=D_{3} \times C_{2}$ symmetry and outer product geometry
Irreducible characters
Irreducible representations
Correlations with D6 characters:
\ldots and $C_{2}\left(\mathbf{i}_{3}\right)$ characters...... and $C_{6}\left(\mathbf{1}, \mathbf{h}^{1}, \mathbf{h}^{2}, \ldots\right)$ characters
D_{6} symmetry and induced representation band structure
Introduction to octahedral tetrahedral symmetry $O_{h} \supset O \sim T_{d} \supset T$

B-Type

Symmetry Breaking

Bilateral subgroup
Chain $D_{3} \supset C_{2}$

Subduced irep $D^{\alpha}\left(D_{3}\right) \downarrow C_{2}$

B-Type

Symmetry Breaking

Bilateral subgroup Chain $D_{3} \supset C_{2}$ (or $C_{3 v} \supset C_{v}$)

Subduced irep $D^{\alpha}\left(D_{3}\right) \downarrow C_{2}$

Applied symmetry reduction and splitting: Subduced irep $D^{\alpha}\left(D_{3}\right) \downarrow C_{2}=d^{0_{2}} \oplus d^{1_{2}} \oplus$. correlation

$D_{3} \supset C_{2}$	$\begin{array}{lll}0 & 12\end{array}$	
A_{1}	1	$D^{A_{1}}\left(D_{3}\right) \downarrow C_{2} \sim d^{0_{2}}$
A_{2}	- 1	$D^{A_{2}}\left(D_{3}\right) \downarrow C_{2} \sim d^{l_{2}}$
E_{1}	11	$D^{E_{1}}\left(D_{3}\right) \downarrow C_{2} \sim d^{0_{2}} \oplus d$

Deriving $D_{3} \sim C_{3 v}$ products - By group definition $|g\rangle=\mathbf{g}|1\rangle$ of position ket $|g\rangle$

Applied symmetry reduction and splitting: Subduced irep $D^{\alpha}\left(D_{3}\right) \downarrow C_{2}=d^{0^{2}} \oplus d^{1^{2}} \oplus .$. correlation

$D_{3} \supset C_{2}$	$\underline{\mathbf{P}^{\alpha} \text { relabel/split }}$	$\underline{D^{\alpha} \text { relabel/reduce }}$	$\underline{\omega^{\alpha} \mathrm{relabel} / \text { split }}$	$D_{3} \supset C_{2}$	$\mathrm{O}_{2} 1_{2}$	
A_{1}	$\mathbf{P}^{4}=\mathbf{P}^{4} \mathbf{P}^{\mathbf{0}_{2}}=\mathbf{P}_{0_{2} 0_{2}}^{4}$	$\Rightarrow D^{A_{1}} \downarrow C_{2} \sim d^{0_{2}}$	$\Rightarrow \omega^{4_{1}} \rightarrow \omega^{0_{2}}$	A_{1}		$D^{A_{1}}\left(D_{3}\right) \downarrow C_{2} \sim d^{0_{2}}$
A_{2}	$\mathbf{P}^{4}=\mathbf{P}^{4} \mathbf{P}^{l^{\dagger}}=\mathbf{P}_{\mathrm{l}_{2}}$	$\Rightarrow D^{4} \downarrow C_{2} \sim d^{1}$	$\Rightarrow \omega^{\frac{1}{2}} \rightarrow \omega^{1_{2}}$	A_{2}	1	$D^{\Lambda_{2}}\left(D_{3}\right) \downarrow C_{2} \sim d^{1_{2}}$
E_{1}	$\mathbf{P}^{E_{1}}=\mathbf{P}^{E_{i}} \mathbf{P}^{0_{2}}+\mathbf{P}^{E_{E_{1}} \mathbf{P}^{\mathbf{l}_{2}} \text {, }}$	$\Rightarrow D^{E_{1}} \downarrow C_{2} \sim$	$\Rightarrow \omega^{E_{1}} \rightarrow \omega^{0_{2}}$	E_{1}	11	$D^{E_{1}}\left(D_{3}\right) \downarrow C_{2} \sim d^{0_{2}} \oplus d^{1}$

D_{3}	$\mathbf{1}$	$\left\{\mathbf{r}^{1}, \mathbf{r}^{2}\right\}$	$\left\{\mathbf{i}_{1} \mathbf{i}_{3}\right\}$
A_{1}	1	1	1
A_{3}			
A_{2}	1	1	-1
E_{1}	2	-1	0

C_{2}	$\mathbf{1}$	\mathbf{i}_{3}
$(0)_{2}$	1	1
$(1)_{2}$	1	-1

Deriving $D_{3} \sim C_{3 v}$ products - By group definition $|g\rangle=\mathbf{g}|1\rangle$ of position ket $|g\rangle$

Review: Symmetry reduction and splitting: Subduced irep $D^{\alpha}\left(D_{3}\right) \downarrow C_{2}=d^{0^{2}} \oplus d^{1_{2}} \oplus$.. correlation Symmetry induction and clustering: Induced rep $d^{a}\left(C_{2}\right) \uparrow D_{3}=D^{\alpha} \oplus D^{\beta} \oplus$.. correlation Review: Symmetry reduction and splitting: Subduced irep $D^{\alpha}\left(D_{3}\right) \downarrow C_{3}=d^{0_{3}} \oplus d^{l_{3}} \oplus$.. correlation Symmetry induction and clustering: Induced rep $d^{c}\left(C_{3}\right) \uparrow D_{3}=D^{\alpha} \oplus D^{\beta} \oplus$.. correlation

[^0]Introduction to octahedral tetrahedral symmetry $O_{h} \supset O \sim T_{d} \supset T$

Applied symmetry reduction and splitting: Subduced irep $D^{\alpha}\left(D_{3}\right) \downarrow C_{2}=d^{02} \oplus d^{1_{2}} \oplus .$. correlation

$D_{3} \supset C_{2}$	\mathbf{P}^{α} relabel/split	$\underline{D^{\alpha} \text { relabel/reduce }}$	$\underline{\omega^{\alpha} \mathrm{relabel} / \text { split }}$	$D_{3} \supset C_{2}$	$\mathrm{O}_{2} \quad 12$	
A_{1}	$\mathbf{P}^{4}=\mathbf{P}^{4} \mathbf{P}^{\mathbf{0}_{2}}=\mathbf{P}_{0_{2} 0_{2}}^{4}$	$\Rightarrow D^{\wedge} \downarrow C_{2} \sim d^{0_{2}}$	$\Rightarrow \omega^{A_{1}} \rightarrow \omega^{0_{2}}$	A_{1}	1	$D^{A_{1}}\left(D_{3}\right) \downarrow C_{2} \sim d^{0_{2}}$
A_{2}	$\mathbf{P}^{\dagger}=\mathbf{P}^{4} \mathbf{P}^{1}=\mathbf{P}^{1}$	$\Rightarrow D^{\dagger} \downarrow C_{2} \sim d^{1}$	$\Rightarrow \omega^{4_{2}} \rightarrow \omega^{\prime}$	A_{2}	1	$D^{A_{2}}\left(D_{3}\right) \downarrow C_{2} \sim d^{1}$
E_{1}	$\mathbf{P}^{E_{1}}=\mathbf{P}^{E_{1}} \mathbf{P}^{0_{2}}+\mathbf{P}^{E_{1} \mathbf{P}^{1}}$	$\Rightarrow D^{E_{1}} \downarrow C_{2} \sim$	$\Rightarrow \omega^{E_{1}} \rightarrow \omega^{0_{2}}$	E_{1}	1	$D^{E_{1}}\left(D_{3}\right) \downarrow C_{2} \sim d^{0_{2}} \oplus d^{\downarrow}$
	symmetry	ng and c	ing:	$d^{0_{2}}\left(C_{2}\right)$ $\sim D^{A_{1}} \oplus$	$\begin{aligned} & 2) \uparrow D_{3} \\ & D^{E_{1}} \end{aligned}$	$\begin{aligned} & { }^{(}\left(C_{2}\right) \uparrow D_{3} \\ & D^{A_{2}} \oplus D^{E_{1}} \end{aligned}$

Deriving $D_{3} \sim C_{3 v}$ products - By group definition $|g\rangle=\mathbf{g}|1\rangle$ of position ket $|g\rangle$

Review: Symmetry reduction and splitting: Subduced irep $D^{\alpha}\left(D_{3}\right) \downarrow C_{2}=d^{0^{2}} \oplus d^{1_{2}} \oplus$.. correlation Symmetry induction and clustering: Induced rep $d^{a}\left(C_{2}\right) \uparrow D_{3}=D^{\alpha} \oplus D^{\beta} \oplus$.. correlation Review: Symmetry reduction and splitting: Subduced irep $D^{\alpha}\left(D_{3}\right) \downarrow C_{3}=d^{0_{3}} \oplus d^{1_{3}} \oplus$.. correlation Symmetry induction and clustering: Induced rep $d^{c}\left(C_{3}\right) \uparrow D_{3}=D^{\alpha} \oplus D^{\beta} \oplus$.. correlation
$D_{3}-C_{2}$ Coset structure of $d^{m_{2}}\left(C_{2}\right) \uparrow D_{3}$ induced representation basis
D_{3}-Projection of $d^{m_{2}}\left(C_{2}\right) \uparrow D_{3}$ induced representation basis
Derivation of Frobenius reciprocity
$D_{6} \supset D_{2} \supset C_{2}=D_{3} \times C_{2}$ symmetry and outer product geometry
Irreducible characters
Irreducible representations
Correlations with D6 characters:
... and $C_{2}\left(\mathbf{i}_{3}\right)$ characters...... and $C_{6}\left(\mathbf{1}, \mathbf{h}^{1}, \mathbf{h}^{2}, \ldots\right)$ characters
D_{6} symmetry and induced representation band structure
Introduction to octahedral tetrahedral symmetry $O_{h} \supset O \sim T_{d} \supset T$

Applied symmetry reduction and splitting: Subduced irep $D^{\alpha}\left(D_{3}\right) \downarrow C_{2}=d^{02} \oplus d^{12} \oplus .$. correlation

$D_{3} \supset C_{2}$	$\frac{\mathbf{P}^{\alpha} \text { relabel/split }}{A_{1}}$	$\frac{D^{\alpha} \text { relabel/reduce }}{}$		ω^{α} relabel/split
A_{1}	$\mathbf{P}^{A_{1}}=\mathbf{P}^{A_{1}} \mathbf{P}^{0_{2}}=\mathbf{P}_{0_{2} 0_{2}}^{A_{1}}$	$\Rightarrow D^{A_{1}} \downarrow C_{2} \sim d^{0_{2}}$		$\Rightarrow \omega^{A_{1}} \rightarrow \omega^{0_{2}}$
A_{2}	$\mathbf{P}^{A_{2}}=\mathbf{P}^{A_{2}} \mathbf{P}^{1_{2}}=\mathbf{P}_{1_{2} 1_{2}}^{A_{2}}$	$\Rightarrow D^{A_{2}} \downarrow C_{2} \sim d^{1_{2}}$		$\Rightarrow \omega^{A_{2}} \rightarrow \omega^{1_{2}}$
E_{1}	$\mathbf{P}^{E_{1}}=\mathbf{P}^{E_{1}} \mathbf{P}^{0_{2}}+\mathbf{P}^{E_{1}} \mathbf{P}^{1_{2}}$	$\Rightarrow D^{E_{1}} \downarrow C_{2} \sim$		$\Rightarrow \omega^{E_{1}} \rightarrow \omega^{0_{2}}$
	$=\mathbf{P}_{0_{2} 0_{2}}^{E_{1}}+\mathbf{P}_{1_{2} 1_{2}}^{E_{1}}$	$d^{0_{2}} \oplus d^{1_{2}}$		$\searrow \omega^{1_{2}}$

Spontaneous symmetry breaking and clustering: Induced rep $d^{a}\left(C_{2}\right)^{\uparrow} D_{3}=D^{\alpha} \oplus D^{\beta} \oplus$.. correlation

-	C_{3}	$\mathbf{1}=\mathbf{r}^{0}$	\mathbf{r}^{l}
$\mathbf{r}^{2}=\mathbf{r}^{-1}$			
$(0)_{3}$	1	1	1
$(+1)_{3}$	1	ε	ε^{*}
$(2)_{3}=(-1)_{3}$	1	ε^{*}	ε

Applied symmetry reduction and splitting: Subduced irep $D^{\alpha}\left(D_{3}\right) \downarrow C_{2}=d^{0_{2}} \oplus d^{1_{2}} \oplus .$. correlation

$D_{3} \supset C_{2}$	$\underline{\mathbf{P}^{\alpha} \text { relabel/split }}$	D^{α} relabel/reduce	ω^{α} relabel/split	$D_{3} \supset C_{2}$	$\mathrm{O}_{2} 1_{2}$	
A_{1}	$\mathbf{P}^{\Lambda_{1}}=\mathbb{P}^{\Lambda_{1}} \mathbb{P}^{\mathbf{0}_{2}}=\mathbb{P}_{0_{2}{ }_{1}{ }_{1}}$	$\Rightarrow D^{A_{1}} \downarrow C_{2} \sim d^{0_{2}}$	$\Rightarrow \omega^{A_{1}} \rightarrow \omega^{0_{2}}$	A_{1}		$D^{A_{1}}\left(D_{3}\right) \downarrow C_{2} \sim d^{0_{2}}$
A_{2}	$\mathbf{P}^{1_{2}}=\mathbf{P}^{4_{2}} \mathbf{P}^{1_{2}}=\mathbf{P}_{1}$	$\Rightarrow D^{12} \downarrow C_{2} \sim d^{1}$	$\Rightarrow \omega^{A_{2}} \rightarrow \omega^{\prime}$	A_{2}	1	$D^{A_{2}}\left(D_{3}\right) \downarrow C_{2} \sim d$
E_{1}	$\mathbf{P}^{E_{1}}=\mathbf{P}^{E_{1}} \mathbf{P}^{0_{2}}+\mathbf{P}^{E_{1}} \mathbf{P}^{1_{2}}$	$\Rightarrow D^{E_{1}} \downarrow C_{2} \sim$	$\Rightarrow \omega^{E_{1}} \rightarrow \omega^{0_{2}}$	E_{1}	1	$D^{E_{1}}\left(D_{3}\right) \downarrow C_{2} \sim d^{0_{2}} \oplus d$
	$=\mathbf{P}_{0_{2} 0_{2}}^{E_{1}}+\mathbf{P}_{l_{21}}^{E_{1}}$	$d^{0_{2}} \oplus d^{1}$		$d^{0_{2}}\left(C_{2}\right) \uparrow D_{3} \quad d^{1_{2}}\left(C_{2}\right) \uparrow D_{3}$		
Induce	$p d^{a}\left(C_{2}\right) \uparrow D_{3}$	${ }^{\alpha} \oplus D^{\beta} \oplus$. cor	ation	$\sim D^{A_{1}} \oplus D^{E_{1}}$		$D^{A_{2}} \oplus D^{E_{1}}$

D_{3}			$\left\{\mathbf{i}_{1} \mathbf{i}_{2} \mathbf{i}_{3}\right\}$	$\supset C_{2}$	1		
A_{1}	1	1	1	$(0)_{2}$	1		
A_{2}	1	1	-1	(1) ${ }_{2}$	1		

$-C_{3}$	$\mathbf{1}=\mathbf{r}^{0}$	\mathbf{r}^{l}	$\mathbf{r}^{2}=\mathbf{r}^{-1}$
$(0)_{3}$	1	1	1
$(+1)_{3}$	1	ε	ε^{*}
$(2)_{3}=(-1)_{3}$	1	ε^{*}	ε

Applied symmetry reduction and splitting: Subduced irep $D^{\alpha}\left(D_{3}\right) \downarrow C_{3}=d^{0_{3}} \oplus d^{1_{3}} \oplus$.. correlation

$D_{3} \supset C_{3}$	0_{3}	1_{3}	2_{3}	
A_{1}	1	\cdot	\cdot	
A_{2}	1	\cdot	\cdot	$D^{A_{1}}\left(D_{3}\right) \downarrow C_{3} \sim d^{0_{3}}$ E_{1}
$D^{A_{2}}\left(D_{3}\right) \downarrow C_{3} \sim d^{0_{3}}$				

Applied symmetry reduction and splitting: Subduced irep $D^{\alpha}\left(D_{3}\right) \downarrow C_{2}=d^{0_{2}} \oplus d^{1_{2}} \oplus .$. correlation

