2.19.18 class 11.0: Symmetry Principles for AMOP on following page Advanced Atomic-Molecular-Optical-Physics William G. Harter - University of Arkansas Rotational Energy Surfaces (RES) and Lab vs Body molecular rotor states, levels, and spectra: Body symmetry *O* of octahedral rotors $H=BJ^2+\Sigma t_{kq}T_q^k$ *RES and Multipole* \mathbf{T}_{q^k} *tensor expansions* RES and matrix representation of multipole \mathbf{T}_{q^k} tensor **H**-expansions What tensors go in tetrahedral (T_d) or octahedral (O_h) free-rotor Hamiltonia **H**? 4^{th} -rank [k=4] multipole terms O_h -symmetric function and O_h operator $\mathbf{T}^{\{4\}}$ RES and matrix irreps of O_h multipole $\mathbf{T}_q^{[4]}$ and $\mathbf{T}_q^{[2,2]}$ tensor **H**-expansions Matrix D^{T_1} , D^{T_2} , D^E , D^{A_2} , and D^{A_1} , irreducible representations (irreps) of O Finding O_h group products. Examples: $\mathbf{R}_z \mathbf{1} = \mathbf{R}_z$ or $\mathbf{R}_z \mathbf{i}_6 = \mathbf{r}_3$ or $\mathbf{i}_6 \mathbf{R}_z = \mathbf{r}_1$ D^{T_1} irreps derived visually using unit vectors {x,y,z} of p-wave $D^{\ell=1}{x,y,z}$ D^{T_2} irreps derived from standing d-wave $D^{\ell=2}{x,y,z}$. D^E irrep tensor basis Summary of irrep characters χ^{T_1} , χ^{T_2} , χ^E , χ^{A_2} , and χ^{A_1} of O $O \supset D_4 \supset D_2$ and $O \supset D_4 \supset C_4$ level correlations s $R(3) \supset O$ character analysis. *Applecations of Group*⊃*Sub-group correlation* Comparing Octahedral and Asymmetric rotor states and level clusters at high J Appendix: $O \supset D_4 \supset D_2$ irrep table very similar to our irreps on p.48 OTCALect.21p.77

AMOP reference links (Updated list given on 2nd page of each class presentation)

Web Resources - front page UAF Physics UTube channel Quantum Theory for the Computer Age

Principles of Symmetry, Dynamics, and Spectroscopy

2014 AMOP 2017 Group Theory for QM 2018 AMOP

Classical Mechanics with a Bang!

Modern Physics and its Classical Foundations

Frame Transformation Relations And Multipole Transitions In Symmetric Polyatomic Molecules - RMP-1978

Rotational energy surfaces and high- J eigenvalue structure of polyatomic molecules - Harter - Patterson - 1984

Galloping waves and their relativistic properties - ajp-1985-Harter

Asymptotic eigensolutions of fourth and sixth rank octahedral tensor operators - Harter-Patterson-JMP-1979

Nuclear spin weights and gas phase spectral structure of 12C60 and 13C60 buckminsterfullerene -Harter-Reimer-Cpl-1992 - (Alt1, Alt2 Erratum)

Theory of hyperfine and superfine levels in symmetric polyatomic molecules.

I) Trigonal and tetrahedral molecules: Elementary spin-1/2 cases in vibronic ground states - PRA-1979-Harter-Patterson (Alt scan)

II) <u>Elementary cases in octahedral hexafluoride molecules - Harter-PRA-1981 (Alt scan)</u>

Rotation-vibration scalar coupling zeta coefficients and spectroscopic band shapes of buckminsterfullerene - Weeks-Harter-CPL-1991 (Alt scan) Fullerene symmetry reduction and rotational level fine structure/ the Buckyball isotopomer 12C 13C59 - jcp-Reimer-Harter-1997 (HiRez) Molecular Eigensolution Symmetry Analysis and Fine Structure - IJMS-harter-mitchell-2013

Rotation-vibration spectra of icosahedral molecules.

I) Icosahedral symmetry analysis and fine structure - harter-weeks-jcp-1989

II) Icosahedral symmetry, vibrational eigenfrequencies, and normal modes of buckminsterfullerene - weeks-harter-jcp-1989

III) Half-integral angular momentum - harter-reimer-jcp-1991

QTCA Unit 10 Ch 30 - 2013

AMOP Ch 32 Molecular Symmetry and Dynamics - 2019

AMOP Ch 0 Space-Time Symmetry - 2019

RESONANCE AND REVIVALS

I) QUANTUM ROTOR AND INFINITE-WELL DYNAMICS - ISMSLi2012 (Talk) OSU knowledge Bank

- II) Comparing Half-integer Spin and Integer Spin Alva-ISMS-Ohio2013-R777 (Talks)
- III) Quantum Resonant Beats and Revivals in the Morse Oscillators and Rotors (2013-Li-Diss)

Rovibrational Spectral Fine Structure Of Icosahedral Molecules - Cpl 1986 (Alt Scan)

Gas Phase Level Structure of C60 Buckyball and Derivatives Exhibiting Broken Icosahedral Symmetry - reimer-diss-1996 Resonance and Revivals in Quantum Rotors - Comparing Half-integer Spin and Integer Spin - Alva-ISMS-Ohio2013-R777 (Talk) Quantum Revivals of Morse Oscillators and Farey-Ford Geometry - Li-Harter-cpl-2013 Wave Node Dynamics and Revival Symmetry in Quantum Rotors - harter - jms - 2001

William G. Harter - University of Arkansas

Rotational Energy Surfaces (RES) and Lab vs Body molecular rotor states, levels, and spectra: Body symmetry *O* of octahedral rotors $\mathbf{H}=\mathbf{BJ}^2+\Sigma t_{kq}\mathbf{T}_q^k$

RES and Multipole \mathbf{T}_{q^k} tensor expansions RES and matrix representation of multipole \mathbf{T}_{q^k} tensor **H**-expansions What tensors go in tetrahedral (T_d) or octahedral (O_h) free-rotor Hamiltonia **H**? 4th-rank [k=4] multipole terms O_h -symmetric function and O_h operator $\mathbf{T}^{\{4\}}$ RES and matrix irreps of O_h multipole $\mathbf{T}_q^{[4]}$ and $\mathbf{T}_q^{[2,2]}$ tensor **H**-expansions Matrix D^{T_1} , D^{T_2} , D^E , D^{A_2} , and D^{A_1} , irreducible representations (irreps) of O Finding O_h group products. Examples: $\mathbf{R}_z \mathbf{1} = \mathbf{R}_z$ or $\mathbf{R}_z \mathbf{i}_6 = \mathbf{r}_3$ or $\mathbf{i}_6 \mathbf{R}_z = \mathbf{r}_1$ D^{T_1} irreps derived visually using unit vectors {**x**,**y**,**z**} of *p*-wave $D^{\ell=1}$ {x,y,z} D^{T_2} irreps derived from standing d-wave $D^{\ell=2}{x,y,z}$. D^E irrep tensor basis Summary of irrep characters χ^{T_1} , χ^{T_2} , χ^E , χ^{A_2} , and χ^{A_1} of O $R(3) \supset O$ character analysis. $O \supset D_4 \supset D_2$ and $O \supset D_4 \supset C_4$ level correlations s Applications of Group \supset Sub-group correlation Comparing Octahedral and Asymmetric rotor states and level clusters at high J

$$\begin{aligned} RES \ and \ Multipole \ \mathbf{T}_{q}^{k} \ tensor \ expansions \\ \frac{2^{k}-pole \ expansion \ of \ an \ N-by-N \ matrix \ \mathbf{H}}{2-by-2 \ case: \ \mathbf{H} = \begin{pmatrix} A & B-iC \\ B+iC & D \end{pmatrix} = \frac{A+D}{2} \begin{pmatrix} I & 0 \\ 0 & I \end{pmatrix}^{+B} \begin{pmatrix} 0 & I \\ I & 0 \end{pmatrix}^{+C} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}^{+\frac{A-D}{2}} \begin{pmatrix} I & 0 \\ 0 & -I \end{pmatrix} \\ &= \frac{A+D}{2} \ \mathbf{1} \ +B \ \mathbf{G}_{x} \ +C \ \mathbf{G}_{y} \ +\frac{A-D}{2} \ \mathbf{G}_{z} \\ &= \frac{A+D}{2} \ \mathbf{1} \ +B \ \mathbf{G}_{x} \ +C \ \mathbf{G}_{y} \ +\frac{A-D}{2} \ \mathbf{G}_{z} \\ &= \frac{A+D}{2} \ \mathbf{T}_{0}^{\mathbf{0}} + (B-iC) \mathbf{T}_{1}^{1} + (B+iC) \mathbf{T}_{-1}^{1} \ +\frac{A-D}{2} \ \mathbf{T}_{0}^{1} \\ &= \begin{pmatrix} 0 & I \\ 0 & 0 \end{pmatrix} \ \begin{pmatrix} 0 & I \\ 0 & 0 \end{pmatrix} \ \begin{pmatrix} 0 & 0 \\ I & 0 \end{pmatrix} \end{aligned}$$

$$\begin{aligned} & \underbrace{2^{k}\text{-pole expansion of an N-by-N matrix H}}_{2\text{-by-2 case: }\mathbf{H}=\begin{pmatrix} A & B-iC \\ B+iC & D \end{pmatrix} = \frac{A+D}{2} \begin{pmatrix} I & 0 \\ 0 & I \end{pmatrix} + B \begin{pmatrix} 0 & I \\ I & 0 \end{pmatrix} + C \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} + \frac{A-D}{2} \begin{pmatrix} I & 0 \\ 0 & -I \end{pmatrix}} \\ & = \frac{A+D}{2} \mathbf{1} + B \mathbf{O}_{x} + C \mathbf{O}_{y} + \frac{A-D}{2} \mathbf{O}_{z} \\ & = \frac{A+D}{2} \mathbf{1} + B \mathbf{O}_{x} + C \mathbf{O}_{y} + \frac{A-D}{2} \mathbf{O}_{z} \\ & = \frac{A+D}{2} \mathbf{1} + B \mathbf{O}_{x} + C \mathbf{O}_{y} + \frac{A-D}{2} \mathbf{O}_{z} \\ & = \frac{A+D}{2} \mathbf{1} + B \mathbf{O}_{x} + C \mathbf{O}_{y} + \frac{A-D}{2} \mathbf{O}_{z} \\ & = \frac{A+D}{2} \mathbf{1} + B \mathbf{O}_{x} + C \mathbf{O}_{y} + \frac{A-D}{2} \mathbf{O}_{z} \\ & = \frac{A+D}{2} \mathbf{1} + B \mathbf{O}_{x} + C \mathbf{O}_{y} + \frac{A-D}{2} \mathbf{O}_{z} \\ & = \frac{A+D}{2} \mathbf{1} + B \mathbf{O}_{x} + C \mathbf{O}_{y} + \frac{A-D}{2} \mathbf{O}_{z} \\ & = \frac{A+D}{2} \mathbf{1} + B \mathbf{O}_{x} + C \mathbf{O}_{y} + \frac{A-D}{2} \mathbf{O}_{z} \\ & = \frac{A+D}{2} \mathbf{1} + B \mathbf{O}_{x} + C \mathbf{O}_{y} + \frac{A-D}{2} \mathbf{O}_{z} \\ & = \frac{A+D}{2} \mathbf{1} + B \mathbf{O}_{x} + C \mathbf{O}_{y} + \frac{A-D}{2} \mathbf{O}_{z} \\ & = \frac{A+D}{2} \mathbf{1} + B \mathbf{O}_{x} + C \mathbf{O}_{y} + \frac{A-D}{2} \mathbf{O}_{z} \\ & = \frac{A+D}{2} \mathbf{1} + B \mathbf{O}_{x} + C \mathbf{O}_{y} + \frac{A-D}{2} \mathbf{O}_{z} \\ & = \frac{A+D}{2} \mathbf{1} + B \mathbf{O}_{x} + C \mathbf{O}_{y} + \frac{A-D}{2} \mathbf{O}_{z} \\ & = \frac{A+D}{2} \mathbf{O}_{0} + (B-iC) \mathbf{O}_{1} + (B+iC) \mathbf{O}_{x} \\ & = \frac{A-D}{2} \mathbf{O}_{1} + \frac{A-D}{2} \mathbf{O}_{x} \\ & = \frac{A+D}{2} \mathbf{O}_{0} + (B-iC) \mathbf{O}_{x} + \frac{A-D}{2} \mathbf{O}_{x} \\ & = \frac{A+D}{2} \mathbf{O}_{0} + (B-iC) \mathbf{O}_{x} + \frac{A-D}{2} \mathbf{O}_{x} \\ & = \frac{A+D}{2} \mathbf{O}_{0} + (B-iC) \mathbf{O}_{x} + \frac{A-D}{2} \mathbf{O}_{x} \\ & = \frac{A+D}{2} \mathbf{O}_{0} + (B-iC) \mathbf{O}_{x} + \frac{A-D}{2} \mathbf{O}_{x} \\ & = \frac{A+D}{2} \mathbf{O}_{0} + (B-iC) \mathbf{O}_{x} + \frac{A-D}{2} \mathbf{O}_{x} \\ & = \frac{A+D}{2} \mathbf{O}_{x} + \frac{A-D}{2} \mathbf{O}_{x} + \frac{A-D}{2} \mathbf{O}_{x} \\ & = \frac{A+D}{2} \mathbf{O}_{x} + \frac{A-D}{2} \mathbf{O}_{x} + \frac{A-D}{2} \mathbf{O}_{x} \\ & = \frac{A+D}{2} \mathbf{O}_{x} + \frac{A-D}{2} \mathbf{O}_{x} + \frac{A-D}{2} \mathbf{O}_{x} \\ & = \frac{A+D}{2} \mathbf{O}_{x} + \frac{A-D}{2} \mathbf{O}_{x} + \frac{A-D}{2} \mathbf{O}_{x} \\ & = \frac{A+D}{2} \mathbf{O}_{x} + \frac{A-D}{2} \mathbf{O}_{x} + \frac{A-D}{2} \mathbf{O}_{x} + \frac{A-D}{2} \mathbf{O}_{x} \\ & = \frac{A+D}{2} \mathbf{O}_{x} + \frac{A-D}{2} \mathbf{O}_{x}$$

Generalization of U(2) spinor analysis to U(3) \subset U(4) \subset U(5)... (Introduced in this and following lectures)

3-by-3 case:
$$\mathbf{H} = \begin{pmatrix} H_{11} H_{12} H_{13} \\ H_{21} H_{22} H_{23} \\ H_{31} H_{32} H_{33} \end{pmatrix} = B \mathbf{T}_{0}^{0} + \dots + t_{2} \mathbf{T}_{2}^{2} + \dots$$

$$\begin{array}{c}
 U(3) \text{ generators } (spin J=I) \\
 u_{+2}^{2} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \quad u_{+1}^{2} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}^{\frac{1}{2}} \quad u_{0}^{2} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 0 \end{pmatrix}^{\frac{1}{2}} \quad u_{-1}^{2} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}^{\frac{1}{2}} \quad u_{-1}^{2} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}^{\frac{1}{2}} \quad u_{-1}^{2} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}^{\frac{1}{2}} \quad u_{-1}^{2} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}^{\frac{1}{2}} \quad u_{-1}^{2} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}^{\frac{1}{2}} \quad u_{-1}^{2} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}^{\frac{1}{2}} \quad u_{-1}^{2} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}^{\frac{1}{2}} \quad u_{-1}^{2} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}^{\frac{1}{2}} \quad u_{-1}^{2} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}^{\frac{1}{2}} \quad u_{-1}^{2} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}^{\frac{1}{2}} \quad u_{-1}^{2} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}^{\frac{1}{2}} \quad u_{-1}^{2} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}^{\frac{1}{2}} \quad u_{-1}^{2} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}^{\frac{1}{2}} \quad u_{-1}^{2} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}^{\frac{1}{2}} \quad u_{-1}^{2} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}^{\frac{1}{2}} \quad u_{-1}^{2} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}^{\frac{1}{2}} \quad u_{-1}^{2} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}^{\frac{1}{2}} \quad u_{-1}^{2} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}^{\frac{1}{2}} \quad u_{-1}^{2} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}^{\frac{1}{2}} \quad u_{-1}^{2} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}^{\frac{1}{2}} \quad u_{-1}^{2} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}^{\frac{1}{2}} \quad u_{-1}^{2} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}^{\frac{1}{2}} \quad u_{-1}^{2} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}^{\frac{1}{2}} \quad u_{-1}^{2} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}^{\frac{1}{2}} \quad u_{-1}^{2} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}^{\frac{1}{2}} \quad u_{-1}^{2} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}^{\frac{1}{2}} \quad u_{-1}^{2} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}^{\frac{1}{2}} \quad u_{-1}^{2} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}^{\frac{1}{2} \quad u_{-1}^{2} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}^{\frac{1}{2$$

William G. Harter - University of Arkansas

Rotational Energy Surfaces (RES) and Lab vs Body molecular rotor states, levels, and spectra: Body symmetry *O* of octahedral rotors $\mathbf{H}=\mathbf{BJ}^2+\Sigma t_{kq}\mathbf{T}_q^k$

RES and Multipole \mathbf{T}_{q^k} *tensor expansions*

RES and matrix representation of multipole \mathbf{T}_{q^k} *tensor* \mathbf{H} *-expansions*

What tensors go in tetrahedral (T_d) or octahedral (O_h) free-rotor Hamiltonia **H**? 4^{th} -rank [k=4] multipole terms

 O_h -symmetric function and O_h operator $\mathbf{T}^{\{4\}}$

RES and matrix irreps of O_h multipole $T_q^{[4]}$ and $T_q^{[2,2]}$ tensor H-expansions Matrix D^{T1} , D^{T2} , D^E , D^{42} , and D^{41} , irreducible representations (irreps) of OFinding O_h group products. Examples: $R_2 1 = R_z$ or $R_2 i_6 = r_3$ or $i_6 R_z = r_1$ D^{T1} irreps derived visually using unit vectors $\{x,y,z\}$ of p-wave $D^{\ell=1}_{\{x,y,z\}}$ D^{T2} irreps derived from standing d-wave $D^{\ell=2}_{\{x,y,z\}}$. D^E irrep tensor basis Summary of irrep characters χ^{T1} , χ^{T2} , χ^E , χ^{A2} , and χ^{A1} of O $R(3) \supset O$ character analysis. $O \supset D_4 \supset D_2$ and $O \supset D_4 \supset C_4$ level correlations s Applications of Group \supset Sub-group correlation

Comparing Octahedral and Asymmetric rotor states and level clusters at high J

What tensors go in tetrahedral (T_d) or octahedral (O_h) free-rotor Hamiltonia H?

