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Substitution Group products: Sn cycle notation
Suppose pool balls are stored in numerical order:  {1,2,3,4,5,6,7,8}.  
Let players return them in a permuted order, say:  {4,2,8,6,3,7,1,5}.  
Suppose your job to reorder them. With two hands it's natural to switch two at a time.  
You find the 1-ball and switch it with the 4-ball (that was in the number-1 position).

14( ) 4,2,8,6,3,7,1,5 = 1,2,8,6,3,7,4,5

Such a "2-flip" operation (14) is called a transposition or a bicycle operation.
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Next you see the 2-ball already in the number-2 position so you leave it alone.

Such a "no-flip" operation (2) is called an identity or a unicycle (non)-operation.
2( ) 1,2,8,6,3,7,4,5 = 1,2,8,6,3,7,4,5 = 2( ) 14( ) 4,2,8,6,3,7,1,5
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Substitution Group products: Sn cycle notation and algebra
Suppose pool balls are stored in numerical order:  {1,2,3,4,5,6,7,8}.  
Let players return them in a permuted order, say:  {4,2,8,6,3,7,1,5}.  
Suppose your job to reorder them. With two hands it's natural to switch two at a time.  

67( ) 58( ) 46( ) 38( ) 2( ) 14( ) 4,2,8,6,3,7,1,5 = 1,2,3,4,5,6,7,8 (67) finishes the job.

This permutation has 5 bicycle (ab) operations so it is an ODD-permutation. 
   1      2     3      4          5 
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Flip any single pair and it becomes EVEN.
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67( ) 58( ) 46( ) 38( ) 2( ) 14( )(67) 4,2,8,7,3,6,1,5 = 1,2,3,4,5,6,7,8

Flip any single pair and it becomes EVEN.

or: 67( ) 58( ) 46( ) 38( ) 2( ) 14( )(84) 8,2,4,7,3,6,1,5 = 1,2,3,4,5,6,7,8

The inverse of our permutation operation… 

          …is simply reverse-ordered products:  

67( ) 58( ) 46( ) 38( ) 2( ) 14( ) 4,2,8,6,3,7,1,5 = 1,2,3,4,5,6,7,8

4,2,8,6,3,7,1,5 = 14( ) 2( ) 38( ) 46( ) 58( ) 67( ) 1,2,3,4,5,6,7,8

Note all bicycle (ab) operations have flip-order symmetry (ab)≡(ba)=(ab)-1



This permutation has 6 bicycle (ab) operations so it is an EVEN-permutation. 
   1      2     3      4          5      6 

Substitution Group products: Sn cycle notation and algebra
Suppose pool balls are stored in numerical order:  {1,2,3,4,5,6,7,8}.  
Let players return them in a permuted order, say:  {4,2,8,6,3,7,1,5}.  
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Note all bicycle (ab) operations have flip-order symmetry (ab)≡(ba)=(ab)-1

…minimal equation (ab)2 =1≡(a)(b) i.e., (ab)2 -1=0



This permutation has 6 bicycle (ab) operations so it is an EVEN-permutation. 
   1      2     3      4          5      6 

Substitution Group products: Sn cycle notation and algebra
Suppose pool balls are stored in numerical order:  {1,2,3,4,5,6,7,8}.  
Let players return them in a permuted order, say:  {4,2,8,6,3,7,1,5}.  
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67( ) 58( ) 46( ) 38( ) 2( ) 14( ) 4,2,8,6,3,7,1,5 = 1,2,3,4,5,6,7,8 (67) finishes the job.
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67( ) 58( ) 46( ) 38( ) 2( ) 14( ) 4,2,8,6,3,7,1,5 = 1,2,3,4,5,6,7,8

4,2,8,6,3,7,1,5 = 14( ) 2( ) 38( ) 46( ) 58( ) 67( ) 1,2,3,4,5,6,7,8

Note all bicycle (ab) operations have flip-order symmetry (ab)≡(ba)=(ab)-1

…minimal equation (ab)2 =1≡(a)(b) i.e., (ab)2 -1=0=((ab) -1)((ab) +1)
…eigenvalues of  ±1.
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Substitution Group products: Sn cycle notation and cyclic algebra
Suppose pool balls are stored in numerical order:  {1,2,3,4,5,6,7,8}.  
Let players return them in a permuted order, say:  {4,2,8,6,3,7,1,5}.  
Suppose your job: reorder them. With two hands it's natural (but slower) to switch two at a time.  
Much faster with multi-cycles (tricycles, quadricycles, etc.)

Rewriting permutation operation… 

Permutation operations (ab) and (cd) commute if and only if neither a nor b equals c or d.  

67( ) 58( ) 46( ) 38( ) 2( ) 14( ) 4,2,8,6,3,7,1,5 = 1,2,3,4,5,6,7,8

So :  67( ) 58( ) 46( ) 38( ) 2( ) 14( )            since: 58( ) 46( ) = 46( ) 58( )   etc
    = 67( ) 46( ) 14( ) ⋅ 58( ) 38( ) ⋅ 2( )  .  and: 58( ) 14( ) = 14( ) 58( )   etc.



Substitution Group products: Sn cycle notation and cyclic algebra
Suppose pool balls are stored in numerical order:  {1,2,3,4,5,6,7,8}.  
Let players return them in a permuted order, say:  {4,2,8,6,3,7,1,5}.  
Suppose your job: reorder them. With two hands it's natural (but slower) to switch two at a time.  
Much faster with multi-cycles (tricycles, quadricycles, etc.)

Rewriting permutation operation… 

Permutation operations (ab) and (cd) commute if and only if neither a nor b equals c or d.  

67( ) 58( ) 46( ) 38( ) 2( ) 14( ) 4,2,8,6,3,7,1,5 = 1,2,3,4,5,6,7,8

So :  67( ) 58( ) 46( ) 38( ) 2( ) 14( )            since: 58( ) 46( ) = 46( ) 58( )   etc
    = 67( ) 46( ) 14( ) ⋅ 58( ) 38( ) ⋅ 2( )  .  and: 58( ) 14( ) = 14( ) 58( )   etc.