$D_{3} \supset C_{2}$	$\frac{\mathbf{P}^{\alpha} \text { relabel/split }}{A_{1}}$		$\frac{D^{\alpha} \text { relabel/reduce }}{}$	
A_{1}		ω^{α} relabel/split		
A_{2}	$\mathbf{P}^{A_{1}}=\mathbf{P}^{A_{1}} \mathbf{P}^{0_{2}}=\mathbf{P}_{0_{2} 0_{2}}^{A_{1}}$	$\Rightarrow D^{A_{1}} \downarrow C_{2} \sim d^{0_{2}}$		$\Rightarrow \omega^{A_{1}} \rightarrow \omega^{0_{2}}$
E_{1}	$\mathbf{P}^{A_{2}}=\mathbf{P}^{A_{2}} \mathbf{P}^{1_{2}}=\mathbf{P}_{1_{2} 1_{2}}^{A_{2}}$	$\Rightarrow D^{A_{2}} \downarrow C_{2} \sim d^{1_{2}}$		$\Rightarrow \omega^{A_{2}} \rightarrow \omega^{1_{2}}$
	$\mathbf{P}^{E_{1}}=\mathbf{P}^{E_{1}} \mathbf{P}^{0_{2}}+\mathbf{P}^{E_{1}} \mathbf{P}^{1_{2}}$	$\Rightarrow D^{E_{1}} \downarrow C_{2} \sim$		$\Rightarrow \omega^{E_{1}} \rightarrow \omega^{0_{2}}$
	$=\mathbf{P}_{0_{2} 0_{2}}^{E_{1}}+\mathbf{P}_{11_{1}}^{E_{1}}$		$d^{0_{2}} \oplus d^{1_{2}}$	
			$\searrow \omega^{1_{2}}$	

Spontaneous symmetry breaking and clustering: Induced rep $d^{a}\left(C_{2}\right) \uparrow D_{3}=D^{\alpha} \oplus D^{\beta} \oplus$.. correlation

D_{3}	$\left.\mathbf{r}^{1}, \mathbf{r}^{2}\right\}\left\{\left\{\mathbf{i}_{1} \mathbf{i}_{2} \mathbf{i}_{3}\right\}\right.$			$\supset C_{2}$	11 i_{3}		
A_{1}	1	1	1	(0) ${ }_{2}$			1
A_{2}	1	1	-1	(1) ${ }_{2}$			1

$-C_{3}$	$\mathbf{1}=\mathbf{r}^{0}$	\mathbf{r}^{l}	$\mathbf{r}^{2}=\mathbf{r}^{-1}$
$(0)_{3}$	1	1	1
$(+1)_{3}$	1	ε	ε^{*}
$(2)_{3}=(-1)_{3}$	1	ε^{*}	ε

Applied symmetry reduction and splitting: Subduced irep $D^{\alpha}\left(D_{3}\right) \downarrow C_{3}=d^{0^{3}} \oplus d^{l_{3}} \oplus .$. correlation

$D_{3} \supset C_{3}$	\mathbf{P}^{α} relabel/split	$\underline{D^{\alpha} \text { relabel/reduce }}$	$\omega^{\alpha} \mathrm{relabel} /$ split	$D_{3} \supset C_{3}$	0_{3} 1 1_{3} 2_{3}	
A_{1}	$\mathbf{P}^{4}=\mathbf{P}^{4} \mathbf{P}^{0_{3}}=\mathbf{P}_{0,0}^{4}{ }^{4}$	$\Rightarrow D^{4} \downarrow C_{3} \sim d^{0_{3}}$	$\Rightarrow \omega^{A_{1}} \rightarrow \omega^{0_{3}}$	A_{1}		$D^{A_{1}}\left(D_{3}\right) \downarrow C_{3} \sim d^{0_{3}}$
A_{2}		$\Rightarrow D^{1} \downarrow C_{3} \sim d^{0_{3}}$	$\Rightarrow \omega^{4_{2}} \rightarrow \omega^{0_{3}}$	A_{2}	1	$D^{A_{2}}\left(D_{3}\right) \downarrow C_{3} \sim d^{0_{3}}$
E_{1}	$\begin{aligned} \mathbf{P}^{E_{i}} & =\mathbf{P}^{E_{i} \mathbf{P}_{3}}+\mathbf{P}^{E_{i}} \mathbf{P}^{2} \\ & =\mathbf{P}_{i_{13}}^{b_{1}}+\mathbf{P}_{22_{1 / 3}} \end{aligned}$	$\begin{gathered} \Rightarrow D^{E_{1}} \downarrow C_{3} \sim \\ \quad d^{1_{3}} \oplus d^{2_{3}} \end{gathered}$	$\begin{aligned} \Rightarrow \omega^{E_{1}} & \rightarrow \omega^{1_{3}} \\ & \searrow \omega^{2_{3}} \end{aligned}$	E_{1}	1	$D^{E_{1}}\left(D_{3}\right) \downarrow C_{3} \sim d^{1_{3}} \oplus d^{2_{3}}$

Review: Symmetry reduction and splitting: Subduced irep $D^{\alpha}\left(D_{3}\right) \downarrow C_{2}=d^{0^{2}} \oplus d^{l_{2}} \oplus$.. correlation Symmetry induction and clustering: Induced rep $d^{a}\left(C_{2}\right) \uparrow D_{3}=D^{\alpha} \oplus D^{\beta} \oplus$.. correlation Review: Symmetry reduction and splitting: Subduced irep $D^{\alpha}\left(D_{3}\right) \downarrow C_{3}=d^{0_{3}} \oplus d^{l_{3}} \oplus$.. correlation Symmetry induction and clustering: Induced rep $d^{c}\left(C_{3}\right) \uparrow D_{3}=D^{\alpha} \oplus D^{\beta} \oplus$.. correlation
$D_{3}-C_{2}$ Coset structure of $d^{m_{2}}\left(C_{2}\right) \uparrow D_{3}$ induced representation basis D_{3}-Projection of $d^{m_{2}}\left(C_{2}\right) \uparrow D_{3}$ induced representation basis Derivation of Frobenius reciprocity
$D_{6} \supset D_{2} \supset C_{2}=D_{3} \times C_{2}$ symmetry and outer product geometry
Irreducible characters
Irreducible representations
Correlations with D6 characters:
... and $C_{2}\left(\mathbf{i}_{3}\right)$ characters...... and $C_{6}\left(\mathbf{1}, \mathbf{h}^{1}, \mathbf{h}^{2}, \ldots\right)$ characters
D_{6} symmetry and induced representation band structure
Introduction to octahedral tetrahedral symmetry $O_{h} \supset O \sim T_{d} \supset T$

Applied symmetry reduction and splitting: Subduced irep $D^{\alpha}\left(D_{3}\right) \downarrow C_{2}=d^{0_{2}} \oplus d^{1_{2}} \oplus .$. correlation

$D_{3} \supset C_{2}$	\mathbf{P}^{α} relabel/split	$\underline{D^{\alpha} \text { relabel/reduce }}$	ω^{α} relabel/split
A_{1}	$\mathbf{P}^{A_{1}}=\mathbf{P}^{A_{1}} \mathbf{P}^{0_{2}}=\mathbf{P}_{0_{2} 0_{2}}^{A_{1}}$	$\Rightarrow D^{A_{1}} \downarrow C_{2} \sim d^{0_{2}}$	$\Rightarrow \omega^{A_{1}} \rightarrow \omega^{0_{2}}$
A_{2}	$\mathbf{P}^{A_{2}}=\mathbf{P}^{A_{2}} \mathbf{P}^{1_{2}}=\mathbf{P}_{1_{2} 1_{2}}^{A_{2}}$	$\Rightarrow D^{A_{2}} \downarrow C_{2} \sim d$	$\Rightarrow \omega^{A_{2}} \rightarrow \omega^{1_{2}}$
E_{1}	$\mathbf{P}^{E_{1}}=\mathbf{P}^{E_{1}} \mathbf{P}^{0_{2}}+\mathbf{P}^{E_{1}} \mathbf{P}^{1_{2}}$	$\Rightarrow D^{E_{1}} \downarrow C_{2} \sim$	$\Rightarrow \omega^{E_{1}} \rightarrow \omega^{0_{2}}$
	$=\mathbf{P}_{0_{2} 0^{2}}^{E_{1}}+\mathbf{P}_{1_{1}}^{E_{1}}$	$d^{0_{2}} \oplus d^{1_{2}}$	$\searrow \omega^{1}$

Spontaneous symmetry breaking and clustering: Induced rep $d^{a}\left(C_{2}\right) \uparrow D_{3}=D^{\alpha} \oplus D^{\beta} \oplus$.. correlation

$-C_{3}$	$\mathbf{1}=\mathbf{r}^{0}$	\mathbf{r}^{1}	$\mathbf{r}^{2}=\mathbf{r}^{-1}$
$(0)_{3}$	1	1	1
$(+1)_{3}$	1	ε	ε^{*}
$(2)_{3}=(-1)_{3}$	1	ε^{*}	ε

Applied symmetry reduction and splitting: Subduced irep $D^{\alpha}\left(D_{3}\right) \downarrow C_{3}=d^{0_{3}} \oplus d^{1_{3}} \oplus$.. correlation

$$
\begin{aligned}
& E_{1} \quad \mathbf{P}^{E_{1}}=\mathbf{P}^{E_{E_{1}}} \mathbf{P}^{1_{3}}+\mathbf{P}^{E_{1}} \mathbf{P}^{2_{3}} \quad \Rightarrow D^{E_{1}} \downarrow C_{3} \sim \quad \Rightarrow \omega^{E_{1}} \rightarrow \omega^{1_{3}} \\
& =\mathbf{P}_{l_{13} E_{3}}^{E_{1}}+\mathbf{P}_{22_{3}}^{E_{1}} \quad d^{1_{3}} \oplus d^{2_{3}} \quad \searrow \omega^{23} \\
& \text { Spontaneous symmetry breaking and clustering: } \\
& \text { Induced rep } d^{a}\left(C_{3}\right) \uparrow D_{3}=D^{\alpha} \oplus D^{\beta} \oplus \text {.. correlation } \\
& d^{0_{3}}\left(C_{3}\right) \uparrow D_{3} \quad d^{1_{3}}\left(C_{3}\right) \uparrow D_{3} \quad d^{2_{3}}\left(C_{3}\right) \uparrow D_{3} \\
& \sim D^{A_{1}} \oplus D^{A_{2}} \quad \sim D^{E_{1}} \quad \sim D^{E_{1}}
\end{aligned}
$$

Review: Symmetry reduction and splitting: Subduced irep $D^{\alpha}\left(D_{3}\right) \downarrow C_{2}=d^{0^{2}} \oplus d^{1_{2}} \oplus$.. correlation
Symmetry induction and clustering: Induced rep $d^{a}\left(C_{2}\right) \uparrow D_{3}=D^{\alpha} \oplus D^{\beta} \oplus$.. correlation
$D_{3}-C_{2}$ Coset structure of $d^{m_{2}}\left(C_{2}\right) \uparrow D_{3}$ induced representation basis D_{3}-Projection of d ${ }^{m_{2}}\left(C_{2}\right) \uparrow D_{3}$ induced representation basis

Derivation of Frobenius reciprocity
$D_{6} \supset D_{2} \supset C_{2}=D_{3} \times C_{2}$ symmetry and outer product geometry
Irreducible characters
Irreducible representations
Correlations with D6 characters:
... and $C_{2}\left(\mathbf{i}_{3}\right)$ characters...... and $C_{6}\left(\mathbf{1}, \mathbf{h}^{1}, \mathbf{h}^{2}, \ldots\right)$ characters
D_{6} symmetry and induced representation band structure
Introduction to octahedral tetrahedral symmetry $O_{h} \supset O \sim T_{d} \supset T$
$D_{3-} C_{2}$ Coset structure of $d^{m_{2}}\left(C_{2}\right) \uparrow D^{3}$ induced representation basis Left cosets $\left[\mathbf{1} C_{2}=\left(\mathbf{1}, \mathbf{i}_{3}\right)\right.$, $\mathbf{r}^{1} C_{2}=\left(\mathbf{r}^{1}, \mathbf{i}_{2}\right)$, $\left.\mathbf{r}^{2} C_{2}=\left(\mathbf{r}^{2}, \mathbf{i}_{1}\right)\right]$ relate to sets of \mathbf{r}^{p}-transformed kets

$D_{3}-C_{2}$ Coset structure of $d^{m_{2}}\left(C_{2}\right) \uparrow D^{3}$ induced representation basis Left cosets $\left[\mathbf{1} C_{2}=\left(\mathbf{1}, \mathbf{i}_{3}\right), \quad \mathbf{r}^{1} C_{2}=\left(\mathbf{r}^{1}, \mathbf{i}_{2}\right), \quad \mathbf{r}^{2} C_{2}=\left(\mathbf{r}^{2}, \mathbf{i}_{1}\right)\right]$ relate to sets of \mathbf{r}^{p}-transformed kets
$\left.\left[\mathbf{1}\left(|\mathbf{1}\rangle,\left|\mathbf{i}_{3}\right\rangle\right)=\left(|\mathbf{1}\rangle,\left|\mathbf{i}_{3}\right\rangle\right), \quad \mathbf{r}^{1}\left(|\mathbf{1}\rangle,\left|\mathbf{i}_{3}\right\rangle\right)=\left(\left|\mathbf{r}^{1}\right\rangle,\left|\mathbf{i}_{2}\right\rangle\right), \quad \mathbf{r}^{2}\left(|\mathbf{i}\rangle,\left|\mathbf{i}_{3}\right\rangle\right)=\left(\left|\mathbf{r}^{2}\right\rangle, \overline{\mathbf{i}_{1}}\right\rangle\right)\right]$

$D_{3-} C_{2}$ Coset structure of $d^{m_{2}}\left(C_{2}\right) \uparrow D^{3}$ induced representation basis Left cosets $\left[\mathbf{1} C_{2}=\left(\mathbf{1}, \mathbf{i}_{3}\right), \quad \mathbf{r}^{1} C_{2}=\left(\mathbf{r}^{1}, \mathbf{i}_{2}\right), \quad \mathbf{r}^{2} C_{2}=\left(\mathbf{r}^{2}, \mathbf{i}_{1}\right)\right]$ relate to sets of \mathbf{r}^{p}-transformed kets
$\left[\mathbf{1}\left(|\mathbf{1}\rangle,\left|\mathbf{i}_{3}\right\rangle\right)=\left(|\mathbf{1}\rangle,\left|\mathbf{i}_{3}\right\rangle\right), \quad \mathbf{r}^{1}\left(|\mathbf{1}\rangle,\left|\mathbf{i}_{3}\right\rangle\right)=\left(\left|\mathbf{r}^{1}\right\rangle,\left|\mathbf{i}_{2}\right\rangle\right), \quad \mathbf{r}^{2}\left(|\mathbf{i}\rangle,\left|\mathbf{i}_{3}\right\rangle\right)=\left(\left|\mathbf{r}^{2}\right\rangle,\left|\mathbf{i}_{1}\right\rangle\right)\right]$ Right cosets $\left[C_{2}=\left(\mathbf{1}, \mathbf{i}_{3}\right), C_{2} \mathbf{r}^{2}=\left(\mathbf{r}^{2}, \mathbf{i}_{2}\right), C_{2} \mathbf{r}=\left(\mathbf{r}, \mathbf{i}_{1}\right)\right]$ relate to sets of bras

$D_{3}-C_{2}$ Coset structure of $d^{m_{2}}\left(C_{2}\right) \uparrow D^{3}$ induced representation basis Left cosets $\left[\mathbf{1} C_{2}=\left(\mathbf{1}, \mathbf{i}_{3}\right), \quad \mathbf{r}^{1} C_{2}=\left(\mathbf{r}^{1}, \mathbf{i}_{2}\right), \quad \mathbf{r}^{2} C_{2}=\left(\mathbf{r}^{2}, \mathbf{i}_{1}\right)\right]$ relate to sets of \mathbf{r}^{p}-transformed kets
$\left.\left[\mathbf{1}\left(|\mathbf{1}\rangle,\left|\mathbf{i}_{3}\right\rangle\right)=\left(|\mathbf{1}\rangle,\left|\mathbf{i}_{3}\right\rangle\right), \quad \mathbf{r}^{1}\left(|\mathbf{1}\rangle,\left|\mathbf{i}_{3}\right\rangle\right)=\left(\left|\mathbf{r}^{1}\right\rangle,\left|\mathbf{i}_{2}\right\rangle\right), \quad \mathbf{r}^{2}\left(|\mathbf{i}\rangle,\left|\mathbf{i}_{3}\right\rangle\right)=\left(\left|\mathbf{r}^{2}\right\rangle, \overline{\mathbf{i}_{1}}\right\rangle\right)\right]$ Right cosets $\left[C_{2}=\left(\mathbf{1}, \mathbf{i}_{3}\right), C_{2} \underline{r}^{2}=\left(\mathbf{r}^{2}, \mathbf{i}_{2}\right), C_{2} \mathbf{r}=\left(\mathbf{r}_{2}, \mathbf{i}_{1}\right)\right]$ relate to sets of bras

