Relativity of transverse waves and 4-vectors

(Ch. 2-5 of CMwBang-Unit 8 Ch. 6 of QTforCA Unit 2)
Reviewing "Relawavity" geometry
Reviewing the stellar aberration angle σ vs. rapidity ρ
Pattern recognition: "Occam's Sword"
Introducing per-spacetime 4 -vector $\left(\omega_{0}, \omega_{x}, \omega_{y}, \omega_{z}\right)=\left(\omega_{, c k}, c k_{y}, c k_{z}\right)$ transformation
More details of Lorentz boost of North-South-East-West plane-wave 4-vectors ($\omega_{0}, \omega_{x}, \omega_{y}, \omega_{z}$)
Thales-like construction of Lorentz boost in 2D and 3D
The spectral ellipsoid
Combination and interference of 4-vector plane waves (Idealized polarization case)
Combination group and phase waves define 4D Minkowski coordinates
Combination group and phase waves define wave guide dynamics
Waveguide dispersion and geometry
$1^{\text {st }}$-quantized cavity modes
(And introducing $2^{\text {nd }}$-quantized cavity modes)
Lorentz symmetry effects
How it makes momentum and energy be conserved

Reviewing "Relawavity" geometry
Reviewing the stellar aberration angle σ vs. rapidity ρ Pattern recognition: "Occam's Sword"

$$
\varrho=0.693
$$

$$
\sigma=0.644=36.870^{\circ}
$$

 ${ }^{11} / \mathrm{c}=\operatorname{Btanh}(\varrho) \quad$ Phase Velocity

Rest Energy

$<\quad$ DeBroglie Wavelength $\lambda / \mathrm{c}=\operatorname{Bcsch}(\rho)$

Coordinate angle $v=\operatorname{atan}(u / c)$

Stellar aberration angle $\sigma=\operatorname{asin}(u / \mathcal{c})$

Reviewing "Relawavity" geometry Energy (E)

time	$r_{\text {Dopp }}$	$v_{\text {group }}$	$\tau_{\text {phase }}$	$v_{\text {phase }}$	$\tau_{\text {group }}$	$b_{\text {Dopp }}$	u / c	c / u
space		$\kappa_{\text {phase }}$	$\lambda_{\text {group }}$	$\kappa_{\text {group }}$	$\lambda_{\text {phase }}$		$V_{\text {group }} / c$	$V_{\text {phase }} / c$
rapidity ρ	$e^{-\rho}$	$\sinh \rho$	$\operatorname{sech} \rho$	$\cosh \rho$	$\operatorname{csch} \rho$	$e^{+\rho}$	$\tanh \rho$	$\operatorname{coth} \rho$
stellar $\forall \sigma$		$\tan \sigma$	$\cos \sigma$	$\sec \sigma$	$\cot \sigma$		$\sin \sigma$	$\csc \sigma$
$Q M$		p	$-L$	H	$\lambda_{\text {DeB }}$		$d \omega / d k$	ω / k
Old								
Fashioned Formulas	$\sqrt{\frac{1-\frac{u}{c}}{1+\frac{u}{c}}} \frac{1}{\sqrt{\frac{c^{2}}{u^{2}}-1}}-\sqrt{1-\frac{u^{2}}{c^{2}}}$		$\frac{1}{\sqrt{1-\frac{u^{2}}{c^{2}}}} \sqrt{\frac{c^{2}}{u^{2}}}-1$		$\sqrt{1+\frac{u}{c}}$	$\frac{u}{1-\frac{u}{c}}$	$\frac{c}{c}$	u

Stellar aberration angle $\sigma=\operatorname{asin}(\mathrm{u} / \mathrm{c})$
Coordinate angle $v=a \tan (u / c)$

DeBroglie Wavelength
$\lambda / \mathrm{c}=\operatorname{Bcsch}(\varrho)$

```
Reviewing "Relawavity" geometry
Reviewing the stellar aberration angle \(\sigma\) vs. rapidity \(\rho\)
Pattern recognition: "Occam's Sword"
```


Fig. 5.5
Relativistic wave mechanics geometry (a) Overview.
(b-d) Details of contacting tangents.
from:Fig. 8.5.5 QTforCA
Unit 8 Ch. 5
(a) Geometry of relativistic transformation (b) Tangent geometry $(u / c=3 / 5)$
and wave based mechanics

(c) Basic construction giveñ $\bar{u} / \mathrm{C}=45 / 53$

(d) $u / c=3 / 5$

Fig. 5.5
Relativistic wave mechanics geometry. (a) Overview.
(b-d) Details of contacting tangents.

Fig. 5.10 CW cosmic speedometer.
Geometry of boosted counter-propagating waves.

Fig. 5.10 CW cosmic speedometer.
Geometry of boosted counter-propagating waves.

Introducing per-spacetime 4-vector $\left(\omega_{0}, \omega_{x}, \omega_{y}, \omega_{z}\right)=\left(\omega, c k_{x}, c k_{y}, c k_{z}\right)$ transformation
More details of Lorentz boost of North-South-East-West plane-wave 4-vectors ($\omega_{0}, \omega_{x}, \omega_{y}, \omega_{z}$)
Thales-like construction of Lorentz boost in 2D and 3D
The spectral ellipsoid

Per-spacetime 4-vector $\left(\omega_{0}, \omega_{x}, \omega_{y}, \omega_{z}\right)=\left(\omega, c k_{x}, c k_{y}, c k_{z}\right)$ transformation (hishthase fanc)
(a) Laser frame ω_{0}

Suppose starlight in lighthouse frame is straight down x-axis : $\left(\omega_{\downarrow}, c k_{x \downarrow}, c k_{y \downarrow}, c k_{y \downarrow}\right)=\left(\omega_{0},-\omega_{0}, 0,0\right)$

Per-spacetime 4-vector $\left(\omega_{0}, \omega_{x}, \omega_{y}, \omega_{z}\right)=\left(\omega, c k_{x}, c k_{y}, c k_{z}\right)$ transformation (u, imflocose fime)
(a) Laser frame ω_{0}

Suppose starlight in lighthouse frame is straight down x-axis : $\left(\omega_{\downarrow}, c k_{x \downarrow}, c k_{y \downarrow}, c k_{z \downarrow}\right)=\left(\omega_{0},-\omega_{0}, 0,0\right)$

Per-spacetime 4-vector $\left(\omega_{0}, \omega_{x}, \omega_{y}, \omega_{z}\right)=\left(\omega, c k_{x}, c k_{y}, c k_{z}\right)$ transformation

(a) Laser frame ω_{0}

Suppose starlight in lighthouse frame is straight down x-axis : $\left(\omega_{\downarrow}, c k_{x \downarrow}, c k_{y \downarrow}, c k_{z \downarrow}\right)=\left(\omega_{0},-\omega_{0}, 0,0\right)$

Per-spacetime 4-vector $\left(\omega_{0}, \omega_{x}, \omega_{y}, \omega_{z}\right)=\left(\omega, c k_{x}, c k_{y}, c k_{z}\right)$ transformation (rishlames fanc)
(a) Laser frame ω_{0}

Suppose starlight in lighthouse frame is straight down x-axis : $\left(\omega_{\downarrow}, c k_{x \downarrow}, c k_{y \downarrow}, c k_{z \downarrow}\right)=\left(\omega_{0},-\omega_{0}, 0,0\right)$

Per-spacetime 4-vector $\left(\omega_{0}, \omega_{x}, \omega_{y}, \omega_{z}\right)=\left(\omega, c k_{x}, c k_{y}, c k_{z}\right)$ transformation

Suppose starlight in lighthouse frame is straight down x-axis : $\left(\omega_{\downarrow}, c k_{x \downarrow}, c k_{y \downarrow}, c k_{z \downarrow}\right)=\left(\omega_{0},-\omega_{0}, 0,0\right)$
$+\rho_{z}$-rapidity ship frame sees starlight Lorentz transformed to : $\left(\omega_{\downarrow}^{\prime}, c k_{x \downarrow}^{\prime}, c k_{y \downarrow}^{\prime}, c k_{z \downarrow}^{\prime}\right)=\left(\omega_{0} \cosh \rho_{z},-\omega_{0}, 0,-\omega_{0} \sinh \rho_{z}\right)$

Per-spacetime 4-vector $\left(\omega_{0}, \omega_{x}, \omega_{y}, \omega_{z}\right)=\left(\omega, c k_{x}, c k_{y}, c k_{z}\right)$ transformation

