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(Int.J.Mol.Sci, 14, 714(2013) p.755-774 , QTCA Unit 7 Ch. 23-26 ) 
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Irrep Tensor building 
Unit 8 Ch. 25 p5.          

Irrep Tensor Tables 
Unit 8 Ch. 25 p12.          

Tensors Applied to d,f-levels.    
Unit 8 Ch. 25 p21.          

Intro 3-particle coupling.    
Unit 8 Ch. 25 p28.          

Wigner-Eckart tensor Theorem.    
Unit 8 Ch. 25 p17.          

Tensors Applied to high J levels.    
Unit 8 Ch. 25 p63.          

Intro spin ½ coupling 
Unit 8 Ch. 24 p3.          

H atom hyperfine-B-level crossing 
Unit 8 Ch. 24 p15.         

Intro 2p3p coupling 
Unit 8 Ch. 24 p17.          

Intro LS-jj coupling 
Unit 8 Ch. 24 p22.          

CG coupling derived (start) 
Unit 8 Ch. 24 p39.          

CG coupling derived (formula) 
Unit 8 Ch. 24 p44.          

Hyperf. theory Ch. 24 p48.         

Hyperf. theory Ch. 24 p48.   
Deeper theory ends p53        

Lande’ g-factor 
Unit 8 Ch. 24 p26.         

Intro 3,4-particle Young Tableaus   
GrpThLect29 p42.          

Young Tableau Magic Formulae   
GrpThLect29 p46-48.          

https://modphys.hosted.uark.edu/pdfs/QTCA_Pdfs/QTCA_Text_2013/QTCA_Unit_8_Ch._25_2013.pdf#page=5
https://modphys.hosted.uark.edu/pdfs/QTCA_Pdfs/QTCA_Text_2013/QTCA_Unit_8_Ch._25_2013.pdf#page=12
https://modphys.hosted.uark.edu/pdfs/QTCA_Pdfs/QTCA_Text_2013/QTCA_Unit_8_Ch._25_2013.pdf#page=21
https://modphys.hosted.uark.edu/pdfs/QTCA_Pdfs/QTCA_Text_2013/QTCA_Unit_8_Ch._25_2013.pdf#page=28
https://modphys.hosted.uark.edu/pdfs/QTCA_Pdfs/QTCA_Text_2013/QTCA_Unit_8_Ch._25_2013.pdf#page=17
https://modphys.hosted.uark.edu/pdfs/QTCA_Pdfs/QTCA_Text_2013/QTCA_Unit_8_Ch._25_2013.pdf#page=63
https://modphys.hosted.uark.edu/pdfs/QTCA_Pdfs/QTCA_Text_2013/QTCA_Unit_8_Ch._24_2013.pdf#page=3
https://modphys.hosted.uark.edu/pdfs/QTCA_Pdfs/QTCA_Text_2013/QTCA_Unit_8_Ch._24_2013.pdf#page=15
https://modphys.hosted.uark.edu/pdfs/QTCA_Pdfs/QTCA_Text_2013/QTCA_Unit_8_Ch._24_2013.pdf#page=17
https://modphys.hosted.uark.edu/pdfs/QTCA_Pdfs/QTCA_Text_2013/QTCA_Unit_8_Ch._24_2013.pdf#page=22
https://modphys.hosted.uark.edu/pdfs/QTCA_Pdfs/QTCA_Text_2013/QTCA_Unit_8_Ch._24_2013.pdf#page=39
https://modphys.hosted.uark.edu/pdfs/QTCA_Pdfs/QTCA_Text_2013/QTCA_Unit_8_Ch._24_2013.pdf#page=44
https://modphys.hosted.uark.edu/pdfs/QTCA_Pdfs/QTCA_Text_2013/QTCA_Unit_8_Ch._24_2013.pdf#page=48
https://modphys.hosted.uark.edu/pdfs/QTCA_Pdfs/QTCA_Text_2013/QTCA_Unit_8_Ch._24_2013.pdf#page=53
https://modphys.hosted.uark.edu/pdfs/QTCA_Pdfs/QTCA_Text_2013/QTCA_Unit_8_Ch._24_2013.pdf#page=26
https://modphys.hosted.uark.edu/pdfs/GTQM_Pdfs/GTQM_Lectures_2017/GrpThLect_29_5.04.17.pdf#page=42
https://modphys.hosted.uark.edu/pdfs/GTQM_Pdfs/GTQM_Lectures_2017/GrpThLect_29_5.04.17.pdf#page=48
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Single particle p1-orbitals: U(3) triplet p1  
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Single particle p1-orbitals: U(3) triplet p1  

Elementary U(N) commutation:  [ejk, epq]= δkpejq  - δqjepk  is due to elementary product ejkepq=δpkejq     
                             proof: [ejk, epq]= ejk epq-epq ejk = δkpejq  - δqjepk
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Single particle p1-orbitals: U(3) triplet p1  
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Elementary matrix algebra 

Relating elementary ejk=|j〉〈k| operators to Boson creation-destruction a†jak operators 
                                                                                                                             (Standard notation) 
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Single particle p1-orbitals: U(3) triplet p1  
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Relating elementary ejk=|j〉〈k| operators to Boson creation-destruction a†jak operators 
                                                                                                                             (Standard notation) 
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Single particle p1-orbitals: U(3) triplet p1  

Elementary U(N) commutation:  [ejk, epq]= δkpejq  - δqjepk  is due to elementary product ejkepq=δpkejq     
                             proof: [ejk, epq]= ejk epq-epq ejk = δkpejq  - δqjepk

e11 =
1 ⋅ ⋅
⋅ ⋅ ⋅
⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

 , e12 =
⋅ 1 ⋅
⋅ ⋅ ⋅
⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

 , e13 =
⋅ ⋅ 1
⋅ ⋅ ⋅
⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

 , e21 =
⋅ ⋅ ⋅
1 ⋅ ⋅
⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

 , ...e33 =
⋅ ⋅ ⋅
⋅ ⋅ ⋅
1 ⋅ ⋅

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

 . 

e12e21=e11 
e12e22=e12 

ejkepq=δpkejq

1 2 2 1 = 1 1

1 2 2 2 = 1 2

                 !
j k p q =δ pk j q

Elementary matrix algebra 

Relating elementary ejk=|j〉〈k| operators to Boson creation-destruction a†jak operators 
                                                                                                                             (Standard notation) 

