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Substitution Group products: S, cycle notation

Suppose pool balls are stored in numerical order: {1,2,3,4,5,6,7,8}.

Let players return them in a permuted order, say: {4,2,8,6,3,7,1,5}.

Suppose your job to reorder them. With two hands it's natural to switch two at a time.
You find the 1-ball and switch 1t with the 4-ball (that was in the number-17 position).

(14) 4m,5> _ T

1,2,8,6,3,7.4.5)
Such a "2-flip" operation (14) 1s called a transposition or a bicycle operation.




Substitution Group products: S, cycle notation

Suppose pool balls are stored in numerical order: {1,2,3,4,5,6,7,8}.

Let players return them in a permuted order, say: {4,2,8,6,3,7,1,5}.

Suppose your job to reorder them. With two hands it's natural to switch two at a time.
You find the 1-ball and switch 1t with the 4-ball (that was in the number-17 position).

(14) 4m,5> _ T

1,2,8,6,3,7.4.5)
Such a "2-flip" operation (14) 1s called a transposition or a bicycle operation.

Next you see the 2-ball already 1n the number-2 position so you leave it alone.
() R ()
(2)|1,2.8,6,3,7.4,5)=[1,2.8,6,3,7.4,5) = (2)(14)[4,2.8,6,3,7,1.5)

Such a "no-flip" operation (2) is called an identity or a unicycle (non)-operation.




Substitution Group products: S, cycle notation

Suppose pool balls are stored in numerical order: {1,2,3,4,5,6,7,8}.

Let players return them in a permuted order, say: {4,2,8,6,3,7,1,5}.

Suppose your job to reorder them. With two hands it's natural to switch two at a time.
You find the 1-ball and switch 1t with the 4-ball (that was in the number-17 position).

(14) 4m,5> _ T

1,2,8,6,3,7.4.5)
Such a "2-flip" operation (14) 1s called a transposition or a bicycle operation.

Next you see the 2-ball already in the number-2 position so you leave it alone.

O ) O
(2)]1,2.8.6.3,7.4.5) =[1,2.8,6,3,7.4,5) = (2)(14) 4,2.8.6,3,7.L5)
Such a "no-flip" operation (2) is called an identity or a unicycle (non)-operation.

Next you see 3-ball has to switch 8-ball out of 3’s rightful position-3 and into position-35.
" ¥ ™\
(38)(2)(14)[4,2,8,6,3,7,1,5) = (38)1,2.8,6,3,7,4,5) =(1,2,3,6,8,7.4,5)




Substitution Group products: S, cycle notation

Suppose pool balls are stored in numerical order: {1,2,3,4,5,6,7,8}.

Let players return them in a permuted order, say: {4,2,8,6,3,7,1,5}.

Suppose your job to reorder them. With two hands it's natural to switch two at a time.
You find the 1-ball and switch 1t with the 4-ball (that was in the number-17 position).

(14)428.6,3.715) = 12.8.6.3.7

1,2,8,6,3,7.4.5)
Such a "2-flip" operation (14) 1s called a transposition or a bicycle operation.

Next you see the 2-ball already 1n the number-2 position so you leave it alone.

() R ()
(2)]1,2.8.6.3,7.4.5) =[1,2.8,6,3,7.4,5) = (2)(14) 4,2.8.6,3,7.L5)
Such a "no-flip" operation (2) is called an identity or a unicycle (non)-operation.

Next you see 3-ball has to switch 8-ball out of 3’s rightful position-3 and into position-35.
" ¥ ™\
(38)(2)(14)[4,2,8,6,3,7,1,5) = (38)1,2.8,6,3,7,4,5) =(1,2,3,6,8,7.4,5)
Next bicycle (46) puts 4-ball into 47 spot where 6-ball was sitting (but now dropped to 77).

(46)(38)(2)(14)|4.2.8,6.3.7.15) = (46)1.2.3.68.7.4.5) =[1.2.3.48.76.5)




Substitution Group products: S, cycle notation

Suppose pool balls are stored in numerical order: {1,2,3,4,5,6,7,8}.

Let players return them in a permuted order, say: {4,2,8,6,3,7,1,5}.

Suppose your job to reorder them. With two hands it's natural to switch two at a time.
You find the 1-ball and switch 1t with the 4-ball (that was in the number-17 position).

(14)428.6,3.715) =|12.8.63.7:

1,2,8,6,3,7.4.5)
Such a "2-flip" operation (14) 1s called a transposition or a bicycle operation.

Next you see the 2-ball already 1n the number-2 position so you leave it alone.

() R ()
(2)]1,2.8.6.3,7.4.5) =[1,2.8,6,3,7.4,5) = (2)(14) 4,2.8.6,3,7.L5)
Such a "no-flip" operation (2) is called an identity or a unicycle (non)-operation.

Next you see 3-ball has to switch 8-ball out of 3’s rightful position-3 and into position-35.
" ¥ ™\
(38)(2)(14)[4,2,8,6,3,7,1,5) = (38)1,2.8,6,3,7,4,5) =(1,2,3,6,8,7.4,5)
Next bicycle (46) puts 4-ball into 47 spot where 6-ball was sitting (but now dropped in 7).
P PSRN
(46)(38)(2)(14)|4.,2.8,6,3,7,1,5) =(46)|1,2,3,6,8,7.4,5) =|1,2,3,4,8,7.6.5)
Then bicycle (58) puts 5-ball into 57 spot where 8-ball was sitting (but now dropped to 87).

(58)(46)(38)(2)(14)|4,2.8,6,3,7,1,5) = (58)|1,2,3.4.8.7.,65) =[1,2,3,4,8.7.68)




Substitution Group products: S, cycle notation

Suppose pool balls are stored in numerical order: {1,2,3,4,5,6,7,8}. |
Let players return them in a permuted order, say: {4,2,8,6,3,7,1,5}.
Suppose your job to reorder them. With two hands it's natural to switch two at a time.
You find the 1-ball and switch 1t with the 4-ball (that was in the number-17 position).

(14)428.6,3.715) =|12.8.63.7:

1,2,8,6,3,7.4.5)
Such a "2-flip" operation (14) 1s called a transposition or a bicycle operation.

Next you see the 2-ball already 1n the number-2 position so you leave it alone.

() R ()
(2)]1,2.8.6.3,7.4.5) =[1,2.8,6,3,7.4,5) = (2)(14) 4,2.8.6,3,7.L5)
Such a "no-flip" operation (2) is called an identity or a unicycle (non)-operation.

Next you see 3-ball has to switch 8-ball out of 3’s rightful position-3 and into position-35.
" ¥ ™\
(38)(2)(14)[4,2,8,6,3,7,1,5) = (38)1,2.8,6,3,7,4,5) =(1,2,3,6,8,7.4,5)
Next bicycle (46) puts 4-ball into 47 spot where 6-ball was sitting (but now dropped in 7).
P PSRN
(46)(38)(2)(14)|4.,2.8,6,3,7,1,5) =(46)|1,2,3,6,8,7.4,5) =|1,2,3,4,8,7.6.5)
Then bicycle (58) puts 5-ball into 57 spot where 8-ball was sitting (but now dropped to 87).

(58)(46)(38)(2)(14)4,2.8.6,3,7,1,5) = (58) 12318’76\5>=1234Z§ )
(67)(58)(46)(38)(2)(14)|4,2.86,3,7..5)=|1,2,3.4,5,6,7,8) | (67) finishes the job.
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Substitution Group products.: S, cycle notation and algebra

Suppose pool balls are stored in numerical order: {1,2,3,4,5,6,7,8}. |
Let players return them in a permuted order, say: {4,2,8,6,3,7,1,5}.
Suppose your job to reorder them. With two hands it's natural to switch two at a time.

This permutation has 5 bicycle (ab) operations so it 1s an ODD-permutation.
1 2 3 4 5
\ v ¥ v \
(67)(58)(46)(38)(2)(14)

¥ N
1,2,3,4,5,6,7.8) | (67) finishes the job.

4,2,8,63,7,1.5) =




Substitution Group products.: S, cycle notation and algebra

Suppose pool balls are stored in numerical order: {1,2,3,4,5,6,7,8}. |
Let players return them in a permuted order, say: {4,2,8,6,3,7,1,5}.
Suppose your job to reorder them. With two hands it's natural to switch two at a time.

