Comparisons of Development: Quantum Theory for the Computer Age versus Standard Quantum Mechanics Texts

The text *Quantum Theory for the Computer Age (QTCA)* is a new and developing text with brand new material that is generally quite different from what is found elsewhere. The next few pages contain several listings and comparisons of the features and logical development of *QTCA* along with those of more conventional expositions.

This will also help to connect what is (or is not) available in *QTCA* with what is (or is not) available in conventional texts. One direct comparison is made between *Quantum Mechanics* by Merzbacher and *QTCA*.

One thing *not* mentioned here is the extensive (and growing) computer graphics simulation and animation library that comes with *QTCA*. These programs stimulated many of the new theoretical and conceptual developments found in *QTCA*. We are confident that this set of applications is currently quite unique in the world.

Hardware and Software by

HARTER- Soft Elegant Educational Tools Since 2001

Contents

- List of topics for a rigorous two-semester modern graduate quantum course for students of atomic, molecular, and optical physics (AMOP), nano-science, and classical and quantum computational theory. (Based on Text: *Quantum Theory for the Computer Age* by Harter (U of A 2001) UA Courses QM I 5413 and QMII 5423.
- Comparing Logical development and Approach of Standard Quantum Texts vs. *QTCA*
- Direct Comparison of *Quantum Mechanics* by Merzbacher and *QTCA*.

List of topics for a rigorous modern graduate quantum course for serious students of optics, nano-science, and classical and quantum computational theory. Heisenberg-Dirac-Feynman approach.

Based on Text: Quantum Theory for the Computer Age by Harter (U of A 2001)

Optional Topics (leading to the "wild-blue-yonder") are shaded

Quantum I

1. Quantum analyzers, their states, and quantum axioms (Uses optical or spin-1/2 polarization experiments and simulations)

Dirac notation and operator matrix representations Transformation and transfer matrices

Matrix operator eigensolutions: Their algebra and geometry Spectral decomposition of commuting observables Relation to Lagrange interpolation Unitary symmetry and group axioms. (With reasons why they work) Perturbation and variational techniques (Optional if done later)

Relation to permutation classes and Lagrange multipliers

2.Quantum wavefunctions and dynamics (Starts using 1D laser optics and derives matter waves and basic relativistic quantum theory. Uses wave simulations.)

Waves described by space and time Group and phase velocity
Waves described by wavevector and frequency Matter waves and relativistic dispersion. Classical connections
Confined waves, wavepackets, and pulse trains Bohr-ring waves. Heisenberg uncertainty
Accelerated waves and gravity. (Optional) Recoil effects. Pound-Rebka experiment

3. Quantum Fourier analysis and symmetry (Starts using plane waves, Bohr-waves, and develops discrete waves on quantum wells and nano-structures. Uses band simulations.)

Fourier transform and transformation matrices. (Discrete versus continuous)
Fourier symmetry analysis
Time evolution operators, matrices, and Hamiltonian generators
Schrodinger time equation
Hamiltonian eigensolutions. Cyclic symmetry analysis.
2-State evolution and analogs. U(2) symmetry analysis. (Optional if done later.)

Euler angles and gauge. Operator angles. Relation to Hamilton quaternions

4. Quantum wave equations (Starts with free optical and matter waves and develops quantum bound and scattering resonant states. Uses wave simulations.)

Difference and differential equations

Schrodinger in x-basis and Schrodinger in k-basis.

Infinite well and Bohr-ring embedding

Quantum beats. (Optional) Revivals

Finite wells and barriers

Transmission and admittance functions
C-matrices and S-matrix eigenchannels (optional if done in QM II)

Introduction to harmonic oscillator (optional if done in QM II)
Coherent wavepackets and classical correspondence

Quantum II

 Periodic potentials and symmetry (Optional if done in SS Phys) Multiple barriers and S-matrix theory Resonant and non-resonant eigenchannels Non-Abelian symmetry analysis of periodic structure and states (Optional if in MMII) Modern point group projection algebra Fourier analysis of periodic structures and states (Optional) Space group analysis (optional)

