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electronic orbital dynamics and symmetries introduced in Units 5 thru 9. Quantum molecular 

dynamics (QMD) involves the Born-Oppenheimer Approximation (BOA) and perturbations of 

it. BOA based QMD attempts to define a molecular body or BOD frame rotating more or less 

freely in a laboratory or LAB frame with wave functions based on Wigner-DJmn waves 
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Quantum molecular dynamics (QMD) shares with quantum electrodynamics (QED) an intrinsic 

classical prerequisite framework. For QED it is Maxwell-Hamiltonian and Lorentz symmetry. 

For QMD it is the Wilson-Howard-Watson (WHM) Hamiltonian and rotational symmetry. The 

WHM Hamiltonian is constructed in a way that introduces a rotational-vibrational-electronic or 

rovibronic hierarchy in the analysis of rovibrational effects such as Coriolis and centrifugal 

dynamics. Model molecular systems include XY3 , XY6, and XY8 rotational and vibrational 

structures used to develop more detailed quantum analyses in later chapters.
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Chapter 30. Molecular Rovibrational Mechanics

30.1 Classical equations of molecular motion 
 Some of the most complex and theoretically challenging experiments involve the rotational, vibrational, 
and electronic motions of polyatomic molecules. In this chapter we will use ideas that have been given in 
preceding chapters to begin describing molecular rovibronic dynamics and spectroscopy. Molecular theory 
involves rotation and spin states and operators introduced in Ch. 10 and 23, vibrational modes and symmetry of 
Ch. 15, 20, and 21, electromagnetic transitions of Ch. 22, electronic orbital and tensor operators introduced in Ch. 
23, 24 and 25. Quantum molecular dynamics (QMD) has a strong classical Lagrangian and Hamiltonian 
prerequisite as does quantum electrodynamics (QED) in Ch. 22. 

a. Lagrangian description of molecular motion
 Elementary classical molecular Lagrangians begin with Cartesian nuclear or atomic coordinates x j (υ)  
and their time derivatives or velocities 

 
v j (υ) = x j (υ) .

 L  = T – V = 2
1 m

    
xi (α ) xi (α ) −V x( ) ,  where:  

 
x j =

dxj
dt

= vj  (30.1.1)

Greek letters denote particle indices α=υ =1,2,…,N for nuclei or α=ε =1,2,…,Ne for electrons.  Cartesian 
components x, y, or z are labeled by indicial letters i, j, k, …, n that range over 1, 2, and 3 . A sum over the range 
of an index, such as i from 1 to 3 above, is implied if and only if it is repeated within an expression on one side of 
an equation. (We do not sum j above but repeated α is summed over N+Ne.)

Lagrangian L is to be transformed to a function of the body frame components  xk (ε)  for electrons and

  xk (υ)  for nuclei for which the following notation of Fig. 30.1.1 is to be used. 

xk (ε) = rk (ε)       (30.1.2)    xk (υ) = ak (υ)+ dk (υ)  (30.1.3)

The ak(υ) are the constant body-fixed nuclear equilibrium positions and dk(υ) are (usually much smaller) 
vibrational displacements. These quantities are sketched in Fig. 30.1.1(a), and an example involving an XY3 
molecule is shown in Fig. 30.1.1(b). This example and an octahedral XY6 model in discussions in this unit. 

Lab coordinates   x  transform to BOD coordinates  xb  thru coordinate and velocity vectors .

   x = xe = xb eb         (30.1.4)

   x = xe + xe = xb eb + xb eb              (30.1.5)

Lab unit vectors are assumed fixed    e = 0 , while BOD unit vectors rotate at angular velocity .

   eb = ω × eb =ωaea × eb = εabcωaec      (30.1.6)

The antisymmetric Levi-Civita tensor 
 
εijk = −ε jik = −εkji  and 1= ε123 gives cross-product (30.1.6) that turns 

(30.1.5) into a lab-to-BOD velocity relation. 

   
x = xe = xb eb + xb eb = xb eb + xbεabcωaec = xb + εacbωa xc( )eb  (30.1.7)
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 Fig. 30.1.1 Molecular BOD coordinate vectors for classical rovibrational models.

The velocity relation applies to each particle–α in the kinetic term of (30.1.1). (For typographical convenience we 

delete index overlines. Until otherwise stated, all components are BOD-defined.)

 

    

2T = mαx(α )ix(α ) = mα xk (α ) + εinkω ixn(α )⎡⎣ ⎤⎦ xk (α ) + ε jmkω jxm(α )⎡
⎣

⎤
⎦

= mα xk (α ) xk (α ) + 2εinkω ixn(α ) xk (α ) + εinkε jmkω ixn(α )xm(α )ω j
⎡
⎣

⎤
⎦

   (30.1.8)

The definitions (30.1.2) of body coordinates may be used to simplify (30.1.7). In particular, the cross-term for 

nuclear coordinates reduces as follows. 

                            
 

2mνεinkω i xn (υ) xk (υ) = 2mνεinkω i an (υ) + dn (υ)( ) dk (υ)
= 2mνεinkω idn (υ) dk (υ)

   (30.1.9)

The last line uses so-called rotational Eckart conditions. (Zero total rotation is seen in BOD frame.)

mα x(υ) × d(υ)[ ]i = 0 = mνεinkan (υ)dk (υ)     (30.1.10a)

BOD coordinates are also constrained by translational Eckart conditions. (Zero translation in BOD frame.)

          mα x(α )[ ]i = 0 = mexi (ε) + mν ai (υ) + di (υ)( ) i = 1,2,3( )     (30.1.10b)

                             0 ≈ mνdi (υ) i = 1,2,3( )     (30.1.10c)

If electronic mass me is negligible, approximate translational Eckart conditions(30.1.10c) may be used.
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The translational conditions (30.1.10b) fix the center of total mass (nuclei and electrons) at COM origin of 

the body frame. Body coordinates x(υ) and x(ε) can only change in such a way that the molecule as a whole does 
not translate. However, the rotational conditions (30.1.10a), like approximate translation conditions (30.1.10c), 
involve only the nuclear displacements. The displacements dk(υ) are constrained to change in such a way that no 

overall rotation of the nuclei occurs in the body frame. Together the Eckart conditions provide six independent 
constraints on the internal coordinates. The resulting loss of six internal degrees of freedom is supposed to be 
made up by three overall translational coordinates, and three rotational coordinates such as Euler angles for the 

nuclear frame. Note that the rotational conditions do not prevent the internal coordinates from having rotational 

momentum. While the mass-weighted sums of  a(υ) × d(υ)  or  a(υ) × x(υ)  are constrained to zero, no such 

constraint exists for sums of  x(υ) × x(υ)  or  d(υ) × d(υ)  present in (30.1.8). Electrons are treated differently. We 

do not restrict rotational motion and momentum of the electrons except possibly by (30.1.10b). Their spin is 
modeled by add-on terms later.

Let us write the kinetic term with nuclear and electronic parts on separate lines.

     
 

2T = mν
dk (υ) dk (υ) + 2mνεinkω idn (υ) dk (υ) + Iij

Nω iω j

 + me rk (ε)rk (ε)  + 2meεinkω irn (ε)rk (ε)  + Iij
eω iω j

  (30.1.11)

The last term in (30.1.7) is rewritten using the tensor identity to give 

                              
εinkε jmkω i xnxmω j =ω i xnxnω i −ω i xix jω j

=ω i xnxnδ ij − xix j⎡⎣ ⎤⎦ω j

     (30.1.12)

The resulting nuclear and electronic inertial tensors are defined as follows:
                                   Imn

N = mν x(υ)x(υ)δmn − xm (υ)xn (υ)⎡⎣ ⎤⎦      (30.1.13)

    Inm
e = me   r(ε)r(ε)δmn −   rm (ε)rn (ε)⎡⎣ ⎤⎦    (30.1.14)

1.Normal mode transformation: Genuine vibrational modes
Cartesian displacements dk(υ) relate to normal coordinates {s1, s2,… sn} thru linear relations (30.1.15a) to 

dk(υ)(summed over k(υ)) or vice-versa (30.1.15b) (summed over n). Normal XY3 mode coordinates are found by 

Ch. 15 symmetry projection (Appendix 30.A) and combined to satisfy Eckart conditions (30.1.10). For example, 

a C3v projection (15.3.5) shown in Fig. 15.3.2 helps to label XY3 modes in Fig. 30.1.2 that shows the 

displacements dk(υ) of a particular nth mode or nth column of the B-1 matrix. Only genuine modes (s1 thru s5) 

satisfy Eckart conditions (30.1. 10) by having no rigid z-rotation or rigid translation. The B-1 and B-matrix 

relations also have non-genuine (s5 thru s8) shown in the next Fig. 30.1.3.

dj (υ) = Bj (υ ),n
−1 sn             (30.1.15a)   sb = Bb,k ν( )dk (υ)    (30.1.15b)
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Fig. 30.1.2 Model XY3 molecule Cartesian and genuine in-plane normal mode coordinates.

