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(S3)*(U(3))⊂U(6) models of p3 electronic spin-orbit states and couplings 
[2,1] tableau states lowered by L-=√2(E21+E32)  
           Top-(J,M) states           thru mid-level states 
ℓ=1 p=shell LS states combined to states of definite J  
           J=3/2 at L=0  (4S).              J=5/2 at L=2  (2D)  
           Clebsch-Gordon coupling; J=3/2 at L=2 (2D)  
                                                       J=3/2 at L=1 (2P)  
                                                       J=1/2 at L=1 (2P) 
Spin-orbit state assembly formula and Slater determinants 
           The simplest assembly (Detailed)  
ℓ=1 p=shell LSJ states transformed to Slater determinants from J=3/2 (4S) 
                                                                     Slater functions for  J=5/2 (2D) 
                                                                     Slater functions for  J=3/2 (2D) 
                                                                     Slater functions for  J=3/2 (2P) 
                                                                     Slater functions for  J=1/2 (2P) 
Application to spin-orbit and entanglement break-up scattering (next class)            
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Representaions Of Multidimensional Symmetries In Networks - harter-jmp-1973

Alternative Basis for the Theory of Complex Spectra 

Alternative_Basis_for_the_Theory_of_Complex_Spectra_I_-_harter-pra-1973

Alternative_Basis_for_the_Theory_of_Complex_Spectra_II_-_harter-patterson-pra-1976

Alternative_Basis_for_the_Theory_of_Complex_Spectra_III_-_patterson-harter-pra-1977


Frame Transformation Relations And Multipole Transitions In Symmetric Polyatomic Molecules - RMP-1978

Asymptotic eigensolutions of fourth and sixth rank octahedral tensor operators - Harter-Patterson-JMP-1979

Rotational energy surfaces and high- J eigenvalue structure of polyatomic molecules - Harter - Patterson - 1984

Galloping waves and their relativistic properties - ajp-1985-Harter

Rovibrational Spectral Fine Structure Of Icosahedral Molecules - Cpl 1986 (Alt Scan)

Theory of hyperfine and superfine levels in symmetric polyatomic molecules.  

I) Trigonal and tetrahedral molecules: Elementary spin-1/2 cases in vibronic ground states - PRA-1979-Harter-Patterson (Alt scan)

II) Elementary cases in octahedral hexafluoride molecules - Harter-PRA-1981 (Alt scan)


Rotation–vibration spectra of icosahedral molecules. 
I) Icosahedral symmetry analysis and fine structure - harter-weeks-jcp-1989 (Alt scan)

II) Icosahedral symmetry, vibrational eigenfrequencies, and normal modes of buckminsterfullerene - weeks-harter-jcp-1989 (Alt scan)

III) Half-integral angular momentum - harter-reimer-jcp-1991


Rotation-vibration scalar coupling zeta coefficients and spectroscopic band shapes of buckminsterfullerene - Weeks-Harter-CPL-1991 (Alt scan)

Nuclear spin weights and gas phase spectral structure of 12C60 and 13C60 buckminsterfullerene -Harter-Reimer-Cpl-1992 - (Alt1, Alt2 Erratum)

Gas Phase Level Structure of C60 Buckyball and Derivatives Exhibiting Broken Icosahedral Symmetry - reimer-diss-1996

Fullerene symmetry reduction and rotational level fine structure/ the Buckyball isotopomer 12C 13C59 - jcp-Reimer-Harter-1997 (HiRez)

Wave Node Dynamics and Revival Symmetry in Quantum Rotors - harter - jms - 2001

Molecular Symmetry and Dynamics - Ch32-Springer Handbooks of Atomic, Molecular, and Optical Physics - Harter-2006

Resonance and Revivals 

I) QUANTUM ROTOR AND INFINITE-WELL DYNAMICS - ISMSLi2012 (Talk) OSU knowledge Bank
II) Comparing Half-integer Spin and Integer Spin - Alva-ISMS-Ohio2013-R777 (Talks)
III) Quantum Resonant Beats and Revivals in the Morse Oscillators and Rotors - (2013-Li-Diss)

Resonance and Revivals in Quantum Rotors - Comparing Half-integer Spin and Integer Spin - Alva-ISMS-Ohio2013-R777 (Talk)

Molecular Eigensolution Symmetry Analysis and Fine Structure - IJMS-harter-mitchell-2013

Quantum Revivals of Morse Oscillators and Farey-Ford Geometry - Li-Harter-cpl-2013

QTCA Unit 10 Ch 30 - 2013

AMOP Ch 0 Space-Time Symmetry - 2019
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https://modphys.hosted.uark.edu/pdfs/Journal_Pdfs/Molecular_Eigensolution_Symmetry_Analysis_and_Fine_Structure_-_IJMS-harter-mitchell-2013.pdf
https://modphys.hosted.uark.edu/pdfs/Journal_Pdfs/Quantum%20Revivals%20of%20Morse%20Oscillators%20and%20Farey-Ford%20Geometry%20-%20Li%20-%20Harter%20-%20cpl%20-%202013%20-%201308.4470.pdf
https://modphys.hosted.uark.edu/pdfs/QTCA_Pdfs/QTCA_Text_2013/QTCA_Unit_10_Ch.30_2013.pdf
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H atom hyperfine-B-level crossing 
Unit 8 Ch. 24 p15

Intro spin ½ coupling 
Unit 8 Ch. 24 p3

Hyperf. theory Ch. 24 p48.         

Intro 2p3p coupling 
Unit 8 Ch. 24 p17.          
Intro LS-jj coupling 
Unit 8 Ch. 24 p22.          

CG coupling derived (start) 
Unit 8 Ch. 24 p39.          

CG coupling derived (formula) 
Unit 8 Ch. 24 p44.          

Hyperf. theory Ch. 24 p48.   
Deeper theory ends p53        

Lande’ g-factor 
Unit 8 Ch. 24 p26.         

Irrep Tensor building 
Unit 8 Ch. 25 p5.          

Irrep Tensor Tables 
Unit 8 Ch. 25 p12.          

Tensors Applied to d,f-levels.    
Unit 8 Ch. 25 p21.          

Wigner-Eckart tensor Theorem.    
Unit 8 Ch. 25 p17.          

Tensors Applied to high J levels.    
Unit 8 Ch. 25 p63.          

Intro 3-particle coupling.    
Unit 8 Ch. 25 p28.          

Intro 3,4-particle Young Tableaus   
GrpThLect29 p42.          

Young Tableau Magic Formulae   
GrpThLect29 p46-48.          

Int.J.Mol.Sci, 14, 714(2013),            QTCA Unit 8 Ch. 23-25, QTCA Unit 9 Ch. 26, PSDS Ch. 5, PSDS Ch. 7

(Int.J.Mol.Sci, 14, 714(2013) p.755-774 ,               QTCA Unit 7 Ch. 23-26 ),                         (PSDS - Ch. 5, 7 )

*In development - a web based A.M.O.P. oriented reference page, with thumbnail/previews, greater control over the information display,  
and eventually full on Apache-SOLR Index and search for nuanced, whole-site content/metadata level searching.
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Chaos_Classical_and_Quantum_-_2018-Cvitanovic-ChaosBook

Group Theory - PUP_Lucy_Day_-_Diagrammatic_notation_-_Ch4
Simplification_Rules_for_Birdtrack_Operators_-_Alcock-Zeilinger-Weigert-zeilinger-jmp-2017

Group Theory - Birdtracks_Lies_and_Exceptional_Groups_-_Cvitanovic-2011
Simplification_rules_for_birdtrack_operators-_jmp-alcock-zeilinger-2017

Birdtracks for SU(N) - 2017-Keppeler

Frank Rioux’s: UMA method of vibrational induction
Quantum_Mechanics_Group_Theory_and_C60_-_Frank_Rioux_-_Department_of_Chemistry_Saint_Johns_U

Symmetry_Analysis_for_H20-_H20GrpTheory-_Rioux
Quantum_Mechanics-Group_Theory_and_C60_-_JChemEd-Rioux-1994

Group_Theory_Problems-_Rioux-_SymmetryProblemsX
Comment_on_the_Vibrational_Analysis_for_C60_and_Other_Fullerenes_Rioux-RSP

Supplemental AMOP Techniques & Experiment
Many Correlation Tables are Molien Sequences - Klee (Draft 2016)

High-resolution_spectroscopy_and_global_analysis_of_CF4_rovibrational_bands_to_model_its_atmospheric_absorption-_carlos-Boudon-jqsrt-2017
Symmetry and Chirality - Continuous_Measures_-_Avnir

*
Special Topics & Colloquial References

r-process_nucleosynthesis_from_matter_ejected_in_binary_neutron_star_mergers-PhysRevD-Bovard-2017
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[2,1] tableau states lowered by L-=√2(E21+E32)  
           Top-(J,M) states           thru mid-level states 
ℓ=1 p=shell LS states combined to states of definite J  
           J=3/2 at L=0  (4S).              J=5/2 at L=2  (2D)  
           Clebsch-Gordon coupling; J=3/2 at L=2 (2D)  
                                                       J=3/2 at L=1 (2P)  
                                                       J=1/2 at L=1 (2P) 
Spin-orbit state assembly formula and Slater determinants 
           The simplest assembly  
ℓ=1 p=shell LSJ states transformed to Slater determinants from J=3/2 (4S) 
                                                                     Slater functions for  J=5/2 (2D) 
                                                                     Slater functions for  J=3/2 (2D) 
                                                                     Slater functions for  J=3/2 (2P) 
                                                                     Slater functions for  J=1/2 (2P) 
Application to spin-orbit and entanglement break-up scattering            
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AMOP  
reference links 
 on pages 2-4

[2,1] tableau states lowered by L-=√2(E21+E32)  
           Top-(J,M) states           thru mid-level states 
ℓ=1 p=shell LS states combined to states of definite J  
           J=3/2 at L=0  (4S).              J=5/2 at L=2  (2D)  
           Clebsch-Gordon coupling; J=3/2 at L=2 (2D)  
                                                       J=3/2 at L=1 (2P)  
                                                       J=1/2 at L=1 (2P) 
Spin-orbit state assembly formula and Slater determinants 
           The simplest assembly  
ℓ=1 p=shell LSJ states transformed to Slater determinants from J=3/2 (4S) 
                                                                     Slater functions for  J=5/2 (2D) 
                                                                     Slater functions for  J=3/2 (2D) 
                                                                     Slater functions for  J=3/2 (2P) 
Application to spin-orbit and entanglement break-up scattering            

4.23.18 class 25: Symmetry Principles for 
Advanced Atomic-Molecular-Optical-Physics 

William G. Harter - University of Arkansas

(S3)*(U(3))⊂U(6) models of p3 electronic spin-orbit states and couplings 
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↑↑
↓

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= 1
5

1 1
2

↑↓
↓ + 2

5
1 2
2

↑↑
↓ + 2

5
1 1
3

↑↑
↓

2D
J=5

2

3
2 = 1

5 dM=2
L=2 χ−1/2

1/2 + 4
5 dM=1

L=2χ1/2
1/2   Doublet 2D,  J= 5

2  MJ = 3
2  



4S
J=3
2

3
2 =

1
2
3

↑↑↑ , 4S
J=3
2

1
2 =

1
2
3

↑↑↓ , 4S
J=3
2

−1
2 =

1
2
3

↑↓↓ , 4S
J=3
2

−3
2 =

1
2
3

↓↓↓

ℓ=1 p=shell LS states combined to states of definite J

 = 4
5

1 1
2

↑↓
↓ − 1

5
1
2

1 2
2

↑↑
↓ + 1

2
1 1
3

↑↑
↓

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= 4
5

1 1
2

↑↓
↓ − 1

10
1 2
2

↑↑
↓ − 1

10
1 1
3

↑↑
↓

quartet  4S  J= 3
2 ,

 M J =
+3
2 , +1

2 , −1
2 , −3

2 . 

2D
J=5

2

5
2 = dM=2

L=2 χ1/2
1/2     Doublet 2D,  J= 5

2  MJ = 5
2  ,  

= 1 1
2

↑↑
↓

=3/2 at L=2

 2D
J=3

2

3
2 = 4

5 dM=2
L=2 χ−1/2

1/2 − 1
5 dM=1

L=2χ+1/2
1/2           Doublet 2D,  J= 3

2  MJ = 3
2  

MJ=3/2

 = 1
5

1 1
2

↑↓
↓ + 4

5
1
2

1 2
2

↑↑
↓ + 1

2
1 1
3

↑↑
↓

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= 1
5

1 1
2

↑↓
↓ + 2

5
1 2
2

↑↑
↓ + 2

5
1 1
3

↑↑
↓

2D
J=5

2

3
2 = 1

5 dM=2
L=2 χ−1/2

1/2 + 4
5 dM=1

L=2χ1/2
1/2   Doublet 2D,  J= 5

2  MJ = 3
2  



[2,1] tableau states lowered by L-=√2(E21+E32)  
           Top-(J,M) states           thru mid-level states 
ℓ=1 p=shell LS states combined to states of definite J  
           J=3/2 at L=0  (4S).              J=5/2 at L=2  (2D)  
           Clebsch-Gordon coupling; J=3/2 at L=2 (2D)  
                                                       J=3/2 at L=1 (2P)  
                                                       J=1/2 at L=1 (2P) 
Spin-orbit state assembly formula and Slater determinants 
           The simplest assembly  
ℓ=1 p=shell LSJ states transformed to Slater determinants from J=3/2 (4S) 
                                                                     Slater functions for  J=5/2 (2D) 
                                                                     Slater functions for  J=3/2 (2D) 
                                                                     Slater functions for  J=3/2 (2P) 
Application to spin-orbit and entanglement break-up scattering            

AMOP  
reference links 
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 2P
J=3

2

3
2 = pM=1

L=1 χ+1/2
1/2           Doublet 2P,  J= 3

2  MJ = 3
2

ℓ=1 p=shell LS states combined to states of definite J =3/2 at L=1
MJ=3/2



  = 1
2

1 2
2

↑↑
↓ − 1

2
1 1
3

↑↑
↓

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

ℓ=1 p=shell LS states combined to states of definite J =3/2 at L=1
MJ=3/2 2P

J=3
2

3
2 = pM=1

L=1 χ+1/2
1/2           Doublet 2P,  J= 3

2  MJ = 3
2



  = 1
2

1 2
2

↑↑
↓ − 1

2
1 1
3

↑↑
↓

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 2P
J=3

2

1
2 = 1

3 pM=1
L=1 χ−1/2

1/2 + 2
3 pM=0

L=1 χ+1/2
1/2           Doublet 2P,  J= 3

2  MJ = 1
2

ℓ=1 p=shell LS states combined to states of definite J =3/2 at L=1
MJ=1/2 2P

J=3
2

3
2 = pM=1

L=1 χ+1/2
1/2           Doublet 2P,  J= 3

2  MJ = 3
2



  = 1
3

1
2

1 2
2

↑↓
↓ − 1

2
1 1
3

↑↓
↓

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+ 2
3

−1
2

1 2
3

↑↑
↓ + 3

2
1 3
2

↑↑
↓

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 

=3/2 at L=1
MJ=1/2

ℓ=1 p=shell LS states combined to states of definite J

 2P
J=3

2

1
2 = 1

3 pM=1
L=1 χ−1/2

1/2 + 2
3 pM=0

L=1 χ+1/2
1/2           Doublet 2P,  J= 3

2  MJ = 1
2

 2P
J=3

2

3
2 = pM=1

L=1 χ+1/2
1/2           Doublet 2P,  J= 3

2  MJ = 3
2

  = 1
2

1 2
2

↑↑
↓ − 1

2
1 1
3

↑↑
↓

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥



  = 1
3

1
2

1 2
2

↑↓
↓ − 1

2
1 1
3

↑↓
↓

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+ 2
3

−1
2

1 2
3

↑↑
↓ + 3

2
1 3
2

↑↑
↓

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

          = 1
6

1 2
2

↑↓
↓ − 1

6
1 1
3

↑↓
↓           − 1

6
1 2
3

↑↑
↓ + 1

2

1 3
2

↑↑
↓

ℓ=1 p=shell LS states combined to states of definite J =3/2 at L=1
MJ=1/2

  = 1
3

1
2

1 2
2

↑↓
↓ − 1

2
1 1
3

↑↓
↓

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+ 2
3

−1
2

1 2
3

↑↑
↓ + 3

2
1 3
2

↑↑
↓

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 

 2P
J=3

2

1
2 = 1

3 pM=1
L=1 χ−1/2

1/2 + 2
3 pM=0

L=1 χ+1/2
1/2           Doublet 2P,  J= 3

2  MJ = 1
2

 2P
J=3

2

3
2 = pM=1

L=1 χ+1/2
1/2           Doublet 2P,  J= 3

2  MJ = 3
2

  = 1
2

1 2
2

↑↑
↓ − 1

2
1 1
3

↑↑
↓

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥



[2,1] tableau states lowered by L-=√2(E21+E32)  
           Top-(J,M) states           thru mid-level states 
ℓ=1 p=shell LS states combined to states of definite J  
           J=3/2 at L=0  (4S).              J=5/2 at L=2  (2D)  
           Clebsch-Gordon coupling; J=3/2 at L=2 (2D)  
                                                       J=3/2 at L=1 (2P)  
                                                       J=1/2 at L=1 (2P) 
Spin-orbit state assembly formula and Slater determinants 
           The simplest assembly  
ℓ=1 p=shell LSJ states transformed to Slater determinants from J=3/2 (4S) 
                                                                     Slater functions for  J=5/2 (2D) 
                                                                     Slater functions for  J=3/2 (2D) 
                                                                     Slater functions for  J=3/2 (2P) 
Application to spin-orbit and entanglement break-up scattering            
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  = 1
2