Consider two bicycles (58)(38) sharing an 8-ball:
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Suppose pool balls are stored in numerical order:  {1,2,3,4,5,6,7,8}.  
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    = 67( ) 46( ) 14( ) ⋅ 58( ) 38( ) ⋅ 2( )  .  and: 58( ) 14( ) = 14( ) 58( )   etc.

                 8   
1,2,  ,4,5,6,7,3

First, 3-ball replaces 8-ball.  (Right operator (38) acts first.)  
Consider two bicycles (58)(38) sharing an 8-ball:

(1D diagrams tend  
to be confusing…)
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Suppose pool balls are stored in numerical order:  {1,2,3,4,5,6,7,8}.  
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First, 3-ball replaces 8-ball.  (Right operator (38) acts first.)  
Consider two bicycles (58)(38) sharing an 8-ball:

(1D diagrams tend  
to be confusing…)

(2D diagrams are better…)



Substitution Group products: Sn cycle notation and cyclic algebra
Suppose pool balls are stored in numerical order:  {1,2,3,4,5,6,7,8}.  
Let players return them in a permuted order, say:  {4,2,8,6,3,7,1,5}.  
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Substitution Group products: Sn cycle notation and cyclic algebra
Suppose pool balls are stored in numerical order:  {1,2,3,4,5,6,7,8}.  
Let players return them in a permuted order, say:  {4,2,8,6,3,7,1,5}.  
Suppose your job: reorder them. With two hands it's natural (but slower) to switch two at a time.  
Much faster with multi-cycles (tricycles, quadricycles, etc.)

Rewriting permutation operation… 

Permutation operations (ab) and (cd) commute if and only if neither a nor b equals c or d.  

67( ) 58( ) 46( ) 38( ) 2( ) 14( ) 4,2,8,6,3,7,1,5 = 1,2,3,4,5,6,7,8
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First, 3-ball replaces 8-ball.  (Right operator (38) acts first.) 
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Consider two bicycles (58)(38) sharing an 8-ball:

(1D diagrams tend  
to be confusing…)

(2D diagrams are better…)



Substitution Group products: Sn cycle notation and cyclic algebra
Suppose pool balls are stored in numerical order:  {1,2,3,4,5,6,7,8}.  
Let players return them in a permuted order, say:  {4,2,8,6,3,7,1,5}.  
Suppose your job: reorder them. With two hands it's natural (but slower) to switch two at a time.  
Much faster with multi-cycles (tricycles, quadricycles, etc.)

Rewriting permutation operation… 
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67( ) 58( ) 46( ) 38( ) 2( ) 14( ) 4,2,8,6,3,7,1,5 = 1,2,3,4,5,6,7,8
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(385)

First, 3-ball replaces 8-ball.  (Right operator (38) acts first.) 
Second, 8-ball, in turn displaces 5-ball. (Left operator (58) acts next.) 

So two bicycles (58)(38) sharing an 8-ball make a tricycle… (58)(38)=(385)

(1D diagrams tend  
to be confusing…)

(2D diagrams are better…)

“3 goes to 8 goes to 5 goes to 3”



Substitution Group products: Sn cycle notation and cyclic algebra
Suppose pool balls are stored in numerical order:  {1,2,3,4,5,6,7,8}.  
Let players return them in a permuted order, say:  {4,2,8,6,3,7,1,5}.  
Suppose your job: reorder them. With two hands it's natural (but slower) to switch two at a time.  
Much faster with multi-cycles (tricycles, quadricycles, etc.)

Rewriting permutation operation… 

Permutation operations (ab) and (cd) commute if and only if neither a nor b equals c or d.  
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    = 67( ) 46( ) 14( ) ⋅ 58( ) 38( ) ⋅ 2( )  .  and: 58( ) 14( ) = 14( ) 58( )   etc.
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First, 3-ball replaces 8-ball.  (Right operator (38) acts first.) 
Second, 8-ball, in turn displaces 5-ball. (Left operator (58) acts next.) 

Consider two bicycles (58)(38) sharing an 8-ball:

So two bicycles (58)(38) sharing an 8-ball make a tricycle… (58)(38)=(385)=(538)=(853)
…that may be written three different ways.

(1D diagrams tend  
to be confusing…)

(2D diagrams are better…)



Substitution Group products: Sn cycle notation and cyclic algebra
Suppose pool balls are stored in numerical order:  {1,2,3,4,5,6,7,8}.  
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Much faster with multi-cycles (tricycles, quadricycles, etc.)
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    = 67( ) 46( ) 14( ) ⋅ 58( ) 38( ) ⋅ 2( )  .  and: 58( ) 14( ) = 14( ) 58( )   etc.
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So two bicycles (58)(38) sharing an 8-ball make a tricycle… (58)(38)=(385)=(538)=(853)
…also written three different ways.

(1D diagrams tend  
to be confusing…)

(2D diagrams are better…)

Here is inverse of (58)(38):…(38)(58)=(358)=(583)=(835)
“3 goes to 5 goes to 8 goes to 3”
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Substitution Group products: Sn cycle notation and cyclic algebra
Suppose pool balls are stored in numerical order:  {1,2,3,4,5,6,7,8}.  
Let players return them in a permuted order, say:  {4,2,8,6,3,7,1,5}.  
Suppose your job: reorder them. With two hands it's natural (but slower) to switch two at a time.  
Much faster with multi-cycles (tricycles, quadricycles, etc.)

Rewriting permutation operation… 

Permutation operations (ab) and (cd) commute if and only if neither a nor b equals c or d.  

67( ) 58( ) 46( ) 38( ) 2( ) 14( ) 4,2,8,6,3,7,1,5 = 1,2,3,4,5,6,7,8

So :  67( ) 58( ) 46( ) 38( ) 2( ) 14( )            since: 58( ) 46( ) = 46( ) 58( )   etc
    = 67( ) 46( ) 14( ) ⋅ 58( ) 38( ) ⋅ 2( )  .  and: 58( ) 14( ) = 14( ) 58( )   etc.

Consider three bicycles (67)(46)(14) sharing 6-ball and 4-ball:
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Substitution Group products: Sn cycle notation and cyclic algebra
Suppose pool balls are stored in numerical order:  {1,2,3,4,5,6,7,8}.  
Let players return them in a permuted order, say:  {4,2,8,6,3,7,1,5}.  
Suppose your job: reorder them. With two hands it's natural (but slower) to switch two at a time.  
Much faster with multi-cycles (tricycles, quadricycles, etc.)