$$\mathbf{H} = B[(\mathbf{J}_x)^2 + (\mathbf{J}_y)^2 + (\mathbf{J}_z)^2] + t_0^{[3]}[(\mathbf{J}_x)^3 + (\mathbf{J}_y)^3 + (\mathbf{J}_z)^3] + t_0^{[4]}[(\mathbf{J}_x)^4 + (\mathbf{J}_y)^4 + (\mathbf{J}_z)^4] + \dots$$

spherical rotor 2^{nd} rank kinetic term with B=1/2I

Odd k=3 *is anti-symmetric to time reversal* ($J_q = -J_x$) 4^{th} rank centrifugal distortion term for T_d or O_h symmetric rotor

$$X_{q}^{k} = r^{k} D_{q,0}^{k^{*}} = \sqrt{\frac{4\pi}{2k+1}} r^{k} Y_{q}^{k}$$

What tensors go in tetrahedral (T_d) or octahedral (O_h) free-rotor Hamiltonia H?

$$\mathbf{H} = B[(\mathbf{J}_x)^2 + (\mathbf{J}_y)^2 + (\mathbf{J}_z)^2] + t_0^{[3]}[(\mathbf{J}_x)^3 + (\mathbf{J}_y)^3 + (\mathbf{J}_z)^3] + t_0^{[4]}[(\mathbf{J}_x)^4 + (\mathbf{J}_y)^4 + (\mathbf{J}_z)^4] + \dots$$

spherical rotor $2^{nd}rank$ Odd k=3 is anti-symmetric 4^{th} rank centrifugal distortion kinetic term with B=1/2I to time reversal ($J_q = -J_x$) term for T_d or O_h symmetric rotor

For now we reject the forbidden [k=3] term and rewrite the 4th-rank [k=4] term.

$$X_{q}^{k} = r^{k} D_{q,0}^{k^{*}} = \sqrt{\frac{4\pi}{2k+1}} r^{k} Y_{q}^{k}$$

William G. Harter - University of Arkansas

Rotational Energy Surfaces (RES) and Lab vs Body molecular rotor states, levels, and spectra: Body symmetry *O* of octahedral rotors $\mathbf{H}=\mathbf{BJ}^2+\Sigma t_{kq}\mathbf{T}_q^k$

RES and Multipole \mathbf{T}_{q^k} *tensor expansions RES* and matrix representation of multipole \mathbf{T}_{q^k} tensor **H**-expansions What tensors go in tetrahedral (T_d) or octahedral (O_h) free-rotor Hamiltonia **H**? 4^{th} -rank [k=4] multipole terms O_h -symmetric function and O_h operator $\mathbf{T}^{\{4\}}$ RES and matrix irreps of O_h multipole $\mathbf{T}_q^{[4]}$ and $\mathbf{T}_q^{[2,2]}$ tensor **H**-expansions Matrix D^{T_1} , D^{T_2} , D^E , D^{A_2} , and D^{A_1} , irreducible representations (irreps) of O Finding O_h group products. Examples: $\mathbf{R}_z \mathbf{1} = \mathbf{R}_z$ or $\mathbf{R}_z \mathbf{i}_6 = \mathbf{r}_3$ or $\mathbf{i}_6 \mathbf{R}_z = \mathbf{r}_1$ D^{T_1} irreps derived visually using unit vectors {**x**,**y**,**z**} of *p*-wave $D^{\ell=1}$ {x,y,z} D^{T_2} irreps derived from standing d-wave $D^{\ell=2}{x,y,z}$. D^E irrep tensor basis Summary of irrep characters χ^{T_1} , χ^{T_2} , χ^E , χ^{A_2} , and χ^{A_1} of O $R(3) \supset O$ character analysis. $O \supset D_4 \supset D_2$ and $O \supset D_4 \supset C_4$ level correlations s Applications of Group \supset Sub-group correlation Comparing Octahedral and Asymmetric rotor states and level clusters at high J

What tensors go in tetrahedral (T_d) or octahedral (O_h) free-rotor Hamiltonia H?

$$\mathbf{H} = B[(\mathbf{J}_x)^2 + (\mathbf{J}_y)^2 + (\mathbf{J}_z)^2] + t_0^{[3]}[(\mathbf{J}_x)^3 + (\mathbf{J}_y)^3 + (\mathbf{J}_z)^3] + t_0^{[4]}[(\mathbf{J}_x)^4 + (\mathbf{J}_y)^4 + (\mathbf{J}_z)^4] + \dots$$

spherical rotor $2^{nd}rank$ Odd k=3 is anti-symmetric 4^{th} rank centrifugal distortionkinetic term with B=1/2Ito time reversal $(\mathbf{J}_q=-\mathbf{J}_x)$ term for T_d or O_h symmetric rotor

For now we reject the forbidden [k=3] term and rewrite the 4th-rank [k=4] term. 4th-rank multipole* functions $X_q^{[4]}(x,y,z)$: (listed in <u>PSDS Apps F p793</u>)

$$\begin{aligned} X_4^{\{4\}} &= \sqrt{\frac{35}{128}} (x+iy)^4 \\ X_3^{\{4\}} &= \frac{-\sqrt{35}}{4} z (x+iy)^3 \\ X_2^{\{4\}} &= \sqrt{\frac{5}{32}} (7z^2 - r^2) (x+iy)^2 \\ X_1^{\{4\}} &= -\sqrt{\frac{5}{16}} (7z^3 - 3zr^2) (x+iy) \\ X_0^{\{4\}} &= -\sqrt{\frac{1}{64}} (35z^4 - 30z^2r^2 + 3r^4) \\ X_{-1}^{\{4\}} &= \sqrt{\frac{5}{16}} (7z^3 - 3zr^2) (x-iy) \\ X_{-2}^{\{4\}} &= \sqrt{\frac{5}{32}} (7z^2 - r^2) (x-iy)^2 \\ X_{-3}^{\{4\}} &= \frac{\sqrt{35}}{4} z (x-iy)^3 \\ X_{-4}^{\{4\}} &= \sqrt{\frac{35}{128}} (x-iy)^4 \end{aligned}$$

$$X_{q}^{k} = r^{k} D_{q,0}^{k^{*}} = \sqrt{\frac{4\pi}{2k+1}} r^{k} Y_{q}^{k}$$

What tensors go in tetrahedral (T_d) or octahedral (O_h) free-rotor Hamiltonia H?

$$\mathbf{H} = B[(\mathbf{J}_x)^2 + (\mathbf{J}_y)^2 + (\mathbf{J}_z)^2] + t_0^{[3]}[(\mathbf{J}_x)^3 + (\mathbf{J}_y)^3 + (\mathbf{J}_z)^3] + t_0^{[4]}[(\mathbf{J}_x)^4 + (\mathbf{J}_y)^4 + (\mathbf{J}_z)^4] + \dots$$

spherical rotor $2^{nd}rank$ Odd k=3 is anti-symmetric 4^{th} rank centrifugal distortionkinetic term with B=1/2Ito time reversal $(J_q=-J_x)$ term for T_d or O_h symmetric rotor

For now we reject the forbidden [k=3] term and rewrite the 4th-rank [k=4] term.

4th-rank multipole* functions $X_q^{[4]}(x, y, z)$: (listed in PSDS Apps F p793) Partially inverted into monomials: $X_{4}^{\{4\}} = \sqrt{\frac{35}{128}} (x + iy)^4$ $x^{4} = \frac{1}{\sqrt{70}} \left(X_{4}^{[4]} + X_{-4}^{[4]} \right) - \frac{2}{7\sqrt{10}} \left(X_{2}^{[4]} + X_{-2}^{[4]} \right) + \frac{3}{35} X_{0}^{[4]} + \frac{\sqrt{6}}{7} \left(X_{2}^{[2]} + X_{-2}^{[2]} \right) r^{2} - \frac{2}{7} X_{0}^{[2]} r^{2} + \frac{1}{5} r^{4}$ $X_{2}^{\{4\}} = \frac{-\sqrt{35}}{4} z (x + iy)^{3}$ $y^{4} = \frac{1}{\sqrt{70}} \left(X_{4}^{[4]} + X_{-4}^{[4]} \right) + \frac{2}{7\sqrt{10}} \left(X_{2}^{[4]} + X_{-2}^{[4]} \right) + \frac{3}{35} X_{0}^{[4]} - \frac{\sqrt{6}}{7} \left(X_{2}^{[2]} + X_{-2}^{[2]} \right) r^{2} - \frac{2}{7} X_{0}^{[2]} r^{2} + \frac{1}{5} r^{4}$ $X_{2}^{\{4\}} = \sqrt{\frac{5}{32}} (7z^{2} - r^{2})(x + iy)^{2}$ $z^{4} =$ $\frac{8}{35}X_0^{[4]}$ $+\frac{4}{7}X_{0}^{[2]}r^{2}+\frac{1}{5}r^{4}$ $X_{1}^{\{4\}} = -\sqrt{\frac{5}{16}}(7z^{3} - 3zr^{2})(x + iy)$ $X_0^{\{4\}} = -\sqrt{\frac{1}{64}} (35z^4 - 30z^2r^2 + 3r^4)$ $X_{-1}^{\{4\}} = \sqrt{\frac{5}{16}} (7z^3 - 3zr^2)(x - iy)$ $X_{-2}^{\{4\}} = \sqrt{\frac{5}{32}} (7z^2 - r^2) (x - iy)^2$ $X_{-3}^{\{4\}} = \frac{\sqrt{35}}{4} z (x - iy)^3$ $X_{-4}^{\{4\}} = \sqrt{\frac{35}{128}} (x - iy)^4$

$$X_{q}^{k} = r^{k} D_{q,0}^{k^{*}} = \sqrt{\frac{4\pi}{2k+1}} r^{k} Y_{q}^{k}$$

What tensors go in tetrahedral (T_d) or octahedral (O_h) free-rotor Hamiltonia H?

$$\mathbf{H} = B[(\mathbf{J}_x)^2 + (\mathbf{J}_y)^2 + (\mathbf{J}_z)^2] + t_0^{[3]}[(\mathbf{J}_x)^3 + (\mathbf{J}_y)^3 + (\mathbf{J}_z)^3] + t_0^{[4]}[(\mathbf{J}_x)^4 + (\mathbf{J}_y)^4 + (\mathbf{J}_z)^4] + \dots$$

spherical rotor $2^{nd}rank$ Odd k=3 is anti-symmetric 4^{th} rank centrifugal distortionkinetic term with B=1/2Ito time reversal $(J_q=-J_x)$ term for T_d or O_h symmetric rotor

For now we reject the forbidden [k=3] term and rewrite the 4th-rank [k=4] term.

4th-rank multipole* functions $X_q^{[4]}(x, y, z)$: (listed in PSDS Apps F p793) Partially inverted into monomials: $X_{4}^{\{4\}} = \sqrt{\frac{35}{128}} (x + iy)^4$ $x^{4} = \frac{1}{\sqrt{70}} \left(X_{4}^{[4]} + X_{-4}^{[4]} \right) - \frac{2}{7\sqrt{10}} \left(X_{2}^{[4]} + X_{-2}^{[4]} \right) + \frac{3}{35} X_{0}^{[4]} + \frac{\sqrt{6}}{7} \left(X_{2}^{[2]} + X_{-2}^{[2]} \right) r^{2} - \frac{2}{7} X_{0}^{[2]} r^{2} + \frac{1}{5} r^{4}$ $X_{2}^{\{4\}} = \frac{-\sqrt{35}}{4} z (x + iy)^{3}$ $y^{4} = \frac{1}{\sqrt{70}} \left(X_{4}^{[4]} + X_{-4}^{[4]} \right) + \frac{2}{7\sqrt{10}} \left(X_{2}^{[4]} + X_{-2}^{[4]} \right) + \frac{3}{35} X_{0}^{[4]} - \frac{\sqrt{6}}{7} \left(X_{2}^{[2]} + X_{-2}^{[2]} \right) r^{2} - \frac{2}{7} X_{0}^{[2]} r^{2} + \frac{1}{5} r^{4}$ $X_{2}^{\{4\}} = \sqrt{\frac{5}{32}} (7z^{2} - r^{2})(x + iy)^{2}$ $z^4 =$ $\frac{8}{35}X_0^{[4]}$ $+\frac{4}{7}X_0^{[2]}r^2+\frac{1}{5}r^4$ $X_{1}^{\{4\}} = -\sqrt{\frac{5}{16}} (7z^{3} - 3zr^{2})(x + iy)$ $x^{4}+y^{4}+z^{4}=\frac{2}{\sqrt{70}}(X_{4}^{[4]}+X_{-4}^{[4]})+\frac{2}{5}X_{0}^{[4]}+\frac{3}{5}r^{4}$ $X_0^{\{4\}} = -\sqrt{\frac{1}{64}} (35z^4 - 30z^2r^2 + 3r^4)$ $X_{-1}^{\{4\}} = \sqrt{\frac{5}{16}} (7z^3 - 3zr^2)(x - iy)$ $X_{-2}^{\{4\}} = \sqrt{\frac{5}{32}} (7z^2 - r^2) (x - iy)^2$ $X_{-3}^{\{4\}} = \frac{\sqrt{35}}{4} z (x - iy)^3$ $X_{-4}^{\{4\}} = \sqrt{\frac{35}{128}} (x - iy)^4$

$$X_{q}^{k} = r^{k} D_{q,0}^{k^{*}} = \sqrt{\frac{4\pi}{2k+1}} r^{k} Y_{q}^{k}$$

William G. Harter - University of Arkansas

Rotational Energy Surfaces (RES) and Lab vs Body molecular rotor states, levels, and spectra: Body symmetry *O* of octahedral rotors $\mathbf{H}=\mathbf{BJ}^2+\Sigma t_{kq}\mathbf{T}_q^k$

RES and Multipole \mathbf{T}_{q^k} *tensor expansions RES* and matrix representation of multipole \mathbf{T}_{q^k} tensor **H**-expansions What tensors go in tetrahedral (T_d) or octahedral (O_h) free-rotor Hamiltonia **H**? 4th-rank [k=4] multipole terms O_h -symmetric function and O_h operator $\mathbf{T}^{\{4\}}$ *RES and matrix irreps of* O_h *multipole* $\mathbf{T}_q^{[4]}$ *and* $\mathbf{T}_q^{[2,2]}$ *tensor* **H***-expansions* Matrix D^{T_1} , D^{T_2} , D^E , D^{A_2} , and D^{A_1} , irreducible representations (irreps) of O Finding O_h group products. Examples: $\mathbf{R}_z \mathbf{1} = \mathbf{R}_z$ or $\mathbf{R}_z \mathbf{i}_6 = \mathbf{r}_3$ or $\mathbf{i}_6 \mathbf{R}_z = \mathbf{r}_1$ D^{T_1} irreps derived visually using unit vectors {**x**,**y**,**z**} of *p*-wave $D^{\ell=1}$ {x,y,z} D^{T_2} irreps derived from standing *d*-wave $D^{\ell=2}{x,y,z}$. D^E irrep tensor basis Summary of irrep characters χ^{T_1} , χ^{T_2} , χ^E , χ^{A_2} , and χ^{A_1} of O $R(3) \supset O$ character analysis. $O \supset D_4 \supset D_2$ and $O \supset D_4 \supset C_4$ level correlations s Applications of Group \supset Sub-group correlation Comparing Octahedral and Asymmetric rotor states and level clusters at high J

What tensors go in tetrahedral (T_d) or octahedral (O_h) free-rotor Hamiltonia H?

$$\mathbf{H} = B[(\mathbf{J}_x)^2 + (\mathbf{J}_y)^2 + (\mathbf{J}_z)^2] + t_0^{[3]}[(\mathbf{J}_x)^3 + (\mathbf{J}_y)^3 + (\mathbf{J}_z)^3] + t_0^{[4]}[(\mathbf{J}_x)^4 + (\mathbf{J}_y)^4 + (\mathbf{J}_z)^4] + \dots$$

spherical rotor $2^{nd}rank$ Odd k=3 is anti-symmetric 4^{th} rank centrifugal distortionkinetic term with B=1/2Ito time reversal $(J_q=-J_x)$ term for T_d or O_h symmetric rotor

For now we reject the forbidden [k=3] term and rewrite the 4th-rank [k=4] term.

4th-rank multipole* functions $X_q^{[4]}(x, y, z)$: (listed in <u>PSDS Apps F p793</u>) Partially inverted into monomials: $X_{4}^{\{4\}} = \sqrt{\frac{35}{128}} (x + iy)^4$ $x^{4} = \frac{1}{\sqrt{70}} \left(X_{4}^{[4]} + X_{-4}^{[4]} \right) - \frac{2}{7\sqrt{10}} \left(X_{2}^{[4]} + X_{-2}^{[4]} \right) + \frac{3}{35} X_{0}^{[4]} + \frac{\sqrt{6}}{7} \left(X_{2}^{[2]} + X_{-2}^{[2]} \right) r^{2} - \frac{2}{7} X_{0}^{[2]} r^{2} + \frac{1}{5} r^{4}$ $X_{2}^{\{4\}} = \frac{-\sqrt{35}}{4} z (x + iy)^{3}$ $y^{4} = \frac{1}{\sqrt{70}} \left(X_{4}^{[4]} + X_{-4}^{[4]} \right) + \frac{2}{7\sqrt{10}} \left(X_{2}^{[4]} + X_{-2}^{[4]} \right) + \frac{3}{35} X_{0}^{[4]} - \frac{\sqrt{6}}{7} \left(X_{2}^{[2]} + X_{-2}^{[2]} \right) r^{2} - \frac{2}{7} X_{0}^{[2]} r^{2} + \frac{1}{5} r^{4}$ $X_{2}^{\{4\}} = \sqrt{\frac{5}{32}} (7z^{2} - r^{2})(x + iy)^{2}$ $z^4 =$ $\frac{8}{35}X_0^{[4]}$ $+\frac{4}{7}X_0^{[2]}r^2+\frac{1}{5}r^4$ $X_{1}^{\{4\}} = -\sqrt{\frac{5}{16}}(7z^{3} - 3zr^{2})(x + iy)$ $x^{4}+y^{4}+z^{4}=\frac{2}{\sqrt{70}}(X_{4}^{[4]}+X_{-4}^{[4]})+\frac{2}{5}X_{0}^{[4]}+\frac{3}{5}r^{4}$ $X_0^{\{4\}} = -\sqrt{\frac{1}{64}} (35z^4 - 30z^2r^2 + 3r^4)$ Sum gives O_h -symmetric function and O_h operator $T^{\{4\}}$ $X_{-1}^{\{4\}} = \sqrt{\frac{5}{16}} (7z^3 - 3zr^2)(x - iy)$

$$\mathbf{T}^{\{4\}} = \mathbf{J}_{x}^{4} + \mathbf{J}_{y}^{4} + \mathbf{J}_{z}^{4} = \frac{2}{\sqrt{70}} (\mathbf{T}_{4}^{[4]} + \mathbf{T}_{-4}^{[4]}) + \frac{2}{5} \mathbf{T}_{0}^{[4]} + \frac{3}{5} (\mathbf{J} \cdot \mathbf{J})^{2}$$