 Time-variable perturbations and transitions Classical electromagnetic perturbations A•p versus E•r Problems with ignoring relativity Transitions due to oscillatory perturbations Fermi Golden rule Two state resonant transitions Fermi Golden rule broken

3. Quantum harmonic oscillators and multi-exciton states

- 1D states and dynamics
 - Coherent and squeezed states
 - Classical correspondence (and lack thereof)
- 2D ND states and dynamics
 - Schwinger-Glauber analysis (optional)

Bose versus Fermi-Dirac permutational symmetry

Brown-Twiss and related experiments

Non-relativistic quantum field (optional if done in Laser Physics or QE) Fock N-photon states versus coherent states (optional) Jaynes-Cumming's model (optional)

4. Quantum rotation and angular momentum

Relations between rotation and 2D vibration. Wigner D-function analysis

Atomic and molecular beam polarization

Quantum rotor D-wavefunctions and special cases

Legendre P and associated Y-harmonics
Symmetric and asymmetric rotor states and dynamics (Optional if in AMP)

Coupled rotation and spin

Hyperfine (21 cm example) and spin-orbit states
Coupled rotors and centrifugal effects (optional if in AMP or QMIII)

5. Quantum orbitals and central force dynamics

Hydrogen-like electronic structure

O(4) analysis (optional) Spectrum generating algebra (optional) Rydberg states and MCQDT (optional) Helium-like electronic structure Herrick-Kellman-Berry analysis (optional)

Comparing Logic and Approach of Standard to Newer Quantum Texts

Standard "Wavefunction" QM Texts	Newer "Matrix" QM Texts (with QTCA Chapters)		
Schiff, Merzbacher,, extended by Sakauri	Dirac, Feynman,, extended by Harter		
Born-Fermi-Oppenheimer development	Heisenberg-Dirac-Feynman development		
Differential equations first	Ch.1 Matrix equations first		
Matrices an afterthought	Ch.11 Diff. eq's limiting case of matrix-eq's		
Numerical analysis not discussed	Powerful numerical analysis exposed		
Nano-structures not invented yet	Ch.8-14 Nano- and-micro structure models used		
Modern molecular QM impractical	Ch.15,24 Powerful molecular theory developed		
Foggy logic	Solid logic for both physics and mathematics		
Little or no statement of axioms	Ch.2 Physics axioms 0-4 for $\langle x' x \rangle$ amplitudes		
Wavefunctions and operators vague	Ch.1 Beam analyzer T -op gives $\langle x \Psi \rangle = \langle x T y \rangle$		
Unitarity not explained well	Math. symmetry principles give $U^{\dagger}U=1$		
Unitarity not applied well	Ch.1-3 Relates easily to physics axioms		
Little motivation for Dirac notation	Compelling motivation for Dirac notation		
Appears mysterious	Ch.1 Based on optics $\langle x' x \rangle = \cos\theta$, etc.		
Mostly unmotivated	Based on geometry and linear algebra		
Mostly real analysis at first	Complex analysis from the get-go		
Little phase or phasor analysis	Ch.4 Powerful phasor visualization from start		
No spectral decomposition algebra	Best-ever treatment of spectral decomposition		
Orth-norm & completeness mysterious	Ch.3 Tied into axioms 0-4		
Weak relations	Related to Lagrange interpolation		
	Related to Lagrange multipliers		
Poor motivation for eigensolutions	Beam analyzers make eigensolutions obvious		
(Hard to do, with Diff'Equ!)	Ch.3 Analyzers have "own-vectors"		
Weak examples	Clear beam polarization examples		
Poor analysis of eigenvectors	Powerful spectral decomposition analysis		
Laborious GrmSht. degeneracy treatment	Ch.3 Easy commuting-observable algebra		
Weak development of symmetry	Ch.8,15 Compelling intro. to symmetry analysis		
Voodoo-like "measurement theory"	Clear explanation using phase randomization		
Poor intro to density ops	Ch.1,10 Motivated devel. of density matrices		
5 1			
Primitive treatment of wave dynamics	Elegant graphical wave analysis and visualization		
Poor definition of V _{group} and V _{phase}	Ch.4 Precise definition of V _{group} and V _{phase}		
No relation to special relativity	Ch.5 World's first wave derivation of SR		
Silly (or no) derive of Schrodinger wave eq	I usid relativistic wave analysis using symmetry		
DeBroglie relation is grien	Ch 5 DeBroglie relation is <i>theorem</i>		
Waya dispersion alumey after thought	Deworful relativistic dispersion theory		
Convoluted classical connections	Concise and elegant classical connections		
Schrodinger limitations unclear	Schrodinger limitations quite clear		
Analogies are few and weak	Ch 11 Strong and revealing classical analogs		
manogres are rew and weak	same stong and revealing elassical analogs		