Suppose starlight in lighthouse frame is straight down x-axis : $\left(\omega_{\downarrow}, c k_{x \downarrow}, c k_{y \downarrow}, c k_{z \downarrow}\right)=\left(\omega_{0},-\omega_{0}, 0,0\right)$
$+\rho_{z}$-rapidity ship frame sees starlight Lorentz transformed to : $\left(\omega_{\downarrow}^{\prime}, c k_{x \downarrow}^{\prime}, c k_{y \downarrow}^{\prime}, c k_{z \downarrow}^{\prime}\right)=\left(\omega_{0} \cosh \rho_{z},-\omega_{0}, 0,-\omega_{0} \sinh \rho_{z}\right)$

$$
\left(\begin{array}{c}
\omega_{\downarrow}^{\prime} \\
c k_{x \downarrow}^{\prime} \\
c k_{y \downarrow}^{\prime} \\
c k_{z \downarrow}^{\prime}
\end{array}\right)=\left(\begin{array}{cccc}
\cosh \rho_{z} & \cdot & \cdot & -\sinh \rho_{z} \\
\cdot & 1 & \cdot & \cdot \\
\cdot & \cdot & 1 & \cdot \\
-\sinh \rho_{z} & \cdot & \cdot & \cosh \rho_{z}
\end{array}\right)\left(\begin{array}{c}
\omega_{\downarrow} \\
c k_{x \downarrow} \\
c k_{y \downarrow} \\
c k_{z \downarrow}
\end{array}\right)=\left(\begin{array}{cccc}
\cosh \rho_{z} & \cdot & \cdot & -\sinh \rho_{z} \\
\cdot & 1 & \cdot & \cdot \\
\cdot & \cdot & 1 & \cdot \\
-\sinh \rho_{z} & \cdot & \cdot & \cosh \rho_{z}
\end{array}\right)\left(\begin{array}{c}
\omega_{0} \\
-\omega_{0} \\
0 \\
0
\end{array}\right)=\left(\begin{array}{c}
\omega_{0} \cosh \rho_{z} \\
-\omega_{0} \\
0 \\
-\omega_{0} \sinh \rho_{z}
\end{array}\right)
$$

Per-spacetime 4-vector $\left(\omega_{0}, \omega_{x}, \omega_{y}, \omega_{z}\right)=\left(\omega, c k_{x}, c k_{y}, c k_{z}\right)$ transformation

Suppose starlight in lighthouse frame is straight down x-axis : $\left(\omega_{\downarrow}, c k_{x \downarrow}, c k_{y \downarrow}, c k_{z \downarrow}\right)=\left(\omega_{0},-\omega_{0}, 0,0\right)$
$+\rho_{z}$-rapidity ship frame sees starlight Lorentz transformed to : $\left(\omega_{\downarrow}^{\prime}, c k_{x \downarrow}^{\prime}, c k_{y \downarrow}^{\prime}, c k_{z \downarrow}^{\prime}\right)=\left(\omega_{0} \cosh \rho_{z},-\omega_{0}, 0,-\omega_{0} \sinh \rho_{z}\right)$

$$
\left(\begin{array}{c}
\omega_{\downarrow}^{\prime} \\
c k_{x \downarrow}^{\prime} \\
c k_{y \downarrow}^{\prime} \\
c k_{z \downarrow}^{\prime}
\end{array}\right)=\left(\begin{array}{cccc}
\cosh \rho_{z} & \cdot & \cdot & -\sinh \rho_{z} \\
\cdot & 1 & \cdot & \cdot \\
\cdot & \cdot & 1 & \cdot \\
-\sinh \rho_{z} & \cdot & \cdot & \cosh \rho_{z}
\end{array}\right)\left(\begin{array}{c}
\omega_{\downarrow} \\
c k_{x \downarrow} \\
c k_{y \downarrow} \\
c k_{z \downarrow}
\end{array}\right)=\left(\begin{array}{cccc}
\cosh \rho_{z} & \cdot & \cdot & -\sinh \rho_{z} \\
\cdot & 1 & \cdot & \cdot \\
\cdot & \cdot & 1 & \cdot \\
-\sinh \rho_{z} & \cdot & \cdot & \cosh \rho_{z}
\end{array}\right)\left(\begin{array}{c}
\omega_{0} \\
-\omega_{0} \\
0 \\
0
\end{array}\right)=\left(\begin{array}{c}
\omega_{0} \cosh \rho_{z} \\
-\omega_{0} \\
0 \\
-\omega_{0} \sinh \rho_{z}
\end{array}\right)
$$

After the 4 -vector transformation, $\omega_{0}=\omega_{\downarrow}$ is transverse Doppler shifted to $\omega_{0} \cosh \rho_{z}$, while $c k_{z}=0$ becomes $c k_{z}{ }^{\prime}=-\omega_{0} \sinh \rho_{z}$.
(The x-component is unchanged: $c k x^{\prime}=-\omega_{0}=c k x$ and so is y-component: $c k y^{\prime}=-\omega_{0}=c k y$.)

Per-spacetime 4-vector $\left(\omega_{0}, \omega_{x}, \omega_{y}, \omega_{z}\right)=\left(\omega, c k_{x}, c k_{y}, c k_{z}\right)$ transformation

Suppose starlight in lighthouse frame is straight down x-axis : $\left(\omega_{\downarrow}, c k_{x \downarrow}, c k_{y \downarrow}, c k_{z \downarrow}\right)=\left(\omega_{0},-\omega_{0}, 0,0\right)$

$+\rho_{z}$-rapidity ship frame sees starlight Lorentz transformed to : $\left(\omega_{\downarrow}^{\prime}, c k_{x \downarrow}^{\prime}, c k_{y \downarrow}^{\prime}, c k_{z \downarrow}^{\prime}\right)=\left(\omega_{0} \cosh \rho_{z},-\omega_{0}, 0,-\omega_{0} \sinh \rho_{z}\right)$

$$
\left(\begin{array}{c}
\omega_{\downarrow}^{\prime} \\
c k_{x \downarrow}^{\prime} \\
c k_{y \downarrow}^{\prime} \\
c k_{z \downarrow}^{\prime}
\end{array}\right)=\left(\begin{array}{cccc}
\cosh \rho_{z} & \cdot & \cdot & -\sinh \rho_{z} \\
\cdot & 1 & \cdot & \cdot \\
\cdot & \cdot & 1 & \cdot \\
-\sinh \rho_{z} & \cdot & \cdot & \cosh \rho_{z}
\end{array}\right)\left(\begin{array}{c}
\omega_{\downarrow} \\
c k_{x \downarrow} \\
c k_{y \downarrow} \\
c k_{z \downarrow}
\end{array}\right)=\left(\begin{array}{cccc}
\cosh \rho_{z} & \cdot & \cdot & -\sinh \rho_{z} \\
\cdot & 1 & \cdot & \cdot \\
\cdot & \cdot & 1 & \cdot \\
-\sinh \rho_{z} & \cdot & \cdot & \cosh \rho_{z}
\end{array}\right)\left(\begin{array}{c}
\omega_{0} \\
-\omega_{0} \\
0 \\
0
\end{array}\right)=\left(\begin{array}{c}
\omega_{0} \cosh \rho_{z} \\
-\omega_{0} \\
0 \\
-\omega_{0} \sinh \rho_{z}
\end{array}\right)=\left(\begin{array}{c}
\omega_{0} \sec \sigma \\
-\omega_{0} \\
0 \\
-\omega_{0} \tan \sigma
\end{array}\right)
$$

After the 4-vector transformation, $\omega_{0}=\omega_{\downarrow}$ is transverse Doppler shifted to $\omega_{0} \cosh \rho_{z}$, while $c k_{z}=0$ becomes $c k_{z^{\prime}}=-\omega_{0} \sinh \rho_{z}$. (The x-component is unchanged: $c k x^{\prime}=-\omega_{0}=c k x$ and so is y-component: $c k y^{\prime}=-\omega_{0}=c k y$.)