Rewriting permutation operation… 
Permutation operations (ab) and (cd) commute if and only if neither a nor b equals c or d.  

67( ) 58( ) 46( ) 38( ) 2( ) 14( ) 4,2,8,6,3,7,1,5 = 1,2,3,4,5,6,7,8

So :  67( ) 58( ) 46( ) 38( ) 2( ) 14( )            since: 58( ) 46( ) = 46( ) 58( )   etc
    = 67( ) 46( ) 14( ) ⋅ 58( ) 38( ) ⋅ 2( )  .  and: 58( ) 14( ) = 14( ) 58( )   etc.

Consider three bicycles (67)(46)(14) sharing 6-ball and 4-ball:
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(67)(46)(14) =(67)(46)
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=
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“1 goes to 4 goes to 6 goes to 7 goes ton 1”
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(1467)“1 goes to 4 goes to 6 goes to 7 goes ton 1”



Substitution Group products: Sn cycle notation and cyclic algebra
Suppose pool balls are stored in numerical order:  {1,2,3,4,5,6,7,8}.  
Let players return them in a permuted order, say:  {4,2,8,6,3,7,1,5}.  
Suppose your job: reorder them. With two hands it's natural (but slower) to switch two at a time.  
Much faster with multi-cycles (tricycles, quadricycles, etc.)

Rewriting permutation operation… 
Permutation operations (ab) and (cd) commute if and only if neither a nor b equals c or d.  

67( ) 58( ) 46( ) 38( ) 2( ) 14( ) 4,2,8,6,3,7,1,5 = 1,2,3,4,5,6,7,8

So :  67( ) 58( ) 46( ) 38( ) 2( ) 14( )            since: 58( ) 46( ) = 46( ) 58( )   etc
    = 67( ) 46( ) 14( ) ⋅ 58( ) 38( ) ⋅ 2( )  .  and: 58( ) 14( ) = 14( ) 58( )   etc.
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(1467)

So three bicycles (67)(46)(14) 
give a quadricycle (1467) 
that may be written four ways… 

(67)(46)(14) = (1467) = (7146) = (6714) = (4671)

“1 goes to 4 goes to 6 goes to 7 goes ton 1”



Substitution Group products: Sn cycle notation and cyclic algebra
Suppose pool balls are stored in numerical order:  {1,2,3,4,5,6,7,8}.  
Let players return them in a permuted order, say:  {4,2,8,6,3,7,1,5}.  
Suppose your job: reorder them. With two hands it's natural (but slower) to switch two at a time.  
Much faster with multi-cycles (tricycles, quadricycles, etc.)

Rewriting permutation operation… 
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    = 67( ) 46( ) 14( ) ⋅ 58( ) 38( ) ⋅ 2( )  .  and: 58( ) 14( ) = 14( ) 58( )   etc.
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(385)(1467)

So three bicycles (67)(46)(14) 
give a quadricycle (1467) 
that may be written four ways… 

(67)(46)(14) = (1467) = (7146) = (6714) = (4671)

…with tricycle (58)(38) 
=(385)=(538)=(853)

(An ODD permutation)

(An EVEN permutation)
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        Sn class transformation algebra  
        Sn class cycle labeling 
        Sn class cycle counting 
Sn tableaus spin-symmetry and characters: Xn and XYn molecules 
      Tableau dimension formulae 
        Methane-like XY4                           Introducing rovibrational spectral nomogram 
                     Large molecule character  and correlation formulae 
           Hexafluoride-like:XY6.  
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Unraveling a permutation (Starting with “1”)

| 4, 2, 8, 6, 3, 7, 1, 5 〉

1 2 3 4 5 6 7 8

| 4, 2, 8, 6, 3, 7, 1, 5 〉

1 2 3 4 5 6 7 8

| 4, 2, 8, 6, 3, 7, 1, 5 〉

1 2 3 4 5 6 7 8

| 4, 2, 8, 6, 3, 7, 1, 5 〉

1 2 3 4 5 6 7 8

Closes on a permutation
quadracycle

(1764)=(4176)=etc.



Unraveling a permutation (Starting with “1”)

| 4, 2, 8, 6, 3, 7, 1, 5 〉

1 2 3 4 5 6 7 8

| 4, 2, 8, 6, 3, 7, 1, 5 〉

1 2 3 4 5 6 7 8

| 4, 2, 8, 6, 3, 7, 1, 5 〉

1 2 3 4 5 6 7 8

| 4, 2, 8, 6, 3, 7, 1, 5 〉

1 2 3 4 5 6 7 8

Closes on a permutation
quadracycle

(1764)=(4176)=etc.

(Next higher number that has not been used is a “2”)

| 4, 2, 8, 6, 3, 7, 1, 5 〉

1 2 3 4 5 6 7 8

Closes on a permutation
unicycle
(2)



Unraveling a permutation (Starting with “1”)

| 4, 2, 8, 6, 3, 7, 1, 5 〉

1 2 3 4 5 6 7 8

| 4, 2, 8, 6, 3, 7, 1, 5 〉

1 2 3 4 5 6 7 8

| 4, 2, 8, 6, 3, 7, 1, 5 〉

1 2 3 4 5 6 7 8

| 4, 2, 8, 6, 3, 7, 1, 5 〉

1 2 3 4 5 6 7 8

Closes on a permutation
quadracycle

(1764)=(4176)=etc.

(Next higher number that has not been used is a “2”)

| 4, 2, 8, 6, 3, 7, 1, 5 〉

1 2 3 4 5 6 7 8

Closes on a permutation
unicycle
(2)

(Next higher number that has not been used is a “3”)

| 4, 2, 8, 6, 3, 7, 1, 5 〉

1 2 3 4 5 6 7 8

Closes on a permutation
tricycle

| 4, 2, 8, 6, 3, 7, 1, 5 〉

1 2 3 4 5 6 7 8

| 4, 2, 8, 6, 3, 7, 1, 5 〉

1 2 3 4 5 6 7 8 (358)=(835)=etc.