This permutation has 5 bicycle (ab) operations so it 1s an ODD-permutation.
1 2 3 4 5
\ v ¥ v \
(67)(58)(46)(38)(2)(14)

Flip any single pair and it becomes EVEN.

¥ N
1,2,3,4,5,6,7.8) | (67) finishes the job.

4,2,8,63,7,1.5) =

This permutation has 6 bicycle (ab) operations so it 1s an EVEN-permutation.
1 2 3 4 5 6

(6¢7)(5¢8)(4¢6)(3§3)(2)(1¢4)(6¢7) 1,2,3,4,5,6,7.8)

¥ N
4,2,8,736,1,5) =




Substitution Group products.: S, cycle notation and algebra

Suppose pool balls are stored in numerical order: {1,2,3,4,5,6,7,8}. |
Let players return them in a permuted order, say: {4,2,8,6,3,7,1,5}.
Suppose your job to reorder them. With two hands it's natural to switch two at a time.

This permutation has 5 bicycle (ab) operations so it 1s an ODD-permutation.
1 2 3 4 5
\ v ¥ v \
(67)(58)(46)(38)(2)(14)

Flip any single pair and it becomes EVEN.

¥ N
1,2,3,4,5,6,7.8) | (67) finishes the job.

4,2,8,63,7,1.5) =

This permutation has 6 bicycle (ab) operations so it 1s an EVEN-permutation.

1 2 % o 5 6

(6¢7)(5%)(46)(3%)(2)(1¢4)(6¢7)
or: (67)(58)(46)(38)(2)(14)(84)

1,2,3,4,5,6,7.8)
1,2,3,4,5,6,7.8)

¥ N
4,2,8,736,1,5) =
8,2,4,7,3,6,,5) =




Substitution Group products.: S, cycle notation and algebra

Suppose pool balls are stored in numerical order: {1,2,3,4,5,6,7,8}. |
Let players return them in a permuted order, say: {4,2,8,6,3,7,1,5}.

Suppose your job to reorder them. With two hands it's natural to switch two at a time.

The inverse of our permutation operation. .. (67)(58)(46)(3 8)(2)(14)| 4,2,8,6,3,7,1,5> = 1,2,3,4,5,6,7,8>

...1s simply reverse-ordered products: ‘4,2,8,6,3,7,1,5> = (14)(2)(3 8)(46)(58)(67) 1,2,3,4,5,6,7,8>

This permutation has 5 bicycle (ab) operations so it 1s an ODD-permutation.

I 2 3 4 3
(6¢7)(5¢8)(4¢6)(3%)(2)(;4)‘ 4,2,8,6,3,7,1,5)=[1,2,3,4,5,6,7,8) | (67) finishes the job.

Flip any single pair and it becomes EVEN.

This permutation has 6 bicycle (ab) operations so it 1s an EVEN-permutation.

1 2 % o 5 6

(6¢7)(5¢8)(46)(3%)(2)(1¢4)(6¢7)| 4,2,8,73,6,1,5) =[1,2,3,4,5,6,7,8)
or: (67)(58)(46)(38)(2)(14)(84)[872:4,7.3,6,.5) =|1,2,3.4,5,6,7.8)



Substitution Group products.: S, cycle notation and algebra

Suppose pool balls are stored in numerical order: {1,2,3,4,5,6,7,8}. |
Let players return them in a permuted order, say: {4,2,8,6,3,7,1,5}.

Suppose your job to reorder them. With two hands it's natural to switch two at a time.

The inverse of our permutation operation. .. (67)(58)(46)(3 8)(2)(14)| 4,2,8,6,3,7,1,5> = 1,2,3,4,5,6,7,8>

...1s simply reverse-ordered products: ‘4,2,8,6,3,7,1,5> = (14)(2)(3 8)(46)(58)(67) 1,2,3,4,5,6,7,8>

Note all bicycle (ab) operations have flip-order symmetry (ab)=(ba)=(ab)-

This permutation has 5 bicycle (ab) operations so it 1s an ODD-permutation.

I 2 3 4 3
(6¢7)(5¢8)(4¢6)(3%)(2)(12)‘ 4,2,8,6,3,7,1,5)=[1,2,3,4,5,6,7,8) | (67) finishes the job.

Flip any single pair and it becomes EVEN.

This permutation has 6 bicycle (ab) operations so it 1s an EVEN-permutation.

1 2 % o 5 6

(6¢7)(5¢8)(46)(3%)(2)(1¢4)(6¢7)| 4,2,8,73,6,1,5) =[1,2,3,4,5,6,7,8)
or: (67)(58)(46)(38)(2)(14)(84)[872:4,7.3,6,.5) =|1,2,3.4,5,6,7.8)



Substitution Group products.: S, cycle notation and algebra

Suppose pool balls are stored in numerical order: {1,2,3,4,5,6,7,8}. |

Let players return them in a permuted order, say: {4,2,8,6,3,7,1,5}.
Suppose your job to reorder them. With two hands it's natural to switch two at a time.

The inverse of our permutation operation... (67)(58)(46)(3 8)(2)(14)

...1s simply reverse-ordered products:

Note all bicycle (ab) operations have flip-order symmetry (ab)=(ba)=(ab)-
...minimal equation (ab)?=1=(a)(b) 1.c., (ab)2-1=0

4,2,8,63,7,1,5)=[1,2,345,6,7,8

4,2,8,6,3,7,1,5)=(14)(2)(38)(46)(58)(67)[1.2.3,4,5,6,7.8)

This permutation has 5 bicycle (ab) operations so it 1s an ODD-permutation.
1 2 3 4 5
\ v ¥ v \
(67)(58)(46)(38)(2)(14)

Flip any single pair and it becomes EVEN.

¥ N
1,2,3,4,5,6,7.8) | (67) finishes the job.

4,2,8,63,7,1.5) =

This permutation has 6 bicycle (ab) operations so it 1s an EVEN-permutation.

1 2 % o 5 6

(6¢7)(5¢8)(46)(3%)(2)(12)(6*7)
or: (67)(58)(46)(38)(2)(14)(84)

1,2,3,4,5,6,7.8)
1,2,3,4,5,6,7.8)

¥ N
4,2,8,736,1,5) =
8,2,4,7,3,6,,5) =




Substitution Group products.: S, cycle notation and algebra

Suppose pool balls are stored in numerical order: {1,2,3,4,5,6,7,8}. |
Let players return them in a permuted order, say: {4,2,8,6,3,7,1,5}.
Suppose your job to reorder them. With two hands it's natural to switch two at a time.

4,2,8,6,3,7,1,5)=(1,2,34,5,6,7.8)

The inverse of our permutation operation... (67)(58)(46)(3 8)(2)(14)
4,2,8,6,3,7,1,5)=(14)(2)(38)(46)(58)(67)[1.2.3,4,5,6,7.8)

...1s simply reverse-ordered products:

Note all bicycle (ab) operations have flip-order symmetry (ab)=(ba)=(ab)-
...minimal equation (ab)2=1=(a)(b) i.e., (ab)2-1=0=((ab) —1)((ab) +1)

...eigenvalues of =+1.

This permutation has 5 bicycle (ab) operations so it 1s an ODD-permutation.
1 2 3 4 5
\ v ¥ v \
(67)(58)(46)(38)(2)(14)

Flip any single pair and it becomes EVEN.

¥ N
1,2,3,4,5,6,7.8) | (67) finishes the job.

4,2,8,63,7,1.5) =

This permutation has 6 bicycle (ab) operations so it 1s an EVEN-permutation.

1 2 % o 5 6

(6¢7)(5¢8)(46)(3%)(2)(12)(6*7)
or: (67)(58)(46)(38)(2)(14)(84)

1,2,3,4,5,6,7.8)
1,2,3,4,5,6,7.8)

¥ N
4,2,8,736,1,5) =
8,2,4,7,3,6,,5) =
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Substitution Group products: Sn cycle notation and cyclic algebra

Suppose pool balls are stored in numerical order: {1,2,3,4,5,6,7,8}.

Let players return them 1n a permuted order, say: {4,2,8,6,3,7,1,5}.

