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S2 symmetry of U(3): Applying S2 projection 
Matrix representation of Diagonalizing Transform (DTran T) 
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S3 symmetry of U(3): Applying S3 projection 
     Applying S3 character theory 
     Frequency formula for D[µ] with tensor trace values 
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AMOP reference links (Updated list given on 2nd page of each class presentation) 

Web Resources - front page 2014 AMOP

2018 AMOP
UAF Physics UTube channel 2017 Group Theory for QM

Classical Mechanics with a Bang!
Principles of Symmetry, Dynamics, and Spectroscopy

Quantum Theory for the Computer Age

Modern Physics and its Classical Foundations

Frame Transformation Relations And Multipole Transitions In Symmetric Polyatomic Molecules - RMP-1978

Rotational energy surfaces and high- J eigenvalue structure of polyatomic molecules - Harter - Patterson - 1984

Galloping waves and their relativistic properties - ajp-1985-Harter

Asymptotic eigensolutions of fourth and sixth rank octahedral tensor operators - Harter-Patterson-JMP-1979

Nuclear spin weights and gas phase spectral structure of 12C60 and 13C60 buckminsterfullerene -Harter-Reimer-Cpl-1992 - (Alt1, Alt2 Erratum)


Theory of hyperfine and superfine levels in symmetric polyatomic molecules. 

I) Trigonal and tetrahedral molecules: Elementary spin-1/2 cases in vibronic ground states - PRA-1979-Harter-Patterson (Alt scan)

II) Elementary cases in octahedral hexafluoride molecules - Harter-PRA-1981 (Alt scan)


Rotation-vibration scalar coupling zeta coefficients and spectroscopic band shapes of buckminsterfullerene - Weeks-Harter-CPL-1991 (Alt scan)

Fullerene symmetry reduction and rotational level fine structure/ the Buckyball isotopomer 12C 13C59 - jcp-Reimer-Harter-1997 (HiRez)

Molecular Eigensolution Symmetry Analysis and Fine Structure - IJMS-harter-mitchell-2013 

Rotation–vibration spectra of icosahedral molecules.

I) Icosahedral symmetry analysis and fine structure - harter-weeks-jcp-1989

II) Icosahedral symmetry, vibrational eigenfrequencies, and normal modes of buckminsterfullerene - weeks-harter-jcp-1989

III) Half-integral angular momentum - harter-reimer-jcp-1991


QTCA Unit 10 Ch 30 - 2013

Molecular Symmetry and Dynamics - Ch32-Springer Handbooks of Atomic, Molecular, and Optical Physics - Harter-2006 
AMOP Ch 0 Space-Time Symmetry - 2019


RESONANCE AND REVIVALS
I) QUANTUM ROTOR AND INFINITE-WELL DYNAMICS - ISMSLi2012 (Talk) OSU knowledge Bank
II) Comparing Half-integer Spin and Integer Spin - Alva-ISMS-Ohio2013-R777 (Talks)
III) Quantum Resonant Beats and Revivals in the Morse Oscillators and Rotors - (2013-Li-Diss)

Rovibrational Spectral Fine Structure Of Icosahedral Molecules - Cpl 1986 (Alt Scan)

Gas Phase Level Structure of C60 Buckyball and Derivatives Exhibiting Broken Icosahedral Symmetry - reimer-diss-1996

Resonance and Revivals in Quantum Rotors - Comparing Half-integer Spin and Integer Spin - Alva-ISMS-Ohio2013-R777 (Talk)

Quantum Revivals of Morse Oscillators and Farey-Ford Geometry - Li-Harter-cpl-2013

Wave Node Dynamics and Revival Symmetry in Quantum Rotors - harter - jms - 2001

Representaions Of Multidimensional Symmetries In Networks - harter-jmp-1973 

*In development - a web based A.M.O.P. oriented reference page, with thumbnail/previews, greater control over the information display,  
and eventually full on Apache-SOLR Index and search for nuanced, whole-site content/metadata level searching.  This bad boy will be a sure force multiplier.

https://modphys.hosted.uark.edu/markup/Harter-SoftWebApps.html
https://modphys.hosted.uark.edu/markup/QTCA_Info_2014.html
https://modphys.hosted.uark.edu/markup/AMOP_Info_2018.html
https://www.youtube.com/channel/UC2KBYYdZOfotnkUOTthDjRA
https://modphys.hosted.uark.edu/markup/GTQM_Info_2017.html
https://modphys.hosted.uark.edu/markup/CMwBang_UnitsDetail_2017.html
https://modphys.hosted.uark.edu/markup/PSDSWeb.html
https://modphys.hosted.uark.edu/markup/QTCA_UnitsDetail.html
https://modphys.hosted.uark.edu/markup/MPCF_Info_2012.html
https://modphys.hosted.uark.edu/pdfs/Journal_Pdfs/Frame_transformation_relations_and_multipole_transitions_in_symmetric_polyatomic_molecules_-_Harter-Patterson-Paixao-RMP-1978.pdf
https://modphys.hosted.uark.edu/pdfs/Journal_Pdfs/Rotational%20energy%20surfaces%20and%20high-%20J%20eigenvalue%20structure%20of%20polyatomic%20molecules%20-%20Harter%20-%20Patterson%20-%201984.pdf
https://modphys.hosted.uark.edu/pdfs/Journal_Pdfs/Galloping_waves_and_their_relativistic_properties_-_ajp-1985-harter.pdf
https://modphys.hosted.uark.edu/pdfs/Journal_Pdfs/Asymptotic%20eigensolutions%20of%20fourth%20and%20sixth%20rank%20octahedral%20tensor%20operators%20-Harter-Patterson-jmp-1979.pdf
https://modphys.hosted.uark.edu/pdfs/Journal_Pdfs/CPLC60SpinWts%20HiRes%2bErrata.pdf
https://modphys.hosted.uark.edu/pdfs/Journal_Pdfs/Nuclear%20spin%20weights%20and%20gas%20phase%20spectral%20structure%20of%2012C6oand%2013C60%20buckminsterfullerene%20-%20Reimer%20-%20harter1992.pdf
https://modphys.hosted.uark.edu/pdfs/Journal_Pdfs/Nuclear%20spin%20weights%20and%20gas%20phase%20spectral%20structure%20of%2012C6oand%2013C60%20buckminsterfullerene%20-%20Erratum%20-%201-s2.0-000926149285077N-main.pdf
https://modphys.hosted.uark.edu/pdfs/Journal_Pdfs/Theory%20of%20hyperfine%20and%20superfine%20levels%20in%20symmetric%20polyatomic%20molecules.%20Trigonal%20and%20tetrahedral%20molecules%3a%20Elementary%20spin-1%3a2%20cases%20in%20vibronic%20ground%20states%20-%20pra%20-1979-Harter-Patterson.pdf
https://modphys.hosted.uark.edu/pdfs/Journal_Pdfs/PRA%20Superhyp.I%20CF4.pdf
https://modphys.hosted.uark.edu/pdfs/Journal_Pdfs/Theory%20of%20hyperfine%20and%20superfine%20levels%20in%20symmetric%20polyatomic%20molecules.%20II.%20Elementary%20cases%20in%20octahedral%20hexafluoride%20molecules%20-%20Harter-PRA-1981.pdf
https://modphys.hosted.uark.edu/pdfs/Journal_Pdfs/PRA%20Superhyp.II%20SF6.pdf
https://modphys.hosted.uark.edu/pdfs/Journal_Pdfs/Rotation-vibration%20scalar%20coupling%20zeta%20coefficients%20and%20spectroscopic%20band%20shapes%20of%20buckminsterfullerene%20-%20weeks-harter-cpl-1991.pdf
https://modphys.hosted.uark.edu/pdfs/Journal_Pdfs/CPLBzetaCoeff%20C60.pdf
https://modphys.hosted.uark.edu/pdfs/Journal_Pdfs/Fullerene%20symmetry%20reduction%20and%20rotational%20level%20fine%20structure:%20the%20Buckyball%20isotopomer%2012C%2013C59%20-%20jcp%20-%20reimer%20-%20harter%20-%201997.pdf
https://modphys.hosted.uark.edu/pdfs/Journal_Pdfs/C60symmReduct&fine%20structure12C13C59%20ReimerHarter1997hiRes.pdf
https://modphys.hosted.uark.edu/pdfs/Journal_Pdfs/Molecular_Eigensolution_Symmetry_Analysis_and_Fine_Structure_-_IJMS-harter-mitchell-2013.pdf
https://modphys.hosted.uark.edu/pdfs/Journal_Pdfs/Rotation%e2%80%93vibration_spectra_of_icosahedral_molecules._I._Icosahedral_symmetry_analysis_and_fine_structure_-_harter-weeks-jcp-1989.pdf
https://modphys.hosted.uark.edu/pdfs/Journal_Pdfs/Rotation%e2%80%93vibration_spectra_of_icosahedral_molecules._II._Icosahedral_symmetry%2c_vibrational_eigenfrequencies%2c_and_normal_modes_of_buckminsterfullerene_-_weeks-harter-jcp-1989.pdf
https://modphys.hosted.uark.edu/pdfs/Journal_Pdfs/Rotation%e2%80%93vibration_spectra_of_icosahedral_molecules._III_-_Half-integral_angular_momentum_-_harter-reimer-jcp-1991.pdf
https://modphys.hosted.uark.edu/pdfs/QTCA_Pdfs/QTCA_Text_2013/QTCA_Unit_10_Ch.30_2013.pdf
https://modphys.hosted.uark.edu/pdfs/Journal_Pdfs/Springer_Handbooks_of_Atomic_Molecular_and_Optical_Physics_-_Harter-Ch32_-_2006.pdf
https://modphys.hosted.uark.edu/pdfs/QTCA_Pdfs/QTCA_Text_2013/AMOP%20Ch%200%20SpaceTimeSymm.pdf
https://modphys.hosted.uark.edu/pdfs/Talk_Pdfs/Resonance%20And%20Revivals%20%20I.%20Quantum%20Rotor%20And%20Infinite-Well%20Dynamics%20-%20Harter-Li-ISMS-Columbus-2012.pdf
https://kb.osu.edu/dspace/handle/1811/52324
https://modphys.hosted.uark.edu/pdfs/Talk_Pdfs/Resonance%20and%20Revivals%20in%20Quantum%20Rotors%20-%20Comparing%20Half-integer%20Spin%20and%20Integer%20Spin%20-%20Alva-ISMS-Ohio2013-R777.pdf
https://modphys.hosted.uark.edu/pdfs/Journal_Pdfs/Quantum%20Resonant%20Beats%20and%20Revivals%20in%20the%20Morse%20Oscillators%20and%20Rotors%20-%202013-Li-Diss.pdf
https://modphys.hosted.uark.edu/pdfs/Journal_Pdfs/Rovibrational%20Spectral%20Fine%20Structure%20Of%20Icosaiiedral%20Molecules%20-%20harter%20-%20weeks%20-%20cpl%20-%201986.pdf
https://modphys.hosted.uark.edu/pdfs/Journal_Pdfs/Rovibrational%20Spectral%20Fine%20Structure%20Of%20Icosaiiedral%20Molecules%20-%20scan%20-%20RovibeIcosCPL132p387-392(1986).pdf
https://modphys.hosted.uark.edu/pdfs/Journal_Pdfs/Gas%20Phase%20Level%20Structure%20of%20C60%20Buckyball%20and%20Derivatives%20Exhibiting%20Broken%20Icosahedral%20Symmetry%20-%20reimer-diss-1996.pdf
https://modphys.hosted.uark.edu/pdfs/Talk_Pdfs/Resonance%20and%20Revivals%20in%20Quantum%20Rotors%20-%20Comparing%20Half-integer%20Spin%20and%20Integer%20Spin%20-%20Alva-ISMS-Ohio2013-R777.pdf
https://modphys.hosted.uark.edu/pdfs/Journal_Pdfs/Quantum%20Revivals%20of%20Morse%20Oscillators%20and%20Farey-Ford%20Geometry%20-%20Li%20-%20Harter%20-%20cpl%20-%202013%20-%201308.4470.pdf
https://modphys.hosted.uark.edu/pdfs/Journal_Pdfs/Wave%20Node%20Dynamics%20and%20Revival%20Symmetry%20in%20Quantum%20Rotors%20-%20harter%20-%20jms%20-%202001.pdf
https://modphys.hosted.uark.edu/pdfs/Journal_Pdfs/Representations_of_multidimensional_symmetries_in_networks_-_jmp-Harter-1974.pdf
https://modphys.hosted.uark.edu/markup/AMOP_References.html


