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Preface
	
 Research in quantum theory and its applications to atomic, molecular, and optical physics has grown 
enormously in the past half century as have related fields involving condensed matter. A new industry known 
as nanotechnology is just one of the results of a renaissance based on quantum mechanics. Such industry and 
research is largely built around an information economy, that is, computers and telecommunication.
	
 Unfortunately, the teaching of quantum theory has not advanced as quickly. Most quantum texts follow 
an approach developed when slide-rules were the principle means of doing numerical computation. The notes 
and texts of several of the early masters, including Born, Fermi, Oppenheimer, Landau and Schwinger, form 
the basis of much of what current textbooks contain. This has set an orthodoxy from which few deviate.
	
 Notable exceptions to conventional texts are ones based on lectures by Richard Feynman. The third 
volume of The Feynman Lectures on Physics by Feynman, Leighton, and Sands (Addison Wesley 1964) is a 
fresh approach to quantum theory. His unorthodox approach has survived to the present, indeed, his set of 
lectures are found in popular bookstores as well as in virtually every technical outlet or library in the world. 

It is the Feynman approach which motivates the present work. Mentoring by Feynman and Bill Wagner 
(coauthor with Ferando Morinigo of Gravitation Feynman’s book) during my introductory graduate career at 
Cal Tech influences this work immeasurably. The Feynman approach is characterized by an abundant use of 
physical analogies and pictures. While he never undersold solid mathematics, he did comment once that the 
disappearance of formal mathematics would “only set physics back about a week!”
	
 One interpretation of Feynman’s comment is that mathematics ought to be designed to fit the physics, 
not the other way around. In other words, physical insight ought to be prime mover and the main goal. 
Appropriate mathematics is found (or invented, if necessary) to solidify details. The result of this approach, as 
I hope this book shows, is better mathematics and physics with elegant theory, powerful computation, and 
most important, a set of insightful tools that uncover new directions and inventions.
	
 One new feature of this book is something that, early on, Feynman warned against, but later he adopted 
fairly enthusiastically. That is the use of computer thought experiments involving both the classical 
commercial machines and (as yet mythical) “quantum computers.” In 1964 Feynman warned me against then 
new (classical) computers, “Watch out! I know guys that got sucked into those things. They’re so seductive; 
you think you can solve anything with them!” But, by 1981 Feynman was giving lectures on computation, 
something he did off and on until his untimely death in 1988.
	
 Computers play a key role in this book and one whose time has come. For over two decades I have 
been developing computer animations, graphics and simulations to help visualize classical and quantum 
phenomena. The most important outcomes of this effort have been improved physical analogies of the type that 
Feynman was so good at creating and did so (mostly) unaided by computers. 

Times have changed, and it is difficult to say how Feynman would react to having several giga-pixel 
“eyes” staring back from each room in old Bridge Lab. But, we are the ones who must decide how these things 
are used. The approach of this book has been to make computers useful, not just for number crunching, but for 
the conceptual and theoretical development as well, particularly with regard to visualization of physics in 
space and time. Harvard educator, Howard Gardner, has noted that the human visual system has geometric 
pattern processing that, while less precise, handle data more quickly than its verbal or math logic processors.

An approach to quantum physics that attempts to harness a largely untapped visual human intelligence 
is still an academically unorthodox one. Indeed, a group of mathematicians known as Bourbakians essentially 
rejected figures in publications. Such images were considered childish and misleading. This small group of 
intellectual fundamentalists rebelled against Henri Poincare who helped create relativity and quantum theories 
of great and lasting value. Now after many decades, could Bourbakian claim results of greater value? 

Still, it is striking that many seminal theoretical physicists including Einstein and Schwinger wrote 
reams of formulae without figures. In this, Feynman is a notable exception, but a prevailing attitude seems to 
be that analysis and calculation come first and then, perhaps, a few diagrams might be allowed.  

©2013 W. G. Harter Quantum Theory for the Computer Age - Analysis for Atomic, Molecular, and Optical Physics (AMOP)  1-
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However, if you believe as I do that physics is primarily an experimental science, then why not 
experiment? Whether useful ideas come from “real” lab experiments or computer lab simulations, it only 
matters how useful they are. One is cautious not to be misled by either one. Modern personal computers lend a 
graphical approach to theoretical physics that is becoming a powerful research tool. Many new basic ideas and 
fundamental blind spots are being exposed that might have otherwise not been found out.

Moreover, a geometric approach, such as developed in this book, should appeal to modern cyber-savvy 
students and enhance learning of quantum theory at all levels. We can only hope that Feynman, a pioneer in 
graphical physics visualization, would support this development.

About the Programs: LearnIt and CodeIt
	
 The first tier of computer programs in this book is the LearnIt series consisting of OscillIt, QuantIt, 
WaveIt, etc. listed in tables below. These are (hopefully) user-friendly applications that produced many of the 
figures in this book. They also provide animated visualizations of physical phenomena or analogies thereof. 
Indeed, they are like analog computers that make text figures come alive for experimentation. Such programs 
were an essential aid to my ability to discover new ideas. Clearly, this needs to be made more available 

The suffix “It” attached to many of these programs is derived from the FaceIt interface invented by 
Dan Kampemier, founder of FaceWare in Urbana, IL. It was one of the first worldwide programming projects 
to enhance the new Apple MacIntosh graphical user/programmer interface (GUI or GPI) and allow menus, 
controls, text editors, spreadsheets, movie or graphics windows to be conveniently created and used. I 
participated as a developer and user in FaceWare from 1985 until around 1993.

One advantage of FaceWare was that it allowed one to learn and teach useful root-level programming 
simultaneously with physics course material. The disadvantage was that it worked only on an Apple CPU and 
then (after Kampemier gave up) only on classic operating systems OS 7-9 or cloned OS 10.1-4. It will always 
be risky for research and teaching projects to develop software that relies on one type of app, GPI, or CPU. It 
also penalizes students who may be unable or unwilling to buy particular tool or platform. 

Fortunately, there is a solution that involves high speed web browsers that are free and universally 
capable of running applications developed using Java and HTML programming/debugging interfaces that now 
exist on most of them. Dr. T. C. Reimer has pioneered in converting LearnIt apps from original object Pascal, 
FORTRAN, and C++ code to the modern hypertext format. Eventually, web-based text figures and formulae 
can become control panels for their underlying LearnIt applications that run seamlessly on any device.

Also, it will be possible to build a tree of programming projects for a given course that we call a CodeIt 
system. Students saw-off one or more branches of CodeIt trees to build their own applications as homework or 
lab projects. Eventually, they can build applications of sufficient complexity to aid in their thesis or dissertation 
research projects. Also, select CodeIt applications may be added to either LearnIt or CodeIt collections.
	
 Tables below correlate the first few text chapters with some LearnIt programs.
Unit 1 Wave Amplitudes and Analyzers

QuantIt OscillIt ColorU2 WaveIt RelativIt BohrIt GuideIt BandIt AvoidIt CoulIt AnalIt

1.1 X
1.2 X x
1.3 X x x
1.A x x
1.B x x
2.1 x
2.2
3.1
3.2
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Unit 2 Wave Dyanmics (Spacetime and per-Spacetime)
QuantIt OscillIt ColorU2 WaveIt RelativIt BohrIt GuideIt BandIt AvoidIt CoulIt AnalIt

4.1 x x
4.2 X
4.3 X x
4.4 . . . X . x
5.1 x X x
5.2 x X x
5.3 . . . . X .
5.4 . . . . X . .
6.1 x x
6.2 x x
6.3 X
Unit 3 Fourier Analysis and Symmetry

QuantIt OscillIt ColorU2 WaveIt RelativIt BohrIt GuideIt BandIt AvoidIt CoulIt AnalIt

7.1 x
7.2 x
7.3 . . . X . . . .
8.1 X x
8.2 X x
8.3 . . . x . x . .
9.1 x
9.2
9.3 X X
9.4 . . . X . X
10.1 X x x
10.2 X x x .
10.3 . . X .x . x . . X
10.4 X

Unit 4 Wave Equations
QuantIt OscillIt ColorU2 WaveIt RelativIt BohrIt GuideIt BandIt AvoidIt CoulIt AnalIt

11.1-2 .x X
11.3 . X X
11.4 . . . .x . X . X
11.5 x x x X X
12.1 . X X
12.2 x X X
12.3 x X X x
13.1 . . . . . . X
13.2 . . . . . . X
13.3 . . .x . . . X

©2013 W. G. Harter Quantum Theory for the Computer Age - Analysis for Atomic, Molecular, and Optical Physics (AMOP)  1-
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Unit 5 Periodic Potentials
SwingIt OscillIt ColorU2 WaveIt RelativIt BohrIt GuideIt BandIt AvoidIt CoulIt AnalIt

14.1 x x X
14.2 x x X
15.1 . . .x . x . X
15.2 . . X
15.3 . . X
15.4 . . . .x . . . X
15.5 . x X X
16.1 X x x X
16.2 X x x . X X
16.3 .X . .x .x . X X

Unit 6 Time Dependent Perturbation
QuantIt OscillIt ColorU2 WaveIt RelativIt BohrIt GuideIt BandIt AvoidIt CoulIt AnalIt

17.1 x    
17.2 x . .  
18.1 . .   
18.2 . . . . . . .  
18.3 .    
19.1 X  X

Unit 7 Quantum Harmonic Oscillators
QuantIt OscillIt ColorU2 WaveIt RelativIt BohrIt GuideIt BandIt AvoidIt CoulIt AnalIt

20.1 x   X  
20.2 x . .X  
20.3 x . .X   
21.1 . . .x . . . .  
21.2 .x    
21.3 x  
22.1 .   
22.2 . . . . .   

Unit 8 Oscillation, Spin, and Rotation (Under development)
QuantIt OscillIt ColorU2 WaveIt RelativIt BohrIt GuideIt BandIt AvoidIt CoulIt AnalIt

23.1 X    
23.2 X . .  
23.3 X . .   
23.4 . . . . . . .  
24.1 .    
24.2  
25.1 .   
25.2 . . . . .   
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About the Subject Matter: A Brief Guide
	
 This book is a spectral approach to quantum theory. Oscillatory phenomena including wave 
polarization, wave dynamics, resonance, and interference are emphasized. A student of wave optics should feel 
quite at home. The quantum psi-wavefunction is related in Chapter 1 to an electromagnetic E-wave field, and 
most waves treated in Chapters 1 through 4 relate to plane electromagnetic waves. 

However, the plane waves of Chapter 4 through 6 are viewed in a new light that shows that quantum 
theory and relativity are quite the same subject with far simpler logic than exists in previous treatments of 
either one. Chapter 4 derives relativistic Doppler and Lorentz transformations by wave interference, and 
Chapter 5 develops relativistic matter-wave dispersion in a few simple steps. Light and matter make their own 
space-time coordinate manifolds by elementary spectral interference. This is a new result and one of several in 
this book that have only recently been published. Detailed study of elementary spectral components and their 
beat frequencies have shown to be a useful research tools as well as good pedagogy.
	
 The word spectral has many connotations that need to be related as well as distinguished. Frequency 
spectra from prisms and gratings are well known physical phenomena since Newton, and modern (quantum) 
spectroscopy has increased accuracy to one part in 1016 or better. Mathematical spectra or eigenvalues of 
matrices often relate to laboratory spectra or quanta, but one must be careful to distinguish these two uses of 
the word. Chapters 1 through 3 carefully relate and distinguish physical phenomena from their mathematical 
descriptions, that is, distinguish physical mysteries from mathematical ones.

A key quantum concept, the transformation matrix Tab= 〈a′|b〉, is introduced in Chapter 1 and the first 
example is a 2-by-2 polarization rotation matrix. For a physicist, T gives outcomes of polarization experiments. 
Wavefunctions 〈x|ψ〉=ψ(x) form another example of T as do wave-based Lorentz transformations in Chapter 4. 
But, simple 2-by-2 examples in Chapters 1-3 are quite sufficient to introduce Dirac bra-ket notation for 
transfer-operators describing polarization analyzers and projection-operators describing filters. “Own-states” or 
eigenstates of analyzer-filters are introduced as states which analyzers make or which filters pass. 

Chapter 2 develops four quantum axioms which T–matrices obey as physical objects. As mathematical 
objects T-matrices relate eigenvectors of one operator to those of another. Chapter 3 connects the physical 
axioms to mathematical theorems in matrix algebra and to axioms for group algebra based on the spectral 
decomposition of matrices. Algebraic spectral theorems then begin to show why group algebra is powerful and 
fundamental to analyzing quantum spectra.

Efficient use of group algebra motivated by physics is one of the most powerful features of this book 
and it is introduced and explained as it is used throughout. This begins again in Chapters 7, 8, and 9 with the 
treatment of a “quantum-dot” system consisting of a square (N=4) or hexagonal (N=6) nano-corral. By 
introducing discrete versions of Bohr’s earliest problem, an electron-on-a-ring, it is easier to introduce Fourier 
theory and its symmetry. Also, it corresponds to nano-devices currently being developed.

A discrete N-by-N Fourier transformation matrix made of Nth roots of unity 〈xp|km〉=eimp2π/N 
diagonalizes symmetry operators that satisfy rN=1. (Such a T-matrix is known as a CN-group character table.) 
At the same time the Fourier T-matrix diagonalizes all matrices that have CN–symmetry since all such matrices 
are linear combinations of r, r2, r3,…, rN. This provides, in Chapter 8, all possible eigensolutions of all possible 
N-dot transfer matrices. The same is done for N-dot evolution operators or Hamiltonians    H = H 1 + S r + T r2 + ...  

©2013 W. G. Harter Quantum Theory for the Computer Age - Analysis for Atomic, Molecular, and Optical Physics (AMOP)  1-
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in Chapter 9 and makes an elementary introduction to band theory. The approach also provides a way to 
introduce Schrodinger time dynamics while showing effective ways to build and solve non-trivial examples. 
Finally, it clarifies Bohr-matter-wave revivals and their space-time “fractal coordinates” in Chapter 9.

A general 2-by-2 Hamiltonian 
  
H = A B − iC

B + iC D
⎛

⎝⎜
⎞

⎠⎟
 is analyzed in Chapter 10 using analogy with coupled 

pendulums. H is expressed as a linear combination    H = ( A+ D) / 2σ 0 + ( A− D) / 2σ A + Bσ B +C σ C  of reflection-symmetry 

operators 
 
σ 0 =

1 0
0 1

⎛

⎝⎜
⎞

⎠⎟
, 

  
σ A = 1 0

0 −1
⎛

⎝⎜
⎞

⎠⎟
,
  
σ B = 0 1

1 0
⎛

⎝⎜
⎞

⎠⎟
,
  
σ C = 0 −i

i 0
⎛

⎝⎜
⎞

⎠⎟
 to give H archetypes Type-A (Asymmetric-diagonal) 

   
HA =

A 0
0 D

⎛

⎝⎜
⎞

⎠⎟
, Type-B (Bilateral-balanced) 

  
HB = A B

B A
⎛

⎝⎜
⎞

⎠⎟
= A1+ Bσ B

, and Type-C (Circular-complex-chiral-coriolis) 

  
HC = A −iC

iC A
⎛

⎝⎜
⎞

⎠⎟
= A1+Cσ C

.  Mixed types AB, AC, BC, and ABC, lead to discussion of avoided-level-crossing.

Reflection operators (σA,σB, σC), apart from our pedagogical ABC-labels, are well-known Pauli spinors 
(σZ,σX, σY), but, it is not so well known that (apart from an i-factor) they belong to Hamilton’s quaternion or 
hyper-complex (1,i,j,k)-numbers found in 1841. Modern quantum theory owes a lot to this U(2) algebra.

Furthermore, Hamilton’s observation of mirror-reflection properties (σ2=1) greatly increases their 

utility so they generate both quantum rotations (with the i-factor:    e
iσa R = 1cos R + iσ a sin R ) and Lorentz 

transformations (without the i-factor:    e
σa L = 1cosh L +σ a sinh L ). This motivates a logical development of 

quantum theory of spin, rotation, and relativistic wave mechanics. The ABC coupled-oscillator analogy helps 
make spin and quasi-spin-analogies less mysterious. In addition, there are some quite deep reasons for 
pursuing the coupled oscillator analogy. 

An isotropic 2D-oscillator (A=D, B=0=C) has full U(2) symmetry and so U(2) leads to a much simpler 
theory of both quantum angular momentum and relativistic quantum field theory. Both electron spins and 
orbits and photon spins and orbits are simplified and unified by this in later chapters. The first U(2) examples 
treated in Chapter 10 are photon-polarization and electron spin (as introduced in Chapter 1), and the NH3 
maser doublet. These set the stage for more advanced 2-state and N-state symmetry analysis later on.
	
 The oldest and most prevalent (yet least studied) 2-state or U(2) system is a pair of plane waves. A pair 
of counter-propagating plane waves are used in aforementioned Chapters 4 to 6 to derive Lorentz-Einstein 
relativity and quantum matter wave dispersion, two pillars of quantum theory. The U(2)-wave pair system 
returns in Chapters 11 to 14 as a basis for analyzing eigenstates in potential barriers and wells. Using a 2-by-2 
crossing or C-matrix and the scattering or S-matrix does this. The C-matrix is unimodular (as is a Lorentz 
matrix) while the S-matrix is unitary (as is a rotation matrix) with eigenphase eigenvalues eiδ.
	
 The concept of eigenchannels, which are S-matrix eigensolutions, is developed in Chapter 13. The 
properties of eigenchannels and eigenphases are analyzed by ABC-U(2) symmetry particularly in resonance 
situations where they are sensitive functions of energy and of interest for electronic-photonic-devices.

One result in Chapter 14 is an alternative to band theory in Chapter 9 that is more appropriate to treat 
modern super-lattice nano structures and photon band-gap devices. An important distinction is shown between 
resonant and non-resonant eigenchannels. The former have their largest wave amplitude inside a nano-
structure and resemble bound state waves, while the latter pile up outside and resemble scattering waves. 
Generalization of this applies to related ebb-and-flow of molecular, atomic, nuclear, and sub-nuclear waves. 

©2013 W.G.Harter	
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 Wave symmetry analysis involving general non-Abelian (non-commutative) group theory is described 
in Chapter 15 using a novel approach. Again, the physical props are quantum-well or quantum-dot structures 
introduced before in Chapter 13 and 14. Concepts of symmetry-relativity-duality are introduced. These require 
that all transformations be defined as one wave relative to another, essentially a clarification of earlier Axioms 
1-4 in Chapter 2. The result is two mutually commuting or intertwining groups: “outside” global or lab-defined 
symmetry operators 

  
g, ′g ,...{ }  and “inside” local or body-defined symmetry operators 

  
g, ′g ,...{ } . 

	
 The result of this extra care is an increase in computational and analytic capability with a lot simpler 
logic. A general Hamiltonian-matrix or S-matrix is constructed and classified in Chapter 15, as in CN analysis 
of Chapter 9 or ABC-U(2) analysis of Chapter 10, by its combination of symmetry operators. However, unlike 
Chapter 9, this symmetry is non-commutative, and so the matrix must be built from “inside” local operators in 
order to commute with all “outside” global operators. A spectral decomposition of either group leads to a 
related decomposition of the intertwining dual and a desired reduction of the H or S-matrix. The final result 
tells how much “insider” wave (like a resonant eigenchannel) and “outsider” wave (like a non-resonant 
eigenchannel) is present in each spectral component. The physical insight provided is considerable.
	
 Chapter 16 rounds out the discussion of band symmetry and wave mechanics using the Fourier analysis 
introduced in Chapters 7 and 8. Also reintroduced are coupled pendulum models of Chapters 10 and 11 that 
relate Schrodinger waves in a variable potential V(x) to waves along a “shower curtain” (coupled pendulums) 
of variable height (x). Momentum or k-basis representations 〈k’|H|k〉 of Hamiltonian are compared to the 
standard position or x-basis representation 〈x’|H|x〉. Resulting computational advantages (as well as 
disadvantages) are shown using an analogy between a space-periodic potential V(x) and a time-periodic force 
F(t) on a single pendulum. Linear resonance response is compared to multiplicative resonance or parametric 
resonance, the latter being relevant since a potential V(x) acts by multiplying ψ(x).
	
 This sets up the discussion of time dependent perturbations in Chapters 17 through 19. Classical 
electromagnetic perturbations are described using full vector-scalar potentials 

   
A x, t( ) ,Φ x, t( )( )  needed to build a 

relativistic quantum field theory. However, the non-relativistic Schrodinger approach is developed first to 
satisfy prevailing electronic-photonic customs. Time is a parameter rather than a part of space-time and 
perturbing fields and operators are explicit functions of time governed by outside input. 

Chapter 18 derives first-order perturbation theory of elementary E•r dipole resonance and Fermi-
Golden-Rule constant-transition-rate theory and compares it to linear resonance of classical Lorentz theory. 
Chapter 19 goes beyond perturbation theory for a two-state system where the U(2)-parameters A(t), B(t), C
(t),and D(t) are explicit functions of time and discusses parametric resonance and Rabi NMR oscillation.
	
 Chapters 20 to 22 develop the quantum theory of harmonic oscillation and quantum electromagnetic 
fields. Two-dimensional oscillator theory of Chapter 18 exploits the U(2)-ABC-parameterization of Chapter 10 
to begin relating U(2) spin-up-spin-dn to three-dimensional ABC-rotation and R(3) quantum angular 
momentum. It also leads to super-symmetry since it applies to a single particle oscillating in 2D or to two 
particles (coupled pendulums) each oscillating in 1D. Odd oscillator quanta n=1, 3, 5,… correspond to half-
integer spin j=1/2, 3/2, 5/2,.. with odd-particle-permutation parity. Even oscillator quanta n=0, 2, 4,… 
correspond to integer angular quanta l=0, 1, 2,.. with even-permutation parity. One is Bose-like the other is 
Fermi-like. 

©2013 W. G. Harter Quantum Theory for the Computer Age - Analysis for Atomic, Molecular, and Optical Physics (AMOP)  1-
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Chapters 23 to 25 develop the quantum theory of real R(3) rotation symmetry and angular momentum 
using the U(2) oscillator basis and Hamilton reflection symmetry. The development also uses Schwinger a-a† 
operator algebra and Casimir invariants. The physical props are molecular or quantum rotors that carry an 
intrinsic Cartesian reference frame. The full symmetry is an intertwining dual   RLAB (3) * RBODY (3)  group with 
global-local properties introduced in Chapter 15. As before, it leads easily to eigensolutions which here are the 
Wigner transformation matrices 

  
DMLabNBody

J *  of both half-integer-J (spinor) and integer-J (vector, tensor,…). 
Orbital harmonics Y are special cases of D-functions for integer J=: 

   
DM ,0
* = YM

  where the intrinsic 
momentum 

 
N Body  is set to zero and ignored. Group algebra reduces difficult issues of phase and normalization.

Group algebra also simplifies problems of coupled rotors. The most famous of these are spin-orbit 
(fine-structure) and spin-spin (hyperfine-structure) problems introduced in Chapter 25. Visualizing and 
deriving coupling transformation matrices (Clebsch-Gordan coefficients) is aided considerably by a dual-
symmetry approach. This is particularly helpful for building and analyzing molecular states whose respect for 
various local symmetries may ebb-and-flow enormously with excitation energy. 
	
 Chapter 26 to 28 introduces atomic orbital and shell structure beginning with Coulomb orbitals that 
have the angular Y–wave (derived in Chapter 23) and a radial   Rn -wave. The coulomb field has an important 
symmetry 

  
R 4( ) = R(3) ×  R(3)  that is related to the rotor symmetry of Chapter 23 and aids in calculations of 

eigenvalues and energy matrices. Rydberg orbitals discussed in Chapter 28 represent a large area of research in 
atomic spectroscopy. They are also relevant for understanding excitons in condensed matter. They should be 
featured as important general phenomena.
	
 The final chapters are devoted to multiparticle systems, an enormous and ever-increasing field. Topics 
chosen are a tiny sampling but ones that exhibit symmetry and correlation (entanglement) effects and tools for 
dealing with them. The underlying symmetry of N -identical particles (molecules, nucleons, electrons, 
photons,..) that may occupy M quantum states is generally taken to be   U (M ) ×  SN  where SN is the permutation 
symmetry of N particles. Nuclear, atomic, and molecular orbital shell theory are historically the first areas to 
develop this analysis. Chapter 30 and 31 introduce unitary analysis of atomic and molecular shell structure.

  U (M ) ×  SN  is part of a larger dual intertwining symmetry   U (M ) ×  U (N )  which is a most important 
example of the “inside*outside” quantum duality treated in Chapters 16 and 24. The   U (M )  redefines the M-
states of whichever particles they may occupy while    U (N )  redefines the N -particles between whatever states 
they may be in. The ideas of particles and states are put onto more equal and general “quasi-particle” footing. 
Examples are given of nuclear spins having resonantly enhanced effects on whole polyatomic molecular 
wavefunctions. Similar correlative effects in solids and BEC ensembles are possible.

The insight and computational power provided by these types of symmetry analyses is enormous and 
still largely unexplored. As quantum theory advances into the computer age, and particularly if there is to be a 
quantum-computer age, this kind of analysis is likely to advance from relative obscurity to serve its time as a 
methodology of quite some utility.
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Optical Views of Quantum Mechanics

	
 The origins of quantum theory and relativity are deeply connected with light and wave optics. Planck’s 
axiom E=hν was, at first, a shot in the dark, so to speak, that clarified the statistical properties of low 
temperature electromagnetic radiation. The history of this incredible result is found at the beginning of most 
texts on quantum mechanics and modern physics.
	
 This text also uses light to develop quantum theory, but in a simpler and more direct way that avoids at 
first the complexity of quantum statistical mechanics. The first two units focus instead on the oscillatory wave 
and resonance properties of light but treat the quantum counter as a black box. 
	
 The elementary objects of thought will, for the first two units, be coherent and mostly spectrally pure 
laser light beams. Unit 1 concerns optical polarization, that is, light beams veiwed head-on. Unit 2 concerns 
wave propagation, that is, light beams viewed (as best we can) from the side. In either view, (See figure below) 
much can be learned by modeling it as a two-state or coupled-oscillator system. 
	
 From such simple elements we develop the concept and properties of quantum matter waves by 
appealing to spacetime symmetry required for optical waves. It is a minimalist approach based upon analogies. 
It seeks to develop as much physics as possible with the simplest and least number of axioms. William Occam 
(1285-1349) put forth ideas known as Occam’s razors to cut axioms to a minimum in order to explain the most 
phenomena. We hope we can use his ideas effectively in this introduction to quantum phenomena.   

Light wave and matter wave views

End view (Chapters 1-3, 10, ...) Side view (Chapters 4-9,...)

X

Y

R L
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Unit 1 Quantum Amplitudes
Basic quantum amplitudes, analysis, and Dirac notation is introduced by thought 
experiments involving optical beams with polarization devices. Concepts such as state 
vectors, matrix operators, and eigensolutions are introduced via physics of beam splitters, 
analyzers, and counters. Operator spectral decomposition is related to state filtering and 
projection operators. Symmetry group operators, matrix spectral decomposition, and 
perturbation theory are introduced.

x-polarized light

y-polarized light

x'-polarized light
θ

θ

x-counts~| 〈x|x'〉|2 = cos2 θ

y-counts~| 〈y|x'〉|2 = sin2 θ

x-photon
counter

y-photon
counter

Chapter 1
Amplitudes, Analyzers and Matrices

The Dirac bra-ket transformation matrix 〈a|b〉 or amplitude array is introduced as the main 
object of study in quantum theory and related to experiments with beam sorters and 
analyzers. Quantum counting with and without “peeking” or dephasing is simulated and 
analyzed from several points of view.
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Unit 1  Quantum Amplitudes

Chapter 1. Amplitudes, Analyzers and Matrices

	
 We begin our description of quantum theory using Feynman's ideas of particle beams and quantum 
analyzers. A "beam-analyzer" approach lets us discuss modern atomic, molecular, and quantum optical 
experiments more easily than a more conventional "wavefunction-potential" approach which will be described 
later. Many of the newer experiments involve beams of atoms or photons which take turns undergoing 
"analysis." The same is true for early seminal experiments in the beginning of quantum mechanics such as 
those of Stern-Gerlach, Davisson-Germer, or Brown-Twiss. Our "beam-analyzer" approach will involve 
"thought experiments" and computer simulations based on such classic experiments.
	
 There are theoretical reasons for using a "beam-analyzer" approach. It is more fundamental; the  
"wavefunction-potential" approach is a special case of the former. Also, philosophical discussion of beam-
analyzer mechanics is less of a pain in the neck because many of the mysterious aspects of quantum theory are 
stated up-front. (In science, as in politics, a "cover-up" is usually worse than the crime.) Finally, powerful 
mathematical and numerical techniques are more easily motivated and understood via a "beam-analyzer" 
approach. This helps to demystify mathematical concepts such as operators and state vectors which might 
otherwise become confused with the real mystery which lies in the physics.

1.1 Beam Sorters
	
 The fundamental idea of beam analysis is fairly simple. The basic unit is an elementary beam sorter 
which is sketched in Fig. 1.1.1. A beam sorter splits a beam of particles coming from the right into some 
number n of channels. In each channel one finds particles in some physical condition or state that is 
distinguishable from those found in neighboring channels. (The words "find" and, particularly the word "state" 
need to be clarified, as we will see.)

	


I1 particles/sec.

I particles/sec.

I2 particles/sec.

I3 particles/sec.

In particles/sec.
  Fig. 1.1.1 Elementary beam sorter for n-state beam
	
 Every particle that enters an elementary sorter winds up in one of the n channels ; no particles are lost 
or exempt. (Particles which can decay or otherwise mutate will be discussed later, but the analysis is the same; 
it just involves additional channels which are called decay or inelastic scattering channels.) 
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 The initial beam (Right hand side of Fig. 1.1.1) has an intensity or beam current I . This is the number 
of particles per second passing a given point in that channel. This is distributed among the n channels which 
have currents I1 ,I2 ,I3 ...In , respectively. Particle conservation requires that these channel intensities sum up to 
the total I.
	
 	
 	
 I = I1 +I2 +I3 +...+In 	
	
 	
 	
 	
 (1.1.1)
One job of quantum mechanics is to compute relative intensities or probabilities Pk defined by
 	
 	
 	
 	
 Pk  = Ik / I	
 	
 	
 	
 	
 	
 (1.1.2a)
where 
	
 	
 	
 1 = P1 +P2 +P3 +...+Pn 	
 	
 	
 	
 	
 (1.1.2b)
follows from (1.1.1). Later, this gets "puffed up" into an operator equation called a completeness relation.
	
 The "quantum" nature of a beam-analyzer is tacitly being assumed here. In other words, we have 
already begun sneaking in some pretty mysterious concepts. First, the idea of a particle is a quintessential 
quantum concept that has been (and probably will continue to be) a real mystery. It is one of those concepts 
that humans have taken for granted (or granite) since before the Greeks coined the word Atmos while 
observing that great stones are made of bits of sand. Perhaps, what we really mean is an elementary particle 
like an electron or a photon as opposed to a composite particle like Buckyball (C60) or a flake of dandruff. 
However, that is neither a necessary nor sufficient description. For awhile, the phrase "elementary particle" 
wass disappearing from the modern physics lexicon as it becomes increasingly clear nothing in nature is 
limited by our preconceived classical notion of a grain of sand. All "stuffs", meaning all forms of energy, have 
fundamental quantum behavior which can only mimic our preconceived notions of particles.
	
 Second, the fact that an atomic beam can only be sorted into a finite (quantized) number n of split 
beams was a very big surprise when it first was observed, particularly by Stern and Gerlach whose Ag - beam 
split into exactly two parts! (See Fig. 1.1.2) The curious finite splitting of beams is, perhaps, most responsible 
for our concept of a quantum state. Indeed, Goudschmitt and Uhlenbeck proposed the idea of spin-up and spin-
down states of electron spin polarization to help explain a number of atomic phenomena including the Stern-
Gerlach experiment.

	


I
I1 "spin-up"

I2 "spin-dn"
 Fig. 1.1.2 Stern-Gerlach beam sorter for 2-state electron spin beam

	
 Idealized versions of the Stern-Gerlach experiment and other two-state systems will be used to develop 
quantum theory in our beginning chapters. Feynman starts his description with three-state systems since their 
three-dimensional state-space is simple and much like the one we live in. Our choice of two-state systems is 
similarly motivated by the desire for simplicity and familiarity, however it uses an ultimately simpler and more 
fundamental analogy that goes back  to 1860-1870’s optical polarization theory of Poincare and Stokes. 
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 We introduce quantum theory vis-a-vis photon-spin polarization, electron-spin polarization and nuclear 
(proton) spin-polarization; they all use similar mathematics. It also applies to NH3 inversion-doublet states that 
gave us the first coherent radiation source or maser and marked a beginning of the laser revolution. A great 
deal of physics can be learned from the 2-state systems, and it also shows how to begin dealing with general n-
state systems and much of quantum physics. Let's begin with some examples.

(a) Photon-beam polarization sorters
	
 Consider some beam sorting experiments that a caveman could do by peering through calcite crystals. 
Each crystal magically gives two beams and two images, one with light polarized along the crystal's optical x-
axis and a split-off beam having only y-polarized light as shown in Fig. 1.1.3 below.

	
 	


unpolarized light

x-polarized light

y-polarized light
  Fig. 1.1.3 Primitive photon beam sorter for 2-state polarization

If a second crystal catches the x-beam of the first crystal while blocking its y-beam, then the y-beam from the 
second crystal will disappear when the crystals' optical axes are aligned as shown in Fig. 1.1.4.

	


STOP(blocked)
y-polarized light

y-polarized light
(none appears)

x-polarized light passes both

ST
OP

 Fig. 1.1.4 Photon beam sorters in series. Second one examines x-beam of the first.

	
 Modern optics labs have more sophisticated (and expensive) polarization sorters such as the Brewster 
prism sketched in Fig. 1.1.5. This takes advantage of fact that light reflected from a dielectric interface is 
nearly 100% polarized parallel to the reflection plane for a certain (Brewster's) angle of reflection.
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 Fig. 1.1.5 Example of modern optical polarization sorter: The Brewster prism

(b) Electron-beam spin polarization sorters
Electron polarizers seem more mysterious than photon polarizers. The first ones used expensive vacuum and 
electron optics technology. As electronics evolved from vacuum tubes to semiconductors to micro-m optical 
fibers to nano-m wires, tiny spintronic polarizers have been developed. Here we will start with the old stuff.
	