Per-spacetime 4-vector $\left(\omega_{0}, \omega_{x}, \omega_{y}, \omega_{z}\right)=\left(\omega, c k_{x}, c k_{y}, c k_{z}\right)$ transformation

Suppose starlight in lighthouse frame is straight down x-axis : $\left(\omega_{\downarrow}, c k_{x \downarrow}, c k_{y \downarrow}, c k_{z \downarrow}\right)=\left(\omega_{0},-\omega_{0}, 0,0\right)$
$+\rho_{z}$-rapidity ship frame sees starlight Lorentz transformed to : $\left(\omega_{\downarrow}^{\prime}, c k_{x \downarrow}^{\prime}, c k_{y \downarrow}^{\prime}, c k_{z \downarrow}^{\prime}\right)=\left(\omega_{0} \cosh \rho_{z},-\omega_{0}, 0,-\omega_{0} \sinh \rho_{z}\right)$

$$
\left(\begin{array}{c}
\omega_{\downarrow}^{\prime} \\
c k_{x \downarrow}^{\prime} \\
c k_{y \downarrow}^{\prime} \\
c k_{z \downarrow}^{\prime}
\end{array}\right)=\left(\begin{array}{cccc}
\cosh \rho_{z} & \cdot & \cdot & -\sinh \rho_{z} \\
\cdot & 1 & \cdot & \cdot \\
\cdot & \cdot & 1 & \cdot \\
-\sinh \rho_{z} & \cdot & \cdot & \cosh \rho_{z}
\end{array}\right)\left(\begin{array}{c}
\omega_{\downarrow} \\
c k_{x \downarrow} \\
c k_{y \downarrow} \\
c k_{z \downarrow}
\end{array}\right)=\left(\begin{array}{cccc}
\cosh \rho_{z} & \cdot & \cdot & -\sinh \rho_{z} \\
\cdot & 1 & \cdot & \cdot \\
\cdot & \cdot & 1 & \cdot \\
-\sinh \rho_{z} & \cdot & \cdot & \cosh \rho_{z}
\end{array}\right)\left(\begin{array}{c}
\omega_{0} \\
-\omega_{0} \\
0 \\
0
\end{array}\right)=\left(\begin{array}{c}
\omega_{0} \cosh \rho_{z} \\
-\omega_{0} \\
0 \\
-\omega_{0} \sinh \rho_{z}
\end{array}\right)=\left(\begin{array}{c}
\omega_{0} \sec \sigma \\
-\omega_{0} \\
0 \\
-\omega_{0} \tan \sigma
\end{array}\right)
$$

After the 4-vector transformation, $\omega_{0}=\omega_{\downarrow}$ is transverse Doppler shifted to $\omega_{0} \cosh \rho_{z}$, while $c k z=0$ becomes $c k z^{\prime}=-\omega_{0} \sinh \rho_{z}$. (The x-component is unchanged: $c k x^{\prime}=-\omega_{0}=c k x$ and so is y-component: $c k y^{\prime}=-\omega_{0}=c k y$.)

Recall hyperbolic invariant to Lorentz transform: $\omega^{2}-c^{2} k^{2}=\omega^{\prime 2}-c^{2} k^{\prime 2}$ ($=0$ for 1-CW light) The 4-vector form of this is: $\omega^{2}-c^{2} \mathbf{k} \cdot \mathbf{k}=\omega^{\prime 2}-c^{2} \mathbf{k}^{\prime} \cdot \mathbf{k}^{\prime}(=0 \quad$ " \quad ")

from: Fig. 8.5.10 (modified)
QTforCA
Unit 8 Ch. 5

If starlight is horizontal right-moving $\mathbf{k} \rightarrow$ wave then ship going \mathbf{u} along z-axis sees :
$\left(\begin{array}{c}\omega_{\rightarrow}^{\prime} \\ c k_{x \rightarrow}^{\prime} \\ c k_{y \rightarrow}^{\prime} \\ c k_{z \rightarrow}^{\prime}\end{array}\right)=\left(\begin{array}{cccc}\cosh \rho_{z} & \cdot & \cdot & -\sinh \rho_{z} \\ \cdot & 1 & \cdot & \cdot \\ \cdot & \cdot & 1 & \cdot \\ -\sinh \rho_{z} & \cdot & \cdot & \cosh \rho_{z}\end{array}\right)\left(\begin{array}{c}\omega_{0} \\ 0 \\ 0 \\ +\omega_{0}\end{array}\right)=\omega_{0}\left(\begin{array}{c}\cosh \rho_{z}-\sinh \rho_{z} \\ 0 \\ 0 \\ -\sinh \rho_{z}+\cosh \rho_{z}\end{array}\right)=\left(\begin{array}{c}\omega_{0} e^{-\rho_{z}} \\ 0 \\ 0 \\ -\omega_{0} e^{-\rho_{z}}\end{array}\right)$

If starlight is horizontal left-moving $\mathbf{k} \leftarrow$ wave then ship going \mathbf{u} along z-axis sees :

$$
\left(\begin{array}{c}
\omega_{\leftarrow}^{\prime} \leftarrow \\
c k_{x \leftarrow}^{\prime} \\
c k_{y \leftarrow}^{\prime} \\
c k_{z \leftarrow}^{\prime}
\end{array}\right)=\left(\begin{array}{cccc}
\cosh \rho_{z} & \cdot & \cdot & -\sinh \rho_{z} \\
\cdot & 1 & \cdot & \cdot \\
\cdot & \cdot & 1 & \cdot \\
-\sinh \rho_{z} & \cdot & \cdot & \cosh \rho_{z}
\end{array}\right)\left(\begin{array}{c}
\omega_{0} \\
0 \\
0 \\
-\omega_{0}
\end{array}\right)=\omega_{0}\left(\begin{array}{c}
\cosh \rho_{z}+\sinh \rho_{z} \\
0 \\
0 \\
-\sinh \rho_{z}-\cosh \rho_{z}
\end{array}\right)=\left(\begin{array}{c}
\omega_{0} e^{+\rho_{z}} \\
0 \\
0 \\
-\omega_{0} e^{+\rho_{z}}
\end{array}\right)
$$

The usual longitudinal Doppler blue shifts $e^{+p_{z}}$ or Doppler red shifts $e^{-\rho_{z}}$ appear on both k-vector and frequency ω_{0}.

More details of Lorentz boost of North-South-East-West plane-wave 4-vectors ($\omega_{0}, \omega_{x}, \omega_{y}, \omega_{z}$) Thales-like construction of Lorentz boost in 2D and 3D

The spectral ellipsoid

South starlight in lighthouse frame is straight down x-axis : $\left(\omega_{\downarrow}, c k_{x \downarrow}, c k_{y \downarrow}, c k_{z \downarrow}\right)=\left(\omega_{0},-\omega_{0}, 0,0\right)$
$+\rho_{z}$-rapidity ship frame sees starlight Lorentz transformed to : $\left(\omega_{\downarrow}^{\prime}, c k_{x \downarrow}^{\prime}, c k_{y \downarrow}^{\prime}, c k_{z \downarrow}^{\prime}\right)=\left(\omega_{0} \cosh \rho_{z},-\omega_{0}, 0,-\omega_{0} \sinh \rho_{z}\right)$

$$
\left(\begin{array}{c}
\omega_{\downarrow}^{\prime} \\
c k_{x \downarrow}^{\prime} \\
c k_{y \downarrow}^{\prime} \\
c k_{z \downarrow}^{\prime}
\end{array}\right)=\left(\begin{array}{cccc}
\cosh \rho_{z} & \cdot & \cdot & -\sinh \rho_{z} \\
\cdot & 1 & \cdot & \cdot \\
\cdot & \cdot & 1 & \cdot \\
-\sinh \rho_{z} & \cdot & \cdot & \cosh \rho_{z}
\end{array}\right)\left(\begin{array}{c}
\omega_{\downarrow} \\
c k_{x \downarrow} \\
c k_{y \downarrow} \\
c k_{z \downarrow}
\end{array}\right)=\left(\begin{array}{cccc}
\cosh \rho_{z} & \cdot & \cdot & -\sinh \rho_{z} \\
\cdot & 1 & \cdot & \cdot \\
\cdot & \cdot & 1 & \cdot \\
-\sinh \rho_{z} & \cdot & \cdot & \cosh \rho_{z}
\end{array}\right)\left(\begin{array}{c}
\omega_{0} \\
-\omega_{0} \\
0 \\
0
\end{array}\right)=\left(\begin{array}{c}
\omega_{0} \cosh \rho_{z} \\
-\omega_{0} \\
0 \\
-\omega_{0} \sinh \rho_{z}
\end{array}\right)=\left(\begin{array}{c}
\omega_{0} \sec \sigma \\
-\omega_{0} \\
0 \\
-\omega_{0} \tan \sigma
\end{array}\right)
$$

More details of Lorentz boost of North-South-East-West plane-wave 4-vectors ($\omega_{0}, \omega_{x}, \omega_{y}, \omega_{z}$)