(Int.J.Mol.Sci, 14, 714(2013) p.755-774 , QTCA Unit 7 Ch. 23-26 ) 
(PSDS - Ch. 5, 7 ) 

Irrep Tensor building 
Unit 8 Ch. 25 p5.          

Irrep Tensor Tables 
Unit 8 Ch. 25 p12.          

Tensors Applied to d,f-levels.    
Unit 8 Ch. 25 p21.          

Intro 3-particle coupling.    
Unit 8 Ch. 25 p28.          

Wigner-Eckart tensor Theorem.    
Unit 8 Ch. 25 p17.          

Tensors Applied to high J levels.    
Unit 8 Ch. 25 p63.          

Intro spin ½ coupling 
Unit 8 Ch. 24 p3.          

H atom hyperfine-B-level crossing 
Unit 8 Ch. 24 p15.         

Intro 2p3p coupling 
Unit 8 Ch. 24 p17.          

Intro LS-jj coupling 
Unit 8 Ch. 24 p22.          

CG coupling derived (start) 
Unit 8 Ch. 24 p39.          

CG coupling derived (formula) 
Unit 8 Ch. 24 p44.          

Hyperf. theory Ch. 24 p48.         

Hyperf. theory Ch. 24 p48.   
Deeper theory ends p53        

Lande’ g-factor 
Unit 8 Ch. 24 p26.         

Intro 3,4-particle Young Tableaus   
GrpThLect29 p42.          

Young Tableau Magic Formulae   
GrpThLect29 p46-48.          

https://modphys.hosted.uark.edu/pdfs/QTCA_Pdfs/QTCA_Text_2013/QTCA_Unit_8_Ch._25_2013.pdf#page=5
https://modphys.hosted.uark.edu/pdfs/QTCA_Pdfs/QTCA_Text_2013/QTCA_Unit_8_Ch._25_2013.pdf#page=12
https://modphys.hosted.uark.edu/pdfs/QTCA_Pdfs/QTCA_Text_2013/QTCA_Unit_8_Ch._25_2013.pdf#page=21
https://modphys.hosted.uark.edu/pdfs/QTCA_Pdfs/QTCA_Text_2013/QTCA_Unit_8_Ch._25_2013.pdf#page=28
https://modphys.hosted.uark.edu/pdfs/QTCA_Pdfs/QTCA_Text_2013/QTCA_Unit_8_Ch._25_2013.pdf#page=17
https://modphys.hosted.uark.edu/pdfs/QTCA_Pdfs/QTCA_Text_2013/QTCA_Unit_8_Ch._25_2013.pdf#page=63
https://modphys.hosted.uark.edu/pdfs/QTCA_Pdfs/QTCA_Text_2013/QTCA_Unit_8_Ch._24_2013.pdf#page=3
https://modphys.hosted.uark.edu/pdfs/QTCA_Pdfs/QTCA_Text_2013/QTCA_Unit_8_Ch._24_2013.pdf#page=15
https://modphys.hosted.uark.edu/pdfs/QTCA_Pdfs/QTCA_Text_2013/QTCA_Unit_8_Ch._24_2013.pdf#page=17
https://modphys.hosted.uark.edu/pdfs/QTCA_Pdfs/QTCA_Text_2013/QTCA_Unit_8_Ch._24_2013.pdf#page=22
https://modphys.hosted.uark.edu/pdfs/QTCA_Pdfs/QTCA_Text_2013/QTCA_Unit_8_Ch._24_2013.pdf#page=39
https://modphys.hosted.uark.edu/pdfs/QTCA_Pdfs/QTCA_Text_2013/QTCA_Unit_8_Ch._24_2013.pdf#page=44
https://modphys.hosted.uark.edu/pdfs/QTCA_Pdfs/QTCA_Text_2013/QTCA_Unit_8_Ch._24_2013.pdf#page=48
https://modphys.hosted.uark.edu/pdfs/QTCA_Pdfs/QTCA_Text_2013/QTCA_Unit_8_Ch._24_2013.pdf#page=53
https://modphys.hosted.uark.edu/pdfs/QTCA_Pdfs/QTCA_Text_2013/QTCA_Unit_8_Ch._24_2013.pdf#page=26
https://modphys.hosted.uark.edu/pdfs/GTQM_Pdfs/GTQM_Lectures_2017/GrpThLect_29_5.04.17.pdf#page=42
https://modphys.hosted.uark.edu/pdfs/GTQM_Pdfs/GTQM_Lectures_2017/GrpThLect_29_5.04.17.pdf#page=48
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Characters of intertwining (Sn)*(U(m)) algebras and quantum applications
Generic U(3)⊃R(3) transformations: p-triplet in U(3) shell model       
       Rank-1 vector in R(3)     or     “quark”-triplet in U(3) 
       Rank-2 tensor (2 particles each with U(3) state space) 