*Multipole function D-definition Class 9 p93

 $X_{-2}^{\{4\}} = \sqrt{\frac{5}{32}} (7z^2 - r^2) (x - iy)^2$

 $X_{-3}^{\{4\}} = \frac{\sqrt{35}}{4} z (x - iy)^3$

 $X_{-4}^{\{4\}} = \sqrt{\frac{35}{128}} (x - iy)^4$

$$X_{q}^{k} = r^{k} D_{q,0}^{k^{*}} = \sqrt{\frac{4\pi}{2k+1}} r^{k} Y_{q}^{k}$$

William G. Harter - University of Arkansas

Rotational Energy Surfaces (RES) and Lab vs Body molecular rotor states, levels, and spectra: Body symmetry *O* of octahedral rotors $\mathbf{H}=\mathbf{BJ}^2+\Sigma t_{kq}\mathbf{T}_q^k$

RES and Multipole T_q^k tensor expansions RES and matrix representation of multipole T_q^k tensor H-expansions What tensors go in tetrahedral (T_d) or octahedral (O_h) free-rotor Hamiltonia H ? 4^{th} -rank [k=4] multipole terms O_h -symmetric function and O_h operator $T^{\{4\}}$ RES and matrix irreps of O_h multipole $T_q^{[4]}$ and $T_q^{[2,2]}$ tensor H-expansions Matrix D^{T_1} , D^{T_2} , D^E , D^{4_2} , and D^{4_1} , irreducible representations (irreps) of OFinding O_h group products. Examples: $R_e1=R_e$ or $R_{e16}=r_3$ or $i_6R_e=r_1$ D^{T_1} irreps derived visually using unit vectors $\{x,y,z\}$ of p-wave $D^{t-1}_{\{x,y,z\}}$ D^{T_2} irreps derived from standing d-wave $D^{t=2}_{\{x,y,z\}}$. D^E irrep tensor basis Summary of irrep characters χ^{T_1} , χ^{T_2} , χ^E , χ^{4_2} , and χ^{4_1} of O

 $R(3) \supset O$ character analysis. $O \supset D_4 \supset D_2$ and $O \supset D_4 \supset C_4$ level correlations s Applications of Group \supset Sub-group correlation

Comparing Octahedral and Asymmetric rotor states and level clusters at high J

RES and matrix irreps of O_h multipole \mathbf{T}_q^k tensor **H**-expansions Alternative 4th-rank O_h tensors found by squaring r^2 : $\frac{r^4}{x^2} = \frac{x^2}{x^4} \frac{y^2}{x^2y^2} \frac{z^2}{x^2z^2}$ A second rank-4 tensor (dependent on r^4 and first one) $x^2y^2 + x^2z^2 + y^2z^2 = r^4 - \frac{1}{2}(x^4 + y^4 + z^4)$ $r^4 = x^4 + y^4 + z^4 + 2(x^2y^2 + x^2z^2 + y^2z^2)$ RES and matrix irreps of O_h multipole \mathbf{T}_q^k tensor \mathbf{H} -expansions Alternative 4th-rank O_h tensors found by squaring r^2 : $\frac{r^4}{x^2} = \frac{x^2}{x^4} \frac{y^2}{x^2y^2} \frac{z^2}{x^2z^2}$ A second rank-4 tensor (dependent on r^4 and first one) $\frac{y^2}{z^2} = \frac{y^2 x^2}{z^2 x^2} \frac{y^2 x^2 z^2}{z^2 y^2} \frac{z^4}{z^4}$ $x^2y^2 + x^2z^2 + y^2z^2 = r^4 - \frac{1}{2}(x^4 + y^4 + z^4)$ $r^4 = x^4 + y^4 + z^4 + 2(x^2y^2 + x^2z^2 + y^2z^2)$ Operator version: $\mathbf{T}^{[2\cdot2]} = (\mathbf{J}_x)^2 \cdot (\mathbf{J}_y)^2 + (\mathbf{J}_x)^2 \cdot (\mathbf{J}_z)^2 + (\mathbf{J}_y)^2 \cdot (\mathbf{J}_z)^2$ is not so simply related to: $\mathbf{T}^{[4]} = (\mathbf{J}_x)^4 + (\mathbf{J}_x)^4 + (\mathbf{J}_y)^4$ since $(\mathbf{J}_x)^2, (\mathbf{J}_y)^2$, and $(\mathbf{J}_z)^2$ do not commute.

For semi-classical RES approximations commutation is not an issue.

RES and matrix irreps of O_h multipole T_{qk} tensor H-expansions Alternative 4th-rank O_h tensors found by squaring r²: $\frac{r^4}{x^2} = \frac{x^2}{x^4} \frac{y^2}{x^2y^2} \frac{z^2}{x^2z^2}$ A second rank-4 tensor (dependent on r⁴ and first one) $\frac{y^2}{z^2} \frac{y^2x^2}{z^2x^2} \frac{y^4}{z^2y^2} \frac{y^2z^2}{z^4}$ $x^{2}y^{2} + x^{2}z^{2} + y^{2}z^{2} = r^{4} - \frac{1}{2}(x^{4} + y^{4} + z^{4}) \qquad r^{4} = x^{4} + y^{4} + z^{4} + 2(x^{2}y^{2} + x^{2}z^{2} + y^{2}z^{2})$ Operator version: $\mathbf{T}^{[2\cdot 2]} = (\mathbf{J}_x)^2 \cdot (\mathbf{J}_v)^2 + (\mathbf{J}_x)^2 \cdot (\mathbf{J}_z)^2 + (\mathbf{J}_v)^2 \cdot (\mathbf{J}_z)^2$ is not so simply related to: $\mathbf{T}^{[4]} = (\mathbf{J}_x)^4 + (\mathbf{J}_y)^4 \text{ since } (\mathbf{J}_x)^2, (\mathbf{J}_y)^2, \text{ and } (\mathbf{J}_z)^2 \text{ do not commute.}$

For semi-classical RES approximations commutation is not an issue. Instead, we simply plug in the J-coordinates ($J_x=|J|\sin\beta\cos\gamma$, $J_y=|J|\sin\beta\sin\gamma$, $J_z=|J|\cos\beta$) into Hamiltonian **H**(**J**). For **H**(**J**) = $BJ^2+t^{[4]}(J_x^4+J_x^4+J_y^4)$ plot RES: $E=B|J|^2+t^{[4]}|J|^4(\sin^4\beta\cos^4\gamma+\sin^4\beta\sin^4\gamma+\cos^4\beta)$. RES and matrix irreps of O_h multipole \mathbf{T}_q^k tensor \mathbf{H} -expansions Alternative 4th-rank O_h tensors found by squaring r^2 : $\frac{r^4}{x^2} = \frac{x^2}{x^4} \frac{y^2}{x^2y^2} \frac{z^2}{x^2z^2}$ A second rank-4 tensor (dependent on r^4 and first one) $\frac{y^2}{z^2} = \frac{y^2x^2}{z^2x^2} \frac{y^2y^2}{z^2y^2} \frac{z^4}{z^4}$ $x^2y^2 + x^2z^2 + y^2z^2 = r^4 - \frac{1}{2}(x^4 + y^4 + z^4)$ $r^4 = x^4 + y^4 + z^4 + 2(x^2y^2 + x^2z^2 + y^2z^2)$ Operator version: $\mathbf{T}^{[2\cdot2]} = (\mathbf{J}_x)^2 \cdot (\mathbf{J}_y)^2 + (\mathbf{J}_x)^2 \cdot (\mathbf{J}_z)^2 + (\mathbf{J}_y)^2 \cdot (\mathbf{J}_z)^2$ is not so simply related to: $\mathbf{T}^{[4]} = (\mathbf{J}_x)^4 + (\mathbf{J}_x)^4 + (\mathbf{J}_y)^4$ since $(\mathbf{J}_x)^2, (\mathbf{J}_y)^2$, and $(\mathbf{J}_z)^2$ do not commute.

For semi-classical RES approximations commutation is not an issue. Instead, we simply plug in the J-coordinates ($J_x=|J|\sin\beta\cos\gamma$, $J_y=|J|\sin\beta\sin\gamma$, $J_z=|J|\cos\beta$) into Hamiltonian H(J). For H(J) = $BJ^2+t^{[4]}(J_x^4+J_x^4+J_y^4)$ plot RES: $E=B|J|^2+t^{[4]}|J|^4(\sin^4\beta\cos^4\gamma+\sin^4\beta\sin^4\gamma+\cos^4\beta)$.

> $E(\beta, \gamma)$ plotted radially for fixed $|\mathbf{J}|=J=30$

RES and matrix irreps of O_h multipole T_q^k tensor H-expansions Alternative 4th-rank O_h tensors found by squaring r^2 : $r^4 = \begin{vmatrix} x^2 & y^2 & z^2 \\ \hline x^2 & x^4 & x^2y^2 & x^2z^2 \end{vmatrix}$ A second rank-4 tensor (dependent on r^4 and first one) $x^{2}y^{2} + x^{2}z^{2} + y^{2}z^{2} = r^{4} - \frac{1}{2}(x^{4} + y^{4} + z^{4}) \qquad r^{4} = x^{4} + y^{4} + z^{4} + 2(x^{2}y^{2} + x^{2}z^{2} + y^{2}z^{2})$ Operator version: $\mathbf{T}^{[2\cdot 2]} = (\mathbf{J}_x)^2 \cdot (\mathbf{J}_y)^2 + (\mathbf{J}_x)^2 \cdot (\mathbf{J}_z)^2 + (\mathbf{J}_y)^2 \cdot (\mathbf{J}_z)^2$ is not so simply related to: $\mathbf{T}^{[4]} = (\mathbf{J}_x)^4 + (\mathbf{J}_y)^4 \text{ since } (\mathbf{J}_x)^2, (\mathbf{J}_y)^2, \text{ and } (\mathbf{J}_z)^2 \text{ do not commute.}$ For semi-classical RES approximations commutation is not an issue. Instead, we simply plug in the J-coordinates ($J_x=|J|\sin\beta\cos\gamma$, $J_y=|J|\sin\beta\sin\gamma$, $J_z=|J|\cos\beta$) into Hamiltonian H(J). For $\mathbf{H}(\mathbf{J}) = B\mathbf{J}^2 + t^{[4]}(\mathbf{J}_x^4 + \mathbf{J}_x^4 + \mathbf{J}_y^4)$ plot RES: For $\mathbf{H}(\mathbf{J}) = B\mathbf{J}^2 + t^{[22]}(\mathbf{J}_x^2 \mathbf{J}_y^2 + \mathbf{J}_x^2 \mathbf{J}_z^2 + \mathbf{J}_y^2 \mathbf{J}_z^2)$ plot RES: $E = B|\mathbf{J}|^2 + t^{[4]}|\mathbf{J}|^4(\sin^4\beta\cos^4\gamma + \sin^4\beta\sin^4\gamma + \cos^4\beta). \qquad E = B|\mathbf{J}|^2 + t^{[22]}|\mathbf{J}|^4(\sin^4\beta\cos^2\gamma\sin^2\gamma + \sin^2\beta\cos^2\beta).$ $-\Theta_{30}^{30}$ J-cone Θ_{30}^{30} J-cone $E(\beta, \gamma)$ plotted radially for fixed $|\mathbf{J}| = J = 30$

William G. Harter - University of Arkansas

Rotational Energy Surfaces (RES) and Lab vs Body molecular rotor states, levels, and spectra: Body symmetry *O* of octahedral rotors $\mathbf{H}=\mathbf{BJ}^2+\Sigma t_{kq}\mathbf{T}_q^k$

RES and Multipole $\mathbf{T}_{q^{k}}$ tensor expansions RES and matrix representation of multipole $\mathbf{T}_{q^{k}}$ tensor **H**-expansions What tensors go in tetrahedral (T_{d}) or octahedral (O_{h}) free-rotor Hamiltonia **H** ? 4^{th} -rank [k=4] multipole terms

 O_h -symmetric function and O_h operator $\mathbf{T}^{\{4\}}$

RES and matrix irreps of O_h multipole $T_q^{[4]}$ and $T_q^{[2,2]}$ tensor H-expansions Matrix D^{T1} , D^{T2} , D^E , D^{A2} , and D^{A1} , irreducible representations (irreps) of OFinding O_h group products. Examples: $R_z 1 = R_z$ or $R_z i_6 = r_3$ or $i_6 R_z = r_1$ D^{T1} irreps derived visually using unit vectors $\{x,y,z\}$ of p-wave $D^{\ell=1}_{\{x,y,z\}}$ D^{T2} irreps derived from standing d-wave $D^{\ell=2}_{\{x,y,z\}}$. D^E irrep tensor basis Summary of irrep characters χ^{T1} , χ^{T2} , χ^E , χ^{A2} , and χ^{A1} of O $R(3) \supset O$ character analysis. $O \supset D_4 \supset D_2$ and $O \supset D_4 \supset C_4$ level correlations s Applications of Group \supset Sub-group correlation

Comparing Octahedral and Asymmetric rotor states and level clusters at high J

792 APPENDIX F Here we begin to use the j=1 dipole or "vector" functions of R(3)TABLE F.1.1 R(3) Multiple Functions and SU(3) Harmonic Monomials

$I_1^{(1)} = -\frac{1}{\sqrt{2}}(x + iy)$	$x = \frac{1}{\sqrt{2}} (\mathbf{I}_{-1}^{(1)} - \mathbf{I}_{1}^{(1)})$
$I_{-1}^{(1)} = \frac{1}{\sqrt{2}}(x - iy)$	$iy = -\frac{1}{\sqrt{2}}(\mathbf{I}_{-1}^{(1)} + \mathbf{I}_{1}^{(1)})$
$I_0^{(1)} = z$	$z = I_0^{(1)}$
$\Pi_2^{(2)} = \sqrt{\frac{3}{8}} (x + iy)^2$	$x^2 = \frac{1}{6}(\Pi_2^{(2)} + \Pi_{-2}^{(2)}) - \frac{1}{3}\Pi_0^{(2)} + \frac{1}{3}r^2$
$II_1^{(2)} = -\sqrt{\frac{3}{2}} z(x + iy)$	$y^2 = -\frac{1}{6}(\Pi_2^{(2)} + \Pi_{-2}^{(2)}) - \frac{1}{3}\Pi_0^{(2)} + \frac{1}{3}r^2$
$\Pi_0^{(2)} = \frac{1}{2}(3z^2 - r^2)$	$z^2 = -\frac{2}{3}\Pi_0^{(2)} + \frac{1}{3}r^2$
$\Pi_{-1}^{(2)} = \sqrt{\frac{3}{2}} z(x - iy)$	$xy = \frac{i}{\sqrt{6}} (\Pi_2^{(2)} - \Pi_{-2}^{(2)})$
$II^{(2)}_{-2} = \sqrt{\frac{3}{8}} (x - iy)^2$	$xz = \frac{1}{\sqrt{6}} (\Pi_1^{(2)} - \Pi_{-1}^{(2)})$
	$yz = \frac{i}{\sqrt{6}} (\Pi_1^{(2)} + \Pi_{-1}^{(2)})$

j = 1 Standing p-Waves Locate x, y, z axes of +90° rotations \mathbf{R}_{x} , \mathbf{R}_{y} , \mathbf{R}_{z} ,

Finding O_h group products

j = 1 Standing p-Waves

Finding O_h group products

Locate x, y, z axes of +90° rotations \mathbf{R}_x , \mathbf{R}_y , \mathbf{R}_z , -90° rotations $\mathbf{\tilde{R}}_x$, $\mathbf{\tilde{R}}_y$, $\mathbf{\tilde{R}}_z$, 180° rotations $\mathbf{\rho}_x$, $\mathbf{\rho}_y$, $\mathbf{\rho}_z$,

j = 1 Standing p-Waves

Locate x, y, z axes of +90° rotations \mathbf{R}_x , \mathbf{R}_y , \mathbf{R}_z , -90° rotations $\mathbf{\tilde{R}}_x$, $\mathbf{\tilde{R}}_y$, $\mathbf{\tilde{R}}_z$, 180° rotations $\mathbf{\rho}_x$, $\mathbf{\rho}_y$, $\mathbf{\rho}_z$,

Finding O_h group products

Note that $\tilde{\mathbf{R}}_z$ is inverse (and third power of \mathbf{R}_z) $\tilde{\mathbf{R}}_z = (\mathbf{R}_z)^{-1} = (\mathbf{R}_z)^3$

j = 1 Standing p-Waves

Locate x, y, z axes of +90° rotations \mathbf{R}_x , \mathbf{R}_y , \mathbf{R}_z , -90° rotations $\mathbf{\tilde{R}}_x$, $\mathbf{\tilde{R}}_y$, $\mathbf{\tilde{R}}_z$, 180° rotations $\mathbf{\rho}_x$, $\mathbf{\rho}_y$, $\mathbf{\rho}_z$,

Finding O_h group products

Note that $\tilde{\mathbf{R}}_z$ is inverse (and third power of \mathbf{R}_z) $\tilde{\mathbf{R}}_z = (\mathbf{R}_z)^{-1} = (\mathbf{R}_z)^3$ Note that ρ_z is 2^{nd} power of \mathbf{R}_z (and its own inverse) $\rho_z = (\rho_z)^{-1} = (\mathbf{R}_z)^2$

j = 1 Standing p-Waves

Locate x, y, z axes of +90° rotations \mathbf{R}_x , \mathbf{R}_y , \mathbf{R}_z , -90° rotations $\mathbf{\tilde{R}}_x$, $\mathbf{\tilde{R}}_y$, $\mathbf{\tilde{R}}_z$, 180° rotations $\mathbf{\rho}_x$, $\mathbf{\rho}_y$, $\mathbf{\rho}_z$,

y-axis

x-axis

Finding O_h group products

Note that $\tilde{\mathbf{R}}_z$ is inverse (and third power of \mathbf{R}_z) $\tilde{\mathbf{R}}_z = (\mathbf{R}_z)^{-1} = (\mathbf{R}_z)^3$ Note that ρ_z is 2nd power of \mathbf{R}_z (and its own inverse) $\rho_z = (\rho_z)^{-1} = (\mathbf{R}_z)^2$

The four operators $\{1, \mathbb{R}_z, \rho_z, \tilde{\mathbb{R}}_z\}$ form an important C_4 subgroup of O.

