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MMaattrriixx DDiiaaggoonnaalliizzaattiioonn::
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Gauge symmetry breaking
(Coriolis, Zeeman B-field,...)
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We interrupt this program to bring an important announcement
from the makers of

PURE and APPLIED group theory...

(drum-roll, Please...)



A revolutionary simplification to classify all groups and their algebras
...from PURE group theory...

Disclosure:
Chaim G-S is
a colleague at
University of
Arkansas (He’s
in math across
the street.)



Group theory of wave mechanics is twice as big as you might think...
...from APPLIED group theory...
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Group theory of wave mechanics is twice as big as you might think...

APPLIED RELATIVITY-DUALITY THEOREM:
For each external group {..T,U,V,... }there is an internal group{..T,U,V,... }

satisfing duality:
T|1)=|T)=T-1|1),
U|1)=|U)=U-1|1),

etc.,
and commutivity:

TU=TU, TV=VU,..
UV=VU, ..etc.,

...from APPLIED group theory...

|U)= |U)=

...and wave interference depends on relative position only.
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|1) U|1) |1) U-1|1)

|1) moved by U to U|1) yields same relative position |U) as |1) moved by U-1 to U-1|1)

Group theory of wave mechanics is twice as big as you might think...

APPLIED RELATIVITY-DUALITY THEOREM:
For each external group {..T,U,V,... }there is an internal group{..T,U,V,... }

satisfing duality:
T|1)=|T)=T-1|1),
U|1)=|U)=U-1|1),

etc.,
and commutivity:

TU=TU, TV=VU,..
UV=VU, ..etc.,

...from APPLIED group theory...

|U)= |U)=

...and wave interference depends on relative position only.

RELATIVITY-DUALITY also known as:
LAB vs BODY (molecular theory)
STATE vs PARTICLE (nuclear shell theory)
GLOBAL vs LOCAL (gauge theory)





SSoommee wwaayyss ttoo ppiiccttuurree AAMMOO eeiiggeennssttaatteess

••Potential Energy Surfaces (PES)
electronic

vibrational

vibronic

••Rotational Energy Surfaces (RES)
pure rotational (centrifugal) effects

rovibrational (centrifugal and Coriolis) effects

rovibronic (centrifugal, Coriolis, and Jahn-Teller) effects

•• Generalized phase spaces
vibrational polyad sphere

high energy pulse state space

J=10

J=10



Spin gyro S=(1,1,1) attached (ZIPPed) to
Asymmetric Top (A=5, B=10, C=15)

S

S

RR
JJ

Time reversed
gyro -S=(-1,-1,-1) The two together

Crossing RE surfaces
analogous to

Crossing PE surfaces (Jahn-Teller)

Jz

Jx

Jy

“Sherman” (The shark)

S

unZIPPing
unZIPPing



Two or more RE’s beg to be unZIPPed.
Base RE surfaces are eigenvalues of matrix.
Classical RE
H=AJx2+BJy2+CJz2+...-2AJxSx-2BJySy-2CJzSz+...+(more constant terms)

Semi-Classical Spin-1/2 RE σx=( ),σy=( ),σz=( ), 1=( ) makes matrix
H=(AJx2+BJy2+CJz2)1...-AJxsxσx -BJysyσy -CJzszσz+...+1(more constant terms)

H =
Spin−up RE β,γ( ) Coupling β,γ( )
Coupling β,γ( )* Spin−down RE β,γ( )











0 1
1 0

0 -i
i 0

1 0
0 -1

1 0
0 1

Classical ZIPP A=0.2, B=0.8, C=1.4
Sx=0.0, Sy=0.1, Sz=0.2

Semi-Classical spin-1/2 unZIPP A=0.2, B=0.8, C=1.4
sx=0.0, sy=0.1, sz=0.2

Outer
RE
eigen-
surface

Inner
RE
eigen-
surface

Avoided
crossings
Avoided
crossings

Constant
Energy
Sphere
E=0.32

Constant
Energy
Sphere
E=0.32



(R=21/2)x(l=1/2) Diagonalization A=0.2, B=0.4, C=0.6
varying Dxx=sx , Dyy=sy=2Dxx , Dzz=sz=3Dxx



GGoooodd nneewwss
Rotational energy surfaces (RES) may help visualize matrix eigensolutions
in general, but rotational and vibrational-polyad states in particular.
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GGoooodd nneewwss
Rotational energy surfaces (RES) may help visualize matrix eigensolutions
in general, but rotational and vibrational-polyad states in particular.
BBaadd nneewwss
Well, not every matrix! If your RES looks like a potato, you may be in trouble!
GGoooodd nneewwss
RES can help expose new phenomena and suggest new experiments.
BBaadd nneewwss
That takes some thought and work. Let us know how you do.
GGoooodd nneewwss
RES can approximate rotational matrix with high
accuracy that improves as J increases.
BBaadd nneewwss
But, they suck for J = 1 or 2.
GGoooodd nneewwss
We may be able to fix that.
BBaadd nneewwss
Don’t count on it.



Durer’s “Melancholia”
1514

What’s up, Doc?
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