X-mass m, central Y-mass M, and total mass µ=M+3m determine relative displacements of m and M in the stretch 

modes 
  
(s4 = sx

E1 , s5 = sy
E1 ) .    
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2.Non-Genuine modes: Rotation, translation, and tunneling

Non-genuine z-axial rotation mode   (s6 = sA2 ) and (x,y)-translation modes  
  
(s6 = sx

E1 , s8 = sy
E1 )  are shown in Fig. 30.1.3. 

Classical Eckart-allowed motion has zero rotation and translation coordinates s6 through s8. Zero frequency 

motions are purely quantum. A mode is “genuine” if it has non-zero classical frequency.
This XY3 model has so far ignored four dimensions of out-of-plane z-motion. One of these may be a 

genuine vibration and that is the “inverting umbrella mode”  (s9 = sA1 ) . NH3s9 is low frequency (24Ghz) quantum 
tunneling and so, perhaps, it is non-genuine! The other modes are the two (x,y)axial rotations  

  
(s10 = sx

E1 , s11 = sy
E1 ) and 

a z- translation   (s12 = sA1 ) , all genuinely non-genuine. NH3 maser action is due to non-genuine modes. So is most of 
a genuine 1970-2000 laser renaissance of molecular physics.

A2-rotation
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1/√3
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1/√3

1/√3
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E1-y translation
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(a) Non-genuine XY3 in-plane modes
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(s9=1)mode E1-x rotation
(s10=1)mode

E1-y rotation
(s11=1)mode

A2-z-“umbrella”
(s12=1)mode

(may be genuine)

Fig. 30.1.3 Non-genuine XY3 modes.(a) In-plane translation and rotation (b) Out-of-plane motion.

3. Kinetic terms of Lagrangian: Rovibrational Coriolis ξ-coefficients
The first kinetic term in (30.1.11) is transformed by substituting (30.1.15b) into the following form.

                          
 
mν
dk (υ) dk (υ) = Bk (υ ),a

−1 m(υ)Bk (υ ),b
−1 sa sb = Gab

−1 sa sb     (30.1.16a)

Here the G-matrix is an inverse mass matrix defined of B-1-transformed mass matrix.

                                   (30.1.16b)
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The G-matrix for XY3 internal sa coordinates (30.1.15) is diagonal with the following values.

   

sa = s1 = sA1Y s2 = sx
EY s3 = sy

EY s4 = sx
E XY s5 = sx

E XY s6 = sA2 s4 = sx
E ⇒ s4 = sy

E ⇑

Gab = δabGaa = 1
m

1
m

1
m

1
3µmM

1
3µmM

1
m

1
µ

1
µ

 

The G-matrix is symmetric according to its definition (30.1.16b) but not necessarily diagonal. 

  (30.1.17a)      (30.1.17b)

Substituting of transformation (30.1.15b) into kinetic energy cross term (30.1.11) gives the following.

 

2mυεinkω i
dn (υ) dk (υ) = 2mυεinkω iBn(υ ),a

−1 Bk (υ ),b
−1 sa sb

= 2     ξab
i                        sa sb

    (30.1.18)

This defines Coriolis ξab
i xi-coefficients as follows. 

                                            ξab
i ≡ mνεinkBn ν( ),a

−1 Bk ν( ),b
−1 = −ξba

i       (30.1.19)

Later we see that coefficients  give the mth-BOD-component of angular momentum that two modes sa and sb 

can make. XY3 modes yield two cases with non-zero z or 3rd-BOD-component.

                      (30.1.19) example-a

Angular momentum J3 transforms like C3v symmetry A2. Products (24.2.40) has A2 contained in E⊗ E  

( 2
1

x
E1

y
E1 − 2

1
y
E1

x
E1 ) and A1⊗ A2 . E⊗ E  applies to genuine modes of XY3, and so (30.1.19) example-a has all 

vibrational  components. Coefficients involving rotation-translational motion are as follows.

                              (30.1.19b) example-b

Eckart conditions demand so these do not contribute to (30.1.18). From (30.1.1) and (30.1.11) we 

arrive at the following Lagrangian for an arbitrary set of mode coordinates.

                           
 

L = 1
2 Gab

−1 sa sb        +ω iξab
i sa sb              + 1

2 Iij
Nω iω j

+ 1
2 me rk (ε)rk (ε) +ω imeεinkrn (ε)rk (ε) + 1

2 Iij
eω iω j −V (s,r)

   (30.1.20)

Potential V(s,r) includes electrostatic nuclear-nuclear (Vss), nuclear-electron(Vsr), and electron-electron (Vrr) 

coupling independent of velocity sb . The Vss matrix is diagonal for eigen-modes qa=tabsb. Spin and orbit 

interactions may include velocity and spin dependent terms that will be treated later.
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30.2 Hamiltonian description of molecular motion
A Hamiltonian is a function of coordinates and momentum  p =∂ q

∂L . Canonical electronic momentum is

                                 
 
pk (ε) =

∂L
∂rk (ε)

= me rk (ε) + εinkω irn (ε)[ ] .     (30.2.1)

Note that p ε( )  has the form mev  where  v= r (BOD)+ω×r  equals lab measured velocity according to (30.1.6). 

Canonical vibrational momentum has an analogous form. 

                                                    (30.2.2)

Canonical rotational momentum has both electronic and nuclear parts to be sorted out shortly.

 

Ji =
∂T
∂ω i

= Iij
Nω j + ξab

i sa sb

  + Iij
eω j + meεinkrn (ε)rk (ε)

      (30.2.3)

a. Canonical angular momentum: Coriolis ζ-coefficients
Velocity needs to be expressed in terms of momentum in order to derive a canonical Hamiltonian. The electronic 
velocity is as follows from (30.2.1).
                                             rk (ε) = pk (ε) / me − εinkω irn (ε)        (30.2.4)

The vibrational mode velocities are given from (30.2.2) by the following:
   sa = PcGca − ξ fc

i Gcaω is f    (30.2.5a)    sb = PgGgb −ω iζdb
i sd  (30.2.5b)

Here we define reduced Coriolis ζab
i zeta-coefficients . (These relate to 2nd-kind Christoffel factors.)

                                            ζab
i ≡ ξac

i Gcb = εinkBi(υ ),a
−1 Bn(υ ),b        (30.2.5b)

Choice of dummy indices have been made to facilitate later substitutions. Note that  ζab
i ≠ −ζba

i  unless the B-matrix 

is orthogonal. Also, note that the reduced coefficients for the XY3 example are mass-independent.          

                                        1= ζ32
3 = −ζ23

3 = ζ45
3 = −ζ54

3 , 0 = ζ12
3 =…       (30.2.5c)

Electronic and vibrational velocity expressions (30.2.4-5) goes into rotational J-momentum (30.2.3).

                            

  

Ji = Iij
Nω j + ξab

i sa PgGgb −ω jζdb
j sd( )

+ Iij
eω j + meεink rn (ε) pk (ε) / me −ω jε jmkrm(ε)( )

      (30.2.6)

Using (30.2.5b) gives another form.

                            

  

Ji = Iij
N − ξab

i ζdb
j sasd( )ω j               +ζag

j sa Pg

+ Iij
e − meεinkε jmkrn (ε)rm(ε)( )ω j + εink rn (ε) pk (ε)

    (30.2.7)

The first two terms of the electronic contribution cancel according to (30.1.13,14). Two of the other terms 
represent total angular momenta of vibration Lνib  and electrons Lele , respectively.
                     Li

vib = ζab
i sa Pb       (30.2.8a)                       Li

ele = εinkrn (ε)pk (ε)  (30.2.8b)

Electronic angular momentum is a sum over electron label ε of r × p  terms. 
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Let bare-rotor-R inertial tensor  be the first two terms of the vibrational part (30.2.7).

             
 

Iij
R ≡ Iij

N −ζab
i ξdb

j sasd
= Iij

N − εinkBn(υ ),a
−1 mυBk (υ ),b

−1( ) ε jmBm(µ ),d
−1 Bb,(µ )( ) Ba, p(λ )dp (λ)Bd ,q(η)dq (η)( )  

Generally, the sums are taken over all mode indices a, b, and d including rotation and translation. 
However, terms with a >5 or d >5 are zero according to Eckart conditions sa≡0  for a >5. The sums simplify as 

follows, where (30.1.12-13) are used again.