Standard QM Texts (contd)

Clumsy treatment of Fourier theory Ch.7-9 P Continuum related poorly to discrete Ch.7,11,16 Poor topological discussions Ch.11 B

> (Serious missed distinctions here.) Old and inapplicable examples Practically no quantum dynamics

Difficult treatment of time evolUtion op. Limited examples of Hamiltonian H-ops H-op e-analysis difficult Possible H-structure unclear Possible solutions unclear

Obscure development of 2-state systems 2D oscillator not exploited fully Schwinger U(2) algebra not used No derivation of Pauli spinor ops. σ_{μ} Clumsy application of 2-state Hamiltonian Mysterious Pauli-*X*,*Y*,*Z* ops.

Unclear & incomplete spin state analysis Few visualization aids Spin angles unrelated to geometry Operator labeling incomplete Unclear how to control spin/phase

Weak Schrodinger wave analysis Poor for modern nano-structures Even square wells made difficult Failures of SW not noticed Over-emphasis of bound states Little on scattering channels

Poor Schrodinger numerical analysis Tunneling is mysterious Little about wave dynamics

Clumsy development of periodic PE Bloch waves mysterious Clumsy angular momentum development

Newer QM Texts (contd)

Powerful and elegant treatment of Fourier theory 1,16 Mechanical analogies clarify $Cn-C\infty$ relation Bounded (Bnd) vs. Unbounded (Unb) combined with Discrete (Dis) vs. Continuous (Con) give four topologies (1) (Unb)-(Con)-x with (Unb)-(Con)-k (*Banach* $\langle x|k \rangle$) (2) (Unb)-(Dis)-x with (Bnd)-(Con)-k (*Bohr* $\langle x|k_m \rangle$) (3) (Bnd)-(Con)-x with (Unb)-(Dis)-k (*Bloch* $\langle x_p/k \rangle$) (4) (Bnd)-(Dis)-x with (Bnd)-(Dis)-k (*Hilbert* $\langle x_p/k_m \rangle$) Ch.7-9 Cn-symm-analysis of Q-dots and photon band-gap Ch.9,12 New wave revival and quantum beat theory

Time evolution **U** just another "analyzer" operator Unlimited and interesting nano-structure examples Symmetry makes e-analysis/calc. simple & powerful Ch.9 Complete classification of all possible **H**-operators

Complete classification of all possible **H**-solutions

Precise clear analogy with 2D-oscillator & opt. polariz'n Ch.10 Classical 2D oscillator *ABCD* theory developed Ch.21-24 Quantum 2D *ABCD*-oscillator U(2) theory used How Hamilton developed σ_{μ} more completely in 1843 Cool classification scheme by "*ABCD*" mnemonics

Ch.10 AD Type-Hamiltonians (<u>Asymmetric-Diagonal</u>)
 B-Type Hamiltonians (<u>Bilateral-Balanced</u>)
 C-Type Hamiltonians (<u>Circular-Chiral-Coriolis</u>)

Lucid analysis of **H** operator and state dynamics

Ch.10 U(2) hardware & software analogs
 Euler angle state coordinates
 Axis angle operator coordinates
 Complete and clear spin/phase control

Powerful U(2) **C**-matrix vs. **S**-matrix scattering theory Designed for modern superlattice and Q-dots