$D_{3}-C_{2}$ Coset structure of $d^{m_{2}}\left(C_{2}\right) \uparrow D^{3}$ induced representation basis Left cosets $\left[\mathbf{1} C_{2}=\left(\mathbf{1}, \mathbf{i}_{3}\right), \quad \mathbf{r}^{1} C_{2}=\left(\mathbf{r}^{1}, \mathbf{i}_{2}\right), \quad \mathbf{r}^{2} C_{2}=\left(\mathbf{r}^{2}, \mathbf{i}_{1}\right)\right]$ relate to sets of \mathbf{r}^{p}-transformed kets
$\left.\left[\mathbf{1}\left(|\mathbf{1}\rangle,\left|\mathbf{i}_{3}\right\rangle\right)=\left(|\mathbf{1}\rangle,\left|\mathbf{i}_{3}\right\rangle\right), \quad \mathbf{r}^{1}\left(|\mathbf{1}\rangle,\left|\mathbf{i}_{3}\right\rangle\right)=\left(\left|\mathbf{r}^{\mathbf{i}}\right\rangle,\left|\mathbf{i}_{2}\right\rangle\right), \quad \mathbf{r}^{2}\left(|\mathbf{i}\rangle,\left|\mathbf{i}_{3}\right\rangle\right)=\left(\left|\mathbf{r}^{2}\right\rangle,, \mathbf{i}_{1}\right\rangle\right)\right]$ Right cosets $\left[C_{2}=\left(\mathbf{1}, \mathbf{i}_{3}\right), C_{2} \underline{r}^{2}=\left(\mathbf{r}^{2}, \mathbf{i}_{2}\right), C_{2} \mathbf{r}=\left(\mathbf{r}_{2}, \mathbf{i}_{1}\right)\right]$ relate to sets of bras

$$
\left[\left(\langle\mathbf{1}|,\left\langle\mathbf{i}_{3}\right|\right) \mathbf{1}=\left(\left\langle\mathbf{1},\left\langle\mathbf{i}_{3}\right|\right), \quad\left(\left\langle\mathbf{1},\left\langle\left\langle\mathbf{i}_{3}\right|\right) \mathbf{r}^{2}=\left(\left\langle\mathbf{r}^{1}\right|,\left\langle\mathbf{i}_{2}\right|\right), \quad\left(\left\langle\mathbf{1} \mathrm{T},\left\langle\mathbf{i}_{3}\right|\right) \mathbf{r}^{\mathrm{r}}=\left(\left\langle\mathbf{r}^{2} \Gamma,\left\langle\mathbf{i}_{1}\right|\right)\right]\right.\right.\right.\right.\right.
$$

C_{2} projectors $\mathbf{P}^{0_{2}}=\frac{1}{2}\left(\mathbf{1}+\mathbf{i}_{3}\right)=\mathbf{P}^{x}$ and $\mathbf{P}^{1_{2}}=\frac{1}{2}\left(\mathbf{1}-\mathbf{i}_{3}\right)=\mathbf{P}^{y}$ split ket $|\mathbf{r}\rangle=\mathbf{r}|\mathbf{1}\rangle$ or bra $\langle\mathbf{r}|=\langle\mathbf{1}| \mathbf{r}^{\dagger}$ into \pm coset sums
$D_{3}-C_{2}$ Coset structure of $d^{m_{2}}\left(C_{2}\right) \uparrow D^{3}$ induced representation basis Left cosets $\left[1 C_{2}=\left(\mathbf{1}, \mathbf{i}_{3}\right), \quad \mathbf{r}^{1} C_{2}=\left(\mathbf{r}^{1}, \mathbf{i}_{2}\right), \quad \mathbf{r}^{2} C_{2}=\left(\mathbf{r}^{2}, \mathbf{i}_{1}\right)\right]$ relate to sets of \mathbf{r}^{p}-transformed kets
$\left.\left[\mathbf{1}\left(|\mathbf{1}\rangle,\left|\mathbf{i}_{3}\right\rangle\right)=\left(|\mathbf{1}\rangle,\left|\mathbf{i}_{3}\right\rangle\right), \quad \mathbf{r}^{1}\left(|\mathbf{1}\rangle,\left|\mathbf{i}_{3}\right\rangle\right)=\left(\left|\mathbf{r}^{\mathbf{i}}\right\rangle,\left|\mathbf{i}_{2}\right\rangle\right), \quad \mathbf{r}^{2}\left(|\mathbf{i}\rangle,\left|\mathbf{i}_{3}\right\rangle\right)=\left(\left|\mathbf{r}^{2}\right\rangle,, \mathbf{i}_{1}\right\rangle\right)\right]$ Right cosets $\left[C_{2}=\left(\mathbf{1}, \mathbf{i}_{3}\right), C_{2} \underline{r}^{2}=\left(\mathbf{r}^{2}, \mathbf{i}_{2}\right), C_{2} \mathbf{r}=\left(\mathbf{r}_{2}, \mathbf{i}_{1}\right)\right]$ relate to sets of bras

$$
\left[\left(\langle\mathbf{1}|,\left\langle\mathbf{i}_{3}\right|\right) \mathbf{1}=\left(\left\langle\mathbf{1},\left\langle\mathbf{i}_{3}\right|\right), \quad\left(\left\langle\mathbf{1},\left\langle\left\langle\mathbf{i}_{3}\right|\right) \mathbf{r}^{2}=\left(\left\langle\mathbf{r}^{1}\right|,\left\langle\mathbf{i}_{2}\right|\right), \quad\left(\left\langle\mathbf{1} \mathrm{T} ;\left\langle\mathbf{i}_{3}\right|\right) \mathbf{r}^{\mathrm{r}}=\left(\left\langle\mathbf{r}^{2}\right|,\left\langle\mathbf{i}_{1}\right|\right)\right]\right.\right.\right.\right.
$$

C_{2} projectors $\mathbf{P}^{0_{2}}=\frac{1}{2}\left(\mathbf{1}+\mathbf{i}_{3}\right)=\mathbf{P}^{x}$ and $\mathbf{P}^{1_{2}}=\frac{1}{2}\left(\mathbf{1}-\mathbf{i}_{3}\right)=\mathbf{P}^{y}$ split ket $|\mathbf{r}\rangle=\mathbf{r}|\mathbf{1}\rangle$ or bra $\langle\mathbf{r}|=\langle\mathbf{1}| \mathbf{r}^{\dagger}$ into \pm coset sums

$$
\left[\mathbf{P}^{n_{2}}|\mathbf{1}\rangle=\frac{1}{2}\left(|\mathbf{1}\rangle \pm\left|\mathbf{i}_{3}\right\rangle\right),\right.
$$

$$
]=\left[\left|\mathbf{r}_{n}^{0}\right\rangle \quad, \quad\right] \text { basis of } d^{n_{2}} \uparrow D_{3}
$$

$D_{3}-C_{2}$ Coset structure of $d^{m_{2}}\left(C_{2}\right) \uparrow D^{3}$ induced representation basis Left cosets $\left[1 C_{2}=\left(\mathbf{1}, \mathbf{i}_{3}\right), \quad \mathbf{r}^{1} C_{2}=\left(\mathbf{r}^{1}, \mathbf{i}_{2}\right), \quad \mathbf{r}^{2} C_{2}=\left(\mathbf{r}^{2}, \mathbf{i}_{1}\right)\right]$ relate to sets of \mathbf{r}^{p}-transformed kets $\left.\left[\mathbf{1}\left(|\mathbf{1}\rangle,\left|\mathbf{i}_{3}\right\rangle\right)=\left(|\mathbf{1}\rangle,\left|\mathbf{i}_{3}\right\rangle\right), \quad \mathbf{r}^{1}\left(|\mathbf{1}\rangle,\left|\mathbf{i}_{3}\right\rangle\right)=\left(\left|\mathbf{r}^{\mathbf{i}}\right\rangle,\left|\mathbf{i}_{2}\right\rangle\right), \quad \mathbf{r}^{2}\left(|\mathbf{i}\rangle,\left|\mathbf{i}_{3}\right\rangle\right)=\left(\left|\mathbf{r}^{2}\right\rangle,, \mathbf{i}_{1}\right\rangle\right)\right]$ Right cosets $\left[C_{2}=\left(\mathbf{1}, \mathbf{i}_{3}\right), C_{2} \underline{r}^{2}=\left(\mathbf{r}^{2}, \mathbf{i}_{2}\right), C_{2} \mathbf{r}=\left(\mathbf{r}_{2}, \mathbf{i}_{1}\right)\right]$ relate to sets of bras

$$
\left[\left(\langle\mathbf{1}|,\left\langle\mathbf{i}_{3}\right|\right) \mathbf{1}=\left(\left\langle\mathbf{1},\left\langle\mathbf{i}_{3}\right|\right), \quad\left(\left\langle\mathbf{1},\left\langle\left\langle\mathbf{i}_{3}\right|\right) \mathbf{r}^{2}=\left(\left\langle\mathbf{r}^{1}\right|,\left\langle\mathbf{i}_{2}\right|\right), \quad\left(\left\langle\mathbf{1} \mathrm{T} ;\left\langle\mathbf{i}_{3}\right|\right) \mathbf{r}^{\mathrm{r}}=\left(\left\langle\mathbf{r}^{2}\right|,\left\langle\mathbf{i}_{1}\right|\right)\right]\right.\right.\right.\right.
$$

C_{2} projectors $\mathbf{P}^{0_{2}}=\frac{1}{2}\left(\mathbf{1}+\mathbf{i}_{3}\right)=\mathbf{P}^{x}$ and $\mathbf{P}^{1}=\frac{1}{2}\left(\mathbf{1}-\mathbf{i}_{3}\right)=\mathbf{P}^{y}$ split ket $|\mathbf{r}\rangle=\mathbf{r}|\mathbf{1}\rangle$ or bra $\langle\mathbf{r}|=\langle\mathbf{1}| \mathbf{r}^{\dagger}$ into \pm coset sums
$\left[\mathbf{P}^{n_{2}}|\mathbf{1}\rangle=\frac{1}{2}\left(|\mathbf{1}\rangle \pm\left|\mathbf{i}_{3}\right\rangle\right)\right.$,
$\left[\langle\mathbf{1}| \mathbf{P}^{n_{2}}=\frac{1}{2}\left(\langle\mathbf{1}| \pm\left\langle\mathbf{i}_{3}\right|\right)\right.$,

$$
\left.\begin{array}{ll}
]=\left[\left|\mathbf{r}_{n}^{0}\right\rangle\right. & ,
\end{array}\right] \text { basis of } d^{n_{2}} \uparrow D_{3} .
$$

Review: Symmetry reduction and splitting: Subduced irep $D^{\alpha}\left(D_{3}\right) \downarrow C_{2}=d^{0^{2}} \oplus d^{1_{2}} \oplus$.. correlation
 Symmetry induction and clustering: Induced rep $d^{a}\left(C_{2}\right) \uparrow D_{3}=D^{\alpha} \oplus D^{\beta} \oplus$.. correlation

$D_{3}-C_{2}$ Coset structure of $d^{m_{2}}\left(C_{2}\right) \uparrow D_{3}$ induced representation basis
D_{3}-Projection of $d^{m_{2}}\left(C_{2}\right) \uparrow D_{3}$ induced representation basis
Derivation of Frobenius reciprocity
$D_{6} \supset D_{2} \supset C_{2}=D_{3} \times C_{2}$ symmetry and outer product geometry
Irreducible characters
Irreducible representations
Correlations with D6 characters:
... and $C_{2}\left(\mathbf{i}_{3}\right)$ characters...... and $C_{6}\left(\mathbf{1}, \mathbf{h}^{1}, \mathbf{h}^{2}, \ldots\right)$ characters
D_{6} symmetry and induced representation band structure
Introduction to octahedral tetrahedral symmetry $O_{h} \supset O \sim T_{d} \supset T$
$D_{3}-C_{2}$ Coset structure of $d^{m_{2}}\left(C_{2}\right) \uparrow D^{3}$ induced representation basis Left cosets $\left[\mathbf{1} C_{2}=\left(\mathbf{1}, \mathbf{i}_{3}\right), \quad \mathbf{r}^{1} C_{2}=\left(\mathbf{r}^{1}, \mathbf{i}_{2}\right), \quad \mathbf{r}^{2} C_{2}=\left(\mathbf{r}^{2}, \mathbf{i}_{1}\right)\right]$ relate to sets of \mathbf{r}^{p}-transformed kets $\left.\left[\mathbf{1}\left(|\mathbf{1}\rangle,\left|\mathbf{i}_{3}\right\rangle\right)=\left(|\mathbf{1}\rangle,\left|\mathbf{i}_{3}\right\rangle\right), \quad \mathbf{r}^{1}\left(|\mathbf{1}\rangle,\left|\mathbf{i}_{3}\right\rangle\right)=\left(\left|\mathbf{r}^{1}\right\rangle,\left|\mathbf{i}_{2}\right\rangle\right), \quad \mathbf{r}^{2}\left(|\mathbf{i}\rangle,\left|\mathbf{i}_{3}\right\rangle\right)=\left(\left|\mathbf{r}^{2}\right\rangle, I \mathbf{i}_{1}\right\rangle\right)\right]$ Right cosets $\left[C_{2}=\left(\mathbf{1}, \mathbf{i}_{3}\right), C_{2} \underline{r}^{2}=\left(\mathbf{r}^{2}, \mathbf{i}_{2}\right), C_{2} \mathbf{r}=\left(\mathbf{r}_{2}, \mathbf{i}_{1}\right)\right]$ relate to sets of bras

$$
\left[\left(\langle\mathbf{1}|,\left\langle\mathbf{i}_{3}\right|\right) \mathbf{1}=\left(\left\langle\mathbf{1},\left\langle\mathbf{i}_{3}\right|\right), \quad\left(\left\langle\mathbf{1},\left\langle\mathbf{i}_{3}\right|\right) \mathbf{r}^{2}=\left(\left\langle\mathbf{r}^{1}\right|,\left\langle\mathbf{i}_{2}\right|\right), \quad\left(\langle\mathbf{1}|,\left\langle\mathbf{i}_{3}\right|\right) \mathbf{r}^{\mathrm{T}}=\left(\left\langle\mathbf{r}^{2} \Gamma,\left\langle\mathbf{i}_{1}\right|\right)\right]\right.\right.\right.
$$

C_{2} projectors $\mathbf{P}^{0_{2}}=\frac{1}{2}\left(\mathbf{1}+\mathbf{i}_{3}\right)=\mathbf{P}^{x}$ and $\mathbf{P}^{1_{2}}=\frac{1}{2}\left(\mathbf{1}-\mathbf{i}_{3}\right)=\mathbf{P}^{y}$ split ket $|\mathbf{r}\rangle=\mathbf{r}|\mathbf{1}\rangle$ or bra $\langle\mathbf{r}|=\langle\mathbf{1}| \mathbf{r}^{\dagger}$ into \pm coset sums

$$
\begin{aligned}
& {\left[\mathbf{P}^{n_{2}}|\mathbf{1}\rangle=\frac{1}{2}\left(|\mathbf{1}\rangle \pm\left|\mathbf{i}_{3}\right\rangle\right),\right.} \\
& {\left[\langle\mathbf{1}| \mathbf{P}^{n_{2}}=\frac{1}{2}\left(\langle\mathbf{1}| \pm\left\langle\mathbf{i}_{3}\right|\right),\right.}
\end{aligned}
$$

$$
\left.\begin{array}{ll}
]=\left[\left|\mathrm{r}_{n}^{0}\right\rangle\right. & ,
\end{array}\right] \text { basis of } d^{n_{2}} \uparrow D_{3} .
$$

$D_{3}-C_{2}$ Coset structure of $d^{m_{2}}\left(C_{2}\right) \uparrow D^{3}$ induced representation basis Left cosets $\left[\mathbf{1} C_{2}=\left(\mathbf{1}, \mathbf{i}_{3}\right), \quad \mathbf{r}^{1} C_{2}=\left(\mathbf{r}^{1}, \mathbf{i}_{2}\right), \quad \mathbf{r}^{2} C_{2}=\left(\mathbf{r}^{2}, \mathbf{i}_{1}\right)\right]$ relate to sets of \mathbf{r}^{p}-transformed kets

$$
\left[\mathbf{1}\left(|\mathbf{1}\rangle,\left|\mathbf{i}_{3}\right\rangle\right)=\left(|\mathbf{1}\rangle,\left|\mathbf{i}_{3}\right\rangle\right), \quad \mathbf{r}^{1}\left(|\mathbf{1}\rangle,\left|\mathbf{i}_{3}\right\rangle\right)=\left(\left|\mathbf{r}^{\mathbf{1}}\right\rangle,\left|\mathbf{i}_{2}\right\rangle\right), \quad \mathbf{r}^{2}\left(|\mathbf{i}\rangle,\left|\mathbf{i}_{3}\right\rangle\right)=\left(\left|\mathbf{r}^{2}\right\rangle,\left|\mathbf{i}_{1}\right\rangle\right)\right]
$$ Right cosets $\left[C_{2}=\left(\mathbf{1}, \mathbf{i}_{3}\right), C_{2} \mathbf{r}^{2}=\left(\mathbf{r}^{2}, \mathbf{i}_{2}\right), C_{2} \mathbf{r}=\left(\mathbf{r}_{2}, \mathbf{i}_{1}\right)\right]$ relate to sets of bras

$$
\left[\left(\langle\mathbf{1}|,\left\langle\mathbf{i}_{3}\right|\right) \mathbf{1}=\left(\langle\mathbf{1}|,\left\langle\mathbf{i}_{3}\right|\right), \quad\left(\left\langle\mathbf{1},\left\langle\mathbf{i}_{3}\right|\right) \mathbf{r}^{2}=\left(\left\langle\mathbf{r}^{1}\right|,\left\langle\mathbf{i}_{2}\right|\right), \quad\left(\langle\mathbf{1}| ;\left\langle\mathbf{i}_{3}\right|\right) \mathbf{r}^{\mathrm{T}}=\left(\left\langle\mathbf{r}^{2} \mathrm{I},\left\langle\mathbf{i}_{1}\right|\right)\right]\right.\right.
$$