                        
 

Iij
R = Iij

N − mυεinkε jmδn(υ ), p(λ )δk (υ ),(µ )δm(µ ),q(η)dp (λ)dq (η)

= mυ εinkε jmk xn (υ)xm (υ) − εinkε jmkdn (υ)dm (υ)⎡⎣ ⎤⎦
   (30.2.9)

The equilibrium-displacement vector sum (x = a + d)  of (30.2.6) is then inserted to give a rotor inertia tensor that 

varies linearly with displacements 
 
d υ( )  from equilibrium. The rotational Eckart condition (30.1.9) is used to 

equate the sums of an dm and am dn .   Here  represents the equilibrium inertia with .

                         
Iij
R = mυεinkε jmk an (υ)am (υ) + an (υ)dm (υ) + dn (υ)am (υ)[ ]
= Iij

0 + 2mυεinkε jmkan (υ)dm (υ)
   (30.2.10)

Finally, the total angular momentum follows by combining (30.2.7) through (30.2.10). 

                                                        Jm = Rm + Lvib + Lele      (30.2.11a)

Here the electronic and vibrational terms are given by (30.2.8) and the rotor term.
                                                                 (30.2.11b)

The rotor term varies linearly with normal mode displacements according to (30.2.10).

1. Legendre-Hamilton-Poincare form
The above relations can give the classical Hamiltonian function in Poincare form.

                                            H = Pb sb + pk ε( ) rk ε( ) +ωmJm − L = T +V    (30.2.12)

This is a general result whose verification for this particular case is left as an exercise. Instead, we shall derive H 
directly below. First the terms of T in (30.1.20) that are quadratic in the velocities are converted to the following 
functions of momentum using (30.2.5) and (30.2.6). Vibrational terms are as follows.

                           (30.2.13a)

The electronic terms give the following.

      
 

me rk (ε)rk (ε) = me pk (ε) / me − εinkω irn (ε)( ) pk (ε) / me − ε jmkω jrm (ε)( )
= pk (ε)pk (ε) / me − 2ω iεinkrn (ε)pk (ε) +ω imeεinkε jmkrn (ε)rm (ε)ω j

 (30.2.13b)

There is a similarity between the quadratic terms above and the remaining linear velocity terms of T.
                         ω iξab

i sa sb              =ω iζag
i saPg           −ω iξab

i ζdb
j sasdω j    (30.2.14a)

                         ω imeεinkrn (ε)rk (ε) =ω iεinkrn (ε)pk (ε) −ω imeεinkε jmkrn (ε)rm (ε)ω j   (30.2.14b)
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b. Wilson-Howard-Watson Molecular Hamiltonians
All kinetic terms are collected to express T in terms of canonical rovibronic momenta R, P, and p.

         

T = 1
2GabPaPb          −ω iζ fg

i s f Pg           + 1
2ω iξab

i ζdb
j sasdω j                 +

1
2 Iij

Nω iω j

         +ω iζag
i saPg          −   ω iξab

i ζdb
j sasdω j

+ 1
2 me pk (ε)pk (ε) −ω

i
εinkrn (ε)pk (ε) + 1

2 meω iεinkε jmkrn (ε)rm (ε)ω j +
1
2 Iij

eω iω j

  +ω iεinkrn (ε)pk (ε) −   meω iεinkε jmkrn (ε)rm (ε)ω j

 (30.2.15a)

Cancellation simplifies T particularly for electronic terms. Then rotor inertia matrix (30.2.10) is used.

                        T = 1
2 Iij

N − ξ fb
i ζdbs f sd( )ω iω j +

1
2GbgPbPg +

1
2me pk (ε)pk (ε)    (30.2.15b)

  T = 1
2 Iij

Rω iω j                        +
1
2GbgPbPg +

1
2 me pk (ε)pn (ε)    (30.2.15c)

Finally angular velocity ω is expressed in terms of nuclear rotor momentum R by inverting (30.2.11b). 
The classical Wilson-Howard-Watson molecular Hamiltonian follows if we add a potential V(s,r) to T.

H= T +V s,r( )          (30.2.16a)

   =                      1
2 Riµij

RRj                    +
1
2 PaGabPb  + 1

2 me pk (ε)pk (ε) +V s,r( )  (30.2.16b)

  = 1
2 Ji − Li

vib − Li
ele( )µij

R J j − Lj
vib − Lj

ele( ) +     KEvib   +         KEel         +V s,r( )  (30.2.16c)

Here the inverse rotor inertia matrix  is defined in terms of the original inertia tensor IN in (30.1.13).

                          
  
µij

R( )−1
= Iij

R = Iij
N −ζab

i ξdb
j sasd     (30.2.17a)

                        = Iij
0 + 2mυεinkε jmkan (υ)dm (υ)     (30.2.17b)

     = mυεinkε jmk an (υ)am (υ) + 2an (υ)dm (υ)⎡⎣ ⎤⎦   (30.2.17c)

The form (30.2.17c) requires (m,n)-sums over all modes including  pure rotation and translation.
For some time the quantum versions of (30.2.16) were thought to be even more complicated. Then, Louck 

and Watson showed that the quantum molecular Hamiltonian could be written in the same form as the classical 
Hamiltonian (30.2.16) if one includes a tiny energy shift term.

                          U = − h2 / 8( )TraceµR ⋅      (30.2.18)

It is difficult if not impossible to observe U so we hold off discussing it. Instead we consider dynamics that arise 
from Hamiltonian (30.2.16) when quantum operators replace the classical canonical variables.  However, the 

underlying LAB to BOD rotational relativity behind the replacement of rotor KE 
  2
µ R2 by 

  2
µ (J − L)2 in (30.2.16) is 

anything but trivial. Rather it is analogous to the replacement of KE  2m
1 p2 by   2m

1 ( p − eA)2  in quantum 

electrodynamics where field is a momentum boost (Recall Sec.  16.)
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1. LAB and BOD quantum angular momentum operators
A most important point concerns what glues an entire molecule together to allow the concept of a 

molecular frame. It is assumed that electronic bonding overcomes inter-nuclear repulsion and provides a stable 
effective adiabatic potential energy that has an approximate quadratic harmonic dependence on the nuclear 
coordinates sb . Such a V (sb ) is called a Born Oppenheimer Approximate (BOA) effective potential and will be 

discussed at the beginning of Sec. 31.
Commutation of BOD-based momentum operators  Jb = −Jb  (23.1.20b) adds a (-)sign to that of BOD 

defined generators Jb  of     R[Θ] = e−iJiΘ or the standard LAB defined generators J of    R[Θ] = e−iJiΘ .

Ja ,Jb⎡⎣ ⎤⎦ = −iεabcJc  (30.2.19a)   Ja ,Jb⎡⎣ ⎤⎦ = +iεabcJc  (30.2.19b)

 R[Θ]  has the same group multiplication rules as  R[Θ]  as do J  and  J yet the two groups commute. A molecular 

BOD turning anti-clockwise relative to LAB has positive
   

J z =m>0 but negative 
   

Jz =n<0  since BOD sees LAB 

turning clockwise. The (-) definition  Jb = −Jb makes signs come out the same.

The electronic momenta (30.2.8b) satisfy the usual LAB commutation relations as long as the electrons 
are constricted by BOA to be defined in the BOD frame (that they are holding together!).

                            
  

Li
el , Lj

el⎡
⎣

⎤
⎦ = iεijk Lk

el    (30.2.20)

However, the vibrational momenta (30.2.8a) do not necessarily satisfy standard commutation relations. As a 
result the vibrational momenta can have non-quantized expectation values resulting from an incestuous 
entanglement of rovibrational modes with the rotor on which the vibrations are based. 
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30.3 Applications of molecular Hamiltonians
Conventional expressions for the molecular inertia matrix such as (30.2.17a) are sums over the genuine 

vibrational modes, only, and give a different expansion than (30.2.17c). Choosing orthonormal mode variables qa, 
as shown next, gives a unified definition ( ) of Coriolis constants.

a. Orthonormal mode coordinates.
An orthonormal mode coordinate system is more convenient for quantum purposes. The objective is to simplify 
the vibrational kinetic terms.

                         
 
1
2 mυ
d j (υ) d j (υ) = 1

2
δ j (υ) δ j (υ),    where:   δ j (υ) = mυ

1
2d j (υ)   (30.3.1)

Mode coordinates sa in definition (30.1.15) become an orthonormal set qa .
                 δ j (υ) = a, j(υ)[ ]qa                    qb = b,k(υ)[ ]δk (υ)   (30.3.2)

The transformation is orthogonal.
             a, j(υ)[ ] b, j(υ)[ ] = δab           a, j(υ)[ ] a,k(µ)[ ] = δ j (υ ),k (µ )  (30.3.3)

Orthogonality (30.3.4) means the kinetic term is preserved if the transformation is time independent.