1 2
2

↑↑
↓ − 1

2
1 1
3

↑↑
↓

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

  = 1
3

1
2

1 2
2

↑↓
↓ − 1

2
1 1
3

↑↓
↓

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+ 2
3

−1
2

1 2
3

↑↑
↓ + 3

2
1 3
2

↑↑
↓

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

          = 1
6

1 2
2

↑↓
↓ − 1

6
1 1
3

↑↓
↓           − 1

6
1 2
3

↑↑
↓ + 1

2

1 3
2

↑↑
↓

 2P
J=1

2

1
2 = 2

3 pM=1
L=1 χ−1/2

1/2 − 1
3 pM=0

L=1 χ+1/2
1/2           Doublet 2P,  J= 1

2  MJ = 1
2

=1/2 at L=1
MJ=1/2

ℓ=1 p=shell LS states combined to states of definite J

 2P
J=3

2

1
2 = 1

3 pM=1
L=1 χ−1/2

1/2 + 2
3 pM=0

L=1 χ+1/2
1/2           Doublet 2P,  J= 3

2  MJ = 1
2

 2P
J=3

2

3
2 = pM=1

L=1 χ+1/2
1/2           Doublet 2P,  J= 3

2  MJ = 3
2



  = 1
2

1 2
2

↑↑
↓ − 1

2
1 1
3

↑↑
↓

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

  = 1
3

1
2

1 2
2

↑↓
↓ − 1

2
1 1
3

↑↓
↓

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+ 2
3

−1
2

1 2
3

↑↑
↓ + 3

2
1 3
2

↑↑
↓

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

          = 1
6

1 2
2

↑↓
↓ − 1

6
1 1
3

↑↓
↓           − 1

6
1 2
3

↑↑
↓ + 1

2

1 3
2

↑↑
↓

ℓ=1 p=shell LS states combined to states of definite J =1/2 at L=1
MJ=1/2

  = 1
2

1 2
2

↑↑
↓ − 1

2
1 1
3

↑↑
↓

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 2P
J=1

2

1
2 = 2

3 pM=1
L=1 χ−1/2

1/2 − 1
3 pM=0

L=1 χ+1/2
1/2           Doublet 2P,  J= 1

2  MJ = 1
2

 2P
J=3

2

1
2 = 1

3 pM=1
L=1 χ−1/2

1/2 + 2
3 pM=0

L=1 χ+1/2
1/2           Doublet 2P,  J= 3

2  MJ = 1
2

 2P
J=3

2

3
2 = pM=1

L=1 χ+1/2
1/2           Doublet 2P,  J= 3

2  MJ = 3
2

  = 2
3

1
2

1 2
2

↑↓
↓ − 1

2
1 1
3

↑↓
↓

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

− 1
3

−1
2

1 2
3

↑↑
↓ + 3

2
1 3
2

↑↑
↓

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 



  = 1
2

1 2
2

↑↑
↓ − 1

2
1 1
3

↑↑
↓

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

  = 1
3

1
2

1 2
2

↑↓
↓ − 1

2
1 1
3

↑↓
↓

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+ 2
3

−1
2

1 2
3

↑↑
↓ + 3

2
1 3
2

↑↑
↓

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

          = 1
6

1 2
2

↑↓
↓ − 1

6
1 1
3

↑↓
↓           − 1

6
1 2
3

↑↑
↓ + 1

2

1 3
2

↑↑
↓

ℓ=1 p=shell LS states combined to states of definite J =1/2 at L=1
MJ=1/2

  = 1
2

1 2
2

↑↑
↓ − 1

2
1 1
3

↑↑
↓

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 2P
J=1

2

1
2 = 2

3 pM=1
L=1 χ−1/2

1/2 − 1
3 pM=0

L=1 χ+1/2
1/2           Doublet 2P,  J= 1

2  MJ = 1
2

 2P
J=3

2

1
2 = 1

3 pM=1
L=1 χ−1/2

1/2 + 2
3 pM=0

L=1 χ+1/2
1/2           Doublet 2P,  J= 3

2  MJ = 1
2

 2P
J=3

2

3
2 = pM=1

L=1 χ+1/2
1/2           Doublet 2P,  J= 3

2  MJ = 3
2

  = 2
3

1
2

1 2
2

↑↓
↓ − 1

2
1 1
3

↑↓
↓

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

− 1
3

−1
2

1 2
3

↑↑
↓ + 3

2
1 3
2

↑↑
↓

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

         = 1
3

1 2
2

↑↓
↓ − 1

3
1 1
3

↑↓
↓           + 1

12
1 2
3

↑↑
↓ − 1

2
1 3
2

↑↑
↓



[2,1] tableau states lowered by L-=√2(E21+E32)  
           Top-(J,M) states           thru mid-level states 
ℓ=1 p=shell LS states combined to states of definite J  
           J=3/2 at L=0  (4S).              J=5/2 at L=2  (2D)  
           Clebsch-Gordon coupling; J=3/2 at L=2 (2D)  
                                                       J=3/2 at L=1 (2P)  
                                                       J=1/2 at L=1 (2P) 
Spin-orbit state assembly formula and Slater determinants 
           The simplest assembly  
ℓ=1 p=shell LSJ states transformed to Slater determinants from J=3/2 (4S) 
                                                                     Slater functions for  J=5/2 (2D) 
                                                                     Slater functions for  J=3/2 (2D) 
                                                                     Slater functions for  J=3/2 (2P) 
Application to spin-orbit and entanglement break-up scattering            
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Introducing atomic spin-orbit state assembly formula and Slater determinants

Slater 
determinants 



The simplest assembly:
1 2 ↑
        ↓

1 ↑ ↓
2

1↑
2↓

1
2

1
2

1↑
2↓

− 1
2

1
2

Introducing atomic spin-orbit state assembly formula and Slater determinants

Slater 
determinants 

Slater 
determinants 



[2,1] tableau states lowered by L-=√2(E21+E32)  
           Top-(J,M) states           thru mid-level states 
ℓ=1 p=shell LS states combined to states of definite J  
           J=3/2 at L=0  (4S).              J=5/2 at L=2  (2D)  
           Clebsch-Gordon coupling; J=3/2 at L=2 (2D)  
                                                       J=3/2 at L=1 (2P)  
                                                       J=1/2 at L=1 (2P) 
Spin-orbit state assembly formula and Slater determinants 
           The simplest assembly (Detailed)  
ℓ=1 p=shell LSJ states transformed to Slater determinants from J=3/2 (4S) 
                                                                     Slater functions for  J=5/2 (2D) 
                                                                     Slater functions for  J=3/2 (2D) 
                                                                     Slater functions for  J=3/2 (2P) 
Application to spin-orbit and entanglement break-up scattering            
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The simplest assembly:
1 2 ↑
        ↓

1 ↑ ↓
2

1↑
2↓

1
2

1
2

1↓
2↑

− 1
2

1
2

Introducing atomic spin-orbit state assembly formula and Slater determinants

Slater determinant state key: 
a=1↑,b=1↓,c=2↑,d=2↓ 

1
2
ad − da + cb− bc( ) 1

2
ad − da − cb+ bc( )

= ad − da
2

1
2
1
2
+ 1
2
1
2
= 1
2

1
2
1
2
+ 1
2
1
2
= 1
2

= bc − cb
2

- 1
2
1
2
- 1
2
1
2
= - 1

2
1
2
1
2
+ 1
2
1
2
= 1
2

1↑
2↓
= d
a

= c
b1↓

2↑

                1 2        ↑
                              ↓   

1,2 + 2,1

2

⎛

⎝
⎜

⎞

⎠
⎟

↑,↓ − ↓,↑

2

⎛

⎝
⎜

⎞

⎠
⎟

1
2

1↑,2↓ − 2↓,1↑ + 2↑,1↓ − 1↓,2↑( )
1
2

    ad   −   da    +     cb    −   bc     ( )

                1        ↑ ↓
                2               

1,2 − 2,1

2

⎛

⎝
⎜

⎞

⎠
⎟

↑,↓ + ↓,↑

2

⎛

⎝
⎜

⎞

⎠
⎟

1
2

1↑,2↓ − 2↓,1↑ − 2↑,1↓ + 1↓,2↑( )
1
2

    ad   −   da    −     cb    +   bc     ( )
                1        ↑ ↓
                2               

                1 2        ↑
                              ↓   



The simplest assembly:
1 2 ↑
        ↓

1 ↑ ↓
2

1↑
2↓

1
2

1
2

1↓
2↑

− 1
2

1
2

Introducing atomic spin-orbit state assembly formula and Slater determinants

Slater determinant state key: 
a=1↑,b=1↓,c=2↑,d=2↓ 

1
2
ad − da + cb− bc( ) 1

2
ad − da − cb+ bc( )

= ad − da
2

1
2
1
2
+ 1
2
1
2
= 1
2

1
2
1
2
+ 1
2
1
2
= 1
2

= bc − cb
2

- 1
2
1
2
- 1
2
1
2
= - 1

2
1
2
1
2
+ 1
2
1
2
= 1
2

1↑
2↓
= d
a

= c
b1↓

2↑

                1 2        ↑
                              ↓   

1,2 + 2,1

2

⎛

⎝
⎜

⎞

⎠
⎟

↑,↓ − ↓,↑

2

⎛

⎝
⎜

⎞

⎠
⎟

1
2

1↑,2↓ − 2↓,1↑ + 2↑,1↓ − 1↓,2↑( )
1
2

    ad   −   da    +     cb    −   bc     ( )

                1        ↑ ↓
                2               

1,2 − 2,1

2

⎛

⎝
⎜

⎞

⎠
⎟

↑,↓ + ↓,↑

2

⎛

⎝
⎜

⎞

⎠
⎟

1
2

1↑,2↓ − 2↓,1↑ − 2↑,1↓ + 1↓,2↑( )
1
2

    ad   −   da    −     cb    +   bc     ( )
                1        ↑ ↓
                2               

                1 2        ↑
                              ↓   



The simplest assembly:
1 2 ↑
        ↓

1 ↑ ↓
2

1↑
2↓

1
2

1
2

1↓
2↑

− 1
2

1
2

Introducing atomic spin-orbit state assembly formula and Slater determinants

Slater determinant state key: 
a=1↑,b=1↓,c=2↑,d=2↓ 

1
2
ad − da + cb− bc( ) 1

2
ad − da − cb+ bc( )

= ad − da
2

1
2
1
2
+ 1
2
1
2
= 1
2

1
2
1
2
+ 1
2
1
2
= 1
2

= bc − cb
2

- 1
2
1
2
- 1
2
1
2
= - 1

2
1
2
1
2
+ 1
2
1
2
= 1
2

1↑
2↓
= d
a

= c
b1↓

2↑

                1 2        ↑
                              ↓   

1,2 + 2,1

2

⎛

⎝
⎜

⎞

⎠
⎟

↑,↓ − ↓,↑

2

⎛

⎝
⎜

⎞

⎠
⎟

1
2

1↑,2↓ − 2↓,1↑ + 2↑,1↓ − 1↓,2↑( )
1
2

    ad   −   da    +     cb    −   bc     ( )

                1        ↑ ↓
                2               

1,2 − 2,1

2

⎛

⎝
⎜

⎞

⎠
⎟

↑,↓ + ↓,↑

2

⎛

⎝
⎜

⎞

⎠
⎟
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           Top-(J,M) states           thru mid-level states 
ℓ=1 p=shell LS states combined to states of definite J  
           J=3/2 at L=0  (4S).              J=5/2 at L=2  (2D)  
           Clebsch-Gordon coupling; J=3/2 at L=2 (2D)  
                                                       J=3/2 at L=1 (2P)  
                                                       J=1/2 at L=1 (2P) 
Spin-orbit state assembly formula and Slater determinants 
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                                                                     Slater functions for  J=5/2 (2D) 
                                                                     Slater functions for  J=3/2 (2D) 
                                                                     Slater functions for  J=3/2 (2P) 
                                                                     Slater functions for  J=1/2 (2P) 
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5 dM=1

L=2χ1/2
1/2   Doublet 2D,  J= 5

2  MJ = 3
2  

=5/2 at L=2
MJ=3/2

ℓ=1 p=shell LSJ states transformed to Slater determinants from J

4S
J=3
2

3
2 =

a
c
e

, 4S
J=3
2

1
2 =

a
c
f

, 4S
J=3
2

−1
2 =

a
d
f

, 4S
J=3
2

−3
2 =

b
d
f

      a       
= b  
       c



 = 1
5

1 1
2

↑↓
↓ + 4

5
1
2

1 2
2

↑↑
↓ + 1

2
1 1
3

↑↑
↓

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= 1
5

1 1
2

↑↓
↓ + 2

5
1 2
2

↑↑
↓ + 2

5
1 1
3

↑↑
↓

quartet  4S  J= 3
2 ,

 M J =
+3
2 , +1

2 , −1
2 , −3

2 . 

2D
J=5

2

5
2 = dM=2

L=2 χ1/2
1/2     Doublet 2D,  J= 5

2  MJ = 5
2  ,  

= 1 1
2

↑↑
↓

2D
J=5

2

3
2 = 1

5 dM=2
L=2 χ−1/2

1/2 + 4
5 dM=1

L=2χ1/2
1/2   Doublet 2D,  J= 5

2  MJ = 3
2  

 2D
J=3

2

3
2 = 4

5 dM=2
L=2 χ−1/2

1/2 − 1
5 dM=1

L=2χ+1/2
1/2           Doublet 2D,  J= 3

2  MJ = 3
2  

=3/2 at L=2
MJ=3/2

ℓ=1 p=shell LSJ states transformed to Slater determinants from J

4S
J=3
2

3
2 =

a
c
e

, 4S
J=3
2

1
2 =

a
c
f

, 4S
J=3
2

−1
2 =

a
d
f

, 4S
J=3
2

−3
2 =

b
d
f



 = 1
5

1 1
2

↑↓
↓ + 4

5
1
2

1 2
2

↑↑
↓ + 1

2
1 1
3

↑↑
↓

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= 1
5

1 1
2

↑↓
↓ + 2

5
1 2
2

↑↑
↓ + 2

5
1 1
3

↑↑
↓

 = 4
5

1 1
2

↑↓
↓ − 1

5
1
2

1 2
2

↑↑
↓ + 1

2
1 1
3

↑↑
↓

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= 4
5

1 1
2

↑↓
↓ − 1

10
1 2
2

↑↑
↓ − 1

10
1 1
3

↑↑
↓

quartet  4S  J= 3
2 ,

 M J =
+3
2 , +1

2 , −1
2 , −3

2 . 

