Action at the Monster Mash

Exercise 1.5.2 The moving ball-wall-trapped-ball constructions in Fig. 5.4 started in class involve a plot of an $M_{\text {Monster }} \rightarrow \infty$ "ball-wall" coming in with unit slope (velocity) to hit a stationary much smaller m_{2}.
(Again, idealize "balls" as point masses.)
(a) Finish construction started in class as far as you (reasonably) can. (Definition of reason not given!)
(b) Do a construction where $M_{M o n s t e r}$ has a velocity of $1 / 2$ and intercepts m_{2} when it has velocity -1 at space-time point $(x=-2, t=4)$, that is, 2 units from the fixed wall on the right. Construct six or more back-and-forth collisions. Discuss similarity and differences with Fig. 5.4.
(c) Also, construct one or two prior collisions (before $t=4$).
(xtra) Evaluate approximate-average action values as described in class or after Fig. 5.4 in Unit 1.

Ford circles and Farey sums
Exercise 1.5.3 Complete the fraction-geometry construction started in class up to denominator 10 . (See also Lect. 5to7 (2.11.16) pages 138-141)

Assignment 3 Solutions (contd.)

Exercise 1.6.2 The moving ballwall-trapped-ball constructions in Fig. 6.4 involves a plot of a ballwall coming in with unit slope (velocity). Consider a construction where it has a velocity of $1 / 2$ and intercepts a trapped ball of velocity -1 at space-time point $(x=-2, t=-4)$ that is 2 units from the fixed wall. Construct five or more back-and-forth collisions and comment on what, if any, differences exist. If you can, also construct a prior set of collisions.

Consider space interval Δx at each wall impact times the velocity Δv of accelerated ball. It does not change.
$t=-6($ START $):(\Delta x=3) \cdot(\Delta v=2|v|=2)=6$.
$t=-3$ (LATER) : $(\Delta x=3 / 2) \cdot(\Delta v=2|v|=4)=6$.
$t=-2$ (LATER) : $(\Delta x=1) \cdot(\Delta v=2|v|=6)=6$.

Exercise Set 4 Due Thur 2.18