Suppose your job: reorder them. With two hands it's natural (but slower) to switch two at a time.
Much faster with multi-cycles (tricycles) quadricycles, etc.)

4,2,86,3,7,15)=[1,2,345,6,7.8)

Rewriting permutation operation... (67)(58)(46)(38)(2)(14)

Permutation operations (ab) and (¢d) commute 1f and only if neither a nor b equals ¢ or d.

So: (67)(58)(46)(38)(2)(14) since: (58)(46)=(46)(58) etc
=(67)(46)(14)-(58)(38)-(2) . and: (58)(14)=(14)(58) etc.



Substitution Group products: Sn cycle notation and cyclic algebra

Suppose pool balls are stored in numerical order: {1,2,3,4,5,6,7,8}.

Let players return them 1n a permuted order, say: {4,2,8,6,3,7,1,5}.

Suppose your job: reorder them. With two hands it's natural (but slower) to switch two at a time.
Much faster with multi-cycles (tricycles) quadricycles, etc.)

4,2,86,3,7,15)=[1,2,345,6,7.8)

Rewriting permutation operation... (67)(58)(46)(38)(2)(14)
Permutation operations (ab) and (¢d) commute 1f and only if neither a nor b equals ¢ or d.

So: (67)(58)(46)(38)(2)(14) since: (58)(46)=(46)(58) etc
=(67)(46)(14)-(38)(38)-(2) .~ and: (58)(14)=(14)(58) etc.

AN
Consider two bicycles (58)(38) 'sharing an 8-ball:




Substitution Group products: Sn cycle notation and cyclic algebra

Suppose pool balls are stored in numerical order: {1,2,3,4,5,6,7,8}.

Let players return them 1n a permuted order, say: {4,2,8,6,3,7,1,5}.

Suppose your job: reorder them. With two hands it's natural (but slower) to switch two at a time.
Much faster with multi-cycles (tricycles) quadricycles, etc.)

4,2,86,3,7,15)=[1,2,345,6,7.8)

Rewriting permutation operation... (67)(58)(46)(38)(2)(14)

Permutation operations (ab) and (¢d) commute 1f and only if neither a nor b equals ¢ or d.

So: (67)(58)(46)(38)(2)(14) since: (58)(46)=(46)(58) etc
=(67)(46)(14)-(58)(38)-(2) . and: (58)(14)=(14)(58) etc. (1D diagrams tend
! N to be confusing...)
Consider two bicycles (58)(38)'sharing an 8-ball: g
First, 3-ball replaces 8-ball. (Right operator (38) acts first.) /_\Y‘\

1,2,,4,5,6,7.3)




Substitution Group products: Sn cycle notation and cyclic algebra

Suppose pool balls are stored in numerical order: {1,2,3,4,5,6,7,8}.

Let players return them 1n a permuted order, say: {4,2,8,6,3,7,1,5}.

Suppose your job: reorder them. With two hands it's natural (but slower) to switch two at a time.
Much faster with multi-cycles (tricycles) quadricycles, etc.)

4,2,86,3,7,15)=[1,2,345,6,7.8)

Rewriting permutation operation... (67)(58)(46)(38)(2)(14)

Permutation operations (ab) and (¢d) commute 1f and only if neither a nor b equals ¢ or d.

So: (67)(58)(46)(38)(2)(14) since: (58)(46)=(46)(58) etc
=(67)(46)(14)-(58)(38)-(2) . and: (58)(14)=(14)(58) etc. (1D diagrams tend
! N to be confusing...)
Consider two bicycles (58)(38) 'sharing an 8-ball: g
First, 3-ball replaces 8-ball. (Right operator (38) acts first.) /\“\

1,2,,4,5,6,7.3)

(2D diagrams are better...)



Substitution Group products: Sn cycle notation and cyclic algebra

Suppose pool balls are stored in numerical order: {1,2,3,4,5,6,7,8}.

Let players return them 1n a permuted order, say: {4,2,8,6,3,7,1,5}.

Suppose your job: reorder them. With two hands it's natural (but slower) to switch two at a time.
Much faster with multi-cycles (tricycles) quadricycles, etc.)

4,2,86,3,7,15)=[1,2,345,6,7.8)

Rewriting permutation operation... (67)(58)(46)(38)(2)(14)

Permutation operations (ab) and (¢d) commute 1f and only if neither a nor b equals ¢ or d.

So: (67)(58)(46)(38)(2)(14) since: (58)(46)=(46)(58) etc

=(67)(46)(14)-(58)(38)-(2) . and: (58)(14)=(14)(58) etc. (1D diagrams tend
! N to be confusing...)

Consider two bicycles (58)(38)'sharing an 8-ball:
First, 3-ball replaces 8-ball. (Right operator (38) acts first.) ﬂ
1,2,8/4,5,6,7.3)

(2D diagrams are better...)



Substitution Group products: Sn cycle notation and cyclic algebra

Suppose pool balls are stored in numerical order: {1,2,3,4,5,6,7,8}.

Let players return them 1n a permuted order, say: {4,2,8,6,3,7,1,5}.

Suppose your job: reorder them. With two hands it's natural (but slower) to switch two at a time.
Much faster with multi-cycles (tricycles) quadricycles, etc.)

4,2,86,3,7,15)=[1,2,345,6,7.8)

Rewriting permutation operation... (67)(58)(46)(38)(2)(14)

Permutation operations (ab) and (¢d) commute 1f and only if neither a nor b equals ¢ or d.

So: (67)(58)(46)(38)(2)(14) since: (58)(46)=(46)(58) etc

=(67)(46)(14)-(58)(38)-(2) . and: (58)(14)=(14)(58) etc. (1D diagrams tend
! N to be confusing...)

Consider two bicycles (58)(38) 'sharing an 8-ball: 5
First, 3-ball replaces 8-ball. (Right operator (38) acts first.) Tﬂ%\\\

Second, 8-ball, 1n turn displaces 5-ball. (Left operator (58) acts next.) 12. 4. '6.7 3>
9 9 'Y SV

(58)(38 =(58

(2D diagrams are better...)



Substitution Group products: Sn cycle notation and cyclic algebra

Suppose pool balls are stored in numerical order: {1,2,3,4,5,6,7,8}.

Let players return them 1n a permuted order, say: {4,2,8,6,3,7,1,5}.

Suppose your job: reorder them. With two hands it's natural (but slower) to switch two at a time.
Much faster with multi-cycles (tricycles) quadricycles, etc.)

4,2,86,3,7,15)=[1,2,345,6,7.8)

Rewriting permutation operation... (67)(58)(46)(38)(2)(14)

Permutation operations (ab) and (¢d) commute 1f and only if neither a nor b equals ¢ or d.

So: (67)(58)(46)(38)(2)(14) since: (58)(46)=(46)(58) etc
=(67)(46)(14)-(58)(38)-(2) . and: (58)(14)=(14)(58) etc. (1D diagrams tend
! N to be confusing...)
Consider two bicycles (58)(38) 'sharing an 8-ball: §
First, 3-ball replaces 8-ball. (Right operator (38) acts first.) r T

Second, 8-ball, 1n turn displaces 5-ball. (Left operator (58) acts next.)

1.2, 4, .6,7.3)

So two bicycles (58)(38) sharing an 8-ball make a #ricycle... (58)(38)=(385)
“3 goes to 8 goes to 5 goes to 3”

(58)(38 =(58

(2D diagrams are better...)



Substitution Group products: Sn cycle notation and cyclic algebra

Suppose pool balls are stored in numerical order: {1,2,3,4,5,6,7,8}.

Let players return them 1n a permuted order, say: {4,2,8,6,3,7,1,5}.

Suppose your job: reorder them. With two hands it's natural (but slower) to switch two at a time.
Much faster with multi-cycles (tricycles) quadricycles, etc.)

4,2,86,3,7,15)=[1,2,345,6,7.8)

Rewriting permutation operation... (67)(58)(46)(38)(2)(14)

Permutation operations (ab) and (¢d) commute 1f and only if neither a nor b equals ¢ or d.

So: (67)(58)(46)(38)(2)(14) since: (58)(46)=(46)(58) etc

=(67)(46)(14)-(58)(38)-(2) . and: (58)(14)=(14)(58) etc. (1D diagrams tend
! N to be confusing...)