For shlp going $u=c$ tanh ρ along z-axis

West starlight $\left(\omega_{0}, 0,0,-\omega_{0}\right)$ is blue shifted by $\mathrm{e}^{+\rho}=\cosh \rho+\sinh \rho$

$$
\left(\begin{array}{c}
\omega_{\leftarrow}^{\prime} \\
c k_{x \leftarrow}^{\prime} \\
c k_{y \leftarrow}^{\prime} \\
c k_{z \leftarrow}^{\prime}
\end{array}\right)=\omega_{0}\left(\begin{array}{c}
\cosh \rho_{z}+\sinh \rho_{z} \\
0 \\
0 \\
-\sinh \rho_{z}-\cosh \rho_{z}
\end{array}\right)=\left(\begin{array}{c}
\omega_{0} e^{+\rho_{z}} \\
0 \\
0 \\
-\omega_{0} e^{+\rho_{z}}
\end{array}\right)
$$

Blue shift factor is $\mathrm{e}^{+\rho}=\cosh \rho+\sinh \rho=\sec \sigma+\tan \sigma$
and East starlight $\left(\omega_{0}, 0,0,+\omega_{0}\right)$ is red shifted by $\mathrm{e}^{-\rho}=\cosh \rho-\sinh \rho$

$$
\left(\begin{array}{c}
\omega_{\rightarrow}^{\prime} \\
c k_{x \rightarrow}^{\prime} \\
c k_{y \rightarrow}^{\prime} \\
c k_{z \rightarrow}^{\prime}
\end{array}\right)=\omega_{0}\left(\begin{array}{c}
\cosh \rho_{z}-\sinh \rho_{z} \\
0 \\
0 \\
-\sinh \rho_{z}+\cosh \rho_{z}
\end{array}\right)=\left(\begin{array}{c}
\omega_{0} e^{-\rho_{z}} \\
0 \\
0 \\
-\omega_{0} e^{-\rho_{z}}
\end{array}\right)
$$

Red shift factor is $\mathrm{e}^{-\rho}=\cosh \rho-\sinh \rho=\sec \sigma-\tan \sigma$

More details of Lorentz boost of North-South-East-West plane-wave 4-vectors ($\omega_{0}, \omega_{x}, \omega_{y}, \omega_{z}$) Thales-like construction of Lorentz boost in 2D and 3D

The spectral ellipsoid

Faster Lorentz boost of

 North-South-East-West plane-wave 4-vectors $\left(\omega_{0}, \omega_{x}, \omega_{y}, \omega_{z}\right)$Lorentz boost by $\sigma=60^{\circ}$ or $\mathrm{e}^{+\rho}=2+\sqrt{ } 3$

Faster Lorentz boost of

 North-South-East-West plane-wave 4-vectors $\left(\omega_{0}, \omega_{x}, \omega_{y}, \omega_{z}\right)$Lorentz boost by $\sigma=60^{\circ}$ or $\mathrm{e}^{+\rho}=2+\sqrt{ } 3$

Faster Lorentz boost of

 North-South-East-West plane-wave 4-vectors $\left(\omega_{0}, \omega_{x}, \omega_{y}, \omega_{z}\right)$Lorentz boost by $\sigma=60^{\circ}$ or $\mathrm{e}^{+\rho}=2+\sqrt{ } 3$

Let lab starlight ray at polar angle θ have $\mathbf{k} \uparrow \theta=\omega_{0}(1, \cos \theta, 0,-\sin \theta)$. Then ship going \mathbf{u} along z-axis sees :

$$
\left(\begin{array}{c}
\omega_{\uparrow \theta}^{\prime} \\
c k_{x}^{\prime} \uparrow \theta \\
c k_{y}^{\prime} \uparrow \theta \\
c k_{z}^{\prime} \uparrow \theta
\end{array}\right)=\left(\begin{array}{cccc}
\cosh \rho_{z} & \cdot & \cdot & -\sinh \rho_{z} \\
\cdot & 1 & \cdot & \cdot \\
\cdot & \cdot & 1 & \cdot \\
-\sinh \rho_{z} & \cdot & \cdot & \cosh \rho_{z}
\end{array}\right)\left(\begin{array}{c}
\omega_{0} \\
\omega_{0} \cos \theta \\
0 \\
-\omega_{0} \sin \theta
\end{array}\right)=\omega_{0}\left(\begin{array}{c}
\cosh \rho_{z}+\sinh \rho_{z} \sin \theta \\
\cos \theta \\
0 \\
-\sinh \rho_{z}-\cosh \rho_{z} \sin \theta
\end{array}\right)=\omega_{0}\left(\begin{array}{c}
\sec \sigma+\tan \sigma \sin \theta \\
\cos \theta \\
0 \\
-\tan \sigma-\sec \sigma \sin \theta
\end{array}\right)
$$

Faster Lorentz boost of North-South-East-West plane-wave 4-vectors $\left(\omega_{0}, \omega_{x}, \omega_{y}, \omega_{z}\right)$
Lorentz boost by $\sigma=60^{\circ}$ or $\mathrm{e}^{+\rho}=2+\sqrt{ } 3$

Let lab starlight ray at polar angle θ have $\mathbf{k} \uparrow \theta=\omega_{0}(1, \cos \theta, 0,-\sin \theta)$. Then ship going \mathbf{u} along z-axis sees :

$$
\left(\begin{array}{c}
\omega_{\uparrow \theta}^{\prime} \\
c k_{x}^{\prime} \uparrow \theta \\
c k_{y}^{\prime} \uparrow \theta \\
c k_{z}^{\prime} \uparrow \theta
\end{array}\right)=\left(\begin{array}{cccc}
\cosh \rho_{z} & \cdot & \cdot & -\sinh \rho_{z} \\
\cdot & 1 & \cdot & \cdot \\
\cdot & \cdot & 1 & \cdot \\
-\sinh \rho_{z} & \cdot & \cdot & \cosh \rho_{z}
\end{array}\right)\left(\begin{array}{c}
\omega_{0} \\
\omega_{0} \cos \theta \\
0 \\
-\omega_{0} \sin \theta
\end{array}\right)=\omega_{0}\left(\begin{array}{c}
\cosh \rho_{z}+\sinh \rho_{z} \sin \theta \\
\cos \theta \\
0 \\
-\sinh \rho_{z}-\cosh \rho_{z} \sin \theta
\end{array}\right)=\omega_{0}\left(\begin{array}{c}
\sec \sigma+\tan \sigma \sin \theta \\
\cos \theta \\
0 \\
-\tan \sigma-\sec \sigma \sin \theta
\end{array}\right)
$$

Space-Time Geometry

Multiply segments by cosh $\rho=\sec \sigma=1 / \sqrt{ }\left(1-v^{2} / c^{2}\right)$
to recover dimensions in (ck, ω) ptot

x-Space-y-Space Plot of wavefronts dropped by $C W$ or $P W$ source moving at $u=4 c / 5$
x-Space-y-Space Plot of wavefronts dropped

by CW or PW source moving at $u=4 c / 5$ | Multiply segments by $\cosh \rho=\sec \sigma=1 /\left(1-v^{2} / c^{2}\right)$ |
| :--- |
| to recover dimensions in $(c k$, ω) pot |

x-Space-y-Space Plot of wavefronts dropped

$\mathrm{v} / \mathrm{c}=\beta=0.800$
Doppler blue shift factor $=\mathrm{b}=3.001$ Doppler red shift factor $=r=0.333$
$v=0.675=38.665^{\circ}$
$\varrho=1.099$
$\sigma=0.928=53.143^{\circ}$

time	$r_{\text {Dopp }}$	$v_{\text {group }}$	$\tau_{\text {phase }}$	$v_{\text {phase }}$	$\tau_{\text {group }}$	$b_{\text {Dopp }}$	u / c	c / u
space		$\kappa_{\text {phase }}$	$\lambda_{\text {group }}$	$\kappa_{\text {group }}$	$\lambda_{\text {phase }}$		$V_{\text {group }} / c$	$V_{\text {phases }} / c$
rapidity ρ	$e^{-\rho}$	$\sinh \rho$	$\operatorname{sech} \rho$	$\cosh \rho$	$\operatorname{csch} \rho$	$e^{+\rho}$	$\tanh \rho$	$\operatorname{coth} \rho$
stellar $\forall \sigma$		$\tan \sigma$	$\cos \sigma$	$\sec \sigma$	$\cot \sigma$		$\sin \sigma$	$\csc \sigma$
$Q M$		p	$-L$	H	$\lambda_{\text {DeB }}$		$d \omega / d k$	ω / k