                            
1
2
δ j (υ) δ j (υ) = 1

2 qa qa      (30.3.4)

Comparing (30.1.15) and (30.3.1) relates the two transformations and simplifies preceding quantities.

                 Bj(υ ),a
−1 = a, j(υ)⎡⎣ ⎤⎦ / mυ           Bb,k (υ ) = b,k(υ)⎡⎣ ⎤⎦ mυ  (30.3.5)

A mass-orthogonal Eckart conditioned mode transformation such as B-1 of (30.1.15)x is easily made into 
an orthonormal  [a,j(υ)] matrix by multiplying row-j(υ) of B-1 by √mυ according to (30.3.5) and then normalizing 
each column-sa to give column-qa  of [a,j(υ)] as in the following example.

 

δ1 1( ) 3
3

3
3 0 M

3µ 0 0 m
µ 0 q1

δ2 1( ) 0 0 − 3
3 0 M

3µ
3
3 0 m

µ q2

δ1 2( ) − 3
6

− 3
6 − 1

2
M
3µ 0 − 1

2
m
µ 0 q3

δ2 2( ) 1
2 − 1

2
3
6 0 M

3µ
− 3
6 0 m

µ q4

δ1 3( ) = − 3
6

− 3
6

1
2

M
3µ 0 1

2
m
µ 0 q5

δ2 3( ) − 1
2

1
2

3
6 0 M

3µ
− 3
6 0 m

µ q6

δ1 4( ) 0 0 0 3m
µ

− 0 0 M
µ 0 q7

δ2 4( ) 0 0 0 0 3m
µ

− 0 0 M
µ q8

   (30.3.6)

Each row (or column) of a [b,k(υ)] matrix like (30.3.6) has unit norm and is orthogonal to the others.
Orthonormal coordinates make equal Coriolis coefficients in (30.1.19) and (30.2.6b).

               ξab
i = εink a,n(υ)⎡⎣ ⎤⎦ b,k(υ)⎡⎣ ⎤⎦ = −ξba

i    where:   ξab
i = ζab

i = −ζba
i            (30.3.8)

For the XY3 example we have the following.
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ζ23
3 = −1= −ζ32

3 , ζ24
3 = 0 = −ζ25

3 , ζ45
3 = 1= −ζ54

3

ζ61
3 = 1= −ζ32

3 , ζ48
3 = 0 = ζ75

3 , ζ78
3 = 1= −ζ87

3
           (30.3.9)

So far only the kinetic
   
1
2
qa qa  terms (30.3.4) have been simplified. If the electronic bonding forces can be 

approximated by harmonic potential  2
1 kabqaqb  then that also needs to be simplified by normal coordinates Qn=qa

(a|n) that bring the harmonic part of the potential to diagonal form 
  
1
2
ωb

2Qb
2  as follows.

                                        
   
KEvib + PEvib = 1

2
qa qa + 1

2
kabqaqb + ...anharmonic q-terms   (30.3.10a)

                                       
   
= 1

2
Qa
Qa + 1

2
ωb

2Qb
2 + ...anharmonic Q-terms   (30.3.10b)

Examples for XY3 and XY6 vibration modes are given in Appendix 30.A. and used below to derive centrifugal  
and Coriolis effects for various models including, first of all, a simple rotating spring-mass.

b. Centrifugal and Coriolis effects
1. Elementary spring-mass model
Hamiltonians of 4th-power Jx4, Jy4,..terms model deformable rotors that change inertia more or less due to 

centrifugal force. An example in Fig. 30.3.1 is a single rotating mass m held by a spring k = mωv
2 . The rotor has 

vibrational kinetic and potential energy KEv and PEv plus rotational kinetic energy REJ.

   

 

E = KEv +       PEv     +   REJ

  =
m r2

2
+
k
2

(r − r0 )2 +
I θ2

2
=
pv

2

2m
+
m
2
ωv

2(r − r0 )2 +
µJ2

2

  (30.3.11)

Rotational inertiaI=mr2=1/µ , angular  velocity 
θ =ω J , and momentum J=I

θ = Iω J involve radius r that grows 

from rest value r0 until spring forceFspring = −mωv
2(r − r0 )  cancels centrifugal force Fcentrif = mω J

2r .

  Fspring + Fcentrif = 0 = mω J
2r −mωv

2(r − r0 )     implies:     r = r0
ωv

2

ωv
2 −ω J

2
    (30.3.12)

Centrifugal equilibrium r blows up as rotation rateω J  nears vibrational frequencyωv . 1st  derivative of effective 

potential PEv+REJ in (30.3.11) is zero at equilibrium radius r or stretch distanced=r−r0 .

  ∂
∂r

(PEv+REJ ) = 0 = mωv
2(r − r0 )+

J2

2
∂µ
∂r

    implies:    d = r − r0 =
J2

2mωv
2
∂µ
∂r

 (30.3.13)

We assume the angular velocityω J varies inversely with r so that momentum J is conserved as it must be since the 

central spring force exerts no torque.
 The inverse inertia I=1/µ is approximated for small stretch  (d=r−r01)  and (30.3.13) is inserted.

    µ ≅ µ0 +
∂µ
∂r
(r − r0 )+... = µ0 −

∂µ
∂r

J2

2mωv
2
∂µ
∂r

+...    (30.3.14a)

This with (30.3.13) is inserted into energy expression (30.3.11) to approximate the effect of momentum J.
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E =
pv

2

2m
+
m
2
ωv

2 r − r0( )2           +
µJ2

2

   =
pv

2

2m
+
m
2
ωv

2 J2

2mωv
2
∂µ
∂r

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

2

+
µ0J

2

2
−
∂µ
∂r

J2

2mωv
2
∂µ
∂r

J2

2
+...

   =
pv

2

2m
+          

J4

8mωv
2

∂µ
∂r

⎛
⎝⎜

⎞
⎠⎟

2

+
µ0J

2

2
−

J4

4mωv
2

∂µ
∂r

⎛
⎝⎜

⎞
⎠⎟

2

+...

  (30.3.14b)

This reduces to a simpler form that lends some insight into centrifugal distortion energy.

   E =
pv
2

2m
+
µ0J

2

2
−

J4

8mωv
2

∂µ
∂r

⎛
⎝⎜

⎞
⎠⎟

2

+... =
pv
2

2m
+
µ0J

2

2
−
m
2
ωv
2d2+...   (30.3.15)

The rigid rotor energy is perturbed by a J4/r6 term that reduces total energy by just the amount of work needed to 
stretch the spring by distance d in (30.3.13). The spring gains PE=kd2/2 the whole system loses twice that in 
rotational kinetic energy by expanding to radius r=r0+d for a net loss of kd2/2=mωv2d2/2. 

kv
m

r

r0
d d d d (J >0)

effective
potential
drops by
kvd

2/2

(J =0)
potential
V=kvd

2/2
minimum
at r0.

(J >0)
effective
potential
minimum at r =r0 +d.

Fig. 30.3.1 Spring-mass model for centrifugal stretch of a model vib-rotor showing effective PE shift.

 Imagine a rotor of energy E is held by a wire at its (J=0)-radius r0 but has momentum J>0 tending to pull 
it out to radius r=r0+d. Cutting the wire changes neither energy E nor momentum J but lets mass m begin 
vibrating around its new equilibrium of r=r0+d with an amplitude ±d between rmin=r0 and rmax=r0+2d.

2. Polyatomic molecular distortion: XY6 and XY8 examples

 Multi-mass molecular Hamiltonians have vibration normal coordinates qµ  and BOD momentum Jm .

   H =2
1 pµ pµ +2

1ωµ
2qµqµ +2

1 Jmµmn Jn      (30.3.16)

Each normal coordinate has an equilibrium shiftδqµ  like the d in (30.3.13). Note:
   ∂q
∂ (µ·I)=∂q

∂1=0=∂q
∂µ ·I+µ·∂q

∂I .

   δqµ = −
1
2ωµ

2
Jm

∂µmn
∂qµ

Jn = −
1
2ωµ

2
JmImn

−1 ∂Imn
∂qµ

Inp
−1Jp     (30.3.17)
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Inverse inertia is represented by a 3-by-3 matrix µmn = Imn

-1 inverse to the inertia tensor Imn . The resulting effective 

Hamiltonian analogous to (30.3.15) involves a 4th-degree J-tensor sum over all modes qµ . 