U(3) tensor product states and Sn permutation symmetry 
      2-particle U(3) transform.        2-particle permutation operations 
S2 symmetry of U(3): Applying S2 projection 
Matrix representation of Diagonalizing Transform (DTran T) 
      Effect of S2 DTran T on intertwining S2 - U(3) irep matrices 

S3 symmetry of U(3): Applying S3 projection 
     Applying S3 character theory 
     Frequency formula for D[µ] with tensor trace values 
Effect of S3 DTran T on intertwining S3 - U(3) irep matrices 

Structure of  U(3) irep bases 
          Fundamental “quark” irep.         “anti-quark”.        “di-quark”. 
           The octet “eightfold way”        The decapalet and Ω-  
The p-shell in U(3) tableau plots  
Hooklength formulas          



U(3) tensor product states and Sn permutation symmetry
Generic U(3)⊃R(3) transformations (Just like ℓ=1 vector basis {1=x , 2=y, 3=z}) 
Rank-1 vector in R(3)     or     “quark”-triplet in U(3)     or      p-triplet in U(3) shell model   

Dirac notation:
′1 = u 1 = 1 D11+ 2 D21+ 3 D31
′2 = u 2 = 1 D12+ 2 D22+ 3 D32
′3 = u 3 = 1 D13+ 2 D23+ 3 D33

 where:  Djk (u) = j ′k = j u k

′φ1 = uφ1 = φ1D11+φ2D21+φ3D31
′φ2 = uφ2 = φ1D12+φ2D22+φ3D32
′φ3 = uφ3 = φ1D13+φ2D23+φ3D33

 where:  Djk = (φ j
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U(3) tensor product states and Sn permutation symmetry
Typical U(3)⊃R(3) transformations (Just like ℓ=1 vector basis {1=x , 2=y, 3=z}) 
Rank-1 vector in R(3)     or     “quark”-triplet in U(3)     or      p-triplet in U(3) shell model   

Dirac notation:
′1 = u 1 = 1 D11+ 2 D21+ 3 D31
′2 = u 2 = 1 D12+ 2 D22+ 3 D32
′3 = u 3 = 1 D13+ 2 D23+ 3 D33

 where:  Djk (u) = j ′k = j u k

′φ1 = uφ1 = φ1D11+φ2D21+φ3D31
′φ2 = uφ2 = φ1D12+φ2D22+φ3D32
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U(3) tensor product states and Sn permutation symmetry
Typical U(3)⊃R(3) transformations (Just like ℓ=1 vector basis {1=x , 2=y, 3=z}) 
Rank-1 vector in R(3)     or     “quark”-triplet in U(3)     or      p-triplet in U(3) shell model   

Dirac notation:
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U(3) tensor product states and Sn permutation symmetry
2-particle U(3) transform and outer-product U(3) transform matrix Dj ′j Dk ′k = D⊗Djk: ′j ′k =
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⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟



U(3) tensor product states and S2=Sn permutation symmetry
2-particle U(3) transform and outer-product U(3) transform matrix Dj ′j Dk ′k = D⊗Djk: ′j ′k =

=

D11D11 D11D12 D11D13 D12D11 D12D12 D12D13 D13D11 D13D12 D13D13
D11D21 D11D22 D11D23 D12D21 D12D22 D12D23 D13D21 D13D22 D13D23
D11D31 D11D32 D11D33 D12D31 D12D22 D12D33 D13D31 D13D23 D13D33
D21D11 D21D12 D21D13 D22D11 D22D12 D22D13 D23D11 D23D12 D23D13
D21D21 D21D22 D21D23 D22D21 D22D22 D22D23 D23D21 D23D22 D23D23
D21D31 D21D32 D21D33 D22D31 D22D32 D22D33 D23D31 D23D23 D23D33
D31D11 D31D12 D31D13 D32D11 D32D12 D32D13 D33D11 D33D12 D33D13
D31D21 D31D22 D31D23 D32D21 D32D22 D32D23 D33D21 D33D22 D33D23
D31D31 D31D23 D31D33 D32D31 D32D32 D32D33 D33D31 D33D23 D33D33

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

2-particle permutation operations: s(a)(b)  j
a

 k
b
= j

a
 k

b
 ,   s(ab)  j

a
 k

b
= k

a
 j

bRepresented by matrices:

s(ab) =

11 12 13 21 22 23 31 32 33
11 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
12 ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅
13 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅
21 ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
22 ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅
23 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅
31 ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
32 ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅
33 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1

s(a)(b) =

11 12 13 21 22 23 31 32 33
11 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
12 ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
13 ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
21 ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅
22 ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅
23 ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅
31 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅
32 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅
33 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1
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S2 symmetry of U(3): Applying S2 projection

       Symmetric (       ):                                                    Anti-Symmetric (     ): P = 1
2 1+ (ab)⎡⎣ ⎤⎦ P = 1

2 1− (ab)⎡⎣ ⎤⎦

S2 matrix eigen-solution found by projectors:  Minimal eq. (ab)2-1=0=((ab)+1)((ab)+1) yields:

(ab) =

11 12 13 21 22 23 31 32 33
11 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
12 ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅
13 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅
21 ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
22 ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅
23 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅
31 ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
32 ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅
33 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1

P =

11 12 13 21 22 23 31 32 33
11 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
12 ⋅ 1

2 ⋅ 1
2 ⋅ ⋅ ⋅ ⋅ ⋅

13 ⋅ ⋅ 1
2 ⋅ ⋅ ⋅ 1

2 ⋅ ⋅

21 ⋅ 1
2 ⋅ 1

2 ⋅ ⋅ ⋅ ⋅ ⋅

22 ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅
23 ⋅ ⋅ ⋅ ⋅ ⋅ 1

2 ⋅ 1
2 ⋅

31 ⋅ ⋅ 1
2 ⋅ ⋅ ⋅ 1

2 ⋅ ⋅

32 ⋅ ⋅ ⋅ ⋅ ⋅ 1
2 ⋅ 1

2 ⋅

33 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1

P =

11 12 13 21 22 23 31 32 33
11 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
12 ⋅ 1

2 ⋅ −1
2 ⋅ ⋅ ⋅ ⋅ ⋅

13 ⋅ ⋅ 1
2 ⋅ ⋅ ⋅ −1

2 ⋅ ⋅

21 ⋅ −1
2 ⋅ 1

2 ⋅ ⋅ ⋅ ⋅ ⋅

22 ⋅ ⋅ ⋅ ⋅ 0 ⋅ ⋅ ⋅ ⋅
23 ⋅ ⋅ ⋅ ⋅ ⋅ 1

2 ⋅ −1
2 ⋅

31 ⋅ ⋅ −1
2 ⋅ ⋅ ⋅ 1

2 ⋅ ⋅

32 ⋅ ⋅ ⋅ ⋅ ⋅ −1
2 ⋅ 1

2 ⋅

33 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

(a)(b) =

11 12 13 21 22 23 31 32 33
11 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
12 ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
13 ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
21 ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅
22 ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅
23 ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅
31 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅
32 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅
33 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1



P =

11 12 13 21 22 23 31 32 33
11 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
12 ⋅ 1

2 ⋅ 1
2 ⋅ ⋅ ⋅ ⋅ ⋅

13 ⋅ ⋅ 1
2 ⋅ ⋅ ⋅ 1

2 ⋅ ⋅

21 ⋅ 1
2 ⋅ 1

2 ⋅ ⋅ ⋅ ⋅ ⋅

22 ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅
23 ⋅ ⋅ ⋅ ⋅ ⋅ 1

2 ⋅ 1
2 ⋅

31 ⋅ ⋅ 1
2 ⋅ ⋅ ⋅ 1

2 ⋅ ⋅

32 ⋅ ⋅ ⋅ ⋅ ⋅ 1
2 ⋅ 1

2 ⋅

33 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1

P =

11 12 13 21 22 23 31 32 33
11 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
12 ⋅ 1