William G. Harter - University of Arkansas

Rotational Energy Surfaces (RES) and Lab vs Body molecular rotor states, levels, and spectra: Body symmetry *O* of octahedral rotors $H=BJ^2+\Sigma t_{kq}T_q^k$

RES and Multipole \mathbf{T}_{q^k} *tensor expansions* RES and matrix representation of multipole T_{q^k} tensor H-expansions What tensors go in tetrahedral (T_d) or octahedral (O_h) free-rotor Hamiltonia H? 4^{th} -rank [k=4] multipole terms O_h -symmetric function and O_h operator $\mathbf{T}^{\{4\}}$ RES and matrix irreps of O_h multipole $T_q^{[4]}$ and $T_q^{[2,2]}$ tensor H-expansions Matrix D^{T_1} , D^{T_2} , D^E , D^{A_2} , and D^{A_1} , irreducible representations (irreps) of O Finding O_h group products. Examples: $\mathbf{R}_z \mathbf{1} = \mathbf{R}_z$ or $\mathbf{R}_z \mathbf{i}_6 = \mathbf{r}_3$ or $\mathbf{i}_6 \mathbf{R}_z = \mathbf{r}_1$ D^{T_1} irreps derived visually using unit vectors {x,y,z} of p-wave $D^{\ell=1}{x,y,z}$ D^{T_2} irreps derived from standing d-wave $D^{\ell=2}{x,y,z}$. D^E irrep tensor basis Summary of irrep characters χ^{T_1} , χ^{T_2} , χ^E , χ^{A_2} , and χ^{A_1} of O $R(3) \supset O$ character analysis. $O \supset D_4 \supset D_2$ and $O \supset D_4 \supset C_4$ level correlations s Applications of Group \supset Sub-group correlation Comparing Octahedral and Asymmetric rotor states and level clusters at high J

To calculate O products like $\mathbf{R}_z \mathbf{1} = \mathbf{R}_z$ (easy) or $\mathbf{R}_z \mathbf{i}_6 = \mathbf{r}_3$ (less easy)...Find \mathbf{R}_z operator axisFind \mathbf{R}_z operator axisFind \mathbf{R}_z operator axis

(*line by* small type R_z) *Imagine* 90° rotation R_z of "state triangle" **1** to the triangle with result $R_z=R_z$ **1** Find \mathbf{R}_z operator axis (line by small type \mathbf{R}_z) Imagine 90° rotation \mathbf{R}_z of "state triangle" \mathbf{i}_6 to triangle with result $\mathbf{r}_3 = \mathbf{R}_z \mathbf{i}_6$ \mathbf{r}_3 is a 120° rotation about [+1-1-1]

*(*irrep=irreducible representations*)

or $\mathbf{i}_6 \mathbf{R}_z = \mathbf{\tilde{r}}_1$ (even less easy) Find \mathbf{i}_6 [operator axis (line by small type \mathbf{i}_6 on [011]) Imagine 180° rotation \mathbf{i}_6 of "state triangle" \mathbf{R}_z to triangle with result $\mathbf{\tilde{r}}_1 = \mathbf{i}_6 \mathbf{R}_z$ $\mathbf{\tilde{r}}_1$ is a 120° rotation about [-1-1-1] or a -120° rotation (\mathbf{r}_1)² about [111]

Z	x3		Y=x			0 p	oroduo ■x1	cts <u>G</u>	<u>Гһ19</u> р	0 <u>19</u> Z	R2 - 13	A Reit	R ² Y	R2		Ra	₹=x1	4		+15	N=X		ふくし)))
		+1	206			-12	0°		±18	0° X	Z.	+9	0° XY	Z	-9	0° <u>X</u> Y	Z			±180		·		
	[111]	[1 1 1]	$\begin{bmatrix} 1 \overline{1} \overline{1} \end{bmatrix}$	$\left[\overline{1}1\overline{1}\right]$	$\left[\overline{1}\overline{1}\overline{1}\right]$	11 ī]	[<u>1</u> 11][111	[1 0 0]	$\begin{bmatrix} 0 & 1 & 0 \end{bmatrix}$	[001]	[1 0 0]	[010]	[0 0 1]	[<u>1</u> 00]	$\begin{bmatrix} 0 \overline{1} \ 0 \end{bmatrix}$	$\left[\overline{0} \ 0 \ \overline{1}\right]$	[101]	$\begin{bmatrix} 1 & \overline{1} \end{bmatrix}$	[11 0]	[110]	$\left[01\overline{1}\right]$	[011]	
1	<i>r</i> ₁	<i>r</i> ₂	<i>r</i> ₃	r_4	r_{1}^{2}	r_{2}^{2}	r_{3}^{2}	r_{4}^{2}	R_1^2	R_{2}^{2}	R_{3}^{2}	R_1	R_2	R_3	R_1^3	R_{2}^{3}	R_{3}^{3}	i_1	i_2	i_3	i_4	i5 -	i ₆	
r_1	r_{1}^{2}	$-r_{4}^{2}$	$-r_{2}^{2}$	$-r_{3}^{2}$	-1	$-R_{2}^{2}$	$-R_{3}^{2}$	$-R_{1}^{2}$	$-r_{2}$	$-r_{3}$	$-r_{4}$	<i>i</i> ₃	i ₆	i_1	$-R_3$	$-R_1$	$-R_2$	R_1^3	i5	R_{2}^{3}	i_2	$-i_4$	R_{3}^{3}	
r ₂	$-r_{3}^{2}$	r_{2}^{2}	$-r_{4}^{2}$	$-r_1^2$	R_{2}^{2}	-1	R_{1}^{2}	$-R_{3}^{2}$	r_1	r_4	$-r_{3}$	R_3	$-R_{1}^{3}$	<i>i</i> ₂	<i>i</i> ₃	$-i_{5}$	R_{2}^{3}	i ₆	$-R_1$	R_2	$-i_1$	R_{3}^{3}	<i>i</i> ₄	
<i>r</i> ₃	$-r_4^2$	$-r_1^2$	r3	$-r_{2}^{2}$	R_3^2	$-R_{1}^{2}$	-1 p ²	R_2^2	$-r_{4}$	r_1	<i>r</i> ₂	$-i_4$	R_1	$-R_{2}^{3}$	R_3^3	i_6	<i>i</i> ₂	i ₅	$-R_{1}^{3}$	<i>i</i> ₁	R_2	$-i_3$	R_3	
	$-r_{2}^{-1}$	$-r_{3}^{2}$	$-r_{1}^{2}$	r_4^2 R^2	$R_{\tilde{1}}$	<i>R</i> ₃	$-R_{\tilde{2}}$	-1	r_3	$-r_{2}$	r_1	$-R_3^3$	$-l_5$ R^3	R_2^3	$-i_4$	R_1	-i	$-R_1$	1 ₆	$-l_2$ -R	R ₂	$-i_{3}$	$-R_{2}$	
$ _{r_{2}^{2}}^{\prime_{1}}$	$-R^{2}$	-1	R_2^2	$-R_{2}^{2}$	-/1 /1	$-r_{2}$	r,	r2 r2	$-r_{2}^{2}$	$-r_{1}^{2}$	r_{1}^{2}	ia ia	$-i_2$	$-R_1$	R_2	$-R_{2}^{3}$	$-i_6$	i,	$-R_{2}$	$-R_{1}^{3}$	$-i_{6}$	R_{2}^{3}	$-i_1$	
r_{3}^{2}	$-R_{2}^{2}$	$-R_{3}^{2}$	-1	R_{1}^{2}	r ₂	r_4	$-r_{3}$	r ₁	r_{2}^{2}	$-r_{4}^{2}$	$-r_1^2$	$-R_{2}$	$-i_4$	$-i_6$	<i>i</i> ₂	R_3	$-R_{1}^{3}$	$-i_{3}$	$-R_{3}^{3}$	i5	R_1	$-i_1^2$	$-R_{2}^{3}$	
r_{4}^{2}	$-R_{3}^{2}$	R_2^2	$-R_{1}^{2}$	-1	r ₃	r_1	r ₂	$-r_{4}$	$-r_1^2$	r_{3}^{2}	$-r_{2}^{2}$	-i1	$-R_3$	$-i_{5}$	$-R_{2}^{3}$	$-i_4$	R_1	$-R_{3}^{3}$	<i>i</i> ₃	$-i_{6}$	R_1^3	R_2	$-i_2$	
R_1^2	$-r_{4}$	<i>r</i> ₃	$-r_{2}$	<i>r</i> ₁	r_{2}^{2}	$-r_{1}^{2}$	r_{4}^{2}	$-r_{3}^{2}$	- 1	R_{3}^{2}	$-R_{2}^{2}$	R_{1}^{3}	i_1	$-i_4$	$-R_1$	<i>i</i> ₂	- <i>i</i> ₃	$-R_2$	$-R_{2}^{3}$	R_{3}^{3}	R_3	$-i_6$	<i>i</i> ₅	
R_2^2	$-r_{2}$	r_1	r_4	$-r_3$	r_{3}^{2}	$-r_{4}^{2}$	$-r_{1}^{2}$	r_{2}^{2}	$-R_{3}^{2}$	-1	R_1^2	$-i_{5}$	R_{2}^{3}	i_3	$-i_6$	$-R_2$	$-i_4$	$-i_2$	i_1	$-R_3$	R_{3}^{3}	R_1	R_{1}^{3}	
R_{3}^{2}	$-r_{3}$	$-r_{4}$	<i>r</i> ₁	r_2	r_{4}^{2}	r_{3}^{2}	$-r_{2}^{2}$	$-r_{1}^{2}$	R_2^2	$-R_{1}^{2}$	-1	i ₆	i_2	R_{3}^{3}	$-i_{5}$	$-i_1$	$-R_3$	R_{2}^{3}	$-R_2$	<i>i</i> ₄	$-i_3$	R_{1}^{3}	$-R_1$	
R_1	<i>i i</i> 1	$-R_{2}^{3}$	$-i_{2}$	R_2	R_{3}^{3}	$-i_3$	$-R_3$	<i>i</i> ₄	R_{1}^{3}	<i>i</i> ₆	i ₅	R_{1}^{2}	r_1	$-r_{4}^{2}$	-1	$-r_{3}$	r_{2}^{2}	$-r_{4}$	<i>r</i> ₂	r_{1}^{2}	$-r_{3}^{2}$	$-R_{2}^{2}$	R_3^2	
R_2	i ₃	R_3	$-R_{3}^{3}$	<i>i</i> ₄	R_1^3	<i>i</i> ₅	$-i_6$	$-R_1$	$-i_{2}$	R_2^3	<i>i</i> ₁	$-r_{2}^{2}$	R_{2}^{2}	r_1	r_{3}^{2}	-1	$-r_{4}$	R_1^2	R_{3}^{2}	$-r_2$	$-r_{3}$	$-r_{4}^{2}$	r_1^2	
		15	R_1	$-R_{1}^{2}$	R_2^3	$-R_{2}$	- <i>i</i> ₂	$-l_1$	l ₃	14	R_3^2	r_1	-r3	$R_{\tilde{3}}^2$	$-r_2$	r_4	-1	r_1	r_2	$K_{\tilde{2}}$	$-R_{\tilde{1}}$	$-r_4$ $-R^2$	$-r_{3}$ $-R^{2}$	
R_1^1	$\begin{vmatrix} -R_2 \\ -R_2 \end{vmatrix}$	-12 i2	i.	R_{2}^{1}	$-i_{3}$	$-R_3$	$-R_{1}^{3}$	i.	$\begin{vmatrix} -\kappa_1 \\ -i_1 \end{vmatrix}$	$-R_2$	$-i_{6}$	r_{1}^{2}	-1^{4}	$-r_{2}$	$-r_{1}^{2}$	$-R_{2}^{2}$	/1 /2	$-R_{2}^{2}$	R_1^2	$-r_{1}$	$-r_{A}$	$-r_{2}^{2}$	r_{2}^{2}	
R_3^3	$-R_1$	R_1^3	i6	is	$-i_1$	$-i_{2}$	R_2	$-R_{2}^{3}$	<i>i</i> ₄	$-i_{3}$	$-R_{3}$	$-r_{3}$	r_{2}^{2}	-1	r_4	$-r_{1}^{2}$	$-R_{3}^{2}$	r_{4}^{2}	r_{3}^{2}	$-R_{1}^{2}$	$-R_{2}^{2}$	$-r_{2}^{2}$	$-r_1$	
<i>i</i> ₁	R_{3}^{3}	$-i_4$	<i>i</i> ₃	R_3	$-R_1$	- <i>i</i> ₆	-i5	$-R_{1}^{3}$	R_2^3	<i>i</i> ₂	$-R_2$	r_{1}^{2}	R_3^2	$-r_4$	r_{4}^{2}	$-R_{1}^{2}$	$-r_{1}$	-1	$-R_{2}^{2}$	$-r_{3}$	r_2	r_{3}^{2}	r_{2}^{2}	
i2	<i>i</i> ₄	R_{3}^{3}	R_3	$-i_3$	$-i_{5}$	R_{1}^{3}	R_1	$-i_{6}$	R_2	$-i_1$	R_{2}^{3}	$-r_{3}^{2}$	$-R_{1}^{2}$	$-r_{3}$	$-r_{2}^{2}$	$-R_{3}^{2}$	$-r_{2}$	R_{2}^{2}	-1	r_4	$-r_{1}$	r_{1}^{2}	r_{4}^{2}	
<i>i</i> ₃	R_1^3	R_1	$-i_{5}$	<i>i</i> ₆	$-R_2$	$-R_{2}^{3}$	$-i_1$	<i>i</i> ₂	$-R_3$	R_{3}^{3}	$-i_{4}$	$-r_{2}$	r_1^2	R_{1}^{2}	$-r_{1}$	r_{2}^{2}	$-R_{2}^{2}$	r ² ₃	$-r_4^2$	-1	R_3^2	<i>r</i> ₃	$-r_{4}$	-
	-1 ₅	PR	$-R_{1}^{3}$	$-R_1 = R^3$	- <i>i</i> ₂	l_1	$-R_{2}^{3}$	$-R_2 = R^3$	$-R_{3}^{2}$	$-R_{3}$	P	r_4 P^2	r_4	R_2^2	r_3 P^2	r3	R_1^2	$-r_2$	<i>r</i> ₁	$-R_3$	-1 $-r^{2}$	-1	$-r_2 - R^2$	
15	R^3	<i>i</i> 1.	R_{2}	ia.	$-R_{2}$	-i.	$-R_{3}^{3}$	$-i_2$	-is	$-R_1$	R_1^3	R_2^2	$-r_{3}$	r_{1}^{2}	$-R_{1}^{2}$	$-r_{1}$	r_{3}^{2}	$-r_{2}$	$-r_A$	r_{A}^{2}	r_{2}^{2}	R_1^2	-1	

Octahedral O and spin- $O \subset U(2)$ rotation product Table F.2.1 from Principles of Symmetry, Dynamics and Spectroscopy

William G. Harter - University of Arkansas

Rotational Energy Surfaces (RES) and Lab vs Body molecular rotor states, levels, and spectra: Body symmetry *O* of octahedral rotors $\mathbf{H}=\mathbf{BJ}^2+\Sigma t_{kq}\mathbf{T}_q^k$

RES and Multipole \mathbf{T}_{q^k} *tensor expansions* RES and matrix representation of multipole T_{q^k} tensor H-expansions What tensors go in tetrahedral (T_d) or octahedral (O_h) free-rotor Hamiltonia H? 4^{th} -rank [k=4] multipole terms O_h -symmetric function and O_h operator $\mathbf{T}^{\{4\}}$ RES and matrix irreps of O_h multipole $T_q^{[4]}$ and $T_q^{[2,2]}$ tensor H-expansions Matrix D^{T_1} , D^{T_2} , D^E , D^{A_2} , and D^{A_1} , irreducible representations (irreps) of O Finding O_h group products. Examples: $\mathbf{R}_z \mathbf{1} = \mathbf{R}_z$ or $\mathbf{R}_z \mathbf{i}_6 = \mathbf{r}_3$ or $\mathbf{i}_6 \mathbf{R}_z = \mathbf{r}_1$ D^{T_1} irreps derived visually using unit vectors {**x**,**y**,**z**} of *p*-wave $D^{\ell=1}$ {x,y,z} D^{T_2} irreps derived from standing d-wave $D^{\ell=2}{x,y,z}$. D^E irrep tensor basis Summary of irrep characters χ^{T_1} , χ^{T_2} , χ^E , χ^{A_2} , and χ^{A_1} of O $R(3) \supset O$ character analysis. $O \supset D_4 \supset D_2$ and $O \supset D_4 \supset C_4$ level correlations s Applications of Group \supset Sub-group correlation Comparing Octahedral and Asymmetric rotor states and level clusters at high J

 $\mathbf{x} \quad \mathbf{y} \quad \mathbf{z}$ $\mathbf{r}_1 \mathbf{x} = \boxed{\cdot \quad \mathbf{y} \quad \cdot}$ $\mathbf{r}_1 \mathbf{y} = \boxed{\cdot \quad \cdot \quad \mathbf{z}}$ $\mathbf{r}_1 \mathbf{z} = \boxed{\mathbf{x} \quad \cdot \quad \cdot}$