 
 

H = H0 −
Jk J JmJn

8ωµ
2

∂µk 
∂qµ

∂µmn
∂qµ

 =H0 −
(ωµδqµ )2

2
  where:  H0 =2

1 pµ pµ +2
1 Jmµmn

(0)Jn  (30.3.18)

 Mode qµ-sums are discussed below. However, for high symmetry molecules, the allowed J-tensor forms 
can be deduced by symmetry alone. For cubic, octahedral, and tetrahedral molecules C8H8, SF6, and CF4, 
respectively, there is only one linearly independent 4th-degree J-tensor or (xyz)-polynomial. Powers J4 or r4 are 
spherical scalars that expand into non-scalar tensors linearly dependent on scalar r4.  

  r4 = (r2)2 = (x2 + y2 + z2)2 = (x4 + y4 + z4 )+ 2(x2y2 + x2z2 + y2z2)   (30.3.19)

An octahedral (SF6-like) molecule uses the first tensor. Cubic or tetrahedral molecules use the other.

   Hoctahedral = H0 + t4 (J1
4 + J2

4 + J3
4 ) (30.3.20a)  Hcubic = H0 + t22(J1

2J2
2 + J1

2J3
2 + J2

2J3
2)  (30.3.20b)

The spherical scalar term H0 = BJ
2 + t0J

4 hasBJ2 = B(J1
2 + J2

2 + J3
2)  of a rigid spherical top Hsph, but each RES has 

an octahedral or cubic shape, respectively, as shown in Fig. 30.3.2(a) and Fig. 30.3.2(b).

 
T (4) (J) = J1

4 + J2
4 + J3

4

= J4[cos4 γ sin4 β + sin4 γ sin4 β + cos4 β]
(30.3.20c)      

T (2,2) (J) = J1
2J2
2 + J1

2J3
2 + J2

2J3
2

= J4[cos2 2γ sin2 β + sin2 2β]
 (30.3.20d)

 The Hamiltonians (a) and (b) of (30.3.20) and RES (a) and (b) in Fig. 30.3.2 are related in (30.3.19) by a 
±sign since t22 is just –2t4 if scalar t0 is adjusted accordingly. Nevertheless, distortion of an octahedral SF6 
molecule described by T(4) is quite different from a T(2,2) distortion of cubic C8H8 or tetrahedral CF4.
 The octahedral RES has a minimum when the J is near one of the eight (111) axes of trigonal (3-fold) 
symmetry. Whirling about (111) axes has maximum effect on octahedral molecules since they have relatively 
weak bending bonds that are affected by centrifugal force due to (111) rotation that spreads the six arms of an SF6 
molecule relatively easily. Thus (111) is in a valley in Fig. 30.3.2(a). 

However, a rotation about (100), one of six  (±x,±y,±z) axes of tetragonal (4-fold) symmetry, only affects 
radial bonds normal to these axes, and those stretch very little due to the high radial bond strength. Thus (100) is 
on one of six octahedral RES peaks in Fig. 30.3.2(a) where SF6 is least susceptible.

It is vice-versa for cubic C8H8 or tetrahedral CF4 molecules that resist distortion while rotating on any of eight 
(111)-axes of trigonal (3-fold) symmetry but are susceptible to rotation on any of six (±100), (0±10), or (00±1) 
tetragonal axes that bend bonds and thus lie in six RES valleys of Fig. 30.3.2(b).
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Fig. 30.3.2 Centrifugal  4th-degree sphere-top RES. (a) octahedral (SF6) (b) cubic (C8H8) tetrahedral (CF4)

3. Elementary derivation of SF6 distortion parameters.
Hecht model 4th-rank distortion operator for the SF6 molecule are discussed in Sec. 25.4 (Recall (25.4.18).) and 
above. In Hecht’s notation the operator and its parameters are written as follows.

                                       H = 10 t044 Jx
4 + Jy

4 + Jz
4 −5

3 J 4( ) + t040J 4    (30.3.21)

We now derive the parameters t040 and t044 in terms of SF6 vibrational mode frequencies.

The distortion Hamiltonian (30.3.18) depends on a sum over genuine modes of the squaresδqµ
2  of 

distortions δqµ  as given by (30.3.17). The key quantity in the distortion expression is the derivative with respect 

to qµ of the inertial tensor Iij or its inverse . Mode tensor derivatives  are evaluated at the equilibrium 

positions (qµ =0) for the molecule and therefore must be invariant to its molecular symmetry group that is 

octahedral Oh for SF6. Only modes , , q2
Eg , q1

T2g , , and that transform like components of an 

irreducible symmetric 2nd-rank spatial tensor  or Iij may thereby give non-zero 
 ∂q
∂µ .
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Symmetry selection of non-zero  components is the same as selection for non-zero derivatives  of 

Raman polarizability tensors, only Raman-active modes affect inertia to 1st order. Each component of an allowed 
Alg, Eg, and T2g mode shares its coefficient A, E, or T with others of its kind, as follows. 

  

∂µ
∂q A

=

−A / 3 0 0

0 −A 3 0

0 0 −A / 3

, ∂µ
∂ql

Ε
=

−E / 6 0 0

0 −E 6 0

0 0 2E / 6

, ∂µ
∂ql

T
=

0 0 0

0 0 T / 2

0 T / 2 0

                                                       

  

∂µ
∂q2

E
=

E / 2 0 0

0 −E 2 0
0 0 0

,       ∂µ
∂q2

T
=

0 0 T / 2
0 0 0

T / 2 0 0

(30.3.22)

                                                                                                      

  

∂µ
∂q3

T
=

0 T / 2 0

T / 2 0 0
0 0 0

 

Coefficients A, E, and T are to be evaluated by considering the effect of the A1g-mode component, one Eg-mode 

component (say, ), and one T2g-mode component (say,   q3
T2g ) on inertia tensor µ.

One must take care to use the mass normalized mode coordinates for the potential form 1
2
ωµ
2qµ
2  in 

(30.3.16). The units of q in (30.3.1) are  m ⋅ kg . The radial coordinate of the F-atoms with mass m for the  

mode in Fig. A.2 is   a + q A / 6m . (Here (a) is equilibrium radius.) The  mode has   a + 2q1
Eg / 12m  for polar 

atoms and   a − q1
Eg / 12m  for equatorial atoms. The tangential displacements of T2g modes are   q3

T2g / 4m . The 

inertia tensor derivative for each mode then follows.

                                  
  

∂I11

∂q A
= 8am

6m
,      

∂I11

∂q1
E
= 4am

12m
,       

∂I12

∂q3
T
= − 4am

4m
.    (30.3.23)

Inertia is . The relation µ·I=1 gives the µ-derivatives in (30.3.17) by 
   ∂q
∂ (µ·I)=0=∂q

∂µ ·I+µ·∂q
∂I .

                          
  

∂µ11

∂q A
= −1

2a3 6m3
,      

∂µ11

∂q1
E
= −1

8a3 3m3
,       

∂µ12

∂q3
T

= 1

8a3 m3
.   (30.3.24)

The parameters A, E, and T in (30.3.22) are then given.

              
  
A = 2a3 2m3⎡

⎣⎢
⎤
⎦⎥
−1

, E = 4a3 2m3⎡
⎣⎢

⎤
⎦⎥
−1

, T = 4a3 2m3⎡
⎣⎢

⎤
⎦⎥
−1

.   (30.3.25)

Centrifugal distortion due to angular momentum (JxJyJz) is given in terms of A, E, and T by (30.3.18).

               

  

δq A = ( A / 2ω A
2 3) Jx

2 + J y
2 + Jz

2( ) δq1
T = (T /ω1

T 2) J y Jz( )
δq1

E = (E / 2ωE
2 6) Jx

2 + J y
2 − 2Jz

2( ) δq2
T = (T /ωT

2 2) Jx Jz( )
δq2

E = (E / 2ωE
2 2) Jx

2 − J y
2( ) δq3

T = (T /ωT
2 2) Jx J y( )

  (30.3.26)

Combining these yields the total distortion energy from (30.3.16b).
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 (30.3.27)

The anisotropic term involves Eg and T2g modes only. Combining (30.3.17) and (30.3.19) gives

  

10 t044 = T 2

8ωT
2
− E2

8ωE
2
= 1

256m3a6
1
ωT

2
− 1
ωE

2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
= 1

4I3
1
ωT

2
− 1
ωE

2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

.   (30.3.28)

This should be compared to the measured SF6 rotational constant (0.091083 cm-1) in (mks) energy units.

   
B = 

2

2I
= 2

8ma2
= (0.091083 cm-1)(J ⋅ sec)c m

100sec
= 1.81·10−24 Joule  (30.3.29)

The radius of SF6 deduced from this measurement is approximately a = 1.58 x 10-10 m. (Fluorine atomic mass is m 
= 19(1.6 x 10-27 kg.) The distortion constant has an 4 scale factor to match J4.