Consider two bicycles (58)(38)'sharing an 8-ball:

First, 3-ball replaces 8-ball. (Right operator (38) acts first.)
Second, 8-ball, 1n turn displaces 5-ball. (Left operator (58) acts next.)

1,2,874,5,6,7.3)

So two bicycles (58)(38) sharing an 8-ball make a #ricycle... (58)(38)=(385)=(538)=(853)
...that may be written three different ways.

(58)(38 =(58

(2D diagrams are better...)



Substitution Group products: Sn cycle notation and cyclic algebra

Suppose pool balls are stored in numerical order: {1,2,3,4,5,6,7,8}.
Let players return them 1n a permuted order, say: {4,2,8,6,3,7,1,5}.
Suppose your job: reorder them. With two hands it's natural (but slower) to switch two at a time.

Much faster with multi-cycles (tricycles) quadricycles, etc.)

Permutation operations (ab) and (¢d) commute 1f and only if neither a nor b equals ¢ or d.

4,2,86,3,7,15)=]1,2,34,5,6,

Rewriting permutation operation... (67)(58)(46)(38)(2)(14)

So: (67)(58)(46)(38)(2)(14) since: (58)(46)=(46)(58) etc
=(67)(46)(14)- (58)(38)-(2) . and: (58)(14)=(14)(58) etc. (1D diagrams tend
N to be confusing...)
Consider two bicycles (58)(38)'sharing an 8-ball:
First, 3-ball replaces 8-ball. (Right operator (38) acts first.) %
Second, 8-ball, 1n turn displaces 5-ball. (Left operator (58) acts next.) ,2,0,4,8,0,/, >

So two bicycles (58)(38) sharing an 8-ball make a #ricycle... (58)(38)=(385)=(538)=(853)

Here 1s inverse of (58)(38):.. (38)(58) (358)=(583)=(835) ...also written three different ways.
(38)(58 3 goes to 5 goes to 8 goes to 3”

(2D diagrams are better...)
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Substitution Group products: Sn cycle notation and cyclic algebra

Suppose pool balls are stored in numerical order: {1,2,3,4,5,6,7,8}.

Let players return them 1n a permuted order, say: {4,2,8,6,3,7,1,5}.

Suppose your job: reorder them. With two hands it's natural (but slower) to switch two at a time.
Much faster with multi-cycles (tricycles, quadricycles, etc.)

4,2,86,3,7,15)=[1,2,345,6,7.8)

Rewriting permutation operation... (67)(58)(46)(38)(2)(14)

Permutation operations (ab) and (¢d) commute 1f and only if neither a nor b equals ¢ or d.

So: (67)(58)(46)(38)(2)(14) since: (58)(46)=(46)(58) etc
= (67)(46)(14)-(38)(38)-(2) . and: (58)(14)=(14)(58) etc.

Consider three bicycles (67)(46)(14) 'sharing 6-ball and 4-ball:




Substitution Group products: Sn cycle notation and cyclic algebra

Suppose pool balls are stored in numerical order: {1,2,3,4,5,6,7,8}.

Let players return them 1n a permuted order, say: {4,2,8,6,3,7,1,5}.

Suppose your job: reorder them. With two hands it's natural (but slower) to switch two at a time.
Much faster with multi-cycles (tricycles, quadricycles, etc.)

Rewriting permutation operation... (67)(58)(46)(38)(2)(14) 4.2.8,6,3,7,1,5) =|1,2,3,4,5,6,7.8)
Permutation operations (ab) and (cd) commute 1f and only if neither a nor b equals ¢ or d.

So: (67)(58)(46)(38)(2)(14) since: (58)(46)=(46)(58) et

=(67)(46)(14)-(58)(38)-(2) . and: (58)(14)=(14)(58) etc.

Consider three bicycles (67)(46)(14) sharing 6-ball and 4-ball:
(67)(46)(14) =(67)(46




Substitution Group products: Sn cycle notation and cyclic algebra

Suppose pool balls are stored in numerical order: {1,2,3,4,5,6,7,8}.

Let players return them 1n a permuted order, say: {4,2,8,6,3,7,1,5}.

Suppose your job: reorder them. With two hands it's natural (but slower) to switch two at a time.
Much faster with multi-cycles (tricycles, quadricycles, etc.)

Rewriting permutation operation... (67)(58)(46)(38)(2)(14) 4.2.8,6,3,7,1,5) =|1,2,3,4,5,6,7.8)
Permutation operations (ab) and (cd) commute 1f and only if neither a nor b equals ¢ or d.

So: (67)(58)(46)(38)(2)(14) since: (58)(46)=(46)(58) et

=(67)(46)(14)-(58)(38)-(2) . and: (58)(14)=(14)(58) etc.

Consider three bicycles (67)(46)(14) sharing 6-ball and 4-ball:
(67)(46)(14) =(67)(46 =(67)




Substitution Group products: Sn cycle notation and cyclic algebra

Suppose pool balls are stored in numerical order: {1,2,3,4,5,6,7,8}.

Let players return them 1n a permuted order, say: {4,2,8,6,3,7,1,5}.

Suppose your job: reorder them. With two hands it's natural (but slower) to switch two at a time.
Much faster with multi-cycles (tricycles, quadricycles, etc.)

Rewriting permutation operation... (67)(58)(46)(38)(2)(14) 4.2.8,6,3,7,1,5) =|1,2,3,4,5,6,7.8)
Permutation operations (ab) and (cd) commute 1f and only if neither a nor b equals ¢ or d.

So: (67)(58)(46)(38)(2)(14) since: (58)(46)=(46)(58) et
=(67)(46)(14)-(58)(38)-(2) . and: (58)(14)=(14)(58) etc.

Consider three bicycles (67)(46)(14) sharing 6-ball and 4-ball:
(67)(46)(14) =(67)(46




Substitution Group products: Sn cycle notation and cyclic algebra

Suppose pool balls are stored in numerical order: {1,2,3,4,5,6,7,8}.

Let players return them 1n a permuted order, say: {4,2,8,6,3,7,1,5}.

Suppose your job: reorder them. With two hands it's natural (but slower) to switch two at a time.
Much faster with multi-cycles (tricycles, quadricycles, etc.)

Rewriting permutation operation... (67)(58)(46)(38)(2)(14) 4.2.8,6,3,7,1,5) =|1,2,3,4,5,6,7.8)
Permutation operations (ab) and (cd) commute 1f and only if neither a nor b equals ¢ or d.

So: (67)(58)(46)(38)(2)(14) since: (58)(46)=(46)(58) et
=(67)(46)(14)-(58)(38)-(2) . and: (58)(14)=(14)(58) etc.

Consider three bicycles (67)(46)(14) sharing 6-ball and 4-ball:
(67)(46)(14) =(67)(46 =(67)




Substitution Group products: Sn cycle notation and cyclic algebra

Suppose pool balls are stored in numerical order: {1,2,3,4,5,6,7,8}.

Let players return them 1n a permuted order, say: {4,2,8,6,3,7,1,5}.

Suppose your job: reorder them. With two hands it's natural (but slower) to switch two at a time.
Much faster with multi-cycles (tricycles, quadricycles, etc.)

Rewriting permutation operation... (67)(58)(46)(38)(2)(14) 4.2.8,6,3,7,1,5) =|1,2,3,4,5,6,7.8)
Permutation operations (ab) and (cd) commute 1f and only if neither a nor b equals ¢ or d.

So: (67)(58)(46)(38)(2)(14) since: (58)(46)=(46)(58) et
=(67)(46)(14)-(58)(38)-(2) . and: (58)(14)=(14)(58) etc.

Consider three bicycles (67)(46)(14) sharing 6-ball and 4-ball:
(67)(46)(14) =(67)(46 =(67)




Substitution Group products: Sn cycle notation and cyclic algebra

Suppose pool balls are stored in numerical order: {1,2,3,4,5,6,7,8}.

Let players return them 1n a permuted order, say: {4,2,8,6,3,7,1,5}.

Suppose your job: reorder them. With two hands it's natural (but slower) to switch two at a time.
Much faster with multi-cycles (tricycles, quadricycles, etc.)