2D
J=5

2

5
2 = dM=2

L=2 χ1/2
1/2     Doublet 2D,  J= 5

2  MJ = 5
2  ,  

= 1 1
2

↑↑
↓

2D
J=5

2

3
2 = 1

5 dM=2
L=2 χ−1/2

1/2 + 4
5 dM=1

L=2χ1/2
1/2   Doublet 2D,  J= 5

2  MJ = 3
2  

 2D
J=3

2

3
2 = 4

5 dM=2
L=2 χ−1/2

1/2 − 1
5 dM=1

L=2χ+1/2
1/2           Doublet 2D,  J= 3

2  MJ = 3
2  

=3/2 at L=2
MJ=3/2

ℓ=1 p=shell LSJ states transformed to Slater determinants from J

4S
J=3
2

3
2 =

a
c
e

, 4S
J=3
2

1
2 =

a
c
f

, 4S
J=3
2

−1
2 =

a
d
f

, 4S
J=3
2

−3
2 =

b
d
f



[2,1] tableau states lowered by L-=√2(E21+E32)  
           Top-(J,M) states           thru mid-level states 
ℓ=1 p=shell LS states combined to states of definite J  
           J=3/2 at L=0  (4S).              J=5/2 at L=2  (2D)  
           Clebsch-Gordon coupling; J=3/2 at L=2 (2D)  
                                                       J=3/2 at L=1 (2P)  
                                                       J=1/2 at L=1 (2P) 
Spin-orbit state assembly formula and Slater determinants 
           The simplest assembly  
ℓ=1 p=shell LSJ states transformed to Slater determinants from J=3/2 (4S) 
                                                                     Slater functions for  J=5/2 (2D) 
                                                                     Slater functions for  J=3/2 (2D) 
                                                                     Slater functions for  J=3/2 (2P) 
                                                                     Slater functions for  J=1/2 (2P) 
Application to spin-orbit and entanglement break-up scattering            
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(S3)*(U(3))⊂U(6) models of p3 electronic spin-orbit states and couplings 



 2P
J=3

2

3
2 = pM=1

L=1 χ+1/2
1/2           Doublet 2P,  J= 3

2  MJ = 3
2

=3/2 at L=1
MJ=3/2

ℓ=1 p=shell LSJ states transformed to Slater determinants from J



 2P
J=3

2

3
2 = pM=1

L=1 χ+1/2
1/2           Doublet 2P,  J= 3

2  MJ = 3
2

  = 1
2

1 2
2

↑↑
↓ − 1

2
1 1
3

↑↑
↓

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=3/2 at L=1
MJ=3/2

ℓ=1 p=shell LSJ states transformed to Slater determinants from J



 2P
J=3

2

3
2 = pM=1

L=1 χ+1/2
1/2           Doublet 2P,  J= 3

2  MJ = 3
2

  = 1
2

1 2
2

↑↑
↓ − 1

2
1 1
3

↑↑
↓

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 2P
J=3

2

1
2 = 1

3 pM=1
L=1 χ−1/2

1/2 + 2
3 pM=0

L=1 χ+1/2
1/2           Doublet 2P,  J= 3

2  MJ = 1
2

=3/2 at L=1
MJ=1/2

ℓ=1 p=shell LSJ states transformed to Slater determinants from J



 2P
J=3

2

3
2 = pM=1

L=1 χ+1/2
1/2           Doublet 2P,  J= 3

2  MJ = 3
2

  = 1
2

1 2
2

↑↑
↓ − 1

2
1 1
3

↑↑
↓

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 2P
J=3

2

1
2 = 1

3 pM=1
L=1 χ−1/2

1/2 + 2
3 pM=0

L=1 χ+1/2
1/2           Doublet 2P,  J= 3

2  MJ = 1
2

  = 1
3

1
2

1 2
2

↑↓
↓ − 1

2
1 1
3

↑↓
↓

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+ 2
3

−1
2

1 2
3

↑↑
↓ + 3

2
1 3
2

↑↑
↓

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 

=3/2 at L=1
MJ=1/2

ℓ=1 p=shell LSJ states transformed to Slater determinants from J



 2P
J=3

2

3
2 = pM=1

L=1 χ+1/2
1/2           Doublet 2P,  J= 3

2  MJ = 3
2

  = 1
2

1 2
2

↑↑
↓ − 1

2
1 1
3

↑↑
↓

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 2P
J=3

2

1
2 = 1

3 pM=1
L=1 χ−1/2

1/2 + 2
3 pM=0

L=1 χ+1/2
1/2           Doublet 2P,  J= 3

2  MJ = 1
2

  = 1
3

1
2

1 2
2

↑↓
↓ − 1

2
1 1
3

↑↓
↓

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+ 2
3

−1
2

1 2
3

↑↑
↓ + 3

2
1 3
2

↑↑
↓

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

          = 1
6

1 2
2

↑↓
↓ − 1

6
1 1
3

↑↓
↓           − 1

6
1 2
3

↑↑
↓ + 1

2

1 3
2

↑↑
↓

=3/2 at L=1
MJ=1/2

ℓ=1 p=shell LSJ states transformed to Slater determinants from J



[2,1] tableau states lowered by L-=√2(E21+E32)  
           Top-(J,M) states           thru mid-level states 
ℓ=1 p=shell LS states combined to states of definite J  
           J=3/2 at L=0  (4S).              J=5/2 at L=2  (2D)  
           Clebsch-Gordon coupling; J=3/2 at L=2 (2D)  
                                                       J=3/2 at L=1 (2P)  
                                                       J=1/2 at L=1 (2P) 
Spin-orbit state assembly formula and Slater determinants 
           The simplest assembly  
ℓ=1 p=shell LSJ states transformed to Slater determinants from J=3/2 (4S) 
                                                                     Slater functions for  J=5/2 (2D) 
                                                                     Slater functions for  J=3/2 (2D) 
                                                                     Slater functions for  J=3/2 (2P) 
                                                                     Slater functions for  J=1/2 (2P) 
Application to spin-orbit and entanglement break-up scattering            

AMOP  
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(S3)*(U(3))⊂U(6) models of p3 electronic spin-orbit states and couplings 



 2P
J=3

2

3
2 = pM=1

L=1 χ+1/2
1/2           Doublet 2P,  J= 3

2  MJ = 3
2

  = 1
2

1 2
2

↑↑
↓ − 1

2
1 1
3

↑↑
↓

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 2P
J=3

2

1
2 = 1

3 pM=1
L=1 χ−1/2

1/2 + 2
3 pM=0

L=1 χ+1/2
1/2           Doublet 2P,  J= 3

2  MJ = 1
2

  = 1
3

1
2

1 2
2

↑↓
↓ − 1

2
1 1
3

↑↓
↓

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+ 2
3

−1
2

1 2
3

↑↑
↓ + 3

2
1 3
2

↑↑
↓

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

          = 1
6

1 2
2

↑↓
↓ − 1

6
1 1
3

↑↓
↓           − 1

6
1 2
3

↑↑
↓ + 1

2

1 3
2

↑↑
↓

 2P
J=1

2

1
2 = 2

3 pM=1
L=1 χ−1/2

1/2 − 1
3 pM=0

L=1 χ+1/2
1/2           Doublet 2P,  J= 1

2  MJ = 1
2

=1/2 at L=1
MJ=1/2

ℓ=1 p=shell LSJ states transformed to Slater determinants from J



 2P
J=3

2

3
2 = pM=1

L=1 χ+1/2
1/2           Doublet 2P,  J= 3

2  MJ = 3
2

  = 1
2

1 2
2

↑↑
↓ − 1

2
1 1
3

↑↑
↓

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 2P
J=3

2

1
2 = 1

3 pM=1
L=1 χ−1/2

1/2 + 2
3 pM=0

L=1 χ+1/2
1/2           Doublet 2P,  J= 3

2  MJ = 1
2

  = 1
3

1
2

1 2
2

↑↓
↓ − 1

2
1 1
3

↑↓
↓

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+ 2
3

−1
2

1 2
3

↑↑
↓ + 3

2
1 3
2

↑↑
↓

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

          = 1
6

1 2
2

↑↓
↓ − 1

6
1 1
3

↑↓
↓           − 1

6
1 2
3

↑↑
↓ + 1

2

1 3
2

↑↑
↓

 2P
J=1

2

1
2 = 2

3 pM=1
L=1 χ−1/2

1/2 − 1
3 pM=0

L=1 χ+1/2
1/2           Doublet 2P,  J= 1

2  MJ = 1
2

  = 2
3

1
2

1 2
2

↑↓
↓ − 1

2
1 1
3

↑↓
↓

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

− 1
3

−1
2

1 2
3

↑↑
↓ + 3

2
1 3
2

↑↑
↓

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

    

=1/2 at L=1
MJ=1/2

ℓ=1 p=shell LSJ states transformed to Slater determinants from J



 2P
J=3

2

3
2 = pM=1

L=1 χ+1/2
1/2           Doublet 2P,  J= 3

2  MJ = 3
2

  = 1
2

1 2
2

↑↑
↓ − 1

2
1 1
3

↑↑
↓

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 2P
J=3

2

1
2 = 1

3 pM=1
L=1 χ−1/2

1/2 + 2
3 pM=0

L=1 χ+1/2
1/2           Doublet 2P,  J= 3

2  MJ = 1
2

  = 1
3

1
2

1 2
2

↑↓
↓ − 1

2
1 1
3

↑↓
↓

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+ 2
3

−1
2

1 2
3

↑↑
↓ + 3

2
1 3
2

↑↑
↓

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

          = 1
6

1 2
2

↑↓
↓ − 1

6
1 1
3

↑↓
↓           − 1

6
1 2
3

↑↑
↓ + 1

2

1 3
2

↑↑
↓

 2P
J=1

2

1
2 = 2

3 pM=1
L=1 χ−1/2

1/2 − 1
3 pM=0

L=1 χ+1/2
1/2           Doublet 2P,  J= 1

2  MJ = 1
2

  = 2
3

1
2

1 2
2

↑↓
↓ − 1

2
1 1
3

↑↓
↓

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

− 1
3

−1
2

1 2
3

↑↑
↓ + 3

2
1 3
2

↑↑
↓

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

         = 1
3

1 2
2

↑↓
↓ − 1

3
1 1
3

↑↓
↓           + 1

12
1 2
3

↑↑
↓ − 1

2
1 3
2

↑↑
↓

=1/2 at L=1
MJ=1/2

ℓ=1 p=shell LSJ states transformed to Slater determinants from J





Doublet  2D,  M= −2:

L=2,   S= 1
2

M=− 2,   µ= 1
2

2 3
3

↑↑
↓ ,

L=2,   S= 1
2

M= −2,   µ= −1
2

2 3
3

↑↓
↓ .

Doublet  2D,  M=0:

L=2,   S= 1
2

M= 0,   µ= 1
2

3
2

1 2
3

↑↑
↓ ,

L=2,   S= 1
2

M=0,   µ= −1
2

+ 3
2

1 2
3

↑↓
↓

                      + 1
2

1 3
2

↑↑
↓ ,                      + 1

2
1 3
2

↑↓
↓ ,

Doublet  2P,  M=0:

L= 1,   S= 1
2

M= 0,   µ= 1
2

−1
2

1 2
3

↑↑
↓ ,

L=1,   S= 1
2

M=0,   µ= −1
2

− 1
2

1 2
3

↑↓
↓

                 + 3
2

1 1
3

↑↑
↓ ,                 + 3

2
1 3
2

↑↓
↓ ,

Doublet  2D,  M=1:

L=2,   S= 1
2

M= 1,   µ= 1
2

1

2
1 2
2

↑↑
↓ ,

L=2,   S= 1
2

M=1,   µ= −1
2

+ 1

2
1 2
2

↑↓
↓

                   + 1

2
1 1
3

↑↑
↓ ,                   + 1

2
1 1
3

↑↓
↓ ,

Doublet  2P,  M=1:

L= 1,   S= 1
2

M= 1,   µ= 1
2

1

2
1 2
2

↑↑
↓ ,

L=1,   S= 1
2

M=1,   µ= −1
2

+ 1

2
1 2
2

↑↓
↓

                   − 1

2
1 1
3

↑↑
↓ ,                   − 1

2
1 1
3

↑↓
↓ ,

• • • 
• • • 

• • • 
• • • (M=-1 row)



Marrying spin s=½ and orbital ℓ=1 together: U(3)×U(2)

A state satisfying Pauli-antisymmetry (Exclusion principle) can be simply represented by  
putting an orbital tableaus next to a conjugate spin tableaus. (Rows flipped with columns)

1 1
2
3

↑↑↑
↓ ,

1 1
2
3

↑↑↓
↓ ,

1 1
2
3

↑↓↓
↓

U(3): mℓ=+1: | 1 〉, mℓ=0: | 2 〉, mℓ=-1: | 3 〉 

U(2): ms=+½: | ↑ 〉, ms=-½: | ↓ 〉 

mL=+1 
mS=+1 

mL=+1 
mS=+0 

mL=+1 
mS=-1 

3P spin-triplet



Marrying spin s=½ and orbital ℓ=1 together: U(3)×U(2)

1 1
2
3

↑↑↑
↓ ,

1 1
2
3

↑↑↓
↓ ,

1 1
2
3

↑↓↓
↓

U(3): mℓ=+1: | 1 〉, mℓ=0: | 2 〉, mℓ=-1: | 3 〉 

U(2): ms=+½: | ↑ 〉, ms=-½: | ↓ 〉 

mL=+1 
mS=+1 

mL=+1 
mS=+0 

mL=+1 
mS=-1 

1 1
2 2

↑↑
↓↓ , 1 1

2 3
↑↑
↓↓ , 1 1

3 3
↑↑
↓↓ , 1 2

2 3
↑↑
↓↓ , 1 2

3 3
↑↑
↓↓ , 2 2

3 3
↑↑
↓↓ ,

mL=+2 
mS=+0 

mL=+1 
mS=+0 

mL=+0 
mS=+0 

mL=+0 
mS=+0 

mL=-1 
mS=+0 

mL=-2 
mS=+0 

3P spin-triplet

1D spin-singlet 
plus 

1S spin-singlet

A state satisfying Pauli-antisymmetry (Exclusion principle) can be simply represented by  
putting an orbital tableaus next to a conjugate spin tableaus. (Rows flipped with columns)



Marrying spin s=½ and orbital ℓ=1 together: U(3)×U(2)

1 1
2
3

↑↑↑
↓ ,

1 1
2
3

↑↑↓
↓ ,

1 1
2
3

↑↓↓
↓

U(3): mℓ=+1: | 1 〉, mℓ=0: | 2 〉, mℓ=-1: | 3 〉 

U(2): ms=+½: | ↑ 〉, ms=-½: | ↓ 〉 

mL=+1 
mS=+1 

mL=+1 
mS=+0 

mL=+1 
mS=-1 

1 1
2 2

↑↑
↓↓ , 1 1

2 3
↑↑
↓↓ , 1 1

3 3
↑↑
↓↓ , 1 2

2 3
↑↑
↓↓ , 1 2

3 3
↑↑
↓↓ , 2 2

3 3
↑↑
↓↓ ,

mL=+2 
mS=+0 

mL=+1 
mS=+0 

mL=+0 
mS=+0 

mL=+0 
mS=+0 

mL=-1 
mS=+0 

mL=-2 
mS=+0 

3P spin-triplet

1D spin-singlet 
plus 

1S spin-singlet

These involve fairly complicated Sn-coupled U(3)×U(2) combinations that will be developed later. 

A state satisfying Pauli-antisymmetry (Exclusion principle) can be simply represented by  
putting an orbital tableaus next to a conjugate spin tableaus. (Rows flipped with columns)

quartet  4S:
L=0
M=0

S= 3
2

µ= 3
2

 
1
2
3

↑↑↑ ,
L=0
M=0

S= 3
2

µ= 1
2

 
1
2
3

↑↑↓
L=0
M=0

S= 3
2

µ= −1
2

 
1
2
3

↑↓↓ ,
L=0
M=0

S= 3
2

µ= −3
2

 
1
2
3

↓↓↓ .



AMOP  
reference links 
 on pages 2-4

      

4.16.18 class 23: Symmetry Principles for 
Advanced Atomic-Molecular-Optical-Physics 

William G. Harter - University of Arkansas

(Sn)*(U(m)) shell model of electrostatic quadrupole-quadrupole-e interactions 
Marrying spin s=½ and orbital ℓ=1 together: U(3)×U(2) 
          The ℓ=1 p=shell in a nutshell 
U(6)⊃U(3)×U(2) approach: Coupling spin-orbit (s=½, ℓ=1) tableaus 
Introducing atomic spin-orbit state assembly formula 
           Slater determinants 
           p-shell Spin-orbit calculations (not finished) 
Clebsch Gordan coefficients. (Rev. Mod. Phys. annual gift) 
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Doublet  2D,  M=2:

L=2,   S= 1
2

M=2,   µ= 1
2

1 1
2

↑↑
↓ ,

L=2,   S=− 1
2

M=2,   µ= 1
2

1 1
2

↑↓
↓ .

Doublet  2D,  M=1:

L=2,   S= 1
2

M= 1,   µ= 1
2

1

2
1 2
2

↑↑
↓ ,

L=2,   S= 1
2

M=1,   µ= −1
2

+ 1

2
1 2
2

↑↓
↓

                   + 1

2
1 1
3

↑↑
↓ ,                   + 1

2
1 1
3

↑↓
↓ ,

Doublet  2P,  M=1:

L= 1,   S= 1
2

M= 1,   µ= 1
2

1

2
1 2
2

↑↑
↓ ,

L=1,   S= 1
2

M=1,   µ= −1
2

+ 1

2
1 2
2

↑↓
↓

                   − 1

2
1 1
3

↑↑
↓ ,                   − 1

2
1 1
3

↑↓
↓ ,

Doublet  2D,  M=0:

L=2,   S= 1
2

M= 0,   µ= 1
2

3
2

1 2
3

↑↑
↓ ,

L=2,   S= 1
2

M=0,   µ= −1
2

+ 3
2

1 2
3

↑↓
↓

                      + 1
2

1 3
2

↑↑
↓ ,                      + 1

2
1 3
2

↑↓
↓ ,

Doublet  2P,  M=0:

L= 1,   S= 1
2

M= 0,   µ= 1
2

−1
2

1 2
3

↑↑
↓ ,

L=1,   S= 1
2

M=0,   µ= −1
2

− 1
2

1 2
3

↑↓
↓

                 + 3
2

1 1
3

↑↑
↓ ,                 + 3

2
1 3
2

↑↓
↓ ,

Doublet  2D,  M= −2:

L=2,   S= 1
2

M=− 2,   µ= 1
2

2 3
3

↑↑
↓ ,

L=2,   S= 1
2

M= −2,   µ= −1
2

2 3
3

↑↓
↓ .

quartet  4S:

L=0
M=0

S= 3
2

µ= 3
2

 
1
2
3

↑↑↑ ,
L=0
M=0

S= 3
2

µ= 1
2

 
1
2
3

↑↑↓
L=0
M=0

S= 3
2

µ= −1
2

 
1
2
3

↑↓↓ ,
L=0
M=0

S= 3
2

µ= −3
2

 
1
2
3

↓↓↓ .