   

10 t044 = 84

4(2I )3
2

2ωT
2
− 2

2ωE
2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
= 2B3 1

εT
2
− 1
εE

2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

.    (30.3.30a)

This formula was given first by Berger.
The wavenumber or energy values for the Eg and T2g fundamentals, as given in Appendix 30.B, are (Eg: 

644 cm-1 or 1.28·10-20 J;   T2g: 524 cm-1 or 1.04·10-20 J) and give the anisotropic centrifugal constant.

  

t044 = B3

5
1
εT

2
− 1
εE

2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
= 3.74·10−33 Joule = 5.65Hz     (30.3.30b)

The t044 values deduced from experiment are 5.7 ± 0.7 Hz by Borde and 5.44 ± 0.5 Hz by Patterson and Herlemont, 
et al. The tiny value of about 56 Hz for 10 t044 is multiplied by J4. Hence, for J=100 this leads to tensor splitting on 
the order of half a giga-Hertz. We leave as an exercise the calculation of the corresponding centrifugal atomic 
distortions from (30.3.26).
 Spherical tops require dipole T1u vibrational excitations to get 1st order optical transitions, and these υ3 and 

υ4 modes around 615cm-1 and 950cm-1 give much greater centrifugal and Coriolis splitting parametrized by larger 
and more numerous constants Bζ, t224, and so forth that fit the spectra. 

4. Elementary derivation of SF6 Coriolis parameters.
 Molecular total angular momentum J=R+ and its z-components Jz=Rz+z has integral quantum values 
m but individual rotor Rz or vibronic z may have continuous expectation values mζ depending on Coriolis 
coefficients ζ that, in turn, vary with the summed areas of classical oscillation paths. Only vector or T1{x,y,z} 
symmetry modes υ3 and υ4 of SF6 can contribute1st order vibration angular momentum.

Here we consider Corolis effects due to vibration angular momentum of υ3 and υ4 modes of SF6 derived 
in Appendix 30.B. Angular momentum of a Bohr circular orbit can only have integral quanta ±m while a 2D or 
3D vibration may have a variety of elliptic polarized orbits noted in Ch. 10. These take various shapes ranging 
from C-type (circular polarized) oscillation with integral quanta ±m , to A or B-type (linear polarized) oscillation 
with no angular momentum at all. 
 It is convenient to use normalized classical mode coordinates qb. Setting one to unity (qa =1) and the 

others to zero gives atomic displacementda (υ) = (dx
a ,dy

a ,dz
a )  of nucleus-υ by (30.3.6).
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    d j

a (υ) = Bj(υ),a
−1 = mυ [a, j(υ)]

A Coriolis coefficient ξab
i from (30.1.19) orζab

i from (30.2.5) depends on a pair of modes qa and qb.

   
ξxy
z = −ξyx

z = mυε znkdn
a (υ)dk

b (υ) = mυ | dx (υ) × d y (υ) |z
              = ε znk a,n(υ)⎡⎣ ⎤⎦ b,k(υ)⎡⎣ ⎤⎦ = ζ xy

z    

For normalized modes, the ξ or ζ coefficients are equal to the sum over nuclear (υ) elliptic path momentum due to 
z-rotationally polarized z-projected vector mode combinations (x+iy). Mass normalized coordinates in (30.3.4) are 
subject to the normalization relations.

     mυ [d j
a (υ)]2

j=1

3
∑

υ

N
∑ = 1
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Appendix 30.A Symmetry defined vibrational normal coordinates
A.1 C3v defined coordinates of Y3 and XY3 molecules
The Djk

α -matrices and Pjk
α -projectors of trigonal symmetry C3v are given in Ch. 15 of Unit 5 and applied to 

molecular orbitals of a Y3 structure. The same projections help to analyze of molecular vibrations.
 Two sets ofDjk

E -matrices are given. One set (15.1.8) has diagonal 120° rotations C3(r,r2).

 
   

g = 1 r r2 i1 i2 i3

D A1 g( ) =
D A2 g( ) =
Dc3d3

E1 g( ) =

1
1

1 0
0 1

⎛
⎝⎜

⎞
⎠⎟

1
1

ε− 0

0 ε+

⎛

⎝
⎜

⎞

⎠
⎟

1
1

ε+ 0

0 ε−

⎛

⎝
⎜

⎞

⎠
⎟

1
−1

0 ε+
ε− 0

⎛

⎝
⎜

⎞

⎠
⎟

1
−1

0 ε−
ε+ 0

⎛

⎝
⎜

⎞

⎠
⎟

1
−1

0 1
1 0

⎛
⎝⎜

⎞
⎠⎟

where:ε± = e
±i

 3
2π

 (15.1.8)repeat

Another set (15.1.12) has diagonal x-plane reflection C2(i3). (They share the same 1-by-1   D A1 and  D
A2 .)

   

g = 1 r r2 i1 i2 i3

D A1 g( ) =
D A2 g( ) =

Dx2 y2

E1 g( ) =

1
1

1 0
0 1

⎛
⎝⎜

⎞
⎠⎟

1
1

−1 / 2 − 3 / 2

3 / 2 −1 / 2

⎛

⎝
⎜

⎞

⎠
⎟

1
1

−1 / 2 3 / 2

− 3 / 2 −1 / 2

⎛

⎝
⎜

⎞

⎠
⎟

1
−1

−1 / 2 − 3 / 2

− 3 / 2 1 / 2

⎛

⎝
⎜

⎞

⎠
⎟

1
−1

−1 / 2 3 / 2

3 / 2 1 / 2

⎛

⎝
⎜

⎞

⎠
⎟

1
−1

1 0
0 −1

⎛
⎝⎜

⎞
⎠⎟

(15.1.12)

The standard projection formula:     Pmn
µ = (µ / °G) Dmn

µ*(g)g∑ g  repeats the following from (15.1.15).

   PΑ1  =  PΑ1 1 PΑ1  =     = (1 + r + r2 + i1 + i2 + i3 )/6   (15.2.15a)repeat

   PΑ2  =  PΑ2 1 PΑ2  =    = (1 + r + r2  - i1  - i2 -  i3 )/6   (15.2.15b)repeat
   PExx  =  PExx 1 PExx  =     = (21 - r - r2 - i1  - i2 + 2i3 )/6  (15.2.15c)repeat
   PEyy  =  PEyy 1 PEyy  =      = (21 - r - r2 + i1 + i2 - 2i3 )/6  (15.2.15d)repeat
   PExy  =  PExx i2 PEyy   = DExy(i2) PExy  = = (01 - r + r2 - i1 + i2 - 0i3 )/4  (15.2.15e)repeat
   PEyx  =  PEyy i2 PExx   = DEyx(i2) PEyx  = = (01+ r -  r2 - i1 + i2 - 0i3 )/4  (15.2.15f)repeat
This gives modes for a Y3 ring of XY3 in Fig. A.1.1. (The X-atom adds another vector E-doublet.)

   

A1 = 1 P A1 6 =  1  1  1  1  1 1 ( ) / 6

A2 = 1 P A2 6 = 1   1 1 -1 -1 -1 ( ) / 6

xx
E = 1 Pxx

E 3 =  2 -1 -1 -1 -1 2 ( ) / 12

yx
E = 1 Pxy

E 3 =  0  1 -1 -1 1  0 ( ) / 2

xy
E = 1 Pyx

E 3 =  0 -1  1 -1 1 0 ( ) / 2

yy
E = 1 Pyy

E 3 =  2 -1 -1  1 1 -2 ( ) / 12

  

   

A1 =       A1 =       xx
E =        yx

E =         xy
E =       yy

E =  

P A1 1 6  P A2 1 6   Pxx
E 1 3    Pyx

E 1 3    Pxy
E 1 3   Pyy

E 1 3  

=

1
1
1
1
1
1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

1

6
,  =

1
1
1
-1
-1
-1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

1

6
,  =

2
-1
-1
-1
-1
2

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

1

12
,  =

0
1
-1
-1
1
0

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

1

2
,  =

0
-1
1
-1
1
0

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

1

2
,  =

2
-1
-1
1
1
-2

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

1

12
.

