
Lecture 27. 

Relativity of transverse waves and 4-vectors
(Ch. 2-5 of CMwBang-Unit 8   Ch. 6 of QTforCA Unit 2 )

Reviewing “Relawavity” geometry
Reviewing the stellar aberration angle σ vs. rapidity ρ 

   Pattern recognition: “Occam’s Sword”
Introducing per-spacetime 4-vector (ω0,ωx,ωy,ωz) =(ω,ckx,cky,ckz) transformation
More details of Lorentz boost of North-South-East-West plane-wave 4-vectors (ω0,ωx,ωy,ωz) 

Thales-like construction of Lorentz boost in 2D and 3D
The spectral ellipsoid

Combination and interference of 4-vector plane waves (Idealized polarization case)
Combination group and phase waves define 4D Minkowski coordinates
Combination group and phase waves define wave guide dynamics

Waveguide dispersion and geometry
1st-quantized cavity modes   
(And introducing 2nd-quantized cavity modes)

Lorentz symmetry effects
How it makes momentum and energy be conserved
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Reviewing “Relawavity” geometry
Reviewing the stellar aberration angle σ vs. rapidity ρ 

   Pattern recognition: “Occam’s Sword”
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Reviewing “Relawavity” geometry
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Reviewing “Relawavity” geometry
time rDopp υgroup τ phase υ phase τ group bDopp u/c c/u
space κ phase λgroup κ group λphase Vgroup/c Vphase/c

rapidityρ e−ρ sinhρ sechρ coshρ cschρ e+ρ tanhρ cothρ
stellar∀ σ tanσ cosσ secσ cotσ sinσ cscσ

QM p −L H λDeB dω /dk ω /k
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Reviewing “Relawavity” geometry
Reviewing the stellar aberration angle σ vs. rapidity ρ 

   Pattern recognition: “Occam’s Sword”
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(a) Geometry of relativistic transformation
and wave based mechanics

(b) Tangent geometry (u/c=3/5)

(c) Basic construction given u/c=45/53
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Fig. 5.5 
Relativistic wave mechanics geometry. 
(a) Overview. 

(b-d) Details of contacting tangents.

σ

σ
σ

Pattern recognition: “Occam’s Sword”

from:Fig. 8.5.5
QTforCA
Unit 8 Ch.5
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(a) Overview. 

(b-d) Details of contacting tangents.
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Unit 8 Ch.5
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Pattern recognition: “Occam’s Sword”
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Fig. 5.10 CW cosmic speedometer. 

Geometry of boosted counter-propagating waves.

σ

from:Fig. 8.5.10
QTforCA
Unit 8 Ch.5
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Pattern recognition: “Occam’s Sword”

sinh ρ

sinh ρ

cosh ρ
cosh ρ

sin σ

e-ρ

e+ρ=sinh ρ+coshρ

u/c

σ

k′′(↑↑) k(↑↑)

δc=1
k(→→)k(←←)

k′′(→→) k′′(←←)
k′′(↓↓)

kz

kx
sinh ρ=tan σ
tanh ρ=sin σ

Fig. 5.10 CW cosmic speedometer. 

Geometry of boosted counter-propagating waves.
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Fig. 5.10 CW cosmic speedometer. 

Geometry of boosted counter-propagating waves.

Pattern recognition: “Occam’s Sword”
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...
etc.

etc.
...

Relawavity geometry
has geometric series!
(Surprise, surprise, surprise,…)
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Introducing per-spacetime 4-vector (ω0,ωx,ωy,ωz) =(ω,ckx,cky,ckz) transformation
More details of Lorentz boost of North-South-East-West plane-wave 4-vectors (ω0,ωx,ωy,ωz) 

Thales-like construction of Lorentz boost in 2D and 3D
The spectral ellipsoid
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Suppose starlight in lighthouse frame is straight down x-axis : ω↓ ,ckx↓ ,cky↓ ,cky↓( ) = ω0,−ω0,0,0( )
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k(↑↑)

k(↓↓)
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of k′(↑)
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of k′(↓)
source

ω0 e−ρ
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x-axis

Per-spacetime 4-vector (ω0,ωx,ωy,ωz) =(ω,ckx,cky,ckz) transformation

  −ω0 sinhρz

  ω0 coshρz

 −ω0

“South”

(Lighthouse frame)

from:Fig. 6.1.3
QTforCA
Unit 8 Ch.6
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Suppose starlight in lighthouse frame is straight down x-axis : ω↓ ,ckx↓ ,cky↓ ,ckz↓( ) = ω0,−ω0,0,0( )
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(Lighthouse frame)