$\begin{aligned} & \text { Old } \\ & \text { Fashioned } \\ & \text { Formulas }\end{aligned}$
$\sqrt{\frac{1-\frac{u}{c}}{1+\frac{u}{c}}} \frac{1}{\sqrt{\frac{c^{2}}{u^{2}}-1}}-\sqrt{1-\frac{u^{2}}{c^{2}}} \frac{1}{\sqrt{1-\frac{u^{2}}{c^{2}}}} \sqrt{\frac{c^{2}}{u^{2}}}-1 \sqrt{\frac{\frac{u}{c}}{1-\frac{u}{c}}}$
$\frac{u}{c}$
$\frac{c}{u}$
ation angle $\sigma=a \sin (\mathrm{u} / \mathrm{c})$

Momentum
$c p=B \sinh (\varrho)$

Rest Energy
$B=\bar{\omega}$

b-circle

Combination and interference of 4-vector plane waves (Idealized polarization case) Combination group and phase waves define 4D Minkowski coordinates Combination group and phase waves define wave guide dynamics

Waveguide dispersion and geometry
$1^{\text {st}}$-quantized cavity modes
(And introducing $2^{\text {nd }}$-quantized cavity modes)

Combination and interference of 4-vector plane waves (Idealized amplitude case)

2-CW-single-plane-polarized case: $\Psi_{\mathbf{k}}(\mathbf{r}, t)=e^{i\left(\mathbf{k}_{\rightarrow} \mathbf{}^{\mathbf{r}-\omega_{\rightarrow}} t\right)}+e^{i\left(\mathbf{k}_{\leftarrow} \bullet \mathbf{r}-\omega_{\leftarrow} t\right)}$ Idealized: Equal amplitudes and single plane polarization Factored into phase and group factors: $\quad=e^{i \stackrel{\left(\mathbf{k}_{\rightarrow}+\mathbf{k}_{\leftarrow}\right) \cdot \mathbf{r}-\left(\omega_{\rightarrow}+\omega_{\leftarrow}\right) t}{2}} 2 \cos \frac{\left(\mathbf{k}_{\rightarrow}-\mathbf{k}_{\leftarrow}\right) \bullet \mathbf{r}-\left(\omega_{\rightarrow-}-\omega_{\leftarrow}\right) t}{2}=e^{i(\overline{\mathbf{K}} \bullet \mathbf{r}-\bar{\Omega} t)} 2 \cos (\overline{\mathbf{k}} \bullet \mathbf{r}-\bar{\omega} t)$

$$
\begin{array}{ll}
\operatorname{Phase}(k, \omega) & \operatorname{Group}(k, \omega) \\
\frac{\left(\mathbf{k}_{\rightarrow}+\mathbf{k}_{\leftarrow}\right)}{2}=\overline{\mathbf{K}}, & \overline{\mathbf{k}}=\frac{\left(\mathbf{k}_{\rightarrow}-\mathbf{k}_{\leftarrow}\right)}{2}, \\
\frac{\left(\omega_{\rightarrow}+\omega_{\leftarrow}\right)}{2}=\bar{\Omega}, & \bar{\omega}=\frac{\left(\omega_{\rightarrow}-\omega_{\leftarrow}\right)}{2}
\end{array}
$$

Fig. 6.1.1 Sketch of a 1-CW-single-plane-polarized plane wavefunction $\Psi_{k}(\mathbf{r}, t)=A e^{i \Phi}=A e^{i(\mathbf{k} \cdot \mathbf{r}-\omega t)}$ with wavevector \mathbf{k}.

Combination and interference of 4-vector plane waves (Idealized amplitude case)

2-CW-single-plane-polarized case: $\Psi_{\mathbf{k}}(\mathbf{r}, t)=e^{i\left(\mathbf{k}_{\rightarrow} \bullet \mathbf{r}-\omega_{\lrcorner} t\right)}+e^{i\left(\mathbf{k}_{\leftarrow} \cdot \mathbf{r}-\omega_{\leftarrow} t\right)}$ Idealized: Equal amplitudes and single plane polarization Factored into phase and group factors: $\quad=e^{i \stackrel{\left(\mathbf{k}_{\rightarrow}+\mathbf{k}_{\leftarrow}\right) \cdot \mathbf{r}-\left(\omega_{\rightarrow}+\omega_{\leftarrow}\right) t}{2}} 2 \cos \frac{\left(\mathbf{k}_{\rightarrow}-\mathbf{k}_{\leftarrow}\right) \cdot \mathbf{r}-\left(\omega_{\rightarrow}-\omega_{\leftarrow}\right) t}{2}=e^{i(\overline{\mathbf{K}} \boldsymbol{\bullet}-\bar{\Omega} t)} 2 \cos (\overline{\mathbf{k}} \cdot \mathbf{r}-\bar{\omega} t)$

$$
\begin{array}{ll}
\operatorname{Phase}(k, \omega) & \operatorname{Group}(k, \omega) \\
\frac{\left(\mathbf{k}_{\rightarrow}+\mathbf{k}_{\leftarrow}\right)}{2}=\overline{\mathbf{K}}, & \overline{\mathbf{k}}=\frac{\left(\mathbf{k}_{\rightarrow}-\mathbf{k}_{\leftarrow}\right)}{2}, \\
\frac{\left(\omega_{\rightarrow}+\omega_{\leftarrow}\right)}{2}=\bar{\Omega}, & \bar{\omega}=\frac{\left(\omega_{\rightarrow}-\omega_{\leftarrow}\right)}{2} .
\end{array}
$$

Fig. 6.1.1 Sketch of a 1-CW-single-plane-polarized plane wavefunction $\Psi_{k}(\mathbf{r}, t)=A e^{i \Phi}=A e^{i(\mathbf{k} \cdot \mathbf{r}-\omega t)}$ with wavevector \mathbf{k}.
Individual laser 4-vectors reside on light cone or null-invariant.

$$
\begin{gathered}
\left.\stackrel{\text { Ship }}{2} \quad \begin{array}{c}
\text { Lighthouse }
\end{array} \begin{array}{c}
\text { Laser lab } \\
c^{2} \mathbf{k}_{\rightarrow}^{\prime} \cdot \mathbf{k}_{\rightarrow}^{\prime}-\omega_{\rightarrow}^{\prime 2}= \\
c^{2} \mathbf{k}_{\leftarrow}^{\prime} \mathbf{k}_{\rightarrow}^{\prime} \cdot \mathbf{k}_{\leftarrow}^{\prime}-\mathbf{k}_{\rightarrow}^{\prime 2}-\omega_{\rightarrow}^{2}=c^{2} k_{0}^{2}-\omega_{0}^{2}=0
\end{array}\right) \cdot \mathbf{k}_{\leftarrow}-\omega_{\leftarrow}^{2}=c^{2} k_{0}^{2}-\omega_{0}^{2}=0
\end{gathered}
$$

Combination and interference of 4-vector plane waves (Idealized amplitude case)

2-CW-single-plane-polarized case: $\Psi_{\mathbf{k}}(\mathbf{r}, t)=e^{i\left(\mathbf{k}_{\rightarrow} \bullet \mathbf{r}-\omega_{\lrcorner} t\right)}+e^{i\left(\mathbf{k}_{\leftarrow} \cdot \mathbf{r}-\omega_{\leftarrow} t\right)}$ Idealized: Equal amplitudes and single plane polarization Factored into phase and group factors: $\quad=e^{i \frac{\left(\mathbf{k}_{\rightarrow}+\mathbf{k}_{\leftarrow}\right) \cdot \mathbf{r}-\left(\omega_{\rightarrow}+\omega_{\leftarrow}\right) t}{2}} 2 \cos \frac{\left(\mathbf{k}_{\rightarrow}-\mathbf{k}_{\leftarrow}\right) \cdot \boldsymbol{r}-\left(\omega_{\rightarrow}-\omega_{\leftarrow}\right) t}{2}=e^{i(\overline{\overline{\mathbf{K}}} \bullet-\bar{\Omega} t)} 2 \cos (\overline{\mathbf{k}} \cdot \mathbf{r}-\bar{\omega} t)$

$$
\begin{array}{ll}
\text { Phase }(k, \omega) & \operatorname{Group}(k, \omega) \\
\frac{\left(\mathbf{k}_{\rightarrow}+\mathbf{k}_{\leftarrow}\right)}{2}=\overline{\mathbf{K}}, & \overline{\mathbf{k}}=\frac{\left(\mathbf{k}_{\rightarrow}-\mathbf{k}_{\leftarrow}\right)}{2}, \\
\frac{\left(\omega_{\rightarrow}+\omega_{\leftarrow}\right)}{2}=\bar{\Omega}, & \bar{\omega}=\frac{\left(\omega_{\rightarrow}-\omega_{\leftarrow}\right)}{2} .
\end{array}
$$