 A rough sketch of a Stern-Gerlach spin polarizer is shown in Fig. 1.1.6. It consists of asymmetric 
magnetic poles that produce a B-field with a large z-component and a field gradient tensor ∇B with a large zz-
component. The hapless electron is injected at right angles to the B-or z-axis, say, along the y-or beam axis. We 
presume electron spin angular momentum S and the magnetic dipole moment m are related by a constant of 
proportionality known as the gyro magnetic ratio  γ.
	
 	
 	
 	
 	
 	
 S = γ m	
 	
 	
 	
 	
 	
 (1.1.3)
A classical scenario for what happens next goes something like the following. On entry S and m are pointing 
more or less up-z-axis and moving with the electron right-to-left along the y-or beam axis in Fig. 1.1.6 below.

	


mz

mz
mz

spin up

spin dn

 Fig. 1.1.6 Electron beam sorting by non-uniform B-field (Stern-Gerlach polarizer)
	
 First, the B-field starts the electron spin and magnetic moment precessing like a conical helicopter 
blade around the B or z-axis thereby essentially freezing the z-component Sz or mz of the spin moment and 
averaging the x- and y-components to zero. (See Fig. 1.1.6) Then the zz-gradient grabs the z-component mz  of 
electronic magnetic moment m with a force vector F in the direction ez of the B-field gradient.
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 F = m•∇B = 
  
ez mz

∂Bz
∂z

⎛

⎝⎜
⎞

⎠⎟
	
 .	
 	
 	
 (1.1.4)

This accelerates the "helicopter" in the z-direction at a rate proportional to the z-moment component mz that the 
electron had when it first encountered the B-field. According to this, the final beam z-deflection is proportional 
to the initial z-component mz or Sz =γ mz for each electron. So you might expect a randomly polarized beam to 
become smeared with a secant distribution up and down the left wall of the laboratory.
	
 NOT! To practically everyone's surprise just two spots show up. The upper spot corresponds to a spin 
component of Sz=+/2 (called spin-up) and the lower spot to a spin component of Sz=-/2 (called spin-dn) 
where Planck's constant is  = h/2π = 1.05 E-34 Js. No in-between values of Sz such as zero or ±0.1/2 or 
±0.25/2 are ever seen no matter how much the original beam is randomized. Each electron spin vector S 
seems to behave like a political extremist; it chooses either to be completely up or completely down with 
respect to the B-field. Nothing in between is ever seen. Furthermore, each electron seems to have exactly one-
half quanta (/2) of angular momentum permanently buried in its belly. This came as a surprise to those who 
were just getting used to the early ideas of Bohr quantum theory which said that the smallest quantum of 
angular momentum or action was the Planck  unit.
	
 The Stern-Gerlach experiment also is remarkable since the electron in question is dragging along an 

entire silver atom which out-weighs it by a factor of about 300,000. (The experiment used a beam of Ag - 
cations.) One could imagine dragging a 500 pound hog around by its ear!
	
 This experiment appears to be a good deal more complicated than the cave-man polarization 
experiments. We shall put off discussion of its details until later, but even then, the deep-down details of 
electronic spin and structure remain mysterious to this day. Quantum electrodynamics (QED) has come a long 
way but many mysteries remain. If you can give a cogent sub-electronic theory of electron structure which 
explains the detailed origin of its spin 1/2 you might have a Nobel prize Fedexed to your doorstep by Friday. 
	
 For now, we can only treat spin phenomena as part of a given set of physical axioms and construct a 
mathematical analog for the behavior. Just such a mathematical structure is called spinor analysis by Jordan 
and Pauli who (re)discovered it around 1920. It is similar to quaternion algebra which was discovered by W. 
R. Hamilton around 1843, more than half a century before the first Stern-Gerlach experiments. The modern 
name for this mathematics is U(2) group algebra and that is one of the many mathematical ideas we will be 
developing. It is a credit to the efficiency of U(2) mathematics that it applies to both electronic and optical spin 
or polarization. However it does so by ignoring some obvious physical differences between these two quite 
diverse phenomena! We will try to address some of these as we go along.
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1.2 Beam Sorters in Series: Transformation Matrices
	
 The fun begins with investigation of beam sorters in series such as Fig. 1.2.1 below. This is the same as 
Fig. 1.1.4 except that the optical axis of the first crystal is tilted relative to the second by an angle θ. Without 
tilt (θ=0) the x-polarized beam from the first crystal is 100% sorted to the x-beam exit of the second crystal and 
nothing shows up at the y-polarized exit as we saw in Fig. 1.1.4. But, for even a slight tilt, as in Fig. 1.2.1, 
there will appear a weak beam exiting the y-polarized exit of the second sorter and the x-polarized beam will 
be reduced in intensity by just the amount that gets diverted into the y-beam. We indicate the rotated optical 
axes by primed (x', y') labels of the polarization.

	


y'-polarized light
(is blocked)

x-polarized light

y-polarized light

x'-polarized light θ=30°

x-polarized light

θ=30°

	
 Fig. 1.2.1 Photon beam sorters in series with the first one y-blocked and tilted by angle θ.
	

We will use this example to introduce what is probably the single most important mathematical object in 
quantum theory: the transformation matrix. It is possible, with a little classical hand-waving, to visualize and 
understand the quantum transformation matrix for optical polarization. For electron polarization, which we 
consider subsequently, the transformation matrix and its interpretation will, at first, seem quite mysterious. 
Later, we will see that they are both representations of the same thing. (And, they are both mysterious, but in a 
nicer sort of way.)

(a) Transformation matrices for optical polarization
	
 How does the tilted x'-polarization in Fig. 1.2.1 get transformed into y-polarized light and how much 
gets transformed? Consider the following model for an optically active crystal. Let it have two kinds of 
charged masses held by very strong springs. First there are the X-masses that can only slide and oscillate along 
the optical x-axis, and then there are the Y-masses which can only oscillate along the y-axis perpendicular to x. 
In other words, an x-polarized E-field can only wiggle the X-masses which then pass on an x-polarized 
polarization wave that comes out somewhere on the other side of the crystal, and similarly for y-polarized 
waves which come out somewhere else. In calcite the x-waves go at different speeds than the y-waves in order 
to produce optical beam splitting but ideally either transmits the same intensity.
	
 Now when an electric wave with x'-polarization tilted by angle θ hits the crystal, both the X-masses 
and the Y-masses get stimulated in proportion to the projections cos θ and sin θ of the x'-direction on their 
respective oscillation tracks X and Y. This is sketched in Fig. 1.2.2.
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+ + + + +

+
+
+
+
+

+
+
+
+
+

+ + + + +
θ

θ

X charges

〈x|x'〉= cos θ

〈y|x'〉= sin θ

〈x|y'〉= -sin θ

〈y|y'〉= cos θ

+
+
++

y

x
slide

this way

θ

Y charges slide
this way

y′

x′

 Fig. 1.2.2 Geometry of photon beam sorter for input polarizations (x',y') tilted by angle θ.
	

         The resulting X and Y output amplitudes due to incoming x'-polarization are given by the following 
Dirac bra-ket notation.

	
 	
 	

  

X  output amplitude due to x '  input = x x ' = cosθ ,  

Y  output amplitude due to x '  input = y x ' = sinθ
	
 	
 (1.2.1a)

If we had instead focused the y' beam (and blocked x'), then the X and Y outputs would have been the 
following according to Fig. 1.2.2. Note in particular that a +y' field drives X-charges negatively (-sinθ). 

	
 	
 	

  

X  output amplitude due to y '  input = x y ' = − sinθ ,  

Y  output amplitude due to y '  input = y y ' =   cosθ
	
 	
 (1.2.1b)

An array of these amplitudes is called the transformation matrix for the ideal polarization experiments of the 
type sketched in Fig. 1.2.1. The first column (1.2.1a) represents the x'-beam going in Fig. 1.2.1.

	
 	
 	
 	

  

x x ' x y '

y x ' y y '

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= cosθ − sinθ

sinθ cosθ

⎛

⎝⎜
⎞

⎠⎟
	
 	
 	
 	
 (1.2.1c)

The second column (1.2.1b) does the same for a y'-beam experiment.
	
 The array (1.2.1c) is also a standard coordinate transformation matrix for rotation of coordinate axes. 
All quantum transformation matrices are some kind of mathematical coordinate transformation, though few are 
as obvious as this one. Transformation group theory is very useful in quantum mechanics.
	
 How do you visualize and understand a transformation matrix? Dirac has given us a neat way to do so 
with his clever bra-ket notation. Let's take transformation (1.2.1c) apart again into its separate columns (1.2.1a) 
and 1.1.5b). Such columns are called ket-vectors or kets by Dirac.
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x x ' x y '

y x ' y y '

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= cosθ − sinθ

sinθ cosθ

⎛

⎝⎜
⎞

⎠⎟

                               ⇓          ⇓
             ⇓                                           ⇓

x ' =
x x '

y x '

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= cosθ

sinθ

⎛

⎝⎜
⎞

⎠⎟
 ,    y ' =

x y '

y y '

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= − sinθ

cosθ

⎛

⎝⎜
⎞

⎠⎟

	
 	
 	
 (1.2.2)

	
 The kets 
  
x '  and 

  
y '  are just a funny notation for the unit vectors x' and y' indicated by the darker 

arrows in Fig. 1.2.2. But, their quantum mechanical significance is a bit deeper; the kets are each examples of a 
polarization state vector Ψ  of a photon. The amplitudes 

 
x Ψ  and 

 
y Ψ  relate any state Ψ  to the original 

(untilted θ=0) x and y-polarization states that come out of the θ=0 sorter, that is, to the basic unit vector basis 

 
x  and 

 
y   or x and y in Fig. 1.2.2 which are represented as follows.

	
 	
 	

  

x =
x x

y x

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= 1

0

⎛

⎝⎜
⎞

⎠⎟
 ,    y =

x y

y y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= 0

1

⎛

⎝⎜
⎞

⎠⎟
	
 	
 	
 	
 (1.2.3)

(1.2.3) is just (1.2.2) with θ=0 . This relation is expressed using vector sums. In Dirac notation we write

	
 	

  

x ' = x x x '  + y y x ' ,    y ' = x x y '   + y y y ' ,

      = x cosθ( ) + y sinθ( ) ,         = x − sinθ( ) + y cosθ( ). 	
 	
 (1.2.4a)

The same thing in Gibbs vector notation would be 

	
 	

  

x ' = x x • x '( ) + y y • x '( ) ,    y' = x x • y'( )  + y y • y'( ) ,
   = x  cosθ( ) + y sinθ( ) ,       = x  − sinθ( ) + y cosθ( )  .

	
 	
 	
 (1.2.4b)

	
 By comparing these two notations it's clear that the transformation matrix of bra-kets corresponds to an 
array of dot or scalar products. The dot products of unit vectors are often called direction cosines.

	
 	

   

x x ' x y '

y x ' y y '

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= cosθ − sinθ

sinθ cosθ

⎛

⎝⎜
⎞

⎠⎟
=

x • x '( ) x • y'( )
y • x '( ) y • y'( )

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
	
 	
 	
 (1.2.5)

Equations (1.2.4) apply to any state Ψ , not just 
  
x '  or 

  
y ' , and to any valid quantum basis kets, not just 

 
x  

and 
 

y . Any state can be expanded in any basis 

	
 	

  
Ψ = x x Ψ   + y y Ψ = x ' x ' Ψ   + y ' y ' Ψ 	
 	
 	
 (1.2.6a)	


Transformation matrices relate the amplitudes (
 

x Ψ ,
 

y Ψ ) of one basis to (
  

x ' Ψ ,
  

y ' Ψ ) of another.

	

  

x Ψ

y Ψ

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

x x ' x y '

y x ' y y '

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

x ' Ψ

y ' Ψ

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

, or 
  

Ψx

Ψ y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

x x ' x y '

y x ' y y '

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

Ψx '

Ψ y '

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

 	
 	
 (1.2.6b)
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What's the state I'm in? The ideas behind projection

	
 To get a feeling for doing quantum calculations we trace through a chain of polarization sorting 
experiments using the chain from Fig. 1.2.1 with a particular pure state |x〉 entering as shown below. (This is in 
contrast to the random mess going into Fig. 1.2.1.) We want to calculate what comes out in each channel or 
branch-b, namely (a) a base state |b〉, (b) its amplitude 〈b|Ψ〉, and (c) its probability |〈b|Ψ〉|2.

	


x-polarized light

y-polarized light

x'-polarized light

y'-polarized light

θ=30°

x-polarized light

θ=30°

|x〉

|x'〉〈x'|x〉

|y'〉〈y'|x〉

|x〉〈x|x'〉〈x'|x〉

|y〉〈y|x'〉〈x'|x〉

Base
State

Amplitude=
1.0

Probability=
1.0

Amplitude=
√3/2=0.867  

Probability=
0.75

Base
State

Amplitude=
-1/2=-0.500  

Probability=
0.25

Base
State

Base
State

Amplitude=
(√3/2)(√3/2)=0.750  

Probability=
0.5625

Base
State

Amplitude=
(1/2)(√3/2)=0.433  

Probability=
0.1875

〈x'|x〉 〈x'|y〉

〈y'|x〉 〈y'|y〉
√3/2 1/2
-1/2 √3/2

=

〈x|x'〉 〈x|y'〉

〈y|x'〉 〈y|y'〉
√3/2 -1/2
1/2 √3/2

=

|x〉
〈x`|x〉

〈y`|x〉

|x〉

|x`〉
〈y|x`〉

〈x|x`〉

〈y| 〈y|

	
 First is the transformation matrix 〈b|c〉 for each sorter that outputs branch b given input channel-c. The 
transformation matrices are given below each sorter in the figure above following (1.2.2-5).
	
 Then the state in branch-b is |b〉〈b|Ψ〉 where |Ψ〉 is whatever state came in the sorter input channel. In 
the x'-polarized light channel the state is simply |x' 〉〈x' |x 〉 = |x' 〉√3/2. The number 〈x' |x 〉 = √3/2 is the 
amplitude of the base state of the branch or channel base state |x' 〉, while |〈x' |x 〉|2 = 3/4 is the probability or 
branching ratio for counting a particle there. This is true because any photon that makes it to branch or 
channel-x' must be an x'-polarized particle that is in state |x' 〉 if its probability to be there is 100%  or else an 
attenuated state |x' 〉〈x' |x 〉 if its probability |〈x' |x 〉|2 to arrive is less than one. 
	
 This process of writing |b〉〈b|Ψ〉 is repeated for the next sorter in the chain only now |Ψ〉 is the 
previously attenuated state |x' 〉〈x' |x 〉. So, the y-polarized branch ends up with state |y 〉〈y|x' 〉〈x' |x 〉 with an 
even smaller amplitude 〈y|x' 〉〈x' |x 〉 as shown in the lower left hand corner of the figure. Each use of |b〉〈b| is 
called a projection operation and is discussed in Sec. 2.1.(b) 5.
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(b) WHOA! That analogy is TOO simple! Planck's energy and quantum counts
	
 If simple 2D-rotation was all there was to quantum theory we probably wouldn't have courses for it! In 
fact, the transformation matrices, even for optical polarization, are a little more complicated than the preceding 
analogies might first indicate. 
	
 We mentioned that we were dealing with electromagnetic waves and charge oscillations in our simple 
model. We need to say a little more about this. Static (DC) polarization is fairly simple by comparison. Optical 
polarization involves high frequency (AC) dynamics and resonance phenomena. This is true for most of 
nature's processes, particularly those in the quantum domain where all the amplitudes wiggle incessantly like 
so many fidgety children. Gibb's vector notation, such as (1.2.4b) was designed for DC vectors. Dirac notation 
is designed for AC vectors, and AC theory uses complex variables.
	
 There is more. The simple truth is this: all quantum amplitudes are complex numbers. At the very least 
they have a (sometimes hidden) time-dependent factor e-iω  t given by
	
 	
 	
 	
  e-iω  t = cos ω  t - i sin ω  t 	
 	
 	
 	
 	
 (1.2.7a)
where the angular frequency ω=2πν or frequency ν is related by Planck's constant h=2π=6.63E-34Js 
	
 	
 	
 	
 	
 ε = hν = ω 	
 	
 	
 	
 	
 	
 (1.2.7b)
to the energy ε of a quantum state. This will be one of our most important axioms of quantum mechanics, 
when we get around to formal axiomization. Energy is Mother Nature's heart rate and heart beat. 
	
 In the case of light, (1.2.7b) is the equation for the energy of a single quantum of light, or photon, the 
smallest piece of energy you can extract from a light beam of a given frequency or color. Eq. (1.2.7b) is, 
perhaps, the first equation of quantum theory, historically and fundamentally, the basis for at least two Nobel 
prizes and still, many decades later, just as mysterious as it was when first stated in 1905.
	
 However, for decades (1863-1905) classical polarization theory would ignore (1.2.7b) because the huge 
number of photons in a typical light beam makes it appear to be a continuous wave. The angular frequency 
ω=2πν  of light in (1.2.7a) is presumed to be known (by color if visible) and classical resonance theory of 
Lorentz usually predicts polarization response due to a light beam very accurately. Generally, the beam itself 

was described by a complex electric field amplitude vector 
  

Ex , Ey( )which is proportional, by some constant 

factor f, to our unit 
  
Ψx ,Ψ y( )  vector in (1.2.6b).

	
 	
 	
 	


  

Ex

Ey

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

Ex (0)e−iω t

Ey (0)e−iω t

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟
= f

Ψx

Ψ y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
	
 	
 	
 	
 (1.2.8)

	
 Classical theory did not consider the energy ε = ω  of one photon, only the Poynting energy flux S or 
energy density U of a whole light beam. According to Maxwell's electromagnetic wave theory the density or 
flux is proportional to the sum of absolute squares of the complex amplitudes.

	

  
S = cU ,  where:U = ε0 Ex

2
+ Ey

2⎛
⎝⎜

⎞
⎠⎟
= ε0 Ex

*Ex + Ey
*Ey( ) = ε0 Ex (0)2 + Ey (0)2( )   (1.2.9a)

Constant speed of light c = 2.997E8 ms-1 and electrostatic constant  ε0 = 8.842E-12 C2N-1m2 are given. 

©2013 W.G.Harter	
 Unit 1 Quantum Amplitudes	
 	
 1-	


13



14

	
 For a beam of n-photons, the energy density is U (Joules per cubic meter) and energy flux S=cU (Joules 
per square meter per second. Photons are assumed to have velocity c.) To relate this to that of a single photon we 
must equate U to n-times Planck's energy ω in eq. (1.2.7b) divided by beam or cavity volume V.)

	
 	

   

nω
V

=U = ε0 Ex
2
+ Ey

2⎛
⎝⎜

⎞
⎠⎟
= ε0 f 2 Ψx

2
+ Ψ y

2⎛
⎝⎜

⎞
⎠⎟

  	
 	
 	
 	
 (1.2.10)

Particle number n or beam intensity I is found by dividing U·V by the quantum energy ω.

	
 	

   
n = I = V ·U

ω
=

Vε0
ω

Ex
2
+ Ey

2⎛
⎝⎜

⎞
⎠⎟
=

Vε0
ω

f 2 Ψx
2
+ Ψ y

2⎛
⎝⎜

⎞
⎠⎟
=

Vε0
ω

f 2n   	
 	
 (1.2.11a)

For a single photon n=I=1 the E-field amplitude and Ψ-amplitude scale factor is given

	
 	

   
f = ω

Vε0
= Ex

2
+ Ey

2
 ,   for one-photon: n = I = 1   	
 	
 	
 	
 (1.2.11b)

This is the quantum field constant f used much later on. Note that the Ψ-amplitude squares sum to the particle 
number per unit time.

	
 	
 	

  
n = I = Ψx

2
+ Ψ y

2
= x Ψ

*
x Ψ + y Ψ

*
y Ψ   	
 	
 	
 (1.2.11c)

This is called a normalization condition. For one particle (n=1) it is called unit normalization.

	
 At first, we will set n=I=1, and deal with only one quantum (photon) at a time. Then each term   Ψx
*Ψx  

or 
  
Ψ y

*Ψ y  of (1.2.11c) gives the probability that the photon with Ψ-polarization will be found in the x-

polarization state or the y-polarization state, respectively. With this statement we first confront the awful truth 
of quantum theory. To really do the "caveman" polarization experiment accurately we need to wait a million 
years or so, until the 20-th century when photon counters are invented. Then we buy two of these gadgets and 
stick them at the ends of the x and y-beams as shown in Fig. 1.2.3 below.

	


x-polarized light

y-polarized light

x'-polarized light
θ

θ

x-counts~| 〈x|x'〉|2 = cos2 θ

y-counts~| 〈y|x'〉|2 = sin2 θ

x-photon
counter

y-photon
counter

 Fig. 1.2.3 Photon x-y beam sorting and quantum (photon) counting of an x'-state  
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 After waiting for hundreds, thousands, or millions of counts the relative numbers of x-photon counts to 
y-photon counts will gradually approach the predicted ratios listed above in Fig. 1.2.3 of 

	

  
Ψx

2
= x Ψ

2
= x x '

2
= cos2 θ 	
 and    

  
Ψ y

2
= y Ψ

2
= y x '

2
= sin2 θ  	
 (1.2.12)

In other words, the quantum experiment for large numbers of photons will correspond to the classical 
predictions of 1863. This is an example of quantum-classical correspondence, quantum physics usually yields 
classical physics in the limit of large quantum numbers or large numbers of observations.
	
 Otherwise, quantum amplitudes yield information in the form of probabilities and statistical 

distributions. The absolute square 
  

x x '
2  of amplitude 

  
x x '  is the probability that one photon in the x'-beam 

will register a count in the x-counter of Fig. 1.2.3. The (complex in general) amplitude 
  

x x '  is called the 

probability amplitude for a x' to x transformation. We read amplitudes right to left (x' goes into x) like Hebrew 
because, perhaps, many of the originators of quantum theory were Jewish. Also, always remember that we 
square the amplitude to get the probability.
	
 It is instructive to see some of the limitations of quantum theory early on. You might wonder, "Can 
quantum theory tell if a particular x'-photon will go to the x-counter or to the y-counter?" The answer appears 
to be a resounding NO! Not even Mother Nature, as crafty as she is, seems to know. Or you might ask, "Can 
we tell exactly when a photon will make its decision to be x or y?" Again, NO! As we will see later, 
monochromatic light beams (meaning single frequency or color) are particularly reluctant to say when (or 
where) their individual photons are going to show up.
	
 However, quantum theory can predict correlation statistics about the time distribution of counts, but 
this depends on the properties of the wizard behind the curtain on the right of Fig. 1.2.3 who is cooking up the 
photon beam as well as the nature of the photon counters themselves. For the time being, we will pay no 
attention to the wizard behind the curtain. Also, counters are assumed 100% efficient.

(c) Transformation matrices for electron spin polarization
	
 As we said in Section 1.1.(b) electron polarization is not as easily visualized as the photon polarization. 
The same goes for the transformation matrices and corresponding amplitudes even though (as we will 
eventually see) their mathematics is virtually identical. 
	
 Indeed, the idea that an electron could and should be described as a wave was even more mysterious 
than the idea that light waves could be viewed as particles. Electrodynamics of the late 1800's had electrons 
labeled as a particles and light labeled as waves. Relativity and quantum mechanics have gone a long way 
toward showing the similarity of these two types of quantum energy-momentum, while also emphasizing their 
differences. Modern "super-unified" field theories continue attempts to unite them and all particles while 
modern experiments continue, more often than not, to distinguish them.
	
 With this in mind we introduce an ideal electron polarization transformation experiment analogous to 
the photon polarization experiment in Fig. 1.2.3. This is shown below in Fig. 1.2.4.
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β-tilted
spin-dn beam
(blocked)

spin-up ↑
electron
counter mz

mz
N

S

β

β

↑-counts~| 〈↑| '〉|2 = cos2 β/2=cos2θ

↓-counts~| 〈↓| '〉|2 = sin2 β/2= sin2θ

spin-dn ↓
electron
counter

β-tilted
spin-up
'-beam

β=2θ

electron spin
vector S
tilted by
β=2θ

is analogous to:
polarization
vector E
tilted by
θ=β/2

θ

β

θ θ

 Fig. 1.2.4 Electron up-dn-spin counting of a tilted spin-up (↑′)-state  

	
 This is analogous to the polarization experiment first discussed after Fig. 1.2.3. Only now it is a tilted 
spin-up (↑′ ) electrons that have to decide whether to choose spin up (↑) or spin dn (↓). The up (↑) and dn (↓) 
output amplitudes due to incoming β-tilted spin-up (↑′) are as follows.
	
 	
 	
 (↑) output amplitude due to (↑′) input = 〈↑| ↑′ 〉 = cos β/2 = cos θ 	
 	
 (1.2.12a)
	
 	
 	
 (↓) output amplitude due to (↑′) input = 〈↓| ↑′ 〉 = sin β/2 = sin θ	
 	
 (1.2.12b)
Comparison with (1.2.1a) shows that we use half the tilt angle (β/2) in the sine and cosine, while the photon 
formulas used the whole angle (θ). This is because spin-up is 180° from spin-down while x-polarization is only 
90° from y-polarization. Tilting x-polarization by  θ=90°  makes it y-polarization according to (1.2.1a) where 
cos 90°=0 and sin 90°=1, but tilting spin-up (↑) into spin-dn (↓) requires twice the angle or β=2θ=180°  
according to (1.2.12a-b) where cos 180°/2 =0 and sin 180°/2 =1. This half-angle geometry is one of many 
mysterious features of the strange half-quantum spin /2 of an electron to be treated in later Units.
NOTE: From now on a prime means "tilted" so ↑′ and ↑′ mean the same tilted spin-up. Similarly for spin-dn.
	
 An array of spin-1/2 amplitudes is called a spinor transformation matrix, and it describes the ideal 
electron spin experiments of the type sketched in Fig. 1.2.4. It is the same as the analogous photon polarization 
transformation matrix except the polarization angle (θ) is replaced by a half angle (β/2).

© 2013 W.G.Harter Chapter 1 – Amplitudes, Analyzers, and Matrices  1-

16



17

	
 	
 	
 	

 

↑ ↑ ' ↑ ↓ '

↓ ↑ ' ↓ ↓ '

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
=

cosβ / 2 − sinβ / 2
sinβ / 2 cosβ / 2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
	
 	
 	
 (1.2.13)

Once again we extract columns which are called ket-vectors or kets by Dirac in analogy to (1.2.2).

	
 	


 

                           
↑ ↑ ' ↑ ↓ '

↓ ↑ ' ↓ ↓ '

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
=

cosβ / 2 −sinβ / 2
sinβ / 2 cosβ / 2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

                                  ⇓           ⇓
                   ⇓                                                         ⇓

↑ ' =
↑ ↑ '

↓ ↑ '

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
=

cosβ / 2
sinβ / 2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

 ,    ↓ ' =
↑ ↓ '

↓ ↓ '

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
=

−sinβ / 2
cosβ / 2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

	
 	
 (1.2.14)

The first column above represents the tilted up-(↑′ )-beam going in to be split Fig. 1.2.1. The second column 
does the same for a tilted down-(↓'  )-beam experiment. Prime (′) means "β-tilted" here.
	
 The kets are each an example of an electron spin-state vector χ  . The amplitudes ↑ χ  and ↓ χ  

relate any state χ  to the original (untilted β=0) spin-up and spin-dn states that come out of a β=0 sorter, that 

is, to the basic unit vector basis ↑  and ↓   which are represented as follows.

	
 	
 	

 

↑ =
↑ ↑

↓ ↑

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
= 1

0

⎛

⎝⎜
⎞

⎠⎟
 ,    ↓ =

↑ ↓

↓ ↓

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
= 0

1

⎛

⎝⎜
⎞

⎠⎟
	
 	
 	
 (1.2.15)

(1.2.15) is just (1.2.14) with β=0 . This relation is expressed using vector sums in Dirac notation .

	
 	


 

↑ ' = ↑ ↑ ↑ '  + ↓ ↓ ↑ ' ,    ↓ ' = ↑ ↑ ↓ '   + ↓ ↓ ↓ ' ,

      = ↑ cos β
2

⎛
⎝⎜

⎞
⎠⎟
+ ↓ sin β

2
⎛
⎝⎜

⎞
⎠⎟

,         = ↑ − sin β
2

⎛
⎝⎜

⎞
⎠⎟
+ ↓ cos β

2
⎛
⎝⎜

⎞
⎠⎟

.
	
 	
 (1.2.16)

Equations (1.2.16) apply to any spin state χ , not just 
 
↑ '  or 

 
↓ ' , and to any valid quantum basis kets, not 

just ↑  and ↓ . Any spin state can be expanded in any spin basis 

	
 	

 
χ = ↑ ↑ χ   + ↓ ↓ χ = ↑ ' ↑ ' χ   + ↓ ' ↓ ' χ 	
 	
 	
 (1.2.17a)	


Transformation matrices relate the amplitudes ( ↑ χ , ↓ χ ) of one basis to (
 
↑ ' χ ,

 
↓ ' χ ) of another.

	

 

↑ χ

↓ χ

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
=

↑ ↑ ' ↑ ↓ '

↓ ↑ ' ↓ ↓ '

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

↑ ' χ

↓ ' χ

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

, or 
 

χ↑
χ↓

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

↑ ↑ ' ↑ ↓ '

↓ ↑ ' ↓ ↓ '

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

χ↑ '

χ↓ '

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

 	
 (1.2.17b)

If this seems like deja vu (again!) from eqs. (1.2.2-6), it should. The mathematics is very similar, and we are 
setting the stage for general quantum theory. Electron physics, on the other hand, is quite different from photon 
physics when it comes to interpreting the amplitudes.

(d) Amplitudes of What? Fermi vs. Bose
	
 As noted in Fig. 1.2.4 the electron spin-up or down count probabilities per unit time were proportional  
to the absolute squares of the respective amplitudes. (Actually, they're equal if you choose the right time units.) 
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The same was true for photon polarization x- or y counts in Fig. 1.2.3, but that was no surprise because 
classical field intensities have always been absolute squares of the polarization field amplitudes or wave 
functions.
	
 Furthermore, the classical polarization amplitudes have had real physical meaning since about 1863 or 
a little before. Appropriately scaled (Recall eq. (1.2.11b).) they stood for E-fields, so many Volts per meter, or 
some such. At least, we thought they did!
	
 Now along comes these post-bellum electron spin amplitudes which seem to have absolutely no 
physical significance whatsoever. Only their absolute squares are observable, and those are probabilities which 
are dimensionless apart from the (per time unit) that accompanies all particle counting experiments. There is 
no real physical polarization wave field analogous to the photon E-field that can be associated with an electron 
or even a big cloud of electrons. Why is this?
	
 It turns out that electrons and all objects called Fermions which have half-quantum spins are incurable 
"loners." They avoid being near or like their own kind. Why this should be is still quite a mystery. Perhaps, 
they are embarrassed by only having half the quantum spin of the other guys and don't want anyone to find out. 
Whatever! So quantum physics chalks this up as one more axiom called by various names like the Pauli 
principle or Fermi symmetry after Wolfgang Pauli and Enrico Fermi. We will discuss these principles and their 
consequences in later chapters. One consequence is that electrons seem unable to get together in the same state 
in order to make a classical field. Fermions are tireless individualists that hold up atoms and solids but seem 
incapable of "unionizing" into a coherent beam.
	
 On the other hand, photons and all objects called Bosons which have integral quantum spins, are real 
"party animals" and "copy-cat frat-rats" of the particle world and ever influenced by peer pressure. Their 
behavior is attributed to Bose-Einstein symmetry (yet another axiom) which is named after Albert Einstein and 
Nahari Bose. One consequence is that bosons love to swarm together into a single state and copy each other's 
behavior. This results in observable classical fields made of enormous numbers of bosons such those in a laser 

beam or atomic Bose condensate beams or liquid 4He. 
	
 One remarkable exception is the super conductive states of electrons in various substances such as 
certain metals, rare-earth cuprates, and alkaline-doped solid C60 (buckminsterfullerite). It is thought that the 
electrons double up into pairs and become composite bosons which can then participate in a coherent quantum 
current.
	
 To summarize: many quantum amplitudes like 〈↑| ↑′ 〉 or 〈x| Ψ 〉 are probability amplitudes only with no 
simple classical wave amplitude interpretation. Some see them as ghostly waves of "potential existence" or call 
them waves of "nothing in nothing." Only their square (probability) is real.
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What are Photon Counters? Schrodinger's Cat (and Mouse)

	
 A photon counter is like an explosive device set up to "go off" when it is disturbed by just the right 
stimulus. A classical analogy might be a mousetrap rigged to light a match which sets off a firecracker in a 
nitro factory. From miles away you can hear a big "BOOOM!!" and be pretty sure that just then a mouse 
nibbled its (very last) piece of cheese. Note it was the nitro factory that went “BOOOM.” Mice don’t go 
“BOOOM.” By analogy, photons don’t go “click” ... that’s a counting device you’re hearing.

	
 Some photon counters use the photoelectric effect to select only photons that have an energy or 
frequency greater than a certain threshold value Ethreshold = h νthreshold =  ωthreshold . As discussed later, an 
electron in an atom or molecule may be ejected from the atom in the presence of photons with energy above 
the ionization threshold for that system, but not if the photon energy is below that value. Ejected electrons are 
then free to be accelerated by a voltage set in the counter.This in turn ejects more electrons. After several 
stages of this kind of ejection and acceleration, an exponentially growing avalanche of electrons is recorded as 
a current "boom" or "click" that is counted. Nevertheless, photons don’t go “click.” 

	
 Counters have two important properties; they are amplifiers that result in macroscopic and, more 
importantly, irreversible effects. After the "Boom!" or the electronic avalanche, there is essentially zero 
probability for ever seeing an "un-Boom!" or "un-avalanche" in the lifetime of the experiment. This is quite in 
contrast to coherent quantum processes which allow an analyzer to sort or split up a photon and then 
coherently "un-sort" or reassemble the same photon at the analyzer exit as will be seen next in Fig. 1.3.1. 

	
 It  is useful to describe the photon state inside the analyzer as a coherent linear combination of the form  
|Ψ〉= α|Ψup〉+β|Ψdn〉. In contrast, the presence of a counter makes such a description less useful because the 
energy added by the amplification process will, at the very least, randomly speed up the phase of one or both of 
the amplitudes α or β. Moreover, it may involve coupling with huge sets of quantum states outside of the |Ψup〉 
and |Ψdn〉 being studied with each outside channel siphoning its share of energy and accumulated phase and 
intensity. Such a complex state combination is likely to make reversibility quite impossible.