(1764)(2)(358)=Final result: (358)(1764)
“OK , but its the inverse of the pool ball operation”
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(67)(58)(46)(38)(14)=?
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Substitution Group products: Sn cycle notation and cyclic algebra
A (nearly) foolproof table method to find cycle products like:(67)(58)(46)(38)(14) (Does n-cycles,too.)
(1) Apply n-cycle (right-most 1st) to each row starting on <1>=1,2,3,4,5,…,nmax 

1 2 3 4 5 6 7 8 1

4 2 3 1 5 6 7 8 (14)
4 3 8 1 5 6 7 3 (38)
6 2 8 1 5 4 7 3 (46)
6 2 5 1 8 4 7 3 (58)
7 2 5 1 8 4 6 3 (67)

1 2 3 4 5 6 7 8 1
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Substitution Group products: Sn cycle notation and cyclic algebra
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1 2 3 4 5 6 7 8 1

4 2 3 1 5 6 7 8 (14)
4 3 8 1 5 6 7 3 (38)
6 2 8 1 5 4 7 3 (46)
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1 2 3 4 5 6 7 8 1
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Substitution Group products: Sn cycle notation and cyclic algebra
A (nearly) foolproof table method to find cycle products like:(67)(58)(46)(38)(14) (Does n-cycles,too.)
(1) Apply n-cycle (right-most 1st) to each row starting on <1>=1,2,3,4,5,…,nmax 

1 2 3 4 5 6 7 8 1

4 2 3 1 5 6 7 8 (14)
4 3 8 1 5 6 7 3 (38)
6 2 8 1 5 4 7 3 (46)
6 2 5 1 8 4 7 3 (58)
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Substitution Group products: Sn cycle notation and cyclic algebra
A (nearly) foolproof table method to find cycle products like:(67)(58)(46)(38)(14) (Does n-cycles,too.)
(1) Apply n-cycle (right-most 1st) to each row starting on <1>=1,2,3,4,5,…,nmax 

1 2 3 4 5 6 7 8 1

4 2 3 1 5 6 7 8 (14)
4 3 8 1 5 6 7 3 (38)
6 2 8 1 5 4 7 3 (46)
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Substitution Group products: Sn cycle notation and cyclic algebra
A (nearly) foolproof table method to find cycle products like:(67)(58)(46)(38)(14) (Does n-cycles,too.)
(1) Apply n-cycle (right-most 1st) to each row starting on <1>=1,2,3,4,5,…,nmax 

1 2 3 4 5 6 7 8 1

4 2 3 1 5 6 7 8 (14)
4 3 8 1 5 6 7 3 (38)
6 2 8 1 5 4 7 3 (46)
6 2 5 1 8 4 7 3 (58)
7 2 5 1 8 4 6 3 (67)

1 2 3 4 5 6 7 8 1
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Substitution Group products: Sn cycle notation and cyclic algebra
A (nearly) foolproof table method to find cycle products like:(67)(58)(46)(38)(14) (Does n-cycles,too.)
(1) Apply n-cycle (right-most 1st) to each row starting on <1>=1,2,3,4,5,…,nmax 

1 2 3 4 5 6 7 8 1

4 2 3 1 5 6 7 8 (14)
4 3 8 1 5 6 7 3 (38)
6 2 8 1 5 4 7 3 (46)
6 2 5 1 8 4 7 3 (58)
7 2 5 1 8 4 6 3 (67)

1 2 3 4 5 6 7 8 1

(14   
(2) Sort into distinct ordered (abc..e)-cycles



(67)(58)(46)(38)(14)=?
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Substitution Group products: Sn cycle notation and cyclic algebra
A (nearly) foolproof table method to find cycle products like:(67)(58)(46)(38)(14) (Does n-cycles,too.)
(1) Apply n-cycle (right-most 1st) to each row starting on <1>=1,2,3,4,5,…,nmax 

1 2 3 4 5 6 7 8 1

4 2 3 1 5 6 7 8 (14)
4 3 8 1 5 6 7 3 (38)
6 2 8 1 5 4 7 3 (46)
6 2 5 1 8 4 7 3 (58)
7 2 5 1 8 4 6 3 (67)

1 2 3 4 5 6 7 8 1

(146   
(2) Sort into distinct ordered (abc..e)-cycles
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Substitution Group products: Sn cycle notation and cyclic algebra
A (nearly) foolproof table method to find cycle products like:(67)(58)(46)(38)(14) (Does n-cycles,too.)
(1) Apply n-cycle (right-most 1st) to each row starting on <1>=1,2,3,4,5,…,nmax 

1 2 3 4 5 6 7 8 1

4 2 3 1 5 6 7 8 (14)
4 3 8 1 5 6 7 3 (38)
6 2 8 1 5 4 7 3 (46)
6 2 5 1 8 4 7 3 (58)
7 2 5 1 8 4 6 3 (67)

1 2 3 4 5 6 7 8 1

(1467 
(2) Sort into distinct ordered (abc..e)-cycles
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Substitution Group products: Sn cycle notation and cyclic algebra
A (nearly) foolproof table method to find cycle products like:(67)(58)(46)(38)(14) (Does n-cycles,too.)
(1) Apply n-cycle (right-most 1st) to each row starting on <1>=1,2,3,4,5,…,nmax 

1 2 3 4 5 6 7 8 1

4 2 3 1 5 6 7 8 (14)
4 3 8 1 5 6 7 3 (38)
6 2 8 1 5 4 7 3 (46)
6 2 5 1 8 4 7 3 (58)
7 2 5 1 8 4 6 3 (67)

1 2 3 4 5 6 7 8 1

(1467)
(2) Sort into distinct ordered (abc..e)-cycles



(67)(58)(46)(38)(14)=?
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Substitution Group products: Sn cycle notation and cyclic algebra
A (nearly) foolproof table method to find cycle products like:(67)(58)(46)(38)(14) (Does n-cycles,too.)
(1) Apply n-cycle (right-most 1st) to each row starting on <1>=1,2,3,4,5,…,nmax 

1 2 3 4 5 6 7 8 1

4 2 3 1 5 6 7 8 (14)
4 3 8 1 5 6 7 3 (38)
6 2 8 1 5 4 7 3 (46)
6 2 5 1 8 4 7 3 (58)
7 2 5 1 8 4 6 3 (67)

1 2 3 4 5 6 7 8 1

(1467)

7

6
1

4

tells which new number Nnew  
now sits in the space that 
started with old number Nold