- Ch.12 Simple and extensible theory for square PE's Effects of "infinite force" PE's clarified
- Ch.12-14 Development based to resonances
- Ch.14 New channel-eigenchannel transformation theory

Powerful numerics and analysis based on simple analogs

- Ch.11 Tunneling clarified by "curtain-resonance" analog
- Ch.4,9 Designed to analyze pulses, packets, and revivals

Powerful symmetry-based analysis Ch.9-16 Bloch waves clearly analyzed (and animated) Ch.23-24 Best QTAM treatment available

(The above list contains only a fraction of the new features in QTCA.)

NA=Not Available in QTfCAr

Merzbacher Quantum Mechanics	
Chapter 1 Intro QTfCA	1
Wavefunction meaning	1
Chapter 2 Wave packets. Wave Equation	4,11
Princ of Superposition, Uncertainty, Ways Equation for Eres Particle	1,12
Chapter 3 Schrodinger Equation Operator Algebr	4,9,11
Wave Fauation	11
Momentum Space	7.8
Expectation values	11,12
Stationary states	1,9,10
Virial Th	18,20
Chapter 4 Principles of Wave Mechanics QTfCA	1-13
Hermitian operators	2,3
Completeness of eigenstates	3
Unitary operators	4,/
Charged particle in B-field	10
Galilean transformation	4,17
Chapter 5 Linear Harmonic Oscillator OTfCA	20-21
Eigenvalues and eigenfunctons	3,20
Motion of wavepackets	9,20
Chapter 6 Piecewise Constant Potentials QTfCA	12-16
Step, Barrier, Square Well	13
Chapter / The WKB Approximation	NA 12.12
Bound states Rarrier transmission	12-13
Exponential decay	12-10
Chapter 8 Variational Methods and Perturbation	3
Calculus of Variations	3,5
Rayleigh Ritz	3,18
Double oscillator NA	14
Molecular states	24,35
Periodic potential Chapter 0 Vector Spaces in Quantum Machanics	14-16
(Intro to Dirac notation and operators)	1-3
(Intro to Dirac notation and operators) Chapter 10 Figenvalues and Figenvectors	3
(Intro to eigensolutions of normal operators)	3
Commuting observables	3
Harmonic oscillator and coherent states	20
Chapter 11 Angular Momentum in QM	23-25
Orbital Ang. Mom.	24
Spherical Harmonics	24
Chapter 12 Spherical Potentials	24.26
Square well Radial equation	NA 24.26
Coulomb Potential and bound eigenfunctions	24,20
Chapter 13 Scattering NA	20
Green's functions	11
Born approx	18
Coulomb scattering	NA
Chapter 14-15 Quantum Dynamics	9-12
Quantization	5
Forced oscillator	17-18
Chapter 16 Spin	10 24
Spin polarization	1 10 19
Rotations, Spin operators	1,10,19
Spin dynamics	1,10,19
Chapter 17 Rotations and Symmetry Ops	10,24
Group representations	8-10,15
(Clebsch Gordan ology) Chapter 18, 10 Dound & Time Der Dertard of	24
Fermi Golden rule	17-19
Chapter 120 Formal Theory of Scattering	10 NA
Chapter 121-22 Identical Particle. n-BodySvs.	27-31
Chapter 123 Photons and em Fields	22
Chapter 24.Relativistic Electron THeory	NAyet!