	
 Schrodinger described a whimsical counting experiment known as Schrodinger's Cat. It involved a cat 
sleeping next to a device that poisons the poor animal only if a certain state, say |Ψup〉, is counted in the 
"quantum part" of the device. Schrodinger may have speculated that the state of the system could be written as 
a combination α|ΨupCatdead〉+β|ΨdnCatalive〉, that is a cat |α|-percent-dead and |β|-percent-alive. 

	
 However, this is nonsense since the experiment proposed is just a particularly complicated (and cruel) 
counting amplifier. The amplitudes α or β have no predictive value beyond the statistical probabilities |α|2 or 
else |β|2 which might, under the most ideal conditions, just give approximate actuary for, say, a billion cat 
experiments. Such a Frankenstein laboratory cat experiment is unlikely to have any more coherence than a 
"Schrodinger's mouse" experiment mentioned above.

	
 Nevertheless, the term Schrodinger's Cat is used to describe macroscopic and coherently reversible 
coupled-atom-cavity experiments that have been studied. There is no readily apparent theoretical limit to the 
size and complexity of a state in which quantum amplitudes like α and β may be coherently phased, and now 
there is evidence that quantum coherence in necessary to explain some biochemical pathways.  Could actual 
cats (or mice) participate in coherent quantum experiments anytime in the foreseeable future? Meow!
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1.3 Beam Analyzers: Fundamental Quantum Processes
	
 To describe the weirdness and beauty of quantum physics we will discuss experiments involving 
elementary quantum analyzers. The quantum analyzer we will use here consists of two beam sorters of the 
type discussed in Section 1.2 placed back-to-back. More correctly we will pair up a beam sorter with a beam 
un-sorter or "put-back-together-er" that exactly undoes the splitting caused by its sorting companion.
	
 Is this even possible? Yes, we know it is, provided you choose your apparatus judiciously and construct 
it carefully. One of the deepest axioms for much of atomic and molecular physics is the idea of perfect time-
reversal symmetry at a sub-microscopic level. Roughly speaking, it says, "Anything you can do, I can do 
backwards." or "If you do, I can undo!" Let's see some examples of analyzer experiments.

(a) Optical polarization analyzers
	
 Optical polarization analyzers are routinely constructed in a modern laser laboratory. Two Brewster 
prisms of the type sketched in Fig. 1.1.5 have only to be carefully mounted back-to-back as shown in Fig. 
1.3.1. By "carefully" we mean that one must adjust split beam paths so that the output beam has exactly the 
same polarization and intensity as the input beam, that is, 

 
ΨOUT = ΨIN . Ideally, this would mean matching 

the x and y optical path lengths to within a fraction of the 0.5 micron wavelength of light. An accuracy of ±one 
ten-millionths of a meter might be enough. It's definitely not a "caveman" device!

Θ

"Sensitive"

Region
Input beam

Ψ
IN
-polarized

x-polarized

y-polarized

Output beam

Ψ
OUT

-polarized

 
Fig. 1.3.1 Anatomy of ideal optical polarization analyzer

	
 The purpose of these analyzers is let us to "tickle" or "perturb" each photon as it goes through a 
"sensitive" region where it has been temporarily sorted into to two different polarization states. Then you see 
what happens to its polarization as it emerges supposedly "reassembled." It is important to understand how 
incredibly sensitive the photon state is to what happens between the points where it is sorted on the right hand 
side of Fig. 1.3.1 and "un-sorted" on the left hand side. In between sorting and un-sorting, the physicists play 
the role of the Marquis de Sade with the poor photons in such devices. Soon the "Photon-Rights" groups may 
be picketing their darkened laboratories! 
	
 A theorist avoids "photon sadism" by simulating analyzer experiments on a computer. The following 
discussions use the Quantit program which draws visual representations of the amplitudes in split beams. A 
QuantIt simulation of a "do-nothing" analyzer set up like Fig. 1.3.1 is shown in the Fig. 1.3.2 . The analyzer is 
shown receiving a beam of  θ= β/2=30° polarized photons from the right and sending out the same polarization 
toward the left. (It "does nothing" to polarization.) In between there is a "high road" beam that is x-polarized 
(θ= β/2=0° ) and a "low road" beam that is y-polarized (θ=β/2=90°). 
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Initial polarization angle
θinitial=θθ

Final polarization angle
θfinal=θ

polarization
unchanged by
“Do-Nothing”

analyzer
initial

=2θ

θ xy-analyzer
(Θanalyzer=0°)

  Fig. 1.3.2 Computer sketch of simulated polarization analyzer in "do-nothing" mode

Note that polarization E-vectors are indicated by little lines drawn in the plane of the beam paths since it is 
impractical in this kind of figure to draw them as they really are (transverse to beam) while showing beam 
paths, too. Another "do-nothing" example is shown in the side-bar below. Following that are some examples of 
analyzer experiments and configurations that "do something."
Simulation of  "Do-Nothing" Analyzers by QuantIt 
Various analyzer configurations are simulated by QuantIt  as shown by a do-nothing (Ω=0°) analyzer in the 
figure below. Initially polarized state enters from the right, perhaps from another analyzer that is set initially to 
input angle βin . (Here it is set initially to Θin= 100° or βin= 200°.) QuantIt uses electron spin-tilt-β-angles that 
double photon-x-polarization tilt Θ-angles: β=2Θ. (Recall electron vs. photon analogy in Fig. 1.2.4.)

        

x'-polarized light

y'-polarized light x'

y

x
y'Θout -polarized light

(a)“Do-Nothing”Analyzer

(b)Simulation setting of
input

polarization
2Θin =βin=200°

tilt of analyzer

analyzer activity angle Ω
(Ω=0 means do-nothing)

Ω

input
polarization

Θin =βin/2=100°

Θanalyzer=-30°

Θout =Θin

in

No change if analyzer
does nothing

analyzerβ

analyzerΘ = -30°

=2Θ

Θin=100°
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To calculate Θ-analyzer output imagine another analyzer, say, a basic xy-analyzer, parked off to the left to 
analyze the output beam into x and y-components. The amplitudes in its x and y-channels will be a sum over x' 
and y'-paths whose amplitudes (1.2.2) are 〈x'|Θin〉=cos(Θin−Θ) and 〈y'|Θin〉=sin(Θin−Θ) where relative angle is 
Θin−Θ of Θin to Θ-analyzer axes-(x',y') related to lab axes by 〈x |x'〉=cosΘ=〈y |y'〉 and 〈y |x'〉= sinΘ =-〈x |y'〉. 
Output x-component is: 〈x |Θout〉= 〈x |x'〉〈x'|Θin〉+〈x |y'〉〈y'|Θin〉=cosΘcos(Θin-Θ) - sinΘsin(Θin-Θ)=cosΘin  
Output y-component is: 〈y |Θout〉= 〈y |x'〉〈x'|Θin〉+〈y |y'〉〈y'|Θin〉=sinΘcos(Θin-Θ) - cosΘsin(Θin-Θ)=sinΘin.  
  (Recall cos(a+b)=cos a cos b-sina sin b and sin(a+b)=sin a cos b+cos a sin b ) 
If the Θ-analyzer vanished the xy-analyzer sees output 〈x |Θin〉=cosΘin and 〈y |Θin〉=sinΘin straightaway.
So Θout=Θin is unchanged by a "Do-nothing" and having it is the same as having no analyzer.

(1) Optical analyzers in sorter-counter configuration
	
 An analyzer can easily be reduced to a simple sorter-counter of the type discussed in Section 1.2. You 
just block the ends of the x-high road and the y-low road with counters as shown in Fig. 1.3.3.

	


Initial polarization angle
θ=β/2 = 30°

θ

x-counts~| 〈x|x'〉|2
= cos2 θ =

y-counts~| 〈y|x'〉|2
= sin2 θ=

xy-analyzer
( βanalyzer =0°)

 Fig. 1.3.3 Computer sketch of simulated polarization analyzer set up as a sorter-counter

	
 This is the most extreme photon "perturbation" that analyzers can do; it kills any and all photons that 
venture into this experiment. Not nice! But, one gets an accurate "body-count" to compare with the quantum 
predictions from (1.2.12) which are shown on the left hand side of Fig. 1.3.3. 
	
 The predictions for (θ= β/2=30°) are 75% probability for x-polarized photons and 25% probability for 
y-polarized photons. This particular experiment involving 12 photons came out with 7 counts of x-photons and 
5 counts of y-photons. Was that pretty good? Sorry! It doesn't mean a damn thing! It could have just as well 
come out with twelve x-counts and zero y-counts or even vice-versa. Or worse, it could have come out 9 to 3 
exactly as predicted, and some people who were really stupid would brag that they were doing fabulously great 
physics. (Then you could ask them what they predicted for 13 photons!)
	
 Quantum predictions of this sort only begin to become meaningful for large numbers of counts. 
Statistics with small samples is generally not very useful for confirming or disproving a particular theory. 
Fortunately, there is an endless supply of photons just dying to be sacrificed for your research project.
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(2) Optical analyzers in a filter configuration (Polaroid© sunglasses)
	
 Another setting for an analyzer closes one of the paths and leaves the other open. The closed path may 
have a photon counter as shown below in Fig. 1.3.4. That option does not affect the experiment.

y-output~| 〈y|x'〉|2
= sin2 θ=

x-counts~| 〈y|x'〉|2=
(Blocked and filtered out)

Initial polarization angle
θ=β/2 = 30°

θxy-analyzer
( βanalyzer =0°)

 Fig. 1.3.4 Simulated polarization analyzer set up to filter out the x-polarized photons

	
 This experiment simply kills (and counts) all the photons that choose the x-polarized path but lets the 
photons that choose the y-polarized path go on through. (The latter are counted by default since there are only 
two choices here.) Our theory says that only 25% should take the y-path on the average just as it did when both 
paths were blocked in Fig. 1.3.3. This makes sense according to classical arguments since the y-component of 
the initial 30° polarization E-vector is half of |E|  (sin 30° = 1/2) and that corresponds to the one-quarter 
intensity (|1/2|2 = 1/4) getting through this y-pass filter.
	
 However, any given quantum experiment will probably deviate from the prediction. After twelve 
"throws" this particular experiment paid off 6 y-photons. That is 50% which is twice the house odds. (Wanna' 
bet even odds on the next twelve, you old riverboat gambler, you!?)
	
 A lot of money has been "won" by an "experiment" like this, but not by betting on single photon events. 
Edwin Land sold many Polaroid© sunglasses which pass mostly y-polarized light and block the x-polarized 
light that accounts for most of the glare reflected from roads by the Brewster effect. You should take heed. Any 
experiment, like this or ones we will study later, might become a multi-million $ invention if you use your 
imagination creatively.

(3) Optical analyzers in the "control" configuration: Half or Quarter wave plates
	
 Now let's see an example of an analyzer configuration that does what analyzers are really intended to 
do. Recall that a "do-nothing" analyzer was ever so carefully adjusted so the two paths were the same to within 
a tiny fraction of an optical wave oscillation. This was necessary to assure that the polarization of the input 
beam is reproduced as perfectly as possible in the output beam.
	
 A "do-something" analyzer requires the same care and precision in adjusting the two paths, but the two 
paths are given a non-zero difference in optical path length or relative phase Ω. If this phase difference can be 
accurately set and controlled over a range of 2π (-π < Ω < π) then the analyzer is capable of completely 
controlling the output polarization. If the x-path gains a half-wave or phase of Ω = π relative to the y-path, then 
input 30° polarization becomes tilted by an angle of θ=150° as shown in Fig. 1.3.5a. Such a device is called a 
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half-wave plate. If the x-path gains a quarter-wave or phase of Ω = π/2 relative to the y-path, then input 30° 
polarization becomes elliptical polarization as shown in Fig. 1.3.5b. This device is called a quarter-wave plate. 

θ

Initial polarization angle

θ=β/2 = 30°
(a)

Half-wave plate

(Ω=π)
Final polarization angle

θ=β/2 = 150°(or -30°)

(b) Quarter-wave

plate

(Ω=π/2)
Final polarization is

untilted elliptical

θ

Initial polarization angle

θ=β/2 = 30°

Ω

Ω

Analyzer phase lag

(activity angle)

Analyzer phase lag

(activity angle)

xy-analyzer

(β
analyzer

=0°)

xy-analyzer

(β
analyzer

=0°)

Fig. 1.3.5 Polarization control set to shift phase by (a) Half-wave (Ω = π)  , (b) Quarter wave (Ω= π/2)

	
 To understand what happened in Fig. 1.3.5 consider the input θ =30° polarization state vector given by 
the 

  
x '  ket in (1.2.2) or (1.2.4a). Then we shift its x-phase by an angle Ω=π or π/2 , respectively, relative to the 

y-phase, by multiplying Ψx by phase factor e-iΩ  .

  

e−iΩ 0
0 1

⎛

⎝
⎜

⎞

⎠
⎟

cosθ
sinθ

⎛

⎝⎜
⎞

⎠⎟
= e−iπ 0

0 1

⎛

⎝
⎜

⎞

⎠
⎟ 3 / 2

1/ 2

⎛

⎝
⎜

⎞

⎠
⎟

                                     = − 3 / 2
1/ 2

⎛

⎝
⎜

⎞

⎠
⎟   for Ω = π ,

	
 (1.3.1a)
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(1.3.1b)

Phase shifting is done using 2x2 complex matrix operators such as T or the phase-balanced form R below. 

	
 	
 	
 	

  

T = e−iΩ 0
0 1

⎛

⎝
⎜

⎞

⎠
⎟  ,  or:         R = e−iΩ/2 0

0 e+iΩ/2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
= e+iΩ/2T . 	
 	
 (1.3.1c)

Whenever possible, one tries to represent analyzers by complex operators T which act on input state kets 
 
ΨIN

to give the resulting output state kets 
 
ΨOUT . Phase-balanced forms are designed to preserve overall phase.

	
 	
 	
 	
 	

  
ΨOUT = T ΨIN 	
 	
 	
 	
 	
 	
 (1.3.2)

	
 A classical picture of the resulting time behavior is shown in Fig. 1.3.6. This is obtained by plotting the 
real parts of the vectors in (1.3.1a-b) after they have been multiplied by the Planck time-frequency factor e-iω  t 
from (1.2.7) as follows. The simulations in Fig. 1.3.5 apply the phase-balanced forms R in each case.
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 (1.3.3a)	
 	
 	
 	
 	
 	
 (1.3.3b)
 	
 The phase factor of (-1) in the x-component of eq. (1.3.3a) simply reflects the polarization oscillation 
plane through the x-axis as shown in Fig. 1.3.6a and on the left of Fig. 1.3.5a. The phase factor of (i) in the x-
component of eq. (1.3.3b) causes the real polarization vector to trace an elliptical path in the xy-plane as shown 
in Fig. 1.3.6b and on the left (output) of Fig. 1.3.5b.
	
 Note the polar form of i is eiπ/2 with polar angle π/2 or 90°. Therefore, we say that the oscillation with 
the i-factor or π/2 phase is 90° counter-clockwise to an oscillation that has no extra phase factor. An i-factor x-
oscillation is 90° behind y but (-i) makes x go 90° ahead (giving anti-clockwise rotation as in Fig. 1.3.6b) since 
the e-iω t phase of Planck advances clockwise with time. The factor e-iΩ with Ω=-45° gives a tilted clockwise 
rotating elliptical polarization as in Fig. 1.3.6(c). 

Fig. 1.3.6 Polarization states for (a) Half-wave (Ω = π)  , (b) Quarter wave (Ω= π/2) (c) (Ω=−π/4)
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Simulation of Active or "Do-Something" Analyzers

	
 Suppose an active analyzer, that is a "do-something" analyzer, shifts its high beam by a phase angle 
(Ω=20°) as indicated above the analyzer in the figure below. As a result the initial plane-100°-polarization 
coming in gets transformed to an elliptical polarization going out. How do we calculate the Ψout state now? 
The key is to put in the Ω-phase shift in the right place.

 

(b)Simulation

x'-polarized light

y'-polarized light

β/2=Θ= -30°

Θin =βin/2=100°
plane-polarized light

x'

y

x

y'

Elliptically

polarized light ω=20°phase shift

(a)Analyzer Experiment

Phase shift→ Ω

Output polarization

changed by analyzer

phase shift

setting of

input

polarization

2Θin =βin=200°
Θ
in
=100°

Θ=-30°

=2Θ
analyzer
β

	
 The output calculation is almost the same as it is for the "do-nothing" analyzer except now an extra 
phase factor e-iΩ = 0.94-i 0.34 is tacked onto factors for the x'-path as was discussed after (1.3.1).
    x-output: 

  
x Ψout = x ′x e−iΩ ′x Ψin + x ′y ′y Ψin = e−iΩ cosΘcos Θin − Θ( ) − sinΘ sin Θin − Θ( )

    y-output: 
  

y Ψout = y ′x e−iΩ ′x Ψin + y ′y ′y Ψin = e−iΩ sinΘcos Θin − Θ( ) + cosΘ sin Θin − Θ( )
The numerical results for these amplitudes are as follows. Both of these need to be given in polar form.
   x-output: 

  
x Ψout = 0.94-i0.34( )0.87 −0.64( ) − −0.5( ) 0.77( )    = −0.140 + i0.189 = 0.235ei2.2

   y-output: 
  

y Ψout = 0.94-i0.34( ) −0.5( ) −0.64( ) + 0.87( ) 0.77( ) = 0.966 − i0.109 = 0.972e−i0.11

The x and y-probabilities are (0.235)2=0.055 (5.5%) and(0.972)2=0.945 (94.5%), respectively. Multiplying the 
amplitudes by the Planck time phasor e-iEt/  gives their time dependence. (See (1.3.3)) The x-amplitude is 
running 2.2-(-0.1)=2.3 radians or 131° behind the y-amplitude. This makes a slightly tilted ellipse. The 
detailed geometry of polarization ellipsometry is discussed in Chapter 10.
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(4) Optical analyzers in a "peeking" configuration
	
 The following is a preliminary discussion about one of the most peculiar aspects of quantum theory. It 
falls under a large and fairly nebulous topic of quantum measurement or quantum observation. The main idea, 
which we will discuss later on, is that the information about a given system comes in quantum chunks just like 
its energy and momenta ; indeed, information is energy and momenta since information requires frequency 
bandwidth. So information about a quantum system comes at a price, and the price is that the energy and state 
of the system is affected at the quantum level.
	
 Suppose a new analyzer is constructed with both ports open just like the original "do-nothing" analyzer 
first shown in Fig. 1.3.1 and 1.3.2. Only the new analyzer has a "spy" or an "x-eye" which "peeks" and looks 
out for a passing x-photon as shown in Fig. 1.3.5. It may also have another "y-eye" which "peeks" at the lower 
y-path to check if a y-photon went by. However, for a two-state system, one good eye is assumed to be enough 
to tell which way the photon went.

A "peeking" eye

If eye sees an x-photon
then the output particle
is 100% x-polarized.
(75% probability for that.)

If eye sees no x-photon
then the output particle
is 100% y-polarized
(25% probability.)

θ

θ=β/2 = 30°

θ

θ=β/2 = 30°

(Looks for x-photons)

xy-analyzer
(βanalyzer=0°)

xy-analyzer
(βanalyzer=0°)

Initial polarization angle

Initial polarization angle

 Fig. 1.3.7 Simulated polarization analyzer set up to "peek" if the photon is x-or y-polarized
	

        It should be emphasized that the "peeking" is as delicate as possible, a sort of "ideal peeking." It does not 
change the x-polarization of any of the x-photons it "sees." Nor does it change the y-polarization of any of the 
y-photons. Neither does it alter the predictions that our 30° polarized input beam would, if so analyzed, yield 
75% of the photons to be x-polarized and the remaining 25% to be y-polarized.
	
 However, it cannot avoid altering the state of the incoming beam. If a x-photon is "seen" then that is 
exactly what comes out; the output photon is 100% x-polarized. If no x-photon is seen then the output is a 
100% y-polarized photon. This analyzer can only output x-polarized or y-polarized photons, and nothing in 
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between. Furthermore, after counting many photons the x-polarized photons will, on the average, be 75% of 
the population and the y-photons will account for the remaining 25%.
	
 Such "perfect-peeking" is like a sorter counter in Fig. 1.3.3 which, after each counter records a count, 
recreates a (randomly phased) photon with the same polarization as the one it absorbed.
	
 This output is very different from that of the "do-nothing" analyzer whose output was entirely made up 

of 30° polarized photons, that is each photon had 75% intensity in the x-direction (Ψx = √3/2, |Ψx |2 = 0.75) 
and 25% intensity in the y-direction (Ψy = 1/2, |Ψy |2 = 0.25). In contrast, the "peeked" photons are either all x 
and no y ( |Ψx |2 = 0.75 , and |Ψy |2 = 0.00) as are 75% of the photons, or else all y and no x ( |Ψx |2 = 0.00 , 
and |Ψy |2 = 0.25) as are the remaining 25%. It's as though peeking produces two separate beams within the 
final beam neither of which have 100% probability individually, but together their probabilities add to 1. (This 
is discussed in greater detail after Fig. 1.3.9b just ahead.)
	
 One of the most bizarre aspects of quantum theory is that by looking to see if a particle chooses the x-
path or the y-path we seem to cause it become exactly one of the possible results that we are looking for; in this 
case, either x or else y but not a combination of both. This is sometimes called wave amplitude collapse since 
the amplitude for the "other" path (or paths for more than two states) seems to instantly be shut off. However, 
this little bit of jargon is highly suspicious and perhaps it should be deleted from our vocabulary.
	
 It may seem paradoxical that by turning on the "x-eye" and seeing an x-photon on the x-path instantly 
shuts off any chance that the "y-eye" will see a photon down on the y-path at that moment or until another 
photon comes along. Could the x-path observer use amplitude collapse to communicate instantaneously (or 
faster than light) with the distant y-path observer? 
	
 No! Remember the x-photon that the "x-eye" recorded was not a sure thing until it actually happened, 
rather it had a probability of only 75%. The y-path observer is not going to notice any "shut-off" if that 
particular instant doesn't give him a y-photon count. The poor y-observer is only getting 25% of the photons, 
anyway. Furthermore, there is a 25% probability that after the x-observer turns on his "x-eye" the first photon 
goes instead to the y-observer. What kind of message is that? It is a garbled one with exactly zero information. 
Amplitude collapse is an example of what has been called "spooky action at a distance." So far "spooky 
action" has not been made to work for us in spite of the fact that modern quantum theory has many examples 
of this sort of thing for over a century.
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(b) Effects of "peeking" : Coherent versus incoherent beams
	
 Understanding the effects of "peeking" is one of the most difficult parts of fundamental quantum 
mechanics. To help in this we now compare the output of an xy-"Do nothing" analyzer like the one in Fig. 
1.3.2 with that of an xy-"Peeker" analyzer like the one in Fig. 1.3.7. A second "counting" analyzer tilted by an 
angle of β/2 = 30° is set to count the output of the "Do-nothing" in the upper left half of Fig. 1.3.8 and the 
same β/2 = 30° counter counts output of the xy-"Peeker" in the lower left half. For each case the initial beam 
(Extreme right of Fig. 1.3.8) is the same β/2 = 30° input that has been used in all the previous cases, but the 
resulting counts on the extreme left are very different. It is important to see why.
	
 The β/2 = 30° tilted counter will sort any beam into β/2 = 30° tilted xy-polarized beams with a 

  
x '  -

beam going to the upper counter and a 
  

y ' -beam going to the lower counter. The initial input beam on the 
extreme right of Fig. 1.3.8 is a pure 

  
x ' -beam, and the "Do-nothing" analyzer, true to its name, does nothing to 

change 
  
x ' -polarization. So all photons go straight to the upper path and into the 

  
x '  counter 100% of the 

time. The 
  

y ' -counter gets exactly zero counts. 

Initial

Without

“Peeking Eye” angle

θ=β/2 = 30°

Initial

polarization

angle

θ=β/2 = 30°

With

“Peeking Eye”

polarization(a)

(b)

xy-analyzer

(β
analyzer

=0°)

xy-analyzer

(β
analyzer

=0°)

β
analyzer

=60°

Θ
analyzer

=30°

β
analyzer

=60°

Θ
analyzer

=30°

Reconstructs

x (30°) beam

Cancels

y (30°) beam
No

y (30°)

appear

Only

x (30°)

appears

=2θ

5 to 8 odds

for x (30°)

to appear

3 to 8 odds

for y (30°)

to appear

30°

30°

(empty path)

Fig. 1.3.8 Output with β/2=30° input to: (a) Coherent xy-"Do nothing" or (b) Incoherent xy-"Peeking" devices

	
 However, the 'Peeking" analyzer in the lower right half of Fig. 1.3.8 will put out two kinds of polarized 
beams; an x-polarized beam with 75% of the intensity and a y-polarized beam with 25% of the intensity, as we 
discussed earlier. (Sec. 1.3 a(5)). These each get sorted and counted separately.
	
 A sketch in Fig. 1.3.9 below of the polarization vector components or amplitudes can explain this.  The 
upper right hand portion shows the initial 

  
x ' -beam polarization being resolved into its x- and y-components 
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so they split into the 
 
x -beam and the 

 
y -beam which are then recombined to make a final 

  
x ' -beam output 

on the upper left hand side. The orthogonal 
  

y '  component has zero amplitude.

〈y|x'〉=1/2

〈x|x'〉=√3/2

〈y'|x〉= -1/2

〈x'|x〉=√3/2

〈x'|y〉=1/2

〈y'|y〉=√3/2

〈x'|x〉〈x|x'〉=
√3/2 √3/2

〈x'|y〉〈y|x'〉=
1/2 1/2

〈y'|y〉〈y|x'〉=
√3/2 1/2

〈y'|x〉〈x|x'〉= -1/2 √3/2

〈x'|x〉〈x|x'〉+〈x'|y〉〈y|x'〉=
√3/2 √3/2 +1/2 1/2 = 1

〈y'|x〉〈x|x' 〉+〈y'|y〉〈y|x'〉=
-1/2 √3/2+√3/2 1/2 =0

|x〉-beam

|y〉-beam

|x〉-beam

|y〉-beam

|x〉

|x〉

|x'〉-beam
|x'〉-beam

|y'〉-beam (zero)

|x'〉|y〉

Without
a

“Peeking Eye”

With
a

“Peeking Eye”

(a)

(b)

|x'〉-beam
|y〉

|x'〉

|y'〉

|y'〉

|x'〉

Fig. 1.3.9 Beams-amplitudes of  (a) xy-"Do nothing" and (b) xy-"Peeking" analyzer each with 
  
x '  input

	
 A more detailed view of components and amplitudes is shown in the lower portion where we imagine 
that the "peeking eye" has caused the two beams to be distinguished. In other words, something has happened 
to make the 

 
x -beam or 

 
y -beams "dirty" so that they cannot recombine to make a pure 

  
x ' -beam going up 

to the 
  
x '  counter and a zero beam going down to the 

  
y '  counter. This "dirt" is simply a random phase which 

an "eye" must add to every photon it "sees." Without this "dirt" the lower two amplitudes cancel to 0 through 
perfect destructive interference while the upper beams add up to 1 through perfect constructive interference. 
("Constructive interference" is an oxymoron in the"dirty" classical world we're used to, but it is absolutely 
essential for understanding wave behavior in the quantum world.)
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(1) Amplitude products
	
 We now consider the effect of successive analyzers such as the example in Fig. 1.3.8 and 9 where an 
xy-analyzer acts on an initial state 

  
x '  and is followed by an x'y'-counter. This example provides the 

opportunity to introduce more of the fundamentals of quantum analysis and mathematics. 
	
 According to our discussion in Section 1.2 b, when a beam in state Ψ  enters a sorter it gets sorted into 

a series of beams 
   

b1 , b2 ,…{ }   of amplitude 
  

b1 Ψ  , 
  

b2 Ψ , ..., respectively. (So far only two-state systems 

have been shown.) If one of these beams (say, 
 
bm  ) encounters another analyzer or sorter it gets sorted into 

another series of beams 
   

c1 , c2 ,…{ }  of amplitude 
  

c1 bm bm Ψ , 
  

c2 bm bm Ψ , ..., respectively. Note: each 

sorter amplitude 
  

c1 bm  , 
  

c2 bm , ...,  gets multiplied by the input amplitude 
 

bm Ψ  . This is because 

polarization response is linear in the input amplitude, as indeed, are all analogous quantum processes. Output 
is proportional to input.
	
 This process happens again each time a beam runs into another sorter and makes another set of "baby 
beams." For example, an amplitude of the form shown in Fig. 1.3.10

	
 	
 	
 	

 

ep DoCnBm Ψ = ep do do cn cn bm bm Ψ 	
	
 (1.3.4)

is the contribution to the 
 
ep  beam of the e-sorter by a particle that went through 

 
do  beam of a d-sorter after 

passing the 
 
cn  beam of the c-sorter, after passing the 

 
bm  beam of the b-sorter from the input Ψ  beam.  We 

just read this series backwards from finish to start. Recall that you read amplitudes like Hebrew, right to left, in 
going forward from start to finish or (correct terminology) initial to final.

|Ψ〉-beam
(input)

〈b1|Ψ〉

〈b2|Ψ〉

〈b1|Ψ〉〈c1|b1〉

〈b1|Ψ〉〈c2|b1〉

〈b1|Ψ〉〈c2|b1〉〈d1|c2〉

〈b1|Ψ〉〈c2|b1〉〈d2|c2〉

〈b1|Ψ〉〈c2|b1〉〈d2|c2〉〈e1|d2〉

〈b1|Ψ〉〈c2|b1〉〈d2|c2〉〈e2|d2〉

c

b

d

e

Fig. 1.3.10 Beams-amplitude products for successive beam sorting

(2) Amplitude sums
	
 Analyzers recombine their sorted beams and the resulting analyzer output amplitude is a sum of the 
amplitudes of its beams. For example, the final amplitude of the x' or y'-counters in the upper left hand part of 
Fig. 1.3.9 is given by the following sum. (Recall that the initial state is 

  
Ψ = x ' .)
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Amp. at x'-counter = x ' x x Ψ + x ' y y Ψ = x ' x x x ' + x ' y y x '

Amp. at y'-counter = y ' x x Ψ + y ' y y Ψ = y ' x x x ' + y ' y y x '
	
 (1.3.5)

Amplitudes are diagrammed as 30°-60° right triangle segments in Fig. 1.3.9 according to Sec. 1.2a 

	
 	


  

x ' x x ' y

y ' x y ' y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= cosθ sinθ

− sinθ cosθ

⎛

⎝⎜
⎞

⎠⎟
 ,      

x x ' x y '

y x ' y y '

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= cosθ − sinθ

sinθ cosθ

⎛

⎝⎜
⎞

⎠⎟

      = 3 / 2 1 / 2

−1 / 2 3 / 2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

 , for θ=30°,       = 3 / 2 −1 / 2

1 / 2 3 / 2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

 , for θ=30°

   (1.3.6)

(Notice that the two transformation matrices are inverses of each other.) Substituting in (1.3.5) gives the 
correct amplitudes for the "do nothing" analyzer. 

	
 	

  
Amp. at x'-counter = x ' x x x ' + x ' y y x ' = 3

4
+ 1

4
= 1 	
 	
 (1.3.7a)

	
 	

  
Amp. at y'-counter = y ' x x x ' + y ' y y x ' = − 3

4
+ 3

4
= 0 	
 	
 (1.3.7b)

The two pairs of terms of (1.3.7) are sketched by two pairs of parallel beams in the lower left of Fig. 1.3.9. For 
an ideal "do nothing" analyzer, the first two in (1.3.7a) sum to 1 to give the same x'-beam that came as input, 
but the second two in (1.3.7b) cancel causing the y'-beam to vanish. 

(3) Random phase effects ("Dirty" beams)
	
 However, if any of the four beams is "dirty", that is, has a random phase then the counter output is very 
different. Suppose the "x-eye" tags each x-photon with a phase eiφ where φ  is a different random number for 
each photon so φ ranges over the unit circle (-π<φ<π). Then (1.3.7) becomes

	

  
Amp. at x'-counter = x ' x eiφ( ) x x ' + x ' y y x ' = 3

4
eiφ( ) + 1

4
	
 	
 	
 (1.3.8a)

	

  
Amp. at y'-counter = y ' x eiφ( ) x x ' + y ' y y x ' = − 3

4
eiφ( ) + 3

4
	
 	
 (1.3.8b)

Recall that statistical probabilities and count rates are determined by the absolute square of amplitudes 
according to (1.2.12). The count probabilities from (1.3.8) are as follows.

	


  

x'-count probability = 3
4

eiφ( ) + 1
4

2

= 3
4

eiφ( ) + 1
4

⎛
⎝⎜

⎞
⎠⎟

*
3
4

eiφ( ) + 1
4

⎛
⎝⎜

⎞
⎠⎟

                                = 32

42
+ 12

42
+ 3

42
e−iφ + eiφ( ) = 5

8
+ 3

16
e−iφ + eiφ( )

	
 	
 (1.3.9a)

	


  

y'-count probability = − 3
4

eiφ( ) + 3
4

2

= − 3
4

eiφ( ) + 3
4

⎛

⎝
⎜

⎞

⎠
⎟

*
− 3

4
eiφ( ) + 3

4

⎛

⎝
⎜

⎞

⎠
⎟

                                = 3
42

+ 3
42

− 3
42

e−iφ + eiφ( ) = 3
8
− 3

16
e−iφ + eiφ( )

	
 (1.3.9b)

Recall also, that probabilities are useful predictors only for large numbers of trials, that is, after many photons, 
so the average of eiφ or e-iφ  approaches zero if φ is random. Then (1.3.8) reduces to 
	
 x'-count probability = 5/8 = 0.625,      y'-count probability = 3/8 = 0.375,   	
(1.3.9c)
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which agrees with the simulation in the lower half of Fig. 1.3.8. Main idea: "Dirty" beams don't interfere.

(4) Summing amplitudes or probabilities?
	
 This example exposes one of the important differences between quantum theory and classical physics. 
Let's assume that the act of "peeking" or "measurement" will, at the very least, jiggle the phase of the object of 
the measurement. Let's see how "Jiggling" causes count rates to exactly match what classical probability 
analysis would give. According to classical reasoning the probability that a x'-photon shows up in the x'-
counter via an xy-analyzer equals a sum of probability products P(x' to x) times P(x to x') for the x-path and P
(x' to y) times P(y to x') for the y-path. Read products below from right to left. (QM uses Hebrew style.)