Nnew 
Nold

(2) Sort into distinct ordered (abc..e)-cycles



(67)(58)(46)(38)(14)=
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(385)(1467)

Substitution Group products: Sn cycle notation and cyclic algebra
A (nearly) foolproof table method to find cycle products like:(67)(58)(46)(38)(14) (Does n-cycles,too.)
(1) Apply n-cycle (right-most 1st) to each row starting on <1>=1,2,3,4,5,…,nmax 

1 2 3 4 5 6 7 8 1

4 2 3 1 5 6 7 8 (14)
4 3 8 1 5 6 7 3 (38)
6 2 8 1 5 4 7 3 (46)
6 2 5 1 8 4 7 3 (58)
7 2 5 1 8 4 6 3 (67)

1 2 3 4 5 6 7 8 1

(1467) (385)

7

6
1

4
3

8

5

Nnew 
Nold

tells which new number Nnew  
now sits in the space that 
started with old number Nold

(2) Sort into distinct ordered (abc..e)-cycles
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(67)(58)(46)(38)(14)=
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Substitution Group products: Sn cycle notation and cyclic algebra
A (nearly) foolproof table method to find cycle products like:(67)(58)(46)(38)(14) (Does n-cycles,too.)
(1) Apply n-cycle (right-most 1st) to each row starting on <1>=1,2,3,4,5,…,nmax 

1 2 3 4 5 6 7 8 1

4 2 3 1 5 6 7 8 (14)
4 3 8 1 5 6 7 3 (38)
6 2 8 1 5 4 7 3 (46)
6 2 5 1 8 4 7 3 (58)
7 2 5 1 8 4 6 3 (67)

1 2 3 4 5 6 7 8 1

(1467) (385)

7

6
1

4
3

8

5

Nnew 
Nold

tells which new number Nnew  
now sits in the space that 
started with old number Nold

(2) Sort into distinct ordered (abc..e)-cycles
A shortcut method to reduce cycle products like : (67)(46)(14)  (58)(38) 
Last op (67) moves 6 to 7.   6→7 

7→6→4→1
This implies (67
This implies (671

But whence came 1?
But whence came 7?

1→4 This implies (6714
But whence came 4? 4→6 This implies (6714) that is (1467)

Last op (58) moves 5 to 8.   5→8→3 This implies (53
 3? This implies (538
8? 8→5 This implies (538) that is (385)

3→8



Shortcut method reduces cycle products like : (12)(13)(14)(15) 
(12         implied by last op involving 2:             1→2  
(123       implied by last op involving 3:                   2→1→3 
(1234     implied by last op involving 4:                               3→1→4 
(12345   implied by last op involving 5:                                           4→1→5 
(12345)  implied by last op involving 5:                                                      5→1    

Shortcut method reduces cycle products like : (12)(13)(14)(15)   Start with any number (say 3) 
(34         implied by last op involving 3:                    3→1→4  
(345       implied by last op involving 4:                                4→1→5 
(3451     implied by last op involving 5:                                            5→1 
(34512   implied by last op involving 1:                                                  1→2 
(34512)  implied by last op involving 2:                                                       2→1→3    

Shortcut: (1234)(456) 
(12           1→2     
(123              2→3 
(1235                 3→4→5 
(12356                         5→6 
(123564                            6→4 
(123564)                                 4→1

Shortcut: (456)(1234) 
(12           1→2     
(123              2→3 
(1234                 3→4 
(12345                    4→5 
(123456                       5→6 
(123456)                           6→4→1

1 2 3 4 5 6 1

1 2 3 6 4 5 (456)
4 1 2 6 3 5 (1234)

1 2 3 4 5 6 1

  =(123564)
     Test:

1 2 3 4 5 6 1

4 1 2 3 5 6 (1234)
6 1 2 3 4 5 (456)

1 2 3 4 5 6 1

  =(123456)
     Test:
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Substitution Group products: Sn class transformation algebra
Similarity transform y= t·x·t-1 =(15)(2738496) · (5678)(19)(234) · (51)(2694837)  
                                                                           = (1923)(45)(678)

                 (15)(2738496) · (5678)(19)(234) · (51)(2694837) 
(19              1→5→6→9 
(192                            9→6→7→2 
(1923                                          2→7→8→3 
(1923)                                                       3→8→5→1 
(45               4→9→1→5 
(45)                             5→1→9→4 
(67                 6→2→3→7 
(678                             7→3→4→8 
(678)                                          8→4→2→6

1 2 3 4 5 6 7 8 9 1

5 7 8 9 1 2 3 4 6 (15)(2694837)
8 6 7 1 9 4 2 3 5 (5678)(19)(234)
3 9 2 5 4 8 6 7 1 (51)(2738496)

1 2 3 4 5 6 7 8 9 1

 = (1923)(45)(678) = t·x·t-1
(5678)(19)(234) =    x



Substitution Group products: Sn class transformation algebra
Similarity transform y= t·x·t-1 =(15)(2738496) · (5678)(19)(234) · (51)(2694837)  
                                                                           = (1923)(45)(678)

                 (15)(2738496) · (5678)(19)(234) · (51)(2694837) 
(19              1→5→6→9 
(192                            9→6→7→2 
(1923                                          2→7→8→3 
(1923)                                                       3→8→5→1 
(45               4→9→1→5 
(45)                             5→1→9→4 
(67                 6→2→3→7 
(678                             7→3→4→8 
(678)                                          8→4→2→6

1 2 3 4 5 6 7 8 9 1

5 7 8 9 1 2 3 4 6 (15)(2694837)
8 6 7 1 9 4 2 3 5 (5678)(19)(234)
3 9 2 5 4 8 6 7 1 (51)(2738496)

1 2 3 4 5 6 7 8 9 1

 = (1923)(54)(678) = t·x·t-1
(5678)(19)(234) =    x

t·=(15)(2738496)
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Permutations are classified by the numbers of ν1 of unicycles, ν2 of bicycles, ν3 of tricycles, etc.

Ball-numbers can’t be repeated after cycle reduction. So cycle length sum is number N of balls.

ν1 + 2 ν2 + 3 ν3 + 4 ν4 + 5 ν5 +...+ NνN  = N

Substitution Group products: Sn class cycle labeling



Permutations are classified by the numbers of ν1 of unicycles, ν2 of bicycles, ν3 of tricycles, etc.