Fig. 6.1.1 Sketch of a 1-CW-single-plane-polarized plane wavefunction $\Psi_{k}(\mathbf{r}, t)=A e^{i \Phi}=A e^{i(\mathbf{k} \cdot \mathbf{r}-\omega t)}$ with wavevector \mathbf{k}.
Individual laser 4-vectors reside on light cone or null-invariant.

$$
\begin{gathered}
\text { Ship } \\
c^{2} \mathbf{k}_{\rightarrow}^{\prime} \cdot \mathbf{k}_{\rightarrow}^{\prime}-\omega_{\rightarrow}^{\prime 2}=c^{2} \mathbf{k}_{\rightarrow}^{\text {Lighthouse }} \cdot \mathbf{k}_{\rightarrow}-\omega_{\rightarrow}^{2}=c^{2} k_{0}^{2}-\omega_{0}^{2}=0 \\
c^{2} \mathbf{k}_{\leftarrow}^{\prime} \cdot \mathbf{k}_{\leftarrow}^{\prime}-\omega_{\leftarrow}^{\prime 2}=c^{2} \mathbf{k}_{\leftarrow} \cdot \mathbf{k}_{\leftarrow}-\omega_{\leftarrow}^{2}=c^{2} k_{0}^{2}-\omega_{0}^{2}=0
\end{gathered}
$$

Sum and difference vectors

 are not on the light cone.$$
\begin{aligned}
& \bar{S}^{\prime 2}-c^{2} \overline{\mathbf{K}}^{\prime} \cdot \overline{\mathbf{K}}^{\prime}=\bar{\Omega}^{2}-c^{2} \overline{\mathbf{K}} \cdot \overline{\mathbf{K}}=\omega_{0}^{2}-0 \quad \text { Laser lab } \\
& \bar{\omega}^{\prime 2}-c^{2} \overline{\mathbf{k}}^{\prime} \cdot \overline{\mathbf{k}}^{\prime}=c^{2} k_{0}^{2} \\
& \bar{\omega}^{2}-c^{2} \overline{\mathbf{k}} \cdot \overline{\mathbf{k}}=0-c^{2} \mathbf{k}_{0} \cdot \mathbf{k}_{0}=-c^{2} k_{0}^{2}
\end{aligned}
$$

Combination group and phase define 4D Minkowski coordinates (Idealized amplitude case)

Fig. 6.2.1 Examples of sequential relativistic transformations of a tetrad of light wavevectors.

Future work: More efficient mapping Lorentz-Group operators and coordinate frames

Combination and interference of 4-vector plane waves (Idealized polarization case)
Combination group and phase waves define $4 D$ Minkowski coordinates
Combination group and phase waves define wave guide dynamics
Waveguide dispersion and geometry
$1^{\text {st}}$-quantized cavity modes
(And introducing $2^{\text {nd }}$-quantized cavity modes)

2-Dimensional wave mechanics: guided waves and dispersion in the "Hall of Mirrors"

|k very fast An
u_{x} approaches ∞ as k_{x} approaches 0

Any two or three-dimensional wave will be seen to exceed the c-limit when it approaches an axis obliquely. It happens for plane waves. The phase velocities along coordinate axes are given by

$$
u_{x}=\omega / k x, \quad u_{y}=\omega / k_{y}, \quad u_{z}=\omega / k_{z}
$$

Each of the components ($k x, k y, k_{z}$) must be less than or equal to magnitude $k=\sqrt{ }\left(k x^{2}+k y^{2}+k z^{2}\right)$. Thus, all the component phase velocities equal or exceed the phase velocity ω / k which is c for light! A water waves exceeds c if it breaks parallel to shore so 'break-line" moves infinitely fast with $k x=0$.

Waveguide dispersion and geometry

2-Dimensional wave mechanics: guided waves and dispersion in the "Hall of Mirrors"

Any two or three-dimensional wave will be seen to exceed the c-limit when it approaches an axis obliquely. It happens for plane waves. The phase velocities along coordinate axes are given by

$$
u_{x}=\omega / k_{x}, \quad u_{y}=\omega / k_{y}, \quad u_{z}=\omega / k_{z}
$$

Each of the components ($k x, k y, k z$) must be less than or equal to magnitude $k=\sqrt{ }\left(k x^{2}+k y^{2}+k z z^{2}\right)$.
Thus, all the component phase velocities equal or exceed the phase velocity ω / k which is c for light!
A water waves exceeds c if it breaks parallel to shore so 'break-line" moves infinitely fast with $k x=0$.

Consider 'Hall of Mirrors" with two parallel mirrors on either side of the x-axis be separated by a distance $y=W$.
The South wall will be at $y=-W / 2$ and the North wall at $y=W / 2$. (z-axis or "up" is into the page here.)
The Hall should have a floor and ceiling at $z= \pm H / 2$ as discussed later. Here waves move in $x y$-plane only.

Fig. 6.3.1 "Hall of mirrors" model for an optical wave guide of width W.

Waveguide dispersion and geometry

2-Dimensional wave mechanics: guided waves and dispersion in the "Hall of Mirrors"

Any two or three-dimensional wave will be seen to exceed the c-limit when it approaches an axis obliquely. It happens for plane waves. The phase velocities along coordinate axes are given by

$$
u_{x}=\omega / k_{x}, \quad u_{y}=\omega / k_{y}, \quad u_{z}=\omega / k_{z}
$$

Each of the components $\left(k x, k y, k_{z}\right)$ must be less than or equal to magnitude $\left.k=\sqrt{(} k_{x}^{2}+k y^{2}+k z^{2}\right)$.
u_{x} approaches ∞ as k_{x} approaches 0 Thus, all the component phase velocities equal or exceed the phase velocity ω / k which is c for light! A water waves exceeds c if it breaks parallel to shore so 'break-line" moves infinitely fast with $k x=0$.

Consider 'Hall of Mirrors" with two parallel mirrors on either side of the x-axis be separated by a distance $y=W$.
The South wall will be at $y=-W / 2$ and the North wall at $y=W / 2$. (z-axis or "up" is into the page here.) The Hall should have a floor and ceiling at $z= \pm H / 2$ as discussed later. Here waves move in $x y$-plane only.

Suppose input \mathbf{k}-vector $\mathbf{k}(+)$ enters at angle $+\gamma$. $\mathbf{k}(+)=\left(k(+)_{x}, k(+)_{y}, 0\right)=(k \cos \gamma, k \sin \gamma, 0)$
Fig. 6.3.1 "Hall of mirrors" model for an optical wave guide of width W.

$$
\begin{aligned}
\mathrm{E}(\mathbf{r}, t) & =\exp i(\mathbf{k}(+) \cdot \mathbf{r}-\omega t)+\exp i(\mathbf{k}(-) \cdot \mathbf{r}-\omega t) \\
& =\exp i(k x \cos \gamma+k y \sin \gamma-\omega t)+\exp i(k x \cos \gamma-k y \sin \gamma-\omega t)
\end{aligned}
$$

y-reflected mirror image has \mathbf{k}-vector $\mathbf{k}(-)$ at angle $-\gamma$.
$\mathbf{k}(-)=(k(-) x, k(-) y, 0)=(k \cos \gamma,-k \sin \gamma, 0)$.

Waveguide dispersion and geometry

2-Dimensional wave mechanics: guided waves and dispersion in the "Hall of Mirrors"

Any two or three-dimensional wave will be seen to exceed the c-limit when it approaches an axis obliquely. It happens for plane waves. The phase velocities along coordinate axes are given by

$$
u_{x}=\omega / k_{x}, \quad u_{y}=\omega / k_{y}, \quad u_{z}=\omega / k_{z}
$$

Each of the components ($k x, k_{y}, k_{z}$) must be less than or equal to magnitude $k=\sqrt{ }\left(k x^{2}+k y^{2}+k z{ }^{2}\right)$.
u_{x} approaches ∞ as k_{x} approaches 0 Thus, all the component phase velocities equal or exceed the phase velocity ω / k which is c for light! A water waves exceeds c if it breaks parallel to shore so 'break-line" moves infinitely fast with $k x=0$.