    

  

Probability that
photon in x'-input

becomes
photon in x'-counter

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

classical

=

probability that
photon in x-beam

becomes
photon in x'-counter

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

*

probability that
photon in x'-input

becomes
photon in x-beam

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

+

probability that
photon in y-beam

becomes
photon in x'-counter

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

*

probability that
photon in x'-input

becomes
photon in y-beam

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

Now replace the probability factors by their squared-amplitude values P(x to x') = 
  

x ' x
2 , etc..

    

  

Probability that
photon in x'-input

becomes
photon in x'-counter

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

classical

=

x ' x
2⎛

⎝⎜
⎞
⎠⎟

* x x '
2⎛

⎝⎜
⎞
⎠⎟
+ x ' y

2⎛
⎝⎜

⎞
⎠⎟

* y x '
2⎛

⎝⎜
⎞
⎠⎟
= 3

2

2⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

* 3
2

2⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
+ −1

2

2⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

* 1
2

2⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= 5

8

This what we got in (1.3.9) by ignoring the phase terms. Indeed, the square of (1.3.8a) is as follows.

    

  

Quantum probability
at x'-counter

⎛

⎝
⎜

⎞

⎠
⎟ = x ' x eiφ( ) x x ' + x ' y y x '

2

   = x ' x x x '
2
+ x ' y y x '

2
+ e−iφ x ' x

*
x x '

*
x ' y y x ' + eiφ x ' x x x ' x ' y

*
y x '

*

   =(     classical probability      )  + (        Phase-sensitive or quantum interference terms         )

 

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 (1.3.10)
The difference between quantum and classical probability predictions comes down to what we call phase-
sensitive or quantum interference terms. Classical and quantum predictions differ after many counts only if 
phase factors eiφ  do not average to zero. Otherwise the quantum results reduce to the classical ones. 
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 To summarize: Quantum probability is a square of the sum of probability amplitudes for all 
indistinguishable paths as in the following example.

	
 	

  

Quantum probability
at x'-counter

⎛

⎝
⎜

⎞

⎠
⎟ = x ' x x x ' + x ' y y x '

2 	
 	
 	
 (1.3.11a)

Classical probability has a smaller number of terms from this that are just a sum of the squares of the 
probability amplitudes for all paths, distinguishable or not, as in the following example.

	
 	

  

Classical probability
at x'-counter

⎛

⎝
⎜

⎞

⎠
⎟ = x ' x x x '

2
+ x ' y y x '

2 	
 	
 	
 (1.3.11b)

	
 Here is a general rule : If you know what path a system took, (or better, if Mother Nature knows) don't 
bother with the full quantum square-of-a-sum. Just take the sum-of-the-squares because it is quite certain that 
the interference terms will average to zero.
Further comments about complex amplitudes
	
 The polarization amplitudes used so far are idealized in a number of ways. The examples given in Sec. 
1.2a are real sines and cosines that depend on geometry (tilt angles) alone. As noted in Sec 1.2b time evolution 
adds complex factors. Also amplitudes for anomalous polarization response (such as occurs near resonance) 
are complex because the output is not always in phase with the input. Many interesting quantum processes 
involve relative phases that are extremely sensitive to input parameters. 

(c) Electron polarization analyzers
	
 Electron or ion beam polarization analyzers are definitely high-tech experiments. High vacuums are 
essential and sophisticated magnetic steering fields are needed to level off and recombine the sorted split 
beams. A rough sketch of an ideal ion beam analyzer is shown in Fig. 1.3.11 below. It is analogous to the 
optical polarization analyzer shown before in Fig. 1.3.1.

	


Input beam

χ
IN
-spin β

N

S

N

S

N

S

N

S

N

S
"Sensitive"

Region

spin-up

spin-dn

β N

S

β

Output beam

χ
OUT

 Fig. 1.3.11  Anatomy of ideal electron or ion spin polarization analyzer

	
 In analogy with the optical case, one tests it in a "do-nothing" configuration. It should be possible to 
adjust it so all input electron spin states come out the same in the output beam, that is, 

 
χOUT = χIN  for all 

possible 
 
χIN . Once this is achieved, then changes can be made in the "sensitive" region where we can "do 

things" to the separated spin-up and spin-dn beams before they try to recombine.
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Appendix 1.A. Review of Complex Algebra
	
 Complex algebra depends on (i2=-1) and the DeMoivre identities (1) or their inverses (2).
	
   eiωt = cos ωt + i sin ωt,     (1.A.1a)  	
 	
  cos ωt = (eiωt + e-iωt)/2  	
 (1.A.2a)
	
   e-iωt = cos ωt - i sin ωt,     (1.A.1b)  	
 	
  sin ωt = (eiωt - e-iωt)/2i  	
 (1.A.2b)
This allows any complex number z to be written in Cartesian form (z=x + iy) or else polar form (z= re iθ) 
where: 	
	
 	
  x = cos θ 	
 (1.A.3a)	
 	
  r = √(x2 + y2) 	
 	
 (1.A.4a)
	
 	
 	
  y = sin θ 	
 (1.A.3b)	
 	
  θ = ATAN2(y,x)=tan-1(y/x) 	
 (1.A.4b)	

are polar-Cartesian coordinate transformations. Caution! Use ATAN2, not tan-1 to assure correct angle.

x=Re z

y=Im z

θ
z

r

(a)

θ
z

(b) u u+z
φ

θ
z

(c) u

u•z
φ

θ+φ

z
u u−z

Sum
Differenceand

Product

	
 Linear operations (such as addition or subtraction) favor use of Cartesian forms.
	
  z+z' = (x+x') +i (y+y') 	
 	
 (1.A.5a)	
  z-z' = (x-x') +i (y-y')	
 	
 	
 (1.A.5b)
Non-linear operations (such as multiplication or division) favor the use of polar forms.
	
  z.z' = (re iθ).(r'e iθ ')=r.r'e i(θ+θ ') 	
 (1.A.6a)	
 z/z' = (re iθ)/(r'e iθ ')=r/r'e i(θ−θ ') 	
 (1.A.6b)
Multiplication of z=re iθ  by unitary u= e iφ (for which ru2=|u*u|2=1) gives a rotation of z as seen here.
	
 	
   z' =u.z = (e iφ).(re iθ )= re i(θ+φ)   	
 	
 	
 	
 	
 	
 	
 (1.A.6c)
In Cartesian form this equation is a matrix rotation operation.
	
   z' =x' + iy' = (cos φ  + isin φ).(x + iy)= re i(θ+φ) 	
 	
 	
 	
 	
 	
 (1.A.7a)
	
   z' =x' + iy' = (x cos φ  - y sin φ)+ i(x sin φ  + y cos φ) = r(cos(θ+φ) + isin(θ+φ))   (1.A.7b)
Equating real parts gives x-rotation and equating imaginary parts gives y-rotation.
	
 	
  x' = x cos φ  - y sin φ  = rcosθ cos φ  - rsinθ  sin φ  	
 = rcos(θ+φ) 	
 	
 (1.A.8a)
	
 	
  y' = x sin φ  + y cos φ  = rcosθ sin φ  + rsinθ  cos φ  = rsin(θ+φ) 	
 	
 (1.A.8b)
Angle-sum trig identities for cos(θ+φ) and sin(θ+φ) are re-derived in an “automatic” trigonometry.
	
 Roots of complex numbers are no problem. For example, solving zn = 1 for z = (1)1/n is simple if we 
write a polar form of unity: 1= 1.e2πi. The zeroth z0 root is 1, and the first root z1 is 
	
 	
 	
 	
 	
  z1 = (1)1/n = (e2πi)1/n = e2πi/n 	
 	
 	
 	
 (1.A.9)
There are n roots zk=z1 k because if (z1 n ) equals one, so does (z1 n )2=(z1 2 )n and (z1 3 )n... and so on.
	
  z1 = e2πi/n , z2 = (z1 )2 = e2(2πi/n) , z3 = (z1 )3 = e3(2πi/n) ,..., zn = (z1 )n =1=z0 	
 	
 (1.A.10)
If these are plotted they form an n-sided regular polygon. Such diagrams help to do zk arithmetic.

Z0
Z1

Z2=Z-1

Z0
Z1

Z2 Z3

C3 symmetry C4 symmetry C5 symmetry C6 symmetry C7 symmetry C8 symmetry C9 symmetry C10 symmetry

Quantum theory is intimately connected to symmetry, and this arithmetic is the foundation of symmetry 
analysis and Fourier theory. 
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Appendix 1.B. Complex Response of Oscillators
	
To learn quantum theory it helps to know oscillators. A classical stimulated harmonic oscillator equation

	
 	
 	
 	
 	
 	

  

d2z
dt2

+ 2Γ dz
dt

+ω0
2z = a 	
 	
 	
 	
 (1.B.1)

is solved by complex functions e-iω t describing a monochromatic (single frequency ωs ) stimulus

	
 	
 	
 	
 	
 	
 	
  
  
a t( ) = a 0( )e−iωst .	
 	
 	
 	
 (1.B.2)

as well as a response at the same frequency if its amplitude is proportional to that of the stimulus.
	
 	
 	
 	
 	


  
zresponse t( ) = Gω0

ωs( )a t( ) 	
 	
 	
 	
 	
 (1.B.3)

The complex proportionality factor G depends upon the stimulus frequency ωs , the natural frequency ω0 , and 
damping constant Γ , only. Because the equation is linear and time independent the G  factor should not 
depend on the amplitude As of the stimulus. It may help to think of the oscillator as a 'black box' that responds 
linearly to input as shown below in Fig. 1.B.1.

 

Stimulus
as(t)=Ase-iωst

Lorentz-Green's
Function

Gω (ωs)=|Gω (ωs)| e iρ

Response
z=Gω(ωs) as0

00

Fig.1.B.1 Black-box diagram of oscillator response to monochromatic stimulus 

Now we substitute 
  
zresponse  into the classical oscillator equation of motion (1.B.1) and solve for Lorentzian 

response function or classical Green’s function 
  
Gω0

ωs( )  of frequency ωs .

        	

   
Gω0

ωs( ) = 1
ω0

2 −ωs
2 − i2Γωs   

= Re Gω0
ωs( ) + i Im Gω0

ωs( ) = Gω0
ωs( ) eiρ        (1.B.4)

The real and imaginary parts of the Green’s function are as follows:

	
    

  

Re Gω0
ωs( ) = ω0

2 −ωs
2

ω0
2 −ωs

2( )2 + 2Γωs( )2
,	
 	


  

Im Gω0
ωs( ) = 2Γωs

ω0
2 −ωs

2( )2 + 2Γωs( )2
,

	
 	
 	
         (1.B.5a)	
 	
 	
 	
 	
              	
 	
  (1.B.5b)
while its magnitude 

 
G ωs( )  and polar angle ρ  are the following:

    	


  

Gω0
ωs( ) = 1

ω0
2 −ωs

2( )2 + 2Γωs( )2
,	
 	
 	


  

ρ = tan−1 2Γωs( )
ω0

2 −ωs
2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

	
 	
 	
 	
 (1.B.5c)	
 	
 	
 	
 	
 	
 	
 (1.B.5d)
The angle ρ  is the response phase lag, that is, the phase angle by which the response oscillation lags behind 

the phase 
 
−ωst( )  of the stimulating oscillation.

	
 	

  
zresponse t( ) = Gω0

ωs( ) a 0( )e−i ωst−ρ( ) 	
 	
 	
 	
 	
 (1.B.5)
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It may help to visualize stimulus and response phasors as a  pair rigidly rotating at rate ωs . The response 

phasor lags ρ radians behind the stimulus as shown below in Fig. 1.B.2.

 
Stim

ulus

Response

ωst

ωst-ρ

ρ

ρ

Stimulus
as(t=0)

Response
G(ω s )

ReG(ωs)

ImG(ωs)

Real Axis

Imaginary
Axis

|G(ω s )|

Response G(ω s ) lags behind

stimulus as(t)=as(0)e by angle ρ-iωst G(ω s )·as(t)

Fig.1.B.2 Oscillator response and stimulus phasors rotate rigidly at angular rate ωs  . 

	
 Complex algebra such as (1.B.5) is indispensible for analyzing oscillatory phenomena and devices. The 

most prevalent applications to electrical engineering (And, this is why ABS, (xy)->(polar), etc. keys are on 

your calculator!) began when Nikoli Tesla showed to Edison and Westinghouse (This took some time!) that 

their DC wiring was impractical and AC was the way to go in building a large power grid.

	
 In optics as well as quantum mechanics there are many relations of the form (1.B.3) for which the 

phasor diagrams of Fig. 1.B.2 are helpful. Our description of quantum waves would be impossibly 

cumbersome without complex phasors and algebra. 

The idea of a phasor is based on that of phase space, certainly one of the oldest ideas of physics. 

Indeed, it goes back to the ancient astronomers tracking the phase of the moon. The real axis of a phasor is 

what we call the “is” of an oscillator, that is, where it is now. The imaginary component in Fig. 1.B.1 is what 

we will call the “gonna’be” component, that is, where the oscillator is going to be in 1/4-cycle if the phasor 

continues rotating clockwise at the same frequency. (The imaginary component is also a velocity or 

momentum component in ω units.) A helpful mnemonic is used in the billionaire business world:

                     Imagination precedes reality by one quarter!  

In Unit 2 and throughout the rest of the text, phasors will be important tools.
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Problems for Ch.1
1.2.1. A y-polarized light beam of unit amplitude (1 photon/sec.) enters the analyzer system as shown below.  Fill in the 
blanks with numbers or symbols that tell as much as possible about what is present at each channel or branch.
          

x-polarized light

y-polarized light

x'-polarized light

y'-polarized light

θ = -60°

y-polarized light

x'

y
y

x

x
y'

〈x'|x〉 〈x'|y〉

〈y'|x〉 〈y'|y〉
____   ____
____   ____

=

〈x|x'〉 〈x|y'〉

〈y|x'〉 〈y|y'〉
=

____   ____
____   ____

|y〉1.0

|__〉_____
State of x' channel

Amplitude=
       1.0
Probability=
       1.0

Amplitude=
 ___________
Probability=
___________

State of input channel

Amplitude=
 ___________
Probability=
___________

Amplitude=
 ___________
Probability=
___________

Amplitude=
 ___________
Probability=
___________

|__〉_____
State of y' channel

|__〉_________
State of output x channel

|__〉_________
State of output y channel

A Dim View
1.2.2 (a) How far away from KUAF (105 Watts at 91.3 MHz) do you only get 1 photon/m2s?
! (b) How far away from a 105 Watt green light source do you only get 1 photon/m2s? Can you guesstimate the 
threshold of visibility (in green photon/m2s) for your eye?
! Give E-field amplitude in each case. Assume (incorrectly) scalar isotropic coherent wave sources.
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Photonic Zeno
1.2.3 Imagine a series of N polarization beam sorters like the ones in Fig. 1.2.1 or 1.2.3 are placed so the top x-output 
beam of each goes into the next sorter in line which is rotated clockwise by an angle φ relative to the one before. 
Suppose unit amplitude x-polarization    ( Ψx = 1 , Ψy = 0 )  comes into the first sorter in the series.
(a) What angle φ makes the amplitude 1/2N coming out of this series ? (Zeno attenuation)
(b) What angle φ makes the intensity 1/2N coming out of this series ? (Zeno depletion)
(c) Suppose the objective is to have as much y-polarization as is practical come out of this series. How does the output 
amplitude and intensity vary with the number N? 
How many (N) sorters are needed to give 99% photon conversion efficiency ?

Electronic Zeno
1.2.4. Imagine a series of N electron beam sorters like the ones in Fig. 1.1.6 or 1.2.4 are placed so the top ↑- (up) output 
beam of each goes into the next sorter in line which is rotated clockwise by an angle φ relative to the one before. 
Suppose unit amplitude ↑- spin     ( Ψ↑ = 1 , Ψ↓= 0 ) comes into the first sorter in the series.
(a) What angle φ makes the amplitude 1/2N coming out of this series ? (Zeno attenuation)
(b) What angle φ makes the intensity 1/2N coming out of this series ? (Zeno depletion)
(c) Suppose the objective is to maximize ↓-spin (down) output from this series. How does the output amplitude and 
intensity vary with the number N? 
How many (N) sorters are needed to give 99% electron conversion efficiency ?
(This is called adiabatic reversal.)

Fashion Plates
1.3.1. The effects of a 1/4-wave and a 1/2-wave plate were described in (1.3.1) to (1.3.3) and sketched in Fig. 1.3.6. 
(a)Do the same for a "whole-wave" plate. (Give Ψ and sketch Re Ψ trajectory.)
(b)Do the same for a 1/3-wave plate. (Give Ψ and sketch Re Ψ trajectory.)

Good vibrations
1.B.1 An atomic oscillator is stimulated by a force that is sinusoidally oscillating at a frequency ωs that is EQUAL to the 
natural resonance frequency ωo of the atom. Then the atom's oscillation will  be...(a) in phase with  (b) 45° ahead of  (c) 
45° behind  (d) 90° ahead of  (e) 90° behind  (f) 135° ahead of  (f) 135° behind  (f) 180°  out of phase with   .... the phase 
of the force.

Keep the phase baby
1.B.1 An atomic oscillator is stimulated by a force sinusoidally oscillating at a frequency ωs that is much LESS than the 
natural resonance frequency ωo of the atom. Then the atom's oscillation will  be more or less...(a) in phase with  (b) 45° 
ahead of  (c) 45° behind  (d) 90° ahead of  (e) 90° behind  (f) 135° ahead of  (f) 135° behind  (f) 180°  out of phase 
with   .... the phase of the force.
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Ellipsis in Middle
1.3.1 A y-polarized light beam of unit amplitude (1 photon/sec.) enters an active analyzer that is tilted by 30° as shown 
below.  The active analyzer puts a ω = 90° phase factor e-iω in the x' beam.
Fill in the blanks with numbers or symbols that tell as much as possible about what is present at each channel or branch.          

x-polarized light

y-polarized light

x'-polarized light

y'-polarized light

θ = 30°

y-polarized
 light

y

y

y'

〈x'|x〉 〈x'|y〉

〈y'|x〉 〈y'|y〉
____   ____
____   ____

=
〈x|x'〉 〈x|y'〉

〈y|x'〉 〈y|y'〉
=

____   ____
____   ____

|y〉1.0

|__〉_____
State of x' channel

Amplitude=
       1.0
Probability=
       1.0

Amplitude=
 ___________
Probability=
___________

State of input
channel

Amplitude=
 ___________
Probability=
___________

Amplitude=
 ___________
Probability=
___________

Amplitude=
 ___________
Probability=
___________

|__〉_____
State of y' channel

|__〉_________
State of output x channel

|__〉_________
State of output y channel

Probability=
___________

__________________
State of middle channel

middle channel

Note: The x' and y'
quantities will not be
graded. Use for  work.
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A Quantum Internet
1.3.2. The sorter network shown in the third figure consists of three kinds of polarization sorters a, b, and c each with 
their main x-axis (a1-state) rotated by  θa, θb, θc, respectively. The shaded triangles (pointing to the right toward the 
input side) split their input beams while the white triangles (pointing to the left) recombine the two beams of opposite 
polarization into one beam. (They are sorters reversed and flipped over.)
Let :  θa = θ, θb = 2θ, θc = 3θ. Let input be x-polarized state (ψx,ψy) = (1,0).
(a) How many distinct "Feynman paths" are there from input to each output channel?
(b) If the recombination is done with "peeking" or dephasing of some kind, compute the probability at each channel for 
the angle θ=45°.
(c) If the recombination is done without "peeking" or dephasing of some kind, compute the probability at each channel for 
the angle θ=45°.
(d) For each of the two cases of "peeking" and not "peeking" give a formula for probability in each channel as function of 
angle θ. (Check: Do your probabilities add up to one? )
4. (Extra credit) A "peeking" analyzer gives the same probabilities in Fig. 1.3.8-9 whether it totally "collapses" the wave 
amplitudes or just jiggles one of their phases. Is there an experiment that could tell the difference? Tell why not, or 
describe one that would.

..

|a1〉

|a2〉

|b1〉

|b1〉

|b2〉

|b2〉

a

a

a

b

b

b

b

b

c

c

c

c

c

c

c

|c1〉

|c1〉

|c1〉

|c2〉

|c2〉

|c2〉

|Ψ〉

|x〉

|y〉

Output channel 31

Output channel 32

Output channel 33

Output channel 34

b
|b1〉

|b2〉

θb

=

|b1〉

|b2〉

b=

θb
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W. G. Harter

Chapter 2
Transformation and Transfer

Operators and Matrices

|x〉

|y〉 TT|Ψ〉 |Ψ〉
T|Ψ〉

φ

Four axioms of quantum theory are based on the physics introduced in Chapter 1 and 
related to mathematical operations such as scalar products,  matrix multiplication, change of 
basis, and projection. The four quantum axioms are related to the four axioms of a 
mathematical symmetry group as well as the all-important requirement of unitarity or 
“probability conservation.” The “mother of all groups,” the unitary group U(N), is introduced 
for later use. 
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2.1 Transformation Amplitude Matrices: Quantum Axioms
	
 We have seen how quantum amplitudes like 

  
x x '  are entries in arrays or transformation matrices like 

(1.2.5), for example. It is time to state mathematical and physical axioms which these quantities obey. This will 
help in reviewing the preceding sections and in establishing the mathematical basis of quantum theory.
	
 The quantum axioms will be stated as clearly and as physically as possible. Like the establishment of a 
constitution for democratic country, it is imperative to base them on previous experience and above all make 
them reasonable, that is, self-consistent. In mathematics, their can be no proof of any part of a set of axioms. If 
such proof is found, (this happens rarely), then the axiom is upgraded to a theorem. 
	
 The same applies to physical theory, the main difference is that physical axioms in a given theory may 
eventually be "proved" by incorporation within a more fundamental theory. An example of this ocurred when 
classical mechanics became superseded by quantum theory. Before quantum theory, the Newton's Laws such 
as conservation of momentum were physical axioms. Quantum theory (as we will see later on) "proves" that 
momentum is conserved, but only on the average and after many trials and counts. (Sound familiar? We have 
already seen that quantum theory, like a blow-dried weatherman, only predicts probabilities; the "hard-edged" 
classical world is gone forever.)
	
 Let us now state a set of quantum axioms that seem to underlie the marvelous theory that has replaced 
the classical Newtonian theory which had reigned for nearly two centuries before 1913. 

(a) Fundamental quantum axioms
	
 Our statement of axioms will be based on an n-state system whose sorters always sort quantum beams 
into no more than n sub-beams. (Recall Fig. 1.1.1) Our motivation for the axioms will be based upon observed 
behavior for the 2-state systems of photon polarization. The axioms are concerned with the properties of n2 
complex quantum amplitudes 

  
j k '  arrayed in the following n-by-n transformation matrix.

	
 	
 	


   

T (b ← b ') =

1 1 ' 1 2 '  1 n'

2 1' 2 2 '  2 n '

   
n 1' n 2 '  n n '

⎛

⎝

⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟⎟

	
 	
 	
 	
 (2.1.1)

 (1)  The probability axiom
	
 Our first axiom concerns the physical interpretation of amplitudes.	

	
 Axiom 1: The absolute square  

  
j k '

2
= j k '

*
j k '  gives the probability for occurrence 

 in state-j of a system that started in state-k'=1',2',..,or n' from one sorter and then was forced to 
 choose between states j=1,2,...,n by another sorter.
	
  This idea of probability was introduced first in Sect. 1.2b (See eq. (1.2.12).) The "forced-to-choose" 
clause and the word "state" are the kickers here. These concepts arise from the properties of "sorters" which 
have been described in the preceding sections. Some mysterious things are going on inside these sorters and 
analyzers so that a particle or system is forced to choose one and only one of n-states. That, in turn, makes the 
idea of a state mysterious, too. Which comes first, the chicken or the egg?
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 The next axiom is also a debatable one. Most quantum theories demand it, as will ours.

 (2)  The conjugation or inversion axiom
	
 The second axiom concerns going backwards through a sorter or the reversal of amplitudes.	


	
 Axiom 2: The complex conjugate of an amplitude gives its reverse: 
  

j k '
*
= k ' j       (2.1.2)

	
 We appeal to the idea of time-reversal and Planck's phase factor (1.2.7) when justifying this one. 
Conjugation of e-iω  t yields (e-iω  t)*=eiω  t which can be interpreted as changing the sign of time (t→ -t), that is, 
going backwards. It also could have been a sign change of frequency (ω→ -ω), but the sign of ω is fixed by 
convention to be positive in elementary non-relativistic quantum theory. Interestingly, when it comes to doing 
a conjugation of the deBroglie phase factor eikx to (eikx)*=e-ikx, we always interpret this as a change of sign of 
the wavevector (k→ -k) of momentum, that is, conjugation really makes things go backwards. Clearly, we 
haven't heard the last discussion of Axiom 2.  Now an axiom that looks air-tight (but isn't).

 (3)  The orthonormality or identity axiom
	
 The third axiom concerns the amplitude for "re measurement" by the same analyzer.	


	
 Axiom 3: If identical analyzers are used twice or more the amplitude for a passed state-k is one,

 and for all others it is forever zero: 
  

j k = δ jk =
1 if: j=k

0 if: j ≠ k

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
= j ' k ' 	
 	
 	
 (2.1.3)

	
 You might think that a "caveman" could prove this axiom. We showed in Fig. 1.1.4 an easy experiment 
of repeated analysis of x-polarization. Apart from losses due to crystalline imperfections and absorption, this 
seems to "prove" unit probability for x-to-x. Probability, yes, but amplitude? Not necessarily! By axiom-1, 
probability is an absolute square which kills any phase factors an amplitude might have. The caveman could 
only prove Axiom-3 up to an arbitrary phase factor.

	
 	
 	
 	
 	
  
 

j k = eiφδ jk

Unit phase is a mathematical convention we can live with. Now comes the “axiom of axioms.”.

 (4)  The completeness or closure axiom
	
 The fourth axiom concerns the "Do-nothing" property of an ideal analyzer, that is, a sorter followed by 
an "unsorter" or "put-back-togetherer" as introduced in Sec. 1.3.

	
 Axiom 4. Ideal sorting followed by ideal recombination of amplitudes has no effect:

    
  

j " m ' =
k=1

n
∑ j " k k m ' 	
 	
 	
 	
 	
 	
 (2.1.4)

	
 This axiom contains much if not all of the physical mystery of quantum phenomena. The idea is that a 
system initially in a prime state-m' is first sorted by an analyzer into states k=1, 2, ..., n each with amplitude 
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k m '  and then each of those is recombined (summed over k) and sorted by another analyzer into one of the 

doubly-prime states j"= 1", 2", ... , n", each with an additional amplitude 
  

j " k . The claim is that the 
amplitude for each of the doubly-prime j"-states is none other than  

  
j " m '  , exactly what it would have been 

if k-analyzer had never intervened!
	
 The upper halves of previous Figs. 1.3.8 and 1.3.9 show examples of this. How it can go wrong due to 
"peeking" or "dephasing" is shown by the lower halves of the same figures. To be precise, the figures show a 
case where the doubly-prime analyzer is the same kind of analyzer as the singly-prime sorter that would 
produce the initial state-m', that is, j"=j'. For this special case (2.1.4) becomes

    
  

j ' m ' =
k=1

n
∑ j ' k k m ' 	
 	
 	
 	
 	
 	
 (2.1.5)

You can "verify" this case of Axiom-4. Using orthonormality Axiom-3 gives

    
  
δ jm =

k=1

n
∑ j ' k k m '  =

k=1

n
∑ k j '

*
k m ' 	
 	
 	
 	
 (2.1.6)

where conjugation axiom-2 is used, too. Now, for m' = j' this becomes

    
  
1=

k=1

n
∑ k j '

*
k j ' =

k=1

n
∑ k j '

2
= P j ' to k( )

k=1

n
∑ 	
 	
 	
 (2.1.7)

According to the probability axiom-1 this states that the sum of probabilities for all k-channels equals one 
which is consistent with the definition of probability in (1.1.2b). It means we have completely accounted for all 
possible states that a k-analyzer can sort. The k-states are then called a complete set of states.
	
 A unit amplitude final x'-beam was shown in Fig. 1.3.9 along with a zero amplitude final y'-beam 
emerging from an ideal "do-nothing" analyzer with absolutely no "peeking" allowed. If the final x'y'-sorter-
counter had been replaced by an xy-analyzer or even a general Ψ-analyzer, it should still be impossible to see 
any effect of the intervening "do-nothing" xy-analyzer. This is the general physical consequence of Axiom-4. 
Again, precise "proof" of this or other axioms is currently impossible. They are just some "laws" that we must 
live with for awhile...probably, quite awhile.

(b) Matrix bra-kets: bra-and-ket vectors and representations
	
 The quantum axioms are strongly connected to mathematical axioms of linear algebra and unitary 
matrix group theory. As mentioned before in Secs. 1.2a and c, Dirac notation for vectors is a result of 
"dissecting" a transformation matrix. Dirac invented a notation for entire columns and entire rows of a T-
matrix; they are called kets |k 〉 and bras 〈j|  respectively. The general T-matrix below shows its bras and kets.

	
 	
 	


   

                         1 '         2 '           n '

                         ↓         ↓             ↓

T (b ← b ') =

1 1 ' 1 2 '  1 n '

2 1' 2 2 '  2 n '

   
n 1' n 2 '  n n '

⎛

⎝

⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟⎟

←
←

←

1

2


n

	
 	
 	
 (2.1.8)
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 These bras and kets are examples of what we will call abstract mathematical quantities. They stand for 
a definite physical object, in this case, definite states occupied by particles or systems. In order to view these 
objects or store them in a computer, you need a representation of them, that is, a list of numbers such as the 
column vectors representing kets which stand for primed states 1', 2', as pointed out in (2.1.8) or below,

	
 	
 	
 	


   

1 ' →

1 1 '

2 1'


n 1'

⎛

⎝

⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟⎟

 ,   2 ' →

1 2 '

2 2 '


n 2 '

⎛

⎝

⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟⎟

 ,  	
 	
 	
 	
 (2.1.9a)

or the row vectors representing bras standing for unprimed states-1, 2,..as pointed out below.

	
 	

   
 1 → 1 1 ' 1 2 '  1 n '( )  ,           2 → 2 1 ' 2 2 '  2 n '( ) 	
 (2.1.9b)

 	
 This Dirac abstraction is achieved by literally "abstracting" bras or kets from Axiom-4. Starting with an 
Axiom-4 equation for any basis 

   
1 , 2 ,, n{ }  or 

   
1 , 2 ,, n{ }  or 

   
1 ' , 2 ' ,, n '{ } , etc.

	
       
  

m" j ' =
k=1

n
∑ m" k k j ' =

k =1

n
∑ m" k k j ' =

k '=1

n
∑ m" k ' k ' j ' = etc. ,	
 (2.1.10a)

one can "rip-off" its bra 
  

m "  to give a ket 
  

j '

	
 	

  

j ' =
k=1

n
∑ k k j ' =

k =1

n
∑ k k j ' =

k '=1

n
∑ k ' k ' j ' = etc. ,	
 	
 	
 (2.1.10b)

or the j'-ket can be "ripped-off" to expose a bra. (Recall the finale of 1999 US World Soccer Cup victory.)

	
 	

  

m" =
k=1

n
∑ m" k k =

k =1

n
∑ m" k k =

k '=1

n
∑ m" k ' k ' = etc. 	
 	
 	
 (2.1.10c)

 	
 A representation depends upon the basis you are using. Each case of the (2.1.10b) uses different 
transformation matrix coefficients and base kets to describe a single abstract ket. The following are all different 
representations of the same ket 

 
1 ' . The third one is the j'-representation of 

 
1 '  which is composed of all zero 

components but one according to Axiom-3. (It's being represented in its own basis.)

	
 	


   

1 ' →

1 1 '

2 1'


n 1'

⎛

⎝

⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟⎟

 , or:  1' →

1 1'

2 1'


n 1'

⎛

⎝

⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟⎟

 , or: 1' →

1' 1'

2 ' 1'


n ' 1'

⎛

⎝

⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟⎟

=

1
0

0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 , etc.

The same applies to each of the bra representations (2.1.10c). Here are some representations of bra 
 

2 ' .

	


   

 ,   2 ' → 2 ' 1 2 ' 2  2 ' n( ) ,  or: 2 ' → 2 ' 1 2 ' 2  2 ' n( )  , 

                      or: 2 ' → 2 ' 1 ' 2 ' 2 '  2 ' n '( ) = 0 1  0( )  , etc.

The last is the j'-representation of 
 

2 '  using its own (primed) basis.
	
 Note: It is very tempting to replace the "mapping arrows" (→ ) by equal signs (=). This is often done in 
many a sloppy modern physics text (including this one, later on!), but don't do it until you are sure of which 
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basis you are using and are settled into using that basis exclusively. Once one is "married" to a given basis it is 
permissible to dispense with some formalities!
	
 Abstract forms (2.1.10b-c) can be reassembled with a general state-ket Ψ  or bra Ψ  to give the 

following two Dirac forms of Axiom-4 for an arbitrary state-Ψ.

	
 	

  

m" Ψ =
k=1

n
∑ m" k k Ψ =

k =1

n
∑ m" k k Ψ =

k '=1

n
∑ m" k ' k ' Ψ = etc. ,  	
 	
 (2.1.11a)

	
 	

  
Ψ j ' =

k=1

n
∑ Ψ k k j ' =

k =1

n
∑ Ψ k k j ' =

k '=1

n
∑ Ψ k ' k ' j ' = etc. 	
 	
 (2.1.11b)

(1) Transformation matrix operation: Change of basis
	
 Axiom-4 has an important mathematical interpretation. You may view it as a matrix-vector 
transformation which effects a change of basis. Compare the Dirac algebraic form (2.1.11a) to the following 
matrix-acting-on-column-vector multiplication.

   

1" Ψ

2" Ψ


n" Ψ

⎛

⎝

⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟⎟

=

1" 1 ' 1" 2 '  1" n '

2" 1' 2" 2 '  2" n '

   
n" 1' n" 2 '  n" n '

⎛

⎝

⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟⎟

1 ' Ψ

2 ' Ψ


n ' Ψ

⎛

⎝

⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟⎟

=

1" 1 1" 2  1" n

2" 1 2" 2  2" n

   
n" 1 n" 2  n" n

⎛

⎝

⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟⎟

1 Ψ

2 Ψ


n Ψ

⎛

⎝

⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟⎟

= etc.

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 (2.1.11a)representation
A 2-by-2 example of this was first given by (1.2.6b). The Dirac algebraic form for the bra expression (2.1.11b) 
has the following row-vector-on-matrix representation.