from:Fig. 6.1.3
QTforCA
Unit 8 Ch.6
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Suppose starlight in lighthouse frame is straight down x-axis : ω↓ ,ckx↓ ,cky↓ ,ckz↓( ) = ω0,−ω0,0,0( )
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QTforCA
Unit 8 Ch.6
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Suppose starlight in lighthouse frame is straight down x-axis : ω↓ ,ckx↓ ,cky↓ ,ckz↓( ) = ω0,−ω0,0,0( )
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Suppose starlight in lighthouse frame is straight down x-axis : ω↓ ,ckx↓ ,cky↓ ,ckz↓( ) = ω0,−ω0,0,0( )
+ρz -rapidity ship frame sees starlight Lorentz transformed to : ′ω↓ ,c ′kx↓ ,c ′ky↓ ,c ′kz↓( ) = ω0 coshρz ,−ω0,0,−ω0 sinhρz( )
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Suppose starlight in lighthouse frame is straight down x-axis : ω↓ ,ckx↓ ,cky↓ ,ckz↓( ) = ω0,−ω0,0,0( )
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After the 4-vector transformation, ω0=ω↓ is transverse Doppler shifted to ω0cosh ρz, while ckz=0 becomes ckz' = -ω0 sinh ρz .
(The x-component is unchanged: ckx' = -ω0 = ckx and so is y-component: cky' = -ω0 = cky.)
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Suppose starlight in lighthouse frame is straight down x-axis : ω↓ ,ckx↓ ,cky↓ ,ckz↓( ) = ω0,−ω0,0,0( )
+ρz -rapidity ship frame sees starlight Lorentz transformed to : ′ω↓ ,c ′kx↓ ,c ′ky↓ ,c ′kz↓( ) = ω0 coshρz ,−ω0,0,−ω0 sinhρz( )
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from:Fig. 6.1.3
(modified)
QTforCA
Unit 8 Ch.6
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After the 4-vector transformation, ω0=ω↓ is transverse Doppler shifted to ω0cosh ρz, while ckz=0 becomes ckz' = -ω0 sinh ρz .
(The x-component is unchanged: ckx' = -ω0 = ckx and so is y-component: cky' = -ω0 = cky.)
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Suppose starlight in lighthouse frame is straight down x-axis : ω↓ ,ckx↓ ,cky↓ ,ckz↓( ) = ω0,−ω0,0,0( )
+ρz -rapidity ship frame sees starlight Lorentz transformed to : ′ω↓ ,c ′kx↓ ,c ′ky↓ ,c ′kz↓( ) = ω0 coshρz ,−ω0,0,−ω0 sinhρz( )
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After the 4-vector transformation, ω0=ω↓ is transverse Doppler shifted to ω0cosh ρz, while ckz=0 becomes ckz' = -ω0 sinh ρz .
(The x-component is unchanged: ckx' = -ω0 = ckx and so is y-component: cky' = -ω0 = cky.)

  

Suppose starlight in lighthouse frame is straight down x-axis : ω↓ ,ckx↓ ,cky↓ ,ckz↓( ) = ω0,−ω0,0,0( )
+ρz -rapidity ship frame sees starlight Lorentz transformed to : ′ω↓ ,c ′kx↓ ,c ′ky↓ ,c ′kz↓( ) = ω0 coshρz ,−ω0,0,−ω0 sinhρz( )
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Per-spacetime 4-vector (ω0,ωx,ωy,ωz) =(ω,ckx,cky,ckz) transformation

Recall hyperbolic invariant to Lorentz transform: ω2-c2k2=ω′2-c2k′2 (=0 for 1-CW light)
      The 4-vector form of this is: ω2-c2k•k=ω′2-c2k′•k′ (=0   ″     ″)
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Fig. 5.10 CW cosmic speedometer. 

Geometry of Lorentz boost of counter-propagating waves.

from:Fig. 8.5.10
(modified)
QTforCA
Unit 8 Ch.5
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Fig. 5.10 CW cosmic speedometer. 

Geometry of Lorentz boost of counter-propagating waves.
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If starlight is horizontal right-moving k→ wave then ship going u along z-axis sees : 

The usual longitudinal Doppler blue shifts e+ρz or Doppler red shifts e−ρz appear on both k-vector and frequency ω0.

If starlight is horizontal left-moving k← wave then ship going u along z-axis sees : 
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More details of Lorentz boost of North-South-East-West plane-wave 4-vectors (ω0,ωx,ωy,ωz) 
Thales-like construction of Lorentz boost in 2D and 3D

The spectral ellipsoid
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u/c = sin σ=1/2
u/c=tanh ρ=1/2

σ=30°=0.524
ρ=0.549
eρ=√3
e-ρ=1/√3

σ

σ

More details of Lorentz boost of North-South-East-West plane-wave 4-vectors (ω0,ωx,ωy,ωz) 

North kx-axis
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kz-axis
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West

North′ k′x-axis
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South′

West′

Lorentz boost by σ=30°  gives

ω0tanσ=ω0sinhρ=1/√3

ω0sinσ=

ω0tanhρ=1/2

  

South starlight in lighthouse frame is straight down x-axis : ω↓ ,ckx↓ ,cky↓ ,ckz↓( ) = ω0,−ω0,0,0( )
+ρz -rapidity ship frame sees starlight Lorentz transformed to : ′ω↓ ,c ′kx↓ ,c ′ky↓ ,c ′kz↓( ) = ω0 coshρz ,−ω0,0,−ω0 sinhρz( )
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u/c = sin σ=1/2
u/c=tanh ρ=1/2

σ=30°=0.524
ρ=0.549
eρ=√3
e-ρ=1/√3

σ

σ

North kx-axis

East
kz-axis

South

West

North′ k′x-axis

East′

South′

West′

Lorentz boost by σ=30°  or e+ρ =√3 ω0tanσ=ω0sinhρ=ω0/√3

ω0sinσ=

ω0tanhρ=ω0/2

ω 0
se

cσ

ω0tanσ

ω0

Ship-frame 
view (ω′,ck′)
of wave-vectors

Lighthouse 
view (ω,ck)
of wave-vectors

West starlight                    is blue shifted by e+ρ=coshρ+sinhρ             and East starlight                    is red shifted by e-ρ=coshρ-sinhρ  
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For ship going u=c tanh ρ along z-axis

Blue shift factor is e+ρ=coshρ+sinhρ=secσ+tanσ  Red shift factor is e-ρ=coshρ-sinhρ =secσ-tanσ  
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ω 0
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More details of Lorentz boost of North-South-East-West plane-wave 4-vectors (ω0,ωx,ωy,ωz) 
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σ

u/c = sin σ=√3/2
u/c=tanh ρ=√3/2

σ=60°=1.047
ρ=1.317

eρ=2+√3

e-ρ=2-√3

East′

South′

West′

ω0sinσ=ω0tanhρ=ω0√3/2 ω0secσ

ω0tanσ=ω0sinhρ ω0secσ=ω0coshρ

Ship-frame 
view (ω′,ck′)
of wave-vectors

Lighthouse 
view (ω,ck)
of wave-vectors

Faster Lorentz boost of 
North-South-East-West 
plane-wave 4-vectors (ω0,ωx,ωy,ωz) 