Consider 'Hall of Mirrors" with two parallel mirrors on either side of the x-axis be separated by a distance $y=W$.
The South wall will be at $y=-W / 2$ and the North wall at $y=W / 2$. (z-axis or "up" is into the page here.) The Hall should have a floor and ceiling at $z= \pm H / 2$ as discussed later. Here waves move in $x y$-plane only.

Suppose input \mathbf{k}-vector $\mathbf{k}(+)$ enters at angle $+\gamma$. $\mathbf{k}(+)=\left(k(+)_{x}, k(+)_{y}, 0\right)=(k \cos \gamma, k \sin \gamma, 0)$
Fig. 6.3.1 "Hall of mirrors" model for an optical wave guide of width W.

```
E}(\mathbf{r},t)=\quad\operatorname{exp}i(\mathbf{k}(+)\bullet\mathbf{r}-\omegat)\quad+\quad\operatorname{exp}i(\mathbf{k}(-).\mathbf{r}-\omegat
    = exp i(kx cos \gamma +ky sin \gamma-\omegat) + exp i(kx cos \gamma-ky sin \gamma-\omegat)
    = expi(kx cos \gamma-\omegat) [ exp i(ky sin \gamma) + expi(-ky sin \gamma)]
    = ei(kx cos \gamma-\omegat) [2cos(ky sin \gamma)]
        guide phase wave and group wave
```


2-Dimensional wave mechanics: guided waves and dispersion in the "Hall of Mirrors"

Any two or three-dimensional wave will be seen to exceed the c-limit when it approaches an axis obliquely. It happens for plane waves. The phase velocities along coordinate axes are given by

$$
u_{x}=\omega / k_{x}, \quad u_{y}=\omega / k_{y}, \quad u_{z}=\omega / k_{z}
$$

Each of the components ($k x, k y, k z$) must be less than or equal to magnitude $k=\sqrt{ }\left(k x^{2}+k y^{2}+k z{ }^{2}\right)$.
Thus, all the component phase velocities equal or exceed the phase velocity ω / k which is c for light! A water waves exceeds c if it breaks parallel to shore so 'break-line" moves infinitely fast with $k x=0$.

Consider 'Hall of Mirrors" with two parallel mirrors on either side of the x-axis be separated by a distance $y=W$.
The South wall will be at $y=-W / 2$ and the North wall at $y=W / 2$. (z-axis or "up" is into the page here.)
The Hall should have a floor and ceiling at $z= \pm H / 2$ as discussed later. Here waves move in $x y$-plane only.
 $\mathbf{k}^{(+)}=\left(k()_{x}, k(+)_{y}, 0\right)=(k \cos \gamma, k \sin \gamma, 0)$
Fig. 6.3.1 "Hall of mirrors" model for an optical wave guide of width W.

```
E(\mathbf{r},t)= expi(\mathbf{k}(+)\bullet\mathbf{r}-\omegat) +\quad\operatorname{exp}i(\mathbf{k}(-).\mathbf{r}-\omegat)
    = expi(kx cos \gamma +ky sin \gamma-\omegat)+expi(kx cos \gamma-ky sin \gamma-\omegat)
    = expi(kx cos \gamma-\omegat) [ exp i(ky sin \gamma) + exp i(-ky sin \gamma)]
    = ei(kx cos \gamma-\omegat) [2cos(ky sin \gamma)]
        guide phase wave and group wave
```

TE boundary conditions make group be zero on metal walls $y= \pm W / 2$.

$$
0=2 \cos (k(W / 2) \sin \gamma), \text { or: } k(W / 2) \sin \gamma=\pi / 2, \text { or: } \sin \gamma=\pi /(k W)
$$

Combination and interference of 4-vector plane waves (Idealized polarization case)
Combination group and phase waves define $4 D$ Minkowski coordinates
Combination group and phase waves define wave guide dynamics
Waveguide dispersion and geometry
$1^{\text {st }}$-quantized cavity modes
(And introducing $2^{\text {nd }}$-quantized cavity modes)

Waveguide dispersion and geometry
Assume $\mathrm{T}_{\text {ranserse }} \mathrm{Electric}$-mode. It always has E polarized

Suppose input \mathbf{k}-vector $\mathbf{k}(-)$ enters at angle $+\gamma$. $\mathbf{k}^{(+)}=\left(k(+)_{x}, k(+)_{y}, 0\right)=(k \cos \gamma, k \sin \gamma, 0)$
Fig. 6.3.1 "Hall of mirrors" model for an optical wave guide of width W.

$$
\begin{array}{rlrl}
\mathrm{E}(\mathbf{r}, t)= & \exp i(\mathbf{k}(+) \cdot \mathbf{r}-\omega t) & +\exp i(\mathbf{k}(-) \cdot \mathbf{r}-\omega t) & y \text {-reflected mirror image has k-vector } \mathbf{k}(-) \text { at angle }-\gamma . \\
= & \exp i(k x \cos \gamma+k y \sin \gamma-\omega t)+\exp i(k x \cos \gamma-k y \sin \gamma-\omega t) & \mathbf{k}(-)=(k(-) x, k(-) y, 0)=(k \cos \gamma,-k \sin \gamma, 0) \\
= & \exp i(k x \cos \gamma-\omega t)[\exp i(k y \sin \gamma)+\exp i(-k y \sin \gamma)] & & \\
= & e i(k x \cos \gamma-\omega t)[2 \cos (k y \sin \gamma)] & & \text { TE boundary conditions make group be zero on metal walls } y= \pm W / 2 .
\end{array}
$$

Condition $k^{(+)} y=k \sin \gamma=\pi / W$ gives dispersion function $\omega\left(k_{x}\right)$ or ωv s. k_{x} relation
$\omega=k c=c\left(k x^{2}+k y 2+k_{z}^{2}\right) 1 / 2$

Waveguide dispersion and geometry
Assume $\mathrm{T}_{\text {ransverse }} \mathrm{Electrric}$-mode . It always has E polarized

Fig. 6.3.1 "Hall of mirrors" model for an optical wave guide of width W.

```
E}(\mathbf{r},t)=\quad\operatorname{exp}i(\mathbf{k}(+).\mathbf{r}-\omegat)+\quad\operatorname{exp}i(\mathbf{k}(-).\mathbf{r}-\omegat
    = expi(kx cos \gamma +ky sin \gamma-\omegat) + exp i(kx cos \gamma-ky sin \gamma-\omegat)
    = exp i(kx cos \gamma-\omegat) [ exp i(ky sin \gamma) + exp i(-ky sin \gamma)]
    = ei(kx cos \gamma-\omegat) [2cos(ky sin \gamma)]
    guide phase wave and group wave
    TE boundary conditions make group be zero on metal walls }y=\pmW/2
    0=2\operatorname{cos}(k(W/2) sin \gamma , or: k(W/2) sin \gamma =\pi/2, or: sin \gamma = \pi/(kW)
```

Condition $k^{(+)} y=k \sin \gamma=\pi / W$ gives dispersion function $\omega(k x)$ or ω vs. kx relation
$\omega=k c=c\left(k x^{2}+k y^{2}+k x^{2}\right) 1 / 2=c\left(k x^{2}+\pi 2 / W^{2}\right) 1 / 2=\sqrt{ }\left(c^{2} k x^{2}+\omega_{c u t}{ }^{2}\right) \quad$ where: $\omega_{c u t}=\pi c / W$.

Assume $\mathrm{T}_{\text {ranserse }} \mathrm{E}_{\text {lectric }}$-mode. It always has E polarized parallel to $x z$ plane

Fig. 6.3.1 "Hall of mirrors" model for an optical wave guide of width W.
$\mathrm{E}(\mathbf{r}, t)=\quad \exp i\left(\mathbf{k}(+)_{\bullet} \mathbf{r}-\omega t\right) \quad+\quad \exp i(\mathbf{k}(-) \cdot \mathbf{r}-\omega t)$
$=\exp i(k x \cos \gamma+k y \sin \gamma-\omega t)+\exp i(k x \cos \gamma-k y \sin \gamma-\omega t)$ $=\exp i(k x \cos \gamma-\omega t)[\exp i(k y \sin \gamma)+\exp i(-k y \sin \gamma)]$ $=e^{i(k x \cos \gamma-\omega t)[2 \cos (k y \sin \gamma)]}$ guide phase wave and group wave

Suppose input \mathbf{k}-vector $\mathbf{k}(-)$ enters at angle $+\gamma$. $\mathbf{k}^{(+)}=\left(k(+)_{x}, k(+)_{y}, 0\right)=(k \cos \gamma, k \sin \gamma, 0)$
y-reflected mirror image has \mathbf{k}-vector $\mathbf{k}(-)$ at angle $-\gamma$. $\mathbf{k}(-)=\left(k(-)_{x}, k(-) y, 0\right)=(k \cos \gamma,-k \sin \gamma, 0)$.