Rewriting permutation operation... (67)(58)(46)(38)(2)(14) 4.2.8,6,3,7,1,5) =|1,2,3,4,5,6,7.8)
Permutation operations (ab) and (cd) commute 1f and only if neither a nor b equals ¢ or d.

So: (67)(58)(46)(38)(2)(14) since: (58)(46)=(46)(58) et
=(67)(46)(14)-(58)(38)-(2) . and: (58)(14)=(14)(58) etc.

Consider three bicycles (67)(46)(14) sharing 6-ball and 4-ball:
(67)(46)(14) =(67)(46

So three bicycles (67)(46)(14)
give a quadricycle (1467)
that may be written four ways...

(67)(46)(14) = (1467) = (7146) = (6714) = (4671)



Substitution Group products: Sn cycle notation and cyclic algebra

Suppose pool balls are stored in numerical order: {1,2,3,4,5,6,7,8}.

Let players return them 1n a permuted order, say: {4,2,8,6,3,7,1,5}.

Suppose your job: reorder them. With two hands it's natural (but slower) to switch two at a time.
Much faster with multi-cycles (tricycles, quadricycles, etc.)

Rewriting permutation operation... (67)(58)(46)(38)(2)(14) 4.2.8,6,3,7,1,5) =|1,2,3,4,5,6,7.8)
Permutation operations (ab) and (cd) commute 1f and only if neither a nor b equals ¢ or d.

So: (67)(58)(46)(38)(2)(14) since: (58)(46)=(46)(58) et
=(67)(46)(14 .(|58)(38)-(\2) . and: (58)(14)=(14)(58) etc.  with tricvele (58)(38)

Consider three bicycles (67)(46)(14) sharing 6-ball and 4-ball: =(385)=(538)=(853)
(67)(46)(14) =(67)(46 =(67) An EVEN permutation)

So three bicycles (67)(46)(14)
give a quadricycle (1467)
that may be written four ways...

(67)(46)(14) = (1467) = (7146) = (6714) = (4671)
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Unraveling a permutation (Starting with “1 ")
|4,2,8,6,3,Z,\],5) 14, 2,8, 6,3, 7 ]5)|428¢,\
123456&8 1234’5\§$8 12 3 45 {\¢
14,2, 8, 6.3, 791, 5) Closes on a permutation
quadracycle

*z 34 s i s (1764)=(4176)=etc.



Unraveling a permutation (Starting with “1 ")
14,2,8 6,3,7,1,5) |4,2,86,.3,7,1,5) (42863 7, 1,5)

123456\i8 1234’»5\£\i8 1‘2\3£»5\£\$8

14,2, 8,63, 7y, 5) Closes on a permutation
quadracycle

*z 34 s i s (1764)=(4176)=etc.

(Next higher number that has not been used is a “2”)

|, 2,8 0,3, 7/, ,5) Closes on a permutation
unicycle

12¢345678 (2)



Unraveling a permutation (Starting with “1 ")
14,2,8,6,3,7,1,5) |42863715)|428 7]5

123456\78 1234’5\§78 1234 £\7

14,2, 8,63, 7y, 5) Closes on a permutation
quadracycle

*z 34 s i s (1764)=(4176)=etc.

(Next higher number that has not been used is a “2”)

|, 2,8 0,3, 7/, ,5) Closes on a permutation
¢ unicycle

123 45 67 8 (2)

(Next higher number that has not been used is a “3")

12 3 4567 8 12 3 45 67 8

|4, 2,8, .3 7,5y Closes on a permutation
¢M tricycle
(358)=(835)=etc.
“OK, but its the inverse of the pool ball operation”

Final result: (] 764)(2)(358)2(358)(1 764)
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Tableau dimension formulae

Methane-like XY 4 Introducing rovibrational spectral nomogram
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Substitution Group products: S, cycle notation and cyclic algebra

A (nearly) foolproof table method to find cycle products like:(67)(58)(46)(38)(14) (Does n-cycles,t00.)
(1) Apply n-cycle (right-most 1st) to each row starting on <1>=1,2,3,4,5,... ,max

8| )
8 | (14)
3| (38)
3| (46)
(58) (67)(58)(46)(38)(14)=2  (1467)
(67)

1 234567 8] (1

DO W |

4 7
1 7
1 7
1 7

= N | O

5
5
5
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Substitution Group products: S, cycle notation and cyclic algebra

A (nearly) foolproof table method to find cycle products like:(67)(58)(46)(38)(14) (Does n-cycles,t00.)
(1) Apply n-cycle (right-most 1st) to each row starting on <1>=1,2,3,4,5,... ,max

1 234567 8] (]

4 23156 7 8|4

43 81 56 7 3[(38)

6 2 8 1 5 4 7 3|(46)

6 2 5 1 8 4 7 3]|(59) (67)(58)(46)(38)(14)=?  (1467)
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Substitution Group products: S, cycle notation and cyclic algebra

A (nearly) foolproof table method to find cycle products like:(67)(58)(46)(38)(14) (Does n-cycles,t00.)
(1) Apply n-cycle (right-most 1st) to each row starting on <1>=1,2,3,4,5,... ,max

1 234567 8] (]
4 23156 7 8|14
438156 7 339
6 2 8 1 5 4 7 3|46
6 2 5 1 8 4 7 3]|(59) (67)(58)(46)(38)(14)=?  (1467)
702 5 184116137 Nuew tells which new number Nuew
1 \2--3 4L5 6V718 <1> Noia  now sits in the space that
started with old number Ny
(1467)

(2) Sort 1nto distinct ordered (abc..e)-cycles



Substitution Group products: S, cycle notation and cyclic algebra
A (nearly) foolproof table method to find cycle products like:(67)(58)(46)(38)(14) (Does n-cycles,t00.)
(1) Apply n-cycle (right-most 1st) to each row starting on <1>=1,2,3,4,5,... ,max

)
(14)
(38)
(46)
(58) (67)(58)(46)(38)(14)= (385)(1467)
(67)  Naew tells which new number Nuew

8 <1> Nola now sits in the space that
started with old number N,z

4
1
1
1
1

| @ WDhn Wh |
W W W o0 | OO

3
3
8
8
S
5

7
7
7
7
7
6
7

— |l o & &~ &
NN NN W N
N~ A A & o o

3 45

(1467)  (385)
(2) Sort 1nto distinct ordered (abc..e)-cycles
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Substitution Group products: S, cycle notation and cyclic algebra
A (nearly) foolproof table method to find cycle products like:(67)(58)(46)(38)(14) (Does n-cycles,t00.)
(1) Apply n-cycle (right-most 1st) to each row starting on <1>=1,2,3,4,5,... ,max

)
(14)
(38)
(46)
(58) (67)(58)(46)(38)(14)= (385)(1467)
(67)  Naew tells which new number Nuew

8 <1> Nola now sits in the space that
started with old number N,

4
1
1
1
1

W W W o0 | OO

| @ WDhn Wh |

3
3
8
8
S
5

7
7
7
7
7
6
7

DN NN W NN
O\l & & O O O

— |l o & &~ &

3 45

(1467)  (385)

(2) Sort 1nto distinct ordered (abc..e)-cycles
A shortcut method to reduce cycle products like : (67)(46)(14) (58)(38)

Last op (67) moves 6 to 7. 6—-7 e This implies (67
But whence came 7? 7-56—54—1 This implies (671
But whence came 17 1—-4 This implies (6714
But whence came 47? 456 This implies (6714)that 1s (1467)
Last op (58) moves 5 to 8. 5—8-3 This implies (53
37 3—8 This implies (538

87 8—5 This implies (538) that 1s (385)



Shortcut method reduces cycle products like : (12)(13)(14)(15)

(12 implied by last op involving 2:
(123 implied by last op imnvolving 3:
(1234 1mplied by last op mvolving 4:
(12345 1mplied by last op involving 5:
(12345) implied by last op involving 5:

2—1-3

3—1—-4
4—1->5
5—1

Shortcut method reduces cycle products like : (12)(13)(14)(15) Start with any number (say 3)

(34 implied by last op involving 3:
(345 implied by last op involving 4:
(3451 1mplied by last op mvolving 5:
(34512 1mplied by last op mvolving 1:
(34512) implied by last op involving 2:

Shortcut: (1234)(456)

(12 12

(123 23

(1235 345

(12356 556

(123564 6—4

4-1

1 2345 6| (1)

Test: |1 2 3 6 4 5| (456)
412635(1234)
1 2345 6| (1)

3—1—-4
4—1-—5
5—1
-2
2—1—-53
Shortcut: (456)(1234)
(12 12
(123 23
(1234 3-4
(12345 45
(123456 556
6—4—1
1 2345 6| (1)
Test: |4 1 2 3 5 6] (1234)
612345(456)
1 2345 6| (1)
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Substitution Group products: Sn class transformation algebra
Similarity transform y=t-x-t-! =(15)(2738496) - (5678)(19)(234)

P

= (1923)(45)(678)
(15)(2738496) - (5678)(19)(234) - (51)(2694837)
(19 1-5-6-9
(192 9672
(1923 2-7-8-3
(1923) 3585551
(45 4-9-1-5
(45) 5-1-9-4
(67 6237
(678 7-3-4-8
(678) 8426
1 23456789 (1)
57 89 1 23 4 6| (15(2694837)  (5678)(19)(234) =
8 6 7 1 9 4 2 3 5[(5678)(19)(234) = (1923)(45)(678) = t:x-
3925 48 6 7 1| (51)(2738496)
1 23456789 (1)




Substitution Group products.: S, class transformation algebra
Similarity transform y= t-x-t-! =(15)(2738496) - (5678)(19)(234) - (51)(2694837)

= (1923)(45)(678)
(15)(2738496) - (5678)(19)(234) - (51)(2694837)
(19 1-5-6-9
(192 9672
(1923 27853
(1923) 38551
(45 49155
(45) 5-1-9-4
(67 6-2-3-7
(678 7-3-4-8
(678) 8426
1 234567 89 (1)
57 8 9 1 2 3 4 6| (15(2694837) (5678)(19)(234) = x
8 6 7 1 9 4 2 3 5[(5678)(19)(234) = (1923)(54)(678) = t-x-t!
39 2 5 4 8 6 7 1| (51)(2738496)
1 23456 7 89 (1) t-=(15)(2738496)
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Substitution Group products: S, class cycle labeling

Permutations are classified by the numbers of vi of unicycles, v2 of bicycles, v3 of tricycles, etc.

Ball-numbers can’t be repeated after cycle reduction. So cycle length sum 1s number N of balls.

Vi+2Vo+3Vv3+4vi+S5Vvs+..4+Nvy =N
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Number of classes of S, equals the number of partitions of integer N=n.
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Substitution Group products: S, class cycle labeling

Permutations are classified by the numbers of v; of unicycles, v2 of bicycles, v; of tricycles, etc.

Ball-numbers can’t be repeated after cycle reduction. So cycle length sum is number N=n of balls.

S4 example
Vi+2Vo+3Vv3+4Vvy+S5Vs+.+Nvy =N vi=1 v, =0 v3=I
4) (321
Number of classes of S, equals the number of partitions of integer N=n. S14 example

Vi =5 V, =3 vz =1
(14)(13)(12)(11)(10) (98)(76)(54) (321)

For N=2 there are just two classes of two permutations.
O]

Class { vi =2,Vv, =0} corresponding to partition: 2=1+ 1 o
One permutation : (1)(2)
Class { vi =0,Vv, =1} corresponding to partition: 2 =2 o ©

One permutation : (12)



Substitution Group products: S, class cycle labeling

Permutations are classified by the numbers of v; of unicycles, v2 of bicycles, v; of tricycles, etc.

Ball-numbers can’t be repeated after cycle reduction. So cycle length sum 1s number N=n of balls.

S4 example
Vi+2Vo+3Vv3+4Vvy+S5Vs+.+Nvy =N vi=1 v, =0 v3=I
4) (321
Number of classes of S, equals the number of partitions of integer N=n. S14 example

Vi =5 V, =3 vz =1
(14)(13)(12)(11)(10) (98)(76)(54) (321)

For N=2 there are just two classes of two permutations.
O]

Class { vi =2,Vv, =0} corresponding to partition: 2=1+ 1 o
One permutation : (1)(2)
Class { vi =0,Vv, =1} corresponding to partition: 2 =2 o ©

One permutation : (12)

For N=3 there are three classes of six permutations.
Class { vi =3,Vv, =0, v5 =0} corresponding to partition : 3 =1 + 1+ 1

One permutation :: (1)(2)(3) ©
Class { vi =1,v, =1,v53 =0} corresponding to partition : 3 =2 + 1 © ©

Three permutations : (12)(3), (13)(2), (23)(1) §
Class { v; =0, v, =0, Vv; =1} corresponding to partition : 3 =3 © 00

Two permutations : (123), (132)
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Substitution Group products: S, class cycle counting

The number of permutations in each partition class depends on the redundancy of cycle labeling

Each m-cycle can be written m ways by cycling the numbers:
(123... m)=(m 12... m-1) = (m-1 m 123... m-2)=... Example: (123)=(312)=(231)
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Each of the vi, such m-cycles contain distinct numbers and so mutually commute (vim)! different orders.
Example: (123)(456)=(456)(231)



Substitution Group products: S, class cycle counting

The number of permutations in each partition class depends on the redundancy of cycle labeling

Each m-cycle can be written m ways by cycling the numbers:
(123... m)=(m 12... m-1) = (m-1 m 123... m-2)=... Example: (123)=(312)=(231)

If there are v, such m-cycles in a permutation then there are (m)Y™ such reorderings.

Each of the vi, such m-cycles contain distinct numbers and so mutually commute (vim)! different orders.
Example: (123)(456)=(456)(231)

Dividing N! by products of numbers (vi,)!(m)Ym of possibility gives the number of distinct partition class members.
N
Y1 V2 V3 4 ...
vy, 1272 v, 135y, 14
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Number in partition class VIV ViV oo =

Example:Order of Octahedral O classes: (H2)3)4), (1)(123), (12)(34). (1234), (12)(3)(4)
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Substitution Group products: S, class cycle counting

The number of permutations in each partition class depends on the redundancy of cycle labeling

Each m-cycle can be written m ways by cycling the numbers:
(123... m)=(m 12... m-1) = (m-1 m 123... m-2)=... Example: (123)=(312)=(231)

If there are v, such m-cycles in a permutation then there are (m)Y™ such reorderings.

Each of the vi, such m-cycles contain distinct numbers and so mutually commute (vim)! different orders.
Example: (123)(456)=(456)(231)

Dividing N! by products of numbers (vi,)!(m)Ym of possibility gives the number of distinct partition class members.
N
Y1 V2 V3 4 ...
vy, 1272 v, 135y, 14

where: N=v +2v,+3v,+4v,---

Number in partition class VIV ViV oo =

Example:Order of Octahedral O classes: (H2)3)4), (1)(123), (12)(34). (1234), (12)(3)(4)

‘ VV,VV,= 4000, 1010, 0200, 0001, 2100,
N! 4 4 4! 4! 4!

7 : = —:89 —:39 —:69

—=1, ————=6.
Y v 11Ty 1272 113"y 1474 a3t 22 et 212!

...or Tetrahedral T, classes

S ~T
4 d



Substitution Group products: S, class cycle counting

The number of permutations in each partition class depends on the redundancy of cycle labeling

Each m-cycle can be written m ways by cycling the numbers:
(123... m)=(m 12... m-1) = (m-1 m 123... m-2)=... Example: (123)=(312)=(231)

If there are v, such m-cycles in a permutation then there are (m)Y™ such reorderings.

Each of the vi, such m-cycles contain distinct numbers and so mutually commute (vim)! different orders.
Example: (123)(456)=(456)(231)

Dividing N! by products of numbers (vi,)!(m)Ym of possibility gives the number of distinct partition class members.
N
Y1 V2 V3 4 ...
vy, 1272 v, 135y, 14

where: N=v +2v,+3v,+4v,---

Number in partition class VIV ViV oo =

Example:Order of Octahedral O classes: (H2)3)4), (1)(123), (12)(34). (1234), (12)(3)(4)

‘ VV,VV,= 4000, 1010, 0200, 0001, 2100,

| 4 4 41 4! 41
ﬂvﬁy N = o, g o3 T g —6.
4

v 1 v 12Y2 v 13"y, 14 4! 3t 22 gt 22!