	


   

Ψ 1 ' Ψ 2 '  Ψ n '( )

   = Ψ 1" Ψ 2"  Ψ n"( )
1" 1 ' 1" 2 '  1" n '

2" 1' 2" 2 '  2" n '

   
n" 1' n" 2 '  n" n '

⎛

⎝

⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟⎟

= etc.
	
 (2.1.11b)representation

These are the bra and ket forms of general quantum coordinate transformations.

(2) Transformation matrix products: Unitary groups
	
 Axiom-4 has another even more important mathematical interpretation. You may view it as a 
transformation matrix product which forms a unitary transformation group U(n). Axiom-4 is basically a 
matrix product as seen by comparing the following two representations. First, the original Dirac form

    
  

j " m ' =
k=1

n
∑ j " k k m ' 	
 	
 	
 	
 	
 	
 (2.1.12a)

and then here is the same thing in matrix form.

       

   

1" 1 ' 1" 2 '  1" n '

2" 1' 2" 2 '  2" n '

   
n" 1' n" 2 '  n" n '

⎛

⎝

⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟⎟

=

1" 1 1" 2  1" n

2" 1 2" 2  2" n

   
n" 1 n" 2  n" n

⎛

⎝

⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟⎟

•

1 1 ' 1 2 '  1 n '

2 1' 2 2 '  2 n '

   
n 1' n 2 '  n n '

⎛

⎝

⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟⎟

	
 (2.1.12b)
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You could also write this is as the following matrix product

  

  

Tj " m '

prime
to

double − prime

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
=

k=1

n
∑ Tj " k

unprimed
to

double − prime

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

Tk m '

prime
to

unprimed

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
	
	
 	
 (2.1.12c)

or abstractly as follows.	
    T(b"← b ') = T(b"← b ) •T(b← b ') 	
 	
 	
 	
 	
 (2.1.12d)
The latter T's are our first example of abstract group operators. They are quantum coordinate transformation 
operators that deliver us from one basis to another through transformations such as (2.1.11). Eq. (2.1.12) is 
their composition rule: If T(B ← A) goes from A to B and T(C ← B) goes from B to C then the product  T(C ←

B)•T(B ← A) goes directly from A to C, that is, it equals T(C ←A) .
	
 These operators stand for all the possible transformations that are allowed in quantum space. Their 
matrix representations represent all the means for "getting around" in the state space. As we will see later, they 
also represent (practically) all the possible quantum analyzers that can be built in laboratory experiments 
involving the n-state system being studied. Remember that each abstract mathematical quantity corresponds to 
some "thing" out there. Bras and kets correspond to systems of particles and operators like the T's correspond 
to devices which "do things" to the systems, that is, transport or "taxi" the system from one state to another.
(3) Scalar products: Invariance and Hermitian conjugation
	
 Finally, Axiom-4 has a very simple mathematical interpretation. You may view it as a scalar product 
between two arbitrary state vectors, a state-ket Ψ  and bra Φ  . First, the general Axiom-4

  	
 	
  
  
Φ Ψ      =               

k=1

n
∑ Φ k k Ψ         =                      

k =1

n
∑ Φ k k Ψ          = etc.      (2.1.13a)

and then the representations of Axiom-4 as a "dot" product of row and column vectors.

 	
   

   

Φ Ψ = Φ 1 Φ 2  Φ n( )
1 Ψ

2 Ψ


n Ψ

⎛

⎝

⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟⎟

= Φ 1 Φ 2  Φ n( )
1 Ψ

2 Ψ


n Ψ

⎛

⎝

⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟⎟

= etc.     (2.1.13b)

In Sec. b(1-2) we saw matrix multiplication operations (2.1.11) and (2.1.12). Note that these are just 
combinations of the elementary scalar product shown in (2.1.13), that is, a row "dot-multiplied" with a column. 
Matrix operation on a vector in (2.1.11) involves n scalar products. Matrix multiplication (2.1.12) involves n2 
scalar products. It helps to see how Axiom-4 relates all these operations.
	
 The scalar product Φ Ψ  is one of few abstract quantum quantities that has the same numerical value 
in all possible representations. All the possible sums in (2.1.13) give the same number Φ Ψ  even though the 
various representations of individual abstract bra Φ  and ket Ψ  will have wildly different numbers in them. 
The scalar products are said to be invariant to change of bases. This invariance is called unitary invariance for 
reasons that will be discussed shortly.
	
 The scalar product can be expressed entirely in terms of ket components by using the conjugation 
axiom-2 to convert bra components 

 
Φ k  to conjugated ket components 

  
k Φ

*
= Φ k .

©2013 W. G. Harter Chapter2  Transformation/Transfer Operators  2-

50



51

 	

  
Φ Ψ      =                  

k=1

n
∑ k Φ

*
k Ψ            =                      

k =1

n
∑ k Φ

*
k Ψ          = etc.      (2.1.14)

	
  

   

Φ Ψ = 1 Φ
*

2 Φ
*
 n Φ

*⎛
⎝⎜

⎞
⎠⎟

1 Ψ

2 Ψ


n Ψ

⎛

⎝

⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟⎟

= 1 Φ
*

2 Φ
*
 n Φ

*⎛
⎝⎜

⎞
⎠⎟

1 Ψ

2 Ψ


n Ψ

⎛

⎝

⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟⎟

= etc.

	
 The mathematical "sex change" operation of converting a ket to a bra is given the technical name of 
transpose conjugation † . (Perhaps, the dagger symbol † indicates the use of a knife or scapel.) It is also called 
Hermitian conjugation after the mathematician Hermite. (No, Hermite did not undergo any such operation, so 
far as we know.) As you can see from (2.1.14), this operation on column vectors is relatively painless and, 
indeed, receives far less publicity than its human equivalent. It simply involves the flipping of a column to 
become a row or vice-versa (called transposing T) followed or preceded by complex conjugation (*) of every 
amplitude in the row or column.
	
 The notation for Hermitian conjugation is used as follows. First the abstract form is as follows. 
	
 	
 	
 	
 	


 
Φ

†
= Φ  ,  or:     Φ

†
= Φ 	
 	
 	
 (2.1.15)

A matrix representation of this conjugation † is a row-to-column conversion with complex conjugation.	


     

   

Φ 1 Φ 2  Φ n( )† =

Φ 1
*

Φ 2
*



Φ n
*

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

=

1 Φ

2 Φ


n Φ

⎛

⎝

⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟⎟

 , or:  

1 Φ

2 Φ


n Φ

⎛

⎝

⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟⎟

†

= 1 Φ
*

2 Φ
*
 n Φ

*⎛
⎝⎜

⎞
⎠⎟

                                                                                                   = Φ 1 Φ 2  Φ n( )
Axiom-2 was used, again. Note: two Hermitian conjugations cancel: A††=A. (Don't try this at home!)

(4) Particle expectation number: Norms and normalization
	
 A most important physical quantity is the scalar product of a state vector Ψ  with itself, conjugated, of 

course. (You've probably noticed that "same-sex" marriages are prohibited in this quantum state theory. 
Actually, it can be done, but they're not real. Or invariant. In fact, they're usually very complex. For these you 
must wait until we discuss such taboo topics as n-body mechanics and tensor operator theory. Can't wait, can 
you?) The self product of Ψ  with itself (which is always real) is quite analogous to scalar product.

    

   

Ψ Ψ =
k=1

n
∑ Ψ k k Ψ =

k=1

n
∑ k Ψ

*
k Ψ =

k=1

n
∑ k Ψ

2
= 1 Ψ

*
2 Ψ

*
 n Ψ

*⎛
⎝⎜

⎞
⎠⎟

1 Ψ

2 Ψ


n Ψ

⎛

⎝

⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟⎟

(2.1.16)

Ψ Ψ  is called the particle number expectation or total probability for a general quantum state Ψ . 
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According to Axiom-1, the probability axiom, Ψ Ψ  is just the sum of the channel probabilities 
  

k Ψ
2  for 

each k-channel. Initially, we expect the probability sum to be unity as in (1.12b) or (2.1.7). However, after a 
particle or system is dragged through several analyzers having counters and other such dissipative devices, the 
total probability may be reduced significantly. An example was the x-beam after "peeking" which had a state 

vector 
 
Ψ = 0.75 0( )  for which the total probability is only 75%.

	
 Ψ Ψ  is also called a state norm. For "permissive" states, the norm can be any real number. However, 

states that are being used as base states are expected to set a better example. Base states are supposed to be a 
complete set of kets 

   
1 , 2 ,, n{ }   and bras 

   
1 , 2 ,, n{ }  which satisfy all Axioms 1-4. In particular, they 

must be normal and satisfy the ortho-normalization conditions of Axiom-3.

	
 	
 	
 	
 	

  

i j = δi j =
1  if: i=j

0  if: i ≠ j

⎧
⎨
⎪

⎩⎪
	
 	
 	
 	
 (2.1.17)

The Kronecker delta function δij is intended to guarantee unit norm 
  

j j = 1 (for  all  j)  and, hence, unit 

probability for all base states. But, state vectors become "sub-normal" or abnormal in "dissipative" places.(5) 
Axiom-4 totally abstracted: Projectors
	
 Axiom-4 has one more level of abstraction: a complete "rip-off" of its bras and kets as follows.

	
 	
 	

   

j " m ' =
k=1

n
∑ j " k k m '    ⇒      1 =

k=1

n
∑ k k 	
 	
 	
 (2.1.18)

The result is a sum of "ket-bras" 
 
k k  which are quite the opposite of the "bra-kets" like 

 
k k  which are 

scalars. (By axiom-3 
 

k k =1.)  The ket-bras 
 
k k  are elementary examples of tensor operators and are 

called projection operators or projectors Pk .
	
 	
 	
 	
 	
 	
 Pk = 

 
k k 	
 	
 	
 	
 	
 (2.1.19)

The axiom-4 sum to the identity operator 1 is called a completeness relation.

	
 	
 	
 	
 	

   
1 =

k=1

n
∑ Pk =

k=1

n
∑ k k 	
 	
 	
 	
 (2.1.20)

	
 The action of a projection operator Pk on a general state vector Ψ  yields a projection or "shadow" 

 
k k Ψ  of the original vector in the direction of the k-th base ket, as shown in the Fig. 2.1.1.

	
 	
 	
 	
 	
 Pk Ψ  = 
 
k k Ψ 	
 	
 	
 	
 	
 (2.1.21)

	

|x〉

|y〉
|Ψ〉Py|Ψ〉=|y〉〈y |Ψ〉 Px|Ψ〉=|x〉〈x |Ψ〉

〈y|Ψ〉
〈x|Ψ〉

	

 Fig. 2.1.1 Projection operators Pk map state ket onto base axes
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 To construct a projection matrix representation of a Pk simply reattach a Pk's "ripped-off" bras and kets 
for the desired basis, say the φ-tilted polarization bases 

  
x ' , y '{ }  .

   
   

x ' Px x ' x ' Px y '

y ' Px x ' y ' Px y '

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

x ' x x x ' x ' x x y '

y ' x x x ' y ' x x y '

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

 , where: 
x x ' x y '

y x ' y y '

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

cosφ − sinφ
sinφ cosφ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

Projector 
  
Px = x x  is what is called an outer or Kronecker tensor (⊗) product of ket and bra .

	

   

x ' Px x ' x ' Px y '

y ' Px x ' y ' Px y '

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

x ' x x x ' x ' x x y '

y ' x x x ' y ' x x y '

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

=
x ' x

y ' x

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
⊗ x x ' x y '( )   (2.1.22)

The x'y'-representations for both Px and Py are worked out below.

     

   

Px = x x →
cosφ
− sinφ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
⊗ cosφ − sinφ( )                      Py = y y →

sinφ
cosφ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
⊗ sinφ cosφ( )

=
cos2 φ − sinφ cosφ

− sinφ cosφ sin2 φ

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= 1 0

0 0

⎛

⎝⎜
⎞

⎠⎟ for φ=0( )
 ,        =

sin2 φ sinφ cosφ

sinφ cosφ cos2 φ

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= 0 0

0 1

⎛

⎝⎜
⎞

⎠⎟ for φ=0( )

The case φ=0 gives xy-representations of Px and Py which each contain all "0" except for a single "1".
Such matrices are called elementary unit tensor representations or unit dyads.
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2.2 Transformation Operators: Unitarity and Group Axioms
	
 If there is one thing you should always remember about quantum operators or any sort of mathematical 
operator, it is this. Always begin with a base-state definition of an operator. This simple rule will save you 
endless headache and hair-pulling.

(a) Base ket and bra transformations
	
 As an example, consider a rotational transformation T=R(φ) similar to the one used for the rotated 
polarizer in Sec. 1.2. You want a transformation operator that takes each Cartesian ket 

  
x , y{ }  and maps it 

into a new rotated basis 
   

x = T x , y = T y{ }  given by the following and shown in Fig. 2.2.1.

	
 	

   

x = T x = cosφ x + sinφ y ,         y = T y = − sinφ x + cosφ y{ }  	
 (2.2.1)

     
|x〉

|y〉
|y〉=T|y〉=-sinφ |x〉 + cosφ |y〉
|x〉=T|x〉= cosφ |x〉 +sinφ |y〉

sinφ

- sinφ

cosφ

cosφTT
 Fig. 2.2.1 Transformation T maps unit kets into rotated ones
	
 Once this basic ket-vector definition T is given, all else follows. Scalar products of (2.2.1) with bra 

 
x  

and then by bra 
 

y  gives the four transformation matrix components. Because of axiom-2 orthonormality 

 
j k = δ jk   or 

  
x x = 1,  x y = 0,  etc. , each product 

 
j k  gives just one term.

	
 	

   

x x x y

y x y y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

x T x x T y

y T x y T y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

cosφ − sinφ
sinφ cosφ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
	
 	
 	
 (2.2.2)

The general n-state form of transformation (2.2.1) is

	
 	

   
k = T k =

j=1

n
∑ j j k =

j=1

n
∑ j j T k  ,  where:  j k = j T k  	
 (2.2.3)

	
 Axiom-2 requires that all base states satisfy orthonormality , and so must the new 
  

x , y{ }  bases.

	
 	
 	
 	
 	

 

j k = δ jk = j k 	
 	
 	
 	
 	


	
 In order for the transformation T to preserve orthonormality, the operator which transforms old bras 

  
x , y{ }  into the new bras 

  
x , y{ }  must be an inverse T-1 to the transformation T that transformed the kets in 

the basic definition (2.2.1). Only then does a scalar product stay the same. That is,

	

   

x = x T−1 ,  y = y T−1{ }       so that:    j k = j T−1T k = j 1 k = j k  .	
 (2.2.4)

However, bras are obtained by Hermitian conjugation according to (2.1.15) 

	
 	
 	

   

k = k
†
= T k( )† =

j=1

n
∑ j j k

⎛
⎝⎜

⎞
⎠⎟

†
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How do we dagger (†) a whole bunch of terms? The answer, is to †-stab (Hermite-transpose) each part.

	
 	

   

k = k
†
= T k( )† =

j=1

n
∑ k j j

⎛
⎝⎜

⎞
⎠⎟
= k T†  , where: k j = k T† j = j k

*  	
 	
 (2.2.5a)

Here Hermitian conjugate T† of an operator-matrix T is defined. True to form, its matrix representation is the 
transpose-conjugate of the original T-matrix. Also, from (2.2.4) it follows that the dagger-transform operator 

T† that transforms bras is just the inverse of ket transformer T.
	
 	


   
k T† j = j k

*
= k j = j T k

*
= k T−1 j ,     or:    T† = T−1 	
 	
        	
 	
 (2.2.5b)

The ability to invert a matrix by simply transposing and conjugating is a great computational luxury, especially 

if the matrices are large. An operator U that satisfies U† = U-1 is called a unitary operator. Such an operator 
preserves the unit norm as well as all bra-ket scalar products.
	
 For our simple example of a φ-rotation the bras transform as follows.
	
 	


   
x = x T−1 = x cosφ + y sinφ,         y = y T−1 = − x sinφ + y cosφ{ }  	
          	
 	
 (2.2.6a)

In this case the inverse is simply the transpose (TT); no conjugation is needed since the matrix is real.

 

   

x x x y

y x y y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

†

=
cosφ − sinφ
sinφ cosφ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

†

=
cosφ sinφ
− sinφ cosφ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
=

x T† x x T† y

y T† x y T† y

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟
=

x x x y

y x y y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

(2.2.6b)

(In this case, a ±sign flip of angle φ would do the trick, too.) An operator O that satisfies OT = O-1 is called an 
orthogonal operator. It keeps real unit vectors orthogonal as it transforms them.

(b) Bra-ket vector component transformations
	
 Once the T-matrix is known, it is a simple matter to derive the transformation rules for components of 
any ket vector Ψ  that lives in this ket space. It is important to remember that the abstract Ψ  is not the thing 

that changes in a change-of-basis transformation. Ψ  is just being expressed in two equivalent ways. (In other 

words, it has two "aliases" as shown in the equations (2.2.7) and Fig. 2.2.2 below.)

	
 	
    	
   
 
Ψ = x x Ψ + y y Ψ = x x Ψ + y y Ψ 	
 	
 	
 	
 (2.2.7)

   
|x〉

|y〉 |Ψ〉=|x〉〈x|Ψ〉+|x〉〈x|Ψ〉 |y〉

|x〉

|Ψ〉=|x〉〈x|Ψ〉+|y〉〈y|Ψ〉
〈x|Ψ〉 〈y|Ψ〉

〈x|Ψ〉

〈y|Ψ〉

Fig. 2.2.2 Same vector Ψ   with two sets of coordinate bases. ("Passive" or "Alias" transformation)

	
 A change-of-basis transformation gives one "alias" , say 
  

x Ψ , y Ψ( )  , in terms of another, say  

  
x Ψ , y Ψ( ) . Here, the transformation is obtained either by multiplying 

 
x   and 

 
y  in (2.2.6a) on the right 

by Ψ  or multiplying Ψ  in (2.2.7) on the left by 
 

x  or 
 

y  . Below are the results.
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x Ψ = x x x Ψ + x y y Ψ = cosφ x Ψ + sinφ y Ψ

y Ψ = y x x Ψ + y y y Ψ = − sinφ x Ψ + cosφ y Ψ
	
 	
 	
 (2.2.8a)

Matrix form for this is the following which uses the inverse (2.2.6b) of transformation matrix (2.2.2).

	
 	
 	

  

x Ψ

y Ψ

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

x x x y

y x y y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

x Ψ

y Ψ

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

cosφ sinφ
− sinφ cosφ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

x Ψ

y Ψ

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
	
 	
 (2.2.8a)

It is also inverse to our first change-of-basis example (1.2.6b). See (2.1.11) for general n-state formulas.
	
 Even for a simple example like our φ-rotation it is difficult to derive the relations (2.2.8) just by looking 
at the components of a general vector in Fig. 2.2.2. (Try it!) This is one of the reasons for making the rule 
stated at the beginning of this Section 2.2. You should work with bases first.
	
 It is important not to confuse a change-of-basis or "alias" transformation with an "active" or "alibi" 
transformation in which the operator T is used to move a state vector Ψ  into a new vector T

 
Ψ = Ψ T( )  as 

shown in Fig. 2.2.3. Rotation T acted on the bases in Fig. 2.2.1-2 as Ψ  stood still.

	
 	

|x〉

|y〉 TT|Ψ〉 |Ψ〉
T|Ψ〉

φ

 Fig. 2.2.3 Same basis but vector Ψ  moves elsewhere. ("Active" or "Alibi" transformation)

	
 Active transformation operations generally stand for analyzers or other parts of the physical space-time 
environment. Representations of an active transformation T Ψ  are made by attaching to it the bras and kets 

for whichever basis you want to use, say in this case, the original 
  

x , y{ } .

	
 	
 	
 	

  

x T Ψ = x T x x Ψ + x T y y Ψ

y T Ψ = y T x x Ψ + y T y y Ψ
	
 	
 	
 	
 (2.2.9a)

The matrix form for this active transformation is 

	


   

x T Ψ

y T Ψ

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

x Ψ T( )
y Ψ T( )

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟
=

x T x x T y

y T x y T y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

x Ψ

y Ψ

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

cosφ − sinφ
sinφ cosφ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

x Ψ

y Ψ

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
	
 (2.2.9b)

Polarization devices that do this operation and many more will be discussed later.

(c) Group axioms
	
 The axioms of group theory are mathematical axioms set down by Everiste Galois shortly before he 
was killed in a duel at the age of 21. They are closely related to the axioms of quantum theory which we have 
stated so far. Groups play a key role in the development of quantum theory, particularly at its advanced levels. 
	
 A group G is a set of operations G={a, b, c, ...} or elements that can be combined in group products to 
give other operations in the same set. Examples are rotations or permutations, the latter of which occupied 
Galois' attention. Below are listed the axioms which all groups must satisfy. (The first we've already stated.) 
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Each is discussed as to its relevance to the set U={A, B, C, ...} of all unitary transformation matrices which 
satisfy the quantum axioms 1-4 for an n-state system. As will be seen, U is a group which is labeled the n-
dimensional unitary group U(n).

 (1) The closure axiom
	
 Products ab = c are defined between any two group elements a and b,
  and the result c is contained in the group.

	
 Products A B=C of transformation operators are defined by their matrix representations as are the 
operators themselves according to quantum axiom-4 (The closure or completeness axiom.) as explained in Sec. 

2.1b(2). In Sec. 2.2(a) it was shown that all transformation matrices are unitary. Given  A†A = 1 and B†B = 1 
we must prove that the product A B=C is also unitary. Inserting A†A = 1 between B† and B gives
	
 	
 	
 	
   	
  B†A†A B = B†B = 1	
 	
 	
 	
 	
 	
 (2.2.10a)
or

	
 	
 	
 	
 	
 C†C = 1	
 	
 	
 	
 	
 	
 	
 (2.2.10b)
where showing

	
 	
 	
 	
 	
 C† =(A B)† = B†A†	
 	
 	
 	
 	
 	
 (2.2.10c)
is left as an exercise.

 (2) The associativity axiom
	
 Products (ab)c and a(bc) are equal for all elements a, b, and c in the group .

	
 Associativity is automatically guaranteed for matrix products on which the algebraic significance of 
quantum axiom-4 is based.(You should be able to prove this even if it's not a familiar axiom.)

 (3) The identity axiom
	
 There is a unique element 1 (the identity) such that 1.a = a = a.1 
 for all elements a in the group ..

	
 According to the quantum axiom-2 (the orthonormality or identity axiom) there is a unique unit 
transformation matrix 

 
j k = δ jk  that does nothing. It represents the perfect "do-nothing" analyzer. We indicate 

the corresponding abstract operator by 1 in the abstract completeness relation (2.1.20).

	
 (4) The inverse axiom
	
 For all elements a in the group there is an inverse element a-1 such that a-1a = 1 = a.a-1.

	
 This seems to follow since we already know that the Hermitian conjugate A† of any operator A is also 
its inverse A†=A-1. (Recall (2.2.5b).) There is, however, a catch. For infinite state systems one cannot 
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guarantee that  A†A = 1 also implies AA† = 1 , or vice-versa. However, it does follow for finite systems. (See 
exercises.) In any case, for a transformation matrix satisfying quantum axioms 1-4, even with n=∞, it can be 
proved that all operators commute with their conjugates and inverses.
	
 This is true in spite of the fact that unitary group operators do not generally commute with each other. 
	
 	
 	
 AB ≠ BA (for some A,B in U(n) for n≥1)              
Groups that satisfy a fifth postulate of commutivity are called Abelian groups.

 (5) The commutative axiom (Abelian groups only)
	
 All elements a in an Abelian group are mutually commuting: a.b = b.a.

Only the one-dimensional unitary group 
	
 	
 	
 U(1) = {1,..., eiα, ...}  where:   (−π  <α  ≤ π) 	
 	
 	
 (2.2.11)
is Abelian. It consists of all possible phase factors for a single-state (1D) system, and these numbers obviously 
commute and form a group labeled by a single real parameter which is the phase angle α.

(d) U(n) group dimension
	
 The group U(n) is the set of all n-by-n transformation matrices having components Uij = Tij each of 
which satisfy n2 unitarity equations of the form 

	
 	
 	
 	

   j=1

n
∑ U †

i jU j k = U †U( )
i k

= 1( )i k
= δi k =

j=1

n
∑ U *

j iU j k 	
(2.2.12)

The n2 components Uij are generally complex numbers amounting to 2n2  real parameters. So the number of 
independent real parameters to label U(n) operators is 2n2 - n2 = n2 and is called the unitary group dimension, 
the number of quantum coordinates. A 2-state system's U(2) dimension is 22=4.

(e) SU(n) group dimension
	
 For most of quantum theory the over-all phase of a system is unmeasureable and ignorable. To avoid 
dealing with such a phase one generally restricts attention to matrices of U(n) of unit determinant.
	
 	
 	
 	
 det  | U | =1	
 	
 	
 	
 	
 	
 	
 (2.2.13)
Such operators form a subgroup of U(n) called the special unimodular group SU(n). Because, of equation 
(2.2.13) the SU(n) dimension is n2 -1, one less than that of U(n). For SU(2), which we study first, this 
dimension is 22 -1 = 3, so the number of 2-state quantum coordinates is just three. ( 22 -1=3)
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Problems for Ch. 2
Daggers
2.1.1. Prove identities for the following. Use representations to help with abstract cases.
(a)  (AB)† =  ?  (In terms of (A)† and (B)† .)
(b)  (A|ψ〉)† =  ? (In terms of (A)† and (|ψ〉)† =?.)
(c)  (〈φ|ψ〉)† =  ? (In terms of 〈φ|ψ〉∗=?.)
(d)  (〈φ|A|ψ〉)† =  ? (In terms of (A)† and (|ψ〉)† =?, etc..)
(e)  (ABC)† =  ?  (ABC)-1=  ?
(f)  (〈φ|ABC|ψ〉)† =  ? 
(g)  (|φ〉〈ψ|)† =  ? 

Transforming Backwards and Forwards
2.2.1. Suppose the following basic definition of a transformation T from a basis {|1〉,|2〉,|3〉} to another basis {|1' 〉,|2' 〉,|3' 〉}:
!  |1' 〉 = T|1〉 = ( |1〉 - |2〉 )/√2,  |2' 〉 = T|2〉 = ( |1〉 + |2〉 )/√2,  |3' 〉 = T|3〉 = |3〉/i,  (i=eπi/2)
(a) Construct the 3x3 matrix representation of T and of T† in the basis {|1〉,|2〉,|3〉}. 
(b) Construct the 3x3 matrix representation of T and of T† in the basis {|1' 〉,|2' 〉,|3' 〉}. 
(c) Write in matrix form a change-of-basis transformation for prime representation of a ket |ψ〉,  that is, {〈1' |ψ〉,〈2' |ψ〉,〈3' |
ψ〉}, in terms of its original representation {〈1 |ψ〉,〈2 |ψ〉,〈3 |ψ〉}. 
(c)† Write in matrix form a change-of-basis transformation for prime representation of a bra 〈ψ|, that is, {〈ψ|1' 〉,〈ψ|2' 〉,〈ψ|
3' 〉}, in terms of its original representation {〈ψ|1 〉,〈ψ|2 〉,〈ψ|3 〉}. 
(d) Write in matrix form a change-of-basis transformation for prime representation of operator U, that is, {〈1' |U|1' 〉,〈1' |U|
2' 〉,..}, in terms of its original representation {〈1 |U|1 〉,〈1 |U|2 〉,..}. 
(e) Are any of the (a-b) results..Unitary matrices? .. Hermitean matrices? ..Orthogonal matrices?
(f) Are any of the matrices from (a) and equal to those from (b)? Which, if any, of the (a)-(b) equalities are a general 
result? Why or why not? (Prove or give a counter example.)

Mirror-Mirror
2.2.2. A clothing store lets you examine your new suit in a device that consists of two vertical planar mirrors. Mirror X 
extends along the x-axis. Mirror Φ extends along an axis that is rotated counter clockwise by angle φ around the vertical 
hinge that forms the intersection of the two mirrors at (x,y)=(0,0). You stand somewhere between the two mirrors and try 
various φ while looking at any of several images of your necktie (or necklace) which is located where you're standing at 
n=(x,y). (Neglect vertical z-axis.) Start from basic (basis-vector) definitions only to work the following questions. Deriving 
amplitudes directly will be marked down.
(a) Represent the transformation T(X) that describes reflections by mirror X in xy-basis. Compute its effect on necktie 
point n. Sketch top view of this mapping.
(b) Represent the transformation T(Φ) that describes reflections by mirror Φ in xy-basis. Compute its effect on necktie 
point n. Sketch top view of this mapping.
(c) Represent the transformation T(ΦX) that describes reflections by mirror X followed by mirror Φ in the xy-basis. 
Compute its effect on necktie point n. Sketch top view of this mapping. What familiar operation is this? Express as group 
product.
(d) Represent the transformation T(XΦ) that describes reflections by mirror Φ followed by mirror X in the xy-basis. 
Compute its effect on necktie point n. Sketch top view of this mapping. What familiar operation is this? Express as group 
product. Do T(X) and T(Φ) ever commute?
 (e) Calculate the determinants and trace of each of the resulting operations (a) thru (d). Comment on the physical or 
geometric significance, if any, of these numbers.
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Operator Eigensolutions

〈 ε2 |= (3/2 1/2)/k2
1/2
1/2

|ε2 〉=k2

1/2
-3/2

|ε1 〉=k1

〈 ε1 |= (1/2 -1/2)/k1

| 1 〉 or 〈1 |

| 2 〉
or
〈2 |

1/4 1/2 3/4 5/41 3/2

-1/2

-1

-3/2

1/4

1/2

3/4Eigen-bra-ket
projectors
of matrix:

M= 4 1
3 2

The concept of an operatorʼs “own-states” or eigenstates is introduced first through physical 
processes of analyzer filters, then visualized geometrically, and finally analyzed 
algebraically. The physical axioms 1-4 stated in Chapter 2 are related to four powerful 
theorems about the spectral decomposition of matrices. Applications of spectral 
decomposition to transformation and transfer matrices are shown.
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3.1 Operator Eigensolutions and Projection Operators
	
 Many quantum processes and analyzers can be represented by complex matrix transfer operators T tha 
act on an input state ket 

 
ΨIN  to give the resulting output state kets 

 
ΨOUT  as follows.

	
 	
 	
 	
 	
 	

  
ΨOUT = T ΨIN 	
 	
 	
 	
 	
 (3.1.1)

(Recall discussion around (1.3.2).) In this way, matrix products predict the effect of the corresponding T-
analyzer or a whole chain of analyzers. Generally, the effect of an analyzer is to change a state Ψ  to one 
whose output vector 

 
T Ψ  is rotated or otherwise transformed as shown in Fig. 3.1.1 below. A transfer operator 

T that is unitary (T†= T-1) is also a transformation operator and satisfies Axioms 1-4.

	
 	


|Ψ〉
T|Ψ〉

|Ψ〉

analyzer

T
analyzer

T
|Ψ〉T|Ψ〉 input stateoutput state

TT

Fig. 3.1.1 Effect of analyzer represented by ket vector transformation of Ψ to new vector 
 
T Ψ .

	
 However, most analyzers have certain of their own states whose kets | εj 〉 lie along certain "magic" 
directions that do not change when T acts on them, that is, the input ket | εj 〉 just gets multiplied by a phase 
factor or other number εj as in
	
 	
 	
 	
 	
 	
   T | εj 〉  = εj | εj 〉 ,	
 	
 	
 	
 	
 (3.1.2)
but the vector | εj 〉 remains pointing in the same direction as shown in Fig. 3.1.2 below.

	
 	


          
T|ej〉=εj|ej〉

|ej〉

analyzer

T
analyzer

T
eigenstate |ej〉 in

|ej〉

eigenstate |ej〉 out
(multiplied by εj )

T

Fig. 3.1.2 Effect of analyzer on eigenket | εj 〉 is to simply multiply by eigenvalue εj ( T | εj 〉  = εj | εj 〉 ).

HarterSoft –LearnIt Unit 1 Quantum Amplitudes 

3



Visualizing Real Symmetric Matrices and Real Eigenvectors

You can learn something about a real matrix operator or transformation T by applying it to a circular array of 

unit vectors c. As shown below a matrix T=
 

1 1 / 2
1 / 2 1

⎛

⎝⎜
⎞

⎠⎟
 maps a circular array into an elliptical one

	


Eigenvector
|ε1〉

ε2|ε2 〉

ε1|ε1 〉

1.0 0.5
0.5 1.0T =( )

Eigenvector
|ε2〉

Eigenvector
|ε2〉

Eigenvector
|ε1〉

TT

	
 Only two vectors in the upper half plane survive the transformation T without changing their 
directions. These lucky vectors are the eigenvectors

	
 	
 	
 	

 
  ε1 = 1

1

⎛

⎝⎜
⎞

⎠⎟
/ 2  ,              and       ε2 = −1

1

⎛

⎝⎜
⎞

⎠⎟
/ 2  

which transform as follows:	

  
T ε1 = ε1 ε1 = 1.5 ε1  ,   and    T ε2 = ε2 ε2 = 0.5 ε2 by only suffering a length 

change given by eigenvalues	
 ε 1 = 1.5	
       and                ε 2 = 0.5, respectively. Obviously, the negatives 
-|ε 1〉 or -|ε 2〉 of eigenvectors are eigenvectors,too, as is17|ε 1〉 or -29|ε 2〉,... etc. Normalization (〈c|c〉 = 1) is a 
separate condition that we generally require of eigenvectors, too.
	
 Each vector |r〉 on the left hand ellipse maps back to a vector |c〉=T-1|r〉 on the right hand unit circle, 
Each |c〉 has unit length: 〈c|c〉 = 1 = 〈r|T-1T-1|r〉 = 〈r|T-2|r〉. (T is real-symmetric: T†=T=TT.)

	
 	
 	
 	

   

c • c = 1= r •T−2 • r = x y( ) Txx Txy

Tyx Ty

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

−2

x
y

⎛

⎝
⎜

⎞

⎠
⎟

This simplifies if rewritten in a coordinate system (x1,x2) of eigenvectors |ε 1〉 and |ε 2〉 where T-2|ε 1〉 = ε 1-2|ε 1〉 
and T-2|ε 2〉 = ε 2-2|ε 2〉, that is, T, T-1, and T-2 are each represented by a diagonal matrix.