Ball-numbers can’t be repeated after cycle reduction. So cycle length sum is number N=n of balls.

ν1 + 2 ν2 + 3 ν3 + 4 ν4 + 5 ν5 +...+ NνN  = N

Substitution Group products: Sn class cycle labeling

Number of classes of Sn equals the number of partitions of integer N=n.

S4 example 
ν3 =1

(4)      (321)
ν2 =0ν1 =1



Permutations are classified by the numbers of ν1 of unicycles, ν2 of bicycles, ν3 of tricycles, etc.

Ball-numbers can’t be repeated after cycle reduction. So cycle length sum is number N=n of balls.

ν1 + 2 ν2 + 3 ν3 + 4 ν4 + 5 ν5 +...+ NνN  = N

Substitution Group products: Sn class cycle labeling

Number of classes of Sn equals the number of partitions of integer N=n.
ν3 =1

(14)(13)(12)(11)(10) (98)(76)(54) (321)
ν2 =3ν1 =5

S14 example 

S4 example 
ν3 =1

(4)      (321)
ν2 =0ν1 =1



Permutations are classified by the numbers of ν1 of unicycles, ν2 of bicycles, ν3 of tricycles, etc.

Ball-numbers can’t be repeated after cycle reduction. So cycle length sum is number N=n of balls.

ν1 + 2 ν2 + 3 ν3 + 4 ν4 + 5 ν5 +...+ NνN  = N

Substitution Group products: Sn class cycle labeling

Number of classes of Sn equals the number of partitions of integer N=n.

For N=2 there are just two classes of two permutations.
Class { ν1 =2, ν2 =0} corresponding to partition : 2 = 1 + 1 

One permutation : (1)(2)  
Class { ν1 =0, ν2 =1} corresponding to partition : 2  = 2

One permutation : (12)

⊙
⊙

⊙ ⊙

ν3 =1
(14)(13)(12)(11)(10) (98)(76)(54) (321)

ν2 =3ν1 =5
S14 example 

S4 example 
ν3 =1

(4)      (321)
ν2 =0ν1 =1



Permutations are classified by the numbers of ν1 of unicycles, ν2 of bicycles, ν3 of tricycles, etc.

Ball-numbers can’t be repeated after cycle reduction. So cycle length sum is number N=n of balls.

ν1 + 2 ν2 + 3 ν3 + 4 ν4 + 5 ν5 +...+ NνN  = N

Substitution Group products: Sn class cycle labeling

Number of classes of Sn equals the number of partitions of integer N=n.

For N=2 there are just two classes of two permutations.
Class { ν1 =2, ν2 =0} corresponding to partition : 2 = 1 + 1 

One permutation : (1)(2)  
Class { ν1 =0, ν2 =1} corresponding to partition : 2  = 2

One permutation : (12)

For N=3 there are three classes of six permutations.
Class { ν1 =3, ν2 =0, ν3 =0} corresponding to partition : 3 = 1 + 1+ 1  

One permutation :: (1)(2)(3)
Class { ν1 =1, ν2 =1, ν3 =0} corresponding to partition : 3 = 2 + 1

Three permutations : (12)(3), (13)(2), (23)(1)
Class { ν1 =0, ν2 =0, ν3 =1} corresponding to partition : 3 = 3 

Two permutations : (123), (132) 

⊙
⊙

⊙ ⊙

⊙ ⊙ ⊙

⊙ ⊙
⊙

⊙
⊙
⊙

ν3 =1
(14)(13)(12)(11)(10) (98)(76)(54) (321)

ν2 =3ν1 =5
S14 example 

S4 example 
ν3 =1

(4)      (321)
ν2 =0ν1 =1
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The number of permutations in each partition class depends on the redundancy of cycle labeling
 Each m-cycle can be written m ways by cycling the numbers:
               (123… m) = (m 12… m-1) = (m-1 m 123… m-2)=…        Example: (123)=(312)=(231)

Substitution Group products: Sn class cycle counting



The number of permutations in each partition class depends on the redundancy of cycle labeling
 Each m-cycle can be written m ways by cycling the numbers:
               (123… m) = (m 12… m-1) = (m-1 m 123… m-2)=…        Example: (123)=(312)=(231)

If there are νm such m-cycles in a permutation then there are (m)νm such reorderings.

Substitution Group products: Sn class cycle counting



The number of permutations in each partition class depends on the redundancy of cycle labeling
 Each m-cycle can be written m ways by cycling the numbers:
               (123… m) = (m 12… m-1) = (m-1 m 123… m-2)=…        Example: (123)=(312)=(231)

If there are νm such m-cycles in a permutation then there are (m)νm such reorderings.

Each of the νm such m-cycles contain distinct numbers and so mutually commute (νm)! different orders.
                                                           Example: (123)(456)=(456)(231)

Substitution Group products: Sn class cycle counting



The number of permutations in each partition class depends on the redundancy of cycle labeling
 Each m-cycle can be written m ways by cycling the numbers:
               (123… m) = (m 12… m-1) = (m-1 m 123… m-2)=…        Example: (123)=(312)=(231)

If there are νm such m-cycles in a permutation then there are (m)νm such reorderings.

Each of the νm such m-cycles contain distinct numbers and so mutually commute (νm)! different orders.
                                                           Example: (123)(456)=(456)(231)

Dividing N! by products of numbers (νm)!(m)νm of possibility gives the number of distinct partition class members.

Number in partitionclassν1ν2ν3ν4!= N !

ν1!1ν1 ν2!2ν2 ν3!3ν3ν4!4ν4!

where:              N = ν1 + 2ν2 + 3ν3 + 4ν4!

Substitution Group products: Sn class cycle counting

Example:Order of Octahedral O classes:        (1)(2)(3)(4) ,    (1)(123),  (12)(34).   (1234),    (12)(3)(4)



The number of permutations in each partition class depends on the redundancy of cycle labeling
 Each m-cycle can be written m ways by cycling the numbers:
               (123… m) = (m 12… m-1) = (m-1 m 123… m-2)=…        Example: (123)=(312)=(231)

If there are νm such m-cycles in a permutation then there are (m)νm such reorderings.