The ℓ=1 p=shell in a nutshell

• • • 
• • • 

• • • 
• • • (M=-1 row)



U(3)×U(2) approach: Coupling total orbit-L tableaus to total spin S tableaus

1 1
2
3

↑↑↑
↓ ,

1 1
2
3

↑↑↓
↓ ,

1 1
2
3

↑↓↓
↓

U(3): mℓ=+1: | 1 〉, mℓ=0: | 2 〉, mℓ=-1: | 3 〉 

U(2): ms=+½: | ↑ 〉, ms=-½: | ↓ 〉 

mL=+1 
mS=+1 

mL=+1 
mS=+0 

mL=+1 
mS=-1 

1 1
2 2

↑↑
↓↓ , 1 1

2 3
↑↑
↓↓ , 1 1

3 3
↑↑
↓↓ , 1 2

2 3
↑↑
↓↓ , 1 2

3 3
↑↑
↓↓ , 2 2

3 3
↑↑
↓↓ ,

mL=+2 
mS=+0 

mL=+1 
mS=+0 

mL=+0 
mS=+0 

mL=+0 
mS=+0 

mL=-1 
mS=+0 

mL=-2 
mS=+0 

3P spin-triplet

1D spin-singlet 
plus 

1S spin-singlet

An elementary development using U(6) combinations of so called Slater determinants is done first. 

These involve fairly complicated Sn-coupled U(3)×U(2) combinations that will be developed later. 

A state satisfying Pauli-antisymmetry (Exclusion principle) can be simply represented by  
putting an orbital tableaus next to a conjugate spin tableaus. (Rows flipped with columns)
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Notational compaction:
1 ≡ −1, 2 ≡ −2, etc.
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(-Ebc-Ede )

  1
2
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Fig. 25.3.1 Relating D3 and S3 permutation operations
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=(abc)|1a ,2b ,3c 〉
=|1c ,2a ,3b 〉=|2a ,3b ,1c 〉a

c

b

=r2|1〉=[132]|1a ,2b ,3c 〉

c |3〉

a

b

|1〉

|2〉

(a) Original state
|1〉=|1a ,2b ,3c 〉

|1〉

|3〉

|2〉

c

a

b

(g) Apply to (c)
lab-2-cycle
i3=[12]

i3r=[12][123]
=[13]=i2

|2〉

|3〉

|1〉

(c) Particle-fixed
lab-120°rotation r

|r〉=r |1〉
=[123]|1a ,2b ,3c 〉

= |3a ,1b ,2c 〉

c

a

b
=r2|1〉

=(acb)|1a ,2b ,3c 〉
=|1b ,2c ,3a 〉

|3〉

|1〉

|2〉

a

c

b

(d) Apply to (b)
particle-2-cycle
i3=(ab)

i3r=(ab)(abc)
=(ac)=i2

|3〉

|2〉

|1〉

b

c

a

(e) Apply to (b)
lab-2-cycle
i3=[12]

i3r2=[12][132]
=[23]=i1

|2〉

|3〉

|1〉

c

b

a

(f) Apply to (c)
particle-2-cycle
i3=(ab)

i3r2=(ab)(acb)
=(bc)=i1

 

form
C3v  gg

†
1 r2 r1 σ1 σ2 σ3

(a)(b)(c) = 1 1 r2 r1 σ1 σ2 σ3

(abc) = r1 r1 1 r2 σ2 σ3 σ1

(acb) = r2 r2 r1 1 σ3 σ1 σ2

(bc) = σ1 σ1 σ2 σ3 1 r2 r1

(ac) = σ2 σ2 σ3 σ1 r1 1 r2

(ab) = σ3 σ3 σ1 σ2 r2 r1 1

[1] [132] [123] [23] [13] [12]
[123] [1] [132] [13] [12] [23]
[132] [123] [1] [12] [23] [13]
[23] [13] [12] [1] [132] [123]
[13] [12] [23] [123] [1] [132]
[12] [23] [13] [132] [123] [1]

[132] 1a ,2b,3c = 2a ,3b,1c [123] 1a ,2b,3c = 3a ,1b,2c

Sn projection for atomic spin and orbit states
Review of Lect. 20 p.37 to 41

https://modphys.hosted.uark.edu/pdfs/QTCA_Pdfs/QTCA_Text_2013/QTCA_Unit_8_Ch._25_2013.pdf#page=29


Fig. 25.3.1 Relating D3 and S3 permutation operations

Fig. 25.3.1 QTforCA Unit 8 Ch.25 pdf p29

(1) (acb) (abc) (bc) (ac) (ab)
(abc) (1) (acb) (ac) (ab) (bc)
(acb) (abc) (1) (ab) (bc) (ac)
(bc) (ac) (ab) (1) (acb) (abc)
(ac) (ab) (bc) (abc) (1) (acb)
(ab) (bc) (ac) (acb) (abc) (1)

1 r 2 r i1 i2 i3
r 1 r 2 i2 i3 i1
r 2 r 1 i3 i1 i2
i1 i2 i3 1 r 2 r

i2 i3 i1 r 1 r 2

i3 i1 i2 r 2 r 1

σ1σ1
11

σ2σ2

σ3σ3

σ2
plane

σ1
plane

σ3
plane

r1r1

r2r2

r1

r2

σ2
plane

σ3
plane

σ1
plane

|3〉

|1〉

|2〉

(b) Lab-fixed
particle-3-cycle (120°rotation r)
|r〉=r |1〉
=(abc)|1a ,2b ,3c 〉
=|1c ,2a ,3b 〉=|2a ,3b ,1c 〉a

c

b

=r2|1〉=[132]|1a ,2b ,3c 〉

c |3〉

a

b

|1〉

|2〉

(a) Original state
|1〉=|1a ,2b ,3c 〉

|1〉

|3〉

|2〉

c

a

b

(g) Apply to (c)
lab-2-cycle
i3=[12]

i3r=[12][123]
=[13]=i2

|2〉

|3〉

|1〉

(c) Particle-fixed
lab-120°rotation r

|r〉=r |1〉
=[123]|1a ,2b ,3c 〉

= |3a ,1b ,2c 〉

c

a

b
=r2|1〉

=(acb)|1a ,2b ,3c 〉
=|1b ,2c ,3a 〉

|3〉

|1〉

|2〉

a

c

b

(d) Apply to (b)
particle-2-cycle
i3=(ab)

i3r=(ab)(abc)
=(ac)=i2

|3〉

|2〉

|1〉

b

c

a

(e) Apply to (b)
lab-2-cycle
i3=[12]

i3r2=[12][132]
=[23]=i1

|2〉

|3〉

|1〉

c

b

a

(f) Apply to (c)
particle-2-cycle
i3=(ab)

i3r2=(ab)(acb)
=(bc)=i1

 

form
C3v  gg

†
1 r2 r1 σ1 σ2 σ3

(a)(b)(c) = 1 1 r2 r1 σ1 σ2 σ3

(abc) = r1 r1 1 r2 σ2 σ3 σ1

(acb) = r2 r2 r1 1 σ3 σ1 σ2

(bc) = σ1 σ1 σ2 σ3 1 r2 r1

(ac) = σ2 σ2 σ3 σ1 r1 1 r2

(ab) = σ3 σ3 σ1 σ2 r2 r1 1

[1] [132] [123] [23] [13] [12]
[123] [1] [132] [13] [12] [23]
[132] [123] [1] [12] [23] [13]
[23] [13] [12] [1] [132] [123]
[13] [12] [23] [123] [1] [132]
[12] [23] [13] [132] [123] [1]

Sn projection for atomic spin and orbit states
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Fig. 25.3.1 Relating D3 and S3 permutation operations

Fig. 25.3.1 QTforCA Unit 8 Ch.25 pdf p29

1 r 2 r i1 i2 i3
r 1 r 2 i2 i3 i1
r 2 r 1 i3 i1 i2
i1 i2 i3 1 r 2 r

i2 i3 i1 r 1 r 2

i3 i1 i2 r 2 r 1

σ1σ1
11

σ2σ2

σ3σ3

σ2
plane

σ1
plane

σ3
plane

r1r1

r2r2

r1

r2

σ2
plane

σ3
plane

σ1
plane

|3〉

|1〉

|2〉

(b) Lab-fixed
particle-3-cycle (120°rotation r)
|r〉=r |1〉
=(abc)|1a ,2b ,3c 〉
=|1c ,2a ,3b 〉=|2a ,3b ,1c 〉a

c

b

=r2|1〉=[132]|1a ,2b ,3c 〉

c |3〉

a

b

|1〉

|2〉

(a) Original state
|1〉=|1a ,2b ,3c 〉

|1〉

|3〉

|2〉

c

a

b

(g) Apply to (c)
lab-2-cycle
i3=[12]

i3r=[12][123]
=[13]=i2

|2〉

|3〉

|1〉

(c) Particle-fixed
lab-120°rotation r

|r〉=r |1〉
=[123]|1a ,2b ,3c 〉

= |3a ,1b ,2c 〉

c

a

b
=r2|1〉

=(acb)|1a ,2b ,3c 〉
=|1b ,2c ,3a 〉

|3〉

|1〉

|2〉

a

c

b

(d) Apply to (b)
particle-2-cycle
i3=(ab)

i3r=(ab)(abc)
=(ac)=i2

|3〉

|2〉

|1〉

b

c

a

(e) Apply to (b)
lab-2-cycle
i3=[12]

i3r2=[12][132]
=[23]=i1

|2〉

|3〉

|1〉

c

b

a

(f) Apply to (c)
particle-2-cycle
i3=(ab)

i3r2=(ab)(acb)
=(bc)=i1

 

form
C3v  gg

†
1 r2 r1 σ1 σ2 σ3

(a)(b)(c) = 1 1 r2 r1 σ1 σ2 σ3

(abc) = r1 r1 1 r2 σ2 σ3 σ1

(acb) = r2 r2 r1 1 σ3 σ1 σ2

(bc) = σ1 σ1 σ2 σ3 1 r2 r1

(ac) = σ2 σ2 σ3 σ1 r1 1 r2

(ab) = σ3 σ3 σ1 σ2 r2 r1 1

[23] 1a ,2b,3c = 1a ,3b,2c

(ac) 1a ,2b,3c = 1c ,2b,3a (bc) 1a ,2b,3c = 1a ,2c ,3b
[13] 1a ,2b,3c = 3a ,2b,1c

(1) (acb) (abc) (bc) (ac) (ab)
(abc) (1) (acb) (ac) (ab) (bc)
(acb) (abc) (1) (ab) (bc) (ac)
(bc) (ac) (ab) (1) (acb) (abc)
(ac) (ab) (bc) (abc) (1) (acb)
(ab) (bc) (ac) (acb) (abc) (1)

[1] [132] [123] [23] [13] [12]
[123] [1] [132] [13] [12] [23]
[132] [123] [1] [12] [23] [13]
[23] [13] [12] [1] [132] [123]
[13] [12] [23] [123] [1] [132]
[12] [23] [13] [132] [123] [1]

Sn projection for atomic spin and orbit states

https://modphys.hosted.uark.edu/pdfs/QTCA_Pdfs/QTCA_Text_2013/QTCA_Unit_8_Ch._25_2013.pdf#page=29


Fig. 25.3.1 Relating D3 and S3 permutation operations

Fig. 25.3.1 QTforCA Unit 8 Ch.25 pdf p29

1 r 2 r i1 i2 i3
r 1 r 2 i2 i3 i1
r 2 r 1 i3 i1 i2
i1 i2 i3 1 r 2 r

i2 i3 i1 r 1 r 2

i3 i1 i2 r 2 r 1

σ1σ1
11

σ2σ2

σ3σ3

σ2
plane

σ1
plane

σ3
plane

r1r1

r2r2

r1

r2

σ2
plane

σ3
plane

σ1
plane

|3〉

|1〉

|2〉

(b) Lab-fixed
particle-3-cycle (120°rotation r)
|r〉=r |1〉
=(abc)|1a ,2b ,3c 〉
=|1c ,2a ,3b 〉=|2a ,3b ,1c 〉a

c

b

=r2|1〉=[132]|1a ,2b ,3c 〉

c |3〉

a

b

|1〉

|2〉

(a) Original state
|1〉=|1a ,2b ,3c 〉

|1〉

|3〉

|2〉

c

a

b

(g) Apply to (c)
lab-2-cycle
i3=[12]

i3r=[12][123]
=[13]=i2

|2〉

|3〉

|1〉

(c) Particle-fixed
lab-120°rotation r

|r〉=r |1〉
=[123]|1a ,2b ,3c 〉

= |3a ,1b ,2c 〉

c

a

b
=r2|1〉

=(acb)|1a ,2b ,3c 〉
=|1b ,2c ,3a 〉

|3〉

|1〉

|2〉

a

c

b

(d) Apply to (b)
particle-2-cycle
i3=(ab)

i3r=(ab)(abc)
=(ac)=i2

|3〉

|2〉

|1〉

b

c

a

(e) Apply to (b)
lab-2-cycle
i3=[12]

i3r2=[12][132]
=[23]=i1

|2〉

|3〉

|1〉

c

b

a

(f) Apply to (c)
particle-2-cycle
i3=(ab)

i3r2=(ab)(acb)
=(bc)=i1

 

form
C3v  gg

†
1 r2 r1 σ1 σ2 σ3

(a)(b)(c) = 1 1 r2 r1 σ1 σ2 σ3

(abc) = r1 r1 1 r2 σ2 σ3 σ1

(acb) = r2 r2 r1 1 σ3 σ1 σ2

(bc) = σ1 σ1 σ2 σ3 1 r2 r1

(ac) = σ2 σ2 σ3 σ1 r1 1 r2

(ab) = σ3 σ3 σ1 σ2 r2 r1 1

[23] 1a ,2b,3c = 1a ,3b,2c
                       = 1a ,2c ,3b
                       = 2c ,1a ,3b
                       = 2c ,3b,1a
                       = 3b,2c ,1a
                       = 3b,1a ,2c

(ac) 1a ,2b,3c = 1c ,2b,3a (bc) 1a ,2b,3c = 1a ,2c ,3b
[13] 1a ,2b,3c = 3a ,2b,1c

Only  
relative position  

counts here!
(Mock-Mach Principle!)     

Sn projection for atomic spin and orbit states

https://modphys.hosted.uark.edu/pdfs/QTCA_Pdfs/QTCA_Text_2013/QTCA_Unit_8_Ch._25_2013.pdf#page=29
https://modphys.hosted.uark.edu/pdfs/QTCA_Pdfs/AMOP_Lectures_2018/AMOClass-13-2.26.18.pdf#page=4
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4.16.18 class 23: Symmetry Principles for 
Advanced Atomic-Molecular-Optical-Physics 

William G. Harter - University of Arkansas

(Sn)*(U(m)) shell model of electrostatic quadrupole-quadrupole-e interactions 
Marrying spin s=½ and orbital ℓ=1 together: U(3)×U(2) 
          The ℓ=1 p=shell in a nutshell 
U(6)⊃U(3)×U(2) approach: Coupling spin-orbit (s=½, ℓ=1) tableaus 
Introducing atomic spin-orbit state assembly formula 
           Slater determinants 
           p-shell Spin-orbit calculations (not finished) 
Clebsch Gordan coefficients. (Rev. Mod. Phys. annual gift) 
Sn projection for atomic spin and orbit states 
           Review of Mach-Mock (particle-state) principle 
           Tableau P-operators on orbits (Yamonouchi formula) 
            Tableau P-operators on spin 
Fermi-Dirac-Pauli anti-symmetric p3-states 
Boson operators and symmetric p2-states  
           Connecting to angular momentum  
           Projecting to angular momentum 



Sn projection for atomic spin and orbit states
Dirac-ket-ket-ket product represents states 1, 2, 3 that variously occupy particles a, b, and c,

1,2,3 ≡ 1
particle−a

2
particle−b

3
particle−c

≡ 1
a
2
b
3
c



 Sub-tableaus        (or     ) label symmetry (anti-symmetry) by single row (or single column)

Sn projection for atomic spin and orbit states
Dirac-ket-ket-ket product represents states 1, 2, 3 that variously occupy particles a, b, and c,

1,2,3 ≡ 1
particle−a

2
particle−b

3
particle−c

≡ 1
a
2
b
3
c

a

b
a b

DE[12] =

1 2

3
+1 0

1 3

2
0 −1

DE (ab) =

a b

c
+1 0

a c

b
0 −1



 Sub-tableaus        (or     ) label symmetry (anti-symmetry) by single row (or single column)

Sn projection for atomic spin and orbit states: Tableau P-operators
Dirac-ket-ket-ket product represents states 1, 2, 3 that variously occupy particles a, b, and c,

1,2,3 ≡ 1
particle−a

2
particle−b

3
particle−c

≡ 1
a
2
b
3
c

a

b
a b

DE[12] =

1 2

3
+1 0

1 3

2
0 −1

DE (ab) =

a b

c
+1 0

a c

b
0 −1

Yamanouchi formula for irrep of bicycle operation [n,n-1] i.e. [23].