 $\mathbf{x} \quad \mathbf{y} \quad \mathbf{z}$ $\mathbf{r}_{1}\mathbf{x} = \begin{bmatrix} \cdot & \mathbf{y} & \cdot \\ \mathbf{r}_{1}\mathbf{y} = \begin{bmatrix} \cdot & \mathbf{y} & \cdot \\ \cdot & \cdot & \mathbf{z} \end{bmatrix}$ $\mathbf{r}_{1}\mathbf{z} = \begin{bmatrix} \mathbf{x} & \cdot & \cdot \\ \mathbf{x} & \cdot & \cdot \end{bmatrix}$ irrep notation is transpose $D^{T_{1}}(\mathbf{r}_{1}) = \begin{pmatrix} \cdot & \cdot & 1 \\ 1 & \cdot & \cdot \\ \cdot & 1 & \cdot \end{pmatrix}$

$$\begin{array}{c} \text{Matrix } D^{T_{1}}, D^{T_{2}}, D^{E}, D^{A_{2}}, and D^{A_{1}}, irreps^{*} of O_{1} \\ D^{T_{1}} derived from standing p-wave $D^{\ell=1}(x,y,z) \\ \hline D^{T_{1}} derived from standing p-wave of O_{1} \\ \hline D^{T_{1}} derived from standing p-wave of O_{1} \\ \hline D^{T_{1}} derived from standing p-wave of O_{1} \\ \hline D^{T_{1}} derived from standing p-wave of O_{1} \\ \hline D^{T_{1}} derived from standing p-wave of O_{1} \\ \hline D^{T_{2}} derived from standing p-wave of O_{1} \\ \hline D^{T_{2}} derived from standing p-wave of O_{1} \\ \hline D^{T_{2}} derived visually using unit vectors P_{1}, P_{2}, P_{3}, P_{4}, P_{1}, P_{5}, P_{5}, P_{5} \\ \hline D^{T_{1}} derived visually using unit vectors {x, y, z} \\ \hline X \\ r_{1} y = \begin{bmatrix} \cdot y \\ \cdot z \\ r_{1} z = \begin{bmatrix} x \\ \cdot \cdot \end{bmatrix} \\ R_{x} y = \begin{bmatrix} x \\ \cdot y \\ \cdot z \end{bmatrix} \\ R_{x} z = \begin{bmatrix} x \\ \cdot y \\ \cdot \end{bmatrix} \\ \hline R_{x} y = \begin{bmatrix} 1 \\ \cdot y \\ \cdot z \end{bmatrix} \\ \hline R_{x} y = \begin{bmatrix} 1 \\ \cdot y \\ \cdot y \end{bmatrix} \\ \hline R_{x} z = \begin{bmatrix} x \\ \cdot y \\ \cdot y \end{bmatrix} \\ \hline R_{x} z = \begin{bmatrix} x \\ \cdot y \\ \cdot y \end{bmatrix} \\ \hline R_{x} z = \begin{bmatrix} x \\ \cdot y \\ \cdot y \end{bmatrix} \\ \hline R_{x} z = \begin{bmatrix} x \\ \cdot y \\ \cdot y \end{bmatrix} \\ \hline R_{x} z = \begin{bmatrix} x \\ \cdot y \\ \cdot y \end{bmatrix} \\ \hline R_{x} z = \begin{bmatrix} x \\ \cdot y \\ \cdot y \end{bmatrix} \\ \hline R_{x} z = \begin{bmatrix} x \\ \cdot y \\ \cdot y \end{bmatrix} \\ \hline R_{x} z = \begin{bmatrix} x \\ \cdot y \\ \cdot y \end{bmatrix} \\ \hline R_{x} z = \begin{bmatrix} x \\ \cdot y \\ \cdot y \end{bmatrix} \\ \hline R_{x} z = \begin{bmatrix} x \\ \cdot y \\ \cdot y \end{bmatrix} \\ \hline R_{x} z = \begin{bmatrix} x \\ \cdot y \\ \cdot y \end{bmatrix} \\ \hline R_{x} z = \begin{bmatrix} x \\ \cdot y \\ \cdot y \end{bmatrix} \\ \hline R_{x} z = \begin{bmatrix} x \\ \cdot y \\ \cdot y \end{bmatrix} \\ \hline R_{x} z = \begin{bmatrix} x \\ \cdot y \\ \cdot y \end{bmatrix} \\ \hline R_{x} z = \begin{bmatrix} x \\ \cdot y \\ \cdot y \end{bmatrix} \\ \hline R_{x} z = \begin{bmatrix} x \\ \cdot y \\ \cdot y \end{bmatrix} \\ \hline R_{x} z = \begin{bmatrix} x \\ \cdot y \\ \cdot y \end{bmatrix} \\ \hline R_{x} z = \begin{bmatrix} x \\ \cdot y \\ \cdot y \end{bmatrix} \\ \hline R_{x} z = \begin{bmatrix} x \\ \cdot y \\ \cdot y \end{bmatrix} \\ \hline R_{x} z = \begin{bmatrix} x \\ \cdot y \\ \cdot y \end{bmatrix} \\ \hline R_{x} z = \begin{bmatrix} x \\ \cdot y \\ \cdot y \end{bmatrix} \\ \hline R_{x} z = \begin{bmatrix} x \\ \cdot y \\ \cdot y \end{bmatrix} \\ \hline R_{x} z = \begin{bmatrix} x \\ \cdot y \\ \cdot y \end{bmatrix} \\ \hline R_{x} z = \begin{bmatrix} x \\ \cdot y \\ \cdot y \end{bmatrix} \\ \hline R_{x} z = \begin{bmatrix} x \\ \cdot y \\ \cdot y \end{bmatrix} \\ \hline R_{x} z = \begin{bmatrix} x \\ \cdot y \\ \cdot y \end{bmatrix} \\ \hline R_{x} z = \begin{bmatrix} x \\ \cdot y \\ \cdot y \end{bmatrix} \\ \hline R_{x} z = \begin{bmatrix} x \\ \cdot y \\ \cdot y \end{bmatrix} \\ \hline R_{x} z = \begin{bmatrix} x \\ \cdot y \\ \cdot y \end{bmatrix} \\ \hline R_{x} z = \begin{bmatrix} x \\ \cdot y \\ \cdot y \end{bmatrix} \\ \hline R_{x} z = \begin{bmatrix} x \\ \cdot y \\ \cdot y \end{bmatrix} \\ \hline R_{x} z = \begin{bmatrix} x \\ \cdot y \\ \cdot y \end{bmatrix} \\ \hline R_{x} z = \begin{bmatrix} x \\ \cdot y \\ \cdot y \end{bmatrix} \\ \hline R_{x} z = \begin{bmatrix} x \\ \cdot y \\ \cdot y \end{bmatrix} \\ \hline R_{x} z = \begin{bmatrix} x \\ \cdot y \\ \cdot y \end{bmatrix} \\ \hline R_{x} z = \begin{bmatrix} x \\ \cdot y \\ \cdot y \end{bmatrix} \\ \hline R_{x} z = \begin{bmatrix} x \\ \cdot y \\ \cdot y \end{bmatrix} \\ \hline R_{$$$

Matrix
$$D^{T_{I}}$$
, $D^{T_{2}}$, D^{E} , $D^{A_{2}}$, and $D^{A_{I}}$, irreps* of $O_{I_{I}}$
 $D^{T_{I}}$ derived from standing p-wave $D^{\ell=I}_{\{x,y,z\}}$
 $Locate x, y, z axes of$
 $\pm 90^{\circ}$ rotations $\mathbf{R}_{x}, \mathbf{R}_{y}, \mathbf{R}_{z}, \mathbf{\tilde{R}}_{x}, \mathbf{\tilde{R}}_{y}, \mathbf{\tilde{R}}_{z}$
 $\pm 120^{\circ}$ rotations $\mathbf{r}_{1,T_{2},T_{3},T_{1},T_{1},T_{2},T_{3},T_{3},T_{4$

Matrix
$$D^{T_1}$$
, D^{T_2} , D^E , D^{4_2} , and D^{4_1} , irreps* of O_h
 D^{T_1} derived from standing p-wave $D^{\ell=1}(x,y,z)$
 $I = 1$
 $I = 1$

Matrix
$$D^{T_{I}}$$
, $D^{T_{2}}$, D^{E} , $D^{A_{2}}$, and $D^{A_{I}}$, irreps* of O_{h}
 $D^{T_{I}}$ derived from standing p-wave $D^{\ell=1}\{x,y,z\}$
 $D^{T_{I}}$ derived from standing p-wave $D^{\ell=1}\{x,y,z\}$
 $p^{introdential}$
 $p^{introdentia$

William G. Harter - University of Arkansas

Rotational Energy Surfaces (RES) and Lab vs Body molecular rotor states, levels, and spectra: Body symmetry *O* of octahedral rotors $\mathbf{H}=\mathbf{BJ}^2+\Sigma t_{kq}\mathbf{T}_q^k$

RES and Multipole \mathbf{T}_{q^k} *tensor expansions* RES and matrix representation of multipole T_{q^k} tensor H-expansions What tensors go in tetrahedral (T_d) or octahedral (O_h) free-rotor Hamiltonia H? 4^{th} -rank [k=4] multipole terms O_h -symmetric function and O_h operator $\mathbf{T}^{\{4\}}$ RES and matrix irreps of O_h multipole $T_q^{[4]}$ and $T_q^{[2,2]}$ tensor H-expansions Matrix D^{T_1} , D^{T_2} , D^E , D^{A_2} , and D^{A_1} , irreducible representations (irreps) of O Finding O_h group products. Examples: $\mathbf{R}_z \mathbf{1} = \mathbf{R}_z$ or $\mathbf{R}_z \mathbf{i}_6 = \mathbf{r}_3$ or $\mathbf{i}_6 \mathbf{R}_z = \mathbf{r}_1$ D^{T_1} irreps derived visually using unit vectors {x,y,z} of p-wave $D^{\ell=1}{x,y,z}$ D^{T_2} irreps derived from standing d-wave $D^{\ell=2}{x,y,z}$. D^E irrep tensor basis Summary of irrep characters χ^{T_1} , χ^{T_2} , χ^E , χ^{A_2} , and χ^{A_1} of O $R(3) \supset O$ character analysis. $O \supset D_4 \supset D_2$ and $O \supset D_4 \supset C_4$ level correlations s Applications of Group \supset Sub-group correlation Comparing Octahedral and Asymmetric rotor states and level clusters at high J

792 APPENDIX F First are the j=1 dipole or "vector" functions of R(3)

TABLE F.1.1 R(3) Multiple Functions and SU(3) Harmonic Monomials

$I_{1}^{(1)} = -\frac{1}{\sqrt{2}}(x + iy)$ $I_{-1}^{(1)} = \frac{1}{\sqrt{2}}(x - iy)$ $I_{0}^{(1)} = z$	$x = \frac{1}{\sqrt{2}} (\mathbf{I}_{-1}^{(1)} - \mathbf{I}_{1}^{(1)})$ iy = $-\frac{1}{\sqrt{2}} (\mathbf{I}_{-1}^{(1)} + \mathbf{I}_{1}^{(1)})$ z = $\mathbf{I}_{0}^{(1)}$
$\Pi_2^{(2)} = \sqrt{\frac{3}{8}} (x + iy)^2$	$x^2 = \frac{1}{6}(\Pi_2^{(2)} + \Pi_{-2}^{(2)}) - \frac{1}{3}\Pi_0^{(2)} + \frac{1}{3}r^2$
$II_{1}^{(2)} = -\sqrt{\frac{3}{2}} z(x + iy)$	$y^2 = -\frac{1}{6}(\Pi_2^{(2)} + \Pi_{-2}^{(2)}) - \frac{1}{3}\Pi_0^{(2)} + \frac{1}{3}r^2$
$\Pi_0^{(2)} = \frac{1}{2}(3z^2 - r^2)$	$z^2 = -\frac{2}{3}\Pi_0^{(2)} + \frac{1}{3}r^2$
$\Pi_{-1}^{(2)} = \sqrt{\frac{3}{2}} z(x - iy)$	$xy = \frac{i}{\sqrt{6}}(\Pi_2^{(2)} - \Pi_{-2}^{(2)})$
$11^{(2)}_{-2} = \sqrt{\frac{3}{8}} (x - iy)^2$	$xz = \frac{1}{\sqrt{6}} (\Pi_1^{(2)} - \Pi_{-1}^{(2)})$
	$yz = \frac{i}{\sqrt{6}} (\Pi_1^{(2)} + \Pi_{-1}^{(2)})$

Here we use the j=2 quadrupole or "tensor" functions of R(3)

D^{T_2} , D^E irreps* derived from standing d-wave $D^{\ell=2}{x,y,z}$ *j* =2 Moving *d*-Waves (all real)

 $\frac{1}{\chi^2} \left(\alpha \beta \right) + \chi^2 \left(\alpha \beta \right) = v_7$ D^{T_2} irr basis

$$ep_{S} = \frac{\frac{2i}{A_{-1}(\alpha,\beta) + A_{1}(\alpha,\beta)} - y^{2}}{\frac{1}{2} \left(X_{-1}^{2}(\alpha,\beta) - X_{1}^{2}(\alpha,\beta) \right) = xz}$$

$$\frac{1}{4i} \left(X_{2}^{2}(\alpha,\beta) - X_{-2}^{2}(\alpha,\beta) \right) = xy$$

 $\frac{1}{\sqrt{2}} \left(X_2^2 \left(\boldsymbol{\alpha}, \boldsymbol{\beta} \right) + X_{-2}^2 \left(\boldsymbol{\alpha}, \boldsymbol{\beta} \right) \right) = \left(x^2 - y^2 \right) \frac{1}{\sqrt{2}}$ D^E irrep $\frac{1}{\sqrt{6}} X_0^2(\alpha, \beta) = (2z^2 - x^2 - y^2) \frac{1}{\sqrt{6}}$ basis

j = 2 Moving *d*-Wave Distributions

j =2 *Moving d-Waves (mostly complex)* $X_{2}^{2}(\alpha,\beta) = r^{2}e^{i2\alpha}\sin^{2}\beta = (x+iy)^{2} = x^{2} - y^{2} + 2ixy$ $X_1^2(\alpha,\beta) = -r^2 e^{i\alpha} \sin\beta\cos\beta = -(x+iy)z = -xz - iyz$ $X_0^2(\alpha,\beta) = r^2(3\cos^2\beta - 1) = 3z^2 - r^2 = 2z^2 - x^2 - y^2$ $X_{-1}^{2}(\alpha,\beta) = r^{2}e^{-i\alpha}\sin\beta\cos\beta = (x-iy)z = xz-iyz$ $X_{-2}^{2}(\alpha,\beta) = r^{2}e^{-i2\alpha}\sin^{2}\beta = (x-iy)^{2} = x^{2} - y^{2} - 2ixy$

William G. Harter - University of Arkansas

Rotational Energy Surfaces (RES) and Lab vs Body molecular rotor states, levels, and spectra: Body symmetry *O* of octahedral rotors $\mathbf{H}=\mathbf{BJ}^2+\Sigma t_{kq}\mathbf{T}_q^k$

RES and Multipole \mathbf{T}_{q^k} *tensor expansions* RES and matrix representation of multipole T_{q^k} tensor H-expansions What tensors go in tetrahedral (T_d) or octahedral (O_h) free-rotor Hamiltonia H? 4^{th} -rank [k=4] multipole terms O_h -symmetric function and O_h operator $\mathbf{T}^{\{4\}}$ RES and matrix irreps of O_h multipole $T_q^{[4]}$ and $T_q^{[2,2]}$ tensor H-expansions Matrix D^{T_1} , D^{T_2} , D^E , D^{A_2} , and D^{A_1} , irreducible representations (irreps) of O Finding O_h group products. Examples: $\mathbf{R}_z \mathbf{1} = \mathbf{R}_z$ or $\mathbf{R}_z \mathbf{i}_6 = \mathbf{r}_3$ or $\mathbf{i}_6 \mathbf{R}_z = \mathbf{r}_1$ D^{T_1} irreps derived visually using unit vectors {x,y,z} of p-wave $D^{\ell=1}{x,y,z}$ D^{T_2} irreps derived from standing d-wave $D^{\ell=2}{x,y,z}$. D^E irrep tensor basis Summary of irrep characters χ^{T_1} , χ^{T_2} , χ^E , χ^{A_2} , and χ^{A_1} of O $R(3) \supset O$ character analysis. $O \supset D_4 \supset D_2$ and $O \supset D_4 \supset C_4$ level correlations s Applications of Group \supset Sub-group correlation Comparing Octahedral and Asymmetric rotor states and level clusters at high J

tensors

Vector-tran gives tensor-tran! Xyz y X Ζ

xy xz yz

$$\mathbf{r}_{1}\mathbf{x}\mathbf{y} = \cdot \cdot \mathbf{y}\mathbf{z}$$
$$\mathbf{r}_{1}\mathbf{x}\mathbf{z} = \mathbf{x}\mathbf{y} \cdot \cdot \cdot$$
$$\mathbf{r}_{1}\mathbf{y}\mathbf{z} = \cdot \mathbf{x}\mathbf{z} \cdot \cdot$$

irrep notation is transpose

$$D^{T_2}(\mathbf{r}_1) = \begin{pmatrix} \cdot & \cdot & 1 \\ 1 & \cdot & \cdot \end{pmatrix}$$
$$\chi^{T_2} \mathbf{r}_1 = Trace D^{T_1}(\mathbf{r}_1) = 0$$

<u>x-axis</u> Î3 *y*-axis using unit J Py Pr $\widetilde{\mathbf{r}_2} = \mathbf{r_2}^2$ The ar {xy,xz,yz} 721 36 Ś i₁-R $\widetilde{\mathbf{R}}_{x} =$ \mathbf{R}_{x}^{3} R Pz ŀ **i**₂ 3 i₃ <u>z-axis</u> 22

Vector-tran gives tensor-tran! Xyz X Y Z X Y Z

$$\mathbf{r}_{1}\mathbf{x} = \begin{bmatrix} \cdot & \mathbf{y} & \cdot \\ \mathbf{r}_{1}\mathbf{y} = \begin{bmatrix} \cdot & \mathbf{y} & \cdot \\ \cdot & \mathbf{z} \end{bmatrix} \mathbf{R}_{\mathbf{x}}\mathbf{x} = \begin{bmatrix} \mathbf{x} & \cdot & \cdot \\ \mathbf{R}_{\mathbf{x}}\mathbf{y} = \begin{bmatrix} \cdot & \cdot & \mathbf{z} \\ \cdot & \cdot & \mathbf{z} \end{bmatrix}$$
$$\mathbf{r}_{1}\mathbf{z} = \begin{bmatrix} \mathbf{x} & \cdot & \cdot \\ \mathbf{x} & \cdot & \cdot \end{bmatrix} \mathbf{R}_{\mathbf{x}}\mathbf{z} = \begin{bmatrix} \cdot & -\mathbf{y} & \cdot \\ \cdot & -\mathbf{y} & \cdot \end{bmatrix}$$

xy xz yzxy xz yz
$$\mathbf{r}_1 \mathbf{x} \mathbf{y} = \cdot \cdot \mathbf{y} \mathbf{z}$$
 $\mathbf{R}_{\mathbf{x}} \mathbf{x} \mathbf{y} = \cdot \mathbf{x} \mathbf{z} \cdot \cdot$ $\mathbf{r}_1 \mathbf{x} \mathbf{z} = \mathbf{x} \mathbf{y} \cdot \cdot \cdot \mathbf{x} \mathbf{z}$ $\mathbf{R}_{\mathbf{x}} \mathbf{x} \mathbf{z} = \mathbf{z} \cdot \cdot \cdot \mathbf{y} \mathbf{z}$ $\mathbf{r}_1 \mathbf{y} \mathbf{z} = \cdot \mathbf{x} \mathbf{z} \cdot \cdot \mathbf{z}$ $\mathbf{R}_{\mathbf{x}} \mathbf{y} \mathbf{z} = \cdot \cdot \mathbf{y} \mathbf{z}$

irrep notation is transpose

$$D^{T_2}(\mathbf{r}_1) = \begin{pmatrix} \cdot & 1 & \cdot \\ \cdot & \cdot & 1 \\ 1 & \cdot & \cdot \end{pmatrix} D^{T_2}(\mathbf{R}_x) = \begin{pmatrix} \cdot & -1 & \cdot \\ 1 & \cdot & \cdot \\ \cdot & \cdot & 1 \end{pmatrix}$$

$$\chi^{T_2}\mathbf{r}_1 = Trace D^{T_1}(\mathbf{r}_1) = 0 \qquad \chi^{T_2}\mathbf{R}_x = +1$$

using unit tensors {xy,xz,yz}

X

У

Ζ

using unit tensors {xy,xz,yz}

Vector-tran gives tensor-tran! Xyz X Y Z X Y Z

X –		y	•		X	·	·		Λ		
y =	•	•	Z	$\mathbf{R}_{\mathbf{X}}\mathbf{y} =$	•	•	Z	$\rho_{x}y =$	•	-у	•
$\mathbf{z}_1 \mathbf{z} =$	X	•	•	$\mathbf{R}_{\mathbf{X}}\mathbf{Z} =$	•	-y	•	$\rho_{\rm X} z =$	•	•	-Z