                                                                                                                             (Shorthand notation)          

a j ,ak
†⎡

⎣
⎤
⎦ = δ jk1,   a j ,ak

⎡
⎣

⎤
⎦ = 0,   a j ,bk

†⎡
⎣

⎤
⎦ = 0,   b j

† ,bk
†⎡

⎣
⎤
⎦ = 0,   b j ,bk

†⎡
⎣

⎤
⎦ = δ jk1,  …

a j ,ak⎡
⎣

⎤
⎦ = δ jk1,   a j ,ak

⎡
⎣

⎤
⎦ = 0,   a j ,bk⎡

⎣
⎤
⎦ = 0,   bj ,bk⎡

⎣
⎤
⎦ = 0,   bj ,bk⎡

⎣
⎤
⎦ = δ jk1,  …

Elementary state definitions by Boson operators:    
1 = a1

† 0 ,  2 = a2
† 0 ,  3 = a3

† 0 ,  implies conjugate bras:  1 = 0 a1 , 2 = 0 a2 , 3 = 0 a3 , 



Single particle p1-orbitals: U(3) triplet p1  

Elementary U(N) commutation:  [ejk, epq]= δkpejq  - δqjepk  is due to elementary product ejkepq=δpkejq     
                             proof: [ejk, epq]= ejk epq-epq ejk = δkpejq  - δqjepk

e11 =
1 ⋅ ⋅
⋅ ⋅ ⋅
⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

 , e12 =
⋅ 1 ⋅
⋅ ⋅ ⋅
⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
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 , e13 =
⋅ ⋅ 1
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⎝
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⎜
⎜

⎞

⎠

⎟
⎟
⎟

 , e21 =
⋅ ⋅ ⋅
1 ⋅ ⋅
⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

 , ...e33 =
⋅ ⋅ ⋅
⋅ ⋅ ⋅
1 ⋅ ⋅

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
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e12e21=e11 
e12e22=e12 

ejkepq=δpkejq

1 2 2 1 = 1 1

1 2 2 2 = 1 2

                 !
j k p q =δ pk j q

Elementary matrix algebra 

Relating elementary ejk=|j〉〈k| operators to Boson creation-destruction a†jak operators 
                                                                                                                             (Standard notation) 

                                                                                                                             (Shorthand notation)          

a j ,ak
†⎡

⎣
⎤
⎦ = δ jk1,   a j ,ak

⎡
⎣

⎤
⎦ = 0,   a j ,bk

†⎡
⎣

⎤
⎦ = 0,   b j

† ,bk
†⎡

⎣
⎤
⎦ = 0,   b j ,bk

†⎡
⎣

⎤
⎦ = δ jk1,  …

a j ,ak⎡
⎣

⎤
⎦ = δ jk1,   a j ,ak

⎡
⎣

⎤
⎦ = 0,   a j ,bk⎡

⎣
⎤
⎦ = 0,   bj ,bk⎡

⎣
⎤
⎦ = 0,   bj ,bk⎡

⎣
⎤
⎦ = δ jk1,  …

Elementary state definitions by Boson operators:    
1 = a1

† 0 ,  2 = a2
† 0 ,  3 = a3

† 0 ,  implies conjugate bras:  1 = 0 a1 , 2 = 0 a2 , 3 = 0 a3 , 
that form a unit matrix with kets       

1 1 1 2 1 3

2 1 2 2 2 3

3 1 3 2 3 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=
1 ⋅ ⋅
⋅ 1 ⋅
⋅ ⋅ 1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

 



Single particle p1-orbitals: U(3) triplet p1  

Elementary U(N) commutation:  [ejk, epq]= δkpejq  - δqjepk  is due to elementary product ejkepq=δpkejq     
                             proof: [ejk, epq]= ejk epq-epq ejk = δkpejq  - δqjepk

e11 =
1 ⋅ ⋅
⋅ ⋅ ⋅
⋅ ⋅ ⋅
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e12e21=e11 
e12e22=e12 

ejkepq=δpkejq

1 2 2 1 = 1 1

1 2 2 2 = 1 2

                 !
j k p q =δ pk j q

Elementary matrix algebra 

Relating elementary ejk=|j〉〈k| operators to Boson creation-destruction a†jak operators 
                                                                                                                             (Standard notation) 

                                                                                                                             (Shorthand notation)          

a j ,ak
†⎡

⎣
⎤
⎦ = δ jk1,   a j ,ak

⎡
⎣

⎤
⎦ = 0,   a j ,bk

†⎡
⎣

⎤
⎦ = 0,   b j

† ,bk
†⎡

⎣
⎤
⎦ = 0,   b j ,bk

†⎡
⎣

⎤
⎦ = δ jk1,  …

a j ,ak⎡
⎣

⎤
⎦ = δ jk1,   a j ,ak

⎡
⎣

⎤
⎦ = 0,   a j ,bk⎡

⎣
⎤
⎦ = 0,   bj ,bk⎡

⎣
⎤
⎦ = 0,   bj ,bk⎡

⎣
⎤
⎦ = δ jk1,  …

Elementary state definitions by Boson operators:    
1 = a1

† 0 ,  2 = a2
† 0 ,  3 = a3

† 0 ,  implies conjugate bras:  1 = 0 a1 , 2 = 0 a2 , 3 = 0 a3 , 
that form a unit matrix with kets       

1 1 1 2 1 3

2 1 2 2 2 3

3 1 3 2 3 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=
1 ⋅ ⋅
⋅ 1 ⋅
⋅ ⋅ 1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

 

Following commutation relation [a j ,ak
† ]=1 ⋅δ jk = [a j , ak ]: 

             j k = 0 a jak
† 0 = 0 a j ,ak

†⎡
⎣⎢

⎤
⎦⎥

0 + 0 ak
† a j 0

                                             =   0 1δ jk 0   +       0  (since: a j 0 = 0)

                                             =          δ jk                (assuming: 0 0 = 1)



Single particle p1-orbitals: U(3) triplet p1  

Elementary U(N) commutation:  [ejk, epq]= δkpejq  - δqjepk  is due to elementary product ejkepq=δpkejq     
                             proof: [ejk, epq]= ejk epq-epq ejk = δkpejq  - δqjepk

e11 =
1 ⋅ ⋅
⋅ ⋅ ⋅
⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

 , e12 =
⋅ 1 ⋅
⋅ ⋅ ⋅
⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

 , e13 =
⋅ ⋅ 1
⋅ ⋅ ⋅
⋅ ⋅ ⋅

⎛
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⎟
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1 ⋅ ⋅
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⎛