D)3y DE3H (13)24) (1432)  (14)(3)(2)
(2)(143)  (14)(23) (1243) (23)(1)(4)
(3)(124)  (13)(24) (1324) (23)(1)(4)

(4)(132) (1234) (12)(3)(4)

(1)(243) (1423) (24)(1)(3)

...or Tetrahedral T, classes (2)(134) (1342) (13)(2)(4)
S ~T (3)(142)
4 d (4)(123)
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S» tableaus spin-symmetry and characters.: X, and XY, molecules Permutation Point group
group S, is equivalent to

(a) . (b) .
[c0) = [B=3 g> ‘B> - |8 =32 S>
FIG. 25. Orbital tableau labeling of a homonuclear diatomic (H)(2) (12) C>b1 o
FIG. 26. Orbital and spin tableaus used to label homonuclear A 1|2
n-atomic molecules (n=2.3.4....). 1 1 Ar |1 1
- i, 13595 1
(a) BOSE NUCLEI 1=0,1,2,..  (b)FERMI NUCLEI 1=3.3.3. A, — |1 1 Ll o
ORBITAL  SPIN ORBITAL SPIN
(11 [0 (1. H

@@ s~C, q9 B ™ = 0]

Rev. Mod. Phys. 50,1,1 (1978)



S» tableaus spin-symmetry and characters.: X, and XY, molecules Permutation

) (b) .
) <le-g’y @) -ls-3)
FIG. 25. Orbital tableau labeling of a homonuclear diatomic

FIG. 26. Orbital and spin tableaus used to label homonuclear

n-atomic molecules (z=2.3.4....).
(a) BOSE NUCLEI 10,,2,..  (b)FERMI NUCLEI 1=},
ORBITAL  SPIN ORBITAL
I R I I
() n=2
@@ s~ 4B

~C ~D

L]
H

(1 1] [T LI

£@ ',;__?:J | B n=3 T
& :

Point group

group S, is equivalent to

S
(H)(2) (12) C> 1 o
A2 |y 411 1
35 1
3120 A22 1 411 -1
S3 |
DHQG) (123)  (12) (13) r .o
4. TR (132) 2 Cxn1l r o,
1
1 1 1 1 A |1 1 1
A
2111 1 -1 A |1 1 -1
F 3
r 2 -1 0 E 2 -1 0
311113
2

Rev. Mod. Phys. 50,1,1 (1978)



S» tableaus spin-symmetry and characters.: X, and XY, molecules Permutation Point group

T N P |= D S P

group S, is equivalent to

FIG. 25. Orbital tableau labeling of a homonuclear diatomic Z (1)(2) (12) C ) 1 (0]
FIG. 26. Orbital and spin tableaus used to label homonuclear A 1|2
n-atomic molecules n=2.3.4....). 1 1 Ai 1 1
. _ 135 1
(a) BOSE NUCLEI 1=0,1,2,..  (b)FERMI NUCLEI 1=3.3.3. A, . | 1 I EE
ORBITAL  SPIN ORBITAL  SPIN
0 W . L1 ] 53 1)2)3) (123)  (12) (13) Co 1 Il_‘21 0.0
[ n= 0-
@@ S ~C U B B (T A] T0r (132) (23) 3v 3
_ 1 1 | Ar 11 1 |
(T1 [T N g A,
B - 2 (11 1 -1 A 1 1 -1
8 g - Lo - o E 3 2
b3 90 - T 2 -1 ol B2 o
~c~p~ H [ 0 oo
L . 3113
2
Sy Tetrahedral: 5 =Tq
(H2)3)4) (12)(34) (12)(3)(4) ° Y900 I-180°
A ST . (123)(4) (1234) 11 ;)80 R90 (1580
A2 1 E 1 1 1 1 1 d 1.4 Xyz xyz 1...6
Al 1 1 1 1
21121y 1 1 -1 -1
1123 A L1 1 1 -1 -1
r Gl [ z
1(2 . 4 s 2 -2 0 0 E|l2 -1 2 0 0
3
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lableau dimension formulae

Dimension c¢f y (b) Dimension of ¢ .

. . . [ ]

representation of Sn representation of Um

g e e e P
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product .of |mami| * ° integers
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Y | % i
[21374) 345
1 = _4|_ =3 1 = ' =3 L] —_ 2 i
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- e == = | 2 =| Of Flel 2. —
of Sq [312 of Up= L2 3 =06
200 B Al

From unpublished Ch.10 for
Principles of Symmetry, Dynamics & Spectroscopy

Fig. 10.1.5 Hall - Robinson Hooklength Formulas
Dimension of representations of (a) S, and (b) U
labeled by a single tableau are given by the formulas. A
hooklength of a tableau box is simply the number of boxes in a
"hook"™ consisting of all the boxes below it, to the right of it,
and itself.




S» Young Tableaus and spin-symmetry for X, and XY, molecules

lableau dimension formulae
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FIG. 28. Robinson formula for statistical weights. The ‘“hook-
length” of a box in the tableau is the number of boxes in a “hook”’
which includes that box and all boxes in the line to the right and
in the column below it.
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S4 and spin-symmetry for XY4 molecules (Introducing hook-length formulae)

TETRAFLUOROSILANE: SiF« V> R(30) | Conventional
Td“ .
Labeling
8 | 6 6
| l :
/
' - FE
E [ 1 ; -
/

5é1 3F1FA2F15A13F 2E 3F1 A1 + o+ 2

312EéF 3F. 3F 3F 3F N:7/

SAS 3R, Fo T2E A, 2E —\ 2
FIG. 28. Robinson formula for statistical weights. The “hook- '
length” of a box in the tableau is the number of boxes in a “hook” Fg
which includes that box and all boxes in the line to the right and \
in the column below it. " F1
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tHy v
v

FIG. 36. Comparison of conventional CH, labeling with present
labeling. The latter shows clearly the ‘“hidden’” structure of
inversion doublets which has a structure very much like that
of NH;. For CH,, however, only the E levels are actually

double according to the statistical weight calculations.
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S4 and spin-symmetry for XY4 molecules (Introducing hook-length formulae)

Introducing rovibrational spectral nomogram

Transitions forbidden between states
of different Bare Rotor quantum labels

(Spin-symmetry species conserved here)
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Def. 1:
APPENDIX C. S, CHARACTER FORMULA

a a—-m a a

We give a formula (Coleman, 1966) for S, characters b b b—m b
x'51%,+?’. Here the S, IR is labeled by a tableau symbol
[k, *** p,) wherein u, means that row j has u, boxes. o |€l1=1 ¢ |l € |47 eun;
The S, classes are labeled by the notation 1%2°37++ .y . . . .
wherein a, 8, 7,... are the number of permutation 1-
cycles, 2-cycles, 3-cycles,... respectively. For ex- * * ' ’
ample, the permutation (1)(3)(2, 5)(4, 7, 6, 8) would be in . o . .
the class 1°2'3°4'5°6°7°8° of S,. The character thenis

givenby thefollowing formula and definitions. Note thatth 2Péf- 2

formula starts with a column of numbers that are the p-1
hooklengths of the first column of the tableau. Then the
definitions are used to whittle it down to a sum of se- ’
quentially numbered columns which each contribute unit .
according to Def. 2. =1;
By +p =1 2
' 1
' 0
Xyahsgr ) = 070507 . ; Def. 3:
Mpoo+2 a
“”-l +1 b
Hp ¢ . .
=0 if any two numbers in the column are equal,
. or if any number is less than zero;
Rev. Mod. Phys., Vol. 50, No. 1, Part |, January 1978
For example, here is the character of the [56, 13] IR of .
class 2,11,56 of S_,:
Def. 4:
57 1
xgﬁi:s’s«;:azanass =8,8,, a b
5 1 |1 c c
=8, | = =1. = - interchanging any two numbers gives a
|2 0 . * | change of sign.




TABLE XV. Characters of permutation group (S;) and octahedral (O,) subgroup.