TE boundary conditions make group be zero on metal walls $y= \pm W / 2$. $0=2 \cos (k(W / 2) \sin \gamma)$, or: $k(W / 2) \sin \gamma=\pi / 2$, or: $\sin \gamma=\pi /(k W)$

Condition $k^{(+)} y=k \sin \gamma=\pi / W$ gives dispersion function $\omega(k x)$ or ω vs. k_{x} relation
$\left.\omega=k c=c\left(k x^{2}+k y^{2}+k\right)^{2}\right) 1 / 2=c\left(k x^{2}+\pi 2 / W^{2}\right) 1 / 2=\sqrt{ }\left(c^{2} k x^{2}+\omega_{c u t}\right)^{2} \quad$ where: $\omega_{c u t}=\pi c / W$.

from:Fig. 6.3.2 (modified)
QTforCA
Unit 2 Ch. 6
Fig. 6.3.2 Dispersion function for a fundamental TE wave guide mode

Waveguide dispersion and geometry

$$
\omega=k c=c \sqrt{ }\left(k_{x}^{2}+k_{y}^{2}+k_{z}^{2}\right)=c \sqrt{ }\left(k_{x}^{2}+\pi^{2} / W^{2}\right)=\sqrt{ }\left(c^{2} k_{x}^{2}+\omega_{c u t^{2}}^{2}\right)
$$

Fig. 6.3.2 Thales geometry of cavity or waveguide mode

Waveguide dispersion and geometry

Fig. 6B.8 Thales geometry of cavity or waveguide mode
(Lecture 28 ends here)

Waveguide dispersion and geometry

from:Fig. 6.3.4
QTforCA
Unit 2 Ch. 6
Fig. 6.3.4 Right moving guide wave with $\sigma=45^{\circ}$, Vphase $=\sqrt{ } 2 c$, Vgroup $=c / \sqrt{ } 2$.

Waveguide dispersion and geometry

from:Fig. 6.3.4
QTforCA
Unit 2 Ch. 6
Fig. 6.3.4 Right moving guide wave with $\sigma=45^{\circ}$, Vphase $=\sqrt{ } 2 c$, Vgroup $=c / \sqrt{ } 2$.

Waveguide dispersion and geontetry

 (b)Lower frequency case: $\sigma=60^{\circ}, u_{X}$ (phase) $=2 c, \quad u_{x}($ group $)=c / 2$

$\xrightarrow{\text { Group Velocity }=0.50 \mathrm{c}}$

y Phase
from:Fig. 6.3.5 QTforCA
Unit 2 Ch. 6
$k_{x}=\sqrt{ }\left(\omega^{2} / c^{2}-\pi^{2} / W^{2}\right)$

$$
\omega=k c=\sqrt{ }\left(c^{2} k_{x}^{2}+\omega_{c u t}^{2}\right)
$$

Combination and interference of 4-vector plane waves (Idealized polarization case)
Combination group and phase waves define $4 D$ Minkowski coordinates
Combination group and phase waves define wave guide dynamics
Waveguide dispersion and geometry
$1^{\text {st }}$-quantized cavity modes
(And introducing $2^{\text {nd }}$-quantized cavity modes)

Hall of Mirrors capped by a pair of doors at $x=0$ and $x=L$ becomes a wave cavity of length L.
The doors demand the wave electric field be zero at x-boundaries as well as along the walls. New boundary conditions:

$$
k_{x}=k \cos \gamma=n_{x} \pi / L \quad\left(n_{x}=1,2, \ldots\right)
$$

Frequency bands are broken into discrete "quantized" values $\omega_{n x} n y$, one for each pair of integers or "quantum numbers" n_{x} and n_{y}.

$$
\omega_{n x} n y=k c=c \sqrt{ }\left(k_{x}^{2}+k_{y}^{2}+k_{z}^{2}\right)=c \sqrt{ }\left(n_{x}^{2} \pi^{2} / L^{2}+n_{y}^{2} \pi^{2} / W^{2}\right)
$$

from:Fig. 6.3.6-7 QTforCA
Unit 2 Ch. 6

Fig. 6.3.7 Cavity modes for three lowest quantum numbers

Fig. 6.3.6 Cavity mode dispersion diagram showing overlapping and discrete ω and k values .

Quantized Amplitude Counting "photon" number

Planck's relation $E=N h v$ began as a tenative axiom to explain low-T light. Then he tried to disavow it! Einstein picked it up in his 1905 paper. Since then its use has grown enormously and continues to amaze, amuse (or bewilder) all who study it. A current view is that it represents the quantization of optical field amplitude. We picture this below as N-photon wave states for each box-mode of m wave kinks.

or "vacuum" levels
$m=2 \quad m=3$
$m=4$
Quantized Wavenumber ("kink" or momentum number)

Quantized Amplitude Counting "photon" number

Planck's relation $E=N h v$ began as a tenative axiom to explain low-T light. Then he tried to disavow it! Einstein picked it up in his 1905 paper. Since then its use has grown enormously and continues to amaze, amuse (or bewilder) all who study it. A current view is that it represents the quantization of optical field amplitude. We picture this below as N-photon wave states for each box-mode of m wave kinks.

Lorentz symmetry effects

How it makes momentum and energy be conserved

A strength (and also, weakness) of CW axioms (1.1-2) is that they are symmetry principles due to the Lorentz-Poincare isotropy of space-time (invariance to space-time translation $\mathbf{T}(\delta, \tau)$ in the vacuum). Operator \mathbf{T} has plane wave eigenfunctions $\psi_{k, \omega}=A e^{i(k x-\omega t)}$ with roots-of-unity eigenvalues $e^{i(k \cdot \delta-\omega \cdot \tau)}$

$$
\begin{equation*}
\left\langle\psi_{k, \omega}\right| \mathbf{T}^{\dagger}=\left\langle\psi_{k, \omega}\right| e^{-i(k \cdot \delta-\omega \cdot \tau)} \quad(5.18 \mathrm{a}) \quad \mathbf{T}\left|\psi_{k, \omega}\right\rangle=e^{i(k \cdot \delta-\omega \cdot \tau)}\left|\psi_{k, \omega}\right\rangle \tag{5.18b}
\end{equation*}
$$

This also applies to 2-part or "2-particle" product states $\quad \Psi_{K, \Omega}=\psi_{k_{1}, \omega_{1}} \psi_{k_{2}, \omega_{2}} \quad$ where exponents add (k, ω)-values of each constituent to $K=k_{1}+k_{2}$ and $\Omega=\omega_{1}+\omega_{2}$, and $\mathbf{T}(\delta, \tau)$-eigenvalues also have that form $e^{i(K \cdot \delta-\Omega \cdot \tau)}$

Matrix $\left\langle\Psi_{K^{\prime} \Omega^{\prime}}^{\prime}\right| \mathbf{U}\left|\Psi_{K, \Omega}\right\rangle$ of \mathbf{T}-symmetric evolution \mathbf{U} is zero unless $K^{\prime}=k_{1}^{\prime}+k_{2}^{\prime}=K$ and $\Omega^{\prime}=\omega_{1}^{\prime}+\omega_{2}^{\prime}=\Omega$

$$
\begin{aligned}
\left\langle\Psi_{K^{\prime}, \Omega^{\prime}}^{\prime}\right| \mathbf{U}\left|\Psi_{K, \Omega}\right\rangle= & \left.\left\langle\Psi_{K^{\prime}, \Omega^{\prime}}^{\prime}\right| \mathbf{T}^{\dagger}(\delta, \tau) \mathbf{U T}(\delta, \tau)\left|\Psi_{K, \Omega}\right\rangle \quad \text { (if } \mathbf{U T}=\mathbf{T U} \text { for all } \delta \text { and } \tau\right) \\
= & e^{-i\left(K^{\prime} \delta-\Omega^{\prime} \tau\right)} e^{i(K \delta-\Omega \tau)}\left\langle\Psi_{K^{\prime}, \Omega^{\prime}}^{\prime}\right| \mathbf{U}\left|\Psi_{K, \Omega}\right\rangle=0 \text { unless: } K^{\prime}=K \text { and: } \Omega^{\prime}=\Omega \\
& \text { That's momentum }(P=h K) \text { and energy }(E=h W) \text { conservation! }
\end{aligned}
$$

