ROWIBRONIC ENERGY TOPOGRAPHY

II: Molecular internal-momentum effects and multioRES pesonance in high symmetry molecules.

Bill Harter, Jussin Mitchell - Universsity Off Arkonscos

HARTER- $Q_{0 f t}$
Eetegant Educational Tools Pince 2001

Matrix Diagonalization: The BLACK BOX of

 quadnamm physics, chemistry, and spectroscopy

Matrix Diagonalization The BLACK BOX of

quantum physics, chemistry, and spectroscopy

Peeking into BLACK BOX of matrix diagonalization:

 scalar $+\quad+$ vector $+\quad+2^{2}$-tensor $+\ldots+2^{k}$ tensor..+

$$
\mathbf{H}=a \mathbf{T}_{o}^{0}+b \mathbf{T}_{o}^{1}+c \mathbf{T}_{1}^{1}+\ldots+d \mathbf{T}_{o}^{2}+e \mathbf{T}_{1}^{2}+\ldots=\Sigma c_{q}^{k} \mathbf{T}_{q}^{k}
$$

Generators of group $U(n)$

$$
\mathbf{H}=r_{0} \mathbb{1}^{0}+r_{1} \mathbb{P}^{1}+r_{2} \mathbb{r}^{2}+\ldots+r_{n-1} \mathbb{1}^{n-1}=\sum r_{q} \mathbb{r}^{k}
$$

C_{6} example:

$$
\mathbf{H}=r_{0} \mathbf{r}^{0}
$$

$$
+r_{1} \mathbb{r}^{l} \quad+r_{2} \mathbb{r}^{2}
$$

$$
+r_{3} \mathbb{r}^{3}
$$

$$
+r_{4} \mathbf{r}^{4}
$$

$$
+r_{5} \mathbb{r}^{5}
$$

$\left(\begin{array}{llllll}r_{0} & r_{5} & r_{4} & r_{3} & r_{2} & r_{1} \\ r_{1} & r_{0} & r_{5} & r_{4} & r_{3} & r_{2} \\ r_{2} & r_{1} & r_{0} & r_{5} & r_{4} & r_{3} \\ r_{3} & r_{2} & r_{1} & r_{0} & r_{5} & r_{4} \\ r_{4} & r_{3} & r_{2} & r_{1} & r_{0} & r_{5} \\ r_{5} & r_{4} & r_{3} & r_{2} & r_{1} & r_{0}\end{array}\right)=r_{0}\left(\begin{array}{ccccc}1 & . & . & . & . \\ . & 1 & \cdot & \cdot & . \\ . & \cdot & 1 & . & . \\ . & . & . & 1 & . \\ . & \cdot & \cdot & \cdot & 1 \\ . & . & . & . & .\end{array}\right.$
Nearest neighbor coupling

$$
\left.\mid \mathbf{r}^{5}\right)=\mathbf{r}^{5} \mid \mathbf{r}^{0}
$$

ALL neighbor coupling
C_{6} group table gives r-matrices...
$\left.\left(\mathbf{r}^{5}\right)=\mathbf{r}^{5} \mid \mathbf{r}^{0}\right)$
$\mathbb{H I}=r_{0} \mathbb{r}^{0}+r_{1} \mathbb{r}^{l}+r_{2} \mathbb{r}^{2}+r_{3} \mathbb{r}^{3}+r_{4} \mathbb{r}^{4}+r_{\zeta} \mathbb{r}^{5}$
To diagonalize \mathbf{H} just diagonalize $\mathbf{g}=\mathbf{r}, \mathbf{r}^{2}, \ldots\left(\right.$ All obey: $\left.\mathbf{g}^{6}=\mathbf{1}\right)$
Eigenvalues $D_{m}{ }^{p}=\psi_{m}^{*}\left(\mathbf{r}^{p}\right)$ of \mathbf{r}^{p} are 6 th roots of 1: $\quad D_{2}=D_{1}{ }^{2} \quad D_{1}$ Eigenfunctions $\psi_{m}\left(\mathbf{r}^{p}\right)=D_{m}^{*}$ of \mathbf{r}^{p} are $6^{\text {th }}$ roots of 1:

$$
\begin{array}{lr}
\begin{array}{lr}
\Psi_{m}(\mathbf{r})=\left(l^{m}\right)^{1 / 6}=\left(e^{2 \pi i m}\right)^{1 / 6}=e^{2 \pi i m / 6} & \text { power or } \\
\Psi_{m}\left(\mathbf{r}^{2}\right)=\left(e^{2 \pi i m / 6}\right)^{2} & \text { position point } p \\
\Psi_{m}\left(\mathbf{r}^{3}\right)=\left(e^{2 \pi i m / 6}\right)^{3} & \Psi_{m}\left(\mathbf{r}^{p}\right)=\left(e^{2 \pi i m / 6}\right)^{p}=e^{2 \pi i m} \cdot p / 6=D_{m}^{*}
\end{array}
\end{array}
$$

$$
\begin{aligned}
& D_{4}=D_{1}^{4}=\not D_{-2} \\
& =e^{-4} i / 6
\end{aligned}
$$

$\mathbb{H}=r_{r} \mathbb{r}^{0}+\gamma_{1} \mathbb{r}^{1}+\frac{r}{2} \mathbb{r}^{2}+r_{3} \mathbb{r}^{3}+\frac{r}{4} \mathbb{r}^{4}+r_{\xi} \mathbb{r}^{5}$
To diagonalize \mathbf{H} just diagonalize $\mathbf{g}=\mathbf{r}, \mathbf{r}^{2}, \ldots\left(\right.$ All obey: $\left.\mathbf{g}^{6}=\mathbf{1}\right)$
Eigenvalues $D_{m}{ }^{p}=\psi_{m}^{*}\left(\mathbf{r}^{p}\right)$ of \mathbf{r}^{p} are 6 th roots of 1: $\quad D_{2}=D_{1}{ }^{2} \quad D_{1}$ Eigenfunctions $\psi_{m}\left(\mathbf{r}^{p}\right)=D_{m}^{*}$ of \mathbf{r}^{p} are $6^{\text {th }}$ roots of 1:

$$
\begin{array}{lc}
\Psi_{m}(\mathbf{r})=\left(l^{m}\right)^{1 / 6}=\left(e^{2 \pi i m}\right)^{1 / 6}=e^{2 \pi i m / 6} & \text { power or } \\
\Psi_{m}\left(\mathbf{r}^{2}\right)=\left(e^{2 \pi i m / 6}\right)^{2} & \text { position point } p / \\
\Psi_{m}\left(\mathbf{r}^{3}\right)=\left(e^{2 \pi i m / 6}\right)^{3} & \Psi_{m}\left(\mathbf{r}^{p}\right)=\left(e^{2 \pi i m / 6}\right)^{p}=e^{2 \pi i m \cdot p / 6}=D_{m}^{*} p
\end{array}
$$

$$
\begin{gathered}
\text { I: } \\
\begin{array}{c}
D_{3}=D_{1}^{3} \\
D_{4}=D_{1}^{4}=D_{-2} \\
= \\
=e^{-4} \\
i / 6
\end{array} \\
D_{-1} \\
=e^{-2} \quad i / 6
\end{gathered}
$$

$\mathbb{H}=r_{0} \mathbb{r}^{0}+r_{1} \mathbb{r}^{l}+r_{2} \mathbf{r}^{2}+\frac{r}{3} \mathbb{r}^{3}+r_{4} \mathbb{r}^{4}+r_{r^{2}} \mathbf{r}^{5}$