Lorentz boost by σ=60°  or e+ρ =2+√3 

Red shift 
    ω0e-ρ

ω0

Blue shift          ω0e+ρ =ω0(2+√3)    
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More details of Lorentz boost of North-South-East-West plane-wave 4-vectors (ω0,ωx,ωy,ωz) 
Thales-like construction of Lorentz boost in 2D and 3D

The spectral ellipsoid
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σ

u/c = sin σ=√3/2
u/c=tanh ρ=√3/2

σ=60°=1.047
ρ=1.317

eρ=2+√3

e-ρ=2-√3

East′

South′

West′

ω0sinσ=ω0tanhρ=ω0√3/2 ω0secσ

ω0tanσ=ω0sinhρ ω0secσ=ω0coshρ

Ship-frame 
view (ω′,ck′)
of wave-vectors

Lighthouse 
view (ω,ck)
of wave-vectors

Faster Lorentz boost of 
North-South-East-West 
plane-wave 4-vectors (ω0,ωx,ωy,ωz) 

Lorentz boost by σ=60°  or e+ρ =2+√3 

How does Lorentz
    boost affect vector
       of arbitrary 
          θ?

Red shift 
    ω0e-ρ

Blue shift          ω0e+ρ =ω0(2+√3)    
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σ

u/c = sin σ=√3/2
u/c=tanh ρ=√3/2

σ=60°=1.047
ρ=1.317

eρ=2+√3

e-ρ=2-√3

East′

South′

West′

ω0sinσ=ω0tanhρ=ω0√3/2 ω0secσ

ω0tanσ=ω0sinhρ ω0secσ=ω0coshρ

Ship-frame 
view (ω′,ck′)
of wave-vectors

Lighthouse 
view (ω,ck)
of wave-vectors

Faster Lorentz boost of 
North-South-East-West 
plane-wave 4-vectors (ω0,ωx,ωy,ωz) 

Lorentz boost by σ=60°  or e+ρ =2+√3 

How does Lorentz
    boost affect vector
       of arbitrary 
          θ?

Let lab starlight ray at polar angle θ have k↑ θ = ω0 (1,cos θ,0,-sin θ).   Then ship going u along z-axis sees : 
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    boost affect vector
       of arbitrary 
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u/c=tanh ρ=√3/2
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How does Lorentz
    boost affect vector
       of arbitrary 
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⎟
⎟
⎟
⎟
⎟

ω0
ω0 cosθ

0
−ω0 sinθ

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

=ω0

coshρz + sinhρz sinθ
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0

−sinhρz − coshρz sinθ

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

=ω0

secσ + tanσ sinθ
cosθ

0
− tanσ − secσ sinθ

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

θ

ω0secσsinθ

ω0cosθ

ω0tanσ

The spectral ellipse(oid)

Red shift ω0e-ρBlue shift          ω0e+ρ =ω0(2+√3)    
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σ

u/c = sin σ=√3/2
u/c=tanh ρ=√3/2

σ=60°=1.047
ρ=1.317

eρ=2+√3

e-ρ=2-√3

East′

South′

West′

ω0sinσ=ω0tanhρ=ω0√3/2 ω0secσ

ω0tanσ=ω0sinhρ ω0secσ=ω0coshρ

Ship-frame 
view (ω′,ck′)
of wave-vectors

Lighthouse 
view (ω,ck)
of wave-vectors

Faster Lorentz boost of 
North-South-East-West 
plane-wave 4-vectors (ω0,ωx,ωy,ωz) 

Lorentz boost by σ=60°  or e+ρ =2+√3 

How does Lorentz
    boost affect vector
       of arbitrary 
          θ?

Let lab starlight ray at polar angle θ have k↑ θ = ω0 (1,cos θ,0,-sin θ).   Then ship going u along z-axis sees : 

  

′ω↑θ
c ′kx↑θ
c ′ky↑θ

c ′kz↑θ
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⎜
⎜
⎜
⎜
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⎠
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⎟
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⎟

=

coshρz ⋅ ⋅ −sinhρz
⋅ 1 ⋅ ⋅
⋅ ⋅ 1 ⋅
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⎛

⎝
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⎟
⎟
⎟
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⎜
⎜
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⎟
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⎜
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⎟
⎟
⎟
⎟
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0
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⎜
⎜
⎜
⎜
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⎠

⎟
⎟
⎟
⎟

θ
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c-v c +vv c

u=4c/5

√(c-v)(c +v)=c√(1-v2/c2)=c sech ρ=c cos σ

v=c tanh ρ= c sin σ
σ

c sin σ

Multiply segments by cosh ρ = sec σ=1/√(1-v2/c2)
to recover dimensions in (ck, ω) plot

Space-Time Geometry
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c-v c +vv c

5cc
/4

√(c-v)(c +v)=c√(1-v2/c2)=c sech ρ=c cos σ

v=c tanh ρ= c sin σ
σ

c sin σ

Multiply segments by cosh ρ = sec σ=1/√(1-v2/c2)
to recover dimensions in (ck, ω) plot

x-Space-y-Space Plot of wavefronts dropped
by CW or PW source moving at u=4c/5

4cc/
5 cc
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c-v c +vv c

5cc
/4

√(c-v)(c +v)=c√(1-v2/c2)=c sech ρ=c cos σ

v=c tanh ρ= c sin σ
σ

c sin σ

Multiply segments by cosh ρ = sec σ=1/√(1-v2/c2)
to recover dimensions in (ck, ω) plot

x-Space-y-Space Plot of wavefronts dropped
by CW or PW source moving at u=4c/5

4cc/
5 cc
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time rDopp υgroup τ phase υ phase τ group bDopp u/c c/u
space κ phase λgroup κ group λphase Vgroup/c Vphase/c

rapidityρ e−ρ sinhρ sechρ coshρ cschρ e+ρ tanhρ cothρ
stellar∀ σ tanσ cosσ secσ cotσ sinσ cscσ

QM p −L H λDeB dω /dk ω /k

Old
Fashioned
Formulas

1−u
c

1+u
c

1
c2

u2 −1
 - 1−u

2

c2  1

1−u
2

c2

 c2

u2 −1 
1+u
c

1−u
c

      u
c

           c
u
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Combination and interference of 4-vector plane waves (Idealized polarization case)
Combination group and phase waves define 4D Minkowski coordinates
Combination group and phase waves define wave guide dynamics