DE[23] =

1 2

3

−1
2

3
2

1 3

2

3
2

+1
2

DE (bc) =

a b

c

−1
2

3
2

a c

b

3
2

+1
2

(following page)



From unpublished Ch.10 for  
Principles of Symmetry, Dynamics & Spectroscopy 

Sn projection for atomic spin and orbit states: Tableau P-operators



Ssub-tableaus        (or     ) label symmetry (anti-symmetry) by single row (or single column)

Dirac-ket-ket-ket product represents states 1, 2, 3 that variously occupy particles a, b, and c,

1,2,3 ≡ 1
particle−a

2
particle−b

3
particle−c

≡ 1
a
2
b
3
c

a

b
a b

DE[12] =

1 2

3
+1 0

1 3

2
0 −1

DE (ab) =

a b

c
+1 0

a c

b
0 −1

Yamanouchi formula for irrep of bicycle operation [n,n-1] i.e. [23].

DE[23] =

1 2

3

−1
2

3
2

1 3

2

3
2

+1
2

DE (bc) =

a b

c

−1
2

3
2

a c

b

3
2

+1
2

(following page)

g = 1 = (a)(b)(c) r = (abc) r2 = (acb) i1 = (bc) i2 = (ac) i3 = (ab)

DA1 g( ) =
DA2 g( ) =
Dx2y2
E1 g( ) =

1
1

1 0
0 1

⎛

⎝⎜
⎞

⎠⎟

1
1

−1/ 2 − 3 / 2
3 / 2 −1/ 2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

1
1

−1/ 2 3 / 2
− 3 / 2 −1/ 2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

1
−1

−1/ 2 3 / 2
3 / 2 1/ 2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

1
−1

−1/ 2 − 3 / 2
− 3 / 2 1/ 2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

1
−1

1 0
0 −1

⎛

⎝⎜
⎞

⎠⎟

Gives complete set of  permutation ireps and projectors.

Sn projection for atomic spin and orbit states: Tableau P-operators



Ssub-tableaus        (or     ) label symmetry (anti-symmetry) by single row (or single column)

Dirac-ket-ket-ket product represents states 1, 2, 3 that variously occupy particles a, b, and c,

1,2,3 ≡ 1
particle−a

2
particle−b

3
particle−c

≡ 1
a
2
b
3
c

a

b
a b

DE[12] =

1 2

3
+1 0

1 3

2
0 −1

DE (ab) =

a b

c
+1 0

a c

b
0 −1

Yamanouchi formula for irrep of bicycle operation [n,n-1] i.e. [23].

DE[23] =

1 2

3

−1
2

3
2

1 3

2

3
2

+1
2

DE (bc) =

a b

c

−1
2

3
2

a c

b

3
2

+1
2

(following page)
g = 1 = (a)(b)(c) r = (abc) r2 = (acb) i1 = (bc) i2 = (ac) i3 = (ab)

DA1 g( ) =
DA2 g( ) =
Dx2y2
E1 g( ) =

1
1

1 0
0 1

⎛

⎝⎜
⎞

⎠⎟

1
1

−1/ 2 − 3 / 2
3 / 2 −1/ 2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

1
1

−1/ 2 3 / 2
− 3 / 2 −1/ 2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

1
−1

−1/ 2 3 / 2
3 / 2 1/ 2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

1
−1

−1/ 2 − 3 / 2
− 3 / 2 1/ 2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

1
−1

1 0
0 −1

⎛

⎝⎜
⎞

⎠⎟

Gives complete set of  permutation ireps and projectors.

           Pj,k
[µ]    1 norm  = ℓ

[µ]

OG
Dj,k

[µ](1) 1  + D(r) r  + D(r2 ) r2 + D(i1)  i1 + D(i2 ) i2 + D(i3) i3( )

Sn projection for atomic spin and orbit states: Tableau P-operators



state (123) labels [k] face the state         on the right.

particle (abc) labels [j] of          projectors face left

           Pj,k
[µ]    1 norm  = ℓ

[µ]

OG
Dj,k

[µ](1) 1  + D(r) r  + D(r2 ) r2 + D(i1)  i1 + D(i2 ) i2 + D(i3) i3( )
1 2 3

= P a b c 1 2 3
1,2,3 6 =

   1,2,3 +    2,3,1 +       3,1,2 +      1,3,2 +    3,2,1 +      2,1,3

6

⎛

⎝
⎜

⎞

⎠
⎟

1
2
3

 =  P a
b
c

1
2
3

1,2,3 6         =
   1,2,3 +    2,3,1 +       3,1,2 + -1( ) 1,3,2 + -1( ) 3,2,1 + -1( ) 2,1,3

6

⎛

⎝
⎜

⎞

⎠
⎟

a b
c

1 2
3

= P a b
c

a b
c

1,2,3 3 =
 2 1,2,3 + -1( ) 2,3,1 + -1( ) 3,1,2 + -1( ) 1,3,2 + -1( ) 3,2,1 + 2 2,1,3

2 3

⎛

⎝
⎜

⎞

⎠
⎟

a c
b

1 2
3

= P a c
b

a b
c

1,2,3 3 =
 0 1,2,3 + +1( ) 2,3,1 + -1( ) 3,1,2 + +1( ) 1,3,2 + -1( ) 3,2,1 + 0 2,1,3

2

⎛

⎝
⎜

⎞

⎠
⎟

a b
c

1 3
2

= P a b
c

a c
b

1,2,3 3 =
 0 1,2,3 + -1( ) 2,3,1 + +1( ) 3,1,2 + +1( ) 1,3,2 + -1( ) 3,2,1 + 0 2,1,3

2

⎛

⎝
⎜

⎞

⎠
⎟

a c
b

1 3
2

= P a c
b

a c
b

1,2,3 3 =
 2 1,2,3 + -1( ) 2,3,1 + -1( ) 3,1,2 + +1( ) 1,3,2 + +1( ) 3,2,1 − 2 2,1,3

2

⎛

⎝
⎜

⎞

⎠
⎟

P[ j](k )
1,2,3

Sn projection for atomic spin and orbit states: Tableau P-operators
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4.16.18 class 23: Symmetry Principles for 
Advanced Atomic-Molecular-Optical-Physics 

William G. Harter - University of Arkansas

(Sn)*(U(m)) shell model of electrostatic quadrupole-quadrupole-e interactions 
Marrying spin s=½ and orbital ℓ=1 together: U(3)×U(2) 
          The ℓ=1 p=shell in a nutshell 
U(6)⊃U(3)×U(2) approach: Coupling spin-orbit (s=½, ℓ=1) tableaus 
Introducing atomic spin-orbit state assembly formula 
           Slater determinants 
           p-shell Spin-orbit calculations (not finished) 
Clebsch Gordan coefficients. (Rev. Mod. Phys. annual gift) 
Sn projection for atomic spin and orbit states 
           Review of Mach-Mock (particle-state) principle 
           Tableau P-operators on orbits (Yamonouchi formula) 
            Tableau P-operators on spin 
Fermi-Dirac-Pauli anti-symmetric p3-states 
Boson operators and symmetric p2-states  
           Connecting to angular momentum  
           Projecting to angular momentum 



(Note             acting on        is zero.)
First is a single symmetric A1 projection                  of state       
Projectors are applied to 3-electron spin states of which there are eight (23=8).

↑↑↑PA1 = P

↑ ↑ ↑ 3/2
3/2 = P a b c ↑ ↑ ↑

↑↑↑ = ↑↑↑ ↑↑↑PE1 = P

Sn projection for atomic spin and orbit states: Tableau P-operators on spin



Symmetric                or para-symmetric              projection of           and           give           or           .

(Note             acting on        is zero.)
First is a single symmetric A1 projection                  of state       
Projectors are applied to 3-electron spin states of which there are eight (23=8).

↑↑↑PA1 = P

↑ ↑ ↑ 3/2
3/2 = P a b c ↑ ↑ ↑

↑↑↑ = ↑↑↑ ↑↑↑PE1 = P

Anti symmetric A2 projection fails on all spin-1/2 states

↑
↑
↑

=  P
a
b
c

↑
↑
↑

↑,↑,↑ = 0  (Does not exist),
↑
↑
↓

=  P
a
b
c

↑
↑
↓

↑,↑,↓ = 0  (Does not exist),...etc.

M=±1/2
S=1/2

M=±1/2
S=3/2

↑↓↓↑↑↓PE1 = PPA1 = P

Sn projection for atomic spin and orbit states: Tableau P-operators on spin



There are two spin-S=1/2 states           but only one spin-S=3/2 state             have z-component M=+1/2.

Symmetric                or para-symmetric              projection of           and           give           or           .

(Note             acting on        is zero.)
First is a single symmetric A1 projection                  of state       
Projectors are applied to 3-electron spin states of which there are eight (23=8).

↑↑↑PA1 = P

↑ ↑ ↑ 3/2
3/2 = P a b c ↑ ↑ ↑

↑↑↑ = ↑↑↑ ↑↑↑PE1 = P

Anti symmetric A2 projection fails on all spin-1/2 states

↑
↑
↑

=  P
a
b
c

↑
↑
↑

↑,↑,↑ = 0  (Does not exist),
↑
↑
↓

=  P
a
b
c

↑
↑
↓

↑,↑,↓ = 0  (Does not exist),...etc.

M=±1/2
S=1/2

M=±1/2
S=3/2

↑↓↓↑↑↓PE1 = PPA1 = P

↑ ↑ ↓ 1/2
3/2 = P a b c a b c ↑,↑,↓ 3 =

 ↑,↑,↓ +  ↑,↓,↑ +  ↓,↑,↑ +   ↑,↓,↑ +  ↓,↑,↑ +  ↑,↑,↓

6

⎛

⎝
⎜

⎞

⎠
⎟ =

 ↑,↑,↓ +  ↑,↓,↑ +  ↓,↑,↑

3

⎛

⎝
⎜

⎞

⎠
⎟

________________________________

a b
c

↑ ↑
↓

1/2
1/2 = P a b

c
a b
c

↑,↑,↓ 3
2
=

 2 ↑,↑,↓ + -1( ) ↑,↓,↑ + -1( ) ↓,↑,↑ + -1( ) ↑,↓,↑ + -1( ) ↓,↑,↑ + 2 ↑,↑,↓

2 6

⎛

⎝
⎜

⎞

⎠
⎟ =

 2 ↑,↑,↓ + -1( ) ↑,↓,↑ + -1( ) ↓,↑,↑

6

⎛

⎝
⎜

⎞

⎠
⎟

a c
b

↑ ↑
↓

1/2
1/2 = P a c

b
a b
c

↑,↑,↓ 3
2
=

 0 ↑,↑,↓ + +1( ) ↑,↓,↑ + -1( ) ↓,↑,↑ + +1( ) ↑,↓,↑ + -1( ) ↓,↑,↑ + 0 ↑,↑,↓

2 2

⎛

⎝
⎜

⎞

⎠
⎟ =

                +1( ) ↑,↓,↑ + -1( ) ↓,↑,↑

2

⎛

⎝
⎜

⎞

⎠
⎟

The latter make a permutation doublet.
M=±1/2
S=3/2

M=±1/2
S=1/2

Sn projection for atomic spin and orbit states: Tableau P-operators on spin



All 3 states project from        .  The left [j]-labels of the last two make a particle doublet                .
There are two spin-S=1/2 states           but only one spin-S=3/2 state             have z-component M=+1/2.

Symmetric                and para-symmetric              projection of           and           give          and           .

(Note             acting on        is zero.)
First is a single symmetric A1 projection                  of state       
Projectors are applied to 3-electron spin states of which there are eight (23=8).

↑↑↑PA1 = P

↑ ↑ ↑ 3/2
3/2 = P a b c ↑ ↑ ↑

↑↑↑ = ↑↑↑ ↑↑↑PE1 = P

Anti symmetric A2 projection fails on all spin-1/2 states

↑
↑
↑

=  P
a
b
c

↑
↑
↑

↑,↑,↑ = 0  (Does not exist),
↑
↑
↓

=  P
a
b
c

↑
↑
↓

↑,↑,↓ = 0  (Does not exist),...etc.

M=±1/2
S=1/2

M=±1/2
S=3/2

↑↓↓↑↑↓PE1 = PPA1 = P

↑ ↑ ↓ 1/2
3/2 = P a b c a b c ↑,↑,↓ 3 =

 ↑,↑,↓ +  ↑,↓,↑ +  ↓,↑,↑ +   ↑,↓,↑ +  ↓,↑,↑ +  ↑,↑,↓

6

⎛

⎝
⎜

⎞

⎠
⎟ =

 ↑,↑,↓ +  ↑,↓,↑ +  ↓,↑,↑

3

⎛

⎝
⎜

⎞

⎠
⎟

________________________________

a b
c

↑ ↑
↓

1/2
1/2 = P a b

c
a b
c

↑,↑,↓ 3
2
=

 2 ↑,↑,↓ + -1( ) ↑,↓,↑ + -1( ) ↓,↑,↑ + -1( ) ↑,↓,↑ + -1( ) ↓,↑,↑ + 2 ↑,↑,↓

2 6

⎛

⎝
⎜

⎞

⎠
⎟ =

 2 ↑,↑,↓ + -1( ) ↑,↓,↑ + -1( ) ↓,↑,↑

6

⎛

⎝
⎜

⎞

⎠
⎟

a c
b

↑ ↑
↓

1/2
1/2 = P a c

b
a b
c

↑,↑,↓ 3
2
=

 0 ↑,↑,↓ + +1( ) ↑,↓,↑ + -1( ) ↓,↑,↑ + +1( ) ↑,↓,↑ + -1( ) ↓,↑,↑ + 0 ↑,↑,↓

2 2

⎛

⎝
⎜

⎞

⎠
⎟ =

                +1( ) ↑,↓,↑ + -1( ) ↓,↑,↑

2

⎛

⎝
⎜

⎞

⎠
⎟

The latter make a permutation doublet.
M=±1/2
S=3/2

M=±1/2
S=1/2

↑↑↓ a b

c

a c

b

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

Sn projection for atomic spin and orbit states: Tableau P-operators on spin



There are two spin-S=1/2 states           but only one spin-S=3/2 state             have z-component M=+1/2.

Symmetric                and para-symmetric              projection of           and           give          and           .↑↓↓↑↑↓

↑ ↑ ↓ 1/2
3/2 = P a b c a b c ↑,↑,↓ 3 =

 ↑,↑,↓ +  ↑,↓,↑ +  ↓,↑,↑ +   ↑,↓,↑ +  ↓,↑,↑ +  ↑,↑,↓

6

⎛

⎝
⎜

⎞

⎠
⎟ =

 ↑,↑,↓ +  ↑,↓,↑ +  ↓,↑,↑

3

⎛

⎝
⎜

⎞

⎠
⎟

________________________________

a b
c

↑ ↑
↓

1/2
1/2 = P a b

c
a b
c

↑,↑,↓ 3
2
=

 2 ↑,↑,↓ + -1( ) ↑,↓,↑ + -1( ) ↓,↑,↑ + -1( ) ↑,↓,↑ + -1( ) ↓,↑,↑ + 2 ↑,↑,↓

2 6

⎛

⎝
⎜

⎞

⎠
⎟ =

 2 ↑,↑,↓ + -1( ) ↑,↓,↑ + -1( ) ↓,↑,↑

6

⎛

⎝
⎜

⎞

⎠
⎟

a c
b

↑ ↑
↓

1/2
1/2 = P a c

b
a b
c

↑,↑,↓ 3
2
=

 0 ↑,↑,↓ + +1( ) ↑,↓,↑ + -1( ) ↓,↑,↑ + +1( ) ↑,↓,↑ + -1( ) ↓,↑,↑ + 0 ↑,↑,↓

2 2

⎛

⎝
⎜

⎞

⎠
⎟ =

                +1( ) ↑,↓,↑ + -1( ) ↓,↑,↑

2

⎛

⎝
⎜

⎞

⎠
⎟

The latter make a permutation doublet.
M=±1/2
S=3/2

M=±1/2
S=1/2

PE1 = PPA1 = P M=±1/2
S=1/2

M=±1/2
S=3/2

Sn projection for atomic spin and orbit states: Tableau P-operators on spin



All 3 states project from        .  The left [j]-labels of the last two make a particle doublet                .
There are two spin-S=1/2 states           but only one spin-S=3/2 state             have z-component M=+1/2.