To diagonalize \mathbf{H} just diagonalize $\mathbf{g}=\mathbf{r}, \mathbf{r}^{2}, \ldots\left(\right.$ All obey: $\left.\mathbf{g}^{6}=1\right)$
Eigenvalues $D_{m}{ }^{p}=\psi_{m}^{*}\left(\mathbf{r}^{(r)}\right)$ of \mathbf{r}^{p} are 6 th roots of 1: $\quad D_{2}=D_{1}^{2} \quad D_{1}$ Eigenfunctions $\Psi_{\psi_{m}}\left(\mathbf{r}^{p}\right)=D_{m}^{*}{ }^{*}$ of \mathbf{r}^{p} are $6^{\text {th }}$ roots of 1:

$$
\begin{aligned}
& \Psi_{m}(\mathbf{r})=\left(l^{m}\right)^{1 / 6}=\left(e^{2 \pi i m}\right)^{1 / 6}=e^{2 \pi i m / 6} \\
& \Psi_{m}\left(\mathbf{r}^{2}\right)=\left(e^{2 \pi i m / 6}\right)^{2} \\
& \Psi_{m}\left(\mathbf{r}^{3}\right)=\left(e^{2 \pi i m / 6}\right)^{3} \\
& \vdots \quad \text { power or } \\
& \text { position point } p \\
& \Psi_{m}\left(\mathbf{r}^{p}\right)=\left(e^{2 \pi i m / 6}\right) p=e^{2 \pi i m \cdot p / 6}=D_{m}^{*} \\
& \text { momentum number } m
\end{aligned}
$$

$D_{m}{ }^{p}=\psi_{m}^{*}(\mathrm{r})$ give Fourier diagonalizing transform matrix

$\boldsymbol{\rho}_{m}^{p}{ }^{*}=\psi_{m}^{p}$	\mathbf{r}^{0}	\mathbf{r}^{1}	\mathbf{r}^{2}	\mathbf{r}^{3}	\mathbf{r}^{4}	\mathbf{r}^{5}
$m=(0)$	1	1	1	1	1	1
(1)	1	ψ_{1}	$\left(\psi_{1}\right)^{2}$	$\left(\psi_{1}\right)^{3}\left(\psi_{1}\right)^{4}$	$\left(\psi_{1}\right)^{5}$	
(2)	1	ψ_{2}	$\left(\psi_{2}\right)^{2}$	$\left(\psi_{2}\right)^{3}\left(\psi_{2}\right)^{4}$	$\left(\psi_{2}\right)^{5}$	
(3)	1	ψ_{3}	$\left(\psi_{3}\right)^{2}$	$\left(\psi_{3}\right)^{3}$	$\left(\psi_{3}\right)^{4}$	$\left(\psi_{3}\right)^{5}$
(4)	1	ψ_{4}	$\left(\psi_{4}\right)^{2}$	$\left(\psi_{4}\right)^{3}\left(\psi_{4}\right)^{4}$	$\left(\psi_{4}\right)^{5}$	
(5)	1	ψ_{5}	$\left(\psi_{5}\right)^{2}$	$\left(\psi_{5}\right)^{3}\left(\psi_{5}\right)^{4}$	$\left(\psi_{5}\right)^{5}$	

H diagonalized by spectral resolution of $r, r^{2}, \ldots, r^{6}=1$

$\rho_{m}^{p *}=\chi_{m}^{p}$	\mathbf{r}^{0}	\mathbf{r}^{1}	\mathbf{r}^{2}	\mathbf{r}^{3}	\mathbf{r}^{4}	\mathbf{r}^{5}
$m=(0)$	1	1	1	1	1	1
(1)	1	χ_{1}	$\left(\chi_{1}\right)^{2}$	$\left(\chi_{1}\right)^{3}\left(\chi_{1}\right)^{4}$	$\left(\chi_{1}\right)^{5}$	
(2)	1	χ_{2}	$\left(\chi_{2}\right)^{2}$	$\left(\chi_{2}\right)^{3}\left(\chi_{2}\right)^{4}\left(\chi_{2}\right)^{5}$		
(3)	1	χ_{3}	$\left(\chi_{3}\right)^{2}\left(\chi_{3}\right)^{3}\left(\chi_{3}\right)^{4}$	$\left(\chi_{3}\right)^{5}$		
(4)	1	χ_{4}	$\left(\chi_{4}\right)^{2}$	$\left(\chi_{4}\right)^{3}\left(\chi_{4}\right)^{4}\left(\chi_{4}\right)^{5}$		
(5)	1	χ_{5}	$\left(\chi_{5}\right)^{2}\left(\chi_{5}\right)^{3}\left(\chi_{5}\right)^{4}\left(\chi_{5}\right)^{5}$			