C_{2} projectors $\mathbf{P}^{0}{ }_{2}=\frac{1}{2}\left(\mathbf{1}+\mathbf{i}_{3}\right)=\mathbf{P}^{x}$ and $\mathbf{P}^{1_{2}}=\frac{1}{2}\left(\mathbf{1}-\mathbf{i}_{3}\right)=\mathbf{P}^{y}$ split ket $|\mathbf{r}\rangle=\mathbf{r}|\mathbf{1}\rangle$ or bra $\langle\mathbf{r}|=\langle\mathbf{1}| \mathbf{r}^{\dagger}$ into \pm coset sums

$$
\begin{aligned}
& {\left[\mathbf{P}^{n_{2}}|\mathbf{1}\rangle=\frac{1}{2}\left(|\mathbf{1}\rangle \pm\left|\mathbf{i}_{3}\right\rangle\right),\right.} \\
& {\left[\langle\mathbf{1}| \mathbf{P}^{n_{2}}=\frac{1}{2}\left(\langle\mathbf{1}| \pm\left\langle\mathbf{i}_{3}\right|\right),\right.}
\end{aligned}
$$

$]=\left[\left|\mathbf{r}_{n}^{0}\right\rangle \quad, \quad\right]$ basis of $d^{n_{2}} \uparrow D_{3}$
$]=\left[\left\langle\mathbf{r}_{n}^{0}\right| \quad, \quad\right]$ basis of $d^{n_{2}} \uparrow D_{3}$

$D_{3}-C_{2}$ Coset structure of $d^{m_{2}}\left(C_{2}\right) \uparrow D^{3}$ induced representation basis Left cosets $\left[\mathbf{1} C_{2}=\left(\mathbf{1}, \mathbf{i}_{3}\right), \quad \mathbf{r}^{1} C_{2}=\left(\mathbf{r}^{1}, \mathbf{i}_{2}\right), \quad \mathbf{r}^{2} C_{2}=\left(\mathbf{r}^{2}, \mathbf{i}_{1}\right)\right]$ relate to sets of \mathbf{r}^{p}-transformed kets

$$
\left.\left[\mathbf{1}\left(|\mathbf{1}\rangle,\left|\mathbf{i}_{3}\right\rangle\right)=\left(|\mathbf{1}\rangle,\left|\mathbf{i}_{3}\right\rangle\right), \quad \mathbf{r}^{1}\left(|\mathbf{1}\rangle,\left|\mathbf{i}_{3}\right\rangle\right)=\left(\left|\mathbf{r}^{\mathbf{i}}\right\rangle,\left|\mathbf{i}_{2}\right\rangle\right), \quad \mathbf{r}^{2}\left(|\mathbf{i}\rangle,\left|\mathbf{i}_{3}\right\rangle\right)=\left(\left|\mathbf{r}^{2}\right\rangle,, \mathbf{i}_{1}\right\rangle\right)\right]
$$ Right cosets $\left[C_{2}=\left(\mathbf{1}, \mathbf{i}_{3}\right), C_{2} \mathbf{r}^{2}=\left(\mathbf{r}^{2}, \mathbf{i}_{2}\right), C_{2} \mathbf{r}=\left(\mathbf{r}_{2}, \mathbf{i}_{1}\right)\right]$ relate to sets of bras

$$
\left[\left(\langle\mathbf{1}|,\left\langle\mathbf{i}_{3}\right|\right) \mathbf{1}=\left(\langle\mathbf{1}|,\left\langle\mathbf{i}_{3}\right|\right), \quad\left(\left\langle\mathbf{1},\left\langle\mathbf{i}_{3}\right|\right) \mathbf{r}^{2}=\left(\left\langle\mathbf{r}^{1}\right|,\left\langle\mathbf{i}_{2}\right|\right), \quad\left(\langle\mathbf{I}| ;\left\langle\mathbf{i}_{3}\right|\right) \mathbf{r}^{\mathrm{r}}=\left(\left\langle\mathbf{r}^{2} \mathrm{I},\left\langle\mathbf{i}_{1}\right|\right)\right]\right.\right.
$$

C_{2} projectors $\mathbf{P}^{0}{ }^{2}=\frac{1}{2}\left(\mathbf{1}+\mathbf{i}_{3}\right)=\mathbf{P}^{x}$ and $\mathbf{P}^{1_{2}}=\frac{1}{2}\left(\mathbf{1}-\mathbf{i}_{3}\right)=\mathbf{P}^{y}$ split ket $|\mathbf{r}\rangle=\mathbf{r}|\mathbf{1}\rangle$ or bra $\langle\mathbf{r}|=\langle\mathbf{1}| \mathbf{r}^{\dagger}$ into \pm coset sums

$$
\begin{aligned}
& , \mathbf{P}^{n_{2}}\left|\mathbf{r}^{1}\right\rangle=\frac{1}{2}\left(\left|\mathbf{r}^{1}\right\rangle \pm\left|\mathbf{i}_{2}\right\rangle\right), \\
& \text {, }\left\langle\mathbf{r}^{1}\right| \mathbf{P}^{n_{2}}=\frac{1}{2}\left(\left\langle\mathbf{r}^{1}\right| \pm\left\langle\mathbf{i}_{2}\right|\right), \\
&]=\left[\quad\left|\mathrm{r}_{n}^{1}\right\rangle, \quad\right] \text { basis of } d^{n_{2}} \uparrow D_{3} \\
&]=\left[\quad\langle | \mathbf{r}_{n}^{1} \mid, \quad\right] \text { basis of } d^{n_{2}} \uparrow D_{3}
\end{aligned}
$$

$D_{3}-C_{2}$ Coset structure of $d^{m_{2}}\left(C_{2}\right) \uparrow D^{3}$ induced representation basis Left cosets $\left[\mathbf{1} C_{2}=\left(\mathbf{1}, \mathbf{i}_{3}\right), \quad \mathbf{r}^{1} C_{2}=\left(\mathbf{r}^{1}, \mathbf{i}_{2}\right), \quad \mathbf{r}^{2} C_{2}=\left(\mathbf{r}^{2}, \mathbf{i}_{1}\right)\right]$ relate to sets of \mathbf{r}^{p}-transformed kets

$$
\left.\left[\mathbf{1}\left(|\mathbf{1}\rangle,\left|\mathbf{i}_{3}\right\rangle\right)=\left(|\mathbf{1}\rangle,\left|\mathbf{i}_{3}\right\rangle\right), \quad \mathbf{r}^{1}\left(|\mathbf{1}\rangle,\left|\mathbf{i}_{3}\right\rangle\right)=\left(\overline{(} \mathbf{r}^{\mathbf{i}}\right\rangle,\left|\mathbf{i}_{2}\right\rangle\right), \quad \mathbf{r}^{2}\left(|\mathbf{i}\rangle,\left|\mathbf{i}_{3}\right\rangle\right)=\left(\left|\mathbf{r}^{2}\right\rangle,\left|\mathbf{i}_{1}\right\rangle\right)\right]
$$ Right cosets $\left[C_{2}=\left(\mathbf{1}, \mathbf{i}_{3}\right), C_{2} \underline{r}^{2}=\left(\mathbf{r}^{2}, \mathbf{i}_{2}\right), C_{2} \mathbf{r}=\left(\mathbf{r}, \mathbf{i}_{1}\right)\right]$ relate to sets of bras

$$
\left[\left(\langle\mathbf{1}|,\left\langle\mathbf{i}_{3}\right|\right) \mathbf{1}=\left(\left\langle\mathbf{1},\left\langle\mathbf{i}_{3}\right|\right), \quad\left(\left\langle\mathbf{1},\left\langle\left\langle\mathbf{i}_{3}\right|\right) \mathbf{r}^{2}=\left(\left\langle\mathbf{r}^{1}\right|,\left\langle\mathbf{i}_{2}\right|\right), \quad\left(\left\langle\mathbf{1} \mathrm{T} ;\left\langle\mathbf{i}_{3}\right|\right) \mathbf{r}^{\mathrm{r}}=\left(\left\langle\mathbf{r}^{2}\right|,\left\langle\mathbf{i}_{1}\right|\right)\right]\right.\right.\right.\right.
$$

C_{2} projectors $\mathbf{P}^{0}{ }^{2}=\frac{1}{2}\left(\mathbf{1}+\mathbf{i}_{3}\right)=\mathbf{P}^{x}$ and $\mathbf{P}^{1_{2}}=\frac{1}{2}\left(\mathbf{1}-\mathbf{i}_{3}\right)=\mathbf{P}^{y}$ split ket $|\mathbf{r}\rangle=\mathbf{r}|\mathbf{1}\rangle$ or bra $\langle\mathbf{r}|=\langle\mathbf{1}| \mathbf{r}^{\dagger}$ into \pm coset sums

$$
\begin{array}{ll}
\left.\mathbf{P}^{n_{2}}\left|\mathbf{r}^{2}\right\rangle=\frac{1}{2}\left(\left|\mathbf{r}^{2}\right\rangle \pm\left|\mathbf{i}_{1}\right\rangle\right)\right]=[& \left.,\left|\mathbf{r}_{n}^{2}\right\rangle\right] \text { basis of } d^{n_{2}} \uparrow D_{3} \\
\left.\left\langle\mathbf{r}^{2}\right| \mathbf{P}^{n_{2}}=\frac{1}{2}\left(\left\langle\mathbf{r}^{2}\right| \pm\left\langle\mathbf{i}_{1}\right|\right)\right]=[& \left.,\left\langle\mathbf{r}_{n}^{2}\right|\right] \text { basis of } d^{n_{2} \uparrow D_{3}}
\end{array}
$$

$D_{3}-C_{2}$ Coset structure of d $d^{m_{2}}\left(C_{2}\right) \uparrow D^{3}$ induced representation basis Left cosets $\left[\mathbf{1} C_{2}=\left(\mathbf{1}, \mathbf{i}_{3}\right), \quad \mathbf{r}^{1} C_{2}=\left(\mathbf{r}_{\sim}^{1}, \mathbf{i}_{2}\right), \quad \mathbf{r}^{2} C_{2}=\left(\mathbf{r}^{2}, \mathbf{i}_{1}\right)\right]$ relate to sets of \mathbf{r}^{p}-transformed kets

$$
\left[\mathbf{1}\left(|\mathbf{1}\rangle,\left|\mathbf{i}_{3}\right\rangle\right)=\left(|\mathbf{1}\rangle,\left|\mathbf{i}_{3}\right\rangle\right), \quad \mathbf{r}^{1}\left(|\mathbf{1}\rangle,\left|\mathbf{i}_{3}\right\rangle\right)=\left(\left|\mathbf{r}^{\mathbf{1}}\right\rangle,\left|\mathbf{i}_{2}\right\rangle\right), \quad \mathbf{r}^{2}\left(|\mathbf{i}\rangle,\left|\mathbf{i}_{3}\right\rangle\right)=\left(\left|\mathbf{r}^{2}\right\rangle,\left|\mathbf{i}_{1}\right\rangle\right)\right]
$$ Right cosets $\left[C_{2}=\left(\mathbf{1}, \mathbf{i}_{3}\right), C_{2} \underline{r}^{2}=\left(\mathbf{r}^{2}, \mathbf{i}_{2}\right), C_{2} \mathbf{r}=\left(\mathbf{r}, \mathbf{i}_{1}\right)\right]$ relate to sets of bras

$$
\left[\left(\langle\mathbf{1}|,\left\langle\mathbf{i}_{3}\right|\right) \mathbf{1}=\left(\left\langle\mathbf{1},\left\langle\mathbf{i}_{3}\right|\right), \quad\left(\left\langle\mathbf{1},\left\langle\left\langle\mathbf{i}_{3}\right|\right) \mathbf{r}^{2}=\left(\left\langle\mathbf{r}^{1}\right|,\left\langle\mathbf{i}_{2}\right|\right), \quad\left(\left\langle\mathbf{1} \mathrm{T} ;\left\langle\mathbf{i}_{3}\right|\right) \mathbf{r}^{\mathrm{r}}=\left(\left\langle\mathbf{r}^{2}\right|,\left\langle\mathbf{i}_{1}\right|\right)\right]\right.\right.\right.\right.
$$

C_{2} projectors $\mathbf{P}^{0}{ }_{2}=\frac{1}{2}\left(\mathbf{1}+\mathbf{i}_{3}\right)=\mathbf{P}^{x}$ and $\mathbf{P}^{1_{2}}=\frac{1}{2}\left(\mathbf{1}-\mathbf{i}_{3}\right)=\mathbf{P}^{y}$ split ket $|\mathbf{r}\rangle=\mathbf{r}|\mathbf{1}\rangle$ or bra $\langle\mathbf{r}|=\langle\mathbf{1}| \mathbf{r}^{\dagger}$ into \pm coset sums

$$
\begin{aligned}
& {\left[\mathbf{P}^{n_{2}}|\mathbf{1}\rangle=\frac{1}{2}\left(|\mathbf{1}\rangle \pm\left|\mathbf{i}_{3}\right\rangle\right), \quad \mathbf{P}^{n_{2}}\left|\mathbf{r}^{1}\right\rangle=\frac{1}{2}\left(\left|\mathbf{r}^{1}\right\rangle \pm\left|\mathbf{i}_{2}\right\rangle\right), \quad \mathbf{P}^{n_{2}}\left|\mathbf{r}^{2}\right\rangle=\frac{1}{2}\left(\left|\mathbf{r}^{2}\right\rangle \pm\left|\mathbf{i}_{1}\right\rangle\right)\right]=\left[\left|\mathbf{r}_{n}^{0}\right\rangle,\left|\mathbf{r}_{n}^{1}\right\rangle,\left|\mathbf{r}_{n}^{2}\right\rangle\right] \text { basis of } d^{n_{2} \uparrow D_{3}}} \\
& {\left[\langle\mathbf{1}| \mathbf{P}^{n_{2}}=\frac{1}{2}\left(\langle\mathbf{1}| \pm\left\langle\mathbf{i}_{3}\right|\right),\left\langle\mathbf{r}^{1}\right| \mathbf{P}^{n_{2}}=\frac{1}{2}\left(\left\langle\mathbf{r}^{1}\right| \pm\left\langle\mathbf{i}_{2}\right|\right),\left\langle\mathbf{r}^{2}\right| \mathbf{P}^{n_{2}}=\frac{1}{2}\left(\left\langle\mathbf{r}^{2}\right| \pm\left\langle\mathbf{i}_{1}\right|\right)\right]=\left[\left\langle\mathbf{r}_{n}^{0}\right|,\left\langle\mathbf{r}_{n}^{1}\right|,\left\langle\mathbf{r}_{n}^{2}\right|\right] \text { basis of } d^{n_{2} \uparrow D_{3}}}
\end{aligned}
$$

Review: Symmetry reduction and splitting: Subduced irep $D^{\alpha}\left(D_{3}\right) \downarrow C_{2}=d^{0^{2}} \oplus d^{1_{2}} \oplus$.. correlation
Symmetry induction and clustering: Induced rep $d^{a}\left(C_{2}\right) \uparrow D_{3}=D^{\alpha} \oplus D^{\beta} \oplus$.. correlation
$D_{3}-C_{2}$ Coset structure of $d^{m_{2}}\left(C_{2}\right) \uparrow D_{3}$ induced representation basis
D_{3}-Projection of $d^{m_{2}}\left(C_{2}\right) \uparrow D_{3}$ induced representation basis
\rightarrow Derivation of Frobenius reciprocity

```
D}\supset\mp@subsup{D}{2}{}\supset\mp@subsup{C}{2}{}=\mp@subsup{D}{3}{}\times\mp@subsup{C}{2}{}\mathrm{ symmetry and outer product geometry
    Irreducible characters
    Irreducible representations
    Correlations with D6 characters:
        ...and C}\mp@subsup{C}{2}{(}\mp@subsup{\mathbf{i}}{3}{})\mathrm{ characters......and C}\mp@subsup{C}{6}{}(\mathbf{1},\mp@subsup{\mathbf{h}}{}{1},\mp@subsup{\mathbf{h}}{}{2},\ldots)\mathrm{ characters
    D}\mathrm{ symmetry and induced representation band structure
```

Introduction to octahedral tetrahedral symmetry $O_{h} \supset O \sim T_{d} \supset T$
$D_{3} \supset C_{2}$ projectors $\mathbf{P}_{0_{2} 0_{2}}^{A_{1}}, \mathbf{P}_{1_{2} 1_{2}}^{A_{2}}, \mathbf{P}_{0_{2} 0_{2}}^{E_{1}}, \mathbf{P}_{0_{2} 1_{2}}^{E_{1}}, \mathbf{P}_{1_{2} 0_{2}}^{E_{1}}, \mathbf{P}_{1_{2} 1_{2}}^{E_{1}}$ must reduce induced representation $d^{m_{2}}\left(C_{2}\right) \uparrow D_{3}$