2 ⋅ −1
2 ⋅ ⋅ ⋅ ⋅ ⋅

13 ⋅ ⋅ 1
2 ⋅ ⋅ ⋅ −1

2 ⋅ ⋅

21 ⋅ −1
2 ⋅ 1

2 ⋅ ⋅ ⋅ ⋅ ⋅

22 ⋅ ⋅ ⋅ ⋅ 0 ⋅ ⋅ ⋅ ⋅
23 ⋅ ⋅ ⋅ ⋅ ⋅ 1

2 ⋅ −1
2 ⋅

31 ⋅ ⋅ −1
2 ⋅ ⋅ ⋅ 1

2 ⋅ ⋅

32 ⋅ ⋅ ⋅ ⋅ ⋅ −1
2 ⋅ 1

2 ⋅

33 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

T =

x2 y2 z2 xy xz yz xpy xpz ypz

11 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
12 ⋅ ⋅ ⋅ 1

2
⋅ ⋅ 1

2
⋅ ⋅

13 ⋅ ⋅ ⋅ ⋅ 1
2

⋅ ⋅ −1
2

⋅

21 ⋅ ⋅ ⋅ 1
2

⋅ ⋅ −1
2

⋅ ⋅

22 ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
23 ⋅ ⋅ ⋅ ⋅ ⋅ 1

2
⋅ ⋅ 1

2

31 ⋅ ⋅ ⋅ ⋅ 1
2

⋅ ⋅ 1
2

⋅

32 ⋅ ⋅ ⋅ ⋅ ⋅ 1
2

⋅ ⋅ −1
2

33 ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

S2 symmetry of U(3):  
Applying S2 projection

Matrix representation of Diagonalizing Transform (DTran T) is made by excerpting P-columns 



AMOP  
reference links 

 on page 2

4.04.18 class 21: Symmetry Principles for 
Advanced Atomic-Molecular-Optical-Physics 

William G. Harter - University of Arkansas

Characters of intertwining (Sn)*(U(m)) algebras and quantum applications
Generic U(3)⊃R(3) transformations: p-triplet in U(3) shell model       
       Rank-1 vector in R(3)     or     “quark”-triplet in U(3) 
       Rank-2 tensor (2 particles each with U(3) state space) 

U(3) tensor product states and Sn permutation symmetry 
      2-particle U(3) transform.        2-particle permutation operations 
S2 symmetry of U(3): Applying S2 projection 
Matrix representation of Diagonalizing Transform (DTran T) 
      Effect of S2 DTran T on intertwining S2 - U(3) irep matrices 

S3 symmetry of U(3): Applying S3 projection 
     Applying S3 character theory 
     Frequency formula for D[µ] with tensor trace values 
Effect of S3 DTran T on intertwining S3 - U(3) irep matrices 

Structure of  U(3) irep bases 
          Fundamental “quark” irep.         “anti-quark”.        “di-quark”. 
           The octet “eightfold way”        The decapalet and Ω-  
The p-shell in U(3) tableau plots  
Hooklength formulas          



S2 symmetry of U(3): Effect of S2 DTran T on intertwining S2 - U(3) irep matrices 

S2 matrix: U(3) matrices:

T †S(pab)T = T †D⊗D(u)T =
D (p)

D (p)

D (p)

D (p)

D (p)

D (p)

D (p)

D (p)

D (p)

D11 (u) D12(u) D13(u) D14(u) D15(u) D16(u)

D21(u) D22(u) D23(u) D24(u) D25(u) D26(u)

D31(u) D32(u) D33(u) D34(u) D35(u) D36(u)

D41(u) D42(u) D43(u) D44(u) D45(u) D46(u)

D51(u) D52(u) D53(u) D54(u) D55(u) D56(u)

D61(u) D62(u) D63(u) D64(u) D65(u) D66(u)

D11 (u) D12(u) D13(u)

D21(u) D22(u) D23(u)

D31(u) D32(u) D33(u)

   

+1

+1

+1

+1

+1

+1

−1

−1

−1

Diagonalized
 S2  bicycle 
matrix:

   T †(ab)T =

Unicycle
(a)(b)   is
unit matrix

6Ddim=1(p) ⊕ 3Ddim=1(p) 1Ddim=6(p) ⊕ 1Ddim=3(p)



S2 symmetry of U(3): Effect of S2 DTran T on intertwining S2 - U(3) irep matrices 

S2 matrix: U(3) matrices:

T †S(pab)T = T †D⊗D(u)T =
D (p)

D (p)

D (p)

D (p)

D (p)

D (p)

D (p)

D (p)

D (p)

D11 (u) D12(u) D13(u) D14(u) D15(u) D16(u)

D21(u) D22(u) D23(u) D24(u) D25(u) D26(u)

D31(u) D32(u) D33(u) D34(u) D35(u) D36(u)

D41(u) D42(u) D43(u) D44(u) D45(u) D46(u)

D51(u) D52(u) D53(u) D54(u) D55(u) D56(u)

D61(u) D62(u) D63(u) D64(u) D65(u) D66(u)

D11 (u) D12(u) D13(u)

D21(u) D22(u) D23(u)

D31(u) D32(u) D33(u)

   

+1

+1

+1

+1

+1

+1

−1

−1

−1

Diagonalized
 S2  bicycle 
matrix:

   T †(ab)T =

Unicycle
(a)(b)   is
unit matrix

6Ddim=1(p) ⊕ 3Ddim=1(p) 1Ddim=6(p) ⊕ 1Ddim=3(p)

S2  group hook formula

Ddim=1(p)          Ddim=1(p)

2 ⋅1
2 1

= 1              
2 ⋅1
2
1

= 1

U (3) group hook formula

Ddim=6(u)          Ddim=3(u)

3 4

2 1
= 6              

3

2

2
1

= 3
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S3 symmetry of U(3): Applying S3 projection
Rank-3 tensor basis |ijk〉 (3 particles each with U(3) state space) has dimension 33=27



S3 symmetry of U(3): Applying S3 projection
Rank-3 tensor basis |ia jb kc 〉 (3 particles each with U(3) state space) has dimension 33=27

111 112 113 121 122 123 131 132 133 211 212 213 221 222 223 231 232 233 311 312 313 321 322 323 331 332 333[ab]
111 
112 
113 
121 
122 
123 
131 
132 
133 
211 
212 
213 
221 
222 
223 
231 
232 
233 
311 
312 
313 
321 
322 
323 
331 
332 
333



S3 symmetry of U(3): Applying S3 projection
Rank-3 tensor basis |ia jb kc 〉 (3 particles each with U(3) state space) has dimension 33=27

111 112 113 121 122 123 131 132 133 211 212 213 221 222 223 231 232 233 311 312 313 321 322 323 331 332 333[ab]
111 
112 
113 
121 
122 
123 
131 
132 
133 
211 
212 
213 
221 
222 
223 
231 
232 
233 
311 
312 
313 
321 
322 
323 
331 
332 
333

Whoa!  
That’s pretty big. 
So let’s solve by S3 
character theory. 
Only need traces 
that are sums of  
diagonal elements 
(just one per-class)
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Rank-3 tensor basis |ia jb kc 〉 (3 particles each with U(3) state space) has dimension 33=27

111 112 113 121 122 123 131 132 133 211 212 213 221 222 223 231 232 233 311 312 313 321 322 323 331 332 333(ab)
111 
112 
113 
121 
122 
123 
131 
132 
133 
211 
212 
213 
221 
222 
223 
231 
232 
233 
311 
312 
313 
321 
322 
323 
331 
332 
333

Whoa!  
That’s pretty big. 
So let’s solve by S3 
character theory. 
Only need traces 
that are sums of  
diagonal elements 
(just one per-class)

1
1

1

1
1

1

1
1

1

Bicycle character : 
Trace s((ab)) counts 
states like |ja jb kc 〉 

S3 symmetry of U(3): Applying S3 character theory



Rank-3 tensor basis |ia jb kc 〉 (3 particles each with U(3) state space) has dimension 33=27

111 112 113 121 122 123 131 132 133 211 212 213 221 222 223 231 232 233 311 312 313 321 322 323 331 332 333
111 
112 
113 
121 
122 
123 
131 
132 
133 
211 
212 
213 
221 
222 
223 
231 
232 
233 
311 
312 
313 
321 
322 
323 
331 
332 
333

Whoa!  
That’s pretty big. 
So let’s solve by S3 
character theory. 
Only need traces 
that are sums of  
diagonal elements 
(just one per-class)

Bicycle character : 
Trace s((ab)) counts 
states like |ja jb kc 〉 

1
1

1

1
1

1

1
1

1

result: Tr(ab)=9

Trace(ab) = 9

S3 symmetry of U(3): Applying S3 character theory



Rank-3 tensor basis |ia jb kc 〉 (3 particles each with U(3) state space) has dimension 33=27

111 112 113 121 122 123 131 132 133 211 212 213 221 222 223 231 232 233 311 312 313 321 322 323 331 332 333
Trace(abc) = 3

111 
112 
113 
121 
122 
123 
131 
132 
133 
211 
212 
213 
221 
222 
223 
231 
232 
233 
311 
312 
313 
321 
322 
323 
331 
332 
333