⎝

⎜
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⎞

⎠

⎟
⎟
⎟

 , ...e33 =
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⋅ ⋅ ⋅
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⎛

⎝

⎜
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⎜
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⎟
⎟
⎟

 . 

e12e21=e11 
e12e22=e12 

ejkepq=δpkejq

1 2 2 1 = 1 1

1 2 2 2 = 1 2

                 !
j k p q =δ pk j q

Elementary matrix algebra 

Relating elementary ejk=|j〉〈k| operators to Boson creation-destruction a†jak operators 
                                                                                                                             (Standard notation) 

                                                                                                                             (Shorthand notation)          

n-particle operator commutation [Ejk, Epq]= δkpEjq - δqjEpk is just like [ejk, epq]= δkpejq - δqjepk  
as long as different types always commute. 

a j ,ak
†⎡

⎣
⎤
⎦ = δ jk1,   a j ,ak

⎡
⎣

⎤
⎦ = 0,   a j ,bk

†⎡
⎣

⎤
⎦ = 0,   b j

† ,bk
†⎡

⎣
⎤
⎦ = 0,   b j ,bk

†⎡
⎣

⎤
⎦ = δ jk1,  …

a j ,ak⎡
⎣

⎤
⎦ = δ jk1,   a j ,ak

⎡
⎣

⎤
⎦ = 0,   a j ,bk⎡

⎣
⎤
⎦ = 0,   bj ,bk⎡

⎣
⎤
⎦ = 0,   bj ,bk⎡

⎣
⎤
⎦ = δ jk1,  …

Elementary state definitions by Boson operators:    
1 = a1

† 0 ,  2 = a2
† 0 ,  3 = a3

† 0 ,  implies conjugate bras:  1 = 0 a1 , 2 = 0 a2 , 3 = 0 a3 , 
that form a unit matrix with kets       

1 1 1 2 1 3

2 1 2 2 2 3

3 1 3 2 3 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=
1 ⋅ ⋅
⋅ 1 ⋅
⋅ ⋅ 1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

 

Relating n-particle Ejk=ejk(a)+ejk(b)+… operators to n-particle Boson a†jak, b†jbk,… operator sets

0 = a j ,bk
†⎡

⎣
⎤
⎦ = a j ,ck

†⎡
⎣

⎤
⎦ = b j ,ck

†⎡
⎣

⎤
⎦...,

0 = a j ,bk⎡
⎣

⎤
⎦ = a j ,ck⎡

⎣
⎤
⎦ = bj ,ck⎡

⎣
⎤
⎦...,   

Following commutation relation [a j ,ak
† ]=1 ⋅δ jk = [a j , ak ]: 

             j k = 0 a jak
† 0 = 0 a j ,ak

†⎡
⎣⎢

⎤
⎦⎥

0 + 0 ak
† a j 0

                                             =   0 1δ jk 0   +       0  (since: a j 0 = 0)

                                             =          δ jk                (assuming: 0 0 = 1)
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Boson (a†,a) operators and Elementary Ejk operators for multiple particles a, b, c,…:  
                  1-particle ejk                        N-particle sums that make Ejk= ejk(a)+ ejk(b)+ ejk(c)+…

a j
†ak = e jk = a jak a j

†ak + b j
†bk +…= E jk = a jak + bjbk +…

Each elementary operator has a 2-term commutation relation

e jk ,epq⎡
⎣

⎤
⎦ = e jkepq − epqe jk

                 = δ pke jq −δq jepk

E jk ,Epq⎡
⎣

⎤
⎦ = δ pkE jq −δq jEpk

1-particle ejk relations apply to N-particle Ejk since all a’s commute with all other b’s, c’s,.…etc.

e jk ,epq⎡
⎣

⎤
⎦ =        a jakapaq         −       apaqa jak

                 = a j δ pk + apak( )aq − ap δq j + a jaq( )ak
                 = δ pka jaq + a japakaq −δq japak − apa jaqak = δ k pe jq −δ jqepk

a j ,ak
†⎡

⎣
⎤
⎦ = δ jk1,   a j ,ak

⎡
⎣

⎤
⎦ = 0,   a j ,bk

†⎡
⎣

⎤
⎦ = 0,   b j

† ,bk
†⎡

⎣
⎤
⎦ = 0,   b j ,bk

†⎡
⎣

⎤
⎦ = δ jk1,  …

a j ,ak⎡
⎣

⎤
⎦ = δ jk1,   a j ,ak

⎡
⎣

⎤
⎦ = 0,   a j ,bk⎡

⎣
⎤
⎦ = 0,   bj ,bk⎡

⎣
⎤
⎦ = 0,   bj ,bk⎡

⎣
⎤
⎦ = δ jk1,  …

Each creation (a†j=aj) or destruction (aj=aj)  operator has a 1-term commutation relation

(Standard notation)

(Shorthand notation)

Summary of multi particle commutation relations
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Sample matrix elements for the [2,0]=|""〉 sextet states:

E21 = E12
†                                                       E12 = E21

†                                                                                     

E21 1 1 2 2 3 3 1 2 1 3 2 3

1 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
2 2 ⋅ ⋅ ⋅ 2 ⋅ ⋅
3 3 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
1 2 2 ⋅ ⋅ ⋅ ⋅ ⋅
1 3 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
2 3 ⋅ ⋅ ⋅ ⋅ 1 ⋅

 

E12 1 1 2 2 3 3 1 2 1 3 2 3

1 1 ⋅ ⋅ ⋅ 2 ⋅ ⋅
2 2 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
3 3 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
1 2 ⋅ 2 ⋅ ⋅ ⋅ ⋅
1 3 ⋅ ⋅ ⋅ ⋅ ⋅ 1
2 3 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

   

Symmetric p2-orbitals: U(3) sextet p2  

E11
1 1 = e11(a)+ e11(b)( ) 1a ,1b = a1a1 + b1b1( ) 1a ,1b = 2 1 1

 E21
1 1 = e21(a)+ e21(b)( ) 1a ,1b = 2a ,1b + 1a ,2b = 2

2a ,1b + 1a ,2b
2

= 2 1 2



Sample matrix elements for the [2,0]=|""〉 sextet states:

E21 = E12
†                                                       E12 = E21

†                                                                                     

E21 1 1 2 2 3 3 1 2 1 3 2 3

1 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
2 2 ⋅ ⋅ ⋅ 2 ⋅ ⋅
3 3 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
1 2 2 ⋅ ⋅ ⋅ ⋅ ⋅
1 3 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
2 3 ⋅ ⋅ ⋅ ⋅ 1 ⋅