	xy xz yz	xy xz yz	xy xz yz
$\mathbf{r}_1 \mathbf{x} \mathbf{y} =$	··yz	$\mathbf{R}_{\mathbf{X}}\mathbf{X}\mathbf{y} = \mathbf{\cdot} \mathbf{X}\mathbf{Z} \mathbf{\cdot}$	ρ _x xy =− xy · · ·
r ₁ xz=	ху · ·	$\mathbf{R}_{\mathbf{X}}\mathbf{X}\mathbf{Z} = -\mathbf{X}\mathbf{Y} \cdot \cdot$	$\rho_{X}XZ = \cdot -XZ \cdot$
$\mathbf{r}_1 \mathbf{y} \mathbf{z} =$	· XZ ·	$\mathbf{R}_{\mathbf{x}}\mathbf{y}\mathbf{z} = \mathbf{\cdot} \mathbf{\cdot} \mathbf{y}\mathbf{z}$	$\rho_{x}yz = \cdot \cdot yz$

$$D^{T_2}(\mathbf{r}_1) = \begin{pmatrix} \cdot & 1 & \cdot \\ \cdot & \cdot & 1 \\ 1 & \cdot & \cdot \end{pmatrix} D^{T_2}(\mathbf{R}_x) = \begin{pmatrix} \cdot & -1 & \cdot \\ 1 & \cdot & \cdot \\ \cdot & \cdot & 1 \end{pmatrix} D^{T_2}(\mathbf{\rho}_x) = \begin{pmatrix} -1 & \cdot & \cdot \\ \cdot & -1 & \cdot \\ \cdot & \cdot & 1 \end{pmatrix} \chi^{T_2}(\mathbf{\rho}_x) = \begin{pmatrix} -1 & \cdot & \cdot \\ \cdot & -1 & \cdot \\ \cdot & \cdot & 1 \end{pmatrix} \chi^{T_2}(\mathbf{\rho}_x) = \begin{pmatrix} -1 & \cdot & \cdot \\ \cdot & -1 & \cdot \\ \cdot & \cdot & 1 \end{pmatrix} \chi^{T_2}(\mathbf{\rho}_x) = \begin{pmatrix} -1 & \cdot & \cdot \\ \cdot & -1 & \cdot \\ \cdot & \cdot & 1 \end{pmatrix} \chi^{T_2}(\mathbf{\rho}_x) = \begin{pmatrix} -1 & \cdot & \cdot \\ \cdot & -1 & \cdot \\ \cdot & \cdot & 1 \end{pmatrix} \chi^{T_2}(\mathbf{\rho}_x) = \begin{pmatrix} -1 & \cdot & \cdot \\ \cdot & -1 & \cdot \\ \cdot & \cdot & 1 \end{pmatrix} \chi^{T_2}(\mathbf{\rho}_x) = \begin{pmatrix} -1 & \cdot & \cdot \\ \cdot & -1 & \cdot \\ \cdot & \cdot & 1 \end{pmatrix} \chi^{T_2}(\mathbf{\rho}_x) = \begin{pmatrix} -1 & \cdot & \cdot \\ \cdot & -1 & \cdot \\ \cdot & \cdot & 1 \end{pmatrix} \chi^{T_2}(\mathbf{\rho}_x) = \begin{pmatrix} -1 & \cdot & \cdot \\ \cdot & -1 & \cdot \\ \cdot & \cdot & 1 \end{pmatrix} \chi^{T_2}(\mathbf{\rho}_x) = \begin{pmatrix} -1 & \cdot & \cdot \\ \cdot & -1 & \cdot \\ \cdot & -1 & \cdot \\ \cdot & -1 & \cdot \end{pmatrix} \chi^{T_2}(\mathbf{\rho}_x) = \begin{pmatrix} -1 & \cdot & \cdot \\ \cdot & -1 & \cdot \end{pmatrix} \chi^{T_2}(\mathbf{\rho}_x) = \begin{pmatrix} -1 & \cdot & \cdot \\ \cdot & -1 & -1 & \cdot \\ \cdot & -1 & -1 & \cdot \\ \cdot & -1 & -1 & -1 & -1 \\ \cdot & -1 & -1 & -1 & -1 \\ \cdot & -1 & -1 & -1 & -1 \\ \cdot & -1 & -1 & -1 & -1 & -1 \\ \cdot & -1 & -1 & -1 & -1 \\ \cdot & -1 & -1 & -1 & -1 \\ \cdot & -1 & -1 & -1 & -1 \\ \cdot & -1 & -1 & -1 & -1 \\ \cdot & -1 & -1 & -1 & -1 \\$$

$$D^{T_{2}}(\mathbf{r}_{1}) = \begin{pmatrix} \cdot & 1 & \cdot \\ \cdot & \cdot & 1 \\ 1 & \cdot & \cdot \end{pmatrix} D^{T_{2}}(\mathbf{R}_{x}) = \begin{pmatrix} \cdot & -1 & \cdot \\ 1 & \cdot & \cdot \\ \cdot & \cdot & 1 \end{pmatrix} D^{T_{2}}(\mathbf{\rho}_{x}) = \begin{pmatrix} -1 & \cdot & \cdot \\ \cdot & -1 & \cdot \\ \cdot & \cdot & 1 \end{pmatrix} D^{T_{2}}(\mathbf{i}_{1}) = \begin{pmatrix} \cdot & \cdot & -1 \\ \cdot & 1 & \cdot \\ -1 & \cdot & \cdot \\ -1 & \cdot & \cdot \end{pmatrix} \chi^{T_{2}}_{\mathbf{r}_{1}} = TraceD^{T_{1}}(\mathbf{r}_{1}) = 0 \qquad \chi^{T_{2}}_{\mathbf{R}x} = +1 \qquad \chi^{T_{2}}_{\mathbf{\rho}_{x}} = -1 \qquad \chi^{T_{2}}_{\mathbf{r}_{1}} = +1$$

 $D^{E} irrep \frac{1}{\sqrt{2}} (X_{2}^{2}(\alpha,\beta) + X_{-2}^{2}(\alpha,\beta)) = (x^{2} - y^{2}) \frac{1}{\sqrt{2}}$ **basis** $\frac{1}{\sqrt{6}} X_0^2(\alpha, \beta) = (-x^2 - y^2 + 2z^2) \frac{1}{\sqrt{6}}$

j = 2 Standing d-Waves

X y Ζ $\mathbf{r}_1 \mathbf{x} = | \cdot \mathbf{y} |$ $\mathbf{r}_1 \mathbf{y} =$ Ζ $\mathbf{r}_1 \mathbf{Z} = |\mathbf{X}|$ $\overline{(-\mathbf{x}\mathbf{x}-\mathbf{y}\mathbf{y}+2\mathbf{z}\mathbf{z})}\frac{1}{\sqrt{6}}$ $(\mathbf{x}\mathbf{x}-\mathbf{y}\mathbf{y})\frac{1}{\sqrt{2}}$ $(+2\mathbf{x}\mathbf{x}-\mathbf{y}\mathbf{y}-\mathbf{z}\mathbf{z})\frac{1}{\sqrt{6}}$ $|(+2\mathbf{x}\mathbf{x}-\mathbf{y}\mathbf{y}-\mathbf{z}\mathbf{z})\frac{1}{\sqrt{6}}|$ $\mathbf{r}_{1}(-\mathbf{x}\mathbf{x}-\mathbf{y}\mathbf{y}+2\mathbf{z}\mathbf{z})\frac{1}{\sqrt{6}}$ $(-2+1-2)\frac{1}{6} = \frac{-3}{6} = \frac{-1}{2} \left[(2+1+0)\frac{1}{2\sqrt{3}} = \frac{\sqrt{3}}{2} \right]$ $(0 + \mathbf{y}\mathbf{y} - \mathbf{z}\mathbf{z})\frac{1}{\sqrt{2}} \qquad (0 + \mathbf{y}\mathbf{y} - \mathbf{z}\mathbf{z})\frac{1}{\sqrt{2}}$ $\mathbf{r}_1(\mathbf{x}\mathbf{x}-\mathbf{y}\mathbf{y})\frac{1}{\sqrt{2}}$ $(0-1-2)\frac{1}{2\sqrt{3}} = \frac{-\sqrt{3}}{2} \qquad (0-1+0)\frac{1}{2} = \frac{-1}{2}$ /

$$D^{E}(\mathbf{r}_{1}) = \begin{pmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix}$$
$$\chi^{E}_{\mathbf{r}_{1}} = TraceD^{E}(\mathbf{r}_{1}) = -1$$

 $D^{E} irrep \quad \frac{1}{\sqrt{2}} \left(X_{2}^{2}(\alpha,\beta) + X_{-2}^{2}(\alpha,\beta) \right) = \left(x^{2} - y^{2} \right) \frac{1}{\sqrt{2}}$ **basis** $\frac{1}{\sqrt{6}}X_0^2(\alpha,\beta) = (-x^2 - y^2 + 2z^2)\frac{1}{\sqrt{6}}$

j = 2Standing *d*-*Waves*

Vector-tran gives tensor-tran! x y z X V Ζ $\mathbf{R}_{\mathbf{X}}\mathbf{X} = |\mathbf{X} \cdot \cdot \cdot$ $\mathbf{r}_1 \mathbf{x} = | \cdot \mathbf{y} \cdot \mathbf{y} |$ $\mathbf{R}_{\mathbf{x}}\mathbf{y} = | \cdot \cdot \mathbf{z}$ $\mathbf{r}_1 \mathbf{y} = |\cdot \cdot \mathbf{z}|$ $\mathbf{R}_{\mathbf{X}\mathbf{Z}} = |\cdot| -\mathbf{y} \cdot$ $\mathbf{r}_1 \mathbf{z} = \begin{bmatrix} \mathbf{x} & \cdot & \cdot \\ & & \cdot & \cdot \\ & & (-\mathbf{x}\mathbf{x} - \mathbf{y}\mathbf{y} + 2\mathbf{z}\mathbf{z}) \frac{1}{\sqrt{6}} \end{bmatrix}$ $\overline{(-\mathbf{x}\mathbf{x}-\mathbf{y}\mathbf{y}+2\mathbf{z}\mathbf{z})\frac{1}{\sqrt{6}}}$ $(\mathbf{x}\mathbf{x}-\mathbf{y}\mathbf{y})\frac{1}{\sqrt{2}}$ $(\mathbf{x}\mathbf{x}-\mathbf{y}\mathbf{y})\frac{1}{\sqrt{2}}$ $\mathbf{R}_{\mathbf{x}}(-\mathbf{x}\mathbf{x}-\mathbf{y}\mathbf{y}+2\mathbf{z}\mathbf{z})\frac{1}{\sqrt{6}} \quad (-\mathbf{x}\mathbf{x}+2\mathbf{y}\mathbf{y}-\mathbf{z}\mathbf{z})\frac{1}{\sqrt{6}} \quad (-\mathbf{x}\mathbf{x}+2\mathbf{y}\mathbf{y}-\mathbf{z}\mathbf{z})\frac{1}{\sqrt{6}} \\ (+1-2-2)\frac{1}{6} = \frac{-3}{6} = \frac{-1}{2} \quad (-1-2+0)\frac{1}{2\sqrt{3}} = \frac{-\sqrt{3}}{2}$ $\mathbf{r}_{1}(-\mathbf{x}\mathbf{x}-\mathbf{y}\mathbf{y}+2\mathbf{z}\mathbf{z})\frac{1}{\sqrt{6}} \quad (+2\mathbf{x}\mathbf{x}-\mathbf{y}\mathbf{y}-\mathbf{z}\mathbf{z})\frac{1}{\sqrt{6}} \quad (+2\mathbf{x}\mathbf{x}-\mathbf{y}\mathbf{y}-\mathbf{z}\mathbf{z})\frac{1}{\sqrt{6}} \\ (-2+1-2)\frac{1}{6} = \frac{-3}{6} = \frac{-1}{2} \quad (2+1+0)\frac{1}{2\sqrt{3}} = \frac{\sqrt{3}}{2}$ $(0 + yy - zz) \frac{1}{\sqrt{2}}$ $(0 + yy - zz) \frac{1}{\sqrt{2}}$ $\mathbf{R}_{\mathbf{x}}(\mathbf{x}\mathbf{x}-\mathbf{y}\mathbf{y})\frac{1}{\sqrt{2}} \qquad (\mathbf{x}\mathbf{x}+\mathbf{0}-\mathbf{z}\mathbf{z})\frac{1}{\sqrt{2}} \qquad (\mathbf{x}\mathbf{x}+\mathbf{0}-\mathbf{z}\mathbf{z})\frac{1}{\sqrt{2}} \\ (-1+0-2)\frac{1}{2\sqrt{3}} = \frac{-\sqrt{3}}{2} \qquad (1-0+0)\frac{1}{2} = \frac{1}{2}$ $\mathbf{r}_{1}(\mathbf{x}\mathbf{x}-\mathbf{y}\mathbf{y})\frac{1}{\sqrt{2}}$ $(0-1-2)\frac{1}{2\sqrt{3}} = \frac{-\sqrt{3}}{2}$ $(0-1+0)\frac{1}{2} = \frac{-1}{2}$ $D^{E}(\mathbf{r_{1}}) = \begin{pmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix}$ $D^{E}(\mathbf{R}_{x}) = \begin{vmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & \frac{1}{2} \end{vmatrix}$ $\chi_{\mathbf{r}}^{E} = TraceD^{E}(\mathbf{r}_{1}) = -1$ $\chi^{E}_{\mathbf{R}} = TraceD^{E}(\mathbf{R}_{x}) = 0$

$+$ $X_{x^2-y^2}$	x + y + x + x + x + y + x + y + x + y + y	$D^{E} irrep \frac{1}{\sqrt{2}}$ $basis$ $j = 2$ $Standing$ $d-Waves$	$\frac{1}{\sqrt{2}} \left(X_2^2 \left(\alpha, \beta \right) \right)$	$+X_{-2}^{2}$	α,β) 3)	$ = \left(x^{2} - y^{2} \right) \frac{1}{\sqrt{2}} $ = $\left(-x^{2} - y^{2} + 2z^{2} \right) \frac{1}{\sqrt{6}} $	
Vector-tran g	gives tensor-tr	an!		x y	Ζ	-	
$\rho_{\mathbf{X}} \mathbf{X} = \mathbf{X} \cdot \mathbf{A}$	•		$\mathbf{i}_1 \mathbf{x} =$	••	Z		
$\mathbf{\rho}_{\mathbf{x}}\mathbf{v} = \mathbf{\cdot} - \mathbf{v}$	•		$\mathbf{i}_1 \mathbf{y} =$	· -y	•		
	7		$\mathbf{i}_1 \mathbf{z} =$	x .	•		
	$(-xx-yy+2zz)\frac{1}{\sqrt{6}}$	$(\mathbf{x}\mathbf{x}-\mathbf{y}\mathbf{y})\frac{1}{\sqrt{2}}$				$(-\mathbf{x}\mathbf{x}-\mathbf{y}\mathbf{y}+2\mathbf{z}\mathbf{z})\frac{1}{\sqrt{6}}$	$(\mathbf{x}\mathbf{x}-\mathbf{y}\mathbf{y})\frac{1}{\sqrt{2}}$
$O_{\mathbf{X}}(\mathbf{x}\mathbf{x},\mathbf{x}\mathbf{y}\pm 2\mathbf{z}\mathbf{z})^{1}$	$(-\mathbf{x}\mathbf{x}-\mathbf{y}\mathbf{y}+2\mathbf{z}\mathbf{z})\frac{1}{\sqrt{6}}$	$(-\mathbf{x}\mathbf{x}-\mathbf{y}\mathbf{y}+2\mathbf{z}\mathbf{z})\frac{1}{\sqrt{6}}$	i (vv	(xx+2777)	1	$(+2\mathbf{x}\mathbf{x}-\mathbf{y}\mathbf{y}-\mathbf{z}\mathbf{z})\frac{1}{\sqrt{6}}$	$(+2\mathbf{x}\mathbf{x}-\mathbf{y}\mathbf{y}-\mathbf{z}\mathbf{z})\frac{1}{\sqrt{6}}$
$\mathbf{P}_{\mathbf{X}}(\mathbf{-XX}-\mathbf{Y}\mathbf{y}+\mathbf{Z}\mathbf{L}\mathbf{L})$	$(-1 - 1 + 2)\frac{1}{6} = \frac{6}{6} = 1$	$(-1+1+0)\frac{0}{2\sqrt{3}} = 0$		y y † 2222)	$\sqrt{6}$	$(-2+1-2)\frac{1}{6} = \frac{-3}{6} = \frac{-1}{2}$	$(+2+1+0)\frac{3}{2\sqrt{3}} = \frac{+\sqrt{3}}{2}$
$\rho_{\rm X}({\bf x}{\bf x}-{\bf v}{\bf v})^{\frac{1}{2}}$	$(\mathbf{x}\mathbf{x}-\mathbf{y}\mathbf{y}+0)\frac{1}{\sqrt{2}}$	$(\mathbf{x}\mathbf{x}-\mathbf{y}\mathbf{y}+0)\frac{1}{\sqrt{2}}$		、 1		$(0 - \mathbf{y}\mathbf{y} + \mathbf{z}\mathbf{z})\frac{1}{\sqrt{2}}$	$(0 - \mathbf{y}\mathbf{y} + \mathbf{z}\mathbf{z})\frac{1}{\sqrt{2}}$
	$(-1+1+0)\frac{0}{2\sqrt{3}} = 0$	$(1+1+0)\frac{1}{2} = \frac{2}{2} = 1$	$\mathbf{i}_1(\mathbf{x})$	\mathbf{x} - $\mathbf{y}\mathbf{y}$) $\frac{1}{\sqrt{2}}$	-	$(0+1+2)\frac{1}{2\sqrt{3}} = \frac{+\sqrt{3}}{2}$	$(0+1+0)\frac{1}{2} = \frac{1}{2}$
$D^{E}(\boldsymbol{\rho}\mathbf{x}) = \begin{pmatrix} 1\\ 0\\ 0 \end{pmatrix}$	$\begin{pmatrix} 0 \\ 1 \end{pmatrix}$		$D^{E}(\mathbf{i}_{1}$	$) = \begin{pmatrix} - \\ - \\ - \\ - \end{pmatrix}$	$\frac{\frac{1}{2}}{\sqrt{3}}$	$\begin{array}{c} \underline{\sqrt{3}} \\ \underline{1} \\ \underline{1} \\ 2 \end{array} \end{array}$	
$\chi_{\rho_{\rm X}} = IraceD^{-1}$	$(\mathbf{\rho}_{\mathbf{X}}) = -1$		$\chi_{\mathbf{i}_{1}}^{E} = 2$	TraceD	$e^{E}(\mathbf{i}_{1}$)=0	