NAM=Not Available in Merzbacher NAAE=Not Avail. Anywhere Else

	Harter Quantum Theory for Computer Age	
	Unit 1 Introduction to Wave Amplitudes Merzbach	er
	Chapter 1 Quantum Amplitudes and Analyzers	NAAE
	Chapter 2 Transformation and Transfer Operators Chapter 3 Operator Eigensolutions and Porturbations	NAM 0 10
	Determinants, permanants, and permutation classes	NAM
1	Unit 2 Introduction to Wave Dynamics	
	Chapter 4 Waves Viewed by Space and Time: Relativity	NAAE
	Chapter 5 Waves Viewed by Wavevector and Frequency: Dispersion	NAAE
2	Chapter 6 Multidimensional Waves and Modes Mostly	NAM
0	An "Old-Fashioned" classical approach to relativity	NAM
0	Chapter 7 Fourier Transformation Matrices Mostly	NAM
	Chapter 8 Fourier Symmetry Analysis	NAAE
	Chapter 9 Time Evolution and Fourier Dynamics 3,5 14-1	5
	Chapter 10 Two-State Evolution, Coupled Oscillation, and Spin Ontical ellipsometry and "Spin-control" using U(2) analysis	16 NAM
	Unit 4 Introduction to Wave Equations	1 12 1111
	Chapter 11 Difference Equations and Differential Operators NAM a	nd 3-4
	Chapter 12 Infinite-Well States and Dynamics 6, NAA	E and NAM
1	Chapter 13 Step Potential Barriers and Wells	6 NA AT
	Scattering and "Quantum Well control" using $U(2)$ analysis	NAAL
	Chanter 14 Multiple Barriers, Figenchannels, and Resonance Rands 8 s	nd NAM
6	Chapter 15 Non-Abelian Symmetry Analysis of Periodic Systems	NAAE
	Chapter 16 Fourier Analysis of Periodic Potentials and States	NAM
3	Molecular symmetry control inside and out	NAAE
6	Unit 6 Introduction to Time-Variable Perturbations & Tran	
	Chapter 17 Classical Electromagnetic Ferturbations Chapter 18 Transitions Due to Time-Variable Perturbation	18-19
	Chapter 19 Two-State Resonant Transitions	16 NAM
	The observer becomes the observed	NAM
	Unit 7 Quantum Harmonic Oscillators	
5	Chapter 20 One-Dimensional Oscillator States and Dynamics Chapter 21 Two-Dimensional Oscillator States and Dynamics	5, 10, 15 NAM
5	Chapter 21 [†] 1wo-Dimensional Oscinator States and Dynamics Chapter 22 [†] Ouantum Electromagnetic Field	22
0	Bose-Einsein and Fermi-Dirac symmetries	21
	Unit 8 Quantum Rotation and Angular Momentum	
	Chapter 23 Two-Dimensional Oscillator and Quantum Rotation Chapter 24 Quantum Theory of Molecular and Nuclear Poters	NAM NAAF
	Chapter 24 Quantum Theory of Nonecular and Nuclear Rotors Chapter 25 Ouantum Theory of Coupled Spins and Rotors	17.NAM
	The quantum frame inside and out: Mach's conundrum	NÁAE
5	Unit 9 Quantum Orbitals and Central force dynamics	
5	Chapter 26 Hydrogen-like States and Dynamics	12 19 22 NAM
	Chapter 2/7 Hellum-like States and Dynamics Chapter 28* Rydberg States	18,22 NAM NAM
6	Fano's multichannel quantum defect theory	NAM
	Unit 10 Multiparticle States and Interactions	
6	Chapter 29 [†] Unitary-Permutation Symmetry Projection	NAM
	Chapter 307 U(m)xU(n) Analysis of Correlation (Entanglement) Chapter 31 ⁺ Atomic in Configurations and Excitation	NAM
	Xray nhotoelectron spectroscopy (XPS)	NAM
	Unit 11 Polyatomic Molecules	1 12 1111
	Chapter 32 [†] Molecular Orbitals and Vibration	8, NAM
	Chapter 33 [†] Rovibrational Fine and Superfine Structure	NAAE
	Chapter 34 [†] Nuclear Hyperfine Structure	NAAE
8	Sapernypermic speed oscopy	INAAL
4	Notes	
.19	Many of Merzbacher's Due to lack of space	
,19	145 sub-Chapter Headings 136 sub-chapter headings or	
,19	are listed 400 sub-chapter headings	
4	are listed here.	
,15	See Tables of Contents at	
۹	the beginning of each Chapter.	
"		<i>e</i> D

† Currently in *Princ. Symm. Spect. & Dyn*. Vol. I or Vol. II and being rewritten for QTfCA