 

E12 1 1 2 2 3 3 1 2 1 3 2 3

1 1 ⋅ ⋅ ⋅ 2 ⋅ ⋅
2 2 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
3 3 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
1 2 ⋅ 2 ⋅ ⋅ ⋅ ⋅
1 3 ⋅ ⋅ ⋅ ⋅ ⋅ 1
2 3 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

   

Symmetric p2-orbitals: U(3) sextet p2  

E11
1 1 = e11(a)+ e11(b)( ) 1a ,1b = a1a1 + b1b1( ) 1a ,1b = 2 1 1

 E21
1 1 = e21(a)+ e21(b)( ) 1a ,1b = 2a ,1b + 1a ,2b = 2

2a ,1b + 1a ,2b
2

= 2 1 2



Sample matrix elements for the [2,0]=|""〉 sextet states:

 E21
1 2 = e21(a)+ e21(b)( ) 1a ,2b + 2a ,1b

2
= 2

2
2a ,2b = 2 2 2

 

E21 = E12
†                                                       E12 = E21

†                                                                                     

E21 1 1 2 2 3 3 1 2 1 3 2 3

1 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
2 2 ⋅ ⋅ ⋅ 2 ⋅ ⋅
3 3 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
1 2 2 ⋅ ⋅ ⋅ ⋅ ⋅
1 3 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
2 3 ⋅ ⋅ ⋅ ⋅ 1 ⋅

 

E12 1 1 2 2 3 3 1 2 1 3 2 3

1 1 ⋅ ⋅ ⋅ 2 ⋅ ⋅
2 2 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
3 3 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
1 2 ⋅ 2 ⋅ ⋅ ⋅ ⋅
1 3 ⋅ ⋅ ⋅ ⋅ ⋅ 1
2 3 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

   

Symmetric p2-orbitals: U(3) sextet p2  

E11
1 1 = e11(a)+ e11(b)( ) 1a ,1b = a1a1 + b1b1( ) 1a ,1b = 2 1 1

 E21
1 1 = e21(a)+ e21(b)( ) 1a ,1b = 2a ,1b + 1a ,2b = 2

2a ,1b + 1a ,2b
2

= 2 1 2



Sample matrix elements for the [2,0]=|""〉 sextet states:

 E21
1 2 = e21(a)+ e21(b)( ) 1a ,2b + 2a ,1b

2
= 2

2
2a ,2b = 2 2 2

 

E21 = E12
†                                                       E12 = E21

†                                                                                     

E21 1 1 2 2 3 3 1 2 1 3 2 3

1 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
2 2 ⋅ ⋅ ⋅ 2 ⋅ ⋅
3 3 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
1 2 2 ⋅ ⋅ ⋅ ⋅ ⋅
1 3 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
2 3 ⋅ ⋅ ⋅ ⋅ 1 ⋅

 

E12 1 1 2 2 3 3 1 2 1 3 2 3

1 1 ⋅ ⋅ ⋅ 2 ⋅ ⋅
2 2 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
3 3 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
1 2 ⋅ 2 ⋅ ⋅ ⋅ ⋅
1 3 ⋅ ⋅ ⋅ ⋅ ⋅ 1
2 3 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

   

Symmetric p2-orbitals: U(3) sextet p2  

E11
1 1 = e11(a)+ e11(b)( ) 1a ,1b = a1a1 + b1b1( ) 1a ,1b = 2 1 1

 E21
1 1 = e21(a)+ e21(b)( ) 1a ,1b = 2a ,1b + 1a ,2b = 2

2a ,1b + 1a ,2b
2

= 2 1 2

  E21
1 3 = e21(a)+ e21(b)( ) 1a ,3b + 3a ,1b

2
=

2a ,3b + 3a ,2b
2

= 2 3

 



Sample matrix elements for the [2,0]=|""〉 sextet states:

 E21
1 2 = e21(a)+ e21(b)( ) 1a ,2b + 2a ,1b

2
= 2

2
2a ,2b = 2 2 2

 

E21 = E12
†                                                       E12 = E21

†                                                                                     

E21 1 1 2 2 3 3 1 2 1 3 2 3

1 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
2 2 ⋅ ⋅ ⋅ 2 ⋅ ⋅
3 3 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
1 2 2 ⋅ ⋅ ⋅ ⋅ ⋅
1 3 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
2 3 ⋅ ⋅ ⋅ ⋅ 1 ⋅

 

E12 1 1 2 2 3 3 1 2 1 3 2 3

1 1 ⋅ ⋅ ⋅ 2 ⋅ ⋅
2 2 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
3 3 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
1 2 ⋅ 2 ⋅ ⋅ ⋅ ⋅
1 3 ⋅ ⋅ ⋅ ⋅ ⋅ 1
2 3 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

   

Symmetric p2-orbitals: U(3) sextet p2  

E11
1 1 = e11(a)+ e11(b)( ) 1a ,1b = a1a1 + b1b1( ) 1a ,1b = 2 1 1

 E21
1 1 = e21(a)+ e21(b)( ) 1a ,1b = 2a ,1b + 1a ,2b = 2

2a ,1b + 1a ,2b
2

= 2 1 2

  E21
1 3 = e21(a)+ e21(b)( ) 1a ,3b + 3a ,1b

2
=

2a ,3b + 3a ,2b
2

= 2 3

  E21
2 3 = 0



Sample matrix elements for the [2,0]=|""〉 sextet states:

 E21
1 2 = e21(a)+ e21(b)( ) 1a ,2b + 2a ,1b

2
= 2

2
2a ,2b = 2 2 2

 

E21 = E12
†                                                       E12 = E21

†                                               E23 = E32
†                                       

E21 1 1 2 2 3 3 1 2 1 3 2 3

1 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
2 2 ⋅ ⋅ ⋅ 2 ⋅ ⋅
3 3 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
1 2 2 ⋅ ⋅ ⋅ ⋅ ⋅
1 3 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
2 3 ⋅ ⋅ ⋅ ⋅ 1 ⋅

 

E12 1 1 2 2 3 3 1 2 1 3 2 3

1 1 ⋅ ⋅ ⋅ 2 ⋅ ⋅
2 2 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
3 3 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
1 2 ⋅ 2 ⋅ ⋅ ⋅ ⋅
1 3 ⋅ ⋅ ⋅ ⋅ ⋅ 1
2 3 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

 