$D_{3}-C_{2}$ Coset structure of $d^{m_{2}}\left(C_{2}\right) \uparrow D^{3}$ induced representation basis $D_{3} \supset C_{2}$ projectors $\mathbf{P}_{0_{2} 0_{2}}^{A_{1}}, \mathbf{P}_{12} t_{2}, \mathbf{P}_{0_{2} 0_{2}}^{E_{1}}, \mathbf{P}_{0_{12},}^{E_{1}}, \mathbf{P}_{1_{0} 0_{2}}^{E_{1}}, \mathbf{P}_{1_{12}}^{E_{1}} E_{1}$ must reduce induced representation $d^{m_{2}}\left(C_{2}\right) \uparrow D_{3}$ But, which D_{3} projector $\mathbf{P}_{j_{2} k_{2}}^{\mu}$ will work on base $\left|\mathbf{r}_{m_{2}}^{0}\right\rangle=\mathbf{p}^{m_{2}}|\mathbf{1}\rangle$ of induced representation $d^{m_{2}}\left(C_{2}\right)^{\uparrow} D_{3}$

$D_{3}-C_{2}$ Coset structure of $d^{m_{2}}\left(C_{2}\right) \uparrow D^{3}$ induced representation basis $D_{3} \supset C_{2}$ projectors $\mathbf{P}_{0_{2} 0_{2}}^{A_{1}}, \mathbf{P}_{12} t_{2}, \mathbf{P}_{0_{2} 0_{2}}^{E_{1}}, \mathbf{P}_{0_{12},}^{E_{1}}, \mathbf{P}_{1_{0} 0_{2}}^{E_{1}}, \mathbf{P}_{1_{12}}^{E_{1}} E_{1}$ must reduce induced representation $d^{m_{2}}\left(C_{2}\right) \uparrow D_{3}$

But, which D_{3} projector $\mathbf{P}_{j_{2} k_{2}}^{\mu}$ will work on base $\left|\mathbf{r}_{m_{2}}^{0}\right\rangle=\mathbf{p}^{m_{2}}|\mathbf{1}\rangle$ of induced representation $d^{m_{2}}\left(C_{2}\right)^{\uparrow} D_{3}$

$$
\mathbf{P}_{j_{2} k_{2}}^{\mu}\left|\mathbf{r}_{m_{2}}^{0}\right\rangle=\mathbf{P}_{j_{2} k_{2}}^{\mu} \mathbf{p}^{m_{2}}|\mathbf{1}\rangle=?
$$

$D_{3}-C_{2}$ Coset structure of $d^{m_{2}}\left(C_{2}\right) \uparrow D^{3}$ induced representation basis $D_{3} \supset C_{2}$ projectors $\mathbf{P}_{0_{2} 0_{2}}^{A_{1}}, \mathbf{P}_{1 l_{2} 1_{2}}^{t_{2}}, \mathbf{P}_{0_{2} 0_{2}}^{E_{1}}, \mathbf{P}_{0_{21},}^{E_{1}}, \mathbf{P}_{l_{12}}^{E_{1}}, \mathbf{P}_{l_{12}}^{E_{1}}$ must reduce induced representation $d^{m_{2}}\left(C_{2}\right) \uparrow D_{3}$

But, which D_{3} projector $\mathbf{P}_{j_{2} k_{2}}^{\mu}$ will work on base $\left|\mathbf{r}_{m_{2}}^{0}\right\rangle=\mathbf{p}^{m_{2}}|\mathbf{1}\rangle$ of induced representation $d^{m_{2}}\left(C_{2}\right)^{\uparrow} D_{3}$

$$
\mathbf{P}_{j_{2} k_{2}}^{\mu}\left|\mathbf{r}_{m_{2}}^{0}\right\rangle=\mathbf{P}_{j_{2} k_{2}}^{\mu} \mathbf{p}^{m_{2}}|\mathbf{1}\rangle=\delta_{k_{2}}^{m_{2}} \mathbf{P}_{j_{2} m_{2}}^{\mu}|\mathbf{1}\rangle
$$

Local symmetry k_{2} of $\mathbf{P}_{j_{2} k_{2}}^{\mu}$ must match that of $\left|\mathbf{r}_{m_{2}}^{0}\right\rangle$

$D_{3-} C_{2}$ Coset structure of $d^{m_{2}}\left(C_{2}\right) \uparrow D^{3}$ induced representation basis $D_{3} \supset C_{2}$ projectors $\mathbf{P}_{0_{2} 0_{2}}^{A_{1}}, \mathbf{P}_{l_{2} 1_{2}}^{t_{2}}, \mathbf{P}_{0_{2} 0_{2}}^{E_{1}}, \mathbf{P}_{0_{21},}^{E_{1}}, \mathbf{P}_{1_{0} 0_{2}}^{E_{1}}, \mathbf{P}_{1_{12}}^{E_{1}}$, must reduce induced representation $d^{m_{2}}\left(C_{2}\right) \uparrow D_{3}$ But, which D_{3} projector $\mathbf{P}_{j_{2} k_{2}}^{\mu}$ will work on base $\left|\mathbf{r}_{m_{2}}^{0}\right\rangle=\mathbf{p}^{m_{2}}|\mathbf{1}\rangle$ of induced representation $d^{m_{2}}\left(C_{2}\right)^{\uparrow} D_{3}$

$$
\mathbf{P}_{j_{2} k_{2}}^{\mu}\left|\mathbf{r}_{m_{2}}^{0}\right\rangle=\mathbf{P}_{j_{2} k_{2}}^{\mu} \mathbf{p}^{m_{2}}|\mathbf{1}\rangle=\delta_{k_{2}}^{m_{2}} \mathbf{P}_{j_{2} m_{2}}^{\mu}|\mathbf{1}\rangle
$$

Local symmetry k_{2} of $\mathbf{P}_{j_{2} k_{2}}^{\mu}$ must match that m_{2} of $\left|\mathbf{r}_{m_{2}}^{0}\right\rangle$
For example, base $\left|\mathbf{r}_{x}^{0}\right\rangle=\left|\mathbf{r}_{0_{2}}^{0}\right\rangle=\mathbf{p}^{0}|\mathbf{1}\rangle$ of $d^{0_{2}}\left(C_{2}\right) \uparrow D_{3}$ gives zero for all $\mathbf{P}_{j_{2} k_{2}}^{\mu}$ except $\mathbf{P}_{0_{2} 0_{2}}^{A_{1}}, \mathbf{P}_{0_{2} 0_{2}}^{E_{1}}$, and $\mathbf{P}_{1_{2} 0_{2}}^{E_{1}}$,

$C_{2}\left\{{ }^{\left\{0_{2}, 1_{2}\right\} \text { Notation }}\right.$

$D_{3}-C_{2}$ Coset structure of $d^{m_{2}}\left(C_{2}\right) \uparrow D^{3}$ induced representation basis $D_{3} \supset C_{2}$ projectors $\mathbf{P}_{0_{2} 0_{2}}^{A_{1}}, \mathbf{P}_{1212} t_{2}, \mathbf{P}_{0_{2} 0_{2}}^{E_{1}}, \mathbf{P}_{0_{12}}^{E_{1}}, \mathbf{P}_{l_{2} 0_{2}}^{E_{1}}, \mathbf{P}_{1_{12}}^{E_{1}}$ must reduce induced representation $d^{m_{2}}\left(C_{2}\right) \uparrow D_{3}$ But, which D_{3} projector $\mathbf{P}_{j 2 k_{2}}^{\mu}$ will work on base $\left|\mathbf{r}_{m_{2}}^{0}\right\rangle=\mathbf{p}^{m_{2}}|\mathbf{1}\rangle$ of induced representation $d^{m_{2}}\left(C_{2}\right) \uparrow D_{3}$

$$
\mathbf{P}_{i i_{2} k_{2}}^{\mu}\left|\mathbf{r}_{m_{2}}^{0}\right\rangle=\mathbf{P}_{j i_{2} k_{2}}^{\mu} \mathbf{p}_{m_{2}}\left|\mathbf{\delta _ { k _ { 2 } }} \mathbf{P}_{i i_{2} m_{2}}^{\mu}\right| \boldsymbol{1}
$$

Local symmetry k_{2} of $\mathbf{P}_{i, k_{2}}^{\mu}$ must match that m_{2} of $\left|\mathbf{r}_{m_{2}}^{0}\right\rangle$
For example, base $\left|\mathbf{r}_{x}^{0}\right\rangle=\left|\mathbf{r}_{0_{2}}^{0}\right\rangle=\mathbf{p}^{0}|1\rangle$ of $d^{0_{2}}\left(C_{2}\right) \uparrow D_{3}$ gives zero for all $\mathbf{P}_{j 2_{2} k_{2}}^{\mu}$ except $\mathbf{P}_{0_{2} 0_{2}}^{4_{1}}, \mathbf{P}_{0_{2} 0_{2}}^{E_{1}}$, and $\mathbf{P}_{l_{2} 0_{2}}^{E_{1}}$,
D_{3} projectors: $\mathbf{P}_{0_{2} 0_{2}}^{A_{1}}, \mathbf{P}_{2}, \mathbf{P}_{0_{2} 0_{2}}^{E_{1}}, \mathbf{P}_{2}^{E_{2}}, \mathbf{P}_{1_{10}}^{E_{1}}, \mathbf{P}_{1} E_{1}$

These give the " x-band"

$D_{3}-C_{2}$ Coset structure of $d^{m_{2}}\left(C_{2}\right) \uparrow D^{3}$ induced representation basis $D_{3} \supset C_{2}$ projectors $\mathbf{P}_{0_{2} 0_{2}}^{A_{1}}, \mathbf{P}_{1212} t_{2}, \mathbf{P}_{0_{2} 0_{2}}^{E_{1}}, \mathbf{P}_{0_{12}}^{E_{1}}, \mathbf{P}_{l_{2} 0_{2}}^{E_{1}}, \mathbf{P}_{1_{1}}^{E_{1}} E_{1}$ must reduce induced representation $d^{m_{2}}\left(C_{2}\right) \uparrow D_{3}$ But, which D_{3} projector $\mathbf{P}_{j 2 k_{2}}^{\mu}$ will work on base $\left|\mathbf{r}_{m_{2}}^{0}\right\rangle=\mathbf{p}^{m_{2}}|\mathbf{1}\rangle$ of induced representation $d^{m_{2}}\left(C_{2}\right) \uparrow D_{3}$

$$
\mathbf{P}_{i i_{2} k_{2}}^{\mu}\left|\mathbf{r}_{m_{2}}^{0}\right\rangle=\mathbf{P}_{j i_{2} k_{2}}^{\mu} \mathbf{p}_{m_{2}}|\mathbf{X}\rangle=\delta_{k_{2}}^{m_{2}} \mathbf{P}_{j_{2} m_{2}}^{\mu} \mid \boldsymbol{1}
$$

Local symmetry k_{2} of $\mathbf{P}_{j_{2} k_{2}}^{\mu}$ must match that m_{2} of $\left|\mathbf{r}_{m_{2}}^{0}\right\rangle$
For example, base $\left|\mathbf{r}_{x}^{0}\right\rangle=\left|\mathbf{r}_{0_{2}}^{0}\right\rangle=\mathbf{p}^{0}|1\rangle$ of $d^{0_{2}}\left(C_{2}\right) \uparrow D_{3}$ gives zero for all $\mathbf{P}_{j j_{2} k_{2}}^{\mu}$ except $\mathbf{P}_{0_{2} 0_{2}}^{4_{1}}, \mathbf{P}_{0_{2} 0_{2}}^{E_{1}}$, and $\mathbf{P}_{l_{2} 0_{2}}^{E_{1}}$,

\mathbf{i}_{3} global (v)

Frobenius Reciprocity Theorem for $G \supset K$

Number of D^{α} in $d^{k}(K) \uparrow G=$ Number of d^{k} in $D^{\alpha}(G) \downarrow K$

Frobenius Reciprocity Theorem for $G \supset K$

Number of D^{α} in $d^{k}(K) \uparrow G=$ Number of d^{k} in $D^{\alpha}(G) \downarrow K$
..applies to regular representation

$D_{3} \supset C_{1}$	$0_{1}=1_{1}$
A_{1}	1
A_{2}	1
E_{1}	2

Frobenius Reciprocity Theorem for $G \supset K$

Number of D^{α} in $d^{k}(K) \uparrow G=$ Number of d^{k} in $D^{\alpha}(G) \downarrow K$
..applies to regular representation

		.. and other induced representations				
	$\frac{0_{1}=1}{1}$	$D_{3} \supset C_{2}$	$\mathrm{O}_{2} \quad 1{ }_{2}$	$D_{3} \supset C_{3}$	0_{3} 1	23
A_{1}	1	$\frac{A_{1}}{}$	1.	A_{1}	1 .	
A_{2}	1	A_{2}	- 1	A_{2}	1	
E_{1}	2	E_{1}		E_{1}	- 1	1

Review: Symmetry reduction and splitting: Subduced irep $D^{\alpha}\left(D_{3}\right) \downarrow C_{2}=d^{0^{2}} \oplus d^{1_{2}} \oplus$.. correlation
Symmetry induction and clustering: Induced rep $d^{a}\left(C_{2}\right) \uparrow D_{3}=D^{\alpha} \oplus D^{\beta} \oplus$.. correlation
$D_{3}-C_{2}$ Coset structure of $d^{m_{2}}\left(C_{2}\right) \uparrow D_{3}$ induced representation basis
D_{3}-Projection of d ${ }^{m_{2}}\left(C_{2}\right) \uparrow D_{3}$ induced representation basis
Derivation of Frobenius reciprocity
$D_{6} \supset D_{2} \supset C_{2}=D_{3} \times C_{2}$ symmetry and outer product geometry Irreducible characters Irreducible representations
Correlations with D_{6} characters:
... and $C_{2}(\mathbf{i} 3)$ characters...... and $C_{6}\left(\mathbf{1}, \mathbf{h}^{1}, \mathbf{h}^{2}, \ldots\right)$ characters D_{6} symmetry and induced representation band structure

Introduction to octahedral tetrahedral symmetry $O_{h} \supset O \sim T_{d} \supset T$

$D_{6} \supset D_{2} \supset C_{2}=D_{3} \times C_{2}$ symmetry and outer product geometry

D_{6} is the outer product (\times) product $D_{3} \times C_{2}$ of D_{3} and C_{2}. (Requires C_{2} to commute with all of D_{3}.)
$D_{6}=D_{3} \times C_{2}=\left\{\mathbf{1}, \mathbf{r}, \mathbf{r}^{2}, \mathbf{i}_{1}, \mathbf{i}_{2}, \mathrm{i}_{3}\right\} \times\left\{\mathbf{1}, \mathbf{R}_{z}\right\}$

$D_{6} \supset D_{2} \supset C_{2}=D_{3} \times C_{2}$ symmetry and outer product geometry

D_{6} is the outer product (\times) product $D_{3} \times C_{2}$ of D_{3} and C_{2}. (Requires C_{2} to commute with all of D_{3}.)
$D_{6}=D_{3} \times C_{2}=\left\{\mathbf{1}, \mathbf{r}, \mathbf{r}^{2}, \mathbf{i}_{1}, \mathbf{i}_{2}, \mathrm{i}_{3}\right\} \times\left\{\mathbf{1}, \mathbf{R}_{z}\right\}$
\times product and D_{6} operators. Define hexagonal generator $\mathbf{h}_{\left(60^{\circ}\right)}$ of subgroup $C_{6}=\left\{\mathbf{1}, \mathbf{h}, \mathbf{h}^{2}, \mathbf{h}^{3}, \mathbf{h}^{4} \mathbf{h}^{5}\right\}$

$$
D_{6}=D_{3} \times C_{2}=\left\{\mathbf{1}, \mathbf{r}, \mathbf{r}^{2}, \mathbf{i}_{l}, \mathbf{i}_{2}, \dot{i}_{3}, \mathbf{1} \cdot \mathbf{R}_{z}, \mathbf{r} \cdot \mathbf{R}_{z}, \mathbf{r}^{2} \cdot \mathbf{R}_{z}, \mathbf{i}_{1} \cdot \mathbf{R}_{z}, \mathbf{i}_{2} \cdot \mathbf{R}_{z}, \mathbf{i}_{3} \cdot \mathbf{R}_{z}\right\}
$$

$$
\mathbf{h}^{3}{ }_{\left(60^{\circ}\right)}=\mathbf{R}_{\mathbf{z}\left(180^{\circ}\right)}
$$

$D_{6} \supset D_{2} \supset C_{2}=D_{3} \times C_{2}$ symmetry and outer product geometry