Whoa!  
That’s pretty big. 
So let’s solve by S3 
character theory. 
Only need traces 
that are sums of  
diagonal elements 
(just one per-class)

Bicycle character : 
Trace s((ab)) counts 
states like |ja jb kc 〉 

1

1

1

result: Tr(ab)=9
Tricycle character : 
Trace s((abc)) counts 
states like |ja jb jc 〉 
result: Tr(abc)=3

S3 symmetry of U(3): Applying S3 character theory



S3 symmetry of U(3): Applying S3 character theory
Rank-3 tensor basis |ia jb kc 〉 (3 particles each with U(3) state space) has dimension 33=27

111 112 113 121 122 123 131 132 133 211 212 213 221 222 223 231 232 233 311 312 313 321 322 323 331 332 333
111 
112 
113 
121 
122 
123 
131 
132 
133 
211 
212 
213 
221 
222 
223 
231 
232 
233 
311 
312 
313 
321 
322 
323 
331 
332 
333

Whoa!  
That’s pretty big. 
So let’s solve by S3 
character theory. 
Only need traces 
that are sums of  
diagonal elements 
(just one per-class)

Bicycle character : 
Trace s((ab)) counts 
states like |ja jb kc 〉 

1
1

1

1
1

1

1
1

1

result: Tr(ab)=9

Tricycle character : 
Trace s((abc)) counts 
states like |ja jb jc 〉 
result: Tr(abc)=3

1
1

1

1
1

1

1
1

1

1
1

1

1
1

1

1
1

1
Unicycle character : 
result: Tr(a)(b)(c)=27

Trace(a)(b)(c) = 27 = 33
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S3 symmetry of U(3): Applying S3 character theory
Rank-3 tensor basis |ia jb kc 〉 (3 particles each with U(3) state space) has dimension 33=27

Frequency formula for D[µ]:  

Tensor traces:  Tr(a)(b)(c)=27,   Tr(abc)=3,   Tr(ab)=9,   

                                                               

Irep.freq.formula    
GrpThLect.15p.48.     

f [µ] = 1
o Sn

class(k )
order of( )χ k[µ]

classes(k )
∑ Trace (pk )

https://modphys.hosted.uark.edu/pdfs/GTQM_Pdfs/GTQM_Lectures_2015/GrpThLect_15_3.12.15.pdf#page=44


S3 symmetry of U(3): Applying S3 character theory
Rank-3 tensor basis |ia jb kc 〉 (3 particles each with U(3) state space) has dimension 33=27

Frequency formula for D[µ]:  

Tensor traces:  Tr(a)(b)(c)=27,   Tr(abc)=3,   Tr(ab)=9,   

                                                                 and S3 character table:

Irep.freq.formula    
GrpThLect.15p.48.     

f [µ] = 1
o Sn

class(k )
order of( )χ k[µ]

classes(k )
∑ Trace (pk )

χ k
[µ]

(a)(b)(c)
k=(1)3

(abc),(acb)
k=(3)

(bc),(ac),(ab)
k=(1)(2)

µ= 1 1 1

1 1 −1

2 −1 0
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S3 symmetry of U(3): Applying S3 character theory
Rank-3 tensor basis |ia jb kc 〉 (3 particles each with U(3) state space) has dimension 33=27

Frequency formula for D[µ]:  

Tensor traces:  Tr(a)(b)(c)=27,   Tr(abc)=3,   Tr(ab)=9,   

                                                                 and S3 character table:

Irep.freq.formula    
GrpThLect.15p.48.     

f [µ] = 1
o Sn

class(k )
order of( )χ k[µ]

classes(k )
∑ Trace (pk )

χ k
[µ]

(a)(b)(c)
k=(1)3

(abc),(acb)
k=(3)

(bc),(ac),(ab)
k=(1)(2)

µ= 1 1 1

1 1 −1

2 −1 0

f = 1
3! class(1)

order of( )χ13 Tr (a)(b)(c)+ class(3)
order of( )χ(3) Tr (abc)+ class(1)(2)

order of( )χ(1)(2) Tr (ab)  ( )
          = 1

6
   1    ( )   ⋅  1  ⋅      27       +    2    ( )   ⋅  1  ⋅      3    +    3    ( )  ⋅  1  ⋅     9         ( ) = 10
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S3 symmetry of U(3): Applying S3 character theory
Rank-3 tensor basis |ia jb kc 〉 (3 particles each with U(3) state space) has dimension 33=27

Frequency formula for D[µ]:  

Tensor traces:  Tr(a)(b)(c)=27,   Tr(abc)=3,   Tr(ab)=9,   

                                                                 and S3 character table:

Irep.freq.formula    
GrpThLect.15p.48.     

f [µ] = 1
o Sn

class(k )
order of( )χ k[µ]

classes(k )
∑ Trace (pk )

f = 1
3!

    class(1)
order of( )    χ13 Tr (a)(b)(c)+ class(3)

order of( )   χ(3)Tr (abc) +  class(1)(2)
order of( )χ(1)(2)Tr (ab)

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

      = 1
6

        1    ( )   ⋅  1  ⋅      27    +    2    ( )   ⋅  1  ⋅    3    +    3    ( )  ⋅  (-1)  ⋅     9    ( ) = 1

χ k
[µ]

(a)(b)(c)
k=(1)3

(abc),(acb)
k=(3)

(bc),(ac),(ab)
k=(1)(2)

µ= 1 1 1

1 1 −1

2 −1 0

f = 1
3! class(1)

order of( )χ13 Tr (a)(b)(c)+ class(3)
order of( )χ(3) Tr (abc)+ class(1)(2)

order of( )χ(1)(2) Tr (ab)  ( )
          = 1

6
   1    ( )   ⋅  1  ⋅      27       +    2    ( )   ⋅  1  ⋅      3    +    3    ( )  ⋅  1  ⋅     9         ( ) = 10

https://modphys.hosted.uark.edu/pdfs/GTQM_Pdfs/GTQM_Lectures_2015/GrpThLect_15_3.12.15.pdf#page=44


S3 symmetry of U(3): Applying S3 character theory
Rank-3 tensor basis |ia jb kc 〉 (3 particles each with U(3) state space) has dimension 33=27

Frequency formula for D[µ]:  

Tensor traces:  Tr(a)(b)(c)=27,   Tr(abc)=3,   Tr(ab)=9,   

                                                                 and S3 character table:

Irep.freq.formula    
GrpThLect.15p.48.     

f [µ] = 1
o Sn

class(k )
order of( )χ k[µ]

classes(k )
∑ Trace (pk )

f = 1
3!

  class(1)
order of( )    χ13 Tr (a)(b)(c)+ class(3)

order of( )   χ(3) Tr (abc)   +  class(1)(2)
order of( )χ(1)(2)Tr (ab)

⎛

⎝
⎜

⎞

⎠
⎟

       = 1
6

     1    ( )   ⋅  2  ⋅      27        +    2    ( ) ⋅  (-1)  ⋅    3        +      3    ( )  ⋅  (0)  ⋅   9    ( ) = 8

χ k
[µ]

(a)(b)(c)
k=(1)3

(abc),(acb)
k=(3)

(bc),(ac),(ab)
k=(1)(2)

µ= 1 1 1

1 1 −1

2 −1 0

f = 1
3!

    class(1)
order of( )    χ13 Tr (a)(b)(c)+ class(3)

order of( )   χ(3)Tr (abc) +  class(1)(2)
order of( )χ(1)(2)Tr (ab)

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

      = 1
6

        1    ( )   ⋅  1  ⋅      27    +    2    ( )   ⋅  1  ⋅    3    +    3    ( )  ⋅  (-1)  ⋅     9    ( ) = 1

f = 1
3! class(1)

order of( )χ13 Tr (a)(b)(c)+ class(3)
order of( )χ(3) Tr (abc)+ class(1)(2)

order of( )χ(1)(2) Tr (ab)  ( )
          = 1

6
   1    ( )   ⋅  1  ⋅      27       +    2    ( )   ⋅  1  ⋅      3    +    3    ( )  ⋅  1  ⋅     9         ( ) = 10

https://modphys.hosted.uark.edu/pdfs/GTQM_Pdfs/GTQM_Lectures_2015/GrpThLect_15_3.12.15.pdf#page=44
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4.04.18 class 21: Symmetry Principles for 
Advanced Atomic-Molecular-Optical-Physics 

William G. Harter - University of Arkansas

Characters of intertwining (Sn)*(U(m)) algebras and quantum applications
Generic U(3)⊃R(3) transformations: p-triplet in U(3) shell model       
       Rank-1 vector in R(3)     or     “quark”-triplet in U(3) 
       Rank-2 tensor (2 particles each with U(3) state space) 