Each of the νm such m-cycles contain distinct numbers and so mutually commute (νm)! different orders.
                                                           Example: (123)(456)=(456)(231)

Dividing N! by products of numbers (νm)!(m)νm of possibility gives the number of distinct partition class members.

Number in partitionclassν1ν2ν3ν4!= N !

ν1!1ν1 ν2!2ν2 ν3!3ν3ν4!4ν4!

where:              N = ν1 + 2ν2 + 3ν3 + 4ν4!

                                 ν1ν2ν3ν4!=     4 0 0 0,    1 0 1 0,   0 2 0 0,   0 0 0 1,   2 1 0 0,
N !

ν1!1ν1 ν2!2ν2 ν3!3ν3ν4!4ν4!
=       4!

4!
=1,   4!

1!31 =8, 4!
2!22 =3, 4!

1!41 =6, 4!
2!121!21 =6.

Substitution Group products: Sn class cycle counting

…or Tetrahedral Td classes

Example:Order of Octahedral O classes:        (1)(2)(3)(4) ,    (1)(123),  (12)(34).   (1234),    (12)(3)(4)

4
1

2

3



The number of permutations in each partition class depends on the redundancy of cycle labeling
 Each m-cycle can be written m ways by cycling the numbers:
               (123… m) = (m 12… m-1) = (m-1 m 123… m-2)=…        Example: (123)=(312)=(231)

If there are νm such m-cycles in a permutation then there are (m)νm such reorderings.

Each of the νm such m-cycles contain distinct numbers and so mutually commute (νm)! different orders.
                                                           Example: (123)(456)=(456)(231)

Dividing N! by products of numbers (νm)!(m)νm of possibility gives the number of distinct partition class members.

Number in partitionclassν1ν2ν3ν4!= N !

ν1!1ν1 ν2!2ν2 ν3!3ν3ν4!4ν4!

where:              N = ν1 + 2ν2 + 3ν3 + 4ν4!

Example:Order of Octahedral O classes:        (1)(2)(3)(4) ,    (1)(123),  (12)(34).   (1234),    (12)(3)(4)
                                 ν1ν2ν3ν4!=     4 0 0 0,    1 0 1 0,   0 2 0 0,   0 0 0 1,   2 1 0 0,

N !

ν1!1ν1 ν2!2ν2 ν3!3ν3ν4!4ν4!
=       4!

4!
=1,   4!

1!31 =8, 4!
2!22 =3, 4!

1!41 =6, 4!
2!121!21 =6.

(1)(2)(3)(4) (1)(234)
(2)(143)
(3)(124)
(4)(132)
(1)(243)
(2)(134)
(3)(142)
(4)(123)

(13)(24)
(14)(23)
(13)(24)

(1432)
(1243)
(1324)
(1234)
(1423)
(1342)

(14)(3)(2)
(23)(1)(4)
(23)(1)(4)
(12)(3)(4)
(24)(1)(3)
(13)(2)(4)

Substitution Group products: Sn class cycle counting

…or Tetrahedral Td classes

4
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2

3
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Sn tableaus spin-symmetry and characters: Xn and XYn molecules
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C2    1      σ  

A1     1       1 
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Permutation                    Point group 
group Sn   is equivalent to     G

A1
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12
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(1)(2)   (12)  

   1         1 

   1         -1

C2    1      σ  

A1     1       1 

A2     1       -1

(1)(2)(3) (123)     (12) (13)  
               (132)             (23)  

   1         1         1 

   1         1         -1 

   2         -1        0

1 2 3

1

2

3

1 2

3 1
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3

S2

S3
C3v  1      r2     σ3 
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E       2       -1      0

σ1σ2r1

Permutation                    Point group 
group Sn   is equivalent to     G
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Sn tableaus spin-symmetry and characters: Xn and XYn molecules
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(1)(2)(3) (123)     (12) (13)  
               (132)             (23)  
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1 2 3

1
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3 1
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S2

S3
C3v  1      r2     σ3 

A1     1       1        1 

A2     1        1      -1 

E       2       -1      0

σ1σ2r1

Permutation                    Point group 
group Sn   is equivalent to     G

Td 1 r1...4 ρxyz Rxyz σ1...6
A1 1 1 1 1 1
A2 1 1 1 -1 -1
E 2 -1 2 0 0
T2 3 0 -1 -1 1
T1 3 0 -1 1 -1

180° I·90° I·180°

Tetrahedral:G =Td

1 2 3

1

2

3

1 2

3 1

2

3

S4
4

4

(1)(2)(3)(4)        (12)(34)               (12)(3)(4) 
             (123)(4)                (1234)  

   1         1         1         1         1 
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From unpublished Ch.10 for  
Principles of Symmetry, Dynamics & Spectroscopy 

Tableau dimension formulae 



Sn Young Tableaus and spin-symmetry for Xn and XYn molecules

 

ℓ µs[ ](Sn ) =
Dimension

of Sn Tableau
µ1[ ] µ2[ ]··· µn[ ]

= n!=n ·(n−1)·(n−2) ⋅⋅⋅3·2·1

hook-
length
product

• • • • •
• • •
• •
•

 8    6    4    2    1 
 5    3    1 
 3    1 
 1    

Examples:

(1)(2)(3) (123)     (12) (13)  
               (132)             (23)  

   1         1         1 

   1         1         -1 

   2         -1        0

1 2 3

1

2

3

1 2

3 1

2

3

S3

A1

A2

E

 

ℓA1=ℓ 3,0,0[ ](S3)= 3·2·1

                  = 1
3 2 1

 

ℓA2 =ℓ 1,1,1[ ](S3)= 3·2·1

                  = 1
3

2

1

 

ℓE=ℓ 2,1,0[ ](S3)= 3·2·1

 
             = 2

3 1

1

 

ℓ µs[ ](Um ) =
Dimension

of Sn∗UmTableau
µ1[ ] µ2[ ]··· µm[ ]

=

m -
dimension
product

m m+1 m+2 m+3 m+4

m-1 m m+1

m-2 m-1

m-3

hook-
length
product

• • • • •
• • •
• •
•

 8    6    4    2    1 
 5    3    1 
 3    1 
 1    

Examples:

 

ℓ 2,1,0[ ](S3∗U (3))=
 
             = 8

3 1

1

3 4

2

 