Symmetric                and para-symmetric              projection of           and           give          and           .↑↓↓↑↑↓

↑ ↑ ↓ 1/2
3/2 = P a b c a b c ↑,↑,↓ 3 =

 ↑,↑,↓ +  ↑,↓,↑ +  ↓,↑,↑ +   ↑,↓,↑ +  ↓,↑,↑ +  ↑,↑,↓

6

⎛

⎝
⎜

⎞

⎠
⎟ =

 ↑,↑,↓ +  ↑,↓,↑ +  ↓,↑,↑

3

⎛

⎝
⎜

⎞

⎠
⎟

________________________________

a b
c

↑ ↑
↓

1/2
1/2 = P a b

c
a b
c

↑,↑,↓ 3
2
=

 2 ↑,↑,↓ + -1( ) ↑,↓,↑ + -1( ) ↓,↑,↑ + -1( ) ↑,↓,↑ + -1( ) ↓,↑,↑ + 2 ↑,↑,↓

2 6

⎛

⎝
⎜

⎞

⎠
⎟ =

 2 ↑,↑,↓ + -1( ) ↑,↓,↑ + -1( ) ↓,↑,↑

6

⎛

⎝
⎜

⎞

⎠
⎟

a c
b

↑ ↑
↓

1/2
1/2 = P a c

b
a b
c

↑,↑,↓ 3
2
=

 0 ↑,↑,↓ + +1( ) ↑,↓,↑ + -1( ) ↓,↑,↑ + +1( ) ↑,↓,↑ + -1( ) ↓,↑,↑ + 0 ↑,↑,↓

2 2

⎛

⎝
⎜

⎞

⎠
⎟ =

                +1( ) ↑,↓,↑ + -1( ) ↓,↑,↑

2

⎛

⎝
⎜

⎞

⎠
⎟

The latter make a permutation doublet.
M=±1/2
S=3/2

M=±1/2
S=1/2

↑↑↓ a b

c

a c

b

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

Sn projection for atomic spin and orbit states (Top 3 lines moved up.)
PE1 = PPA1 = P M=±1/2

S=1/2
M=±1/2
S=3/2



State                         is invariant to symmetric subgroup projector                           but        zeros          .
All 3 states project from        .  The left [j]-labels of the last two make a particle doublet                .
There are two spin-S=1/2 states           but only one spin-S=3/2 state             have z-component M=+1/2.

Symmetric                and para-symmetric              projection of           and           give          and           .↑↓↓↑↑↓

↑ ↑ ↓ 1/2
3/2 = P a b c a b c ↑,↑,↓ 3 =

 ↑,↑,↓ +  ↑,↓,↑ +  ↓,↑,↑ +   ↑,↓,↑ +  ↓,↑,↑ +  ↑,↑,↓

6

⎛

⎝
⎜

⎞

⎠
⎟ =

 ↑,↑,↓ +  ↑,↓,↑ +  ↓,↑,↑

3

⎛

⎝
⎜

⎞

⎠
⎟

________________________________

a b
c

↑ ↑
↓

1/2
1/2 = P a b

c
a b
c

↑,↑,↓ 3
2
=

 2 ↑,↑,↓ + -1( ) ↑,↓,↑ + -1( ) ↓,↑,↑ + -1( ) ↑,↓,↑ + -1( ) ↓,↑,↑ + 2 ↑,↑,↓

2 6

⎛

⎝
⎜

⎞

⎠
⎟ =

 2 ↑,↑,↓ + -1( ) ↑,↓,↑ + -1( ) ↓,↑,↑

6

⎛

⎝
⎜

⎞

⎠
⎟

a c
b

↑ ↑
↓

1/2
1/2 = P a c

b
a b
c

↑,↑,↓ 3
2
=

 0 ↑,↑,↓ + +1( ) ↑,↓,↑ + -1( ) ↓,↑,↑ + +1( ) ↑,↓,↑ + -1( ) ↓,↑,↑ + 0 ↑,↑,↓

2 2

⎛

⎝
⎜

⎞

⎠
⎟ =

                +1( ) ↑,↓,↑ + -1( ) ↓,↑,↑

2

⎛

⎝
⎜

⎞

⎠
⎟

The latter make a permutation doublet.
M=±1/2
S=3/2

M=±1/2
S=1/2

↑↑↓ a b

c

a c

b

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

a c

b
PP = [1+ (ab)] / 2↑↑↓ = P ↑↑↓

ab( ) ↑,↑,↓ = ↑,↑,↓

P a b
c

a c
b

ab( ) = −P a b
c

a c
b

⎫

⎬

⎪
⎪

⎭

⎪
⎪

implies :P a b
c

a c
b

↑,↑,↓ = −P a b
c

a c
b

↑,↑,↓ = 0

PE1 = PPA1 = P M=±1/2
S=1/2

M=±1/2
S=3/2

Sn projection for atomic spin and orbit states: Tableau P-operators on spin



Similarly, projections of          give three M=-1/2 states.

Symmetric                and para-symmetric              projection of           and           give          and           .↑↓↓↑↑↓

↑ ↑ ↓ 1/2
3/2 = P a b c a b c ↑,↑,↓ 3 =

 ↑,↑,↓ +  ↑,↓,↑ +  ↓,↑,↑ +   ↑,↓,↑ +  ↓,↑,↑ +  ↑,↑,↓

6

⎛

⎝
⎜

⎞

⎠
⎟ =

 ↑,↑,↓ +  ↑,↓,↑ +  ↓,↑,↑

3

⎛

⎝
⎜

⎞

⎠
⎟

________________________________

a b
c

↑ ↑
↓

1/2
1/2 = P a b

c
a b
c

↑,↑,↓ 3
2
=

 2 ↑,↑,↓ + -1( ) ↑,↓,↑ + -1( ) ↓,↑,↑ + -1( ) ↑,↓,↑ + -1( ) ↓,↑,↑ + 2 ↑,↑,↓

2 6

⎛

⎝
⎜

⎞

⎠
⎟ =

 2 ↑,↑,↓ + -1( ) ↑,↓,↑ + -1( ) ↓,↑,↑

6

⎛

⎝
⎜

⎞

⎠
⎟

a c
b

↑ ↑
↓

1/2
1/2 = P a c

b
a b
c

↑,↑,↓ 3
2
=

 0 ↑,↑,↓ + +1( ) ↑,↓,↑ + -1( ) ↓,↑,↑ + +1( ) ↑,↓,↑ + -1( ) ↓,↑,↑ + 0 ↑,↑,↓

2 2

⎛

⎝
⎜

⎞

⎠
⎟ =

                +1( ) ↑,↓,↑ + -1( ) ↓,↑,↑

2

⎛

⎝
⎜

⎞

⎠
⎟

The latter make a permutation doublet.

↑ ↑ ↑ 1/2
3/2 = P a b c a b c ↑,↓,↓ 3 =

 ↑,↓,↓ +  ↓,↓,↑ +  ↓,↑,↓ +   ↑,↓,↓ +  ↓,↓,↑ +  ↓,↑,↓

2 3

⎛

⎝
⎜

⎞

⎠
⎟  =

 ↑,↓,↓ +  ↓,↑,↓ +  ↑,↓,↓

3

⎛

⎝
⎜

⎞

⎠
⎟

________________________________

a b
c

↑ ↓
↓

−1/2
1/2 = P a b

c
a b
c

↑,↓,↓ 6 =
 2 ↑,↓,↓ + -1( ) ↓,↓,↑ + -1( ) ↓,↑,↓ + -1( ) ↑,↓,↓ + -1( ) ↓,↓,↑ + 2 ↓,↑,↓

6

⎛

⎝
⎜

⎞

⎠
⎟  =

 1 ↑,↓,↓ + +1( ) ↓,↑,↓ + -2( ) ↓,↓,↑

6

⎛

⎝
⎜

⎞

⎠
⎟

a c
b

↑ ↓
↓

−1/2
1/2 = P a c

b
a b
c

↑,↓,↓ 6 =
 0 ↑,↓,↓ + +1( ) ↓,↓,↑ + -1( ) ↓,↑,↓ + +1( ) ↑,↓,↓ + -1( ) ↓,↓,↑ + 0 ↓,↑,↓

2

⎛

⎝
⎜

⎞

⎠
⎟ =

+1( ) ↑,↓,↓ + -1( ) ↓,↑,↓                   

2

⎛

⎝
⎜

⎞

⎠
⎟

↑↓↓

PE1 = PPA1 = P M=±1/2
S=1/2

M=±1/2
S=3/2

Sn projection for atomic spin and orbit states: Tableau P-operators on spin



Similarly, projections of          give three M=-1/2 states.

Symmetric                and para-symmetric              projection of           and           give          and           .↑↓↓↑↑↓

↑ ↑ ↓ 1/2
3/2 = P a b c a b c ↑,↑,↓ 3 =

 ↑,↑,↓ +  ↑,↓,↑ +  ↓,↑,↑ +   ↑,↓,↑ +  ↓,↑,↑ +  ↑,↑,↓

6

⎛

⎝
⎜

⎞

⎠
⎟ =

 ↑,↑,↓ +  ↑,↓,↑ +  ↓,↑,↑

3

⎛

⎝
⎜

⎞

⎠
⎟

________________________________

a b
c

↑ ↑
↓

1/2
1/2 = P a b

c
a b
c

↑,↑,↓ 3
2
=

 2 ↑,↑,↓ + -1( ) ↑,↓,↑ + -1( ) ↓,↑,↑ + -1( ) ↑,↓,↑ + -1( ) ↓,↑,↑ + 2 ↑,↑,↓

2 6

⎛

⎝
⎜

⎞

⎠
⎟ =

 2 ↑,↑,↓ + -1( ) ↑,↓,↑ + -1( ) ↓,↑,↑

6

⎛

⎝
⎜

⎞

⎠
⎟

a c
b

↑ ↑
↓

1/2
1/2 = P a c

b
a b
c

↑,↑,↓ 3
2
=

 0 ↑,↑,↓ + +1( ) ↑,↓,↑ + -1( ) ↓,↑,↑ + +1( ) ↑,↓,↑ + -1( ) ↓,↑,↑ + 0 ↑,↑,↓

2 2

⎛

⎝
⎜

⎞

⎠
⎟ =

                +1( ) ↑,↓,↑ + -1( ) ↓,↑,↑

2

⎛

⎝
⎜

⎞

⎠
⎟

The latter make a permutation doublet.

↑ ↑ ↑ 1/2
3/2 = P a b c a b c ↑,↓,↓ 3 =

 ↑,↓,↓ +  ↓,↓,↑ +  ↓,↑,↓ +   ↑,↓,↓ +  ↓,↓,↑ +  ↓,↑,↓

2 3

⎛

⎝
⎜

⎞

⎠
⎟  =

 ↑,↓,↓ +  ↓,↑,↓ +  ↑,↓,↓

3

⎛

⎝
⎜

⎞

⎠
⎟

________________________________

a b
c

↑ ↓
↓

−1/2
1/2 = P a b

c
a b
c

↑,↓,↓ 6 =
 2 ↑,↓,↓ + -1( ) ↓,↓,↑ + -1( ) ↓,↑,↓ + -1( ) ↑,↓,↓ + -1( ) ↓,↓,↑ + 2 ↓,↑,↓

6

⎛

⎝
⎜

⎞

⎠
⎟  =

 1 ↑,↓,↓ + +1( ) ↓,↑,↓ + -2( ) ↓,↓,↑

6

⎛

⎝
⎜

⎞

⎠
⎟

a c
b

↑ ↓
↓

−1/2
1/2 = P a c

b
a b
c

↑,↓,↓ 6 =
 0 ↑,↓,↓ + +1( ) ↓,↓,↑ + -1( ) ↓,↑,↓ + +1( ) ↑,↓,↓ + -1( ) ↓,↓,↑ + 0 ↓,↑,↓

2

⎛

⎝
⎜

⎞

⎠
⎟ =

+1( ) ↑,↓,↓ + -1( ) ↓,↑,↓                   

2

⎛

⎝
⎜

⎞

⎠
⎟

↑↓↓

PE1 = PPA1 = P

↓ ↓ ↓ −3/2
3/2 = P a b c ↓ ↓ ↓

↓,↓,↓ = ↓,↓,↓

Finally, the fourth state of the spin-S=3/2 quartet is the following M=-3/2 . 
    

M=±1/2
S=1/2

M=±1/2
S=3/2

Sn projection for atomic spin and orbit states: Tableau P-operators on spin



Similarly, projections of          give three M=-1/2 states.

Symmetric                and para-symmetric              projection of           and           give          and           .↑↓↓↑↑↓

↑ ↑ ↓ 1/2
3/2 = P a b c a b c ↑,↑,↓ 3 =

 ↑,↑,↓ +  ↑,↓,↑ +  ↓,↑,↑ +   ↑,↓,↑ +  ↓,↑,↑ +  ↑,↑,↓

6

⎛

⎝
⎜

⎞

⎠
⎟ =

 ↑,↑,↓ +  ↑,↓,↑ +  ↓,↑,↑

3

⎛

⎝
⎜

⎞

⎠
⎟

________________________________

a b
c

↑ ↑
↓

1/2
1/2 = P a b

c
a b
c

↑,↑,↓ 3
2
=

 2 ↑,↑,↓ + -1( ) ↑,↓,↑ + -1( ) ↓,↑,↑ + -1( ) ↑,↓,↑ + -1( ) ↓,↑,↑ + 2 ↑,↑,↓

2 6

⎛

⎝
⎜

⎞

⎠
⎟ =

 2 ↑,↑,↓ + -1( ) ↑,↓,↑ + -1( ) ↓,↑,↑

6

⎛

⎝
⎜

⎞

⎠
⎟

a c
b

↑ ↑
↓

1/2
1/2 = P a c

b
a b
c

↑,↑,↓ 3
2
=

 0 ↑,↑,↓ + +1( ) ↑,↓,↑ + -1( ) ↓,↑,↑ + +1( ) ↑,↓,↑ + -1( ) ↓,↑,↑ + 0 ↑,↑,↓

2 2

⎛

⎝
⎜

⎞

⎠
⎟ =

                +1( ) ↑,↓,↑ + -1( ) ↓,↑,↑

2

⎛

⎝
⎜

⎞

⎠
⎟

The latter make a permutation doublet.

↑ ↑ ↑ 1/2
3/2 = P a b c a b c ↑,↓,↓ 3 =

 ↑,↓,↓ +  ↓,↓,↑ +  ↓,↑,↓ +   ↑,↓,↓ +  ↓,↓,↑ +  ↓,↑,↓

2 3

⎛

⎝
⎜

⎞

⎠
⎟  =

 ↑,↓,↓ +  ↓,↑,↓ +  ↑,↓,↓

3

⎛

⎝
⎜

⎞

⎠
⎟

________________________________

a b
c

↑ ↓
↓

−1/2
1/2 = P a b

c
a b
c

↑,↓,↓ 6 =
 2 ↑,↓,↓ + -1( ) ↓,↓,↑ + -1( ) ↓,↑,↓ + -1( ) ↑,↓,↓ + -1( ) ↓,↓,↑ + 2 ↓,↑,↓

6

⎛

⎝
⎜

⎞

⎠
⎟  =

 1 ↑,↓,↓ + +1( ) ↓,↑,↓ + -2( ) ↓,↓,↑

6

⎛

⎝
⎜

⎞

⎠
⎟

a c
b

↑ ↓
↓

−1/2
1/2 = P a c

b
a b
c

↑,↓,↓ 6 =
 0 ↑,↓,↓ + +1( ) ↓,↓,↑ + -1( ) ↓,↑,↓ + +1( ) ↑,↓,↓ + -1( ) ↓,↓,↑ + 0 ↓,↑,↓

2

⎛

⎝
⎜

⎞

⎠
⎟ =

+1( ) ↑,↓,↓ + -1( ) ↓,↑,↓                   

2

⎛

⎝
⎜

⎞

⎠
⎟

↑↓↓

PE1 = PPA1 = P

↓ ↓ ↓ −3/2
3/2 = P a b c ↓ ↓ ↓

↓,↓,↓ = ↓,↓,↓

Finally, the fourth state of the spin-S=3/2 quartet is the following M=-3/2 . 
    

M=±1/2
S=1/2

M=±1/2
S=3/2

Right index correlates state-permutaion-symmetry, that is, whether two spins are equal. 
Left index correlates particle-permutaion-symmetry, that is, whether two particles are the same or not. 

Sn projection for atomic spin and orbit states: Tableau P-operators on spin
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Orbital-tableau states (10 pages above) are combined using SN-Clebsch-Gordan coefficients (SNCGC)  
with spin-tableau states (1 page above) to make Pauli-allowed spin-orbit states.
In the following simplest case the (S3CGC) sum is a single term for each state in the 4S quartet.

p3 4S ↑ ↑ ↑ 1
2
3

MS =3/2
S=3/2 = ↑ ↑ ↑ 1

2
3

,  1/2
3/2 = ↑ ↑ ↓ 1

2
3

,  −1/2
3/2 = ↑ ↓ ↓ 1

2
3

,  −3/2
3/2 = ↓ ↓ ↓ 1

2
3

Fermi-Dirac-Pauli anti-symmetric p3-states



They use S3 coefficients                    and                      to give total Pauli-anti-symmetry (A2).  