E23 1 1 2 2 3 3 1 2 1 3 2 3

1 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
2 2 ⋅ ⋅ ⋅ ⋅ ⋅ 2
3 3 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
1 2 ⋅ ⋅ ⋅ ⋅ 1 ⋅
1 3 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
2 3 ⋅ ⋅ 2 ⋅ ⋅ ⋅

  

Symmetric p2-orbitals: U(3) sextet p2  

E11
1 1 = e11(a)+ e11(b)( ) 1a ,1b = a1a1 + b1b1( ) 1a ,1b = 2 1 1

 E21
1 1 = e21(a)+ e21(b)( ) 1a ,1b = 2a ,1b + 1a ,2b = 2

2a ,1b + 1a ,2b
2

= 2 1 2

  E21
1 3 = e21(a)+ e21(b)( ) 1a ,3b + 3a ,1b

2
=

2a ,3b + 3a ,2b
2

= 2 3

  E21
2 3 = 0
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Combining elementary “1-jump” E12, and E23, … operators gives “2-jump” operator E13. 
U(n) operators E24, E35 …,E14, E25, E36 … include n(n-1)/2 operators connecting n states. 

E13 = E31
† =                                                                             

1 1 2 2 3 3 1 2 1 3 2 3

1 1
⋅ ⋅ ⋅ ⋅ 2 ⋅

2 2
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

3 3
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

1 2
⋅ ⋅ ⋅ ⋅ ⋅ 0

1 3
⋅ ⋅ 2 ⋅ ⋅ ⋅

2 3
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

  

E13 = [E12,E23] = E12·E23 - E23·E12

  E13
1 3 = E12E23

1a ,3b + 3a ,1b
2

− E23E12
1a ,3b + 3a ,1b

2

                 = E12
1a ,2b + 2a ,1b

2
     − E23 ⋅0

                 =       
1a ,1b + 1a ,1b

2
= 2

2
1a ,1b      = 2 1 1

 

  E13
2 3 = E12E23

2a ,3b + 3a ,2b
2

− E23E12
2a ,3b + 3a ,2b

2

                 = E12
2a ,2b + 2a ,2b

2
     − E23 ⋅

1a ,3b + 3a ,1b
2

                 =       
1a ,2b + 2a ,1b

2
−

1a ,2b + 2a ,1b
2

  = 0

 

  E13
3 3 = E12E23 3a ,3b − E23E12 3a ,3b

                 = E12( 2a ,3b + 3a ,2b )     − 0

                 =       1a ,3b + 3a ,1b = 2  1 3   
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P =

11 12 13 21 22 23 31 32 33
11 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
12 ⋅ 1

2 ⋅ 1
2 ⋅ ⋅ ⋅ ⋅ ⋅

13 ⋅ ⋅ 1
2 ⋅ ⋅ ⋅ 1

2 ⋅ ⋅

21 ⋅ 1
2 ⋅ 1

2 ⋅ ⋅ ⋅ ⋅ ⋅

22 ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅
23 ⋅ ⋅ ⋅ ⋅ ⋅ 1

2 ⋅ 1
2 ⋅

31 ⋅ ⋅ 1
2 ⋅ ⋅ ⋅ 1

2 ⋅ ⋅

32 ⋅ ⋅ ⋅ ⋅ ⋅ 1
2 ⋅ 1

2 ⋅

33 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1

P =

11 12 13 21 22 23 31 32 33
11 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
12 ⋅ 1

2 ⋅ −1
2 ⋅ ⋅ ⋅ ⋅ ⋅

13 ⋅ ⋅ 1
2 ⋅ ⋅ ⋅ −1

2 ⋅ ⋅

21 ⋅ −1
2 ⋅ 1

2 ⋅ ⋅ ⋅ ⋅ ⋅

22 ⋅ ⋅ ⋅ ⋅ 0 ⋅ ⋅ ⋅ ⋅
23 ⋅ ⋅ ⋅ ⋅ ⋅ 1

2 ⋅ −1
2 ⋅

31 ⋅ ⋅ −1
2 ⋅ ⋅ ⋅ 1

2 ⋅ ⋅

32 ⋅ ⋅ ⋅ ⋅ ⋅ −1
2 ⋅ 1

2 ⋅

33 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

T =

x2 y2 z2 xy xz yz xpy xpz ypz

11 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
12 ⋅ ⋅ ⋅ 1

2
⋅ ⋅ 1

2
⋅ ⋅

13 ⋅ ⋅ ⋅ ⋅ 1
2

⋅ ⋅ −1
2

⋅

21 ⋅ ⋅ ⋅ 1
2

⋅ ⋅ −1
2

⋅ ⋅

22 ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
23 ⋅ ⋅ ⋅ ⋅ ⋅ 1

2
⋅ ⋅ 1

2

31 ⋅ ⋅ ⋅ ⋅ 1
2

⋅ ⋅ 1
2

⋅

32 ⋅ ⋅ ⋅ ⋅ ⋅ 1
2

⋅ ⋅ −1
2

33 ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

S2 symmetry of U(3):  
Applying S2 projection

Review:Representation of Diagonalizing Transform (DTran T) made by excerpting P-columns 

DTran T  Lect.21 p.13.   

https://modphys.hosted.uark.edu/pdfs/QTCA_Pdfs/AMOP_Lectures_2018/AMOClass-21-4.04.18.pdf#page=13


x2 y2 z2 xy xz yz xpy xpz ypz

11 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
12 ⋅ ⋅ ⋅ 1

2
⋅ ⋅ 1

2
⋅ ⋅

13 ⋅ ⋅ ⋅ ⋅ 1
2

⋅ ⋅ −1
2

⋅

21 ⋅ ⋅ ⋅ 1
2

⋅ ⋅ −1
2

⋅ ⋅

22 ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
23 ⋅ ⋅ ⋅ ⋅ ⋅ 1

2
⋅ ⋅ 1

2

31 ⋅ ⋅ ⋅ ⋅ 1
2

⋅ ⋅ 1
2

⋅

32 ⋅ ⋅ ⋅ ⋅ ⋅ 1
2

⋅ ⋅ −1
2

33 ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

E12 11 12 13 21 22 23 31 32 33

11 ⋅ 1 ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅
12 ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅
13 ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅
21 ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅
22 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
23 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
31 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅
32 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
33 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

