Action at the Monster Mash

Exercise 1.5.2 The moving ball-wall-trapped-ball constructions in Fig. 5.4 started in class involve a plot of an $M_{Monster} \rightarrow \infty$ "ball-wall" coming in with unit slope (velocity) to hit a stationary much smaller m_2 . (Again, idealize "balls" as point masses.)

- (a) Finish construction started in class as far as you (reasonably) can. (Definition of reason not given!)
- (b) Do a construction where $M_{Monster}$ has a velocity of 1/2 and intercepts m_2 when it has velocity -1 at space-time point (x=-2, t=4), that is, 2 units from the fixed wall on the right. Construct six or more back-and-forth collisions. Discuss similarity and differences with Fig. 5.4.

(c) Also, construct one or two *prior* collisions (before t=4).

(xtra) Evaluate approximate-average action values as described in class or after Fig. 5.4 in Unit 1.

Ford circles and Farey sums

Exercise 1.5.3 Complete the fraction-geometry construction started in class up to denominator 10. (See also Lect. 5to7 (2.11.16) pages 138-141)

Assignment 3 Solutions (contd.)

Exercise 1.6.2 The moving ballwall-trapped-ball constructions in Fig. 6.4 involves a plot of a ballwall coming in with unit slope (velocity). Consider a construction where it has a velocity of 1/2 and intercepts a trapped ball of velocity -1 at space-time point (x=-2, t=-4) that is 2 units from the fixed wall. Construct five or more back-and-forth collisions and comment on what, if any, differences exist. If you can, also construct a *prior* set of collisions.

Consider space interval Δx at each wall impact times the velocity Δv of accelerated ball. It does not change.

t=-6 (START) : $(\Delta x=3) \cdot (\Delta v=2|v|=2) = 6.$ *t*=-3 (LATER) : $(\Delta x=3/2) \cdot (\Delta v=2|v|=4) = 6.$ *t*=-2 (LATER) : $(\Delta x=1) \cdot (\Delta v=2|v|=6) = 6.$

