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Operator Eigensolutions
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The concept of an operatorʼs “own-states” or eigenstates is introduced first through physical 
processes of analyzer filters, then visualized geometrically, and finally analyzed 
algebraically. The physical axioms 1-4 stated in Chapter 2 are related to four powerful 
theorems about the spectral decomposition of matrices. Applications of spectral 
decomposition to transformation and transfer matrices are shown.
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3.1 Operator Eigensolutions and Projection Operators
	

 Many quantum processes and analyzers can be represented by complex matrix transfer operators T tha 
act on an input state ket 

 
ΨIN  to give the resulting output state kets 

 
ΨOUT  as follows.

	

 	

 	

 	

 	

 	


  
ΨOUT = T ΨIN 	

 	

 	

 	

 	

 (3.1.1)

(Recall discussion around (1.3.2).) In this way, matrix products predict the effect of the corresponding T-
analyzer or a whole chain of analyzers. Generally, the effect of an analyzer is to change a state Ψ  to one 
whose output vector 

 
T Ψ  is rotated or otherwise transformed as shown in Fig. 3.1.1 below. A transfer operator 

T that is unitary (T†= T-1) is also a transformation operator and satisfies Axioms 1-4.

	

 	



|Ψ〉
T|Ψ〉

|Ψ〉

analyzer

T
analyzer

T
|Ψ〉T|Ψ〉 input stateoutput state

TT

Fig. 3.1.1 Effect of analyzer represented by ket vector transformation of Ψ to new vector 
 
T Ψ .

	

 However, most analyzers have certain of their own states whose kets | εj 〉 lie along certain "magic" 
directions that do not change when T acts on them, that is, the input ket | εj 〉 just gets multiplied by a phase 
factor or other number εj as in
	

 	

 	

 	

 	

 	

   T | εj 〉  = εj | εj 〉 ,	

 	

 	

 	

 	

 (3.1.2)
but the vector | εj 〉 remains pointing in the same direction as shown in Fig. 3.1.2 below.

	

 	



          
T|ej〉=εj|ej〉

|ej〉

analyzer

T
analyzer

T
eigenstate |ej〉 in

|ej〉

eigenstate |ej〉 out
(multiplied by εj )

T

Fig. 3.1.2 Effect of analyzer on eigenket | εj 〉 is to simply multiply by eigenvalue εj ( T | εj 〉  = εj | εj 〉 ).
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Visualizing Real Symmetric Matrices and Real Eigenvectors

You can learn something about a real matrix operator or transformation T by applying it to a circular array of 

unit vectors c. As shown below a matrix T=
 

1 1 / 2
1 / 2 1

⎛

⎝⎜
⎞

⎠⎟
 maps a circular array into an elliptical one

	



Eigenvector
|ε1〉

ε2|ε2 〉

ε1|ε1 〉

1.0 0.5
0.5 1.0T =( )

Eigenvector
|ε2〉

Eigenvector
|ε2〉

Eigenvector
|ε1〉

TT

	

 Only two vectors in the upper half plane survive the transformation T without changing their 
directions. These lucky vectors are the eigenvectors

	

 	

 	

 	


 
  ε1 = 1

1

⎛

⎝⎜
⎞

⎠⎟
/ 2  ,              and       ε2 = −1

1

⎛

⎝⎜
⎞

⎠⎟
/ 2  

which transform as follows:	


  
T ε1 = ε1 ε1 = 1.5 ε1  ,   and    T ε2 = ε2 ε2 = 0.5 ε2 by only suffering a length 

change given by eigenvalues	

 ε 1 = 1.5	

       and                ε 2 = 0.5, respectively. Obviously, the negatives 
-|ε 1〉 or -|ε 2〉 of eigenvectors are eigenvectors,too, as is17|ε 1〉 or -29|ε 2〉,... etc. Normalization (〈c|c〉 = 1) is a 
separate condition that we generally require of eigenvectors, too.
	

 Each vector |r〉 on the left hand ellipse maps back to a vector |c〉=T-1|r〉 on the right hand unit circle, 
Each |c〉 has unit length: 〈c|c〉 = 1 = 〈r|T-1T-1|r〉 = 〈r|T-2|r〉. (T is real-symmetric: T†=T=TT.)