	

  

ε1 T ε1 ε1 T ε2

ε2 T ε1 ε2 T ε2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

ε1 0

0 ε2

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

 , and  
ε1 T ε1 ε1 T ε2

ε2 T ε1 ε2 T ε2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

−2

=
ε1
−2 0

0 ε2
−2

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

So, the matrix equation simplifies to an elementary ellipse equation of the form (x/a)2+(y/b)2=1.

	
 	
 	
 	

   

c • c = 1= x1 x2( ) ε1
−2 0

0 ε2
−2

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

x1

x2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

x1
ε1

⎛

⎝⎜
⎞

⎠⎟

2

+
x2
ε2

⎛

⎝⎜
⎞

⎠⎟

2

The ellipse semi-major-minor axes are eigenvalues ε 1 = 1.5 and ε 2 = 0.5. The axes are tilted as shown above. 
Such a T operation is a tensor operation. T anisotropically stretches and squeezes the space.
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(a) Eigenvalue equations
	
 The equation (3.1.2) is called an eigenvalue equation T | εj 〉 = εj | εj 〉 and the kets | εj 〉 are called ket 
eigenvectors or simply eigenkets | εj 〉 and the scalar numbers  are called eigenvalues εj  of operator T. For 
analyzers described by unitary operators (T† = T-1) the eigenvalues are simply phase factors
	
 	
 	
 	
 	
  εj  = eiφ  , 	
 	
 	
 	
 	
 	
 (3.1.3)
so eigenkets stay the same magnitude. If the analyzer has a counter or particle sources then it may decrease (as 
in the Fig. 3.1.2) or increase the magnitude (and probability) of an eigenket vector.
	
 The prefix "eigen" means "own" in German. The eigenvectors of a single analyzer-T are its own 
vectors, literally. We would call them "ownvectors" if we had to purge German from English. The eigen-
vectors { | ε1 〉, | ε2 〉, ..} correspond to the eigenstates that get sorted out inside an analyzer as in Fig. 1.3.1 or 
Fig. 1.3.8. If a T- analyzer is set to a filter configuration like Fig. 1.3.4 then it can produce a beam that is made 
purely of one or another of its own eigenstates | εj 〉. (Excuse the bilingual redundancy.) Then another T-
analyzer in the "do-nothing" mode would pass each of the resulting | εj 〉 particles 100% unchanged (except 
maybe for an overall phase) according to axiom-3. That would be an example of an eigen-equation T | εj 〉 = εj | 
εj 〉 in its purest form.
	
 If the T-operator is represented in its own eigenbasis (Sorry, another bilingual redundancy.) then its 
matrix representation takes has a very simple diagonal form according to axiom-3.
	
 	
 	
 	
 〈 εi | T | εj 〉  = εj  〈 εi | εj 〉   = εj δi j  	
 	
 	
 	
 (3.1.4a)
The diagonal matrix for an n-state system is

	
 	


    

ε1 T ε1 ε1 T ε2  ε1 T εn

ε2 T ε1 ε2 T ε2  ε2 T εn

   
εn T ε1 εn T ε2  εn T εn

⎛

⎝

⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟⎟

=

ε1 0  0

0 ε2  0

   
0 0  εn

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

	
 	
 (3.1.4b)

	
 However, we are usually given the T-operator in someone else's basis { | 1〉, | 2〉, .., | n〉} as in

	
 	


    

1 T 1 1 T 2  1 T n

2 T 1 2 T 2  2 T n

   
N T 1 N T 2  N T n

⎛

⎝

⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟⎟

=

T11 T12  T1n
T21 T22  T2n
   

Tn1 Tn2  Tnn

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

	
 	
 	
 (3.1.4c)

Then the problem is one of diagonalization which consists of using n2 matrix Tij numbers to solve the 
following problems:

	
 	
 (Problem A) Find T's eigenvalues{  ε1 ,   ε2 ,  . ., εn } (Find n  numbers  εj  )
	
 	
 (Problem B) Find T's eigenket basis { | ε1 〉, | ε2 〉, ..,| εn 〉} (Find n2 numbers  〈 i | εj 〉 )
The lions share of work and information (particularly for large n) is in the n2 components 〈 i | εj 〉 of the 
diagonalization transformation (d-tran) matrix which will reduce (3.1.4c) to diagonal form (3.1.4b). The d-
tran matrix 〈 i | εj 〉 has in its columns the desired eigenkets { | ε1 〉, | ε2 〉, ..,| εn 〉}. (Recall (2.1.8).)
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(1) Secular equations
	
 The eigenvalue equations (3.1.2) for a general matrix operator M can be written as follows
	
 	
 	


   
M εk = εk εk ,   or:  M − εk 1( ) εk = 0 	
 	
 	
 	
 (3.1.5a)

and represented by 

	
 	


    

1 M 1 1 M 2  1 M N

2 M 1 2 M 2  2 M N

   
N M 1 N M 2  N M N

⎛

⎝

⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟⎟

1 ε j

2 ε j



N ε j

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟⎟

= ε j

1 ε j

2 ε j



N ε j

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟⎟

	
 	
 (3.1.5b)

or

	
 	


    

1 M 1 − ε j 1 M 2  1 M N

2 M 1 2 M 2 − ε j  2 M N

   
N M 1 N M 2  N M N − ε j

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

1 ε j

2 ε j



N ε j

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟⎟

=

0
0

0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

	
 	
 (3.1.5c)

These amount to n equations for each of n eigenvalues {ε1, ε2, ..,εn} or n2 equations in all. The eigenvalues 
may be found by demanding that the determinant of the matrix in (3.1.5c) be zero. This is called the secular 
equation 

	
 	

    
det M − ε1 = 0 = −1( )n ε n + a1ε

n−1 + a2ε
n−2 +…+ an−1ε + an( ) 	
 	
 (3.1.5d)

where the polynomial coefficients are

	
  
    
a1 = −TraceM,,  ak = −1( )k diagonal k-by-k minors of ∑ M,,   an = −1( )n det M

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 (3.1.5e)
The secular equation has n-factors, one for each eigenvalue.

	
 	
 	

    
det M − ε1 = 0 = −1( )n ε − ε1( ) ε − ε2( ) ε − εn( ) 	
 	
 	
 (3.1.5f)

	
  It may help to see some examples. For a two-by-two matrix H 
  

n = 2( )  diagonalization is comparatively 

simple. The 
  

n = 2( )  secular equation is:

	
 	

  

0 = det
H11 − ε H12

H21 H22 − ε
= ε2 − H11 + H22( )ε + H11H22 − H12H21( ) 	
 (3.1.5)example	


and the polynomial coefficients are just related to matrix trace and determinant.

	
 	
 	
 	

  

a1 = − (H11 + H22 ) = −TraceH
a2 = H11H22 − H12H21 = det H

	
 	
 	
 	
 (3.1.5e)example

Had we done this with a diagonal matrix then the coefficients in terms of eigenvalues would be

	
 	
 	
 	

  

a1 = −(H11 + H22 ) = − ε1 + ε2( )
a2 = H11H22 − 0 = ε1ε2 	
 	
 	
 	
 (3.1.5e)example
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7

The preceding two equations must give the same numbers because the secular equation and its roots must not 
depend on the basis used to represent the abstract operator. Trace, determinant, and aj are invariant.
	
 For numerical examples, let us use two different matrices given below. One is Hermitian (self-
conjugate) and one is not. (You might call them "good-cop" and "bad-cop", respectively.)

	
 	

   

H = 4 −i 3
i 3 2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= H† 	
 	
 	
 	
 	


  
K = 4 1

3 2

⎛

⎝⎜
⎞

⎠⎟
≠ K†

	
 	
 	
 	
 	
 (3.1.6a)	
 	
 	
 	
 	
 	
 (3.1.6b)
They both have the same secular equation:

	
 	
 	
 	
 	

  

0 = S ε( ) = ε2 − 6ε + 5

0 = ε −1( ) ε − 5( )
	
 	
 	
 	
 	
 (3.1.7) 

and same roots or eigenvalues ( ε1 = 1  and  ε2 = 5 ). However, the "bad-cop" matrix K is not one that you are 
likely to see in quantum theory since it is neither unitary nor Hermitian. Still, it is instructive to see what the 
diagonalization formalism does with a pathological case such as this one. The "good-cop" matrix is not unitary, 
so it won't represent ideal analyzers, but because it is Hermitian, it could show up in other roles such as density 
operator or Hamiltonian matrices. (To be discussed later)

(2) Hamilton-Cayley equations
	
 If each variable ε in the secular equation (3.1.5f) is replaced by the matrix operator M and each εk  by 
εk 1 then the following matrix equation results.
	
 	
 	


    
0 = M − ε11( ) M − ε21( ) M − εn1( ) 	
 	
 	
 	
 (3.1.8)

This operator equation is known as the Hamilton-Cayley (HC) equation or Hamilton-Cayley theorem.
	
 The HC-equation is obviously true if M has the diagonal form of (3.1.4b). But, that is circular logic 
since one needs to prove the diagonal form is possible first. We shall arrive at this proof in a roundabout way. 
For now a quick check of the HC-equation for the "bad-cop" K-matrix (3.1.6b) is done below.

	


  

K2 − 6K + 51 = 4 1
3 2

⎛

⎝⎜
⎞

⎠⎟

2

− 6 4 1
3 2

⎛

⎝⎜
⎞

⎠⎟
+ 5 1 0

0 1

⎛

⎝⎜
⎞

⎠⎟
= 19 6

18 7

⎛

⎝⎜
⎞

⎠⎟
− 24 6

18 12

⎛

⎝⎜
⎞

⎠⎟
+ 5 0

0 5

⎛

⎝⎜
⎞

⎠⎟
= 0 0

0 0

⎛

⎝⎜
⎞

⎠⎟

                     = 4 1
3 2

⎛

⎝⎜
⎞

⎠⎟
−1 1 0

0 1

⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

4 1
3 2

⎛

⎝⎜
⎞

⎠⎟
− 5 1 0

0 1

⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= 3 1
3 1

⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−1 1
3 −3

⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 (3.1.8)example
The HC-equation works fine in this case, as it does for all matrices.
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(b) Eigenvector projectors (Distinct eigenvalues)
	
 To obtain eigenvectors we construct projection operators pk by replacing k-th factor (M - εk 1) from 
HC eq.(3.1.8) by unit matrix (   1   ) as follows. (We assume distinct eigenvalues  ε1 ≠ ε2 ≠ ...   here.)

	
 	
 	


    

p1 =      1     ( ) M − ε21( ) M − εn1( )
p2 = M − ε11( )      1     ( ) M − εn1( )
      
pn = M − ε11( ) M − ε21( )      1     ( )

  or: pk = 
  j≠k
∏ M − ε j1( ) 	
 	
 (3.1.9)

Each operator pk has a delightful property. The pk  solve the original eigenvector equation (3.1.5a).  

	
 	
 	
 (M - εk 1) pk  = 0  	
 or:	
 M pk = εk pk  	
 	
 	
 	
 (3.1.10a)
	
 	
 	
 pk (M - εk 1)  = 0    	
 or:	
 pk M = εk pk  	
 	
 	
 	
 (3.1.10)b

This is true because putting back the k-th factor (M - εk 1) restores the original HC-equation and gives zero. 
Relation M pk = εk pk implies that pk contains ket eigenvectors |εj) in its columns and pk  M= εk pk  implies 
that bra eigenvectors (εj|  in its rows. (The "soft-bra-ket" notation ( | or | ) denotes un-normalized left or right 
eigenvectors.) Consider the "bad cop" example again. First, here are its projectors worked out.

  
  
K −5⋅1= 4 1

3 2
⎛

⎝⎜
⎞

⎠⎟
−5 1 0

0 1
⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= −1 1

3 −3
⎛

⎝⎜
⎞

⎠⎟
=p1 ,    K −1⋅1= 4 1

3 2
⎛

⎝⎜
⎞

⎠⎟
−1 1 0

0 1
⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 = 3 1
3 1

⎛

⎝⎜
⎞

⎠⎟
=p2. (3.1.9)example

Note that matrix K eigenvector relations are satisfied many ways by the pj 's. Here are the "right handed" un-
normalized |εj)-ket solutions.

	
 	


  

        K ⋅p1      =1⋅p1 ,                      K ⋅p2       =5 ⋅p2  ,  

4 1
3 2

⎛

⎝⎜
⎞

⎠⎟
−1 1
3 −3

⎛

⎝⎜
⎞

⎠⎟
= 1⋅ −1 1

3 −3

⎛

⎝⎜
⎞

⎠⎟
 ,       4 1

3 2

⎛

⎝⎜
⎞

⎠⎟
3 1
3 1

⎛

⎝⎜
⎞

⎠⎟
= 5 ⋅ 3 1

3 1

⎛

⎝⎜
⎞

⎠⎟

4 1
3 2

⎛

⎝⎜
⎞

⎠⎟
−1
3

⎛

⎝⎜
⎞

⎠⎟
       = 1⋅ −1

3

⎛

⎝⎜
⎞

⎠⎟
 ,               4 1

3 2

⎛

⎝⎜
⎞

⎠⎟
3
3

⎛

⎝⎜
⎞

⎠⎟
     = 5 ⋅ 3

3

⎛

⎝⎜
⎞

⎠⎟

	
 (3.1.10a)example

Here are the "left handed" or (εj|-bra solutions.

	
 	


  

        p1 ⋅K          =1⋅p1 ,                        p2 ⋅K        =5 ⋅p2  ,  

−1 1
3 −3

⎛

⎝⎜
⎞

⎠⎟
4 1
3 2

⎛

⎝⎜
⎞

⎠⎟
= 1⋅ −1 1

3 −3

⎛

⎝⎜
⎞

⎠⎟
 ,       3 1

3 1

⎛

⎝⎜
⎞

⎠⎟
4 1
3 2

⎛

⎝⎜
⎞

⎠⎟
= 5 ⋅ 3 1

3 1

⎛

⎝⎜
⎞

⎠⎟

−1 1( ) 4 1
3 2

⎛

⎝⎜
⎞

⎠⎟
   = 1⋅ −1 1( )  ,           3 1( ) 4 1

3 2

⎛

⎝⎜
⎞

⎠⎟
 = 5 ⋅ 3 1( )

	
 (3.1.10b)example

This is a powerful way to calculate eigenbras and eigenkets. But, there is much more power hidden in this 
approach. We're just getting started! Read on.
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(1) Projector normalization
	
 We may normalize pk  operators to make the idempotent projection operators Pk  defined by 

     Pk =

  

j≠k
∏ M − ε j1( )
j≠k
∏ εk − ε j( )    	
 	
 	
 	
 	
 	
 (3.1.11)

The normalized projectors are denoted by upper case P and satisfy p-eigen-equations (3.1.10), too.

	
 	
  M Pk = εk Pk  ,	
 (M)2Pk  = (εk )2Pk  ...	
 	
 	
 	
 	
 (3.1.12a)
	
 	
 Pk M  = εk Pk  ,	
  Pk (M)2= (εk )2Pk ...	
 etc.	
 	
 	
 	
 (3.1.12b)
This normalization make P's idempotent (P2=P) as follows using: f(M)Pk = f(εk )Pk .

	
 	
 	
 PkPk =

  

j≠k
∏ M − ε j1( )
j≠k
∏ εk − ε j( ) Pk = j≠k

∏ εk − ε j( )
j≠k
∏ εk − ε j( ) Pk  = Pk 	
 	
 	
 (3.1.13a)

A projector orthonormalization relation follows since projectors, normalized or not, are mutually orthogonal. 
	
 	
 	
 pjpk = 0   for j≠  k      or:	
  PjPk = δjk Pk  	
 	
 	
 (3.3.13b)
Consider a "bad cop" example after (3.1.10) to begin seeing what power Pk-normalization relations give.

	
 	
 	

  

P1 =

−1 1
3 −3

⎛

⎝⎜
⎞

⎠⎟

1−5( ) = 4
1 −4

1

−4
3

4
3

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

            P2 =

3 1
3 1

⎛

⎝⎜
⎞

⎠⎟

5−1( ) = 4
3

4
1

4
3

4
1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
	
 	
 (3.1.11)example

Idempotence implies 4 ready-made sets of scalar products between 2 rows (bras) and 2 columns (kets).

    
  

P1 = P1P1 =
4
1 −4

1

−4
3

4
3

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

4
1 −4

1

−4
3

4
3

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

= 4
1 −4

1

−4
3

4
3

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

,       P2 = P2P2 =
4
3

4
1

4
3

4
1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

4
3

4
1

4
3

4
1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
= 4

3
4
1

4
3

4
1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

(3.1.13)examples

For example, (1st row)·(1st column) dot product  (εk|εk)  is already given by Pk-matrix element    (Pk)11  .

	

   

    (ε1 |ε1)= 4
1 −4

1( ) 4
1

−4
3

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

 = 1
4
= (P1)11  ,                        (ε2 |ε2 )= 4

3
4
1( ) 4

3

4
3

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

= 3
4
= (P2)11 .

One way to get a normalized bra 〈εk| or ket |εk〉 is to divide un-normal row-(εk| or column-|εj) by
   

(Pk)11 . 

    
   

ε1 =
|ε1)

(P1)11

= 1

4
1

4
1

−4
3

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

, ε1 =
(ε1 |

(P1)11

=
4
1 −4

1( )
4
1

,     ε2 =
|ε2 )

(P2)11

= 1

4
3

4
3

4
3

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

, ε2 =
(ε2 |

(P2)11

= 
4
3

4
1( )

4
3

.

A more elegant way is to ⊗-factor (Recall (2.1.22)) each Pj-matrix as shown here or in Fig. 3.1.3 below.

	


   

P1 =
4
1 −4

1

−4
3

4
3

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
= k1

2
1

−2
3

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
⊗ 2

1 −2
1( )/k1

=  ε1 ε1             

   (3.1.14a)	


   

P2 = 4
3

4
1

4
3

4
1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
= k2

2
1

2
1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
⊗ 2

3
2
1( )/k2

  =  ε2 ε2

      (3.1.14b)

This way shows you may shift magnitude and phase between a ket-factor |εj〉 and its companion bra-factor 〈εj| 
by varying a gauge adjustment constant kj to any non-zero value, real or complex. All the projection algebra 
discussed below is invariant to kj. (The first way above has (k1=1, k2=1/√3). Figure 3.1.3 has k1=1=k2.)
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〈 ε2 |= (3/2 1/2)/k2
1/2
1/2

|ε2 〉=k2

1/2
-3/2

|ε1 〉=k1

〈 ε1 |= (1/2 -1/2)/k1

| 1 〉 or 〈1 |

| 2 〉
or
〈2 |

1/4 1/2 3/4 5/41 3/2

-1/2

-1

-3/2

1/4

1/2

3/4Eigen-bra-ket
projectors
of matrix:

M= 4 1
3 2

 Fig. 3.1.3 Normalized eigenbras and eigenkets for asymmetric "bad cop" matrix K. (Here k1=1=k2 .)

The first thing to notice is that the "bad cop" eigenvectors do not satisfy quantum conjugation relations 
associated with axiom-2, that is eigenbra 〈εj| is NOT equal to Hermitian conjugate |εj〉† of eigenket  |εj〉.  Still, 
they are orthonormal and satisfy axiom-3. (They satisfy the "letter of the law" but not the intent, just like a 
"bad cop" would!) Each 〈εj| is 90° from |εk≠j〉 in Fig. 3.1.3 and normalized as per (3.1.13b) regardless of kj.
	
 	
 	
  〈ε1 |ε2〉 = 0 = 〈ε2 |ε1〉    	
 	
 	
 〈ε1 |ε1〉 = 1 =  〈ε2 |ε2〉 .   	

If you want to double the length of the first ket  |ε1〉 in Fig. 3.1.3, you may increase k1 from 1 to 2. Note this will 
halve the length of the first bra 〈ε1| so the scalar products and projectors do not change. It is remarkable that 
you may then vary the second ket  |ε2〉 and bra 〈ε2| similarly and independently of the first. These are simple 
examples of gauge transformations that revise length or wave amplitude standards for plots like Fig. 3.1.3.
	
 You should calculate P-matrices for the complex ("good cop") matrix H in (3.1.6a), and show that their 
eigenbra-kets also satisfy both the full quantum orthonormality and conjugation relations. The correct name for 

a “good cop” matrix is a normal matrix N, which simply means it commutes with its †-conjugate: N†N = NN†. 
Quantum theory is mainly concerned with normal matrices of which Hermitian (H† = H) and unitary (U†=U-1) 
matrices are the most common. However, we need to learn to deal with the “abnormal” matrices, as well. 
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Matrix products and eigensolutions for polarizer-counter arrangements

Consider a 45° tilted (θ1=β1/2=π/4 or β1=90°) sheet of polarizer lying below a y-sheet, that is, a β1=90° (45°-
polarized) filter followed by a β2=0° filter with bottom path open which is like a y-polarized sheet.

 

Polarizer pair = Analyzer pair
|ΨΙΝ〉

=|y〉
|Ψ
OUT

〉
=0.5|y〉

2Θin =

β
in
=180°

analyzerΘ = 45°=β/2analyzerΘ = 0°=β/2

2Θin =

β
in
=90°

(The β2=0° filter with bottom path open is the same as a β2=180° filter with top path open.) The transfer 
matrices for these filters are those of projection operators for the states they let pass. (Recall (2.1.22).)

  
T 2( ) = y y = 0

1

⎛

⎝⎜
⎞

⎠⎟
0 1( ) = 0 0

0 1

⎛

⎝⎜
⎞

⎠⎟

  

T 1( ) = ′x ′x =

1
2

1
2

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

1
2

1
2

⎛

⎝
⎜

⎞

⎠
⎟ =

1
2

1
2

1
2

1
2

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 (for ′x :θ2 = β2 / 2 = 45°)

Their matrix product is the transfer matrix for the total system of two filters.

	
 	
 	
 	


  

T (total) = T 2( ) ⋅T 1( ) = 0 0
0 1

⎛

⎝⎜
⎞

⎠⎟

1
2

1
2

1
2

1
2

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=
0 0
1
2

1
2

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

The product's eigenvectors determine the eigenstates or "own-states" that may pass with only a change of 
overall magnitude or phase. The secular equation yields two eigenvalues and two projectors.

	


  

λ2 − 1
2
λ + 0 = 0, or: λ=0, 1

2
 ,  gives projectors  P0 =

−1
2

0

1
2

1
2
− 1

2

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

0 − 1
2

= 1 0
−1 0

⎛

⎝⎜
⎞

⎠⎟
,   P1

2

=

0 0
1
2

1
2
− 0

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

1
2
− 0

= 0 0
1 1

⎛

⎝⎜
⎞

⎠⎟

The first eigenket is the non-zero column of P0, namely, 
 
0 = 1

−1

⎛

⎝⎜
⎞

⎠⎟
 with zero eigenvalue, that is, zero transfer. 

The second eigenket is the non-zero column 
 

1
2

= 0
1

⎛

⎝⎜
⎞

⎠⎟
 of P1/2 with eigenvalue 1/2, giving 50% amplitude. The 

figure above shows the latter eigenstate, namely y-polarization (βIN =180°), entering on the right then 
emerging on the left with its amplitude cut in half and the probability cut by (1/2)2= 1/4 or 25%, according to 

  
T total( ) 1

2
= 1

2

1
2

. The eigenbras, namely 
 

0 = 1 0( )  and 
 

1
2

= 1 1( )  describe what gets through going the 

opposite way, that is, left-to-right, according to equations 
   

0 T total( ) = 0  and 
  

1
2

T total( ) = 1
2

1
2

  These equations 

say that x-polarization gets stopped from going in the left end while 45° polarization would have a 50% 
transfer. The matrices T(β=180°) and T(β=90°) do not commute. Reversing their order gives a different 
product and a different set of eigensolutions. In this case, since the factor matrices are Hermitian, reversal 
would simply interchange the eigenbras with the eigenkets, that is, a †-operation. 
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(2) Projector completeness and spectral decomposition
	
 The normalized projection operators derive from matrix operator M and its eigenvalues εk.

	
 	
 	
 	
 	
 Pk =

  

j≠k
∏ M − ε j1( )
j≠k
∏ εk − ε j( )    	
 	
 	
 	
 	
 (3.1.15a)

The projectors Pk have been shown to be eigenoperators for M.
	
 	
 	
 	
 	
 Pk  M= M Pk = εk Pk  . 	
 	
 	
 	
 (3.1.15b)
They have also been shown to satisfy projector orthonormality and idempotency. 
	
 	
 	
 	
 	
  PjPk = δjk Pk  . 	
 	
 	
 	
 	
 (3.1.15c)
Now we will demonstrate that they also satisfy a projector completeness relation  
	
 	
 	
 	
      1 = P1 + P2  + ...+ Pn  	
 	
 	
 	
 	
 (3.1.15d)
and a very powerful relation called spectral decomposition of an operator M.
	
 	
 	
 	
  M = ε1 P1 + ε2 P2  + ...+ εn Pn  	
 	
 	
 	
 (3.1.15e)
	
 The completeness relation (3.1.15d) resembles the abstraction (2.1.20) of axiom-4 repeated here.

	
 	
 	
 	
 	

   
1 =

k=1

n
∑ Pk =

k=1

n
∑ k k 	
 	
 	
 	
 	
 (3.1.16)

The similarity is no accident, but there is a logical difference between (3.1.15d) and (3.1.16). The latter is a 
physical axiom of quantum wave path completeness, while the former is a algebraic theorem being proved 
here. The spectral decomposition relation (3.1.15e) follows by operating on the completeness relation (3.1.15d) 
with the matrix  M using its eigen-operator relation (3.1.15b) that is an algebraic result.
	
 First, let us check that (3.1.15d) and (3.1.16) are correct for examples (3.1.14) expressed in terms of an 
outer or Kronecker tensor (⊗) product of eigen-bras and kets from "bad cop" matrix K.

    
   

P1 =
4
1 −4

1

−4
3

4
3

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
= k1

2
1

−2
3

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
⊗ 2

1 −2
1( )/k1 = ε1 ε1 ,   P2 =

4
3

4
1

4
3

4
1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
= k2

2
1

2
1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
⊗ 2

3
2
1( )/k2 = ε2 ε2 ,       (3.1.14)repeat

This agrees with the original results in (3.1.11)example . Furthermore, they sum up to 1 as required. More 
importantly, they provide the following spectral decomposition (3.1.15e) of K .  

   
  

1 = 1 0
0 1

⎛

⎝⎜
⎞

⎠⎟
= 4

1 −4
1

−4
3

4
3

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
+ 4

3
4
1

4
3

4
1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

  (3.1.15d)example              
  

K = 4 1
3 2

⎛

⎝⎜
⎞

⎠⎟
= 1 4

1 −4
1

−4
3

4
3

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
+5 4

3
4
1

4
3

4
1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

(3.1.15e)example

Spectral decomposition quickly finds the 100th power K100 of K using (3.1.15e).

	
 	

  

K100 = 4 1
3 2

⎛

⎝⎜
⎞

⎠⎟

100

= 1100 4
1 −4

1

−4
3

4
3

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
+5100 4

3
4
1

4
3

4
1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
= 1

4
1+3⋅5100 5100 −1
-3+3⋅5100 5100 + 3

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

Idempotence and orthonormality (3.1.15c) kills all cross terms so a function f(M) of a matrix M reduces to a 
sum of projectors weighted with the function evaluated at M-eigenvalues εk.
	
 	
 	
 	
 f(M)= f(ε1) P1 + f(ε2) P2  + ...+ f(εn) Pn  	
 	
 	
 (3.1.17)

This is a functional spectral decomposition of an operator M . (Try K-1, or √K to test this technique.)
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 Now to prove the matrix completeness relation (3.1.15d) we will appeal to the numerical analysis lore. 
The formula (3.1.17) for functional spectral decomposition resembles the terms in the famous Lagrange 
interpolation formula of a function f(x) approximated by its value at N discrete points.

	
 	
 	


  

L f (x)( ) = f (xm)·
m=1

N
∑ Pm(x)     where:  Pm(x) =

Π
j≠m

N
x − x j( )

Π
j≠m

N
xm − x j( )

 	
 	
 	
 (3.1.18)

Lagrange’s formula fits a polynomial of degree   N −1  to  N  arbitrary points 
   

x1,x2,,xn{ }  on a function curve 

  y = f (x) .  Note that each polynomial term   Pm(x)  has zeros at each point 
 
x = x j  except  x = xm where  Pm(xm)=1 . So 

at each of these points xm  this L-approximation becomes exact: 
  
L f (xm)( )= f (xm) .  

	
 If   f (x)  happens to be a polynomial of degree   N −1  or less, then the L-approximation is exact 
everywhere, that is, 

  
L f (x)( )= f (x)  for all points x.  This is true since one point determines a constant, two 

points uniquely determine a line, three points uniquely determine a parabola, and N points uniquely determine 

an 
  

N −1( )th  degree curve.  Hence if 
  

N > 1( )  the following special cases of a constant 
  

f (x) = 1( )  and a line 

  
f (x) = x( )  are exactly determined by

  
L f (x)( )= f (x)  for all points x . 

	
 	
 	
 	

  
 1= Pm x( )

m=1

N
∑ ,	
 	
 	
 	


  
x= xmPm x( )

m=1

N
∑

The first corresponds to matrix completeness (3.1.15d) and the second one to spectral decomposition (3.1.15e). 

	
 Now a matrix M and its powers Mn obey the same algebra as a simple variable x and its powers xn. So 
completeness relation is proved. Furthermore, it is true for all distinct values of the eigenvalue parameters 
{ ε1 , ε2 , .., εn }. Completeness relation (3.1.15d) seems to be more than true! This is easily seen for N=2.

     

   

P1 + P2 =
j≠1
∏ M − ε j1( )
j≠1
∏ ε1 − ε j( ) + j≠1

∏ M − ε j1( )
j≠1
∏ ε2 − ε j( ) =

M − ε21( )
ε1 − ε2( ) +

M − ε11( )
ε2 − ε1( ) =

M − ε21( )− M − ε11( )
ε1 − ε2( ) =

−ε21+ ε11
ε1 − ε2( ) = 1 (for all  ε j ) 

Direct algebraic verification of universal identity of completeness (3.1.15d) grows algebraically laborious for 
larger N=3,4,..., so it is nice that the Lagrangian analogy shows its εk independence for all N.
	
 However, the εk are required to be the correct eigenvalues εk of matrix M for the other relations in 
(3.1.15) such as orthogonality and spectral theorems.
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Eigensolutions are stationary or extreme-value solutions

	
 Eigenvalues λ of a matrix L can be viewed as stationary-values of its quadratic form QL(r)=〈r|L|r〉, 
that is, the min-max values of the function Q(r) subject to the constraint of unit norm: C(r)=〈r|r〉=1. Multi-
dimensional constrained min-max problems may be solved using Lagrange multiplier theory as we will sketch 
here. The idea is to find those values of QL and vector r for which the QL(r) curve just touches the constraint 
curve C(r). Stated another way, imagine walking around the constraint circle C(r)=〈r|r〉=1 in the figure below 
and looking for those places where one of the QL(r)=const. ellipses is tangent to the unit circle C(r)=1. 
Lagrange pointed out that such points would have the gradient ∇QL pointing in the same direction as ∇C , that 
is, the two gradient vectors ∇QL and ∇C would be proportional to each. In honor of Lagrange, the 
proportionality constant is taken to be λ in	
 ∇QL = λ ∇C, where λ is called a Lagrange Multiplier. 

	
 	


Constraint curve
〈r|r〉=C=1

Eigenvector
|r〉=|ε2〉

where
∇∇QL=λ∇∇C
with
λ=ε2

Quadratic curves
〈r|L|r〉=QL=const.

.

QL=ε2

QL=ε1
Eigenvector
|r〉=|ε1〉

where
∇∇QL=λ∇∇C
with
λ=ε1

The fact that λ symbolizes both the eigenvalue and a Lagrange multiplier is no coincidence; they are equal 
here. The gradients ∇QL =〈r|L + L|r〉  and ∇C=〈r| + |r〉 in Lagrange equation give eigenvalue equations.
	
 	
 	
 	
 	
  L|r〉 =  λ|r〉  and  〈r|L=〈r| λ  
On the eigen-directions the Lagrange multiplier is also the value of the quadratic form: λ=QL(r)=〈r|L|r〉  
	
 for: |r〉= |ε1〉 , QL(r)=〈ε1|L|ε1〉= ε1,  	
 	
  and for: |r〉= |ε2〉 , QL(r)=〈ε2|L|ε2〉= ε2. 
〈r|L|r〉 is called an expectation value of matrix L at r. Eigenvalues are extreme expectation values.
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(3) Diagonalizing transformations from projectors
	
 The real goal of many quantum problems is to find a d-tran matrix, the transformation matrix that 
diagonalizes some quantum analyzer matrix T or other types of matrices not yet discussed like a scattering 
matrix S or a Hamiltonian matrix H. If all (meaning a complete set) of the projection matrices Pk are known 
for a given matrix M then the diagonalization transformation (d-tran) matrix is easy to get.
	
 Here's how. First you use the columns of the Pk matrices to give a set of normalized eigenket vectors. 
This was described in the preceding section using an asymmetric ("bad cop") matrix K as an example and will 
be discussed further in the following sections. Then you load these columns into the d-tran matrix in whatever 
order you find convenient. That's all there is to it. 
	
 Consider that old "bad cop" matrix K again. Since it is asymmetric it requires an extra step you won't 
need for quantum matrices, but it's instructive to see this, too, given our eigenvectors (3.1.14) in Fig. 3.1.3. 

	


  

 ε1 = 2
1 −2

1( ), ε2 = 2
3

2
1( ){ }   ,    ε1 = 2

1

−2
3

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

, ε2 = 2
1

2
1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

    (ε1,ε2 )← (1,2) d−Tran matrix               (1,2)← (ε1,ε2 ) INVERSE d−Tran matrix

   
ε1 1 ε1 2

ε2 1 ε2 2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= 2

1 −2
1

2
3

2
1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

      ,   
1 ε1 1 ε2

2 ε1 2 ε2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= 2

1
2
1

−2
3

2
1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

 

Load distinct bras 〈ε1| and 〈ε2| into d-tran rows, and load kets |ε1〉 and |ε2〉 into inverse d-tran columns. It helps 
to use Dirac labeling for all components so actual transformation is done correctly as shown below.

	


  

 
ε1 1 ε1 2

ε2 1 ε2 2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
⋅  

1 K 1 1 K 2

2 K 1 2 K 2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
⋅

1 ε1 1 ε2

2 ε1 2 ε2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

ε1 K ε1 ε1 K ε2

ε2 K ε1 ε2 K ε2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

       2
1 −2

1

2
3

2
1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

       ⋅        4 1
3 2

⎛

⎝⎜
⎞

⎠⎟
              ⋅     2

1
2
1

−2
3

2
1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

        =             1 0
0 5

⎛

⎝⎜
⎞

⎠⎟

It is a good idea to check that your inverse-d-tran is really the inverse of your d-tran.