11 12 13 21 22 23 31 32 33

x2
1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

y2
⋅ ⋅ ⋅ 1

2
⋅ ⋅ 1

2
⋅ ⋅

z2
⋅ ⋅ ⋅ ⋅ 1

2
⋅ ⋅ −1

2
⋅

xy ⋅ ⋅ ⋅ 1
2

⋅ ⋅ −1
2

⋅ ⋅

xz ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

yz ⋅ ⋅ ⋅ ⋅ ⋅ 1
2

⋅ ⋅ 1
2

xpy ⋅ ⋅ ⋅ ⋅ 1
2

⋅ ⋅ 1
2

⋅

xpz ⋅ ⋅ ⋅ ⋅ ⋅ 1
2

⋅ ⋅ −1
2

ypz ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

11 12 13 21 22 23 31 32 33
11 ⋅ ⋅ ⋅ 2 ⋅ ⋅ ⋅ ⋅ ⋅
12 ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
13 ⋅ ⋅ ⋅ ⋅ ⋅ 1

2
⋅ ⋅ 1

2

21 ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
22 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
23 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
31 ⋅ ⋅ ⋅ ⋅ ⋅ 1

2
⋅ ⋅ −1

2

32 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
33 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

D⊗D·T 
product

D-Tran T 

D⊗D T

Using Diagonalizing Transform (DTran T)  
to derive ireps D[20](E12) and D[11](E12)

DTran T  Lect.21 p.13.   

https://modphys.hosted.uark.edu/pdfs/QTCA_Pdfs/AMOP_Lectures_2018/AMOClass-21-4.04.18.pdf#page=13


x2 y2 z2 xy xz yz xpy xpz ypz

11 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
12 ⋅ ⋅ ⋅ 1

2
⋅ ⋅ 1

2
⋅ ⋅

13 ⋅ ⋅ ⋅ ⋅ 1
2

⋅ ⋅ −1
2

⋅

21 ⋅ ⋅ ⋅ 1
2

⋅ ⋅ −1
2

⋅ ⋅

22 ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
23 ⋅ ⋅ ⋅ ⋅ ⋅ 1

2
⋅ ⋅ 1

2

31 ⋅ ⋅ ⋅ ⋅ 1
2

⋅ ⋅ 1
2

⋅

32 ⋅ ⋅ ⋅ ⋅ ⋅ 1
2

⋅ ⋅ −1
2

33 ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

E12 11 12 13 21 22 23 31 32 33

11 ⋅ 1 ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅
12 ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅
13 ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅
21 ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅
22 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
23 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
31 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅
32 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
33 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

11 12 13 21 22 23 31 32 33
11 ⋅ ⋅ ⋅ 2 ⋅ ⋅ ⋅ ⋅ ⋅
12 ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
13 ⋅ ⋅ ⋅ ⋅ ⋅ 1

2
⋅ ⋅ 1

2

21 ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
22 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
23 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
31 ⋅ ⋅ ⋅ ⋅ ⋅ 1

2
⋅ ⋅ −1

2

32 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
33 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

11 12 13 21 22 23 31 32 33

x2
1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

y2
⋅ ⋅ ⋅ 1

2
⋅ ⋅ 1

2
⋅ ⋅

z2
⋅ ⋅ ⋅ ⋅ 1

2
⋅ ⋅ −1

2
⋅

xy ⋅ ⋅ ⋅ 1
2

⋅ ⋅ −1
2

⋅ ⋅

xz ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

yz ⋅ ⋅ ⋅ ⋅ ⋅ 1
2

⋅ ⋅ 1
2

xpy ⋅ ⋅ ⋅ ⋅ 1
2

⋅ ⋅ 1
2

⋅

xpz ⋅ ⋅ ⋅ ⋅ ⋅ 1
2

⋅ ⋅ −1
2

ypz ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

11 12 13 21 22 23 31 32 33

x2
1 1 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

y2
2 2 ⋅ ⋅ ⋅ 1⋅ ⋅ ⋅ ⋅

z2
3 3 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅1

xy
1 2 ⋅ ⋅ 1

2
⋅ 1

2
⋅ ⋅ ⋅ ⋅

xz
1 3 ⋅ ⋅ 1

2
⋅ ⋅ ⋅ ⋅ 1

2
⋅ ⋅

yz
2 3 ⋅ ⋅ ⋅ ⋅ ⋅ 1

2
⋅ ⋅ 1

2

1
2 ⋅ ⋅ 1

2
⋅ ⋅ −1

2
⋅ ⋅ ⋅

1
3 ⋅ ⋅ ⋅ −1

2
⋅ ⋅ ⋅ 1

2
⋅

2
3 ⋅ ⋅ ⋅ ⋅ ⋅ 1

2
⋅ ⋅ −1

2
⋅

E12
1 1 2 2 3 3 1 2 1 3 2 3

1
2

1
3

2
3

1 1 ⋅ ⋅ ⋅ 2 ⋅ ⋅ ⋅ ⋅ ⋅
2 2 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
3 3 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
1 2 ⋅ 2 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
1 3 ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅
2 3 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
1
2 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
1
3 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1
2
3 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

D[20](E12)

D[11](E12)

D⊗D·T 
product

T†·D⊗D·T 
product

T†

D⊗D T

Using Diagonalizing Transform (DTran T)  
to derive ireps D[20](E12) and D[11](E12)
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σσ
yy

σσ
zz

== TT
00

TT
11

TT
--11

TT
00
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00

1

√2

1

√2
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Relating elementary Ejk matrices to Tensor operator Tkq or vkq matrices: 
 ℓ=1 (atomic p-shell) Recall vkq triangular arrays:  
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ℓ=1  
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1-particle notation

(AMOP Lect. 11p.5    )    

Diagonal examples in n-particle notation:
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Relating elementary Ejk matrices to Tensor operator Tkq or vkq matrices: 
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3V0
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Diagonal examples in n-particle notation:
3V0

0 = E11 + E22 + E33

2V0
1 = E11          − E33 ≡ Lz

6V0
2 = E11 − 2E22 + E33

Off-Diagonal examples in n-particle notation:
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1 = 2(E21 + E32 ) ≡ L−  .
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Comparison calculation of p3-Vkq vs. calculation by cfp (fractional parentage)
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Complete set of Ejk matrix elements for the doublet (spin-½ ) p3 orbits

Diagonal examples in n-particle notation:
3V0

0 = E11 + E22 + E33

2V0
1 = E11          − E33 ≡ Lz

6V0
2 = E11 − 2E22 + E33

Off-Diagonal examples in n-particle notation:
V2

2 = E13  ,      -2V1
2 = 2(E12 − E23) ,            2V−1

2 = 2(E21 − E32 ) ,      2V−2
2 = E31  ,

                      -2V1
1 = 2(E12 + E23) ≡ L+ ,     2V−1

1 = 2(E21 + E32 ) ≡ L−  .