U(3) tensor product states and Sn permutation symmetry 
      2-particle U(3) transform.        2-particle permutation operations 
S2 symmetry of U(3): Applying S2 projection 
Matrix representation of Diagonalizing Transform (DTran T) 
      Effect of S2 DTran T on intertwining S2 - U(3) irep matrices 

S3 symmetry of U(3): Applying S3 projection 
     Applying S3 character theory 
     Frequency formula for D[µ] with tensor trace values 
Effect of S3 DTran T on intertwining S3 - U(3) irep matrices 

Structure of  U(3) irep bases 
          Fundamental “quark” irep.         “anti-quark”.        “di-quark”. 
           The octet “eightfold way”        The decapalet and Ω-  
The p-shell in U(3) tableau plots  
Hooklength formulas          



⋅1⋅  ⋅2 ⋅  ⋅3⋅  ⋅4 ⋅  ⋅5⋅  ⋅6 ⋅  ⋅7 ⋅  ⋅8 ⋅  ⋅9 ⋅  ⋅x ⋅  ⋅1 ⋅  ⋅1⋅  ⋅2 ⋅  ⋅3⋅  ⋅4 ⋅  ⋅5⋅  ⋅6 ⋅  ⋅7 ⋅  ⋅8 ⋅  ⋅1⋅  ⋅2 ⋅  ⋅3⋅  ⋅4 ⋅  ⋅5⋅  ⋅6 ⋅  ⋅7 ⋅  ⋅8 ⋅
⋅1⋅  
⋅2 ⋅  
⋅3⋅  
⋅4 ⋅  
⋅5⋅  
⋅6 ⋅  
⋅7 ⋅  
⋅8 ⋅  
⋅9 ⋅  
⋅x ⋅  
⋅1 ⋅  
⋅1⋅  
⋅2 ⋅  
⋅3⋅  
⋅4 ⋅  
⋅5⋅  
⋅6 ⋅  
⋅7 ⋅  
⋅8 ⋅  
⋅1⋅  
⋅2 ⋅  
⋅3⋅  
⋅4 ⋅  
⋅5⋅  
⋅6 ⋅  
⋅7 ⋅  
⋅8 ⋅

⋅1⋅  ⋅2 ⋅  ⋅3⋅  ⋅4 ⋅  ⋅5⋅  ⋅6 ⋅  ⋅7 ⋅  ⋅8 ⋅  ⋅9 ⋅  ⋅x ⋅  ⋅1 ⋅  ⋅1⋅  ⋅2 ⋅  ⋅3⋅  ⋅4 ⋅  ⋅5⋅  ⋅6 ⋅  ⋅7 ⋅  ⋅8 ⋅  ⋅1⋅  ⋅2 ⋅  ⋅3⋅  ⋅4 ⋅  ⋅5⋅  ⋅6 ⋅  ⋅7 ⋅  ⋅8 ⋅
⋅1⋅  
⋅2 ⋅  
⋅3⋅  
⋅4 ⋅  
⋅5⋅  
⋅6 ⋅  
⋅7 ⋅  
⋅8 ⋅  
⋅9 ⋅  
⋅x ⋅  
⋅1 ⋅  
⋅1⋅  
⋅2 ⋅  
⋅3⋅  
⋅4 ⋅  
⋅5⋅  
⋅6 ⋅  
⋅7 ⋅  
⋅8 ⋅  
⋅1⋅  
⋅2 ⋅  
⋅3⋅  
⋅4 ⋅  
⋅5⋅  
⋅6 ⋅  
⋅7 ⋅  
⋅8 ⋅

D11 0

0 D11

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

D12 0

0 D12

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

D13 0

0 D13

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

D21 0

0 D21

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

D22 0

0 D22

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

D23 0

0 D23

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

D31 0

0 D31

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

 ...   etc.

D11  0  D12  0   
 0   D11 0   D12 

D21  0  D22  0   
 0   D21 0   D22    

=

D (u)

S3 symmetry of U(3): Effect of S3 DTran T on intertwining S3 - U(3) irep matrices 
S3 matrices: U(3) matrices:

D (u) 
(one 10-dimensional U(3) irep)

D (u)  
(one 1-dimensional U(3) irep)

D (p) 
(ten 1-dimensional S3  ireps)

D (p)  
(one 1-dimensional S3  irep)

   D (u)  
(two 8-dimensional 
U (3) ireps mixed up
with zeros to make
64 2-by-2 Djk 0 

1
1
0( )  )

            D (p)
(eight 2-dimensional 
  S3  ireps)



Sn Young Tableaus and spin-symmetry for Xn and XYn molecules

 

ℓ µs[ ](Sn ) =
Dimension

of Sn Tableau
µ1[ ] µ2[ ]··· µn[ ]

= n!=n ·(n−1)·(n−2) ⋅⋅⋅3·2·1

hook-
length
product

• • • • •
• • •
• •
•

 8    6    4    2    1 
 5    3    1 
 3    1 
 1    

Examples:

(1)(2)(3) (123)     (12) (13)  
               (132)             (23)  

   1         1         1 

   1         1         -1 

   2         -1        0

1 2 3

1

2

3

1 2

3 1

2

3

S3

A1

A2

E

 

ℓA1=ℓ 3,0,0[ ](S3)= 3·2·1

                  = 1
3 2 1

 

ℓA2 =ℓ 1,1,1[ ](S3)= 3·2·1

                  = 1
3

2

1

 

ℓE=ℓ 2,1,0[ ](S3)= 3·2·1

 
             = 2

3 1

1

 

ℓ µs[ ](Um ) =
Dimension

of Sn∗UmTableau
µ1[ ] µ2[ ]··· µm[ ]

=

m -
dimension
product

m m+1 m+2 m+3 m+4

m-1 m m+1

m-2 m-1

m-3

hook-
length
product

• • • • •
• • •
• •
•

 8    6    4    2    1 
 5    3    1 
 3    1 
 1    

Examples:

 

ℓ 2,1,0[ ](S3∗U (3))=
 
             = 8

3 1

1

3 4

2

 

ℓ 3,0,0[ ](S3∗U (3))=
 
             = 10

3 4 5

3 2 1

Tableau dimension formulae 



S3 group hook formula

Ddim=1 (p)          Ddim=1(p)    Ddim=2(p)

3⋅2 ⋅1
3 2 1

= 1              
3⋅2 ⋅1

3
2
1

= 1      
3⋅2 ⋅1
3 1

1

= 2

U (3) group hook formula

Ddim=10(u)          Ddim=3(u)       Ddim=8(u)

3 4 5

3 2 1
= 10              

3
2
1

3
2
1

= 1             

3 4
2

3 1
1

= 8

ℓ µs⎡⎣ ⎤⎦(Sn ) =
Dimension

of Sn Tableau

µ1⎡⎣ ⎤⎦ µ2⎡⎣ ⎤⎦··· µn⎡⎣ ⎤⎦

= n!=n·(n−1)·(n−2) ⋅⋅⋅3·2·1

hook-
length
product

• • • • •
• • •
• •
•

ℓ µs⎡⎣ ⎤⎦(Um ) =
Dimension

of Sn∗UmTableau

µ1⎡⎣ ⎤⎦ µ2⎡⎣ ⎤⎦··· µm⎡⎣ ⎤⎦

=

m-
dimension
product

m m+1 m+2 m+3 m+4

m-1 m m+1

m-2 m-1

m-3

hook-
length
product

• • • • •
• • •
• •
•

Irep.freq.formula    
GrpThLect.15p.48.     

https://modphys.hosted.uark.edu/pdfs/GTQM_Pdfs/GTQM_Lectures_2015/GrpThLect_15_3.12.15.pdf#page=44


⋅1⋅  ⋅2 ⋅  ⋅3⋅  ⋅4 ⋅  ⋅5⋅  ⋅6 ⋅  ⋅7 ⋅  ⋅8 ⋅  ⋅9 ⋅  ⋅x ⋅  ⋅1 ⋅  ⋅1⋅  ⋅2 ⋅  ⋅3⋅  ⋅4 ⋅  ⋅5⋅  ⋅6 ⋅  ⋅7 ⋅  ⋅8 ⋅  ⋅1⋅  ⋅2 ⋅  ⋅3⋅  ⋅4 ⋅  ⋅5⋅  ⋅6 ⋅  ⋅7 ⋅  ⋅8 ⋅
⋅1⋅  
⋅2 ⋅  
⋅3⋅  
⋅4 ⋅  
⋅5⋅  
⋅6 ⋅  
⋅7 ⋅  
⋅8 ⋅  
⋅9 ⋅  
⋅x ⋅  
⋅1 ⋅  
⋅1⋅  
⋅2 ⋅  
⋅3⋅  
⋅4 ⋅  
⋅5⋅  
⋅6 ⋅  
⋅7 ⋅  
⋅8 ⋅  
⋅1⋅  
⋅2 ⋅  
⋅3⋅  
⋅4 ⋅  
⋅5⋅  
⋅6 ⋅  
⋅7 ⋅  
⋅8 ⋅