Waveguide dispersion and geometry
1st-quantized cavity modes
(And introducing 2nd-quantized cavity modes)
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ΨA→ ,ω→ ,k→;A← ,ω← ,k←(r,t) = A→ei(k→ •r - ω→t) + A←ei(k← •r - ω←t)   

2-CW-single-plane-polarized case:   

Factored into phase and group factors:  

   

Ψk r,t( ) = ei k→•r−ω→t( ) + ei k←•r−ω←t( )

             = e
i k→+k←( )•r− ω→+ω←( )t

2 2cos
k→ − k←( )• r − ω→ −ω←( )t

2
= ei K•r−Ωt( )2cos k • r −ω t( )

   

Phase (k,ω )
k→ + k←( )

2
= K  , 

ω→ +ω←( )
2

=Ω , 
   

Group (k,ω )

k =
k→ − k←( )

2
,

ω =
ω→ −ω←( )

2
.

Combination and interference of 4-vector plane waves (Idealized amplitude case)

Idealized

Idealized: Equal amplitudes and single plane polarization

Fig. 6.1.1 Sketch of a 1-CW-single-plane-polarized plane wavefunction Ψk(r,t) = AeiΦ = Aei(k•r – ω t) with wavevector k.

from:Fig. 6.1.1
QTforCA
Unit 2 Ch.6
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ΨA→ ,ω→ ,k→;A← ,ω← ,k←(r,t) = A→ei(k→ •r - ω→t) + A←ei(k← •r - ω←t)   

2-CW-single-plane-polarized case:   

Factored into phase and group factors:  

   

Ψk r,t( ) = ei k→•r−ω→t( ) + ei k←•r−ω←t( )

             = e
i k→+k←( )•r− ω→+ω←( )t

2 2cos
k→ − k←( )• r − ω→ −ω←( )t

2
= ei K•r−Ωt( )2cos k • r −ω t( )

   

Phase (k,ω )
k→ + k←( )

2
= K  , 

ω→ +ω←( )
2

=Ω , 
   

Group (k,ω )

k =
k→ − k←( )

2
,

ω =
ω→ −ω←( )

2
.

    c
2 ′k→ i ′k→ − ′ω→

2 = c2k→ ik→ −ω→
2 =  c2k0

2 −ω0
2 = 0

    c
2 ′k← i ′k← − ′ω←

2 = c2k← ik← −ω←
2 =  c2k0

2 −ω0
2 = 0

Individual laser 4-vectors reside 
on light cone or null-invariant.
     Ship                  Lighthouse                  Laser lab

k

ω

Combination and interference of 4-vector plane waves (Idealized amplitude case)

Idealized

Idealized: Equal amplitudes and single plane polarization

Fig. 6.1.1 Sketch of a 1-CW-single-plane-polarized plane wavefunction Ψk(r,t) = AeiΦ = Aei(k•r – ω t) with wavevector k.

from:Fig. 6.1.1
QTforCA
Unit 2 Ch.6
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Fig. 6.1.1 Sketch of a 1-CW-single-plane-polarized plane wavefunction Ψk(r,t) = AeiΦ = Aei(k•r – ω t) with wavevector k.

ΨA→ ,ω→ ,k→;A← ,ω← ,k←(r,t) = A→ei(k→ •r - ω→t) + A←ei(k← •r - ω←t)   

2-CW-single-plane-polarized case:   

Factored into phase and group factors:  

   

Ψk r,t( ) = ei k→•r−ω→t( ) + ei k←•r−ω←t( )

             = e
i k→+k←( )•r− ω→+ω←( )t

2 2cos
k→ − k←( )• r − ω→ −ω←( )t

2
= ei K•r−Ωt( )2cos k • r −ω t( )

   

Phase (k,ω )
k→ + k←( )

2
= K  , 

ω→ +ω←( )
2

=Ω , 
   

Group (k,ω )

k =
k→ − k←( )

2
,

ω =
ω→ −ω←( )

2
.

    c
2 ′k→ i ′k→ − ′ω→

2 = c2k→ ik→ −ω→
2 =  c2k0

2 −ω0
2 = 0

    c
2 ′k← i ′k← − ′ω←

2 = c2k← ik← −ω←
2 =  c2k0

2 −ω0
2 = 0

Individual laser 4-vectors reside 
on light cone or null-invariant.
     

Sum and difference vectors 
are not on the light cone.

    ′Ω 2 − c2 ′K i ′K =Ω2 − c2K iK =   ω0
2 − 0         =c2k0

2

    ′ω 2 − c2 ′k i ′k   =ω 2 − c2kik   =  0- c2k0 ik0  = −c2k0
2

Ship                  Lighthouse                  Laser lab Ship                  Lighthouse                  Laser lab

k

ω

k

ω
group wavesgroup waves

phase waves

phase waves

Combination and interference of 4-vector plane waves (Idealized amplitude case)

Idealized

Idealized: Equal amplitudes and single plane polarization

from:Fig. 6.1.1
QTforCA
Unit 2 Ch.6
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X

Z
k(←) k(→)

k(↑)

k(↓)

k(↑)

k(→)

X

Z
k(←) k(→)

k(↑)

k(↓)

k(↑)=(k(↑)−k(↓))/2

k(→)=(k(→)−k(←))/2

(b) After z-Boost

X

Z
k(←) k(→)

k(↑)

k(↓)

(a) Initial Frame

X

Z

k(←) k(→)

k(↑)

k(↓)

k(→)

k(↑) X

Z

k(←)

k(→)

k(↑)

k(↓)

k(→)
k(↑)

(e) x-and then z-Boost

(c) After x-Boost  (d) z-and then x-Boost

Fig. 6.2.1 Examples of sequential relativistic transformations of a tetrad of light wavevectors.  