notation: 
(jk) numbers tell 
which Ejk gave that entry



Single particle p1-orbitals: U(3) triplet 
     Elementary U(N) commutation 
     Elementary state definitions by Boson operators 
          Summary of multi particle commutation relations 
Symmetric p2-orbitals: U(3) sextet 
     Sample matrix elements 
         Combining elementary “1-jump” E12, E23, to get “2-jump” operator E13 
              Review:Representation of Diagonalizing Transform (DTran T) 
Relating elementary Ejk matrices to Tensor operator Vkq     (ℓ=1 atomic p-shell) 
         Condensed form tensor tables for orbital shells p: ℓ=1, d: ℓ=2, f: ℓ=3, g: ℓ=4. 
Tableau calculation of 3-electron ℓ=1 orbital p3-states and Vkq matrices 
         Tableau “Jawbone” formula 
               Calculate 2n-pole moments 
         Comparison calculation of p3-Vkq vs. calculation by cfp (fractional parentage) 
              Complete set of Ejk matrix elements for the doublet (spin-½ ) p3 orbits 
Level diagrams for pure atomic shells          pn=1-6,                    dn=1-5,                        fn=1-7 
         Classical Lie Groups used to label f-shell structure (a rough sketch)  

AMOP  
reference links 

 on page 2

4.09.18 class 22: Symmetry Principles for 
Advanced Atomic-Molecular-Optical-Physics 

William G. Harter - University of Arkansas

Atomic shell models using intertwining (Sn)*(U(m)) matrix operators



Level diagrams for pure atomic shells pn=1-3, dn=1-5, fn=1-7,

p3

d4

d3

d2

p2

Excerpts from unpublished Ch. 9 intended for Vol II of 
Principles of Symmetry, Dynamics and Spectroscopy

p1

p2

p3

p4

p5



Single particle p1-orbitals: U(3) triplet 
     Elementary U(N) commutation 
     Elementary state definitions by Boson operators 
          Summary of multi particle commutation relations 
Symmetric p2-orbitals: U(3) sextet 
     Sample matrix elements 
         Combining elementary “1-jump” E12, E23, to get “2-jump” operator E13 
              Review:Representation of Diagonalizing Transform (DTran T) 
Relating elementary Ejk matrices to Tensor operator Vkq     (ℓ=1 atomic p-shell) 
         Condensed form tensor tables for orbital shells p: ℓ=1, d: ℓ=2, f: ℓ=3, g: ℓ=4. 
Tableau calculation of 3-electron ℓ=1 orbital p3-states and Vkq matrices 
         Tableau “Jawbone” formula 
               Calculate 2n-pole moments 
         Comparison calculation of p3-Vkq vs. calculation by cfp (fractional parentage) 
              Complete set of Ejk matrix elements for the doublet (spin-½ ) p3 orbits 
Level diagrams for pure atomic shells          pn=1-6,                    dn=1-5,                        fn=1-7 
         Classical Lie Groups used to label f-shell structure (a rough sketch)  

AMOP  
reference links 

 on page 2

4.09.18 class 22: Symmetry Principles for 
Advanced Atomic-Molecular-Optical-Physics 

William G. Harter - University of Arkansas

Atomic shell models using intertwining (Sn)*(U(m)) matrix operators



Level diagrams for pure atomic shells pn=1-3, dn=1-5, fn=1-7,

p3

d4

d3

d2

p2

Excerpts from unpublished Ch. 9 intended for Vol II of 
Principles of Symmetry, Dynamics and Spectroscopy

p1

p2

p3

p4

p5



Level diagrams for pure atomic shells pn=1-3, dn=1-5, fn=1-7,

p3

d4

d3

d2

p2

Excerpts from unpublished Ch. 9 intended for Vol II of 
Principles of Symmetry, Dynamics and Spectroscopy

p1

p2

p3

p4

p5



Level diagrams for pure atomic shells pn=1-3, dn=1-5, fn=1-7,

p3

d4

d3

d2

p2

Excerpts from unpublished Ch. 9 intended for Vol II of 
Principles of Symmetry, Dynamics and Spectroscopy

p1

p2

p3

p4

p5



Level diagrams for pure atomic shells pn=1-3, dn=1-5, fn=1-7,

d5

Excerpts from unpublished Ch. 9 intended for Vol II of 
Principles of Symmetry, Dynamics and Spectroscopy



Single particle p1-orbitals: U(3) triplet 
     Elementary U(N) commutation 
     Elementary state definitions by Boson operators 
          Summary of multi particle commutation relations 
Symmetric p2-orbitals: U(3) sextet 
     Sample matrix elements 
         Combining elementary “1-jump” E12, E23, to get “2-jump” operator E13 
              Review:Representation of Diagonalizing Transform (DTran T) 
Relating elementary Ejk matrices to Tensor operator Vkq     (ℓ=1 atomic p-shell) 
         Condensed form tensor tables for orbital shells p: ℓ=1, d: ℓ=2, f: ℓ=3, g: ℓ=4. 
Tableau calculation of 3-electron ℓ=1 orbital p3-states and Vkq matrices 
         Tableau “Jawbone” formula 
               Calculate 2n-pole moments 
         Comparison calculation of p3-Vkq vs. calculation by cfp (fractional parentage) 
              Complete set of Ejk matrix elements for the doublet (spin-½ ) p3 orbits 
Level diagrams for pure atomic shells          pn=1-6,                    dn=1-5,                        fn=1-7 
         Classical Lie Groups used to label f-shell structure (a rough sketch)  

AMOP  
reference links 

 on page 2

4.09.18 class 22: Symmetry Principles for 
Advanced Atomic-Molecular-Optical-Physics 

William G. Harter - University of Arkansas

Atomic shell models using intertwining (Sn)*(U(m)) matrix operators



Level diagrams for pure atomic shells pn=1-3, dn=1-5, fn=1-7,

f 4

f 3

f 2

Excerpts from unpublished Ch. 9 intended for Vol II of 
Principles of Symmetry, Dynamics and Spectroscopy



Level diagrams for pure atomic shells pn=1-3, dn=1-5, fn=1-7,

f 4

f 3

f 2

Excerpts from unpublished Ch. 9 intended for Vol II of 
Principles of Symmetry, Dynamics and Spectroscopy