Model 
 
Pjk
α -symmetry configurations in Fig. A.1.1 have LAB-C2 symmetry-(j=x or y) that is even (x) or odd (y) to 

LAB x-plane i3-reflection, and BOD-C2 symmetry-(k=x or y) to local i1 , i2 , or i3  BOD planes. 
There are 4=22 projectors for two-dimensional E-symmetry and one each for A1 and A2 symmetry, making 

six 
 
Pjk
α in all, and that is the total number of symmetry operators needed here. (Order=°C3v=6.)
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1/√3

1/√3

1/√3

yy|P
A (Y)〉=

1
1
1
-1
-1
-1

1
√6

2 1

|PE (X)〉=xx
1
0 |PE (X)〉=yx

0
1 =

d1(4)
d2(4)

1/√3

1/√3

1/√3

|PA (Y)〉=

1
1
1
1
1
1

1
√6

1
xx

〈σ3|Y〉=(d1(1)+d2(1))/√2

〈1 |Y〉=(d1(1)-d2(1))/√2

〈r |Y〉

〈r2 |Y〉
〈σ1|Y〉

〈σ2|Y〉

〈1 |X〉
〈2 |X〉

=d1(4)

=d2(4)

(a) XY3 Symmetry-defined
coordinates

0

1/√2

1/√2

|PE (Y)〉=

2
-1
-1
-1
-1
2

1
2√3xx

〈1 |Y〉
〈r |Y〉
〈r2 |Y〉
〈σ1|Y〉
〈σ2|Y〉
〈σ3|Y〉

=

2/√6

1/√6

1/√6

1/√2

1/√2

0

2/√6

1/√6

1/√6

(b) Symmetry-projected XY3 modes

|PE (Y)〉=

0
1
-1
-1
1
0

1
2yx

|PE (Y)〉=

0
-1
1
-1
1
0

1
2xy |PE (Y)〉=

2
-1
-1
1
1
-2

1
2√3yy

x-vector
bases

y-vector
bases

A1
scalar
base

A2
pseudo-scalar

base

             Fig. 30.A.1. Vibration coordinates for C3v symmetric XY3 molecular model.
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Vibration matrix and normal mode eigen-solutions
Spring-mass models of symmetric molecular vibration involves a Hooke matrix K that is reduced in stages. From 
the following 1st stage primitive energy form, we seek its analytic eigen-solution using symmetry.

    
 
E =2

1mλ xi (λ) xi (λ)+2
1kµ jνk

x j (µ)xk (ν)      (A.1.1a)

The 1st stage kµ jνk
for a coordinate pair x j (µ) and xk (ν)of mass mu and mv is a sum of each spring constant kµν  

hooking mu to mv times direction cosine
 
k̂µν ix̂ j (µ) and

 
k̂µν ix̂k (ν) of unit k̂µν with x̂ j (µ)  and x̂k (ν) .

 

 

kµ jνk
= −[k̂µν ix̂ j (µ)]kµν [k̂µν ix̂k (ν)]

        = −kµν cosµ j

k cosνk
k = kνkµ j

 (A.1.1b)  

 

kµ jµk
= −

ν
∑ [k̂µν ix̂ j (µ)]kµν [k̂µν ix̂k (ν)]

        = −
ν
∑ kµν cosµ j

k cosµk
k = kµkµ j

(A.1.1c)

(A.1.1b) assumes one springkµν hooks mu to mv. Self-energy kµ jµk
for mu sums over all kµν hooked to mu.

 The 2nd stage energy form Kmn uses mass-orthonormalized δ-displacements 
 
δ = δ jµ = x j (µ)mµ

1/2 .

 
 
E =2

1 δ δ + Kmnδmδn  where: 
 
δ = δ jµ = x j (µ)mµ

1/2  (A.1.2a)  Kmn =
kµ jνk

mµ
1/2mν

1/2
= Knm (A.1.2b)

Next we begin transforming hook matrix Kmn to diagonal form while leaving kinetic form 
  2
1 δ
δ  invariant. For 

that, each stage needs to have only orthonormal bases and orthogonal or unitary transformation.
The 3rd stage uses symmetry-operator-labeling of Kmn bases. XY3 coordinate bases of Fig. A.1.2 are used 

for Kmn in (A.1.3). Y-atom bases
   
rn

x
Y1  are radial but 

   
rn

y
Y1  are transverse. Kmn of (A.1.2b) hook up Y-atom bases

  
h x

Y and
  
h y

Y to each other and to central X-atom bases
 x

X  and 
 y

X  using radial spring constant j=kXY and 

peripheral spring constant k=kYY divided by m1/2 and/or M1/2 according to Fig. A.1.2.

 

A Kr B =

x
Y1 r x

Y1 r2
x
Y1

y
Y1 r y

Y1 r2
y
Y1

x
X

y
X

x
Y1

m
 j +2

3
m
k

4
3

m
k

4
3

m
k 0  4

3
m
k −  4

3
m
k −

mM
     j 0



x
Y1 0 −  4

3
m
k

 4
3

m
k

2
1

m
k −4

1
m
k −4

1
m
k 0 0

x
X −

mM
     j −2

1
mM

     j −2
1

mM
     j 0 0 0 2

3
M
 j 0

 (A.1.3)

The 4th stage uses symmetry 
 
Pjx
α  projection to reduce KA,rB=  

A Kr B  in (A.1.3) above to block diagonal 

projected forms KPkA,PB=
   

Pjk
α A K Pj

α B that are derived below in (A.1.4) thru (A.1.10).

 Only select rows of matrix KA,rB=  
A Kr B  are given in (A.1.3). If K has r-symmetry then a matrix row 

for a base 
  
r B that is a rotation r of base 

 
B is redundant. Also, this choice of basis separates BOD-symmetric-

(k=x)-radial
 x

Y  from BOD-antisymmetric-(k=y)-transverse
 y

Y  so that only 
 
Pjx
α have non-zero projection on 

 x
Y  or 
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 x
X  and only

 
Pjy
α have non-zero projection on 

 y
Y  or 

 y
X . BOD label-k of 

 
Pjk
α has to match the primitive state

 k
A it 

projects to get a nonzero projection as shown below. 

  

r |Y1〉=|Y2〉x x

r2|Y1〉=|Y3〉xx

|Xx〉 1 |Y1〉x

1 |Y1〉y|Xy〉

r2|Y1〉=|Y3〉yy

r |Y1〉=|Y2〉y y
j=kXY

j

j

j

k

k

k k=kYY
Fig. 30A.1.2 Symmetry labeled radial and angular base vectors

A K-matrix 
   jk

α X K m
β Y  has 

  
P jk
α -projected bra

 jk
α X  and    Pm

β -projected ket
  m
β Y with norms Nk

X and Nm
Y .

 
   jk

α X = Nk
X X P jk

α † = Nk
X X Pkj

α   (A.1.4a) 
    m
β Y = Pm

β Y Nm
Y = (β / °G) Dm

β (g)g Y Nm
Y

g∑  (A.1.4b)

Scalar A1 “breathing” ket and pseudo-scalar A2 “rotation” ket are shown in Fig. A.1.1 (left).

   
   
Pxx

A1
x
Y1 3 = ( x

Y1 + r1
x
Y1 + r2

x
Y1 ) / 3 (A.1.5a) 

   
Pyy

A2
y
Y1 3 = ( y

Y1 + r1
y
Y1 + r2

y
Y1 ) / 3   (A.1.5b)

Then come 22=4 vector E-kets involving peripheral Y-atoms of XY3 shown in Fig. A.1.1(center).

   
   
Pxx

E
x
Y1

2
3 = (2 x

Y1 − r1
x
Y1 − r2

x
Y1 ) 6

1 (A.1.6a) 
   
Pxy

E
y
Y1

2
3 = (       − r1

y
Y1 + r2

y
Y1 ) 2

1   (A.1.6b)

   
   
Pyx

E
x
Y1

2
3 = (            r1

x
Y1 − r2

x
Y1 ) 2

1  (A.1.6c) 
   
Pyy

E
y
Y1

2
3 = (2 y

Y1 − r1
y
Y1 − r2

y
Y1 ) 6

1   (A.1.6d)

Included also is another pair of vector E-kets for the central X-atom shown in Fig. A.1.1 (bottom).

  
 
Pxx

E
x
X = x

X   (A.1.6e)  
 
Pyx

E
x
X = y

X     (A.1.6f)

Symmetry (Kg=gK) and P-rules (
   
Pkj
αPm

β = δαβδ jPkm
α ) give 

   jk
α X K m

β Y  in terms of 
  

X Kg Y in (A.1.3).

 
   jk

α X K m
β Y = Nk

X X Pkj
αKPm

β Y Nm
Y = Nk

X X KPkj
αPm

β Y Nm
Y = Nk

X Nm
Yδαβδ j

X KPkm
α Y

 
    
                      = Nk

X Nm
Yδαβδ j (

α / °G) Dkm
α*(g) X Kg Y

g∑      (A.1.7)
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Mismatch of C3v symmetry (α≠β) or LAB index (j≠l) blocks off a K matrix (A.1.7) into two 1-by-1 blocks for 
symmetry irrep species A1 and A2 and a pair of 3-by-3 blocks for vector species E.   