Orbital-tableau states (10 pages above) are combined using SN-Clebsch-Gordan coefficients (SNCGC)  
with spin-tableau states (1 page above) to make Pauli-allowed spin-orbit states.
In the following simplest case the (S3CGC) sum is a single term for each state in the 4S quartet.

p3 4S ↑ ↑ ↑ 1
2
3

MS =3/2
S=3/2 = ↑ ↑ ↑ 1

2
3

,  1/2
3/2 = ↑ ↑ ↓ 1

2
3

,  −1/2
3/2 = ↑ ↓ ↓ 1

2
3

,  −3/2
3/2 = ↓ ↓ ↓ 1

2
3

The p3doublet states 2L, (with L yet to be determined) are each a sum of two terms
CB
E1
A
E1
B
A2 = −1/ 2CA

E1
B
E1
B
A2 = 1/ 2

Fermi-Dirac-Pauli anti-symmetric p3-states

E1⊗E1 to A2 
Clebsch-Gordan 
coefficients ±√½ 
of S3 (or D3)

p3 2L ↑ ↑
↓

1 2
3
MS =1/2
S=1/2 = CA

E1
B
E1
B
A2

a b
c

↑ ↑
↓

a c
b

1 2
3

+CB
E1
A
E1
B
A2

a c
b

↑ ↑
↓

a b
c

1 2
3

p3 2L ↑ ↓
↓

1 2
3
MS =−1/2
S=1/2 = CA

E1
B
E1
B
A2

a b
c

↑ ↓
↓

a c
b

1 2
3

+CB
E1
A
E1
B
A2

a c
b

↑ ↓
↓

a b
c

1 2
3



They use S3 coefficients                    and                      to give total Pauli-anti-symmetry (A2).  

Orbital-tableau states (10 pages above) are combined using SN-Clebsch-Gordan coefficients (SNCGC)  
with spin-tableau states (1 page above) to make Pauli-allowed spin-orbit states.
In the following simplest case the (S3CGC) sum is a single term for each state in the 4S quartet.

p3 4S ↑ ↑ ↑ 1
2
3

MS =3/2
S=3/2 = ↑ ↑ ↑ 1

2
3

,  1/2
3/2 = ↑ ↑ ↓ 1

2
3

,  −1/2
3/2 = ↑ ↓ ↓ 1

2
3

,  −3/2
3/2 = ↓ ↓ ↓ 1

2
3

The p3doublet states 2L, (with L yet to be determined) are each a sum of two terms

This is how permutation multiplicity and (abc) labels disappear, killed by Pauli! 

Fermi-Dirac-Pauli anti-symmetric p3-states

E1⊗E1 to A2 
Clebsch-Gordan 
coefficients ±√½ 
of S3 (or D3)

p3 2L ↑ ↑
↓

1 2
3
MS =1/2
S=1/2 = CA

E1
B
E1
B
A2

a b
c

↑ ↑
↓

a c
b

1 2
3

+CB
E1
A
E1
B
A2

a c
b

↑ ↑
↓

a b
c

1 2
3

p3 2L ↑ ↓
↓

1 2
3
MS =−1/2
S=1/2 = CA

E1
B
E1
B
A2

a b
c

↑ ↓
↓

a c
b

1 2
3

+CB
E1
A
E1
B
A2

a c
b

↑ ↓
↓

a b
c

1 2
3

CB
E1
A
E1
B
A2 = −1/ 2CA

E1
B
E1
B
A2 = 1/ 2



They use S3 coefficients                    and                      to give total Pauli-anti-symmetry (A2).  

Orbital-tableau states (10 pages above) are combined using SN-Clebsch-Gordan coefficients (SNCGC)  
with spin-tableau states (1 page above) to make Pauli-allowed spin-orbit states.
In the following simplest case the (S3CGC) sum is a single term for each state in the 4S quartet.

p3 4S ↑ ↑ ↑ 1
2
3

MS =3/2
S=3/2 = ↑ ↑ ↑ 1

2
3

,  1/2
3/2 = ↑ ↑ ↓ 1

2
3

,  −1/2
3/2 = ↑ ↓ ↓ 1

2
3

,  −3/2
3/2 = ↓ ↓ ↓ 1

2
3

The p3doublet states 2L, (with L yet to be determined) are each a sum of two terms

p3 2L ↑ ↑
↓

1 2
3
MS =1/2
S=1/2 = CA

E1
B
E1
B
A2

a b
c

↑ ↑
↓

a c
b

1 2
3

+CB
E1
A
E1
B
A2

a c
b

↑ ↑
↓

a b
c

1 2
3

p3 2L ↑ ↓
↓

1 2
3
MS =−1/2
S=1/2 = CA

E1
B
E1
B
A2

a b
c

↑ ↓
↓

a c
b

1 2
3

+CB
E1
A
E1
B
A2

a c
b

↑ ↓
↓

a b
c

1 2
3

This is how permutation multiplicity and (abc) labels disappear, killed by Pauli! 
But, spin degeneracy of 4 quartet-states and 2 doublet-states is still here. 

Fermi-Dirac-Pauli anti-symmetric p3-states

E1⊗E1 to A2 
Clebsch-Gordan 
coefficients ±√½ 
of S3 (or D3)

CB
E1
A
E1
B
A2 = −1/ 2CA

E1
B
E1
B
A2 = 1/ 2



So are eight orbital doublet pairs: a tableau octet of Pauli-ok unitary U(3)        multiplicity E1-orbitals. 

They use S3 coefficients                    and                      to give total Pauli-anti-symmetry (A2).  

Fermi-Dirac-Pauli anti-symmetric p3-states
Orbital-tableau states (10 pages above) are combined using SN-Clebsch-Gordan coefficients (SNCGC)  
with spin-tableau states (1 page above) to make Pauli-allowed spin-orbit states.
In the following simplest case the (S3CGC) sum is a single term for each state in the 4S quartet.

p3 4S ↑ ↑ ↑ 1
2
3

MS =3/2
S=3/2 = ↑ ↑ ↑ 1

2
3

,  1/2
3/2 = ↑ ↑ ↓ 1

2
3

,  −1/2
3/2 = ↑ ↓ ↓ 1

2
3

,  −3/2
3/2 = ↓ ↓ ↓ 1

2
3

The p3doublet states 2L, (with L yet to be determined) are each a sum of two terms

This is how permutation multiplicity and (abc) labels disappear, killed by Pauli! 
But, spin degeneracy of 4 quartet-states and 2 doublet-states is still here. 

ℓE1=8

U (3) octet tableau basis:
1 1
2 ,

1 2
2 ,

1 2
3 ,

1 3
2 ,

1 1
3 ,

1 3
3 ,

2 2
3 ,

2 3
3 ,

⎧

⎨
⎪⎪

⎩
⎪
⎪

⎫

⎬
⎪⎪

⎭
⎪
⎪

E1⊗E1 to A2 
Clebsch-Gordan 
coefficients ±√½ 
of S3 (or D3)

p3 2L ↑ ↑
↓

1 2
3
MS =1/2
S=1/2 = CA

E1
B
E1
B
A2

a b
c

↑ ↑
↓

a c
b

1 2
3

+CB
E1
A
E1
B
A2

a c
b

↑ ↑
↓

a b
c

1 2
3

p3 2L ↑ ↓
↓

1 2
3
MS =−1/2
S=1/2 = CA

E1
B
E1
B
A2

a b
c

↑ ↓
↓

a c
b

1 2
3

+CB
E1
A
E1
B
A2

a c
b

↑ ↓
↓

a b
c

1 2
3

CB
E1
A
E1
B
A2 = −1/ 2CA

E1
B
E1
B
A2 = 1/ 2
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First non-trivial application of elementary creation-destruction pairs is to the [2,0] sextet states 

1 1 , 1 2 , 1 3 , 2 2 , 2 3 , 3 3 ,{ }

Boson operators and symmetric p2-states



Boson operators and symmetric p2-states
First non-trivial application of elementary creation-destruction pairs is to the [2,0] sextet states 

1 1 , 1 2 , 1 3 , 2 2 , 2 3 , 3 3 ,{ }
E12 n1 ,n2 = a1a2 n1 ,n2 = a1 n2 n1 ,n2 −1 = n1 +1 n2 n1 +1,n2 −1

E23 n1 ,n2 ,n3 = a2a3 n1 ,n2 ,n3 = a2 n3 n1 ,n2 ,n3 −1 = n2 +1 n3 n1 ,n2 +1,n3 −1



First non-trivial application of elementary creation-destruction pairs is to the [2,0] sextet states 

1 1 , 1 2 , 1 3 , 2 2 , 2 3 , 3 3 ,{ }
E12 n1 ,n2 = a1a2 n1 ,n2 = a1 n2 n1 ,n2 −1 = n1 +1 n2 n1 +1,n2 −1

E23 n1 ,n2 ,n3 = a2a3 n1 ,n2 ,n3 = a2 n3 n1 ,n2 ,n3 −1 = n2 +1 n3 n1 ,n2 +1,n3 −1

Elementary operations ejk apply to each particle a, b, c, and so forth in turn.

E23 3a3b3c = 2a3b3c + 3a2b3c + 3a3b2c = 3
2a3b3c + 3a2b3c + 3a3b2

3
= 3 2 3 3

a2a3 n1 = 0,n2 = 0,n3 = 3 = a2 3 0,0,2 = 1 3 0,1,2 = E23
3 3 3 = 3 2 3 3

Boson operators and symmetric p2-states



The ejk procedure shows           or           factors      or             arise by adjusting norms

First non-trivial application of elementary creation-destruction pairs is to the [2,0] sextet states 

1 1 , 1 2 , 1 3 , 2 2 , 2 3 , 3 3 ,{ }
E12 n1 ,n2 = a1a2 n1 ,n2 = a1 n2 n1 ,n2 −1 = n1 +1 n2 n1 +1,n2 −1

E23 n1 ,n2 ,n3 = a2a3 n1 ,n2 ,n3 = a2 n3 n1 ,n2 ,n3 −1 = n2 +1 n3 n1 ,n2 +1,n3 −1

Elementary operations ejk apply to each particle a, b, c, and so forth in turn.

E23 3a3b3c = 2a3b3c + 3a2b3c + 3a3b2c = 3
2a3b3c + 3a2b3c + 3a3b2

3
= 3 2 3 3

a2a3 n1 = 0,n2 = 0,n3 = 3 = a2 3 0,0,2 = 1 3 0,1,2 = E23
3 3 3 = 3 2 3 3

nk +1nk  a = aa = a†

Boson operators and symmetric p2-states



The ejk procedure shows           or           factors      or             arise by adjusting norms

First non-trivial application of elementary creation-destruction pairs is to the [2,0] sextet states 

1 1 , 1 2 , 1 3 , 2 2 , 2 3 , 3 3 ,{ }
E12 n1 ,n2 = a1a2 n1 ,n2 = a1 n2 n1 ,n2 −1 = n1 +1 n2 n1 +1,n2 −1

E23 n1 ,n2 ,n3 = a2a3 n1 ,n2 ,n3 = a2 n3 n1 ,n2 ,n3 −1 = n2 +1 n3 n1 ,n2 +1,n3 −1

Elementary operations ejk apply to each particle a, b, c, and so forth in turn.

E23 3a3b3c = 2a3b3c + 3a2b3c + 3a3b2c = 3
2a3b3c + 3a2b3c + 3a3b2

3
= 3 2 3 3

a2a3 n1 = 0,n2 = 0,n3 = 3 = a2 3 0,0,2 = 1 3 0,1,2 = E23
3 3 3 = 3 2 3 3

nk +1nk  a = aa = a†

E23
2a3b3c3d + 3a2b3c3d + 3a3b2c3d + 3a3b3c2d

2
       =   E23

2 3 3 3

  = 
2a2b3c3d + 2a2b3c3d + 2a3b2c3d + 2a3b3c2d

2
       = 6

2a2b3c3d + 2a3b2c3d + 2a3b3c2d
6

⎡

⎣
⎢
⎢

  + 
2a3b2c3d + 3a2b2c3d + 3a2b2c3d + 3a2b3c2d

2
            +

3a2b2c3d + 3a2b3c2d + 3a3b2c2d
6

⎤

⎦
⎥
⎥

  
  + 

2a3b3c2d + 3a2b3c2d + 3a3b2c2d + 3a3b2c2d

2
        = 6 2 2 3 3

Boson operators and symmetric p2-states
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Creation operator           formulas give the same result in more compact notation.

Boson operators and symmetric p2-states: Connecting to angular momentum 

 
aa( )

E23
2 3 3 3 = a2a3 n1 = 0,n2 = 1,n3 = 3 = a2 3 0,1,2 = 2 3 0,2,2 = 6 2 2 3 3



Creation operator           formulas give the same result in more compact notation. 
aa( )

E23
2 3 3 3 = a2a3 n1 = 0,n2 = 1,n3 = 3 = a2 3 0,1,2 = 2 3 0,2,2 = 6 2 2 3 3

Matrix elements for [2,0] sextet states involve the following forms.

E11
1 1 = 2 1 1 ,   E21

1 1 = 2 1 2 ,  E21
1 2 = 2 2 2 ,  E21

1 3 = 2 3 ,  E21
2 3 = 0

Boson operators and symmetric p2-states: Connecting to angular momentum 



Creation operator           formulas give the same result in more compact notation. 
aa( )

E23
2 3 3 3 = a2a3 n1 = 0,n2 = 1,n3 = 3 = a2 3 0,1,2 = 2 3 0,2,2 = 6 2 2 3 3

Matrix elements for [2,0] sextet states involve the following forms.

E11
1 1 = 2 1 1 ,   E21

1 1 = 2 1 2 ,  E21
1 2 = 2 2 2 ,  E21

1 3 = 2 3 ,  E21
2 3 = 0

Elementary operator representations are then found. (same as earlier cases by other means)
E12 = E21

† =                                       E23 = E32
† =                                           E13 = E31

† =                                       

11 12 22 13 23 33
11 ⋅ 2 ⋅ ⋅ ⋅ ⋅

12 ⋅ 2 ⋅ ⋅ ⋅
22 ⋅ ⋅ ⋅ ⋅
13 ⋅ 1 ⋅
23 ⋅ ⋅
33 ⋅

  

11 12 22 13 23 33
11 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
12 ⋅ ⋅ 1 ⋅ ⋅
22 ⋅ ⋅ 2 ⋅
13 ⋅ ⋅ ⋅
23 ⋅ 2
33 ⋅

  

11 12 22 13 23 33
11 ⋅ ⋅ ⋅ 2 ⋅ ⋅
12 ⋅ ⋅ ⋅ 1 ⋅
22 ⋅ ⋅ ⋅ ⋅
13 ⋅ ⋅ 2
23 ⋅ ⋅
33 ⋅

Boson operators and symmetric p2-states: Connecting to angular momentum 

…earlier cases 
in Lect.22p17-26.    

https://modphys.hosted.uark.edu/pdfs/QTCA_Pdfs/AMOP_Lectures_2018/AMOClass-22-4.09.18.pdf#page=17


36 “super-elementary” operators made by products of      and      and conjugates            and            

Creation operator           formulas give the same result in more compact notation. 
aa( )

E23
2 3 3 3 = a2a3 n1 = 0,n2 = 1,n3 = 3 = a2 3 0,1,2 = 2 3 0,2,2 = 6 2 2 3 3

Matrix elements for [2,0] sextet states involve the following forms.