$\rho_{m}{ }^{p}$ give "quantized" $\psi(x)=e^{i k x}$ wavefunctions:
$\begin{array}{rr}\psi_{m}\left(x_{p}\right)=e^{2 \pi i m \cdot p / 6}=e^{i k_{m} \cdot x_{p}} & \begin{array}{l}\text { let: } k_{m}=2 \pi m / 6 \text { and } x \\ \text { wavelength } \lambda_{m}=\frac{2}{\overline{k_{m}}}=\underline{\sigma}\end{array}\end{array}$
$\rho_{m}{ }^{p}$ give Fourier transformation matrices:
$\left(x_{p} \mid k_{m}\right)=e^{2 \pi i m \cdot p / 6}=\left(k_{m} \mid x_{p}\right)^{*}$

We interrupt this program to bring an important announcement from the makers of
PURE and APPLIED group theory...
(drum-roll, Please...)
...from PURE group theory...

A revolutionary simplification to classify all groups and their algebras

...from APPLIED group theory...

Group theory of wave mechanics is twice as big as you might think...

...from APPLIED group theory...

Group theory of wave mechanics is twice as big as you might think...
APPLIED RELATIVITY-DUALITY THEOREM:

For each external group $\{. . \mathbf{T}, \mathbf{U}, \mathbf{V}, \ldots\}$ there is an internal group $\{. . \overline{\mathbf{T}}, \overline{\mathbf{U}}, \overline{\mathbf{V}}, \ldots\}$ satisfing duality:
|1)

$$
\mid \mathrm{U})=\mathbf{U} \mid 1)
$$

$$
\left.\mathrm{T}|1|=\mid \mathrm{T})=\overline{\mathbf{T}}^{-1} \mid 1\right),
$$

$$
\left.\mathbf{U}(1)=\mid \mathbf{U})=\overline{\mathbf{U}}^{-1} \mid 1\right),
$$

etc., and commutivity: $T \overline{\mathbf{U}}=\overline{\mathbf{T}} \mathbf{U}, \mathbf{T} \overline{\mathbf{V}}=\overline{\mathbf{V}} \mathbf{U}, .$. $\mathbf{U} \overline{\mathbf{V}}=\overline{\mathbf{V}} \mathbf{U}, . . e t c .$,

|1) moved by \mathbf{U} to $\mathbf{U} \mid 1$) yields same relative position $\mid \mathbf{U}$) as $\mid 1)$ moved by $\overline{\mathbf{U}}^{-1}$ to $\overline{\mathbf{U}}^{-1} \mid 1$) ...and wave interference depends on relative position only.

...from APPLIED group theory...

Group theory of wave mechanics is twice as big as you might think...
APPLIED RELATIVITY-DUALITY THEOREM:

For each external group $\{. . \mathrm{T}, \mathbf{U}, \mathbf{V}, \ldots$ \} there is an internal group $\{. . \overline{\mathbf{T}}, \overline{\mathbf{U}}, \overline{\mathbf{V}}, \ldots$ \} satisfing duality:

|1) moved by \mathbf{U} to $\mathbf{U} \mid 1)$ yields same relative position $\mid \mathrm{U})$ as |1) moved by $\overline{\mathbf{U}}^{-1}$ to $\overline{\mathbf{U}}^{-1} \mid 1$) ...and wave interference depends on relative position only.

RELATIVITY-DUALITY also known as:
$\overline{L A B}$ vs BODY (molecular theory)
STATE vs PARTICLE (nuclear shell theory)
GLOBAL vs LOCAL (gauge theory)