ℓ 3,0,0[ ](S3∗U (3))=
 
             = 10

3 4 5

3 2 1

Tableau dimension formulae 
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Rev. Mod. Phys. 50,1,1 (1978)

S4 and spin-symmetry for XY4 molecules (Introducing hook-length formulae)
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Rev. Mod. Phys. 50,1,1 (1978)

S4 and spin-symmetry for XY4 molecules (Introducing hook-length formulae)

A1 A2 E F1 F2

E
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F
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F1EF2F2F1

Transitions forbidden between states 
of different Bare Rotor quantum labels 
(Spin-symmetry species conserved here)

5+

3-

weight 3

weight 5

weight 2

1± 3+3-3+

 Introducing rovibrational spectral nomogram
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Sn Young Tableaus and spin-symmetry for Xn and XYn molecules
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Sn Young Tableaus and spin-symmetry for Xn and XYn molecules
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Compare to spin-½ case 
of S6 > Oh table that follows 
where orbit-tableau with 
more than 2 columns are forbidden  
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1 1 1 . . . 1

1 . . 1 . . .

. . . . . . 1

I=0

I=1

I=2

I=3

Spin-Permutation to Octahedral Correlations S ⊃ O
h6

8 3 3 6 1 1 10

C4 0044 1144 2244 3344
A1 1 . . .
A2 . . 1 .
E1 1. . 1 .
T1 1 1 . 1
T2 . 1 1 1

A1T1E1 T1 T2
Greatly simplified
sketches of ultra
high resolution IR
SF6 spectroscopy of
Christian Borde´,
C. Saloman, and
Oliver Pfister
(Pfister did SiF4, too.)

T2gT1gT1uEu A2uA1g

With rotation
all six nuclei are equivalent

How F-nuclei become
entangled

total-spin-I-symmetry Oh species

in SF6.

8 6 2 6 6

Entanglement! A1u

Species Spin Weights

Forbidden 
SF6 

species:    
Eg , T2u , A2g

0       0       0

Compare to complete 
S6 > Oh table on p.86

See SF6 spectra with 
A2 T2 E level  cluster 
 that follows
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Internal J gets “stuck” on RES axes
Must “tunnel” axis-to-axis at rate s
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is negative here
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04 cluster splitting
Review O(04)⊃C4 cluster:

S6 and XY6 molecules 
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I=0

I=1

I=2

I=3

Spin-Permutation to Octahedral Correlations S ⊃ O
h6

8 3 3 6 1 1 10

C4 0044 1144 2244 3344
A1 1 . . .
A2 . . 1 .
E1 1. . 1 .
T1 1 1 . 1
T2 . 1 1 1

A1T1E1

0044

T1 T2
Greatly simplified
sketches of ultra
high resolution IR
SF6 spectroscopy of
Christian Borde´,
C. Saloman, and
Oliver Pfister
(Pfister did SiF4, too.)

T2gT1gT1uEu A2uA1g

Without rotation being stuck on C4 axis
all six nuclei are equivalent

With rotation stuck on C4 axis
polar nuclei are “lleefftt oouutt iinn tthhee ccoolldd“

If ppoollaarr nnuucclleeii in greater B-field than equatorial-nuclei... If eeqquuaattoorriiaall nnuucclleeii in greater B-field than polar-nuclei...

““BBrrrrrr--rrrr iitt’’ss
ccoolldd!!””

““WWEE lliikkee
iitt HHOOTT!!””

How F-nuclei become
distinguished

(but not distinguishable)
in SF6.

↑↑ ↑↑ ↑↑ ↑↑ ↑↑ ↑↑ ↑↑ ↓↓ ↑↑ ↑↑ ↓↓ ↓↓ ↑↑ ↓↓ ↓↓ ↓↓ ↓↓ ↓↓ ↓↓ ↓↓

↑ ↑ ↑ ↑ ↑ ↑ ↑ ↓ ↑ ↑ ↓ ↓ ↑ ↓ ↓ ↓ ↓ ↓ ↓ ↓

↑ ↑ ↑ ↑ ↑ ↑ ↑ ↓ ↑ ↑ ↓ ↓ ↑ ↓ ↓ ↓ ↓ ↓ ↓ ↓

↑ ↑ ↑ ↑ ↑ ↑ ↑ ↓ ↑ ↑ ↓ ↓ ↑ ↓ ↓ ↓ ↓ ↓ ↓ ↓

↑ ↑
↓ ↓ ↓ ↓↑ ↓ ↓ ↓↑ ↑ ↓ ↓↑ ↑ ↑ ↓↑ ↑ ↑ ↑

↓↓↑
↓↓
↑ ↓↓ ↑ ↑ ↓↑

↓
↑ ↓↓

Triplet-singlet
of

Quintets

Quintet
of

Triplet-singlets↓↓ ↑ ↑ ↓↑
↓
↑ ↓↓ ↑ ↑ ↓↑

↓
↑ ↓↓ ↑ ↑ ↓↑

↓
↑ ↓↓ ↑ ↑ ↓↑

↓
↑ ↓↓

8 6 2 6 6

16

DISentanglement! A1u

Species Spin Weights

12

weight 3

weight 5

weight 3+1

weight 5

weight 1

weight 7

Spin

weight 5
weight 3+1

Forbidden 
SF6 

species:    
Eg , T2u , A2g
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weight 3

weight 5

weight 2

(Spin-symmetry species conserved here)(Spin-symmetry species NOT conserved here)



Example of frequency
hierarchy

for 16µm spectra 
of CF4 

(Freon-14)
W.G.Harter

Ch. 31
Atomic, Molecular, &

Optical Physics Handbook
Am. Int. of Physics

Gordon Drake Editor
(1996)



more
species mixing

Primary AET species mixing
increases with distance from
“separatrix”

88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 72 71

81

88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 72

88878685848382 88878685848382

CASE 24 Extreme mixing
in tight C4-CLUSTERS

CASE 23
Major mixing
in lowest two

less
mixing more

......==KK44

KK33 ==......

C4-CLUSTERS

C3-CLUSTERSC3-CLUSTERS
(Next page: approximate theory)

Harter, Phys. Rev. A 24, 192-263 (1981)



Harter, Phys. Rev. A 24, 192-263 (1981)

weight 8=5+3

weight 6=5+1

weight 10=7+3
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