K=

xx
A1Y K xx

A1Y ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ yy
A2Y K yy

A2Y ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ xx
E Y K xx

E Y
xx
E Y K xy

E Y
xx
E Y K xx

E X ⋅ ⋅ ⋅

⋅ ⋅ xy
E Y K xx

E Y
xy
E Y K xy

E Y
xy
E Y K xx

E X ⋅ ⋅ ⋅

⋅ ⋅ xx
E X K xx

E Y
xx
E X K xy

E Y
xx
E X K xx

E X ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ yx
E Y K yx

E Y
yx
E Y K yy

E Y
yx
E Y K yx

E X

⋅ ⋅ ⋅ ⋅ ⋅ yy
E Y K yx

E Y
yy
E Y K yy

E Y
yy
E Y K yx

E X

⋅ ⋅ ⋅ ⋅ ⋅ yx
E X K yx

E Y
yx
E X K yy

E Y
yx
E X K yx

E X

(A.1.8)

BOD(k.m)-labeled matrix for equal-atom (X=Y) is simple since norms Nk
X  cancel group-g-sum terms.

   
jk
α Y K jm

α Y = Dkm
α*(h) k

Y Kh m
Y

h
∑     (A.1.9)

Also, we sum only a coset Ch or coordinate-labeling-subset of C3v. For Y it is:Ch={ h=1,r,r2}.

 

   

xx
A1Y K xx

A1Y = Dxx
A1*(1) x

Y K1 x
Y + Dxx

A1*(r) x
Y Kr x

Y + Dxx
A1*(r2 ) x

Y Kr2
x
Y

                       =          1 ⋅  (m
 j +2

3
m
k ) +          1 ⋅  (4

3
m
k )        +       1 ⋅  (4

3
m
k )          = m

 j +3
m
k

 (A.1.10a)

 

   

jx
EY K jx

EY = Dxx
E*(1) x

Y K1 x
Y + Dxx

E*(r) x
Y Kr x

Y + Dxx
E*(r2 ) x

Y Kr2
x
Y

                    =          1 ⋅  (m
 j +2

3
m
k ) +     2

−1 ⋅  (4
3

m
k )          +       2

−1 ⋅  (4
3

m
k )           = m

 j +4
3

m
k

 (A.1.10b)

 
   

jx
EY K jy

EY = Dxy
E*(1) x

Y K1 y
Y + Dxy

E*(r) x
Y Kr y

Y + Dxy
E*(r2 ) x

Y Kr2
y
Y

                     =          0 ⋅  (0)         +   −  2
3  ⋅  ( 4

3
m
k )       +        2

3  ⋅  ( −  4
3

m
k )    = −4

3
m
k

 (A.1.10c)

 
   

jy
EY K jy

EY = Dyy
E*(1) y

Y K1 y
Y + Dyy

E*(r) y
Y Kr y

Y + Dyy
E*(r2 ) y

Y Kr2
y
Y

                    =          1 ⋅  (2
1

m
k )        +     2

−1 ⋅  ( −4
1

m
k )       +      2

−1 ⋅  ( −4
1

m
k )       = 4

3
m
k

 (A.1.10d)

Central atom X has ket 
 x

X that is already the irreducible Ex base
 x

X = Pxx
E

x
X in (A.1.6a).

   
   jx

E X K jx
E X = x

X K1 x
X =2

3
M
 j      (A.1.10e)

The remaining two components coupling X and Y-atomic coordinates use (A.1.7).

 

   

jx
EY K jx

E X = Nx
Y Nx

X
x
Y K1 x

X

                     = 2
3 ⋅1⋅  (−

mM
     j ) =−

2
3

mM
     j

  

   

xx
EY K xy

E X = Nx
Y N y

X
x
Y K1 y

X

                     = 2
3 ⋅1⋅ (0) = 0

(A.1.10f)

These C3v-projected K matrix elements are collected in the form of the 8-by-8 matrix (A.1.8).

HarterSoft –LearnIt Unit 10 Molecular Dynamics 30- 23



24

 

 

Pjk
α A K Pj

αB =

m
j +3m

k ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ m
j +4

3
m
k −

4
3
m
k −

2
3

mM
     j ⋅ ⋅ ⋅

⋅ ⋅ −
4
3
m
k

4
3
m
k 0 ⋅ ⋅ ⋅

⋅ ⋅ −
2
3

mM
     j 0 2

3
M
j ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ m
j +4

3
m
k −

4
3
m
k −

2
3

mM
     j

⋅ ⋅ ⋅ ⋅ ⋅ −
4
3
m
k

4
3
m
k 0

⋅ ⋅ ⋅ ⋅ ⋅ −
2
3

mM
     j 0 2

3
M
j

  (A.1.10g)

Diagonal A1 and A2 values are (j+3k)/m and 0, but E-type 3-by-3 matrix K has to be diagonalized. Due to the δj in 
(A.1.7) the first 3-by-3 matrix for (j==x) is identical to the second 3-by-3 E-matrix for (j==y). Thus, all E-
eigenvalues must come in LAB 2-fold-degenerate pairs if K has C3v symmetry.

    

  

K
A1 =

xx
A1Y

m   m  
j+3k

,    K
A2 = yy

A2 Y

0
,    K

E
=

 jx
E Y

jy
E Y

jx
E X

m
j +4

3
m
k −4

3
m
k −

2
3

mM
     j

−4
3

m
k

m
j +4

3
m
k 0

−
2
3

mM
     j 0 2

3
M
j

j=0
  →  4m

3k
1 −1 0
−1 1 0
0 0 0

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
. (A.1.10h)

E-type eigensolutions for no radial spring (j=0) are (
 2
   1 ,

2
−1 ) combination of Y-bases with eigen-value 3k/2m 

(  ω E = 3k / 2m ) and are genuine s2 or s3 modes in Fig. 11.1.2 (top). Orthogonal (
 2
   1 ,

2
+1 )Y-base translations for j=0 

have zero frequency as do s4 or s5 in Fig. 11.1.2 (bottom) or s7 or s8 in Fig. 11.1.3 (top).

 The 5th and final stage of eigensolution is to diagonalize the 3-by-3 
 

K
E  in (A.1.10g). Its secular equation 

is of 3rd-degree but a translation mode gives a zero root to 
 

K
E and makes 

  
det | K

E
|=0 .

 

  

0 = − det
a − λ −b c
−b b − λ 0
c 0 d − λ

 where : a =m
j +4

3
m
k   ,   b =4

3
m
k   ,   c = −

2
3

mM
     j   ,   d =2

3
M
j   . 

  = λ3 − [         TraceK       ]λ2 + [Σ2-by-2minorK ]λ −3-by-3 detK

  = λ3 − [         a + b + d    ]λ2 + [ |bb
ab | + |c

a
d
c | + |0

b
d
0 |]λ − |bb

ab | d − c |  c
−b

0
b|

  = λ3 − m
 j (   2 M

2 M +3m ) +2
3

m
k⎡

⎣⎢
⎤
⎦⎥
λ2 +   4

3
m
k

m
 j (   M

M +3m ) ⎡
⎣⎢

⎤
⎦⎥
λ − 0

 (A.1.11a)

Two remaining roots are found by 2nd-degree solution. Special cases lend consistency checks.

 
  

λ(±) =4m
 1 j(      M

2 M +3m ) + 3k ± j(      M
2 M +3m ) + 3k⎡

⎣
⎤
⎦

2
−        M

12 jk( M +3m)⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=

(0,2
3

m
k )         for :  j = 0

(0,m
 j +2

3
M
j )  for :  k = 0

⎧
⎨
⎪

⎩⎪
 (A.1.11b)

©2013 W. G. Harter   Chapter 30 Rovibrational Mechanics         30-



1/√3

1/√3

1/√3

E-y Y base(1)y
(s3=1)

1/√3

1/√3

1/√3

E-x XY base(2)x
(s4=1)

M

M

M

E-y XY base(2)y
(s5=1)

-3m 3m

E-x Y base(1)x
(s2=1)

E-x Y mode(+)x E-y Y mode(+)y

1/√3

1/√3

1/√3

E-y Y mode(-)yE-x Y mode(-)x

1/√3

1/√3

1/√3

E-x+iy Circular
base(1)x+iy

M

M

M

-3m

E-x+iy Circular
base(2)x+iy

E-x+iy Circular
base(+)x+iy

E-x+iy Circular
base(-)x+iy
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! Problems for Chapter 30
Zeno Redux
23.1.1. 
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