Combination group and phase define 4D Minkowski coordinates  
(Idealized amplitude case)

from:Fig. 6.2.1
QTforCA
Unit 2 Ch.6

Future work: More efficient
mapping Lorentz-Group operators
and coordinate frames
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Combination and interference of 4-vector plane waves (Idealized polarization case)
Combination group and phase waves define 4D Minkowski coordinates
Combination group and phase waves define wave guide dynamics

Waveguide dispersion and geometry
1st-quantized cavity modes 
(And introducing 2nd-quantized cavity modes)
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2-Dimensional wave mechanics: guided waves and dispersion in the “Hall of Mirrors” 
 Any two or three-dimensional wave will be seen to exceed the c-limit when it approaches an axis obliquely. 
It happens for plane waves. The phase velocities along coordinate axes are given by 
   ux = ω   /kx ,                        uy = ω  /ky ,                        uz = ω  /kz . 

Waveguide dispersion and geometry

x

y

k
ux = ω  /kx
very fast!

ux approaches ∞ as
kx approaches 0kx
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Each of the components (kx , ky , kz ) must be less than or equal to magnitude k =√(kx2+ ky2+ kz2). 
Thus, all the component phase velocities equal or exceed the phase velocity ω  /k which is c for light! 
A water waves exceeds c if it breaks parallel to shore so 'break-line" moves infinitely fast with kx =0.

Waveguide dispersion and geometry
2-Dimensional wave mechanics: guided waves and dispersion in the “Hall of Mirrors” 
 Any two or three-dimensional wave will be seen to exceed the c-limit when it approaches an axis obliquely. 
It happens for plane waves. The phase velocities along coordinate axes are given by 
   ux = ω   /kx ,                        uy = ω  /ky ,                        uz = ω  /kz . 

x

y

k
ux = ω  /kx
very fast!

ux approaches ∞ as
kx approaches 0kx
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2-Dimensional wave mechanics: guided waves and dispersion in the “Hall of Mirrors” 
 Any two or three-dimensional wave will be seen to exceed the c-limit when it approaches an axis obliquely. 
It happens for plane waves. The phase velocities along coordinate axes are given by 
   ux = ω   /kx ,                        uy = ω  /ky ,                        uz = ω  /kz .  

Each of the components (kx , ky , kz ) must be less than or equal to magnitude k =√(kx2+ ky2+ kz2). 
Thus, all the component phase velocities equal or exceed the phase velocity ω  /k which is c for light! 
A water waves exceeds c if it breaks parallel to shore so 'break-line" moves infinitely fast with kx =0.

Consider 'Hall of Mirrors" with two parallel mirrors on either side of the x-axis be separated by a distance y=W.
The South wall will be at y=-W/2 and the North wall at y=W/2. (z-axis or "up" is into the page here.) 
The Hall should have a floor and ceiling at z=±H/2 as discussed later. Here waves move in xy-plane only. 

      

x
y= W/2

y= -W/2

k(+) γ

k(-) −γ Suppose input k-vector k(+) enters at angle +γ.
k(+) = (k(+)x, k(+)y, 0) = (k cos γ , k sin γ, 0) 

Waveguide dispersion and geometry

Fig. 6.3.1   "Hall of mirrors" model for an optical wave guide of width W.

from:Fig. 6.3.1
QTforCA
Unit 2 Ch.6

=“stellar” angle σ

2-Dimensional wave mechanics: guided waves and dispersion in the “Hall of Mirrors” 
 Any two or three-dimensional wave will be seen to exceed the c-limit when it approaches an axis obliquely. 
It happens for plane waves. The phase velocities along coordinate axes are given by 
   ux = ω   /kx ,                        uy = ω  /ky ,                        uz = ω  /kz . 

x

y

k
ux = ω  /kx
very fast!

ux approaches ∞ as
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2-Dimensional wave mechanics: guided waves and dispersion in the “Hall of Mirrors” 
 Any two or three-dimensional wave will be seen to exceed the c-limit when it approaches an axis obliquely. 
It happens for plane waves. The phase velocities along coordinate axes are given by 
   ux = ω   /kx ,                        uy = ω  /ky ,                        uz = ω  /kz .  

Each of the components (kx , ky , kz ) must be less than or equal to magnitude k =√(kx2+ ky2+ kz2). 
Thus, all the component phase velocities equal or exceed the phase velocity ω  /k which is c for light! 
A water waves exceeds c if it breaks parallel to shore so 'break-line" moves infinitely fast with kx =0.

Consider 'Hall of Mirrors" with two parallel mirrors on either side of the x-axis be separated by a distance y=W.
The South wall will be at y=-W/2 and the North wall at y=W/2. (z-axis or "up" is into the page here.) 
The Hall should have a floor and ceiling at z=±H/2 as discussed later. Here waves move in xy-plane only. 

      

x
y= W/2

y= -W/2

k(+) γ

k(-) −γ

E(r,t)  =            exp i( k(+)•r  - ω t)      +            exp i( k(-)•r  - ω t)  
            = exp i(kx cos γ +ky sin γ - ωt) + exp i(kx cos γ  - ky sin γ - ωt)
     

Suppose input k-vector k(+) enters at angle +γ.
k(+) = (k(+)x, k(+)y, 0) = (k cos γ , k sin γ, 0) 

y-reflected mirror image has k-vector k(-) at angle -γ.
k(-) = (k(-)x, k(-)y, 0) = (k cos γ , -k sin γ, 0 ). 

Waveguide dispersion and geometry

Fig. 6.3.1   "Hall of mirrors" model for an optical wave guide of width W.

from:Fig. 6.3.1
QTforCA
Unit 2 Ch.6

=“stellar” angle σ
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2-Dimensional wave mechanics: guided waves and dispersion in the “Hall of Mirrors” 
 Any two or three-dimensional wave will be seen to exceed the c-limit when it approaches an axis obliquely. 
It happens for plane waves. The phase velocities along coordinate axes are given by 
   ux = ω   /kx ,                        uy = ω  /ky ,                        uz = ω  /kz . 