D_{6} is the outer product (\times) product $D_{3} \times C_{2}$ of D_{3} and C_{2}. (Requires C_{2} to commute with all of D_{3}.)
$D_{6}=D_{3} \times C_{2}=\left\{\mathbf{1}, \mathbf{r}, \mathbf{r}^{2}, \mathbf{i}_{1}, \mathbf{i}_{2}, \mathrm{i}_{3}\right\} \times\left\{\mathbf{1}, \mathbf{R}_{z}\right\}$
\times product and D_{6} operators. Define hexagonal generator $\mathbf{h}_{\left(60^{\circ}\right)}$ of subgroup $C_{6}=\left\{\mathbf{1}, \mathbf{h}, \mathbf{h}^{2}, \mathbf{h}^{3}, \mathbf{h}^{4} \mathbf{h}^{5}\right\}$

$$
D_{6}=D_{3} \times C_{2}=\left\{\mathbf{1}, \mathbf{r}, \mathbf{r}^{2}, \mathbf{i}_{l}, \mathbf{i}_{2}, \dot{i}_{3}, \mathbf{1} \cdot \mathbf{R}_{z}, \mathbf{r} \cdot \mathbf{R}_{z}, \mathbf{r}^{2} \cdot \mathbf{R}_{z}, \mathbf{i}_{1} \cdot \mathbf{R}_{z}, \mathbf{i}_{2} \cdot \mathbf{R}_{z}, \mathbf{i}_{3} \cdot \mathbf{R}_{z}\right\}
$$

$$
D_{6}=D_{3} \times C_{2}=\left\{\mathbf{1}, \mathbf{h}^{2}, \mathbf{h}^{4}, \mathbf{i}_{1}, \mathbf{i}_{2}, \dot{1}_{3}, \mathbf{h}^{3}, \quad \mathbf{h}^{5}, \quad \mathbf{h}, \quad \mathbf{j}_{1}, \quad \mathbf{j}_{2}, \quad \mathbf{j}_{3}\right\}
$$

$D_{6} \supset D_{2} \supset C_{2}=D_{3} \times C_{2}$ symmetry and outer product geometry

D_{6} is the outer product (\times) product $D_{3} \times C_{2}$ of D_{3} and C_{2}. (Requires C_{2} to commute with all of D_{3}.)
$D_{6}=D_{3} \times C_{2}=\left\{\mathbf{1}, \mathbf{r}, \mathbf{r}^{2}, \mathbf{i}_{1}, \mathbf{i}_{2}, \mathrm{i}_{3}\right\} \times\left\{\mathbf{1}, \mathbf{R}_{z}\right\}$
\times product and D_{6} operators. Define hexagonal generator $\mathbf{h}_{\left(60^{\circ}\right)}$ of subgroup $C_{6}=\left\{\mathbf{1}, \mathbf{h}, \mathbf{h}^{2}, \mathbf{h}^{3}, \mathbf{h}^{4} \mathbf{h}^{5}\right\}$

$$
D_{6}=D_{3} \times C_{2}=\left\{\mathbf{1}, \mathbf{r}, \mathbf{r}^{2}, \mathbf{i}_{l}, \mathbf{i}_{2}, i_{3}, \mathbf{1} \cdot \mathbf{R}_{z}, \mathbf{r} \cdot \mathbf{R}_{z}, \mathbf{r}^{2} \cdot \mathbf{R}_{z}, \mathbf{i}_{l} \cdot \mathbf{R}_{z}, \mathbf{i}_{2} \cdot \mathbf{R}_{z}, \mathbf{i}_{3} \cdot \mathbf{R}_{z}\right\}
$$

$$
D_{6}=D_{3} \times C_{2}=\left\{\mathbf{1}, \mathbf{h}^{2}, \mathbf{h}^{4}, \mathbf{i}_{1}, \mathbf{i}_{2}, \dot{i}_{3}, \mathbf{h}^{3}, \quad \mathbf{h}^{5}, \quad \mathbf{h}, \quad \mathbf{j}_{1}, \quad \mathbf{j}_{2}, \quad \mathbf{j}_{3} \quad\right\}
$$

$$
\mathbf{h}^{3}{ }_{\left(60^{\circ}\right)}=\mathbf{R}_{\mathbf{z}\left(180^{\circ}\right)}
$$

$D_{6} \supset D_{2} \supset C_{2}=D_{3} \times C_{2}$ symmetry and outer product geometry

D_{6} is the outer product (\times) product $D_{3} \times C_{2}$ of D_{3} and C_{2}. (Requires C_{2} to commute with all of D_{3}.)
$D_{6}=D_{3} \times C_{2}=\left\{\mathbf{1}, \mathbf{r}, \mathbf{r}^{2}, \mathbf{i}_{1}, \mathbf{i}_{2}, \mathrm{i}_{3}\right\} \times\left\{\mathbf{1}, \mathbf{R}_{z}\right\}$
\times product and D_{6} operators. Define hexagonal generator $\mathbf{h}_{\left(60^{\circ}\right)}$ of subgroup $C_{6}=\left\{\mathbf{1}, \mathbf{h}, \mathbf{h}^{2}, \mathbf{h}^{3}, \mathbf{h}^{4} \mathbf{h}^{5}\right\}$

$$
D_{6}=D_{3} \times C_{2}=\left\{\mathbf{1}, \mathbf{r}, \mathbf{r}^{2}, \mathbf{i}_{1}, \mathbf{i}_{2}, \dot{i}_{3}, \mathbf{1} \cdot \mathbf{R}_{\mathrm{z}}, \mathbf{r} \cdot \mathbf{R}_{\mathrm{z}}, \mathbf{r}^{2} \cdot \mathbf{R}_{\mathrm{z}}, \mathbf{i}_{1} \cdot \mathbf{R}_{\mathrm{z}}, \mathbf{i}_{2} \cdot \mathbf{R}_{\mathrm{z}}, \mathbf{i}_{3} \cdot \mathbf{R}_{\mathrm{z}}\right\}
$$

$$
D_{6}=D_{3} \times C_{2}=\left\{\mathbf{1}, \mathbf{h}^{2}, \mathbf{h}^{4}, \mathbf{i}_{1}, \mathbf{i}_{2}, \dot{i}_{3}, \mathbf{h}^{3}, \quad \mathbf{h}^{5}, \quad \mathbf{h}, \quad \mathbf{j}_{l}, \quad \mathbf{j}_{2}, \quad \mathbf{j}_{3} \quad\right\}
$$

$$
\mathbf{h}^{3}{ }_{\left(60^{\circ}\right)}=\mathbf{R}_{\mathbf{z}\left(180^{\circ}\right)}
$$

Electrostatic potential $V(\phi)$ doesn't care which way is "up." Wells remain wells, and barriers remain barriers under all $D 6$ operations.

Review: Symmetry reduction and splitting: Subduced irep $D^{\alpha}\left(D_{3}\right) \downarrow C_{2}=d^{0^{2}} \oplus d^{1_{2}} \oplus$.. correlation
Symmetry induction and clustering: Induced rep $d^{a}\left(C_{2}\right) \uparrow D_{3}=D^{\alpha} \oplus D^{\beta} \oplus$.. correlation
$D_{3}-C_{2}$ Coset structure of $d^{m_{2}}\left(C_{2}\right) \uparrow D_{3}$ induced representation basis
D_{3}-Projection of $d^{m_{2}}\left(C_{2}\right) \uparrow D_{3}$ induced representation basis Derivation of Frobenius reciprocity
$D_{6} \supset D_{2} \supset C_{2}=D_{3} \times C_{2}$ symmetry and outer product geometry
\rightarrow Irreducible characters
Irreducible representations
Correlations with D_{6} characters:
... and $C_{2}\left(\mathbf{i}_{3}\right)$ characters......and $C_{6}\left(\mathbf{1}, \mathbf{h}^{1}, \mathbf{h}^{2}, \ldots\right)$ characters
D_{6} symmetry and induced representation band structure
Introduction to octahedral tetrahedral symmetry $O_{h} \supset O \sim T_{d} \supset T$
$D_{6} \supset D_{2} \supset C_{2}=D_{3} \times C_{2}$ Irreducible characters

$$
\begin{array}{c|cccc}
D_{3} & \mathbf{1} & \left\{\mathbf{r}, \mathbf{r}^{2}\right\} & \left\{\mathbf{i}_{1}, \mathbf{i}_{2}, \dot{i}_{3}\right\} \\
\hline \chi^{A_{1}}(\mathbf{g}) & 1 & 1 & 1 \\
\chi^{A_{2}}(\mathbf{g}) & 1 & 1 & -1 & \times \\
\chi^{E_{1}}(\mathbf{g}) & 2 & -1 & 0 & \\
\hline(A) & 1 & 1 \\
C_{2}^{Z} & \mathbf{1} & \mathbf{R}_{z} \\
\hline
\end{array}=
$$

$D_{3} \times C_{2}^{Z}$	$\mathbf{1}$	$\left\{\mathbf{r}, \mathbf{r}^{2}\right\}$	$\left\{\mathbf{i}_{1}, \mathbf{i}_{2}, \mathbf{i}_{3}\right\}$	$\mathbf{1} \cdot \mathbf{R}_{z}$	$\left\{\mathbf{r}, \mathbf{r}^{2}\right\} \cdot \mathbf{R}_{z}$	$\left\{\mathbf{i}_{1}, \mathbf{i}_{2}, \mathbf{i}_{3}\right\} \cdot \mathbf{R}_{z}$
$A_{1} \cdot(A)$	$1 \cdot 1$					
$A_{2} \cdot(A)$	$1 \cdot 1$	$1 \cdot 1$	$-1 \cdot 1$	$1 \cdot 1$	$1 \cdot 1$	$-1 \cdot 1$
$E_{1} \cdot(A)$	$2 \cdot 1$	$-1 \cdot 1$	$0 \cdot 1$	$2 \cdot 1$	$-1 \cdot 1$	$0 \cdot 1$
$A_{1} \cdot(B)$	$1 \cdot 1$	$1 \cdot 1$	$1 \cdot 1$	$1 \cdot(-1)$	$1 \cdot(-1)$	$1 \cdot(-1)$
$A_{2} \cdot(B)$	$1 \cdot 1$	$1 \cdot 1$	$-1 \cdot 1$	$1 \cdot(-1)$	$1 \cdot(-1)$	$-1 \cdot(-1)$
$E_{1} \cdot(B)$	$2 \cdot 1$	$-1 \cdot 1$	$0 \cdot 1$	$2 \cdot(-1)$	$-1 \cdot(-1)$	$0 \cdot(-1)$

$D_{6} \supset D_{2} \supset C_{2}=D_{3} \times C_{2}$ Irreducible characters

$=$| $D_{3} \times C_{2}^{Z}$ | $\mathbf{1}$ | $\left\{\mathbf{r}, \mathbf{r}^{2}\right\}$ | $\left\{\mathbf{i}_{1}, \mathbf{i}_{2}, \mathbf{i}_{3}\right\}$ | $\mathbf{1} \cdot \mathbf{R}_{z}$ | $\left\{\mathbf{r}, \mathbf{r}^{2}\right\} \cdot \mathbf{R}_{z}$ | $\left\{\mathbf{i}_{1}, \mathbf{i}_{2}, \mathbf{i}_{3}\right\} \cdot \mathbf{R}_{z}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $A_{1} \cdot(A)$ | $1 \cdot 1$ |
| $A_{2} \cdot(A)$ | $1 \cdot 1$ | $1 \cdot 1$ | $-1 \cdot 1$ | $1 \cdot 1$ | $1 \cdot 1$ | $-1 \cdot 1$ |
| $E_{1} \cdot(A)$ | $2 \cdot 1$ | $-1 \cdot 1$ | $0 \cdot 1$ | $2 \cdot 1$ | $-1 \cdot 1$ | $0 \cdot 1$ |
| $A_{1} \cdot(B)$ | $1 \cdot 1$ | $1 \cdot 1$ | $1 \cdot 1$ | $1 \cdot(-1)$ | $1 \cdot(-1)$ | $1 \cdot(-1)$ |
| $A_{2} \cdot(B)$ | $1 \cdot 1$ | $1 \cdot 1$ | $-1 \cdot 1$ | $1 \cdot(-1)$ | $1 \cdot(-1)$ | $-1 \cdot(-1)$ |
| $E_{1} \cdot(B)$ | $2 \cdot 1$ | $-1 \cdot 1$ | $0 \cdot 1$ | $2 \cdot(-1)$ | $-1 \cdot(-1)$ | $0 \cdot(-1)$ |

$D_{6} \supset D_{2} \supset C_{2}=D_{3} \times C_{2}$ Irreducible characters

Recall $C_{2} \times C_{2}=D_{2}=\left\{\mathbf{1}, \mathbf{R}_{x}, \mathbf{R}_{z}, \mathbf{R}_{y}\right\}$ characters
(Lect. 12 p.50-60)
D_{6} has $D_{2}=\left\{\mathbf{1}, \mathbf{i}_{3}, \mathbf{h}^{3}, \mathbf{j}_{3}\right\}$ subgroup

$D_{6} \supset D_{2} \supset C_{2}=D_{3} \times C_{2}$ Irreducible characters
Recall $C_{2} \times C_{2}=D_{2}=\left\{\mathbf{1}, \mathbf{R}_{x}, \mathbf{R}_{z}, \mathbf{R}_{y}\right\}$
characters
(Lect. 12 p.50-60)
D_{6} has $D_{2}=\left\{\mathbf{1}, \mathbf{i}_{3}, \mathbf{h}^{3}, \mathbf{j}_{3}\right\}$ subgroup

$D_{6} \supset D_{2} \supset C_{2}=D_{3} \times C_{2}$ Irreducible characters

				$D_{3} \times C_{2}^{Z}$	1	$\left\{\mathbf{r}, \mathbf{r}^{2}\right\}$	$\left\{\mathbf{i}_{1}, \mathbf{i}_{2}, \mathrm{i}_{3}\right\}$	$\mathbf{1} \cdot \mathrm{R}_{z}$	$\left\{\mathbf{r}, \mathbf{r}^{2}\right\} \cdot \mathbf{R}_{z}$	$\left\{\mathbf{i}_{1}, \mathbf{i}_{2}, \mathbf{i}_{3}\right\} \cdot \mathbf{R}_{z}$
D_{3}	$1\left\{\mathbf{r}, \mathbf{r}^{2}\right\}$	$\left\{\mathbf{i}_{1}, \mathbf{i}_{2}, \mathrm{i}_{3}\right\}$		$A_{1} \cdot(A)$	$1 \cdot 1$					
$\chi^{A_{1}}(\mathbf{g})$	11	1	C_{2}^{Z} $\mathbf{1}$ \mathbf{R}_{z} (A) 1	$A_{2} \cdot(A)$	$1 \cdot 1$	$1 \cdot 1$	-1.1	$1 \cdot 1$	$1 \cdot 1$	-1.1
			\times \times (A) 1	$=E_{1} \cdot(A)$	$2 \cdot 1$	-1.1	$0 \cdot 1$	$2 \cdot 1$	$-1 \cdot 1$	$0 \cdot 1$
$\chi^{R_{2}}(\mathbf{g})$	11	-1	(B)1 -1	$A_{1} \cdot(B)$	$1 \cdot 1$	$1 \cdot 1$	$1 \cdot 1$	$1 \cdot(-1)$	$1 \cdot(-1)$	$1 \cdot(-1)$
$\chi^{E_{1}}(\mathbf{g})$	$2-1$	0		$A_{2} \cdot(B)$	$1 \cdot 1$	$1 \cdot 1$	-1.1	$1 \cdot(-1)$	$1 \cdot(-1)$	$-1 \cdot(-1)$
				$E_{1} \cdot(B)$	$2 \cdot 1$	-1.1	$0 \cdot 1$	$2 \cdot(-1)$	-1•(-1)	$0 \cdot(-1)$

So also does:
$180^{\circ} \mathbf{h}^{3}$

Review: Symmetry reduction and splitting: Subduced irep $D^{\alpha}\left(D_{3}\right) \downarrow C_{2}=d^{0} \oplus d^{1_{2}} \oplus$. . correlation
Symmetry induction and clustering: Induced rep $d^{a}\left(C_{2}\right) \uparrow D_{3}=D^{\alpha} \oplus D^{\beta} \oplus$.. correlation
$D_{3}-C_{2}$ Coset structure of $d^{m_{2}}\left(C_{2}\right) \uparrow D_{3}$ induced representation basis
D_{3}-Projection of $d^{m_{2}}\left(C_{2}\right) \uparrow D_{3}$ induced representation basis Derivation of Frobenius reciprocity
$D_{6} \supset D_{2} \supset C_{2}=D_{3} \times C_{2}$ symmetry and outer product geometry Irreducible characters
Irreducible representations
Correlations with D_{6} characters:
... and $C_{2}\left(\mathbf{i}_{3}\right)$ characters......and $C_{6}\left(\mathbf{1}, \mathbf{h}^{1}, \mathbf{h}^{2}, \ldots\right)$ characters
D_{6} symmetry and induced representation band structure
Introduction to octahedral tetrahedral symmetry $O_{h} \supset O \sim T_{d} \supset T$
$D_{6} \supset D_{2} \supset C_{2}=D_{3} \times C_{2}$ Irreducible representations

D_{6}

$D_{6} \supset D_{2} \supset C_{2}=D_{3} \times C_{2}$ Irreducible representations

D_{6}

Let X-rotation

$$
\begin{gathered}
\begin{array}{l}
\text { or } \\
180^{\circ} \\
X \text {-flip in } \\
\text { determines } \\
A_{1} \text { or } B_{1} \text { vs } A_{2} \text { or } B_{2} \\
(+1) \text { vs }(-1)
\end{array}
\end{gathered}
$$