Some ways to picture AMO eigenstates

-Potential Energy Surfaces (PES) electronic vibrational

vibronic

- Rotational Energy Surfaces (RES) pure rotational (centrifugal) effects rovibrational (centrifugal and Coriolis) effects
 rovibronic (centrifugal, Coriolis, and Jahn-Teller) effects
- Generalized phase spaces

vibrational polyad sphere
high energy pulse state space

Spin gyro $S=(1,1,1)$ attached (ZIPPed) to Asymmetric Top $(A=5, B=10, C=15)$

Two or more RE's beg to be unZIPPed. $\langle\mathbf{H}\rangle=\left(\begin{array}{cc}\text { Spin-up } R E(\beta \gamma) & \text { Coupling }(\beta \gamma) \\ \text { Base RE surfaces are eigenvalues of matrix. }\end{array}\right)$ Classical RE
$H=A J_{x}{ }^{2}+B J_{y}{ }^{2}+C J_{z}{ }^{2}+\ldots-2 A J_{x} S_{x}-2 B J_{y} S_{y}-2 C J_{z} S_{z}+\ldots+$ (more constant terms) Semi-Classical Spin-1/2 RE $\quad \sigma_{x}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right), \sigma_{y}=\left(\begin{array}{cc}0-i \\ i & 0\end{array}\right), \sigma_{z}=\left(\begin{array}{ll}1 & 0 \\ 0 & -1\end{array}\right), \mathbf{1}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ makes matrix $\mathbf{H}=\left(A J_{x}{ }^{2}+B J_{y}{ }^{2}+C J_{z}{ }^{2}\right) \mathbf{1} \ldots-A J_{x} s_{x} \sigma_{x}-B J_{y} s_{y} \sigma_{y}-C J_{z} s_{z} \sigma_{z}+\ldots+\mathbf{1}$ (more constant terms)

Classical ZIPP $A=0.2, B=0.8, C=1.4$

$$
S_{x}=0.0, S_{y}=0.1, S_{z}=0.2
$$

Semi-Classical spin-1/2 unZIPP $A=0.2, B=0.8, C=1.4$
$s_{x}=0.0, s_{v}=0.1, s_{z}=0.2$

Good news 9

Rotational energy surfaces (RES) may help visualize matrix eigensolutions in general, but rotational and vibrational-polyad states in particular.

Good news (i)

Rotational energy surfaces (RES) may help visualize matrix eigensolutions in general, but rotational and vibrational-polyad states in particular.

Bad news

Well, not every matrix! If your RES looks like a potato, you may be in trouble!

Good news (:)

Rotational energy surfaces (RES) may help visualize matrix eigensolutions in general, but rotational and vibrational-polyad states in particular.

Bad news (i)

Well, not every matrix! If your RES looks like a potato, you may be in trouble! Good news
RES can help expose new phenomena and suggest new experiments.
Bad news
That takes some thought and work. Let us know how you do.

Good news (:)

Rotational energy surfaces (RES) may help visualize matrix eigensolutions in general, but rotational and vibrational-polyad states in particular.

Bad news (0)

Well, not every matrix! If your RES looks like a potato, you may be in trouble!
Good news
RES can help expose new phenomena and suggest new experiments.
Bad news
That takes some thought and work. Let us know how you do.

Good news (:)

RES can approximate rotational matrix with high accuracy that improves as J increases.

Good news (:)

Rotational energy surfaces (RES) may help visualize matrix eigensolutions in general, but rotational and vibrational-polyad states in particular.

Bad news (0)

Well, not every matrix! If your RES looks like a potato, you may be in trouble!
Good news (i)
RES can help expose new phenomena and suggest new experiments.

Bad news

That takes some thought and work. Let us know how you do.

Good news (:)

RES can approximate rotational matrix with high accuracy that improves as J increases.

Bad news \because

But, they suck for $J=1$ or 2 .
Good news
We may be able to fix that.

Good news (:)

Rotational energy surfaces (RES) may help visualize matrix eigensolutions in general, but rotational and vibrational-polyad states in particular.

Bad news

Well, not every matrix! If your RES looks like a potato, you may be in trouble!
Good news (i)
RES can help expose new phenomena and suggest new experiments.
Bad news \circ
That takes some thought and work. Let us know how you do.

Good news (:)

RES can approximate rotational matrix with high
accuracy that improves as J increases.

Bad news \because

But, they suck for $J=1$ or 2 .
Good news
We may be able to fix that.

Bad news

Don't count on it.

What's up, Doc?

Durer's "Melancholia"