Each of the components (kx , ky , kz ) must be less than or equal to magnitude k =√(kx2+ ky2+ kz2). 
Thus, all the component phase velocities equal or exceed the phase velocity ω  /k which is c for light! 
A water waves exceeds c if it breaks parallel to shore so 'break-line" moves infinitely fast with kx =0.

Consider 'Hall of Mirrors" with two parallel mirrors on either side of the x-axis be separated by a distance y=W.
The South wall will be at y=-W/2 and the North wall at y=W/2. (z-axis or "up" is into the page here.) 
The Hall should have a floor and ceiling at z=±H/2 as discussed later. Here waves move in xy-plane only. 

      

x
y= W/2

y= -W/2

k(+) γ

k(-) −γ

E(r,t)  =            exp i( k(+)•r  - ω t)      +            exp i( k(-)•r  - ω t)  
            = exp i(kx cos γ +ky sin γ - ωt) + exp i(kx cos γ  - ky sin γ - ωt)
     = exp i(kx cos γ -ωt) [ exp i(ky sin γ ) + exp i(-ky sin γ )]
     = e i(kx cos γ -ωt) [2cos(ky sin γ )]

Suppose input k-vector k(+) enters at angle +γ.
k(+) = (k(+)x, k(+)y, 0) = (k cos γ , k sin γ, 0) 

y-reflected mirror image has k-vector k(-) at angle -γ.
k(-) = (k(-)x, k(-)y, 0) = (k cos γ , -k sin γ, 0 ). 

guide phase wave and group wave

Waveguide dispersion and geometry

Fig. 6.3.1   "Hall of mirrors" model for an optical wave guide of width W.

from:Fig. 6.3.1
QTforCA
Unit 2 Ch.6

=“stellar” angle σ
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2-Dimensional wave mechanics: guided waves and dispersion in the “Hall of Mirrors” 
 Any two or three-dimensional wave will be seen to exceed the c-limit when it approaches an axis obliquely. 
It happens for plane waves. The phase velocities along coordinate axes are given by 
   ux = ω   /kx ,                        uy = ω  /ky ,                        uz = ω  /kz .  

Each of the components (kx , ky , kz ) must be less than or equal to magnitude k =√(kx2+ ky2+ kz2). 
Thus, all the component phase velocities equal or exceed the phase velocity ω  /k which is c for light! 
A water waves exceeds c if it breaks parallel to shore so 'break-line" moves infinitely fast with kx =0.

Consider 'Hall of Mirrors" with two parallel mirrors on either side of the x-axis be separated by a distance y=W.
The South wall will be at y=-W/2 and the North wall at y=W/2. (z-axis or "up" is into the page here.) 
The Hall should have a floor and ceiling at z=±H/2 as discussed later. Here waves move in xy-plane only. 

      

x
y= W/2

y= -W/2

k(+) γ

k(-) −γ
Fig. 6.3.1   "Hall of mirrors" model for an optical wave guide of width W.

E(r,t)  =            exp i( k(+)•r  - ω t)      +            exp i( k(-)•r  - ω t)  
            = exp i(kx cos γ +ky sin γ - ωt) + exp i(kx cos γ  - ky sin γ - ωt)
     = exp i(kx cos γ -ωt) [ exp i(ky sin γ ) + exp i(-ky sin γ )]
     = e i(kx cos γ -ωt) [2cos(ky sin γ )]

Suppose input k-vector k(+) enters at angle +γ.
k(+) = (k(+)x, k(+)y, 0) = (k cos γ , k sin γ, 0) 

y-reflected mirror image has k-vector k(-) at angle -γ.
k(-) = (k(-)x, k(-)y, 0) = (k cos γ , -k sin γ, 0 ). 

Assume TransverseElectric-mode.
It always has E polarized
parallel to xz plane

TE boundary conditions make group be zero on metal walls y=±W/2.
0=2 cos( k(W/2) sin γ ) ,  or: k(W/2) sin γ  = π/2 , or: sin γ = π/(kW)    

guide phase wave and group wave

Waveguide dispersion and geometry

from:Fig. 6.3.1
QTforCA
Unit 2 Ch.6

=“stellar” angle σ

2-Dimensional wave mechanics: guided waves and dispersion in the “Hall of Mirrors” 
 Any two or three-dimensional wave will be seen to exceed the c-limit when it approaches an axis obliquely. 
It happens for plane waves. The phase velocities along coordinate axes are given by 
   ux = ω   /kx ,                        uy = ω  /ky ,                        uz = ω  /kz . 
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Combination and interference of 4-vector plane waves (Idealized polarization case)
Combination group and phase waves define 4D Minkowski coordinates
Combination group and phase waves define wave guide dynamics

Waveguide dispersion and geometry
1st-quantized cavity modes
(And introducing 2nd-quantized cavity modes)
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x
y= W/2

y= -W/2

k(+) γ

k(-) −γ

E(r,t)  =            exp i( k(+)•r  - ω t)      +            exp i( k(-)•r  - ω t)  
            = exp i(kx cos γ +ky sin γ - ωt) + exp i(kx cos γ  - ky sin γ - ωt)
     = exp i(kx cos γ -ωt) [ exp i(ky sin γ ) + exp i(-ky sin γ )]
     = e i(kx cos γ -ωt) [2cos(ky sin γ )]

Suppose input k-vector k(-) enters at angle +γ.
k(+) = (k(+)x, k(+)y, 0) = (k cos γ , k sin γ, 0) 

y-reflected mirror image has k-vector k(-) at angle -γ.
k(-) = (k(-)x, k(-)y, 0) = (k cos γ , -k sin γ, 0 ). 