William G. Harter - University of Arkansas

Rotational Energy Surfaces (RES) and Lab vs Body molecular rotor states, levels, and spectra: Body symmetry *O* of octahedral rotors $H=BJ^2+\Sigma t_{kq}T_q^k$

RES and Multipole \mathbf{T}_{q^k} *tensor expansions* RES and matrix representation of multipole T_{q^k} tensor H-expansions What tensors go in tetrahedral (T_d) or octahedral (O_h) free-rotor Hamiltonia H? 4^{th} -rank [k=4] multipole terms O_h -symmetric function and O_h operator $\mathbf{T}^{\{4\}}$ RES and matrix irreps of O_h multipole $T_q^{[4]}$ and $T_q^{[2,2]}$ tensor H-expansions Matrix D^{T_1} , D^{T_2} , D^E , D^{A_2} , and D^{A_1} , irreducible representations (irreps) of O Finding O_h group products. Examples: $\mathbf{R}_z \mathbf{1} = \mathbf{R}_z$ or $\mathbf{R}_z \mathbf{i}_6 = \mathbf{r}_3$ or $\mathbf{i}_6 \mathbf{R}_z = \mathbf{r}_1$ D^{T_1} irreps derived visually using unit vectors {x,y,z} of p-wave $D^{\ell=1}{x,y,z}$ D^{T_2} irreps derived from standing d-wave $D^{\ell=2}{x,y,z}$. D^E irrep tensor basis Summary of irrep characters χ^{T1} , χ^{T2} , χ^{E} , χ^{A2} , and χ^{A1} of O $R(3) \supset O$ character analysis. $O \supset D_4 \supset D_2$ and $O \supset D_4 \supset C_4$ level correlations s Applications of Group \supset Sub-group correlation Comparing Octahedral and Asymmetric rotor states and level clusters at high J

$$\begin{array}{c} \text{Summary of irrep characters } \chi^{T_{I}}, \chi^{T_{2}}, \chi^{E}, \chi^{A_{2}}, and \chi^{A_{I}} of O \\ D^{\varepsilon}(\mathbf{r}_{1}) = \begin{pmatrix} -\frac{1}{2} & -\frac{\sqrt{5}}{2} \\ \frac{\sqrt{5}}{2} & -\frac{1}{2} \end{pmatrix} D^{\varepsilon}(\mathbf{\rho}_{X}) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} D^{\varepsilon}(\mathbf{R}_{x}) = \begin{pmatrix} -\frac{1}{2} & -\frac{\sqrt{5}}{2} \\ -\frac{\sqrt{5}}{2} & \frac{1}{2} \end{pmatrix} D^{\varepsilon}(\mathbf{i}_{1}) = \begin{pmatrix} -\frac{1}{2} & \frac{\sqrt{5}}{2} \\ \frac{\sqrt{5}}{2} & \frac{1}{2} \end{pmatrix} \\ \frac{\chi^{\varepsilon}_{r_{1}} = TraceD^{\varepsilon}(\mathbf{r}_{1}) = -1}{\chi^{\varepsilon}_{\rho_{X}} = TrD^{\varepsilon}(\boldsymbol{\rho}_{X}) = 2} \chi^{\varepsilon}_{\mathbf{R}_{1}} = TraceD^{\varepsilon}(\mathbf{R}_{x}) = 0 \quad \chi^{\varepsilon}_{1} = TraceD^{\varepsilon}(\mathbf{i}_{1}) = 0 \\ \frac{\chi^{\varepsilon}_{r_{1}} = TraceD^{\varepsilon}(\mathbf{r}_{1}) = -1}{\chi^{T_{I}}(\mathbf{r}_{1}) = \begin{pmatrix} I & \cdot & \cdot \\ \cdot & I & \cdot \\ \chi^{T_{I}}_{\mathbf{r}_{1}} = TrD^{T_{I}}(\mathbf{r}_{1}) = 0 \quad \chi^{T_{I}}(\mathbf{\rho}_{x}) = \begin{pmatrix} I & \cdot & \cdot \\ \cdot & -I & \cdot \\ \cdot & -I & \cdot \\ \cdot & I & \cdot \\ \chi^{T_{I}}_{\mathbf{r}_{x}} = +1 & \chi^{T_{I}}_{\mathbf{n}_{x}} = +1 \\ \chi^{T_{I}}_{\mathbf{n}_{x}} = +1 & \chi^{T_{I}}_{\mathbf{n}_{x}} = -1 \\ \frac{D^{T_{2}}(\mathbf{r}_{1}) = \begin{pmatrix} \cdot & I & \cdot \\ \cdot & I & \cdot \\ I & \cdot & \cdot \\ I & \cdot & I \\ \chi^{T_{2}}_{\mathbf{r}_{1}} = TrD^{T_{I}}(\mathbf{r}_{1}) = 0 \\ \chi^{T_{2}}(\mathbf{\rho}_{x}) = \begin{pmatrix} I & \cdot & \cdot \\ \cdot & -I & \cdot \\ \cdot & I & \chi^{T_{I}}_{\mathbf{n}_{x}} = +1 \\ \chi^{T_{I}}_{\mathbf{n}_{x}} = +1 \\ \chi^{T_{I}}_{\mathbf{n}_{x}} = +1 \\ \chi^{T_{2}}_{\mathbf{n}_{x}} = +1 \\ \chi^{T_{2}}_{\mathbf{n$$

xyz

William G. Harter - University of Arkansas

Rotational Energy Surfaces (RES) and Lab vs Body molecular rotor states, levels, and spectra: Body symmetry *O* of octahedral rotors $\mathbf{H}=\mathbf{BJ}^2+\Sigma t_{kq}\mathbf{T}_q^k$

RES and Multipole \mathbf{T}_{q^k} *tensor expansions* RES and matrix representation of multipole T_{q^k} tensor H-expansions What tensors go in tetrahedral (T_d) or octahedral (O_h) free-rotor Hamiltonia H? 4^{th} -rank [k=4] multipole terms O_h -symmetric function and O_h operator $\mathbf{T}^{\{4\}}$ RES and matrix irreps of O_h multipole $T_q^{[4]}$ and $T_q^{[2,2]}$ tensor H-expansions Matrix D^{T_1} , D^{T_2} , D^E , D^{A_2} , and D^{A_1} , irreducible representations (irreps) of O Finding O_h group products. Examples: $\mathbf{R}_z \mathbf{1} = \mathbf{R}_z$ or $\mathbf{R}_z \mathbf{i}_6 = \mathbf{r}_3$ or $\mathbf{i}_6 \mathbf{R}_z = \mathbf{r}_1$ D^{T_1} irreps derived visually using unit vectors {x,y,z} of p-wave $D^{\ell=1}{x,y,z}$ D^{T_2} irreps derived from standing d-wave $D^{\ell=2}{x,y,z}$. D^E irrep tensor basis Summary of irrep characters χ^{T_1} , χ^{T_2} , χ^E , χ^{A_2} , and χ^{A_1} of O $R(3) \supset O$ character analysis. $O \supset D_4 \supset D_2$ and $O \supset D_4 \supset C_4$ level correlations s Applications of Group \supset Sub-group correlation Comparing Octahedral and Asymmetric rotor states and level clusters at high J

<i>R(3</i>	$C) \supset O$	chara	C <i>ter</i> Trace 1	<u>апс</u> D ¹ (w0	alysi	is (Princi	<i>ples of Symme</i> Single Electron Orbita	etry D	yna Fre	<i>mic</i> equence	CS C	& S 0 Iri	pec reps	etroscopy)
		$\Theta = \frac{2\pi}{3}$	Θ	$=\pi$	$\Theta = \frac{2\pi}{4}$	<u>7</u>	$\Theta = \pi$	Spectroscopic		c.A.	CA 2	сE	cT.	cT_{2}	(Ch.5 p. <u>384</u>)
	$\omega = 0^{\circ}$	$\omega = 120^{\circ}$	$\omega =$	180°	$\omega = 9$	90°	ω == 180°	Labeling		f^{n_1}	f^{n_2}	<i>J</i> 2	<i>J</i> ²¹	J - 2	-
l = 0	1	1		1		1	1	S _g	l = 0	1					A_{1g}
1	3	0		-1		1	-1	P_u	1	•	•	•	1	•	T_{1u}
2	5	-1		1	-	-1	1	d_g	2	· ·	•	1	·	1	$E_g + T_{2g}$
3	7	1		-1	-	- 1	-1	f_u	3	· ·	1	•	1	1	$A_{2u} + T_{1u} + T_{2u}$
4	9	0		1		1	1	g _g	4	1	•	1	1	1	$\Big A_{1g} + E_g + T_{1g} + T_{2g} \Big $
5	11	-1		-1		1	-1	h _u	5	·	·	1	2	1	
6	13	1		1	-	- 1	1	i _g	6	1	1	1	1	2	
7	15	0		-1	-	-1	-1	k_{u}	7	•	1	1	2	2	
8	17	-1		1		1	1	l l _g	8	1	•	2	2	2	
9	19	1		-1		1	-1	m_u	9	1	1	1	3	2	
10	21	0		1	-	-1	1	n _g	10	1	1	2	2	3	
11	23	-1		-1	-	-1	-1	o _u	11		1	2	3	3	
12	25	1		1		_1	1	q_g	12	2	1	2	3	3]
13	27	0		-1		1	-1	r _u	13	$1^{}$	1	2	4	3	
14	29	-1		1	-	-1	1	t _g	14	1	1	3	3	4	
15	31	1		-1	-	-1	-1	u _u	15	1	2	2	4	4	
16	33	0		1		1	1		16	2	1	3	4	4	
17	35	-1		-1		1	-1		17	1	1	3	5	4	
18	37	1		1	-	-1	1		18	2	2	3	4	5	
19	39	0		-1	-	-1	-1		19	1	2	3	5	5	
20	41	-1		1		1	1	(5.6.5a)	20	2	1	4	5	5	(5.6.5b)
	C) 1 r	\mathbf{R}^2	\mathbf{R}^3	\mathbf{i}_k				•	1					
	A	. 1 1	1	1	1		$\mathbf{D}(3)$	have atom $\gamma^{\ell}(\Theta) =$	$= \frac{\sin(\ell + \ell)}{2}$	$\left(\frac{1}{2}\right)\Theta$) -				
	٨	1 1 1	1	1	1		$\Lambda(J)$ Cl	$\frac{1}{10000000000000000000000000000000000$		Θ					
	A	2 1 1	1	-1	-1				5111-	2					
	E	2 2 -1	2	0	0	\cap	charac	tors							
	Т	$\frac{1}{1}$ 3 0	-1	1	-1	U	cnur ucl								
	т		1	1	1										
		$2 \qquad 5 0$	-1	-1	1										

William G. Harter - University of Arkansas

Rotational Energy Surfaces (RES) and Lab vs Body molecular rotor states, levels, and spectra: Body symmetry *O* of octahedral rotors $H=BJ^2+\Sigma t_{kq}T_q^k$

RES and Multipole \mathbf{T}_{q^k} *tensor expansions* RES and matrix representation of multipole T_{q^k} tensor H-expansions What tensors go in tetrahedral (T_d) or octahedral (O_h) free-rotor Hamiltonia H? 4^{th} -rank [k=4] multipole terms O_h -symmetric function and O_h operator $\mathbf{T}^{\{4\}}$ RES and matrix irreps of O_h multipole $T_q^{[4]}$ and $T_q^{[2,2]}$ tensor H-expansions Matrix D^{T_1} , D^{T_2} , D^E , D^{A_2} , and D^{A_1} , irreducible representations (irreps) of O *Finding O_h group products.* Examples: $\mathbf{R}_{z}\mathbf{1}=\mathbf{R}_{z}$ or $\mathbf{R}_{z}\mathbf{i}_{6}=\mathbf{r}_{3}$ or $\mathbf{i}_{6}\mathbf{R}_{z}=\mathbf{r}_{1}$ D^{T_1} irreps derived visually using unit vectors {**x**,**y**,**z**} of *p*-wave $D^{\ell=1}$ {x,y,z} D^{T_2} irreps derived from standing d-wave $D^{\ell=2}{x,y,z}$. D^E irrep tensor basis Summary of irrep characters χ^{T_1} , χ^{T_2} , χ^E , χ^{A_2} , and χ^{A_1} of O $R(3) \supset O$ character analysis. $O \supset D_4 \supset D_2$ and $O \supset D_4 \supset C_4$ level correlations s *Applications of Group*⊃*Sub-group correlation* Comparing Octahedral and Asymmetric rotor states and level clusters at high J

	D. Tetra tahedi O A1 A2 E T1 T2	4 Dagonal ral		COP ding V ragona D4 A1 B1 B1 B1 E A2 E	Prelation Vave Chain NOrmal Dihedra D2 A1 A1		$ \begin{array}{c c} D_4 & 1 \\ \hline A_1 & B_1 \\ \hline A_2 & B_2 \\ \hline B_2 & B_2 \\ \hline B_2 & B_2 \\ \hline B_2 & B_2 \\ \hline D_4 \downarrow B_1 \\ \hline A_1 & B_1 \\ \hline A_2 & B_2 \\ \hline B_2 & B_2 \\ \hline B_1 & A_2 \\ \hline B_1 & A_2 \\ \hline B_2 & B_2 \\ \hline B_1 & A_2 \\ \hline B_2 & B_2 \\ \hline B_1 & A_2 \\ \hline B_2 & B_2 \\ \hline B_1 & A_2 \\ \hline B_2 & B_2 \\ \hline B_1 & A_2 \\ \hline B_2 & B_2 \\ \hline B_1 & A_2 \\ \hline B_1 & A_2 \\ \hline B_2 & B_2 \\ \hline B_1 & A_2 \\ \hline B_2 & B_2 \\ \hline B_1 & A_2 \\ \hline B_2 & B_2 \\ \hline B_1 & A_2 \\ \hline B_2 & B_2 \\ \hline B_1 & A_2 \\ \hline B_1 & A_$	$ \begin{array}{c cccc} I & \rho_z \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 2 & -2 \\ \hline \mu al D_2 \\ D_2 & A \\ \hline 0 & 1 \\ \hline$	$ \begin{array}{ccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} \rho_{x,y} & \mathbf{i} \\ 1 & & \\ 1 & & \\ -1 & & \\ -1 & & \\ -1 & & \\ -1 & & \\ 0 & \\ \end{array} $ $ \begin{array}{c} \mathbf{R}_{3}^{2}, \mathbf{R} \\ \mathbf{R}_{3}^{2}, \mathbf{R} \\ 1 & & \\ $	$ \frac{3,4}{1} $ -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1		D4 Tetrag ahedra O A1 A2 E T1 T2			OPP ag Wa gonal A1 B1 B1 E A2 E	ela ve Ch	$\begin{array}{c} ction\\ main\\ cyclic-4\\ C4\\ 04\\ \hline 04\\ \hline 24\\ \hline 04\\ \hline 14\\ \hline 34\\ \hline 04\\ \hline 14\\ \hline 34\\ \hline \end{array}$	$D_{2}^{Nm} \{ 1, \\ D_{2}^{Un} \{ 1, \\ D_{2}^{Un} \{ 1, \\ A_{1} \\ 1 \\ B_{1} \\ 1 \\ A_{2} \\ 1 \\ B_{2} \\ 1 \\ B_{2} \\ 1 \\ B_{2} \\ B_{2} \\ B_{2} \\ B_{2} \\ B_{2} \\ B_{2} \\ E \\ B_{2} \\ E \\ E \\ E \\ E \\ T_{1} \\ B_{1} \\ A_{2} \\ E \\ E \\ T_{1} \\ B_{1} \\ B_{1} \\ A_{2} \\ E \\ E \\ T_{1} \\ B_{1} \\ B_{1} \\ B_{1} \\ B_{2} \\ B_{2} \\ E \\ E \\ T_{1} \\ B_{1} \\ B_{2} \\ B_{2} \\ E \\ E \\ T_{1} \\ B_{1} \\ B_{2} \\ B_{2} \\ E \\ E \\ T_{1} \\ B_{1} \\ B_{2} \\ B_{2} \\ E \\ B_{2} \\ E \\ T_{1} \\ B_{1} \\ B_{1} \\ B_{2} \\ B_{2} \\ E \\ E \\ T_{1} \\ B_{1} \\ B_{2} \\ B_{2} \\ E \\ B_{1} \\ B_{1} \\ B_{1} \\ B_{2} \\ B_{2} \\ E \\ E \\ T_{1} \\ B_{1} \\ B_{2} \\ B_{2} \\ E \\ T_{1} \\ B_{1} \\ B_{2} \\ B_{2} \\ E \\ T_{1} \\ B_{1} \\ B_{2} \\ B_{2} \\ E \\ T_{1} \\ B_{1} \\ B_{2} \\ B_{2} \\ E \\ T_{1} \\ B_{1} \\ B_{2} \\ B_{2} \\ B_{2} \\ E \\ T_{1} \\ B_{1} \\ B_{2} \\ B_{2} \\ E \\ T_{1} \\ B_{1} \\ B_{2} \\ E \\ T_{1} \\ B_{1} \\ B_{1} \\ B_{2} $	$ \mathbf{R}_{z}^{2}, \mathbf{F}_{z}^{2}, \mathbf{F}_{z}^$	$R_x^2, R_x^2, R_x^1, I_x^1$ $1_3, I_x^1$ $1_1 -1$ $1_1 -1$	2_{4} 2_{4} 2_{4} 1 . $\mathbf{R}, \mathbf{\hat{F}}$ \mathbf{R} \mathbf{R} 1 . \mathbf{R} 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . . . 1	$-1_{4} = 3_{4}$ \vdots 1 $\mathbf{\hat{k}}_{xyz}$ $\mathbf{\hat{k}}_{x$
Ì.	12	 Ę	===	B2	< <u>B2</u> A2	A_1	B_2 E	1	· 1	•	1		12	=,,,		32		<u>34</u> 24	T ₁ T ₂	3 0 3 0	-1 -1	1 -1	-1 1
					L	nOri	mal								0.527								
NOrmal	<i>D</i> ₂ =	= {1,]	$\mathbf{R}_3^2, \mathbf{R}$	$\mathbf{R}_{1}^{2},\mathbf{R}_{2}^{2}$	} UnOrma	$ul D_2$	= {1,	$\mathbf{R}_{3}^{2},\mathbf{i}$	3, i 4	}												-	-1 ₄ =
$O \downarrow D_2$	A_1	B_1	A_2	B ₂	$O \downarrow D_2$	A_1	B_1	A_2	B_2			O↓ D ₄	A_1	B_1	A_2	B_2	E		$\mathbf{O} \downarrow \mathbf{C}_4$	04	1_4	24	34
A_1	1	•	•	•	A ₁	1	•	•	•			A_1	1	•	•	•	•		A_1	1	•	•	•
A_2	1	•	•	•	A_2	•	•	1	•			A_2	.	1	•	•			A_2	•	•	1	•
E	2	•	•	•	E	1	•	1	•			E	1	1	•	•			E	1	•	1	•
T_1	•	1	1	1	T ₁	•	1	1	1			T_1	•	•	1	•	1		T_1	1	1	•	1
T_2	•	1	1	1	T_2	1	1	•	1			T_2	•	•	•	1	1		T ₂	•	1	1	1