18 32 22 4! 23 28 ¢t 2! 24! 22-5, Class
{u}=1{6} 1 1 1 1 1 1 1 1 1 1
{5,1} 5 =1 1 1 -1 -1 -1 3 -1 1
{4,2} 9 0 1 -1 3 3 o 3 1 1
{4,1,1} 10 1 -2 0 -2 -2 1 2 0 =2
{3,3} 5 2 1 -1 -3 -3 0 1 -1 1
{3,2,1} 16 -2 0 0 0 o 0 0o 0 o S >0
{2,2,2} 5 2 1 1 3 3 0 -1 =1 1 6 h
{s,1,1,1} 10 1 .. 0 2 2 -1 -2 0 =2
{2,2,1,1} 9 0 1 1 -3 -3 0 -3 1 1
{2,1,1,1,1} 5 =1 1 - 1 1 1 -3 -1 1
{1,1,1,1,1,1} 1 1 1 -1 -1 -1 -1 -1 1 1
Ay, 1 1 1 1 1 1 1 1 1 1
Ay, 1 1 1 -1 -1 1 1 1 =1 -1
E, 2 -1 2 0 0 2 -1 2 0 0
Tie 3 0 -1 1 -] 3 0 -1 1 -1
T,y 3 0 -1 -l 1 3 0 -1 -1 1
An 1 1 1 1 1 -1 -1 -1 -1 -1
Ay 1 1 1 -1 - | -1 -1 -1 1 1
E, 2 -1 2 0 0 -2 1 =2 0 0 Phys Rev. A24(1981)
Ty 3 0 -1 1 -1 -3 0 1 =1 1 pdf page 13
Toy 3 0 -1 -1 1 -3 0 1 1 -1 S
1 120° 180° 90° 180° I
Class Class Class Class [ks]* [&] [#)
FERMIONS B80SONS
Alg Agg Eg Tig Tag Azu A Eo Tayw Tie
a oIIrs I T
RevModPhys(1978) IS I M
pdf page 45 D T R T e
: - aat A T B
g}ﬂ @3 « o o1 N
o H I T AP T,
gID E:D e P T
o E A R T
BIED EJ e« o o o | O
OITTD] g . . e e e I o & o

FIG. 27. Spin tableau-(B) correlation for octahedral XYy mole-
cule (see Appendix D).
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THEORY OF HYPERFINE AND SUPERFINE LEVELS.... II. ...

TABLE I. Permutational - octahedral correlation table S;+ O,. Only the last four rows are
relevant for spln-‘% nuclei.

Fermi Bose
nuclei nuclei A,, A, A, A, E E T, T, Ty T, / x

oD .
1 . . . - . . . . . 4-7 Phys ReV. A24(1981)
W pdf page 13
111) . . /
. . . L - 1 - . 1
.
& 0| 1 . . 1 . . * 1 1
S >0
. 6 h
1) 1 1]
. . 1 . . . 1 1 . 1
E .
y 1 1 o ) 1 ' ’
.|
u y * * 1 1 1 1 1 1
Elu 8 . 1 . . . . 1 . 1 1
l 1 ™ . . . . . 1 . I-o
- SR TR U EEE O B S U L B £ 5
N - . Spin-3 nuclel
. H - - L - L 1 L - 1 - I=2
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S» Young Tableaus and spin-symmetry for X, and XY, molecules
(a) . (b) .
o) -le-xy 1B <le -z

FIG. 25. Orbital tableau labeling of a homonuclear diatomic
FIG. 26. Orbital and spin tableaus used to label homonuclear

n-atomic molecules (n=2.3.4....).
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FIG. 27. Spin tableau-(B) correlation for octahedral XY; mole-
cule (see Appendix D).

FERMIONS BOSONS
Ag A2gEg Tig T2g A2y Ay By Taw Ty

EEED - - ' Ll . - - L] . l
I o 1l e o « 1 .

S>C ~D
4 4 4

L

I

[T
H
:

T
]
|
L 'lr:
A m

+—
-
b=

i

4
DIE:D‘EEBB_EBE’H

Rev. Mod. Phys. 50,1,1 (1978)



S» Young Tableaus and spin-symmetry for X, and XY, molecules

B P S 1= D S P '

FIG. 25. Orbital tableau labeling of a homonuclear diatomic
FIG. 26. Orbital and spin tableaus used to label homonuclear

n-atomic molecules (n=2.3.4....).
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N I 0 D CLLL] F FIG. 27. Spin tableau-(B) correlation for octahedral XY; mole-
: L cule (see Appendix D).
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Compare to spin-'2 case \ Y E“ : | | | ' | |
of S¢ > Oy, table that follows EFE.;D ? vl |
where orbit-tableau with Crrrmo Ej E |

more than 2 columns are forbidden
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Spin-Permutation to Octahedral Correlations

/ S6 ) Oh
Entanglement. c, ol 14 24 57 @Eu T1oT1 Tpy A, Ay Ao,
: A 1 : -
How F-nuclei become A] . e S |
entangled Ej ; ; @ L1 I Forg;dden
: : : WL 1=1 6
total—spzn—]—.symmetry O, species T ; | ; E] . | species:
n SF6 T, \ 7\ ] i AL T=2 1 Eo, T, A2
LLAAAAD 1=3E
With rotation 8 3 3 6 1 1 10 0 0 0
all six O nuclei are equivalent Species Spin Weights
@ Compare to complete
Se¢ > On table on p.86
208
o E; Tr A Iy I
8_ 1M N 6 m 2 I 6 MAM 6 Greatly simplified
sketches of ultra
high resolution IR
SF g spectroscopy of
Christian Borde’,
C. Saloman, and
Oliver Pfister

(Pfister did SiF 4, too.)

See SF¢ spectra with
A> 15 E level cluster
that follows



Ss and XYs molecules Internal J gets “stuck” on RES axes
Must “tunnel” axis-to-axis at rate s

U>D>[E>|W>|N>(S>

Wes
Sou

Review O(04)DC4 cluster:

Tunneling s=-S
is negative here

04 cluster splitting

H O s s s s | +2 +2

O H s s s s | +2 +2

s s H 0 s s | —-1]1 —1
——=(H-2

s s O H s s | -1 \/ﬁ ( S) -1

s s s s H 0| -1 -1

s s s s 0 H| -1 -1

H 0 s s s s |+1 +1

0O H s s s s |-1 —1

s s H 0 s s | o0]1 0
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s s 0 H s =5 0 \/5 ( ) 0

s s s s H 0 0 0

s s s s 0 HI|O 0

H 0 s s s s |1 1

O H s s s s |1 1

s s H 0 s s |11 1] 1
—==(H +4s —=

s s 0 H s s |1 \/6 ( ) 1 \/6

s s s s H 01 1

s s s s 0 H|1 1




Spin-Permutation to Octahedral Correlations 5, 5 0,

DISentanglement! Spin
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How F-nuclei become ! == . . 1 1 . |
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(but not. distinguishable) T ] | ] weight 5 E] g | | | species:
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. weight 7 e : : 1
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all six @ nuclei are equivalent Species Spin Weights
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8_ MMM 6 m 2 I 6 6 Greatly simplified
With rotation|stuck on Cy4 axis \ / N ; sketches of ultra
polar nuclei gre “left out in the cold " \ /// \ / high resolution IR
\ / SF g spectroscopy of
\ / Christian Borde’,
N / C. Saloman, and
3 N Oliver Pfister
45 N 1 (Pfister did SiF 4, t00.)

If equatorial nuclei i greater.B-field than polar-nuclei...

— 1T
o AT TS (TRE (MMMR] QMR weight S
riplet-singlets

L m MW Cight 3+1

- I'A' 1AL miptcsingec ||
lg t3+ T T Quﬁltets T \L I

[T (TEL (T (TG (SILH] M MR [T (L] (LR




(Spin-symmetry species NOT conserved here) R
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Fig. 10.1.2 Yamanouchi formulas for permutation operators.
YI5/4 /4 Integer d is the "city block" distance between (n) and
(n=1) blocks, i.e., the minimum number of streets to be crossed

when traveling from one to the other. Note that when numbers

(n) and (n-1) are ordered smaller above larger, the permutation

is negative (anti-symmetric if d=1), and positive (symmetric if

d=1) when the smaller number is left of the larger number. [The
(n=1) will never be above and left of (n) since that arrangement
would be "non-standard."]