Assume TransverseElectric-mode.
It always has E polarized
parallel to xz plane

TE boundary conditions make group be zero on metal walls y=±W/2.
0=2 cos( k(W/2) sin γ ) ,  or: k(W/2) sin γ  = π/2 , or: sin γ = π/(kW)    guide phase wave and group wave

Condition k(+)y=k sin γ  = π /W gives dispersion function ω (kx) or  ω  vs. kx relation  

ω =kc =c(kx2 + ky2 + kz2 )1/2

Waveguide dispersion and geometry

Fig. 6.3.1   "Hall of mirrors" model for an optical wave guide of width W.

from:Fig. 6.3.1
QTforCA
Unit 2 Ch.6

=“stellar” angle σ
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x
y= W/2

y= -W/2

k(+) γ

k(-) −γ

E(r,t)  =            exp i( k(+)•r  - ω t)      +            exp i( k(-)•r  - ω t)  
            = exp i(kx cos γ +ky sin γ - ωt) + exp i(kx cos γ  - ky sin γ - ωt)
     = exp i(kx cos γ -ωt) [ exp i(ky sin γ ) + exp i(-ky sin γ )]
     = e i(kx cos γ -ωt) [2cos(ky sin γ )]

Suppose input k-vector k(-) enters at angle +γ.
k(+) = (k(+)x, k(+)y, 0) = (k cos γ , k sin γ, 0) 

y-reflected mirror image has k-vector k(-) at angle -γ.
k(-) = (k(-)x, k(-)y, 0) = (k cos γ , -k sin γ, 0 ). 

Assume TransverseElectric-mode.
It always has E polarized
parallel to xz plane

TE boundary conditions make group be zero on metal walls y=±W/2.
0=2 cos( k(W/2) sin γ ) ,  or: k(W/2) sin γ  = π/2 , or: sin γ = π/(kW)    guide phase wave and group wave

Condition k(+)y=k sin γ  = π /W gives dispersion function ω (kx) or  ω  vs. kx relation  

ω =kc =c(kx2 + ky2 + kz2 )1/2= c(kx2 + π 2/ W2)1/2 = √(c2kx2 + ωcut2)     where: ωcut = πc/W. 

Waveguide dispersion and geometry

Fig. 6.3.1   "Hall of mirrors" model for an optical wave guide of width W.

from:Fig. 6.3.1
QTforCA
Unit 2 Ch.6

=“stellar” angle σ
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x
y= W/2

y= -W/2

k(+) γ

k(-) −γ
Fig. 6.3.1   "Hall of mirrors" model for an optical wave guide of width W.

E(r,t)  =            exp i( k(+)•r  - ω t)      +            exp i( k(-)•r  - ω t)  
            = exp i(kx cos γ +ky sin γ - ωt) + exp i(kx cos γ  - ky sin γ - ωt)
     = exp i(kx cos γ -ωt) [ exp i(ky sin γ ) + exp i(-ky sin γ )]
     = e i(kx cos γ -ωt) [2cos(ky sin γ )]

Suppose input k-vector k(-) enters at angle +γ.
k(+) = (k(+)x, k(+)y, 0) = (k cos γ , k sin γ, 0) 

y-reflected mirror image has k-vector k(-) at angle -γ.
k(-) = (k(-)x, k(-)y, 0) = (k cos γ , -k sin γ, 0 ). 

Assume TransverseElectric-mode.
It always has E polarized
parallel to xz plane

TE boundary conditions make group be zero on metal walls y=±W/2.
0=2 cos( k(W/2) sin γ ) ,  or: k(W/2) sin γ  = π/2 , or: sin γ = π/(kW)    guide phase wave and group wave

Condition k(+)y=k sin γ  = π /W gives dispersion function ω (kx) or  ω  vs. kx relation  

ω =kc =c(kx2 + ky2 + kz2 )1/2= c(kx2 + π 2/ W2)1/2 = √(c2kx2 + ωcut2)     where: ωcut = πc/W. 

Fig. 6.3.2  Dispersion function for a fundamental TE wave guide mode

Waveguide dispersion and geometry

ck(+) vectorckcut-off(+)

stellar ab.
angle σ Simple step:1.Drop

perpendicular

2.Find:
tan σ~0.9

Note: k-angle σ=π/2−γ

from:Fig. 6.3.2
(modified)
QTforCA
Unit 2 Ch.6

=“stellar” angle σ
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Fig. 6.3.2 Thales geometry of cavity or waveguide mode

ck(+) vector
ckcut-off(+)

stellar ab.
angle σ

ck(+)

Group velocity
=tanhρ=sinσ

Phase velocity
c/u=cothρ=cscσ

Doppler
blue-shift b=e+ρ

Doppler
red-shift r=e−ρ

Wavevector ckx
=sinhρ=tanσ

Frequency ω
=ωcutoffcoshρ
=ωcutoffsecσ

wavelength
λx=cschρ=cotσ

σ

Waveguide dispersion and geometry
ω =kc =c√(kx2 + ky2 + kz2 )= c√(kx2 + π2/W2) = √(c2 kx2 + ωcut2)

from:Fig. 6.3.2
(modified)
QTforCA
Unit 2 Ch.6
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Fig. 6B.8 Thales geometry of cavity or waveguide mode

ck(+) vector
ckcut-off(+)

stellar ab.
angle σ

ck(+)

Group velocity
=tanhρ=sinσ

Phase velocity
c/u=cothρ=cscσ

Doppler
blue-shift b=e+ρ

Doppler
red-shift r=e−ρ

Wavevector ckx
=sinhρ=tanσ

Frequency ω
=ωcutoffcoshρ
=ωcutoffsecσ

wavelength
λx=cschρ=cotσ

σ

Waveguide dispersion and geometry

(Lecture 28 ends here)
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Fig. 6.3.4 Right moving guide wave with σ = 45°, Vphase=√2c, Vgroup=c/√2.

Waveguide dispersion and geometry

from:Fig. 6.3.4
QTforCA
Unit 2 Ch.6

Rare case!
Aberration angle 
is σ=45°
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Fig. 6.3.4 Right moving guide wave with σ = 45°, Vphase=√2c, Vgroup=c/√2.