	
 	


  

 
ε1 1 ε1 2

ε2 1 ε2 2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
⋅

1 ε1 1 ε2

2 ε1 2 ε2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

ε1 1 ε1 ε1 1 ε2

ε2 1 ε1 ε2 1 ε2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

      2
1 −2

1

2
3

2
1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

        ⋅   2
1

2
1

−2
3

2
1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

         =             1 0
0 1

⎛

⎝⎜
⎞

⎠⎟

In standard quantum matrices, inverse of a d-tran matrix is its Hermitian conjugate (†). (Not so above!)

	


 

ε1 1 ε1 2

ε2 1 ε2 2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

1 ε1 1 ε2

2 ε1 2 ε2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

†

=
1 ε1

*
2 ε1

*

1 ε2
*

2 ε2
*

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
=

1 ε1 1 ε2

2 ε1 2 ε2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

−1

The outer matrices are equal in all cases, even for "bad cop" matrix K. The inner matrix definition of (†) can be 
set equal to the outer ones for unitary or Hermitian matrices like the "good cop" example H.
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Matrix products and eigensolutions for active analyzers

Consider a 45° tilted (θ1=β1/2=π/4 or β1=90°) analyzer followed by a untilted (β2=0) analyzer shown below. 
Active analyzers have both paths open and a phase shift e-iΩ between each path as in the examples introduced 
in Fig. 1.3.5. Here the first analyzer has Ω1=90°. The second has Ω2=180°. 

	


|ΨΙΝ〉|ΨOUT〉
|ΨΙΝ〉=|y〉

2Θin =

β
in
=180°

The transfer matrix for each analyzer is a sum of projection operators for each open path multiplied by the 
phase factor that is active at that path. Here we will simply apply the entire phase factor e-iΩ1 =e-iπ/2 to the top 
path in the first analyzer and the factor e-iΩ2 =e-iπ to the top path in the second analyzer.

  
  
T 2( ) = e−iπ x x + y y = e−iπ 0

0 1

⎛

⎝
⎜

⎞

⎠
⎟          

  

T 1( ) = e−iπ / 2 ′x ′x + ′y ′y = e−iπ / 2

1
2

1
2

1
2

1
2

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

+

1
2

−1
2

−1
2

1
2

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=

1− i
2

−1− i
2

−1− i
2

1− i
2

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

The matrix product T(total)=T(2)T(1) relates input states |ΨIN〉 to output states: |ΨOUT〉 =T(total)|ΨIN〉 

	


  

T total( ) = T 2( )T 1( ) = −1 0
0 1

⎛

⎝⎜
⎞

⎠⎟

1− i
2

−1− i
2

−1− i
2

1− i
2

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=

−1+ i
2

1+ i
2

−1− i
2

1− i
2

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

= e−iπ / 4

−1
2

i
2

−i
2

1
2

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

~

−1
2

i
2

−i
2

1
2

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

We drop the overall phase e-iπ/4  since it is unobservable. T(total) yields two eigenvalues and projectors.

	


  

λ2 − 0λ −1= 0, or: λ=+1, −1
,  gives projectors    P+1 =

−1
2
+1 i

2
−i
2

1
2
+1

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

1− −1( ) =

−1+ 2 i
−i 1+ 2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

2 2
,   P−1 =

1+ 2 −i
i −1+ 2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

2 2

The first eigenvector |+1〉=
  

−1+ 2
−i

⎛

⎝
⎜

⎞

⎠
⎟ =

0.414
−i

⎛

⎝⎜
⎞

⎠⎟
 is a vertical left-handed ellipse with ratio x:y=0.414:1. This 

eigen-ellipse must exit analyzer-2 as the same ellipse. Analyzer-3 yields α3 =90° and β3 =-135°.

       

|ΨΙΝ〉

=|+1〉
|ΨOUT〉
=|+1〉

2Θin =

β
in
=-135°

The other eigenvector |−1〉 is horizontal right-handed ellipse with inverse ratio x:y=1:2.414 and angles α3 =90° 
and β3 =45°. The meaning of the electron spin angles α and β is described in section 2.10.
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(c) Eigenvector projectors (Degenerate eigenvalues)
	
 We have just shown that any matrix with distinct eigenvalues can be spectrally decomposed, i.e., 
diagonalized. What if the secular equation (3.1.5d) of a an N-by-N matrix H has some degenerate eigenvalues 

  
ε1 = ε2 = ε1 ? If so, it is possible that H cannot be completely diagonalized, though this is rarely the case. It 
all depends upon whether or not the HC equation (3.1.8) really needs its repeated factors. Suppose each 
eigenvalue 

 
ε j  is 

  
 j -fold degenerate so the secular equation factors as follows:

	
 	

   
S ε( ) = 0 = −1( )N

ε − ε1( )1 ε − ε2( )2 … ε − ε p( ) p 	
 	
 	
 (3.1.19a)

where 
   
1 + 2 +…+  p = N .  Then the   N -th  degree HC equation is:

	
 	

    
0 = −1( )N

H − ε11( )1 H − ε21( )2 … H − ε p1( ) p 	
 	
 	
 (3.1.19b)

Each eigenvalue 
 
ε j  is repeated 

  
 j  times as is each factor 

  
H − ε j1( )  in the HC equation. The number 

  
 j  is 

called the degree of degeneracy of eigenvalue 
 
ε j .

	
 Suppose, now you find that only one of each distinct factor is needed to give a matrix zero, that is, the 
following p-th degree equation holds.

	
 	
 	

    
0 = H − ε11( ) H − ε21( )… H − ε p1( ) 	
 	
 	
 	
 (3.1.20)

This is just like the distinct eigenvalue situation in equation (3.1.8), so the matrix  H  is completely 
diagonalizable and spectrally decomposable using the same techniques described previously.

(1) Minimal equation and diagonalizability criterion
	
 Otherwise, if  H  does not satisfy a non-degenerate equation then it is not diagonalizable. The lowest 
degree polynomial equation a matrix  H  can satisfy is called its minimal equation.  (If all roots are distinct, that 
is p=N,then the HC-equation is the minimal equation.)  

	
 When only one of each of p distinct factors 
  

H − ε j1( )  in the minimal polynomial is needed to give zero, 

then removing that factor gives p non-zero 
  

p −1( )-th  degree operators 
   

P1,P2 ,...,Pp{ }  following (3.1.15a). They 

are idempotent 
   

Pj
2 = Pj( ) , orthogonal 

   
PiPj = 0 if i ≠ j( )  and complete 

   
Pj

j=1

p
∑ = 1

⎛
⎝⎜

⎞
⎠⎟

 just as in the case of no repeated 

roots. Here is the key diagonalizability criterion.

	
 In general, an orthogonal and complete set of 
   
Pj's  is possible, if and only if, the H minimal 

 equation has no repeated factors. Then and only then is matrix H diagonalizable.

(2) Nilpotent operators ("Bad" degeneracy)

	
 Repeated 
  

H − ε j1( )  factors in the minimal equation are always fatal for the process of building a 
complete set of idempotents Pj.  Even one repeat is fatal, suppose:
	


   
0 = H − ε11( )2 H − ε21( )…,  but:  N= H − ε11( ) H − ε21( )… ≠ 0 	
 	
 	
 (3.1.21)

Removal of one repeat gives a non-zero operator  N  whose square has the missing 
  

H − ε11( )  that gives zero.
	


   
 N2 = H − ε11( )2 H − ε21( )2 … = 0
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(The presence of additional commuting factors 
   

H − ε21( )…  does not save it.)  Such an operator is called a 

nilpotent operator or, simply a nilpotent. A nilpotent is a troublesome and 'unwanted beast' for the basic 
diagonalization process but an essential feature of Non-Abelian symmetry analysis.
	
 For example, consider a 'bad' degenerate matrix. (This is not just a "bad cop" but a real "crook"!)

	
 	
 	
 	
 	
 	

   
B = b 1

0 b
⎛

⎝⎜
⎞

⎠⎟
	
 	
 	
 	
 	


Its secular equation has two equal roots 
  
ε = b twice( ) .

	
 	
 	
 	

  
S ε( ) = ε2 − 2bε + b2 = ε − b( )2 = 0 	
 	
 	
 	


The HC equation is then as follows.

	
 	
 	
 	

   
S B( ) = B2 − 2bB + b21 = B − b1( )2 = 0 	
 	
 	


The matrix factor 

	
 	
 	
 	
 	

   
N = B − b1 = 0 1

0 0

⎛

⎝⎜
⎞

⎠⎟
,	
 	
 	
 	
 	
 (3.1.22)

is an example of nilpotent eigen-projector which satisfies 

	
 	
 	

   
N2 = 0 but N ≠ 0( )  and:  BN = bN = NB .	
 	
 	
 	
 (3.1.23)

The nilpotent contains only one non-zero eigenket and one eigenbra. 

	
 	
 	

  
b = 1

0

⎛

⎝⎜
⎞

⎠⎟
,           b = 0 1( )  	
 	
 	
 	
 	
 	
 (3.1.24)

Also, they are orthogonal to each other!  ( 
 

b b = 0  ) There can be no completeness, orthonormality, spectral 

decomposition or diagonalization for this 'bad' degenerate matrix in the ordinary sense of (3.1.17).
	
 Let us not give the impression that nilpotents or other "bad" matrices are not valuable for general 
quantum theory. In fact the operator described in (3.1.22) is an example of an elementary operator eab  
	
 	
 	
 	
 e12 =  | 1 〉〈 2 |   	
	
 	
 	
 	
 	

Along with its partners it makes up a 4-dimensional (recall Sec. 2.2d) U(2) unit tensor operator space 
	
 U(2) op-space= {e11 =  | 1 〉〈 1 | , e12 =  | 1 〉〈 2 | , e21 =  | 2 〉〈 1 | , e22 =  | 2 〉〈 2 | } (3.1.25a)
out of which all U(2) operators are made by linear combination. They obey a simple matrix algebra 
	
 	
 	
 eij ekm = δjk eim 	
 	
 	
 	
 	
 	
    	
 (3.1.25b)
This is very useful stuff later on. Just be aware you cannot diagonalize an eab for a≠b !
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(3) Multiple diagonalization ("Good" degeneracy)
An example of a 'good' degenerate (but still diagonalizable) matrix is the anti-diagonal "gamma" matrix G 
which Dirac used to generate Lorentz transformations.

	
 	
 	
 	


  

G =

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

	
 	
 	
 	
 	
 	
 (3.1.26)

It has a 4th degree secular equation.

	
 	
 	
 	

  
S ε( ) = 0 = ε4 − 2ε2 +1= ε −1( )2 ε +1( )2

There are two pairs of degenerate roots 
 
ε = ±1,  twice( ) , but  G  satisfies only a second degree minimal equation. 

(Check this!)
	
 	
 	
 	
 	
 0 = (G - 1) (G + 1)	
 	
 	
 	
 	
 (3.1.27)
This allows us to use theory based on projection formula (3.1.15) to derive two projection operators.

	


   

P1
G =

G − −1( )1
1− −1( ) = 1

2

1 0 0 1
0 1 1 0
0 1 1 0
1 0 0 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

	
 	


   

P−1
G =

G − 1( )1
−1− 1( ) = 1

2

1 0 0 −1
0 1 −1 0
0 −1 1 0
−1 0 0 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

	
 	
 	
         	
 	
 (3.1.28a)	
 	
 	
 	
 	
 	
 (3.1.28b)
These satisfy all orthonormality and completeness or spectral decomposition relations (3.1.15a-d).
	
 The main difference here is that each of these projectors contains two linearly independent ket vectors:  
from the first and second columns of   P1  we get 

 
11)  and 

 
12 ) , and from   P−1  we get 

 
−11)  and 

 
−12 ) .  (Recall that 

we showed in (3.1.20)example H that each 
  
Pj  contains all the scalar products and normalization constants of its 

bra-rows and ket-columns.)

	


 

11 =
11)

2
= 1

2

1
0
0
1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

12 =
12 )

2
= 1

2

0
1
1
0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

−11 =
−11)

2
= 1

2

1
0
0
−1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

−12 =
−12 )

2
= 1

2

0
1
−1
0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 (3.1.29)

This example is particularly convenient since the 
 
1( 2)  components 

   
Pj( )12

 happen to be zero, and therefore first 

and second rows are already orthogonal 
  

j1 j2( ) = 0( ) . Otherwise we would need to orthogonalize to get a second 

orthonormal eigenket. Such a process is called Gram-Schmidt orthogonalization which is described below.
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Gram-Schmidt orthogonalization

	
 Suppose a non-zero scalar product 
  

j1 j2( ) ≠ 0( )  exists between two vectors. Then we would need to 

orthogonalize to get a second orthonormal eigenket
	
 	
 	
 	
 	


  
jnormal 2 = N1 j1) + N2 j2 ) 	
 	
 	
 	
 (3.1.30a)

such that
	
 	
 	


  
j1 jnormal 2( = 0 = N1 11( ) + N2 1 2( )

	
 	

  

jnormal 2 jnormal 2 = 1= N1
2 11( ) + N1N2 1 2( ) + 2 1( )( ) + N2

2 2( 2)
As we noted the a-row and b-column scalar product matrix is just the 

  
Pj  matrix, itself.  

	
 	
 	
 	
 	

  

a b( ) = Pj( )ab
	
 	
 	
 	
 	


 
a b( )  is sometimes called a Grammian matrix. Solving for (3.1.30a) coefficients gives

	
 	

  
N1 = −N2

1 2( )
11( )    where 

  

N2 = 1

2 2( ) − 1 2( ) 2 1( )
11( )

	
 	
 	
 	
 	
 (3.1.30b)

 This Gram Schmidt orthonormalization (3.1.30) is not a unique solution since any linear combination of 
degenerate eigenvectors is still an eigenvector. To help sort this out we consider below a more elegant 
procedure using spectral decomposition.

(d) Projector splitting:  A key to algebraic reduction
	
 Dirac notation for the  G  example completeness relation using eigenvectors (3.1.29) is the following:

	
 	

   
1= P1

G + P−1
G = 11 11 + 12 12 + −11 −11 + −12 −12 	
 	
 	
 	
 (3.1.31a)

	
 	
 	
       
  
= P11

+ P12
+ P−11

+ P−12
	
 	
 	
 	
 	
 	
 (3.1.32b)

Here the original projection operators (3.1.28) have each been “split” in two.

	


   

P1
G = P11

+ P12
= 1

2

1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

+ 1
2

0 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

                                     
 
= 11 11 + 12 12 	
 	
 	
 	
 	
 	
 	
 (3.1.32c)

	


   

P−1
G = P−11

+ P−12
= 1

2

1 0 0 −1
0 0 0 0
0 0 0 0
−1 0 0 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

+ 1
2

0 0 0 0
0 1 −1 0
0 −1 1 0
0 0 0 0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

                                         
 
= −11 −11 + −12 −12 	
 	
 	
 	
 	
 	
 (3.1.32d)
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Idempotent projector splitting, such as (3.1.32c-d), is an important process in the application of symmetry 
groups to quantum theory. Our first examples are the completeness splitting of the unit operator  1 .  Let us now 
see the power of splitting algebra and an important technique in symmetry analysis.
	
 Suppose we are given two mutually commuting matrix operators:  the  G  from (3.1.26) before, and 
another operator  H .

	
 	
 	
 	


  

H =

0 0 2 0
0 0 0 2
2 0 0 0
0 2 0 0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

	
 	
 	
 	
 	
 	
 (3.1.33)

(First, it is important to verify that they do, in fact, commute.)

	


  

GH =

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

0 0 2 0
0 0 0 2
2 0 0 0
0 2 0 0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=

0 2 0 0
2 0 0 0
0 0 0 2
0 0 2 0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=

0 0 2 0
0 0 0 2
2 0 0 0
0 2 0 0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

= HG

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 (3.1.34)

This implies that the projection 
  
Pg

G  operators (3.1.28) of  G  commute with any new projection operators   Pk
H  

generated by  H .  This will lead to a combined set   PGH  which simultaneously spectrally decomposes both  G  
and  H . The new   Pk

H  operators follow from the secular and minimal equations for  H .

	

   
P2

H =
H − −2( )1( )
2 − −2( ) 	
 	
 	
 	


   
P−2

H =
H − 2( )1( )
−2 − 2( )

                  

 

= 1
2

1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

	
	
 	
       

 

= 1
2

1 0 −1 0
0 1 0 −1
−1 0 1 0
0 −1 0 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

	
 	
 	
 (3.1.35a)

These obey the following completeness relations and spectral decomposition for  G  and  H , separately.

	
 	
    1 = P1
G + P−1

G 	
 	
 	
 	
 	
    1 = P2
H + P−2

H 	
 	
 	
 (3.1.35b)

	
 	

   
G = 1( )P1

G + 1( )P−1
G 	
 	
 	
 	


   
H = 2( )P2

H + −2( )P−2
H 	
 	
 (3.1.35c)

The old "1=1.1 trick"
By multiplying the two completeness relations one obtains a set of projectors that, together, satisfy 

orthonormality 
   

because Pj
GPk

H = Pk
H Pj

G( )  and completeness 
  

because 1=1 ⋅1( ) .

	
 	

   
1=1 ⋅1 = P1

G + P−1
G( ) P2

H + P−2
H( ) 	
 	
 	
 	
 	
 	
 (3.1.36a)

	
 	

   
1 = P1

GP2
H + P1

GP−2
H + P−1

G P2
H + P−1

G P−2
H( ) 	
 	
 	
 	
 	
 (3.1.36b)

(We call this the 'the old one-equals-one-times-one' trick!) Matrix multiplication gives four new operators 
which in this case are orthonormal and complete projectors. 

HarterSoft –LearnIt Unit 1 Quantum Amplitudes 

21



	


   

P1,2
GH ≡ P1

GP2
H = P1,−2

GH ≡ P1
GP−2

H = P−1,2
GH ≡ P−1

G P2
H = P−1,−2

GH ≡ P−1
G P−2

H =

1
4

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

1
4

1 −1 −1 1
−1 1 1 −1
−1 1 1 −1
1 −1 −1 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

1
4

1 −1 1 −1
−1 1 −1 1
1 −1 1 −1
−1 1 −1 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

1
4

1 1 −1 −1
1 1 −1 −1
−1 −1 1 1
−1 −1 1 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 (3.1.37a)
(This isn't the way it always works out. Some may come out zero, but the ones that are not zero must be 
orthonormal idempotent projectors.) Each is automatically an eigen-operator of both  G  and  H . (Note:  H  
commutivity is needed!)

	

   
GPg ,h

GH = GPg
GPh

H = εg
GPg ,h

GH 	
 	
 	

   
HPg ,h

GH = HPg
GPh

H = Pg
GHPh

H = εh
H Pg ,h

GH

	
 	
 	
 	
 (3.1.37b)	
 	
 	
 	
 	
 	
 (3.1.37c)

Thus, the 
   
Pj,k

GH  spectrally decompose both  G  and  H , simultaneously.

	
 	

   
G = 1( )P1,2

GH + 1( )P1,−2
GH + −1( )P−1,2

GH + −1( )P−1,−2
GH 	
 	
 	
 	
 (3.1.37d)

	
 	

   
H = 2( )P1,2

GH + −2( )P1,−2
GH + 2( )P−1,2

GH + −2( )P−1,−2
GH 	
 	
 	
 	
 	
 (3.1.37e)

	
 So, by simple matrix multiplication we have accomplished an idempotent splitting like that in (3.1.32) 
without needing to Gram-Schmidt orthogonalize bra-kets. (Yes!)

	
 	

   
P1

G = P1,2
GH + P1,−2

GH    (3.1.38a)	
 	

   
P−1

G = P−1,2
GH + P−1,−2

GH      (3.1.38b)

Most important, the splitting is “just right” for the new  H  matrix; finding the “right” Gram-Schmidt 
combination (3.1.30) to diagonalize both H and G at once, would require even more calculation.
	
 In this case, no further idempotent splitting of (3.1.36b) is possible.  For  N − by − N  matrix operators 
there can have no more than  N  linearly independent eigenvectors and no more than N orthonormal projectors.  

Each 
   
Pg ,h

GH  in (1.2.50c) has in its columns and rows one and only one independent eigenvector.  Such an 

‘unsplittable’ projector is called an irreducible idempotent or projector.
	
 You can tell how many irreducible projectors are "hiding" inside a given idempotent projector P
(reducible) matrix by taking its trace. This splitting number is equal to the trace.
	
 Splitting number = TraceP(reducible)= Number of irreducible projectors in P 	
 (3.1.39)
Irreducible projectors have unit trace!
	
 	
 	
 	
 TraceP(irreducible)= 1 	
 	
 	
 	
 	
 (3.1.40)
Each of (3.1.37c) projectors have a unit trace as they should.
	
 	
 Note that such a complete splitting as we saw in (3.1.37) was not guaranteed. It depends on 

what  H  operator we chose to do the splitting. It could have happened that one or more of the 
   
Pg

GPh
H = Pg ,h

GH  

products in (3.1.37b) came out to be zero. Then some of the non-zero 
   
Pg ,h

GH will not be irreducible. Suppose, for 

example, we chose   H = 2G :  then 
   
P1,−2

GH  and 
   
P−1,2

GH  are zero while 
   
P1,2

GH = P1
G  and 

   
P−1,−2

GH = P−1
G  remain reducible. 
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 Having a set of N irreducible  G  and  H projectors like (3.1.37) is useful since any N-by-N operator  K  
which commutes with  G  and  H  must share exactly the same  N  projectors no matter what is the form of  K ‘s 
individual completeness relation.

	
 	
 	
 	
 	

   
1 = Pk

K

k=1

n
∑   n ≤ N( )

To see this note that a product of  K completeness relation by 
   
Pg ,h

GH  must have one and only one non-zero term.

	
 	
 	
 	

   
Pgh

GH = Pg ,h
GH

k=1

N
∑ Pk

K = Pg ,h
GH Pk '

K 	
 	
 	
 	
 	
 (3.1.41)

Since 
   
Pg ,h

GH  is irreducible it cannot split into new orthogonal idempotent projectors, and this implies that each 

  PGH  is already an eigen-operator for  K .
	
 	
 	
 	


   
KPg ,h

GH = Pg ,h
GH KPk ' = εk '

K( )Pg ,h
GH 	
 	
 	
 	
 (3.1.42)

We will then have diagonalized K with less mathematical labor than the old Gram-Schmidt methods.

(e) Why symmetry groups are useful
	
 The results ending with (3.1.42) illustrate an important symmetry technique. Imagine you wanted to 
diagonalize a complicated matrix  K  and knew that it commutes with some other operators  G  and  H  for which 
irreducible projectors are more easily found.  Then you don’t have to bother with the secular equation of  K  
and may just multiply  K  by the projectors provided by  G and  H  as in (3.1.42) above.

	
 In later chapters we will see how having a group of operators 
   

G, H, …{ }  that commute with a big 

system matrix  K  helps to reduce its secular equation and sometimes solve it completely. When transformation 
operators  G, H,..(like rotations) commute with an analyzer matrix T=K (or other type of quantum system 
matrix K ) it means that 

	
 	
 K G = G  K  	
 or 	
  G† K G = K  or  G K G† = K  	
 	
 (3.1.43)
which means K is invariant to the transformation induced by G. This is called a symmetry of the system K 
stands for and it is often pretty easy to spot. The group of these operators is called a symmetry group.
	
 Entire groups can be spectrally decomposed into irreducible projection operators, and then these can be 
used to decompose the system matrix K into one set of P’s made of G, H, symmetry operators.

More to the point, because K is a spectral combination (3.1.15c) of P’s and P’s are in turn 
combinations (3.1.15a) or (3.1.37) of powers and products of G, H,… it follows that K is a linear combination 
of its own group of symmetry operators, including G, H,… and their products. This is a very powerful idea! It 
will be useful in some problems and then be used extensively following Unit 3.

To summarize, we use the spectral decomposition of some easily “killed” operators to attack more 
difficult ones, much as a “killed” virus in a vaccine saves us from suffering troublesome or dangerous diseases.
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Quadratic surfaces help to visualize matrix operations

	
 The mapping M|c〉=|r〉 of a unit circle 〈c|c〉=1 by symmetric matrix M is an ellipse 1=〈r|M-2|r〉 as 
shown in a previous sidebar. If, instead of mapping vectors |c〉 on a circle, we map vectors |q〉 on a surface 
corresponding to a unit constant quadratic form 1 = 〈q|M|q〉, the resulting vectors |p〉 = M|q〉 of this mapping 
will lie on a related quadratic surface given by 
	
 	
 	
 	
 	
   1 = 〈q|M|q〉 = 〈q|p〉= 〈p|M-1|p〉    
The surface 1 = 〈p|M-1|p〉 defined by vectors |p〉 is called the conjugate or inverse quadratic form. An example 
of such a mapping is displayed in the figure below. The semi-axes of the |p〉 ellipse are square roots of 
eigenvalues √ε1 and √ε2 while |q〉 ellipse axes are inverse roots 1/√ε1 and 1/√ε2. 

	


M

√ε2 1/√ε1
√ε1 1/√ε2

〈q|M|q〉=1〈p|M-1|p〉=1

|q〉|p〉 M maps |q〉 into |p〉=M|q〉

The precise geometry of this mapping is found by considering the gradient of the quadratic curves.
	
 	
 	
 	
   ∇(〈q|M|q〉)=〈q|M + M|q〉 = 2 M|q〉 = 2 |p〉  
Let matrix M be real symmetric so there is no distinction between bras and kets. This shows that the mapped 
vector |p〉 must lie along the gradient ∇(〈q|M|q〉) that is normal to the tangent to curve at |q〉.

	


M-1

〈q|M|q〉=1〈p|M-1|p〉=1

∇∇〈q|M|q〉/2=M|q〉=|p〉
|q〉|p〉

90°90°
|q〉 |p〉

M-1 maps |p〉 into |q〉=M-1|p〉

The inverse map works in the same way since |q〉 is normal to the tangent at mapped point |p〉. It should be 
noted that quadratic surfaces can be hyperbolic as well as elliptic if there are negative eigenvalues. Eigen-
vectors are any vectors that are in the same direction as quadratic curve gradient at their point.
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3.2 Approximate Eigensolutions by Perturbation Techniques
	
 One of the alternatives to numerical diagonalization or symmetry analysis techniques is called 
perturbation analysis. This often is a viable alternative for problems with little or no symmetry because such 
problems usually do not have resonances or degeneracies that often come with having symmetry. Then 
eigenvalues and vectors may change by only tiny amounts that can be approximated. 
	
 Perturbation techniques, like most "approximologies" are many and varied. Their use can be more art 
than a science. We discuss one here based upon analysis of the secular determinant (3.1.5d). 

    

0 = det H − λ1 = det

H11 − λ H12 H13 H14 

H21 H22 − λ H23 H24 

H31 H32 H33 − λ H34 

H41 H42 H43 H44 − λ 

    

= det

D11 D12 D13 D14 

D21 D22 D23 D24 

D31 D32 D33 D34 

D41 D42 D43 D44 

    

where: 	
	
 	

  

Dµν =
Hµµ − λ  if: µ=ν

Hµν      if: µ ≠ ν

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
= Hµν − δµνλ 	
	
 	
 (3.2.1)

(a) Secular determinantal expansion
	
 The ε-tensor sum of permutations reviewed in Appendix 3.A-B. We do the sum class by class since 
each class of permutation is either all even (+) or all odd (-). We'll show only the terms for N=4.
	


    
0 = det H − λ1 = εαβγδperm

N !∑ D1α D2β D3γ D4δ 	
 	
 	
 	
 	
 (3.2.2)

First there is the "zero-flip" term corresponding to partition 1+1+1+1...
	


    
0 = det H − λ1 = D11D22D33D44 = H11 − λ( ) H22 − λ( ) H33 − λ( ) H44 − λ( ) 	
 (3.2.3a)

Then we subtract (odd) "one-flip" terms corresponding to partition 2+1+1... (There are N(N-1)/2 of these)

	


   

− I(12) − I(13) − I(14) =− H12H21D33D44 − H13D22H31D44 − H14D22D33H41

               − I(23) − I(24)                                   − D11H23H32D44 − D11H24D33H42

                           − I(34)                                                               − D11D22H34H43

	
(3b)

Add the "two-flip" terms corresponding to partition 3+1... (There are N(N-1)(N-2)/3 of these.) Recall that (143)
=(314)=(431) means, "1 goes where 4 was, 4 goes where 3 was, and 3 goes where 1 was," and the inverse is 

(143)-1 = (134) =(341)=(413). It's called "two-flip" because (abc)=(ac)(bc) is two flips.

  

.+ I(123) + I(124) + I(134) + I(234).. = .+ H13H21H32D44 + H14H21D33H42 + H14D22H31H43 + D11H24H32H43..

.+ I(132) + I(142) + I(143) + I(243).. = .+ H12H23H31D44 + H12H24D33H41 + H13D22H34H41 + D11H23H34H42..

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 (3c)
Add the "two-flip" terms corresponding to partition 2+2... (There are N(N-1)(N-2)(N-3)/8 of these.)

  .+ I(12)(34) + I(13)(24) + I(14)(23).. = .+ H12H21H34H43 + H13H24H31H42 + H14H23H32H41 + ..

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 (3d)
Finally, (if N were really 4) subtract (odd) "three-flip" terms.  (There are N(N-1)(N-2)(N-3)/4 of these.)
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.− I(1234) − I(1324) − I(1423).. = .− H14H22H32H43 − H14H23H31H42 − H13H24H32H41..

.− I(1432) − I(1423) − I(1324).. = .− H12H23H34H41 − H13H24H32H41 − H14H23H31H42..
	
 (3e)

Collect these results and replace diagonal Dmm factors with Hmm-λ.
   

   
0 = H11 − λ( ) H22 − λ( ) H33 − λ( ) H44 − λ( ) 	
 	
 	
 	
 	
 	
 (3.2.4a)

and include the N(N-1)/2=6 terms for "one-flip" partition 2+1+1... 

   

   

− H12H21 H33 − λ( ) H44 − λ( ) − H13 H22 − λ( )H31 H44 − λ( ) − H14 H22 − λ( ) H33 − λ( )H41

                                                   − H11 − λ( )H23H32 H44 − λ( ) − H11 − λ( )H24 H33 − λ( )H42

                                                                                                   − H11 − λ( ) H22 − λ( )H34H43

	
 (4b)

and the N(N-1)(N-2)/3=8 terms for "two-flip" partition 3+1...

  

   .+ H13H21H32 H44 − λ( ) + H14H21 H33 − λ( )H42 + H14 H22 − λ( )H31H43 + H11 − λ( )H24H32H43..

   .+ H12H23H31 H44 − λ( ) + H12H24 H33 − λ( )H41 + H13 H22 − λ( )H34H41 + H11 − λ( )H23H34H42..
 (4c)

and the N(N-1)(N-2)(N-4)/8=3 terms for the other "two-flip" partition 2+2...

     .+ H12H21H34H43 + H13H24H31H42 + H14H23H32H41 + .. 	
 	
 	
 	
 	
 (4.d)
and, finally the N(N-1)(N-2)(N-4)/4=6 terms (for N=4) "three-flip" partition 4...

  

  .− H14H22H32H43 − H14H23H31H42 − H13H24H32H41..

  .− H12H23H34H41 − H13H24H32H41 − H14H23H31H42..
	
 	
 	
 	
 	
 	
 (4.e)

(b) Perturbation approximations
	
 Now we look at the art of approximation. Suppose we want to approximate the one unknown 
eigenvalue λ = E1 closest to the known H-matrix diagonal element H11. Suppose further that all the other 
diagonal differences |H11 - H22 |, |H22 - H33 |, |H33 - H44 |,.. are larger than the magnitudes off-diagonal matrix 
elements H12 , H13, ..., H24, H34  , etc. Then we can divide the secular equation by the large factors (H22 - λ)
( H33 - λ)( H44 - λ) and leave behind the (supposedly) small factor ( H11 - λ). Then we collect terms on the 
right hand side ( H11 - λ) terms that can be discarded since they should be tiny.

   

0 = H11 − λ( ) − H12H21
H22 − λ( ) −

H13H31
H33 − λ( ) −

H14H41
H44 − λ( )                 −

H11 − λ( )H23H32

H22 − λ( ) H33 − λ( ) −
H11 − λ( )H24 H42

H22 − λ( ) H44 − λ( )

                                         "keepers"( )                                         "discards" ⇒( )  −
H11 − λ( )H34 H43

H33 − λ( ) H44 − λ( )

   

..+
H12H23H31 + H13H32H21

H22 − λ( ) H33 − λ( ) +
H12H24H41 + H14H42H21

H22 − λ( ) H44 − λ( )      +
H11 − λ( ) H23H34 H42 + H24 H43H32( )

H22 − λ( ) H33 − λ( ) H44 − λ( )

                         +
H13H34H41 + H14H43H31

H33 − λ( ) H44 − λ( ) +..                                                          

  
  

 .+ H12H21H34H43 + H13H24H31H42 + H14H23H32H41 + ..
H22 − λ( ) H33 − λ( ) H44 − λ( )
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 .− H14H43H32H22 − H14H42H23H31 − H13H32H24H41..
H22 − λ( ) H33 − λ( ) H44 − λ( )

  .− H12H23H34H41 − H13H32H24H41 − H14H42H23H31..
H22 − λ( ) H33 − λ( ) H44 − λ( )

Now we have an equation for the unknown perturbed eigenvalue λ with one more approximation, that is, to 
replace every λ in the "keeper" denominators by the approximate energy λ ~ H11 = E1(0). (In fact, this 
substitution kills the "discard" terms.)

   
λ = H11 −

H12H21
H22 − H11( ) −

H13H31
H33 − H11( ) −

H14H41
H44 − H11( )   

  
..+

H12H23H31 + H13H32H21
H22 − H11( ) H33 − H11( ) +

H12H24H41 + H14H42H21
H22 − H11( ) H44 − H11( ) +

H13H34H41 + H14H43H31
H33 − H11( ) H44 − H11( ) +..

The terms that are fourth order in Hmn are left off above, but included below in the final result.