Level diagrams for pure atomic shells pn=1-3, dn=1-5, fn=1-7,

f 4

f 3

f 2

Excerpts from unpublished Ch. 9 intended for Vol II of 
Principles of Symmetry, Dynamics and Spectroscopy



Level diagrams for pure atomic shells pn=1-3, dn=1-5, fn=1-7,

f 5

Excerpts from unpublished Ch. 9 intended for Vol II of 
Principles of Symmetry, Dynamics and Spectroscopy



Level diagrams for pure atomic shells pn=1-3, dn=1-5, fn=1-7,Level diagrams for pure atomic shells pn=1-3, dn=1-5, fn=1-7,

f 6

Excerpts from unpublished Ch. 9 intended for Vol II of 
Principles of Symmetry, Dynamics and Spectroscopy



Level diagrams for pure atomic shells pn=1-3, dn=1-5, fn=1-7,

f 7

Excerpts from unpublished Ch. 9 intended for Vol II of 
Principles of Symmetry, Dynamics and Spectroscopy



Single particle p1-orbitals: U(3) triplet 
     Elementary U(N) commutation 
     Elementary state definitions by Boson operators 
          Summary of multi particle commutation relations 
Symmetric p2-orbitals: U(3) sextet 
     Sample matrix elements 
         Combining elementary “1-jump” E12, E23, to get “2-jump” operator E13 
              Review:Representation of Diagonalizing Transform (DTran T) 
Relating elementary Ejk matrices to Tensor operator Vkq     (ℓ=1 atomic p-shell) 
         Condensed form tensor tables for orbital shells p: ℓ=1, d: ℓ=2, f: ℓ=3, g: ℓ=4. 
Tableau calculation of 3-electron ℓ=1 orbital p3-states and Vkq matrices 
         Tableau “Jawbone” formula 
               Calculate 2n-pole moments 
         Comparison calculation of p3-Vkq vs. calculation by cfp (fractional parentage) 
              Complete set of Ejk matrix elements for the doublet (spin-½ ) p3 orbits 
Level diagrams for pure atomic shells          pn=1-6,                    dn=1-5,                        fn=1-7 
         Classical Lie Groups used to label f-shell structure (a rough sketch)  

AMOP  
reference links 

 on page 2

4.09.18 class 22: Symmetry Principles for 
Advanced Atomic-Molecular-Optical-Physics 

William G. Harter - University of Arkansas

Atomic shell models using intertwining (Sn)*(U(m)) matrix operators



Classical Lie Groups used to label f-shell structure

Excerpts from unpublished Ch. 9 intended for Vol II of 
Principles of Symmetry, Dynamics and Spectroscopy





A Unitary Calculus for Electronic Orbitals 
William G. Harter and Christopher W. Patterson 
Springer-Verlag Lectures in Physics 49 1976 

Alternative basis for the theory of complex spectra II  
William G. Harter and Christopher W. Patterson 
Physical Review A 13 3 p1076-1082 (1976)
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1,2,3 ≡ 1
particle−a

2
particle−b

3
particle−c

≡ 1
a
2
b
3
c



This applies to all of multi-particle representations of Ejk and to momentum operators Lx, Ly, and Lz.

Single particle p-orbit (ℓ=1) representation of Lx, Ly, and Lz 

Dmn
1 Lx( ) = 1

2
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1 ⋅ 1
⋅ 1 ⋅
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⎜
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,         Dmn
1 Ly( ) = −i

2
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⎟
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⎜
⎜

⎞

⎠

⎟
⎟
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Elementary operator form of Lx, Ly, and Lz

Lx = E12 + E23 + E21 + E32( ) / 2,     Ly = −i E12 + E23 − E21 − E32( ) / 2,         Lz = E11 − E33

…and of raise-lower operators L+ and L-

L+ = Lx + i Ly = 2 E12 + E23( ),       L− = Lx − i Ly = 2 E21 + E32( ) = L+† ,       Lz = [L+ ,L− ]

Single particle p1-orbitals: U(3) triplet p1  

General elementary operator commutation [Ejk, Epq]= δkpEjq - δqjEpk  
has same form as 1-particle commutation:   [ejk, epq]= δkpejq  - δqjepk

e11 =
1 ⋅ ⋅
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 . 

e12e21=e11 
e12e22=e12 

ejkepq=δpkejq

1 2 2 1 = 1 1

1 2 2 2 = 1 2

                 !
j k p q =δ pk j q

Elementary matrix algebra 

Elementary-elementary  
operator commutation algebra 



The ejk procedure shows          or          factors        or            arise by adjusting norms.

Symmetric p2-orbitals: U(3) sextet p2  

Elementary creation-destruction ajak pairs give the [2,0] sextet states 1 1 , 1 2 , 1 3 , 2 2 , 2 3 , 3 3{ }
E12 n1 ,n2 = a1a2 n1 ,n2 = a1 n2 n1 ,n2 −1 = n1 +1 n2 n1 +1,n2 −1

E23 n1 ,n2 ,n3 = a2a3 n1 ,n2 ,n3 = a2 n3 n1 ,n2 ,n3 −1 = n2 +1 n3 n1 ,n2 +1,n3 −1

 Apply elementary operations ejk to each particle a, b, c, … in turn.

E23 3a3b3c = 2a3b3c + 3a2b3c + 3a3b2c = 3
2a3b3c + 3a2b3c + 3a3b2

3
= 3 2 3 3

a2a3 n1 = 0,n2 = 0,n3 = 3 = a2 3 0,0,2 = 1 3 0,1,2 = E23
3 3 3 = 3 2 3 3

nk+1nka=aa=a†

E23
2a3b3c3d + 3a2b3c3d + 3a3b2c3d + 3a3b3c2d

2
       =   E23

2 3 3 3

  = 
2a2b3c3d + 2a2b3c3d + 2a3b2c3d + 2a3b3c2d

2
       = 6

2a2b3c3d + 2a3b2c3d + 2a3b3c2d
6

⎡

⎣
⎢
⎢

  + 
2a3b2c3d + 3a2b2c3d + 3a2b2c3d + 3a2b3c2d

2
            +

3a2b2c3d + 3a2b3c2d + 3a3b2c2d
6

⎤

⎦
⎥
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  + 

2a3b3c2d + 3a2b3c2d + 3a3b2c2d + 3a3b2c2d

2
        = 6 2 2 3 3

a2a3 n1 = 0,n2 = 0,n3 = 3 = a2 3 0,0,2 = 1 3 0,1,2 = E23
3 3 3 = 3 2 3 3