So also does:
$180^{\circ} \mathbf{h}^{3}$

Review: Symmetry reduction and splitting: Subduced irep $D^{\alpha}\left(D_{3}\right) \downarrow C_{2}=d^{0^{2}} \oplus d^{1_{2}} \oplus$.. correlation
Symmetry induction and clustering: Induced rep $d^{a}\left(C_{2}\right) \uparrow D_{3}=D^{\alpha} \oplus D^{\beta} \oplus$.. correlation
$D_{3}-C_{2}$ Coset structure of $d^{m_{2}}\left(C_{2}\right) \uparrow D_{3}$ induced representation basis
D_{3}-Projection of d ${ }^{m_{2}}\left(C_{2}\right) \uparrow D_{3}$ induced representation basis
Derivation of Frobenius reciprocity
$D_{6} \supset D_{2} \supset C_{2}=D_{3} \times C_{2}$ symmetry and outer product geometry Irreducible characters Irreducible representations Correlations with D_{6} characters:
... and $C_{2}\left(\mathbf{i} \mathbf{i}_{3}\right)$ characters......and $C_{6}\left(\mathbf{1}, \mathbf{h}^{1}, \mathbf{h}^{2}, \ldots\right)$ characters
4 D_{6} symmetry and induced representation band structure

[^1]Correlations by D_{6} characters: $\chi_{\xi}^{\mu}\left(D_{6}\right)=$
... and $C_{2}\left(\mathrm{i}_{13}\right)$ characters:

C_{2}^{X}	$\mathbf{1}$	i_{3}
0_{2}	1	1
1_{2}	1	-1

$D_{3} \times C_{2}^{z}$	1	$\left\{\mathbf{h}^{2}, \mathbf{h}^{4}\right\}$	$\left\{\mathbf{i}_{1}, \mathbf{i}_{2}, \mathbf{i}_{3}\right\}$	h^{3}	$\left\{\mathrm{h}, \mathrm{h}^{5}\right\}$	$\left\{\mathbf{j}_{1}, \mathbf{j}_{2}, \mathbf{j}_{3}\right\}$
A_{1}	1	1	1	1	1	1
A_{2}	1	1	-1	1	1	-1
E_{2}	2	-1	0	2	-1	0
B_{1}	1	1	1	-1	-1	-1
B_{2}	1	1	-1	-1	-1	1
E_{1}	2	-1	0	-2	1	0
Let X-rotation						
or						
	A_{1}	or B_{1} vs $A^{(+1) ~ \text { vs }}$	${ }_{2}$ or B_{2}			

$D_{6} \supset C_{2}^{X}\left(\mathrm{i}_{3}\right)$	0_{2}	1_{2}
A_{1}	1	\cdot
A_{2}	\cdot	1
E_{2}	1	1
B_{1}	1	\cdot
B_{2}	\cdot	1
E_{1}	1	1

Correlations by D_{6} characters：$\chi_{8}^{\mu}\left(D_{6}\right)=$
．．．and $C_{2}\left(\mathrm{i}_{13}\right)$ characters：

C_{2}^{X}	$\mathbf{1}$	i_{3}
0_{2}	1	1
1_{2}	1	-1

．．．and $C_{6}\left(\mathbf{1}, \mathbf{h}^{1}, \mathbf{h}^{2}, \ldots\right)$ characters：

$D_{3} \times C_{2}^{z}$	1	$\left\{\mathbf{h}^{2}, \mathbf{h}^{4}\right\}$	$\left\{\mathbf{i}_{1}, \mathbf{i}_{2}, \mathbf{i}_{3}\right\}$	h^{3}	$\left\{\mathrm{h}, \mathrm{h}^{5}\right\}$	$\left\{\mathbf{j}_{1}, \mathbf{j}_{2}, ⿹ 丁 口 ⿹ 丁 口 欠\right\}$
A_{1}	1	1	1	1	1	1
A_{2}	1	1	－1	1	1	－1
E_{2}	2	－1	0	2	－1	0
B_{1}		1	1	－1	－1	－1
B_{2}	1		－1	－1	－1	1
E_{1}	2	－1	0	－2	1	0

Let X－rotation

180°	Or
X－flip \mathbf{i}_{3}	determine

A_{1} or B_{1} vs A_{2} or B_{2}
$(+1)$ vs (-1)

Let unit translation
60° hex－Z rotation \mathbf{h} determine A_{p} vs B_{p} （＋1）vs（－1）
So also does： $180^{\circ} \mathbf{h}^{3}$

Y－rotation
$1800{ }^{\circ}$ flip \mathbf{j}_{3} is product $\mathrm{i}_{3} \mathbf{h}^{3}=\mathbf{h}^{3 \mathbf{i}_{3}}$

Correlations by D_{6} characters: $\chi_{8}^{\mu}\left(D_{6}\right)=$
... and $C_{2}\left(\mathrm{i}_{13}\right)$ characters:

C_{2}^{X}	$\mathbf{1}$	i_{3}
0_{2}	1	1
1_{2}	1	-1

$D_{3} \times C_{2}^{z}$	$\mathbf{1}$	$\left\{\mathbf{h}^{2}, \mathbf{h}^{4}\right\}$	$\left\{\mathbf{i}_{1}, \mathbf{i}_{2}, \mathbf{i}_{3}\right\}$	\mathbf{h}^{3}		$\left\{\mathbf{h}, \mathbf{h}^{5}\right\}$	$\left\{\mathbf{j}_{\mathbf{1}}, \mathbf{j}_{2}, \sqrt{\left.\mathbf{j}_{3}\right\}}\right.$
A_{1}	1	1	1		1	1	1
A_{2}	1	1	-1		1		
1		1	-1				
E_{2}	2	-1	0		2	-1	0
B_{1}	1	1	1		-1	-1	-1
B_{2}	1	1	-1		-1	-1	1
E_{1}	2	-1	0		-2	1	0

... and $C_{6}\left(\mathbf{1}, \mathbf{h}^{1}, \mathbf{h}^{2}, \ldots\right)$ characters:

Let X-rotation

180°| Or | Xlip i_{3} |
| :---: | :---: | :---: | determine

A_{1} or B_{1} vs A_{2} or B_{2}
(+1) vs (-1)

Let unit translation
60° hex- Z rotation $\mathbf{~}$ determine A_{p} vs B_{p} (+1) vs (-1)
So also does: $180^{\circ} \mathbf{h}^{3}$

$D_{6} \supset C_{2}^{X}\left(\mathrm{i}_{3}\right)$	0_{2}	1_{2}
A_{1}	1	\cdot
A_{2}	\cdot	1
E_{2}	1	1
B_{1}	1	\cdot
B_{2}	\cdot	1
E_{1}	1	1

$D_{6} \supset C_{6}(\mathbf{h})$	0_{6}	1_{6}	2_{6}	3_{6}	4_{6}	5_{6}
A_{1}	1	\cdot	\cdot	\cdot	\cdot	\cdot
A_{2}	\cdot	\cdot	\cdot	\cdot	\cdot	\cdot
E_{2}	\cdot	\cdot	1	\cdot	1	\cdot
B_{2}	\cdot	\cdot	\cdot	1	\cdot	\cdot
B_{1}	\cdot	\cdot	\cdot	1	\cdot	\cdot
E_{1}	\cdot	1	\cdot	\cdot	\cdot	1

Review: Symmetry reduction and splitting: Subduced irep $D^{\alpha}\left(D_{3}\right) \downarrow C_{2}=d^{0^{2}} \oplus d^{1_{2}} \oplus$.. correlation
Symmetry induction and clustering: Induced rep $d^{a}\left(C_{2}\right) \uparrow D_{3}=D^{\alpha} \oplus D^{\beta} \oplus$.. correlation
$D_{3}-C_{2}$ Coset structure of $d^{m_{2}}\left(C_{2}\right) \uparrow D_{3}$ induced representation basis
D_{3}-Projection of $d^{m_{2}}\left(C_{2}\right) \uparrow D_{3}$ induced representation basis
Derivation of Frobenius reciprocity
$D_{6} \supset D_{2} \supset C_{2}=D_{3} \times C_{2}$ symmetry and outer product geometry Irreducible characters Irreducible representations
Correlations with D_{6} characters:
... and $C_{2}\left(\mathbf{i}_{13}\right)$ characters...... and $C_{6}\left(\mathbf{1}, \mathbf{h}^{1}, \mathbf{h}^{2}, \ldots\right)$ characters
$\square D_{6}$ symmetry and induced representation band structure
Introduction to octahedral tetrahedral symmetry $O_{h} \supset O \sim T_{d} \supset T$

D_{6} symmetry and induced representation band structure
For high energy above potential barriers local C2 symmetry is replaced by global C_{6}

angular momentum doublets such as $E_{ \pm m}, A_{1} A_{2}$, and $B_{1} B_{2}$

$D_{6} \supset C_{3}(h)$	0_{6}	1_{6}	2_{6}	3_{6}	4_{6}	5_{6}
A_{1}	1	\cdot	\cdot	\cdot	\cdot	\cdot
A_{2}	1	\cdot	\cdot	\cdot	\cdot	\cdot
E_{2}	\cdot	\cdot	1	\cdot	1	\cdot
B_{2}	\cdot	\cdot	\cdot	1	\cdot	\cdot
B_{1}	\cdot	\cdot	\cdot	1	\cdot	\cdot
E_{1}	\cdot	1	\cdot	\cdot	\cdot	1

For	$D_{6} \supset C_{2}\left(j_{3}\right)$	0_{2}	1_{2}
deep in potential	A_{1}	1	
local C_{2} symmetry	A_{2}		1
bands $A_{1} E_{1} E_{2} B_{1}$ and	E_{2}	1	1
$B_{2} E_{2} E_{1} A_{2}$ then	B_{2}		1
become tight clusters	B_{1}	1	
	E_{1}	1	1

> Review: Symmetry reduction and splitting: Subduced irep $D^{\alpha}\left(D_{3}\right) \downarrow C_{2}=d^{0^{2}} \oplus d^{1_{2}} \oplus$.. correlation
> Symmetry induction and clustering: Induced rep da $\left(C_{2}\right) \uparrow D_{3}=D^{\alpha} \oplus D^{\beta} \oplus$.. correlation
> $D_{3}-C_{2}$ Coset structure of $d^{m_{2}}\left(C_{2}\right) \uparrow D_{3}$ induced representation basis
> D_{3}-Projection of $d^{m_{2}}\left(C_{2}\right) \uparrow D_{3}$ induced representation basis
> Derivation of Frobenius reciprocity
> $D_{6} \supset D_{2} \supset C_{2}=D_{3} \times C_{2}$ symmetry and outer product geometry Irreducible characters Irreducible representations Correlations with D_{6} characters: ...and $C_{2}\left(\mathrm{i}_{3}\right)$ characters......and $C_{6}\left(1, \mathrm{~h}^{1}, \mathrm{~h}^{2}, \ldots\right)$ characters D_{6} symmetry and induced representation band structure

> Introduction to octahedral/tetrahedral symmetry $O_{h} \supset O \sim T_{d} \supset T$
$\mathrm{O}_{h} \supset \mathrm{O} \supset D_{4} \supset C_{4 v} \supset C_{2 v}$ subgroup chain
...(one of very many)

$O_{h} \supset O \supset D_{4} \supset C_{4}$ subgroup chain
...(one of my favorites)

Three groups: O, D_{4}, and D_{3} let you "do" all the other 32 crystal point groups

Introduction to octahedral/ tetrahedral symmetry $O_{h} \supset O \sim T_{d} \supset T$
Octahedral-cubic O symmetry

Order ${ }^{\circ} O=6$ hexahedron squares $\cdot 4$ pts $=24$ $=8$ octahedron triangles $\cdot 3$ pts $=24$ $=12$ lines $\cdot 2$ pts $=24$ positions

Introduction to octahedral/ tetrahedral symmetry $O_{h} \supset O \sim T_{d} \supset T$
Octahedral-cubic O symmetry

Order ${ }^{\circ} O=6$ hexahedron squares $\cdot 4$ pts $=24$ $=8$ octahedron triangles $\cdot 3$ pts $=24$ $=12$ lines $\cdot 2$ pts $=24$ positions

Octahedral group O operations Class of 1: $\mathbf{1}$

Introduction to octahedral/ tetrahedral symmetry $O_{h} \supset O \sim T_{d} \supset T$
Octahedral-cubic O symmetry

Order ${ }^{\circ} O=6$ hexahedron squares $\cdot 4$ pts $=24$ $=8$ octahedron triangles $\cdot 3$ pts $=24$ $=12$ lines $\cdot 2$ pts $=24$ positions

Octahedral group O operations
Class of 1: $\mathbf{1}_{\mathbf{r}_{k}=\mathbf{r}_{k}}$
Class of 8 :

Introduction to octahedral/ tetrahedral symmetry $O_{h} \supset O \sim T_{d} \supset T$
Octahedral-cubic O symmetry

Order ${ }^{\circ} O=6$ hexahedron squares $\cdot 4$ pts $=24$ $=8$ octahedron triangles $\cdot 3$ pts $=24$ $=12$ lines $\cdot 2$ pts $=24$ positions

Octahedral group O operations

 Class of 1: $\mathbf{1}_{k}=\mathbf{r}_{k}$

Introduction to octahedral/ tetrahedral symmetry $O_{h} \supset O \sim T_{d} \supset T$
Octahedral-cubic O symmetry

Order ${ }^{\circ} O=6$ hexahedron squares $\cdot 4$ pts $=24$ $=8$ octahedron triangles $\cdot 3$ pts $=24$ $=12$ lines $\cdot 2$ pts $=24$ positions

Octahedral group O operations

Class of $1: \mathbf{1} \mathbf{r}_{k}=\mathbf{r}_{k}$ Class of 8 :

$$
\mathbf{R}_{x, y, z}=\mathbf{R}_{1,2,3}
$$

Class of 6 $\pm 90^{\circ}$ rotations on[100] axes

Introduction to octahedral/ tetrahedral symmetry $O_{h} \supset O \sim T_{d} \supset T$
Octahedral-cubic O symmetry

Order ${ }^{\circ} O=6$ hexahedron squares $\cdot 4$ pts $=24$ $=8$ octahedron triangles $\cdot 3$ pts $=24$ $=12$ lines $\cdot 2$ pts $=24$ positions

Octahedral group O operations
Class of $1: \mathbf{1} \mathbf{r}_{k}=\mathbf{r}_{k}$ Class of 8 :

Introduction to octahedral/ tetrahedral symmetry $O_{h} \supset O \sim T_{d} \supset T$
Octahedral-cubic O symmetry

Order ${ }^{\circ} \mathrm{O}=6$ hexahedron squares $\cdot 4$ pts $=24$
$=8$ octahedron triangles $\cdot 3$ pts $=24$
$=12$ lines $\cdot 2$ pts $=24$ positions

Octahedral group O operations
Class of 1: $\mathbf{1}_{k}=\mathbf{r}_{k}$

Class of 3: 180° rotations
on [100] axes
$\tilde{\mathbf{r}}_{k}=\mathbf{r}_{k}^{2}=\mathbf{r}_{k}^{-1} \quad \mathbf{r}_{4}^{2} \quad \rho_{x, y, z}=\mathbf{R}_{1,2,3}^{2}$

Introduction to octahedral/ tetrahedral symmetry $O_{h} \supset O \sim T_{d} \supset T$
Octahedral-cubic O symmetry

Octahedral group O operations

Tetrahedral symmetry becomes Icosahedral

(If rectangles have
Golden Ratio $\frac{1 \pm \sqrt{ } 5}{2}$

Introduction to octahedral tetrahedral symmetry $O_{h} \supset O \sim T_{d} \supset T$
Octahedral groups $O_{h} \supset O \sim T_{d} \supset T$

Figure 4.1.5 The full octahedral group $\left(O_{h}\right)$ and four non-Abelian subgroups T, T_{h}, T_{d}, and O. The Abelian D_{2} subgroup of T is indicated also.

Introduction to octahedral tetrahedral symmetry $O_{h} \supset O \sim T_{d} \supset T$
Octahedral groups $O_{h} \supset O \sim T_{d} \supset T$

Figure 4.1.5 The full octahedral group $\left(O_{h}\right)$ and four non-Abelian subgroups T, T_{h}, T_{d}, and O. The Abelian D_{2} subgroup of T is indicated also.

Introduction to octahedral tetrahedral symmetry $O_{h} \supset O \sim T_{d} \supset T$
Octahedral groups $O_{h} \supset O \sim T_{d}$ and $O_{h} \supset T_{h} \supset T$

Figure 4.1.5 The full octahedral group $\left(O_{h}\right)$ and four non-Abelian subgroups T, T_{h}, T_{d}, and O. The Abelian D_{2} subgroup of T is indicated also.