   

λ = E1 +
j≠1

N
∑

H1 j H j1

E1 − E j( ) + j≠1

N
∑

k≠1, j

N
∑

H1 j H jk Hk1

E1 − E j( ) E1 − Ek( ) + j=1

N
∑

k≠ j

N
∑

≠ j,k

N
∑

H1 j H jk HkH1
E1 − E j( ) E1 − Ek( ) E1 − E( )

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 (3.2.5a)
Here the diagonal terms are denoted as approximate eigenvalues:
	
 	
 	
 	
 Em = Hmm	
 	
 	
 	
 	
 	
 	
 (3.2.5b)
A diagrammatic representation of this is given in Fig. 3.2.1. Note that the choice of the number-1 value is 
arbitrary. This approximation works just as well replacing 1 by 2, 3, ..., or N. The figure indicates number 1 as 
the lowest eigenvalue but that is not a necessary condition, either. Neither are all the terms in the order chosen 
for the figure; it shows only one of many combinations and permutations of the 3rd and 4th order terms.

	


1 1 1 1

jj jj jj

kk kk

mm

λ= Η11 + ΣΗ1jΗj1 + ΣΣΗ1kΗkjΗj1 + ΣΣΣΗ1mΗmkΗkjΗj1j j k j k m
Δ1j Δ1kΔ1j Δ1mΔ1kΔ1j

Η11 Η1j
Ηj1 Ηj1

Ηkj

Η1k
Ηj1

Ηkj

Η1m

Ηmk

Δ11jj ==EE11--EEjj

Δ11kk ==EE11--EEkk
Δ11mm ==EE11--EEmm

 Fig. 3.2.1 Diagrammatic description of perturbation series
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 Later, in Chapter 9, we will show how the eigenvalues of the Hamiltonian energy matrix H correspond 
to quantized energy levels Ej and energy eigenstates |εj〉 . According to this we interpret each perturbation term 
as tracing a path or circuit between the approximate eigenvalues Ej = Hjj which correspond to, as yet, 
imprecisely defined energy states |εj〉 which are initially nothing but the original base states |εj〉 ~ |j〉 for the 
problem. 
	
 Each path begins and ends on the level that one is interested in defining more precisely. (In Fig. 3.2.1 it 
is called level E1 .) The path visits a number of intermediate levels Em = Hmm once (and only once) and each 
one has what is called an energy or resonance denominator 
	
 	
 	
 	
  Δm = E1 - Em = H11 - Hmm 	
 	
 	
 	
 	
 (3.2.6)
This determines, along with matrix element products HkmHmj , a contributing factor HkmHmj / Δm for the 
intermediate base state |εm〉 ~ |m〉 to the energy correction for that path. Obviously, a zero or near-zero energy 
denominator Δm would signal a major or infinite contribution of one path and one base state. Unfortunately, it 
would also signal the invalidity of the perturbation approximation.

(c) Testing perturbation approximation with exact 2x2 eigenvalues
	
 In order to see how well perturbation theory works, it helps to compare its lowest order predictions 
with that of direct and exact diagonalization. By choosing a simple two-by-two matrix such as 

	
 	
 	
 	

   

H =
H11 H12

H21 H22

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

E1 V

V E2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

,	
 	
 	
 	
 (3.2.7)

this test is easy to do. We choose off-diagonal V to be real to make it even easier.
	
 First, do the perturbation calculation. (It's often the first thing to try!) Up to second order we have the 
following approximate eigenvalues using (3.2.5) to the second order term.

	
 	
 	


  

λ1 = E1 +
V 2

E1 − E2
 ,          

λ2 = E2 + V 2

E2 − E1
 .   

	
 	
 	
 	
 (3.2.8)

	
 Then the exact calculation starts with the secular equation (3.1.5).

	
 	
 	

   
λ2 − TraceH( )λ + det H = 0 = λ2 − E1 + E2( )λ + E1E2 −V 2( )   	
 (3.2.9a)

The two roots are 

	

  
λ1,2 =

E1 + E2 ± E1 + E2( )2 − 4E1E2 + 4V 2

2
=

E1 + E2 ± E1 − E2( )2 + 4V 2

2
 , 	
 (3.2.9b)

	
 The comparison is made by assuming (as in (3.2.5)) that V is small compared to |E1 - E2| Then the 
binomial approximation (a+b)1/2 ~ a1/2 +b/(2a1/2) ...gives 
	
 	
 	


  
λ1,2 = 1 / 2 E1 + E2 ± E1 − E2( ) ± 4V 2 / 2 E1 − E2( )( )( ) ,	
 	
 (3.2.9c)

which agrees perfectly with second order perturbation approximation (3.2.8).
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 The results are plotted in Fig. 3.2.2 below to show the differences. The 2nd order perturbation 
approximation fits a parabola to the exact hyperbola of each eigenvalue trace versus the off-diagonal element 
V. As expected, the perturbation approximation deviates as the off-diagonal matrix element V increases. 
However, it would improve with an increase in the difference |E1 - E2 |, the two are related and it is a larger 
ratio of V to |E1 - E2 | that will make a perturbation approximation less accurate.

	


Exact

Eigenvalues

2nd Order

Perturbation

2nd

4th

10th

8th

V
E1

E2

6th

 Fig. 3.2.2 Comparison of exact vs. 2nd-order thru 8th-order perturbation approximations
	

Second order perturbation formulas are simple, easy to apply, and, for this example, at least, quite an effective 
approximation for a range of V roughly equal to |E1-E2|. The same cannot be said for higher order perturbation 
terms, particularly those of 6th or higher which seem to follow a law of diminishing returns. Even a 10th order 
formula only extends the range of validity a little in Fig. 3.2.2. Worse, a simple application of (3.2.5) to the 
two-level problem is wrong for 6th and higher orders. A direct application of (3.2.5) gives

	
 	

   
E2 = Δ

2
+ V 2

Δ
− V 4

Δ3
+ V 6

Δ5
− V 8

Δ7
+ V 10

Δ9
  , where: Δ= E1 − E2

while the correct binomial expansion of the exact result (3.2.9) which is plotted in Fig. 3.2.2 is 

	
 	

   
E2 = Δ

2
+ V 2

Δ
− V 4

Δ3
+ 2V 6

Δ5
− 5V 8

Δ7
+ 14V 10

Δ9


But, even the corrected polynomials are miserable approximations to the hyperbola approaching its asymptote. 
Also, the series is divergent. Similar problems exist for 3, 4,..., or N-level systems.
	
 The problem is that eigenvalues are generally more like oscillatory (sinusoidal) or exponential and 
hyperbolic functions and to not take kindly to being represented by polynomials. Check this out by comparing 
a sine wave to its Taylor series polynomial approximation. How many orders do you need to approximate one 
full oscillation to 1% or better? And, note what happens outside that range of validity!
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Appendix 3.A  Matrix Determinants, Adjuncts, and Inverses 

	
 Determinants of an  N − by − N  matrix can be dealt with conveniently using the 

 N -th value Levi-Civita ε -symbol defined below:

	


   

εi1 i2 i3
… iN =

0 :   if any two ia  are equal
1:  if i1…iN{ }  is EVEN shuffle of 1…N{ }
-1:  if i1…iN{ }  is ODD shuffle of 1…N{ }  

⎧

⎨
⎪
⎪

⎩
⎪
⎪

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 (3.A.1)

Then the determinant may be written as a sum over all  N N  combination of  N  integers 
   

i1 i2 … iN{ }   

between  1  and  N .

	


   

det M = ε i1 i2 i3 … iNi1 … iN{ }
N
∑ M1i1

M2i2
M3i3

… MNiN 	
 (3.A.2)

Only  N ! of these terms actally exist.  The non-zero ones are just permutations of 

   
 i1 = 1 i2 = 2 i3 = 3 … iN = N{ } .  Negative (positive) terms belong to odd (even) permutations. ( See 

Appendix 3.B.)
	
 From now on let us imply a sum (  1− to − N ) over any indices-repeated on only one side of an equation 
so we will drop the Σ sign. This is called the dummy index sum convention.
	
 The concept of minor or adjunct component expansions follows easily.  Pulling the first component out 
of (3.A.2) gives (with our sum convention)

	

   
det M = M1i1

Mi11
ADJ = M11M11

ADJ + M12 M21
ADJ …+ M1N MN1

ADJ

where adjunct components  M ADJ  are defined below.

	

   
Ma1

ADJ = ε a i2 i3 … M2i2
M3i3…

                      
   
= −ε i2 a i3 … M2i2

M3i3… 	
 	
 	
 	
 	
 	
 (3.A.2)

	
            
   
= ε i2 i3 a … M2i2

M3i3… 	
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 The adjunct component  Mab
ADJ  is just 

  
−1( )a+b  times the determinant made after crossing out the  b − th  

row and  a − th  column of matrix  M , and it goes to the  a − th  row and  b − th column of the adjunct matrix  M ADJ .  
The determinant 

  
det M  equals the matrix product of any row of  M  and the same column of  M ADJ .

	

   
det M = M1i1

Mi11
ADJ = M2i2

Mi2 2
ADJ =…   	
 	
 	
 	
 	
 (3.A.3)

where:	
 	


	

   
Mi11

ADJ = ε i1 i2 i3
M2i2

M3i3
…

	

   
Mi22

ADJ = ε i1 i2 i3
M1i1

M3i3
…

                        	

	
 A matrix inverse formula follows by showing that the following matrix product involving, for example, 

the first row of  M  and the second column of  M ADJ  is zero.

	

   
M1i1

Mi12
ADJ = ε i1 i2 i3 … M1i1

M1i2
M3i3

…

	
 	
     
   
= −ε i2 i1 i3 … M1i1

M1i2
M3i3

… 	
 	
 (Switch two ε indices)	


	
 	
     
   
= −ε i1 i2 i3 … M1i2

M1i1
M3i3

… 	
 	
 (Relabel two sum indices)

	
 	
     
   
= −ε i1 i2 i3 … M1i1

M1i2
M3i3

…= −M1i1
Mi12

ADJ

	
 	
      = 0 	
 	
 	
 	
 	
 	
 	
 	
 (3.A.4)

Any two equal row factors (the first and second are equal to   M1i  in (3.A.4) above) in the ε -combination 
makes it vanish due to ε -antisymmetry. So the following general result holds.

	

  
Mai Mib

ADJ = δab det M 	
 	
 	
 	
 	
 	
 	
 (3.A.5)

So, for non-singular  M  (non-zero 
  
det M ) the inverse   M −1  exists and is defined as follows:

	

  
Mab

−1 =
Mab

ADJ

det M
,	
	
 	
 	
 	
 	
 	
 	
 (3.A.6a)  

so that

	
   Mai Mib
−1 = δab ,	
 	
 	
 	
 	
 	
 	
 	
 (3.A.6b)

that is, a matrix product of it with  M  yields a unit matrix 
   
1 = MM −1( ) .  
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 A more complete definition of the determinant used ε -tensors on both sides of the equation to reflect 
the fact that determinants are antisymmetric to column permutations as well as row permutations.

	

   
det M εabc… = ε i1 i2 i3 …

Mi1a Mi2b Mi3b… 	
 	
 	
 	
 	
 (3.A.7)

This helps to expand matrix products and to prove a useful result:  the determinant of a matrix product is 
simply the product of the determinants of the matrix factors. (Remember: repeated indices are being summed.)

	

   
det M ⋅N εabc… = ε i1 i2 i3 … Mi1 j1

N j1a( ) Mi2 j2
N j2b( ) Mi3 j3

N j3c( )…
	
 	
        

   
= ε i1 i2 i3 … Mi1 j1

Mi2 j2
Mi3 j3

…
⎛

⎝⎜
⎞

⎠⎟
N j1aN j2bN j3c… 	
 	


	
 	
        
   
= det M ε j1 j2 j3 … N j1aN j2bN j3c…

	
 	
        
   
= det M det N εabc… 	
 	
 	
 	
 	
 	
 (3.A.8)

One corollary of (3.A.6b) and (3.A.8) is the following. (We note det | 1 | =1, too.)

	

  

det M = 1

det M −1
	
 	
 	
 	
 	
 	
 	
 	
 (3.A.9)
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Appendix 3.B  Classification of Permutations
	
 Suppose there is a neatly ordered set of N billiard balls lined up on a rack according to their numbers 
{1,2,3,4,5,6,7,8,..,N} . After a game the customers put them back in some permuted order like  
{4,2,8,6,3,7,1,5,...,N} . (We'll make it simple here and suppose only the first eight balls are out of order.) 
	
 Suppose it's your job to straighten them out. You have only two hands so it's natural to switch two at a 
time. You could look for the 1-ball and switch it with whatever ball is in the number-1 position. In this case the 
4-ball is where the 1-ball should be, so you would switch the 1-and-4 balls. Let's write this as an equation 
using Dirac notation: (Bold numbers indicate which are being switched.)
	
  

  
14( ) 4,2,8,6,3,7,1,5 = 1,2,8,6,3,7,4,5 	
 	
 	
 	
 	
 	
 (3.B.1)

The "2-flip" operation (14) is called a transposition or a 2-shuffle or a bicycle. Using only bicycles we can 
complete the reordering. Looking for the 2-ball we see it's already in the 2nd- position so we don't need to do 
anything to it. A 'do-nothing' permutation is written as follows.
	
  

  
2( ) 1,2,8,6,3,7,4,5 = 1,2,8,6,3,7,4,5 	
 	
 	
 	


The operation (2) is called an identity transposition or a  unicycle. Combining the preceding two equations 
gives.

	

  

2( ) 14( ) 4,2,8,6,3,7,1,5 = 2( ) 1,2,8,6,3,7,4,5

2( ) 14( ) 4,2,8,6,3,7,1,5 = 1,2,8,6,3,7,4,5
	
	
 	
 	
 	
 (3.B.2)

Now, the 3-ball needs to go where the 8-ball is currently sitting. So we apply the bicycle (38) to this.
	


  
38( ) 2( ) 14( ) 4,2,8,6,3,7,1,5 = 38( ) 1,2,8,6,3,7,4,5 = 1,2,3,6,8,7,4,5 	
  	
 (3.B.3)

Then the 4-ball is put in the 4-th spot where 6-ball was sitting using bicycle (46).
	


  
46( ) 38( ) 2( ) 14( ) 4,2,8,6,3,7,1,5 = 46( ) 1,2,3,6,8,7,4,5 = 1,2,3,4,8,7,6,5 	
 	
 (3.B.4)

Then the 5-ball is put in the 5-th spot where 8-ball was sitting using bicycle (58).
	


  
58( ) 46( ) 38( ) 2( ) 14( ) 4,2,8,6,3,7,1,5 = 58( ) 1,2,3,4,8,7,6,5 = 1,2,3,4,5,7,6,8 	
 (3.B.5)

Finally, a (67) bicycle finishes the job.
	


  
67( ) 58( ) 46( ) 38( ) 2( ) 14( ) 4,2,8,6,3,7,1,5 = 1,2,3,4,5,6,7,8 	
 	
 	
 	
 (3.B.6)

	
 Since the whole job took exactly five bicycles this is an ODD permutation, and it would get a (-1) sign 
in an 8-by-8 matrix determinant according to equation (3.A.1). A permutation's parity is EVEN or ODD if it 
has an even or odd number of bicycles. There are more efficient ways to decompose a permutation but its 
parity is the same no matter how you do the job.
	
 For example, you may have noticed that we had to move some of the balls more than once. Is there a 
way to reshuffle while moving each ball just once? The answer is yes if you're able to pick up more than two at 
a time. This involves permutation tricycles (where you pick up three balls at once) or quadracycles (where you 
have to pick up four balls) , and so on. 
	
 With a little manual and mathematical dexterity we can rewrite the final equation (3.B.6) in a simpler 
and ultimately more revealing form. First we note that permutation operations commute with each other if they 
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share no numbers in common. So we can move (46) to the left of (58) and (14) to the left of (2), (38), and (58) 
as follows.
	
 	
 (67)(58)(46)(38)(2)(14) = (67)(46)(14)  (58)(38)  (2)	
 	
 	
 (3.B.7)
But, that's as far as you can go since (14) doesn't commute with (46) since both involve the 4-ball. (Try it!)
	
 However, we can combine bicycles that share balls into bigger cycles. For example, two bicycles that 
share one ball like (58)(38) can be read as follows:

	
 First, ball-3 replaces ball-8.  (Right operator (38) acts first.) 
	
 Second, ball-8, in turn displaces ball-5. (Left operator (58) acts next.)
	
 Third, ball-5 winds up where ball-8 was after (38). That's where ball-3 was before (38). 

We write this product as a tricycle
	
 	
 (58)(38) = (385) = (538) = (853)	
 	
 	
 	
 	
 	
 (3.B.8)
(385) is read as follows:	
 ..3-displaces-8-displaces-5-displaces-3-.... and is the same as ..
(538) which is read:	
 	
 ..5-displaces-3-displaces-8-displaces-5-.... or....
(853) which is read:	
 	
 ..8-displaces-5-displaces-3-displaces-8-.... .
Note that if a bicycle product shares two balls it becomes a unicycle, that is no operation at all!
	
 	
 	
 (85)(58) =  (58)(58) = (5)= (8) =...= (1)	
 	
 	
 	
 (3.B.9)
Similarly, a quadracycle is a product of three bicycles such as the following.
	
 	
  (67)(46)(14) = (1467) = (4671) = (6714) = (7146) 	
	
 	
 	
 (3.B.10)
So our example permutation has 1 bicycle, 1 tricycle, and 1 quadracycle. Not counting the no-op-unicycle, we 
see that it is done in only two operations instead of five.
	
 (67)(58)(46)(38)(2)(14) =   (2)   (385)   (1467)	
 	
 	
 	
 	
 (3.B.11)
A graphical example of just such a permutaion unraveling is done using a more direct way in Fig. 3.B.1 below. 
The problem is that it gives the inverse permutation (1764) (358) (2) instead of what we just worked out! 

Why? 
	
 Welcome to the world of transformation groups! As you will learn if you study this book, every 
transformation of “things” has to be defined relative to their “pockets.” You may label a transformation using 
numbers on the things (here, the pool balls) or using numbers on the pockets. As we will see one definition 
gives the inverse of what the other one gives. This is a very important observation in quantum theory where the 
“balls” are “particles” and the “pockets” are “states” as will be discussed later.
	
 In the meantime we have already seen a version of this transformational duality in the T-operators or 
rotation operators that can be defined in “alias” or “alibi” flavors in Section 2.2. A rotation matrix 〈i|R|k〉 is 
meaningless unless you specify its bra-kets, that is, its basis. A bra-ket is a two-sided thing, a destination and a 
point of origin, and all of quantum theory and relativity is concerned with their relative values. Absolutes, one 
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might hope, went out with the absolute monarchs deposed during the 18th century enlightenment.

Unraveling a permutation (Starting with “1”)

| 4, 2, 8, 6, 3, 7, 1, 5 〉

1 2 3 4 5 6 7 8

| 4, 2, 8, 6, 3, 7, 1, 5 〉

1 2 3 4 5 6 7 8

| 4, 2, 8, 6, 3, 7, 1, 5 〉

1 2 3 4 5 6 7 8

| 4, 2, 8, 6, 3, 7, 1, 5 〉

1 2 3 4 5 6 7 8

(1764)

Closes on a permutation
quadracycle

(Next higher number that has not been used is a “2”)

| 4, 2, 8, 6, 3, 7, 1, 5 〉

1 2 3 4 5 6 7 8

(2)

Closes on a permutation
unicycle

(Next higher number that has not been used is a “3”)

| 4, 2, 8, 6, 3, 7, 1, 5 〉

1 2 3 4 5 6 7 8

(358)=

Closes on a permutation
tricycle

| 4, 2, 8, 6, 3, 7, 1, 5 〉

1 2 3 4 5 6 7 8

| 4, 2, 8, 6, 3, 7, 1, 5 〉

1 2 3 4 5 6 7 8

Final result:

(1764)=(4176)=etc.

(2)

(358)=(835)=etc.

(358)(1764)(2)=etc.
Fig. 3.B.1 Permutation cycle structure unraveling using pocket numbers. 
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 Permutations are classified by the numbers of ν1 of unicycles, ν2 of bicycles, ν3 of tricycles, and so 
forth. Above we have { ν1 =1, ν2 =0, ν3 =1, ν4 =1, ν5 =0, ν6 =0,...  }. Since no ball-number can be repeated in 
a cycle reduction, the cycle lengths must add up to the number N of balls.
	
 	
 ν1 + 2 ν2 + 3 ν3 + 4 ν4 + 5 ν5 +...+ NνN  = N	
 	
 	
 (3.B.12)
So the number of different classes of permutations is equal to the number of partitions of the integer N. 
For N=2 there are only two classes of two permutations.
	
 Class { ν1 =2, ν2 =0}	
corresponding to partition : 	
 2 = 1 + 1 
	
 	
 One permutation : (1)(2)  
	
 Class { ν1 =0, ν2 =1}	
corresponding to partition : 	
 2  = 2
	
 	
 One permutation : (12)       (3.B.13)

For N=3 there are three classes of six permutations.
	
 Class { ν1 =3, ν2 =0, ν3 =0} corresponding to partition : 3 = 1 + 1+ 1  
	
 	
 One permutation :: (1)(2)(3)
	
 Class { ν1 =1, ν2 =1, ν3 =0} corresponding to partition : 3 = 2 + 1
	
 	
 Three permutations : (12)(3), (13)(2), (23)(1)
	
 Class { ν1 =0, ν2 =0, ν3 =1} corresponding to partition : 3 = 3 
	
 	
 Two permutations : (123), (132)     (3.B.14)

	
 The number of permutations in each partition class is given by a relatively simple combinatorial 
formula. To derive it one needs only consider the redundancy of the cycle labeling which was seen after (3.B.
8), for example. Each M-cycle can be written M ways by cycling the numbers as shown in the tri-cycle in (3.B.

8). If there are νM such M-cycles in a permutation then there are MνN such reorderings that do not change the 
permutation at all. Also, since there are different numbers in each cycle they commute. So there are νM ! 
reorderings of the νM commuting cycles that give the same permutation, again. Dividing all these possibilities 
into N! gives the number of distinct partition class numbers.

	
 	


   

Number in partition class ν1ν2ν3ν4 = N !

ν1!1ν1 ν2 ! 2ν2 ν3 !3ν3ν4 ! 4ν4

where:              N = ν1 + 2ν2 + 3ν3 + 4ν4

	
 (3.B.15)

Exercise: Classify and enumerate the permutations for N=4 and N=5.
      	
 	
 (Check against (3.B.15)
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Chapter 3 Problems 

Mirror-Mirror (Who’s the fairest eigenvector?)
3.1.1 Compute the eigenvectors, eigenvalues, spectral decomposition and d-trans matrix for each of the mirror 
operations (a) thru (d) in the Mirror-Mirror problem. Where possible, tell physical or geometric significance.
(a) Use spectral decomposition's to derive inverse I=1/T and (all) square roots X=√T such that X2=T. (How many square 
roots does each have? Are any physically "do-able?")
(b) (extra-credit) Use c-d to invent a "slide rule" that correctly rotates U(2) electron and photon states.

Circle-Squash Switched
3.1.2 The discussion at the beginning of Sec. 1.6 showed that a unit circle is mapped onto an ellipse 〈r|T-2|r〉=1by matrix 

T=
 

1 1 / 2
1 / 2 1

⎛

⎝⎜
⎞

⎠⎟
. Consider the same mapping by "switched" matrix S=

 

1 / 2 1
1 1 / 2

⎛

⎝⎜
⎞

⎠⎟
.

(a) Find eigenvalues of S and S-2. Spectrally decompose S and plot its eigenvectors. 
(b) Let T-1|r〉=|c〉=〈r|T-1 or T|c〉=|r〉=〈c|T so 〈r|T-1|r〉=〈c|r〉=〈c|T|c〉. Suppose all c-vectors lie on a curve 〈c|T|c〉=1 Discuss 
curve algebraically and plot this curve and the mapped 〈r|T-1|r〉=1 curve.
(c) Let S-1|r〉=|c〉=〈r|S-1 or S|c〉=|r〉=〈c|S so 〈r|S-1|r〉=〈c|r〉=〈c|S|c〉. Suppose all c-vectors lie on a curve 〈c|S|c〉=1 Discuss 
curve algebraically and plot this curve and the mapped 〈r|S-1|r〉=1 curve.
(d)*By conic geometry, derive a map M|c〉=|r〉 of any real vector |c〉 by real-symmetric matrix M.

Dagger Your Own Ket
3.1.3 Most quantum matrices have simple relations between eigenvalues εm and their conjugates εm*,  eigenbras |εm〉 
and kets 〈εm| , projectors Pm and their †-conjugates (Pm)† , and diagonalizing (d-tran) transformations T and their 
inverses T-1 . Let's see what these relations are for...
(a) ...a Hermitian matrix M = H such that H = H† by spectrally decomposing and diagonalizing a general 2x2 reflection 

matrix!
  
H =

cosϕ sinϕ
sinϕ − cosϕ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

. (Are its eigenvectors meaningful? Discuss.)

(b) ...a Unitary matrix M = U such that U-1= U† by spectrally decomposing and diagonalizing a general 2x2 rotation 

matrix!
  
U =

cosϕ − sinϕ
sinϕ cosϕ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

. (Are its eigenvectors meaningful? Discuss.)

(c) Find all the square-roots of H and of U. (Test them. There are more than two of each!)

Home on Lagrange
3.1.4 Functional spectral decomposition (3.1.17) is related to Lagrange functional interpolation (3.1.18). Use (3.1.18) to 
approximate sin x given only that sin0=0, sinπ/2=1, and sinπ=0. Compare your approximation to order-2 Taylor series 
approximation of sin x around x=π/2.

Bras-ackwards
3.1.5 See if you can work the spectral decomposition ideas backwards by doing the following "inverse" eigenvalue 
problems.  (Hint: Use ket-bras and ⊗. Normalize first!) 
(a) Find a Hermitian 3x3 matrix H that satisfies.

!

  

H
1
−1
0

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟
=

1
−1
0

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

,      H
1
1
−2

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟
= 4

1
1
−2

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

,      H
1
1
1

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟
= 9

1
1
1

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

,         

(b) Write down and test at least one square root √H. (How many square roots are there?)

Cures for Nilpotency
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3.1.6 Can a nilpotent matrix N ( Nm= 0 ,  Nm-1 not zero, integer m>1) be Hermitian N=N†
(a) ...for m=2? , (b)  ...for other m?  (Experiment with 2x2 matrices first.)
(c) Use this and exercise Dagger Your Own Ket to prove Hermitian matrices must be diagonalizable.

Truly Secular
3.1.7 The coefficients ak of the general nxn secular equation (3.1.5d) and (3.1.5f) of M depend on matrix coefficients Mij 
and on eigenvalues εm. 
(a) Do they depend on which basis you use to represent M? Why or why not?
(b) For a general 4x4 matrix (n=4), compute functions ak = ak(εm) in an orderly way that clearly shows how they come 
out for general n.
(c) For a general 4x4 matrix (n=4), compute functions ak = ak(Mij) in an orderly way that clearly shows how they come 
out for general n. Use the ε-expansion in Appendix 1.A  and (b) above to help express answer in terms of diagonal minor 
determinants. (NOTE: This is a "crucial" problem whose solutions belongs in your lab "journal" or equivalent.) May do 
successively n= 2, 3, until a pattern emerges.

Adjunct Junk
3.1.8 Given (1.A.5) or  A AADJ=1 (det|A|) with A = M -λ1 show that AADJ has M eigenkets |λ〉 if λ is an eigenvalue of M. 

Does AADJ also harbor M's eigenbras? Use M=
 

4 1
3 2

⎛

⎝⎜
⎞

⎠⎟
 as an example.

Pair’em up
3.1.9 An nxn pairing matrix Π has 1 for all n2 matrix elements Πij =1. It's used in superconductivity theory and nuclear 
structure.
(a) Use 1(c) above to help derive its eigenvalues and spectral decomposition. (Or, you may develop the theory by doing 
successively n= 2, 3, until the pattern emerges.)
(b) Does the matrix Π+(const.)1 have the same eigenvectors?  eigenvalues? as Π. Explain.

All Together Now
3.1.10 Show how to do a simultaneous spectral decomposition using the projector splitting technique.. (a) Spectrally 

decompose 

  

A =
2 1 0
1 2 0
0 0 3

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

,        and     B =
3 −1 −1
−1 3 −1
−1 −1 3

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

. 

(b) Calculate the "ridiculous function" BA of these two matrices.

A Perturbing Problem

3.2.1 Find eigenvalues (to ±1%) of matrix 

 

M =
2 0.1 0.3

0.1 3 0.2
0.3 0.2 4

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

      using perturbation theory.

A Permuted Problem
3.2.2 (a) As in Appendix 3.B show cycle structure of all permutations in symmetric group S4 and S5.
(b) Write permutation (p)| 12345678 〉 = | 25386741 〉 in cycles. How many (p) in its S8 class? 
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Unit. 1 Review Topics and Formulas 

   

Transformation Matrix
General  n × n T  Matrix

Bras :

1

2

3

1 1' 1 2 ' 1 2 ' 

2 1' 2 2 ' 2 3' 

3 1' 3 2 ' 3 3' 

  

⎛

⎝

⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟⎟

     Kets  :    1'         2 '       3'    

             

  

Transformation Matrix
1.Photon Polarization

x x ' x y '

y x ' y y '

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

        cosθ − sinθ
sinθ cosθ

⎛

⎝⎜
⎞

⎠⎟

              

  

Transformation Matrix
2.Electron Polarization

↑ ↑ ' ↑ ↓ '

↓ ↑ ' ↓ ↓ '

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
=

        
cos β

2
− sin β

2

sin β
2

cos β
2

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

   

Axiom 1: The absolute square 
  

j k '
2
= j k '

*
j k '  gives the probability for state-j of a system in state-k'=1' 

to n' from one sorter and then forced to choose between states j=1 to n by another sorter.

Axiom 2: The complex conjugate of an amplitude gives its reverse: 
  

j k '
*
= k ' j  

Axiom 3: If identical analyzers are used twice or more the amplitude for a passed state-k is one,

 and for all others it is forever zero: 
  

j k = δ jk =
1 if: j=k

0 if: j ≠ k

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
= j ' k ' (ORTHONORMALITY)

Axiom 4. Ideal sorting followed by ideal recombination of amplitudes has no effect:

   
   

j " m ' =
k=1

n
∑ j " k k m '    ⇒      1 =

k=1

n
∑ k k = Pk

k=1

n
∑      (COMPLETNESS)

The secular equation  
    
det M − ε1 = 0 = −1( )n ε n + a1ε

n−1 + a2ε
n−2 +…+ an−1ε + an( ) 	
 where:	


	
  
    
a1 = −TraceM,,  ak = −1( )k diagonal k-by-k minors of ∑ M,,   an = −1( )n det M

The  Hamilton-Cayley (HC) equation    
    
0 = M − ε11( ) M − ε21( ) M − εn1( ) 	
 	


Projection operators: Pk =

  

j≠k
∏ M − ε j1( )
j≠k
∏ εk − ε j( )   are eigenoperators for M such that:      Pk  M= M Pk = εk Pk 

Pk satisfy projector orthonormality   PjPk = δjk Pk    and projector completeness  1 = P1 + P2  + ...+ Pn  
 and: spectral decompositions of an operator M. 	
 M = ε1 P1 + ε2 P2  + ...+ εn Pn  	

	
 	
 	
 	
 	
 	
 	
 f(M)= f(ε1) P1 + f(ε2) P2  + ...+ f(εn) Pn  
The old "1=1.1 trick" will be used later in symmetry analysis and spectroscopic theory
	
 	


   
1=1 ⋅1 = P1

G + P−1
G( ) P2

H + P−2
H( )=

   
1 = P1

GP2
H + P1

GP−2
H + P−1

G P2
H + P−1

G P−2
H( ) 	


Perturbation expansion for eigenvalue nearest E1=H11: (For order higher than 2: Caution and good luck!)

   

λ = E1 +
j≠1

N
∑

H1 j H j1

E1 − E j( ) + j≠1

N
∑

k≠1, j

N
∑

H1 j H jk Hk1

E1 − E j( ) E1 − Ek( ) + j=1

N
∑

k≠ j

N
∑

≠ j,k

N
∑

H1 j H jk HkH1
E1 − E j( ) E1 − Ek( ) E1 − E( )
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Unit 1 Exam  	
 	
  Quantum Mechanics 5413     Dirac Notation and Matrix Algebra
(40 pts)

1. We're given the following base state definitions of transformation operator R.
	
  |1'〉 = R|1〉 = |2〉  ,	
 	

	
  |2'〉 = R|2〉 = |3〉  ,	
 	

	
  |3'〉 = R|3〉 = |4〉  ,	
 	

	
  |4'〉 = R|4〉 = |1〉  ,	
 	

(a) Write down a matrix representation for R in the {|1〉, |2〉, |3〉, |4〉} basis in Dirac notation and numerically. 
(b) Use (a) to compute a representation of R2, R3, and R4,too.
(c) Write down a matrix representation for R in the {|1'〉, |2'〉, |3'〉, |4'〉} basis in Dirac notation and numerically. 
Is it different from the result in (a)? Why or why not?
(d) By examining powers Rp deduce the Hamilton Cayley equation and secular equation of R matrix.
(e) Write down minimal equation and eigenvalues for R .
(f) Can matrix R be spectrally decomposed and diagonalized? How do you tell?
(g) Can all the matrices R, R2, R3 ..., Rp be simultaneously decomposed by a single set of projectors and 
transformation matrix. How do you know?
(h) If (f) is "Yes"  do spectral decomposition and diagonalization of R .
(i) If (g) is "Yes" do spectral decomposition and diagonalization of Rp for any power p.
(30 pts)

2. The results from the preceding problem may help to spectrally decompose the following general type of 
matrix. If so, explain why and use the results to find its eigenvectors and eigenvalues in terms of constant 
parameters A, B, C and D. If not, explain why not.
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 Sketch levels for case A=B=C = 0.2 and D=1.

(20 pts)

3. (a) Write a 2nd order perturbation expression for the eigenvalues of 
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in terms of parameters  A, B, and C  for D1 = 1, D2 = 2, D3 = 3, D4 = 4. 
(b) Sketch levels for case A=B=C = 0.2.
(c) Can you use your expression (a) on the matrix in problem 2? Why or why not? Explain while giving a brief 
discussion of the requirements for a valid perturbation result.
(10 pts)

4. The transformations R , R2, R3, in Problem 1 also behave like permutations. How?
(a) Give the cycle structure and notation for each. How many distinct Rp (p integral) exist ?
(b) How many different permutations can you make by considering all possible arrangements of numbers 
1,2,3, and 4 in the cycles of R.? Classify them by cycles.
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