⋅1⋅  ⋅2 ⋅  ⋅3⋅  ⋅4 ⋅  ⋅5⋅  ⋅6 ⋅  ⋅7 ⋅  ⋅8 ⋅  ⋅9 ⋅  ⋅x ⋅  ⋅1 ⋅  ⋅1⋅  ⋅2 ⋅  ⋅3⋅  ⋅4 ⋅  ⋅5⋅  ⋅6 ⋅  ⋅7 ⋅  ⋅8 ⋅  ⋅1⋅  ⋅2 ⋅  ⋅3⋅  ⋅4 ⋅  ⋅5⋅  ⋅6 ⋅  ⋅7 ⋅  ⋅8 ⋅
⋅1⋅  
⋅2 ⋅  
⋅3⋅  
⋅4 ⋅  
⋅5⋅  
⋅6 ⋅  
⋅7 ⋅  
⋅8 ⋅  
⋅9 ⋅  
⋅x ⋅  
⋅1 ⋅  
⋅1⋅  
⋅2 ⋅  
⋅3⋅  
⋅4 ⋅  
⋅5⋅  
⋅6 ⋅  
⋅7 ⋅  
⋅8 ⋅  
⋅1⋅  
⋅2 ⋅  
⋅3⋅  
⋅4 ⋅  
⋅5⋅  
⋅6 ⋅  
⋅7 ⋅  
⋅8 ⋅

D11  0   0    0 …   
 0   D11 0    0 … 

  0    0  D11  0 …   
 0    0   0   D11 

=

D (u)

            D (p)

(eight 2-dimensional 
  S3  ireps mixed up

with zeros)

S3 symmetry of U(3): Effect of S3 DTran T on intertwining S3 - U(3) irep matrices 
S3 matrices: U(3) matrices:

D11  D12  D13  D14 … D18  
D21  D22  D23  D24 … D28 

D31  D32  D34  D34 … D38  
D41  D42  D43  D44 

D (u) 
(one 10-dimensional U(3) irep)

   D (u)  
(two 8-dimensional 
U (3) ireps)

D (u)  
(one 1-dimensional U(3) irep)

D (p) 
(ten 1-dimensional S3  ireps)

D (p)  
(one 1-dimensional S3  irep)
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4.04.18 class 21: Symmetry Principles for 
Advanced Atomic-Molecular-Optical-Physics 

William G. Harter - University of Arkansas

Characters of intertwining (Sn)*(U(m)) algebras and quantum applications
Generic U(3)⊃R(3) transformations: p-triplet in U(3) shell model       
       Rank-1 vector in R(3)     or     “quark”-triplet in U(3) 
       Rank-2 tensor (2 particles each with U(3) state space) 

U(3) tensor product states and Sn permutation symmetry 
      2-particle U(3) transform.        2-particle permutation operations 
S2 symmetry of U(3): Applying S2 projection 
Matrix representation of Diagonalizing Transform (DTran T) 
      Effect of S2 DTran T on intertwining S2 - U(3) irep matrices 

S3 symmetry of U(3): Applying S3 projection 
     Applying S3 character theory 
     Frequency formula for D[µ] with tensor trace values 
Effect of S3 DTran T on intertwining S3 - U(3) irep matrices 

Structure of  U(3) irep bases 
          Fundamental “quark” irep.         “anti-quark”.        “di-quark”. 
           The octet “eightfold way”        The decapalet and Ω-  
The p-shell in U(3) tableau plots  
Hooklength formulas          



Tableaus with the same total number                               

Each tableau has 3D Cartesian integer coordinates                determined by number operators  

Structure of  U(3) irep bases
Fundamental           “quark” irepℓ = 3

    

2

3

a1a2

a2a3
a3a1

3 3

2 3

1 3

1 2

2 2

(a)Fundamental
P-triplet [10]

1
2

3

1 1
2

1 2
2

2 2
3

2 3
3

1 3
3

1 1
3

2
3

1
3

1
2

3

1
2

1 2
3

(b)Symmetric
D,S sextet [20]

(c)Anti-symmetric
P-triplet [11]

(d)Para-symmetric
D,P octet [21]

(e)Anit-
symmetric
S singlet
 [111]

D=2

01 Q=2 1

+1

0

-1

-2
Q=3

2

1Q=2Q=1 0

1

1 1

(a1a1,a2a2,a3a3)(n1,n2,n3)

(a1
†a1,a2

†a2,a3
†a3)N = n1 + n2 + n3 lie in the same plane normal to (1,1,1).

Plane has orthogonal D and Q axes for dipole-sum D of z-component momentum  

and the quadrupole-sum Q of squared-z-component momentum.

D = Lz = n3 − n1 = ML

Q = Lz
2 = n3 + n1 = N − n2

(b) N-particle 3-level states ...or spin-1 states
1 = |1 0 0〉 =a1† |0 0 0〉
2 = |0 1 0〉 =a2† |0 0 0〉
3 = |0 0 1〉 =a3† |0 0 0〉

1 = |↑〉 =| 〉
2 = |↔〉 = | 〉

j = 1
m=+1
j = 1
m=0

3 = |↓〉 = | 〉j = 1
m=-1

(vacuum)
= |0 0 0〉

1 2

3

1 1 1 1 1 2 1 2 2 2 2 2

2 2 3

2 3 3

3 3 3

1 3 3

1 1 3 1 2 3

n2n1

n3

angular
momentum

z-component
M=n

1 -n
3

0

−1

−2

−3

−4

+1

+2

+3

+4

a2
†a1

a1
†a2

a2
†a3

a3
†a2a1

†a3

a3
†a1



Tableaus with the same total number                               

Each tableau has 3D Cartesian integer coordinates                determined by number operators  

Structure of  U(3) irep bases
Fundamental           “anti-quark”ℓ = 3

    

2

3

a1a2

a2a3
a3a1

3 3

2 3

1 3

1 2

2 2

(a)Fundamental
P-triplet [10]

1
2

3

1 1
2

1 2
2

2 2
3

2 3
3

1 3
3

1 1
3

2
3

1
3

1
2

3

1
2

1 2
3

(b)Symmetric
D,S sextet [20]

(c)Anti-symmetric
P-triplet [11]

(d)Para-symmetric
D,P octet [21]

(e)Anit-
symmetric
S singlet
 [111]

D=2

01 Q=2 1

+1

0

-1

-2
Q=3

2

1Q=2Q=1 0

1

1 1

(a1a1,a2a2,a3a3)(n1,n2,n3)

(a1
†a1,a2

†a2,a3
†a3)N = n1 + n2 + n3 lie in the same plane normal to (1,1,1).

Plane has orthogonal D and Q axes for dipole-sum D of z-component momentum  

and the quadrupole-sum Q of squared-z-component momentum.

D = Lz = n3 − n1 = ML

Q = Lz
2 = n3 + n1 = N − n2

(b) (U(3) l-1 states)
Para-symmetric
p3-states

1 1
2

1 2
2

2 2
3

2 3
3

1 3
3

1 1
3

1 2
3

n2n1

n3

angular
momentum
z-component

0

+1

+2

+2

+3

-1

-2

-3

-4

1
2
3

2
3

1
3

1
2

2
3

1
3

1
2

(b) (U(3) l-1 states)
Anti-symmetric
p3-state (L=0)

3

1
2

Anti-symmetric
p2-states

Anti-symmetric
p2-states (L= 1)

M=0

M=+1
M= 0
M=-1



Tableaus with the same total number                               

Each tableau has 3D Cartesian integer coordinates                determined by number operators  

Structure of  U(3) irep bases
Fundamental              “di-quark”ℓ = 6

    

2

3

a1a2

a2a3
a3a1

3 3

2 3

1 3

1 2

2 2

(a)Fundamental
P-triplet [10]

1
2

3

1 1
2

1 2
2

2 2
3

2 3
3

1 3
3

1 1
3

2
3

1
3

1
2

3

1
2

1 2
3

(b)Symmetric
D,S sextet [20]

(c)Anti-symmetric
P-triplet [11]

(d)Para-symmetric
D,P octet [21]

(e)Anit-
symmetric
S singlet
 [111]

D=2

01 Q=2 1

+1

0

-1

-2
Q=3

2

1Q=2Q=1 0

1

1 1

(a1a1,a2a2,a3a3)(n1,n2,n3)

(a1
†a1,a2

†a2,a3
†a3)N = n1 + n2 + n3 lie in the same plane normal to (1,1,1).