William G. Harter - University of Arkansas

Rotational Energy Surfaces (RES) and Lab vs Body molecular rotor states, levels, and spectra: Body symmetry *O* of octahedral rotors $H=BJ^2+\Sigma t_{kq}T_q^k$

RES and Multipole \mathbf{T}_{q^k} *tensor expansions* RES and matrix representation of multipole T_{q^k} tensor H-expansions What tensors go in tetrahedral (T_d) or octahedral (O_h) free-rotor Hamiltonia H? 4^{th} -rank [k=4] multipole terms O_h -symmetric function and O_h operator $\mathbf{T}^{\{4\}}$ RES and matrix irreps of O_h multipole $T_q^{[4]}$ and $T_q^{[2,2]}$ tensor H-expansions Matrix D^{T_1} , D^{T_2} , D^E , D^{A_2} , and D^{A_1} , irreducible representations (irreps) of O Finding O_h group products. Examples: $\mathbf{R}_z \mathbf{1} = \mathbf{R}_z$ or $\mathbf{R}_z \mathbf{i}_6 = \mathbf{r}_3$ or $\mathbf{i}_6 \mathbf{R}_z = \mathbf{r}_1$ D^{T_1} irreps derived visually using unit vectors {**x**,**y**,**z**} of *p*-wave $D^{\ell=1}$ {x,y,z} D^{T_2} irreps derived from standing d-wave $D^{\ell=2}{x,y,z}$. D^E irrep tensor basis Summary of irrep characters χ^{T_1} , χ^{T_2} , χ^E , χ^{A_2} , and χ^{A_1} of O $R(3) \supset O$ character analysis. $O \supset D_4 \supset D_2$ and $O \supset D_4 \supset C_4$ level correlations s *Applications of Group Sub-group correlation* Comparing Octahedral and Asymmetric rotor states and level clusters at high J

This refers: QTforCA Unit 8. Ch. 25 Fig. 25.4.9

Fig. 25.4.9 Infrared spectra showing fine structure clusters. Tetrafluorosilane (SiF_4) spectrum from a $v_3 R(30)$ transition _____. [After C. W. Patterson, R. S. McDowell, N. G. Nereson, B. J. Krohn, J. S. Wells, and F. R. Peterson, J. Mol. Spectrosc. **91**, 416 (1982). [Cubane (C_8H_8) spectrum from $v_{11} P(30)$, P(31), and P(32), transitions; cubane (C_8H_8) spectrum from $v_{12} R(36)$, transition. [After A. S. Pine, A. G. Maki, A. G. Robiette, B. J. Krohn, J. K. G. Watson, and Th Urbanek, J. Am. Chem. Soc., **106**, 891 (1984).]

Fig. 25.4.7 *Different choices of rotation axes for octahedral rotor corresponding to local symmetry* C_3 , C_2 , and C_4 . *Tables correlate global octahedral symmetry species with the local ones.*

QTforCA Unit 8. Ch. 25 Fig. 25.4.7

$O \supset D_4 \supset C_4$ correlation

(b) Tetragonal Moving Wave Chain

C-H Bond

Appendix: $O \supset D_4 \supset D_2$ irrep table very similar to our irreps on p.48

QTCALect.21p.77

See link for there types, choices, and approaches. This is a "Bottom-up" development

Ireps for $O \supset D_4 \supset D_2$ *subgroup chain*

$\mathcal{D}^{T_1}(1) =$	$R_1^2 =$	r1 -	r ₂ =	$r_1^2 =$	$r_2^2 =$	$\mathcal{D}^{T_2}(1) =$	$R_1^2 =$	1	<i>r</i> ₁ =		<i>r</i> ₂ =		$r_1^2 =$		$r_2^2 =$	
$\begin{vmatrix} 1 & \cdot & \cdot \\ \cdot & 1 & \cdot \\ \cdot & \cdot & 1 D_2 \end{vmatrix}$	$\begin{vmatrix} 1 & \cdot & \cdot \\ \cdot & -1 & \cdot \\ \cdot & \cdot & -1 \end{vmatrix}$	$\begin{array}{ccc} \cdot & \cdot & 1 \\ 1 & \cdot & \cdot \\ \cdot & 1 \end{array}$	$\begin{vmatrix} \cdot & \cdot & -1 \\ 1 & \cdot & \cdot \\ \cdot & -1 & \cdot \end{vmatrix}$	$\begin{array}{ccc} \cdot & 1 & \cdot \\ \cdot & \cdot & 1 \\ 1 & \cdot & \cdot \end{array}$	$\begin{vmatrix} \cdot & 1 & \cdot \\ \cdot & \cdot & -1 \\ -1 & \cdot & \end{vmatrix}$	$ \begin{array}{ccccccccccccccccccccccccccccccccc$	$\begin{vmatrix} 1 & \cdot \\ \cdot & -1 \\ \cdot & \cdot \end{vmatrix}$	$\begin{vmatrix} \cdot \\ \cdot \\ -1 \end{vmatrix}$		$\begin{array}{c c} 1 \\ \cdot \\ 1 \end{array}$	$\begin{vmatrix} \cdot & \cdot \\ -1 & \cdot \\ \cdot & 1 \end{vmatrix}$	$\left \begin{array}{c} -1 \\ \cdot \end{array} \right $	$\begin{vmatrix} \cdot & - \\ \cdot & \cdot \\ 1 & \cdot \end{vmatrix}$	$\begin{vmatrix} 1 & \cdot \\ & -1 \\ \cdot \end{vmatrix}$	$\begin{vmatrix} \vdots \\ -1 \end{vmatrix}$	$ \begin{array}{ccc} -1 & \cdot \\ \cdot & 1 \\ \cdot & \cdot \end{array} $
$\mathcal{D}^{T_1}(R_3^2) =$	$R_{2}^{2} =$	r ₄ =	r ₃ =	$r_{3}^{2} -$	$r_4^2 =$	$\mathcal{D}^{T_2}(R_3^2) =$	$= R_2^2 =$		<i>r</i> ₄ =		$r_3 =$		$r_{3}^{2} =$		$r_4^2 =$	
$\begin{vmatrix} -1 & \cdot & \cdot \\ \cdot & -1 & \cdot \\ \cdot & \cdot & 1 \end{vmatrix}$	$\begin{vmatrix} -1 & \cdot & \cdot \\ \cdot & 1 & \cdot \\ \cdot & \cdot & -1 \end{vmatrix}$	$\begin{vmatrix} \cdot & \cdot & 1 \\ -1 & \cdot & \cdot \\ \cdot & -1 \end{vmatrix}$	$\begin{vmatrix} \cdot & \cdot & -1 \\ -1 & \cdot & \cdot \\ \cdot & 1 \end{vmatrix}$	$\begin{vmatrix} \cdot & -1 & \cdot \\ \cdot & \cdot & 1 \\ -1 & \cdot & \cdot \end{vmatrix}$	$ \begin{array}{cccc} \cdot & -1 & \cdot \\ \cdot & \cdot & -1 \\ 1 & \cdot & \cdot \end{array} $	$\begin{vmatrix} -1 & \cdot \\ \cdot & -1 \\ \cdot & \cdot \end{vmatrix}$	$\begin{array}{c c} \cdot \\ \cdot \\ 1 \end{array} \begin{vmatrix} -1 & \cdot \\ \cdot & 1 \\ \cdot & \cdot \end{vmatrix}$	$\begin{vmatrix} \\ \\ \\ -1 \end{vmatrix}$	$\begin{vmatrix} \cdot & \cdot \\ 1 & \cdot \\ \cdot & 1 \end{vmatrix}$	1 ·	$\begin{vmatrix} \cdot & \cdot \\ 1 & \cdot \\ \cdot & -1 \end{vmatrix}$	$\left \begin{array}{c} -1 \\ \cdot \end{array} \right $	$\left \begin{array}{c} \vdots\\ -1\end{array}\right $	$\begin{vmatrix} 1 & \cdot \\ \cdot & -1 \\ \cdot & \cdot \end{vmatrix}$	$\begin{vmatrix} \cdot & 1 \\ \cdot & \cdot \\ 1 & \cdot \end{vmatrix}$	· 1
$\mathcal{D}^{T_1}(R_3) =$	$i_4 =$	<i>i</i> ₁ =	$i_2 =$	$R_1^3 =$	$R_1 =$	$\mathcal{D}^{T_2}(R_3) =$	i ₄ =		$i_1 =$		$i_2 =$	-1	$R_1^3 =$		$R_1 =$	1
$\begin{vmatrix} \cdot & -1 & \cdot \\ 1 & \cdot & \cdot \\ \cdot & \cdot & 1 \end{vmatrix}$		$\left \begin{array}{ccc} 1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & -1 & 1 \end{array} \right $	$\begin{vmatrix} \cdot & \cdot & -1 \\ \cdot & -1 & \cdot \\ -1 & \cdot & \cdot \end{vmatrix}$	$\begin{vmatrix} 1 & \cdot & \cdot \\ \cdot & \cdot & 1 \\ \cdot & -1 & \cdot \end{vmatrix}$	$\begin{vmatrix} 1 & \cdot & \cdot \\ \cdot & \cdot & -1 \\ \cdot & 1 & \cdot \end{vmatrix}$	$\begin{array}{ccc} \cdot & -1 \\ 1 & \cdot \\ \cdot & \cdot \end{array}$	$\begin{array}{c c} \cdot & -1 \\ \cdot & -1 \\ -1 \end{array} \begin{vmatrix} \cdot & -1 \\ \cdot & \cdot \end{vmatrix}$	· · 1	$\begin{vmatrix} \cdot & \cdot \\ \cdot & 1 \\ -1 & \cdot \end{vmatrix}$	$\begin{bmatrix} -1\\ \cdot\\ \cdot \end{bmatrix}$	$\begin{vmatrix} \cdot & \cdot \\ \cdot & 1 \\ 1 & \cdot \end{vmatrix}$	1	-1 . .	$\begin{array}{c c} \cdot & \cdot \\ \cdot & 1 \\ -1 & \cdot \end{array}$	-1 . .	$\begin{array}{ccc} \cdot & \cdot \\ \cdot & -1 \\ 1 & \cdot \end{array}$
$\mathcal{D}^{T_1}(R_3^3) =$	$i_3 = D_4$	R ₂ =	$R_2^3 =$	i ₆ =	$i_5 =$	$\mathscr{D}^{T_2}(R_3^3) =$	i ₃ =	d D	$R_{2} =$		$R_{2}^{3} =$		<i>i</i> ₆ =		<i>i</i> ₅ =	
$\begin{vmatrix} \cdot & 1 & \cdot \\ -1 & \cdot & \cdot \\ \cdot & \cdot & 1 \end{vmatrix}$	$\begin{vmatrix} \cdot & 1 & \cdot \\ 1 & \cdot & \cdot \\ \cdot & \cdot & -1 \end{vmatrix}$	$\begin{vmatrix} \cdot & \cdot & 1 \\ \cdot & 1 & \cdot \\ -1 & \cdot & \cdot \end{vmatrix}$	$\begin{vmatrix} \cdot & \cdot & -1 \\ \cdot & 1 & \cdot \\ 1 & \cdot & \cdot \end{vmatrix}$	$\begin{vmatrix} -1 & \cdot & \cdot \\ \cdot & \cdot & 1 \\ \cdot & 1 & \cdot \end{vmatrix}$	$\begin{vmatrix} -1 & \cdot & \cdot \\ \cdot & \cdot & -1 \\ \cdot & -1 & \cdot \end{vmatrix}$	$\begin{array}{ccc} \cdot & 1 \\ -1 & \cdot \\ \cdot & \cdot \end{array}$	$ \begin{array}{c c} \cdot \\ \cdot \\ -1 \end{array} \begin{vmatrix} \cdot & 1 & \cdot \\ 1 & \cdot & \cdot \\ \cdot & \cdot & 1 \end{vmatrix} $		$\begin{vmatrix} \cdot & \cdot \\ \cdot & -1 \\ 1 & \cdot \end{vmatrix}$	$ \begin{bmatrix} -1 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} $	· · -1		$\begin{vmatrix} 1 & \cdot \\ \cdot & \cdot \\ \cdot & 1 \end{vmatrix}$	1		-1
T_1	Vector x,y,z	bas	$\begin{array}{c c c} O & T_1 \\ \text{sis:} & D_4 & E \\ D_2 & B_1 \end{array}$	$ \begin{array}{c c} \mathbf{T}_1 \\ \mathbf{E} \\ \mathbf{B}_2 \end{array} \begin{array}{c} \mathbf{T}_1 \\ \mathbf{A}_2 \\ \mathbf{A}_2 \end{array} $		T	2	To yz	ensor z,xz,xy	V		basis	$\begin{array}{c c} O \\ \vdots \\ D_4 \\ D_2 \end{array}$	$ \begin{array}{c c} \mathbf{T}_2 \\ \mathbf{E} \\ \mathbf{B}_1 \end{array} \right \begin{array}{c} \mathbf{T}_2 \\ \mathbf{T}_2 \\ \mathbf{E} \\ \mathbf{B}_2 \end{array} $	$\left.\begin{array}{c} \mathbf{T}_{2} \\ \mathbf{B}_{2} \\ \mathbf{A}_{2} \end{array}\right.$	

$\mathcal{D}^{E}(1) \qquad \qquad R_{1}^{2} = $ $\begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} \qquad \qquad \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix}$	$r_{1} = r_{2} = \left \frac{-1}{2} \frac{-\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} \frac{-1}{2} \\ \frac{\sqrt{3}}{2} \frac{\sqrt{3}}{2} \frac{-1}{2} \\ \frac{\sqrt{3}}{2} \frac{\sqrt{3}}{2} \frac{\sqrt{3}}{2} \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} \frac{\sqrt{3}}$	$\begin{vmatrix} r_1^2 = & r_2^2 = \\ \begin{vmatrix} -1 & \sqrt{3} \\ 2 & 2 \\ -\sqrt{3} & -1 \\ 2 & 2 \\ \end{vmatrix} \begin{vmatrix} \frac{-1}{2} & \sqrt{3} \\ -\sqrt{3} & 2 \\ -\sqrt{3} & -1 \\ 2 & 2 \\ \end{vmatrix}$	E
$\mathcal{D}^{2}(R_{3}^{2}) \qquad R_{2}^{2} = \left \begin{array}{c} 1 & 0 \\ 0 & 1 \end{array} \right \qquad \left \begin{array}{c} 1 & 0 \\ 0 & 1 \end{array} \right $	$r_{4} = r_{3} = \left \begin{array}{cc} -1 & -\sqrt{3} \\ \frac{-1}{2} & \frac{-\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{-1}{2} \end{array} \right \left \begin{array}{c} -1 & -\sqrt{3} \\ \frac{-1}{2} & \frac{-\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{-1}{2} \end{array} \right $	$ \begin{array}{c} r_{3}^{2} = & r_{4}^{2} = \\ \left \begin{array}{c} -1 & \sqrt{3} \\ 2 & 2 \\ -\sqrt{3} & -1 \\ 2 & 2 \end{array} \right & \left \begin{array}{c} -1 & \sqrt{3} \\ 2 & 2 \\ -\sqrt{3} & -1 \\ 2 & 2 \end{array} \right \\ \left \begin{array}{c} -\sqrt{3} & -1 \\ 2 & 2 \end{array} \right \\ \end{array} $	Tensor $x^2+y^2-2z^2$
$\mathcal{D}^{E}(R_{3}) \qquad i_{4} =$ $\begin{vmatrix} 1 & 0 \\ 0 & -1 \end{vmatrix} \qquad \begin{vmatrix} 1 & 0 \\ 0 & -1 \end{vmatrix}$ $\mathcal{D}^{E}(R_{3}^{3}) \qquad i_{3} =$	$ \begin{array}{cccc} i_1 = & i_2 = \\ & \left \begin{array}{c} -1 & \sqrt{3} \\ 2 & 2 \\ \sqrt{3} & 1 \\ 2 & 2 \end{array} \right & \left \begin{array}{c} -1 & \sqrt{3} \\ 2 & 2 \\ \sqrt{3} & 1 \\ 2 & 2 \end{array} \right \\ R_2 = & R_2^3 = \end{array} $	$\begin{array}{c cccc} R_{1}^{3} = & R_{1} = \\ & \left \begin{array}{c} -1 & -\sqrt{3} \\ \hline 2 & \frac{-\sqrt{3}}{2} \\ \hline -\sqrt{3} & \frac{1}{2} \end{array} \right & \left \begin{array}{c} -1 & -\sqrt{3} \\ \hline 2 & \frac{-\sqrt{3}}{2} \\ \hline -\sqrt{3} & \frac{1}{2} \\ \hline \end{array} \right & \left \begin{array}{c} -\sqrt{3} \\ \hline -\sqrt{3} \\ \hline 2 \\ \hline \end{array} \right \\ i_{6} = & i_{5} = \end{array}$	$\begin{pmatrix} X^2 - Y^2 \end{pmatrix} \sqrt{3}$ basis: $D_4 \begin{vmatrix} E \\ A_1 \end{vmatrix} \begin{vmatrix} E \\ B_1 \\ A_1 \end{vmatrix}$
$\begin{vmatrix} 1 & 0 \\ 0 & -1 \end{vmatrix} \qquad \begin{vmatrix} 1 & 0 \\ 0 & -1 \end{vmatrix}$	$\begin{vmatrix} -1 & \sqrt{3} \\ 2 & 2 \\ \sqrt{3} & 1 \\ 2 & 2 \end{vmatrix} \qquad \begin{vmatrix} -1 & \sqrt{3} \\ 2 & 2 \\ \sqrt{3} & 1 \\ 2 & 2 \end{vmatrix}$	$\begin{vmatrix} -1 & -\sqrt{3} \\ 2 & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{vmatrix} \qquad \begin{vmatrix} -1 & -\sqrt{3} \\ 2 & -\sqrt{3} \\ -\sqrt{3} & \frac{1}{2} \\ -\sqrt{3} & \frac{1}{2} \end{vmatrix}$	$\nu_2 \mid n_1 \mid \mid n_1 \mid$

$\mathrm{O}: \chi_{\mathbf{g}}^{\mu}$	g=1	\mathbf{r}_{1-4} $\mathbf{\tilde{r}}_{1-4}$	$ ho_{xyz}$	$f R_{xyz}$ $f \widetilde R_{xyz}$	i ₁₋₆
$\mu = A_1$	1	1	1	1	1
A_2	1	1	1	-1	-1
E	2	-1	2	0	0
T_1	3	0	-1	1	-1
T_2	3	0	-1	-1	1