Fig. 4.1.5 from $P_{\text {rinciples of }} S_{y m m e t r y,} D_{\text {ynamics and }} S_{\text {pectroscopy }}$

1	1111	$r_{2}^{1} \overline{1}$	$r_{3}^{\overline{1}} \overline{1}$	${ }_{1}^{1} \overline{1} \overline{1}$	$1 \underset{r_{1}^{2}}{1} 1$	$r_{2}^{2} \overline{1}$	${ }_{1}^{2} \overline{1}_{3}^{1}$	${ }_{1}^{1} \overline{1}{ }_{4}^{2}$	$\left[\begin{array}{ccc}1 & 0 & 0 \\ R_{1}^{2}\end{array}\right]$	$\left[\begin{array}{lll}0 & 1 & 0 \\ R_{2}^{2}\end{array}\right]$	$\left[\begin{array}{ccc}0 & 0 & 1 \\ R_{3}^{2}\end{array}\right]$	$\left[\begin{array}{ccc}1 & 0 & 0 \\ R_{1}\end{array}\right.$	$\left[\begin{array}{lll}0 & 1 & 0 \\ R_{2}\end{array}\right]$	$\left[\begin{array}{lll}0 & 0 & 1 \\ R_{3}\end{array}\right]$	$\left[\begin{array}{lll} 1 & 0 \\ R_{1}^{3} \end{array}\right]$	$\left[\begin{array}{cc} 0 & 1 \\ R_{2}^{3} \end{array}\right][$	$\left[\begin{array}{lll} 0 & 0 & 1 \\ R_{3}^{3} \end{array}\right]$	i_{1}	i_{2}	i_{3}	i_{4}	i_{5}	i_{6}
r_{1}	r_{1}^{2}	$-r_{4}^{2}$	$-r_{2}^{2}$	$-r_{3}^{2}$	-1	$-R_{2}^{2}$	$-R_{3}^{2}$	$-R_{1}^{2}$	$-r_{2}$	$-r_{3}$	$-r_{4}$	i_{3}	i_{6}	i_{1}	$-R_{3}$	$-R_{1}$	$-R_{2}$	R_{1}^{3}	i_{5}	R_{2}^{3}	i_{2}	$-i_{4}$	R_{3}^{3}
r_{2}	$-r_{3}^{2}$	r_{2}^{2}	$-r_{4}^{2}$	$-r_{1}^{2}$	R_{2}^{2}	-1	R_{1}^{2}	$-R_{3}^{2}$	r_{1}	r_{4}	$-r_{3}$	R_{3}	$-R_{1}^{3}$	i_{2}	i_{3}	$-i_{5}$	R_{2}^{3}	i_{6}	$-R_{1}$	R_{2}	$-i_{1}$	R_{3}^{3}	i_{4}
r_{3}	$-r_{4}^{2}$	$-r_{1}^{2}$	r_{3}^{2}	$-r_{2}^{2}$	R_{3}^{2}	$-R_{1}^{2}$	-1	R_{2}^{2}	$-r_{4}$	r_{1}	r_{2}	$-i_{4}$	R_{1}	$-R_{2}^{3}$	R_{3}^{3}	i_{6}	i_{2}	i_{5}	$-R_{1}^{3}$	i_{1}	R_{2}	$-i_{3}$	R_{3}
r_{4}	$-r_{2}^{2}$	$-r_{3}^{2}$	$-r_{1}^{2}$	r_{4}^{2}	R_{1}^{2}	R_{3}^{2}	$-R_{2}^{2}$	-1	r_{3}	$-r_{2}$	r_{1}	$-R_{3}^{3}$	$-i_{5}$	R_{2}	$-i_{4}$	R_{1}^{3}	i_{1}	R_{1}	i_{6}	$-i_{2}$	R_{2}^{3}	R_{3}	i_{3}
r_{1}^{2}	-1	R_{1}^{2}	R_{2}^{2}	R_{3}^{2}	$-r_{1}$	r_{3}	r_{4}	r_{2}	r_{4}^{2}	r_{2}^{2}	r_{3}^{2}	R_{2}^{3}	R_{3}^{3}	R_{1}^{3}	$-i_{1}$	$-i_{3}$	$-i_{6}$	$-R_{3}$	$-i_{4}$	$-R_{1}$	i_{5}	$-i_{2}$	$-R_{2}$
r_{2}^{2}	$-R_{1}^{2}$	-1	R_{3}^{2}	$-R_{2}^{2}$	r_{4}	$-r_{2}$	r_{1}	r_{3}	$-r_{3}^{2}$	$-r_{1}^{2}$	r_{4}^{2}	i_{2}	$-i_{3}$	$-R_{1}$	R_{2}	$-R_{3}^{3}$	$-i_{5}$	i_{4}	$-R_{3}$	$-R_{1}^{3}$	$-i_{6}$	R_{2}^{3}	$-i_{1}$
r_{3}^{2}	$-R_{2}^{2}$	$-R_{3}^{2}$	-1	R_{1}^{2}	r_{2}	r_{4}	r_{3}	r_{1}	r_{2}^{2}	$-r_{4}^{2}$	$-r_{1}^{2}$	$-R_{2}$	$-i_{4}$	$-i_{6}$	i_{2}	R_{3}	$-R_{1}^{3}$	$-i_{3}$	$-R_{3}^{3}$	i_{5}	R_{1}	$-i_{1}$	$-R_{2}^{3}$
r_{4}^{2}	$-R_{3}^{2}$	R_{2}^{2}	$-R_{1}^{2}$	-1	r_{3}	r_{1}	r_{2}	$-r_{4}$	$-r_{1}^{2}$	r_{3}^{2}	$-r_{2}^{2}$	$-i_{1}$	$-R_{3}$	$-i_{5}$	$-R_{2}^{3}$	$-i_{4}$	R_{1}	$-R_{3}^{3}$	i_{3}	$-i_{6}$	R_{1}^{3}	R_{2}	$-i_{2}$
R_{1}^{2}	$-r_{4}$	r_{3}	$-r_{2}$	r_{1}	r_{2}^{2}	$-r_{1}^{2}$	r_{4}^{2}	$-r_{3}^{2}$	-1	R_{3}^{2}	$-R_{2}^{2}$	R_{1}^{3}	i_{1}	$-i_{4}$	$-R_{1}$	i_{2}	$-i_{3}$	$-R_{2}$	$-R_{2}^{3}$	R_{3}^{3}	R_{3}	$-i_{6}$	i_{5}
R_{2}^{2}	$-r_{2}$	1	r_{4}	$-r_{3}$	r_{3}^{2}	$-r_{4}^{2}$	$-r_{1}^{2}$	r_{2}^{2}	$-R_{3}^{2}$	-1	R_{1}^{2}	$-i_{5}$	R_{2}^{3}	i_{3}	$-i_{6}$	$-R_{2}$	$-i_{4}$	$-i_{2}$	i	$-R_{3}$	R_{3}^{3}	R_{1}	R_{1}^{3}
R_{3}^{2}	$-r_{3}$	$-r_{4}$	r_{1}	r_{2}	r_{4}^{2}	r_{3}^{2}	$-r_{2}^{2}$	$-r_{1}^{2}$	R_{2}^{2}	$-R_{1}^{2}$	-1	i_{6}	i_{2}	R_{3}^{3}	$-i_{5}$		$-R_{3}$	R_{2}^{3}	$-R_{2}$	i_{4}	$-i_{3}$	R_{1}^{3}	$-R_{1}$
R_{1}	i_{1}	$-R_{2}^{3}$	$-i_{2}$	R_{2}	R_{3}^{3}	$-i_{3}$	$-R_{3}$	i_{4}	R_{1}^{3}	i_{6}	i_{5}	R_{1}^{2}	r_{1}	$-r_{4}^{2}$	-1	$-r_{3}$	r_{2}^{2}	$-r_{4}$	r_{2}	r_{1}^{2}	$-r_{3}^{2}$	$-R_{2}^{2}$	R_{3}^{2}
R_{2}	i_{3}	R_{3}	$-R_{3}^{3}$	i_{4}	R_{1}^{3}	i_{5}	$-i_{6}$	$-R_{1}$	$-i_{2}$	R_{2}^{3}	i_{1}	$-r_{2}^{2}$	R_{2}^{2}	r_{1}	r_{3}^{2}	-1	$-r_{4}$	R_{1}^{2}	R_{3}^{2}	$-r_{2}$	$-r_{3}$	$-r_{4}^{2}$	r_{1}^{2}
R_{3}	i_{6}	i_{5}	R_{1}	$-R_{1}^{3}$	R_{2}^{3}	$-R_{2}$	$-i_{2}$	$-i_{1}$	i_{3}	i_{4}	R_{3}^{3}	r_{1}	$-r_{3}^{2}$	R_{3}^{2}	$-r_{2}$	r_{4}^{2}	-1	r_{1}^{2}	r_{2}^{2}	R_{2}^{2}	$-R_{1}^{2}$	$-r_{4}$	$-r_{3}$
R_{1}^{3}	$-R_{2}$	$-i_{2}$	R_{2}^{3}	i_{1}	$-i_{3}$	$-R_{3}^{3}$	i_{4}	R_{3}	$-R_{1}$	i_{5}	$-i_{6}$	-1	$-r_{4}$	r_{3}^{2}	$-R_{1}^{2}$	r_{2}	$-r_{1}^{2}$	$-r_{1}$	r_{3}	r_{2}^{2}	$-r_{4}^{2}$	$-R_{3}^{2}$	$-R_{2}^{2}$
R_{2}^{3}	$-R_{3}$		i_{4}	R_{3}^{3}	$-i_{6}$	R_{1}	$-R_{1}^{3}$	i_{5}	$-i_{1}$	$-R_{2}$	$-i_{2}$	r_{4}^{2}	-1	$-r_{2}$	$-r_{1}^{2}$	$-R_{2}^{2}$	r_{3}	$-R_{3}^{2}$	R_{1}^{2}	$-r_{1}$	$-r_{4}$	$-r_{2}^{2}$	r_{3}^{2}
R_{3}^{3}	$-R_{1}$	R_{1}^{3}	i_{6}	i_{5}	$-i_{1}$	$-i_{2}$	R_{2}	$-R_{2}^{3}$	i_{4}	$-i_{3}$	$-R_{3}$	$-r_{3}$	r_{2}^{2}	-1	r_{4}	$-r_{1}^{2}$	$-R_{3}^{2}$	r_{4}^{2}	r_{3}^{2}	$-R_{1}^{2}$	$-R_{2}^{2}$	$-r_{2}$	$-r_{1}$
i_{1}	R_{3}^{3}	$-i_{4}$	i_{3}	R_{3}	$-R_{1}$	$-i_{6}$	i_{5}	$-R_{1}^{3}$	R_{2}^{3}	i_{2}	$-R_{2}$	r_{1}^{2}	R_{3}^{2}	$-r_{4}$	r_{4}^{2}	$-R_{1}^{2}$	$-r_{1}$	-1	$-R_{2}^{2}$	$-r_{3}$	r_{2}	r_{3}^{2}	r_{2}^{2}
i_{2}	i_{4}	R_{3}^{3}	R_{3}	$-i_{3}$	$-i_{5}$	R_{1}^{3}	R_{1}	$-i_{6}$	R_{2}	$-i_{1}$	R_{2}^{3}	$-r_{3}^{2}$	$-R_{1}^{2}$	$-r_{3}$	$-r_{2}^{2}$	$-R_{3}^{2}$	$-r_{2}$	R_{2}^{2}	-1	r_{4}	$-r_{1}$	r_{1}^{2}	r_{4}^{2}
i_{3}	R_{1}^{3}	R_{1}	$-i_{5}$	i_{6}	$-R_{2}$	$-R_{2}^{3}$	$-i_{1}$	i_{2}	$-R_{3}$	R_{3}^{3}	$-i_{4}$	$-r_{2}$	r_{1}^{2}	R_{1}^{2}	$-r_{1}$	r_{2}^{2}	$-R_{2}^{2}$	r_{3}^{2}	$-r_{4}^{2}$	-1	R_{3}^{2}	r_{3}	$-r_{4}$
i_{4}	$-i_{5}$	i_{6}	$-R_{1}^{3}$	$-R_{1}$	$-i_{2}$	i_{1}	$-R_{2}^{3}$	$-R_{2}$	$-R_{3}^{3}$	$-R_{3}$	i_{3}	r_{4}	r_{4}^{2}	R_{2}^{2}	r_{3}	r_{3}^{2}	R_{1}^{2}	$-r_{2}^{2}$	r_{1}^{2}	$-R_{3}^{3}$	-1	r_{1}	$-r_{2}$
i_{5}	i_{2}	$-R_{2}$	i_{1}	$-R_{2}^{3}$	i_{4}	$-R_{3}$	i_{3}	$-R_{3}^{3}$	i_{6}	$-R_{1}^{3}$	$-R_{1}$	R_{3}^{2}	r_{2}	r_{2}^{2}	R_{2}^{2}	r_{4}	r_{4}^{2}	$-r_{3}$	$-r_{1}$	$-r_{3}^{2}$	$-r_{1}^{2}$	-1	$-R_{1}^{2}$
i_{6}	R_{2}^{3}	i_{1}.	R_{2}	i_{2}	$-R_{3}$	$-i_{4}$	$-R_{3}^{3}$	$-i_{3}$	$-i_{5}$	$-R_{1}$	R_{1}^{3}	R_{2}^{2}	$-r_{3}$		$-R_{3}^{2}$	$-r_{1}$	r_{3}^{2}	$-r_{2}$	$-r_{4}$	r_{4}^{2}	r_{2}^{2}	R_{1}^{2}	-1

[^2]

$\ell^{A} I=1 \quad$ Example: $G=O$ Centrum: $\kappa(O)=\Sigma_{(\alpha)}\left(\ell^{\alpha}\right)^{0}=1^{0}+1^{0}+2^{0}+3^{0}+3^{0}=5$ $\begin{array}{ll}\ell^{1_{2}}=1 & \text { Cubic-Octahedral } \quad \text { Rank: } \quad \rho(\boldsymbol{O})=\Sigma_{(\alpha)}\left(\ell^{\alpha}\right)^{l}=1^{l}+1^{l}+2^{l}+3^{l}+3^{l}=10 \\ \ell^{E}=2 & \text { Group } 0\end{array}$ $\ell^{T_{l}=3} \quad$ Order: $\quad{ }^{\circ}(O)=\Sigma_{(\alpha)}\left(\ell^{\alpha}\right)^{0}=1^{2}+1^{2}+2^{2}+3^{2}+3^{2}=24$

$O \supset C_{4}$

$\left.{ }^{(0)}\right)_{4}(1)_{4}(2)_{4}{ }_{(3)}{ }_{4}=(-1)_{4} \boldsymbol{C l}_{3}(0)_{3}(1)_{3}(2)_{3}=(-1)_{3}$

A_{1}	1	\bullet	\bullet
$\mathrm{~A}_{2}$	1	\bullet	\cdot
E^{\prime}	\cdot	1	1
$\mathrm{~T}_{1}$	1	1	1
$\mathrm{~T}_{2}$	1	1	1

(a) $\mathrm{SF}_{6} \nu_{4}$ Rotational Structure

FT IR and Laser Diode Spectra K.C. Kim, W. B. Person, D. Seitz, and B.J. Krohn J. Mol. Spectrosc. 76, 322 (1979).

Primary AET species mixing increases with distance from "separatrix"
(b) P(88) Fine Structure (Rotational anisotropy effects)
$-0.125 \mathrm{~cm}=3.735 \mathrm{GHz} \longrightarrow$
P(88)

(c) Superfine Structure (Rotational axis tunneling)

\rightarrow Three-fold axis $\xrightarrow[\rightarrow 4]{\rightarrow} \rightarrow \mathrm{SF}^{-1} v_{3} \mathrm{P}(88) \sim 16 \mathrm{~m}$

Observed repeating sequences).. $\mathrm{A}_{1} \mathrm{~T}_{1} \mathrm{E} \mathrm{T}_{2} \mathrm{~T}_{1} \mathrm{ET}_{2} \mathrm{~A}_{2} \mathrm{~T}_{2} \mathrm{~T}_{1} \mathrm{~A}_{1}$ $\mathrm{T}_{1} \mathrm{ET}_{2} \mathrm{~T}_{1}$
$O_{\supset} C_{4}$
Local correlations explain clustering...
... but what about spacing and ordering?...
...and physical consequences?
$\boldsymbol{O} \supset \boldsymbol{C}_{\mathbf{3}}(0)_{3}(1)_{3}(2)_{3}=(-1)_{3}$

Deriving $D_{3} \sim C_{3 v}$ products - By group definition $|g\rangle=\mathbf{g}|1\rangle$ of position ket $|g\rangle$

[^0]: $D_{3}-C_{2}$ Coset structure of $d^{m_{2}}\left(C_{2}\right) \uparrow D_{3}$ induced representation basis D_{3}-Projection of d ${ }^{m_{2}}\left(C_{2}\right) \uparrow D_{3}$ induced representation basis Derivation of Frobenius reciprocity
 $D_{6} \supset D_{2} \supset C_{2}=D_{3} \times C_{2}$ symmetry and outer product geometry
 Irreducible characters
 Irreducible representations
 Correlations with D6 characters:
 ... and $C_{2}\left(\mathbf{i}_{3}\right)$ characters...... and $C_{6}\left(\mathbf{1}, \mathbf{h}^{1}, \mathbf{h}^{2}, \ldots\right)$ characters
 D_{6} symmetry and induced representation band structure

[^1]: Introduction to octahedral tetrahedral symmetry $O_{h} \supset O \sim T_{d} \supset T$

[^2]: Octahedral rotation product Table F.2.1 from $P_{\text {rinioples of of }} S_{\text {ymmermy }} D_{\text {ynamics and }} S_{\text {pectroscopy }}$