Plane has orthogonal D and Q axes for dipole-sum D of z-component momentum  

and the quadrupole-sum Q of squared-z-component momentum.

D = Lz = n3 − n1 = ML

Q = Lz
2 = n3 + n1 = N − n2

(b) N-particle 3-level states ...or spin-1 states
1 = |1 0 0〉 =a1† |0 0 0〉
2 = |0 1 0〉 =a2† |0 0 0〉
3 = |0 0 1〉 =a3† |0 0 0〉

1 = |↑〉 =| 〉
2 = |↔〉 = | 〉

j = 1
m=+1
j = 1
m=0

3 = |↓〉 = | 〉j = 1
m=-1

(vacuum)
= |0 0 0〉

1 2

3

1 1 1 1 1 2 1 2 2 2 2 2

2 2 3

2 3 3

3 3 3

1 3 3

1 1 3 1 2 3

n2n1

n3

angular
momentum

z-component
M=n

1 -n
3

0

−1

−2

−3

−4

+1

+2

+3

+4

a2
†a1

a1
†a2

a2
†a3

a3
†a2a1

†a3

a3
†a1
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Tableaus with the same total number                               

Each tableau has 3D Cartesian integer coordinates                determined by number operators  

Structure of  U(3) irep bases

ℓ = 8

    

2

3

a1a2

a2a3
a3a1

3 3

2 3

1 3

1 2

2 2

(a)Fundamental
P-triplet [10]

1
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2
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2

2 2
3

2 3
3
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3
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3

2
3

1
3

1
2

3

1
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(b)Symmetric
D,S sextet [20]

(c)Anti-symmetric
P-triplet [11]

(d)Para-symmetric
D,P octet [21]

(e)Anit-
symmetric
S singlet
 [111]

D=2

01 Q=2 1

+1

0

-1

-2
Q=3

2

1Q=2Q=1 0

1

1 1

(a1a1,a2a2,a3a3)(n1,n2,n3)

(a1
†a1,a2

†a2,a3
†a3)N = n1 + n2 + n3 lie in the same plane normal to (1,1,1).

Plane has orthogonal D and Q axes for dipole-sum D of z-component momentum  

and the quadrupole-sum Q of squared-z-component momentum.

D = Lz = n3 − n1 = ML

Q = Lz
2 = n3 + n1 = N − n2

(b) (U(3) l-1 states)
Para-symmetric
p3-states

1 1
2

1 2
2

2 2
3

2 3
3

1 3
3

1 1
3

1 2
3

n2n1

n3

angular
momentum
z-component

0
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+2

+2

+3

-1

-2

-3

-4

1
2
3

2
3

1
3

1
2

2
3

1
3

1
2

(b) (U(3) l-1 states)
Anti-symmetric
p3-state (L=0)

3

1
2

Anti-symmetric
p2-states

Anti-symmetric
p2-states (L= 1)

M=0

M=+1
M= 0
M=-1

The octet             “eightfold way”



Tableaus with the same total number                               

Each tableau has 3D Cartesian integer coordinates                determined by number operators  

Structure of  U(3) irep bases

The decapalet                   and Ω- ℓ = 10
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(a)Fundamental
P-triplet [10]
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(b)Symmetric
D,S sextet [20]

(c)Anti-symmetric
P-triplet [11]

(d)Para-symmetric
D,P octet [21]

(e)Anit-
symmetric
S singlet
 [111]

D=2
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2

1Q=2Q=1 0
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(a1a1,a2a2,a3a3)(n1,n2,n3)

(a1
†a1,a2

†a2,a3
†a3)N = n1 + n2 + n3 lie in the same plane normal to (1,1,1).

Plane has orthogonal D and Q axes for dipole-sum D of z-component momentum  

and the quadrupole-sum Q of squared-z-component momentum.

D = Lz = n3 − n1 = ML

Q = Lz
2 = n3 + n1 = N − n2

(b) N-particle 3-level states ...or spin-1 states
1 = |1 0 0〉 =a1† |0 0 0〉
2 = |0 1 0〉 =a2† |0 0 0〉
3 = |0 0 1〉 =a3† |0 0 0〉

1 = |↑〉 =| 〉
2 = |↔〉 = | 〉

j = 1
m=+1
j = 1
m=0

3 = |↓〉 = | 〉j = 1
m=-1

(vacuum)
= |0 0 0〉

1 2

3

1 1 1 1 1 2 1 2 2 2 2 2

2 2 3

2 3 3

3 3 3

1 3 3

1 1 3 1 2 3

n2n1

n3

angular
momentum

z-component
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†a1
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Alternative basis for the theory of complex spectra I  
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Alternative basis for the theory of complex spectra III  
William G. Harter and Christopher W. Patterson 
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(a) [ ′λ ] Eii [λ] = δ ′λ λ ni [ ′λ ] Eij [λ] = [λ] E ji [ ′λ ](b)
(c)

(d)

(g) (h)

(e)

(f)

1 3
3E 1 31

3= 1
2

+ 3
2

2 3
4E = 2

1
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Unitary raising and lowering operators Ejk 
a j
†ak + b j

†bk +…= E jk = a jak + bjbk +…

E jk ,Epq⎡
⎣

⎤
⎦ = δ pkE jq −δq jEpk

Hooklength formulas for Ejk on atomic tableau states



Fig. 23.3.2 Spin-1/2 and U(2) Tableau branching diagrams 

Multi-spin (1/2)N product states

2 3 4 5
1 2 3 4
5 4 3 2
4 3 2 1

8·7·6·5·4·3·2·1
5 4 3 2
4 3 2 1

2·
=14

=1

U(2) dimension 
ℓ

j=2j+1

SN  
dimension ℓ[µ]

 Tableau 
dimension 
formulae

Young Tableau Magic Formulae   
GrpThLect29 p46-48.          

2N = ℓ S⎡⎣ ⎤⎦

S

N /2
∑ ℓ µ1,µ2⎡⎣ ⎤⎦

= 2S +1( )
S

N /2
∑ ℓ

N+2S
2

,N−2S
2

⎡
⎣
⎢

⎤
⎦
⎥

https://modphys.hosted.uark.edu/pdfs/GTQM_Pdfs/GTQM_Lectures_2017/GrpThLect_29_5.04.17.pdf#page=48
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↓

↑
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↑ ↓
↓ ↓
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Multi-spin (1/2)N product states
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(b) (U(3) l-1 states)
Para-symmetric
p3-states

1 1
2

1 2
2

2 2
3

2 3
3

1 3
3

1 1
3

1 2
3

n2n1

n3

angular
momentum
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(b) (U(3) l-1 states)
Anti-symmetric
p3-state (L=0)

3

1
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Anti-symmetric
p2-states

Anti-symmetric
p2-states (L= 1)

M=0

M=+1
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f = 1
3! class(1)

order of( )χ13 Tr (a)(b)(c)+ class(3)
order of( )χ(3) Tr (abc)+ class(1)(2)

order of( )χ(1)(2) Tr (ab)  ( )
          = 1

6
   1    ( )   ⋅  1  ⋅      27       +    2    ( )   ⋅  1  ⋅      3    +    3    ( )  ⋅  1  ⋅     9         ( ) = 10

D (u)

f = 1
3!

    class(1)
order of( )    χ13 Tr (a)(b)(c)+ class(3)

order of( )   χ(3)Tr (abc) +  class(1)(2)
order of( )χ(1)(2)Tr (ab)

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

      = 1
6

        1    ( )   ⋅  1  ⋅      27    +    2    ( )   ⋅  1  ⋅    3    +    3    ( )  ⋅  (-1)  ⋅     9    ( ) = 1

D (u)

f = 1
3!

  class(1)
order of( )    χ13 Tr (a)(b)(c)+ class(3)
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order of( )χ(1)(2)Tr (ab)

⎛

⎝
⎜

⎞

⎠
⎟

       = 1
6

     1    ( )   ⋅  2  ⋅      27        +    2    ( ) ⋅  (-1)  ⋅    3        +      3    ( )  ⋅  (0)  ⋅   9    ( ) = 8

D (u)

D (p)

D (p)

D (p)



S3 symmetry of U(3): Applying S3 projection
Rank-3 tensor basis |ijk〉 (3 particles each with U(3) state space) has dimension 33=27

111 112 113 121 122 123 131 132 133 211 212 213 221 222 223 231 232 233 311 312 313 321 322 323 331 332 333[12]
111 
112 
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132 
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233 
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332 
333
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