E11
1 1 = 2 1 1 ,   E21

1 1 = 2 1 2 ,  E21
1 2 = 2 2 2 ,  E21

1 3 = 2 3 ,  E21
2 3 = 0

Elementary operator representations are then found. (same as earlier cases by other means)
E12 = E21

† =                                       E23 = E32
† =                                           E13 = E31

† =                                       

11 12 22 13 23 33
11 ⋅ 2 ⋅ ⋅ ⋅ ⋅

12 ⋅ 2 ⋅ ⋅ ⋅
22 ⋅ ⋅ ⋅ ⋅
13 ⋅ 1 ⋅
23 ⋅ ⋅
33 ⋅

  

11 12 22 13 23 33
11 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
12 ⋅ ⋅ 1 ⋅ ⋅
22 ⋅ ⋅ 2 ⋅
13 ⋅ ⋅ ⋅
23 ⋅ 2
33 ⋅

  

11 12 22 13 23 33
11 ⋅ ⋅ ⋅ 2 ⋅ ⋅
12 ⋅ ⋅ ⋅ 1 ⋅
22 ⋅ ⋅ ⋅ ⋅
13 ⋅ ⋅ 2
23 ⋅ ⋅
33 ⋅

  E32 = E23
†

  E21 = E12
†

  E23   E12

  E13 = [E12 , E23]
L+ = Lx + i Ly = 2 E12 + E23( )          L− = L+† =                                          L2 = L+L− + Lz (Lz -1)   

11 12 22 13 23 33
11 ⋅ 2 ⋅ ⋅ ⋅ ⋅
12 ⋅ ⋅ 2 2 ⋅ ⋅
22 ⋅ ⋅ ⋅ ⋅ 2 ⋅
13 ⋅ ⋅ ⋅ ⋅ 2 ⋅
23 ⋅ ⋅ ⋅ ⋅ ⋅ 2
33 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

11 12 22 13 23 33
11 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
12 2 ⋅ ⋅ ⋅ ⋅ ⋅
22 ⋅ 2 ⋅ ⋅ ⋅ ⋅
13 ⋅ 2 ⋅ ⋅ ⋅ ⋅

23 ⋅ ⋅ 2 2 ⋅ ⋅
33 ⋅ ⋅ ⋅ ⋅ 2 ⋅

11 12 22 13 23 33
11 4+ 2 ⋅ ⋅ ⋅ ⋅ ⋅
12 ⋅ 6 ⋅ ⋅ ⋅ ⋅
22 ⋅ ⋅ 4 2 2 ⋅ ⋅

13 ⋅ ⋅ 2 2 2 ⋅ ⋅
23 ⋅ ⋅ ⋅ ⋅ 4+ 2 ⋅
33 ⋅ ⋅ ⋅ ⋅ ⋅ 0+ 6

Boson operators and symmetric p2-states: Connecting to angular momentum 

…earlier cases 
in Lect.22p17-26.    

https://modphys.hosted.uark.edu/pdfs/QTCA_Pdfs/AMOP_Lectures_2018/AMOClass-22-4.09.18.pdf#page=17


AMOP  
reference links 
 on pages 2-4

      

4.16.18 class 23: Symmetry Principles for 
Advanced Atomic-Molecular-Optical-Physics 

William G. Harter - University of Arkansas

(Sn)*(U(m)) shell model of electrostatic quadrupole-quadrupole-e interactions 
Marrying spin s=½ and orbital ℓ=1 together: U(3)×U(2) 
          The ℓ=1 p=shell in a nutshell 
U(6)⊃U(3)×U(2) approach: Coupling spin-orbit (s=½, ℓ=1) tableaus 
Introducing atomic spin-orbit state assembly formula 
           Slater determinants 
           p-shell Spin-orbit calculations (not finished) 
Clebsch Gordan coefficients. (Rev. Mod. Phys. annual gift) 
Sn projection for atomic spin and orbit states 
           Review of Mach-Mock (particle-state) principle 
           Tableau P-operators on orbits (Yamonouchi formula) 
            Tableau P-operators on spin 
Fermi-Dirac-Pauli anti-symmetric p3-states 
Boson operators and symmetric p2-states  
           Connecting to angular momentum  
           Projecting to angular momentum 



36 “super-elementary” operators made by products of      and      and conjugates            and            

  E13 = [E12 , E23]
L+ = Lx + i Ly = 2 E12 + E23( )          L− = L+† =                                          L2 = L+L− + Lz (Lz -1)   

11 12 22 13 23 33
11 ⋅ 2 ⋅ ⋅ ⋅ ⋅
12 ⋅ ⋅ 2 2 ⋅ ⋅
22 ⋅ ⋅ ⋅ ⋅ 2 ⋅
13 ⋅ ⋅ ⋅ ⋅ 2 ⋅
23 ⋅ ⋅ ⋅ ⋅ ⋅ 2
33 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

11 12 22 13 23 33
11 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
12 2 ⋅ ⋅ ⋅ ⋅ ⋅
22 ⋅ 2 ⋅ ⋅ ⋅ ⋅
13 ⋅ 2 ⋅ ⋅ ⋅ ⋅

23 ⋅ ⋅ 2 2 ⋅ ⋅
33 ⋅ ⋅ ⋅ ⋅ 2 ⋅

11 12 22 13 23 33
11 4+ 2 ⋅ ⋅ ⋅ ⋅ ⋅
12 ⋅ 6 ⋅ ⋅ ⋅ ⋅
22 ⋅ ⋅ 4 2 2 ⋅ ⋅

13 ⋅ ⋅ 2 2 2 ⋅ ⋅
23 ⋅ ⋅ ⋅ ⋅ 4+ 2 ⋅
33 ⋅ ⋅ ⋅ ⋅ ⋅ 0+ 6

  E32 = E23
†

  E21 = E12
†

  E23   E12

  
L2 = L(L +1)Angular-momentum-squared operator                      tells what L-values are present

L+L− = Lx + i Ly( ) Lx − i Ly( ) = Lx2 + Ly2 − iLxLy + iLyLx = Lx2 + Ly2 + Lz
Lx
2 + Ly

2 + Lz
2 = L+L− + Lz

2 − Lz

Boson operators and symmetric p2-states: Projecting to angular momentum 



Of 6 e-values, 5 are                 
((L=2) or D-orbital)

Commutation                                        helps find      matrices.

36 “super-elementary” operators made by products of      and      and conjugates            and            

  E13 = [E12 , E23]
L+ = Lx + i Ly = 2 E12 + E23( )          L− = L+† =                                          L2 = L+L− + Lz (Lz -1)   

11 12 22 13 23 33
11 ⋅ 2 ⋅ ⋅ ⋅ ⋅
12 ⋅ ⋅ 2 2 ⋅ ⋅
22 ⋅ ⋅ ⋅ ⋅ 2 ⋅
13 ⋅ ⋅ ⋅ ⋅ 2 ⋅
23 ⋅ ⋅ ⋅ ⋅ ⋅ 2
33 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

11 12 22 13 23 33
11 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
12 2 ⋅ ⋅ ⋅ ⋅ ⋅
22 ⋅ 2 ⋅ ⋅ ⋅ ⋅
13 ⋅ 2 ⋅ ⋅ ⋅ ⋅

23 ⋅ ⋅ 2 2 ⋅ ⋅
33 ⋅ ⋅ ⋅ ⋅ 2 ⋅

11 12 22 13 23 33
11 4+ 2 ⋅ ⋅ ⋅ ⋅ ⋅
12 ⋅ 6 ⋅ ⋅ ⋅ ⋅
22 ⋅ ⋅ 4 2 2 ⋅ ⋅

13 ⋅ ⋅ 2 2 2 ⋅ ⋅
23 ⋅ ⋅ ⋅ ⋅ 4+ 2 ⋅
33 ⋅ ⋅ ⋅ ⋅ ⋅ 0+ 6

  E32 = E23
†

  E21 = E12
†

  E23   E12

  
L2 = L(L +1)Angular-momentum-squared operator                      tells what L-values are present

L+L− = Lx + i Ly( ) Lx − i Ly( ) = Lx2 + Ly2 − iLxLy + iLyLx = Lx2 + Ly2 + Lz
Lx
2 + Ly

2 + Lz
2 = L+L− + Lz

2 − Lz

  L
2

  
[Lx , Ly ] = Lx Ly − Ly Lx = i Lz   L(L +1) = 6

The 6th L-value (L=0) implies an S-orbital. Both are projected.

P(L = 0) =

4− 2(2+1) 2 2

2 2 2− 2(2+1)

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

0(0+1)− 2(2+1)
= 1
3

1 − 2
− 2 2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

P(L = 2) = 1
3

2 2
2 1

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

Boson operators and symmetric p2-states: Projecting to angular momentum 



Resulting transformation results for sextet tableau           and           to L-orbitals with M=0.

Of 6 e-values, 5 are                 
((L=2) or D-orbital)

Commutation                                        helps find      matrices.

36 “super-elementary” operators made by products of      and      and conjugates            and            

  E13 = [E12 , E23]
L+ = Lx + i Ly = 2 E12 + E23( )          L− = L+† =                                          L2 = L+L− + Lz (Lz -1)   

11 12 22 13 23 33
11 ⋅ 2 ⋅ ⋅ ⋅ ⋅
12 ⋅ ⋅ 2 2 ⋅ ⋅
22 ⋅ ⋅ ⋅ ⋅ 2 ⋅
13 ⋅ ⋅ ⋅ ⋅ 2 ⋅
23 ⋅ ⋅ ⋅ ⋅ ⋅ 2
33 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

11 12 22 13 23 33
11 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
12 2 ⋅ ⋅ ⋅ ⋅ ⋅
22 ⋅ 2 ⋅ ⋅ ⋅ ⋅
13 ⋅ 2 ⋅ ⋅ ⋅ ⋅

23 ⋅ ⋅ 2 2 ⋅ ⋅
33 ⋅ ⋅ ⋅ ⋅ 2 ⋅

11 12 22 13 23 33
11 4+ 2 ⋅ ⋅ ⋅ ⋅ ⋅
12 ⋅ 6 ⋅ ⋅ ⋅ ⋅
22 ⋅ ⋅ 4 2 2 ⋅ ⋅

13 ⋅ ⋅ 2 2 2 ⋅ ⋅
23 ⋅ ⋅ ⋅ ⋅ 4+ 2 ⋅
33 ⋅ ⋅ ⋅ ⋅ ⋅ 0+ 6

  E32 = E23
†

  E21 = E12
†

  E23   E12

  
L2 = L(L +1)Angular-momentum-squared operator                      tells what L-values are present

L+L− = Lx + i Ly( ) Lx − i Ly( ) = Lx2 + Ly2 − iLxLy + iLyLx = Lx2 + Ly2 + Lz
Lx
2 + Ly

2 + Lz
2 = L+L− + Lz

2 − Lz

  L
2

  
[Lx , Ly ] = Lx Ly − Ly Lx = i Lz   L(L +1) = 6

The 6th L-value (L=0) implies an S-orbital. Both are projected.

P(L = 0) =

4− 2(2+1) 2 2

2 2 2− 2(2+1)

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

0(0+1)− 2(2+1)
= 1
3

1 − 2
− 2 2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

P(L = 2) = 1
3

2 2
2 1

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

1 32 2

  

2 2
L = 0
M = 0

2 2
L = 2
M = 0

1 3
L = 0
M = 0

1 3
L = 2
M = 0

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

=
0 0

0
0

0 0
2
0

+1 −1
0
0

+1 −1
2
0

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

=
1
3

2
3

− 2
3

1
3

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
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(push-to-top)



Resulting transformation results for sextet tableau           and           to L-orbitals with M=0.

Commutation                                        helps find      matrices.
  
[Lx , Ly ] = Lx Ly − Ly Lx = i Lz

The 6th L-value (L=0) implies an S-orbital. Both are projected.

P(L = 0) =

4− 2(2+1) 2 2

2 2 2− 2(2+1)

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

0(0+1)− 2(2+1)
= 1
3

1 − 2
− 2 2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

  

2 2
L = 0
M = 0

2 2
L = 2
M = 0

1 3
L = 0
M = 0

1 3
L = 2
M = 0

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

=
0 0

0
0

0 0
2
0

+1 −1
0
0

+1 −1
2
0

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

=
1
3

2
3

− 2
3

1
3

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
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Compare this to (M=0)-Clebsch-Gordan coefficients under      and       columns:

Resulting transformation results for sextet tableau           and           to L-orbitals with M=0.

Commutation                                        helps find      matrices.
  
[Lx , Ly ] = Lx Ly − Ly Lx = i Lz

The 6th L-value (L=0) implies an S-orbital. Both are projected.

P(L = 0) =

4− 2(2+1) 2 2

2 2 2− 2(2+1)

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

0(0+1)− 2(2+1)
= 1
3

1 − 2
− 2 2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

  

2 2
L = 0
M = 0

2 2
L = 2
M = 0

1 3
L = 0
M = 0

1 3
L = 2
M = 0

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

=
0 0

0
0

0 0
2
0

+1 −1
0
0

+1 −1
2
0

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

=
1
3

2
3

− 2
3

1
3

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 0
2

 0
0

1⊗1M=0
L=2 = Cm

1
′m

1
0
2

0
1

0
1∑

= C0
1
0
1

0
2

0
1

0
1 +C+1

1
−1
1  0

1
+1
1

−1
1 +C−1

1
+1
1  0

2
−1
1

+1
1

= 2
3 0

1
0
1   +   1

6
   +1

1
−1
1 +    1

6
   −1

1
+1
1

1⊗1M=0
L=0 = Cm

1
′m

1
0
0

0
1

0
1∑

= C0
1
0
1

0
0

0
1

0
1 +C+1

1
−1
1  0

0
+1
1

−1
1 +C−1

1
+1
1  0

0
−1
1

+1
1

= − 1
3 0

1
0
1 +   1

3
   +1

1
−1
1 +    1

3
   −1

1
+1
1

 
= −

1
3 0 0

 +   
2
3

   
+1 −1  

=
2
3 0 0

  +   
1
3

   
+1 −1
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(end for 4.18)
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A Unitary Calculus for Electronic Orbitals 
William G. Harter and Christopher W. Patterson 
Springer-Verlag Lectures in Physics 49 1976 

Alternative basis for the theory of complex spectra II  
William G. Harter and Christopher W. Patterson 
Physical Review A 13 3 p1076-1082 (1976)

Alternative basis for the theory of complex spectra I  
William G. Harter 
Physical Review A 8 3 p2819 (1973)

Alternative basis for the theory of complex spectra III  
William G. Harter and Christopher W. Patterson 
Physical Review A ??

Predicated 
2P,2D levels

2D

2P

4S



Alternative basis for the theory of complex spectra II  
William G. Harter and Christopher W. Patterson 
Physical Review A 13 3 p1076-1082 (1976)



Yay! (for the Googley internet)



Complete set of Ejk matrix elements for the doublet (spin-½ ) p3 orbits

Diagonal examples in n-particle notation:
3V0

0 = E11 + E22 + E33

2V0
1 = E11          − E33 ≡ Lz

6V0
2 = E11 − 2E22 + E33

Off-Diagonal examples in n-particle notation:
V2

2 = E13  ,      -2V1
2 = 2(E12 − E23) ,            2V−1

2 = 2(E21 − E32 ) ,      2V−2
2 = E31  ,

                      -2V1
1 = 2(E12 + E23) ≡ L+ ,     2V−1

1 = 2(E21 + E32 ) ≡ L−  .

notation: 
(jk) numbers tell 
which Ejk gave that entry



Tableau calculation of 3-electron ℓ=1 orbital p3-states and their Vkq matrices

Start with highest angular momentum (L=2) p3 state:  2D,M=2
L=2 =  

1 1
2  (Fermi spin-mate 

↑ ↑
↓ ) 

Then apply lowering operator L− ≡ 2(E21 + E32 )
2DM=1

L=2 = 1
2 L−

2DM=2
L=2 = 1

2 2(E21 + E32 ) 
1 1
2

                                    = = 1
2

 
1 2
2 +

1 1
3

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

Here this is done using Tableau “Jawbone” formula.

Orthogonal to this is a 2P (M=1) state

2PM=1
L=1 = 1

2
 

1 2
2 −

1 1
3

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

Next we calculate 2n-pole moments the pair:
2PM=1

L=1 V0
k 2DM=1

L=2 =

1
2

 
1 2
2 +

1 1
3

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟ 11

k( )E11+ 22
k( )E22+ 33

k( )E33
⎡
⎣

⎤
⎦

1 2
2 −

1 1
3

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

    =    1
2 − 11

2( )E11+ 2 22
2( )E22− 33

2( )⎡
⎣

⎤
⎦    = - 3

2   for :  k = 2

    =    1
2 − 11

1( )E11+ 2 22
1( )E22− 33

1( )⎡
⎣

⎤
⎦    = 0      for :  k = 1

    =    1
2 − 11

0( )E11+ 2 22
0( )E22− 33

0( )⎡
⎣

⎤
⎦    = 0      for :  k = 0



1,2,3 ≡ 1
particle−a

2
particle−b

3
particle−c

≡ 1
a
2
b
3
c



This applies to all of multi-particle representations of Ejk and to momentum operators Lx, Ly, and Lz.

Single particle p-orbit (ℓ=1) representation of Lx, Ly, and Lz 

Dmn
1 Lx( ) = 1

2

⋅ 1 ⋅
1 ⋅ 1
⋅ 1 ⋅

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

,         Dmn
1 Ly( ) = −i

2

⋅ 1 ⋅
−1 ⋅ 1
⋅ −1 ⋅

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

,        Dmn
1 Lz( ) =

1 ⋅ ⋅
⋅ 0 ⋅
⋅ ⋅ −1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

Elementary operator form of Lx, Ly, and Lz

Lx = E12 + E23 + E21 + E32( ) / 2,     Ly = −i E12 + E23 − E21 − E32( ) / 2,         Lz = E11 − E33

…and of raise-lower operators L+ and L-

L+ = Lx + i Ly = 2 E12 + E23( ),       L− = Lx − i Ly = 2 E21 + E32( ) = L+† ,       Lz = [L+ ,L− ]

Single particle p1-orbitals: U(3) triplet p1  

General elementary operator commutation [Ejk, Epq]= δkpEjq - δqjEpk  
has same form as 1-particle commutation:   [ejk, epq]= δkpejq  - δqjepk

e11 =
1 ⋅ ⋅
⋅ ⋅ ⋅
⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

 , e12 =
⋅ 1 ⋅
⋅ ⋅ ⋅
⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

 , e13 =
⋅ ⋅ 1
⋅ ⋅ ⋅
⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

 , e21 =
⋅ ⋅ ⋅
1 ⋅ ⋅
⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

 , ...e33 =
⋅ ⋅ ⋅
⋅ ⋅ ⋅
1 ⋅ ⋅

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

 . 

e12e21=e11 
e12e22=e12 

ejkepq=δpkejq

1 2 2 1 = 1 1

1 2 2 2 = 1 2

                 !
j k p q =δ pk j q

Elementary matrix algebra 

Elementary-elementary  
operator commutation algebra 