Waveguide dispersion and geometry

from:Fig. 6.3.4
QTforCA
Unit 2 Ch.6

Rare case!
Aberration angle 
is σ=45°

k

σ

ugroup uphase
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Waveguide dispersion and geometry

from:Fig. 6.3.5
QTforCA
Unit 2 Ch.6

ω =kc = √(c2 kx
2 + ωcut

2)
kx = √(ω 2/c2 - π2/W2 )

Fig. 6.3.5 Guide waves. (a)Higher frequency case: σ = 30°, ux (phase)=c√3/2c, ux (group)=c2/√3.
 	
 	
 	
      (b)Lower frequency case:   σ = 60°, ux (phase)= 2c,       ux (group)=c/2

 ux (phase) = ω /kx     =  cω  /√(ω 2 - π 2c2/W2 ) 
                   = c/cos γ = c/sin σ = c csc σ
                                       
ux (group) = dω /dkx  =  ckx/√(kx

2 + π 2/W2) 
= c (ω 2 - π 2c2/W2 )1/2/ω = c cos γ = c sin σ 

k

σ

k

ugroup uphase

ugroup uphase
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Combination and interference of 4-vector plane waves (Idealized polarization case)
Combination group and phase waves define 4D Minkowski coordinates
Combination group and phase waves define wave guide dynamics

Waveguide dispersion and geometry
1st-quantized cavity modes
(And introducing 2nd-quantized cavity modes)
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ω

κ=ck

ny=3

ny=2

ny=1

nx=1 2 3 4 5

Quantum level
spectral bands

nx=1

nx=2

nx=3

Hall of Mirrors capped by a pair of doors at x=0 and x=L becomes a wave cavity of length L.
The doors demand the wave electric field be zero at x-boundaries as well as along the walls. New boundary conditions:

     kx= k cos γ  = nx π  /L (nx  = 1, 2,...) 
    
Frequency bands are broken into discrete "quantized" values ω nx ny , one for each pair of integers or "quantum numbers" nx  and ny .

    ω nx ny  =kc = c√(kx
2 + ky

2 + kz
2  )= c√(nx

2π 2/L2 + ny
2π 2/W2 ) 

Cavity eigenfunctions and eigenvalues

Fig. 6.3.6 Cavity mode dispersion diagram showing overlapping and discrete ω and k values.

	
 Fig. 6.3.7 Cavity modes for three lowest quantum numbers

from:Fig. 6.3.6-7
QTforCA
Unit 2 Ch.6

W
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N
1
=2

red photons

Quantized Amplitude Counting “photon” number
Planck’s relation E=Nhυ began as a tenative axiom to explain low-T light. Then he
tried to disavow it! Einstein picked it up in his 1905 paper. Since then its use has
grown enormously and continues to amaze, amuse (or bewilder) all who study it.

m=1 m=2 m=3 m=4

A current view is that it represents the quantization of optical field amplitude. We
picture this below as N-photon wave states for each box-mode of m wave kinks.
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QQuuaannttiizzeedd WWaavveennuummbbeerr ((““kkiinnkk”” oorr mmoommeennttuumm nnuummbbeerr))

Quantum field definitions have been called
“2nd quantization” or “wave-waves”

NOTE: We’re using “false-color” here.

These are the fundamental “zero-point” or “vacuum” levels

www.uark.edu/ua/pirelli/php/quantized_1.php
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red photons

Quantized Amplitude Counting “photon” number
Planck’s relation E=Nhυ began as a tenative axiom to explain low-T light. Then he
tried to disavow it! Einstein picked it up in his 1905 paper. Since then its use has
grown enormously and continues to amaze, amuse (or bewilder) all who study it.

m=1 m=2 m=3 m=4

A current view is that it represents the quantization of optical field amplitude. We
picture this below as N-photon wave states for each box-mode of m wave kinks.
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QQuuaannttiizzeedd WWaavveennuummbbeerr ((““kkiinnkk”” oorr mmoommeennttuumm nnuummbbeerr))

Quantum field definitions have been called
“2nd quantization” or “wave-waves”

NOTE: We’re using “false-color” here.

These are the fundamental “zero-point” or “vacuum” levels

These are the 1st excited or fu
ndamental tra

nsitio
n levels

www.uark.edu/ua/pirelli/php/quantized_1.php
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A strength (and also, weakness) of CW axioms (1.1-2) is that they are symmetry principles 

due to the Lorentz-Poincare isotropy of space-time (invariance to space-time translation                 in the vacuum). 

Operator     has plane wave eigenfunctions                                   with roots-of-unity eigenvalues                            .
   
                                                          (5.18a)                                                                (5.18b)

This also applies to 2-part or “2-particle” product states                                    where exponents add (k,ω)-values of 

each constituent to K=k1+k2 and Ω=ω1+ω2, and            -eigenvalues also have that form                         . 

Matrix                             of T-symmetric evolution U is zero unless                       and                                 . 
   

T(δ ,τ )

T ψ k ,ω = Aei(kx−ω t) ei(k⋅δ −ω⋅τ )

T ψ k ,ω = ei(k ⋅δ −ω ⋅τ ) ψ k ,ωψ k ,ω T† = ψ k ,ω e−i(k ⋅δ −ω ⋅τ )

ΨK ,Ω =ψ k1,ω1
ψ k2 ,ω2

T(δ ,τ ) ei(K ⋅δ −Ω⋅τ )

′Ψ ′K , ′Ω U ΨK ,Ω ′K = ′k1 + ′k2 = K ′Ω = ′ω1 + ′ω2 = Ω

′Ψ ′K , ′Ω U ΨK ,Ω = ′Ψ ′K , ′Ω T
†(δ ,τ )UT(δ ,τ ) ΨK ,Ω        (if UT = TU for all δ  and τ )

                       = e− i( ′K ⋅δ − ′Ω ⋅τ )ei(K⋅δ −Ω⋅τ ) ′Ψ ′K , ′Ω U ΨK ,Ω = 0  unless: ′K = K  and: ′Ω =Ω

Lorentz symmetry effects
How it makes momentum and energy be conserved

That’s momentum (P=hK) and energy (E=hW) conservation!
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