	

 	

 	

 	


   

c • c = 1= r •T−2 • r = x y( ) Txx Txy

Tyx Ty

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

−2

x
y

⎛

⎝
⎜

⎞

⎠
⎟

This simplifies if rewritten in a coordinate system (x1,x2) of eigenvectors |ε 1〉 and |ε 2〉 where T-2|ε 1〉 = ε 1-2|ε 1〉 
and T-2|ε 2〉 = ε 2-2|ε 2〉, that is, T, T-1, and T-2 are each represented by a diagonal matrix.

	


  

ε1 T ε1 ε1 T ε2

ε2 T ε1 ε2 T ε2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

ε1 0

0 ε2

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

 , and  
ε1 T ε1 ε1 T ε2

ε2 T ε1 ε2 T ε2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

−2

=
ε1
−2 0

0 ε2
−2

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

So, the matrix equation simplifies to an elementary ellipse equation of the form (x/a)2+(y/b)2=1.

	

 	

 	

 	


   

c • c = 1= x1 x2( ) ε1
−2 0

0 ε2
−2

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

x1

x2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

x1
ε1

⎛

⎝⎜
⎞

⎠⎟

2

+
x2
ε2

⎛

⎝⎜
⎞

⎠⎟

2

The ellipse semi-major-minor axes are eigenvalues ε 1 = 1.5 and ε 2 = 0.5. The axes are tilted as shown above. 
Such a T operation is a tensor operation. T anisotropically stretches and squeezes the space.
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(a) Eigenvalue equations
	

 The equation (3.1.2) is called an eigenvalue equation T | εj 〉 = εj | εj 〉 and the kets | εj 〉 are called ket 
eigenvectors or simply eigenkets | εj 〉 and the scalar numbers  are called eigenvalues εj  of operator T. For 
analyzers described by unitary operators (T† = T-1) the eigenvalues are simply phase factors
	

 	

 	

 	

 	

  εj  = eiφ  , 	

 	

 	

 	

 	

 	

 (3.1.3)
so eigenkets stay the same magnitude. If the analyzer has a counter or particle sources then it may decrease (as 
in the Fig. 3.1.2) or increase the magnitude (and probability) of an eigenket vector.
	

 The prefix "eigen" means "own" in German. The eigenvectors of a single analyzer-T are its own 
vectors, literally. We would call them "ownvectors" if we had to purge German from English. The eigen-
vectors { | ε1 〉, | ε2 〉, ..} correspond to the eigenstates that get sorted out inside an analyzer as in Fig. 1.3.1 or 
Fig. 1.3.8. If a T- analyzer is set to a filter configuration like Fig. 1.3.4 then it can produce a beam that is made 
purely of one or another of its own eigenstates | εj 〉. (Excuse the bilingual redundancy.) Then another T-
analyzer in the "do-nothing" mode would pass each of the resulting | εj 〉 particles 100% unchanged (except 
maybe for an overall phase) according to axiom-3. That would be an example of an eigen-equation T | εj 〉 = εj | 
εj 〉 in its purest form.
	

 If the T-operator is represented in its own eigenbasis (Sorry, another bilingual redundancy.) then its 
matrix representation takes has a very simple diagonal form according to axiom-3.
	

 	

 	

 	

 〈 εi | T | εj 〉  = εj  〈 εi | εj 〉   = εj δi j  	

 	

 	

 	

 (3.1.4a)
The diagonal matrix for an n-state system is

	

 	



    

ε1 T ε1 ε1 T ε2  ε1 T εn

ε2 T ε1 ε2 T ε2  ε2 T εn

   
εn T ε1 εn T ε2  εn T εn

⎛

⎝

⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟⎟

=

ε1 0  0

0 ε2  0

   
0 0  εn

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

	

 	

 (3.1.4b)

	

 However, we are usually given the T-operator in someone else's basis { | 1〉, | 2〉, .., | n〉} as in

	

 	



    

1 T 1 1 T 2  1 T n

2 T 1 2 T 2  2 T n

   
N T 1 N T 2  N T n

⎛

⎝

⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟⎟

=

T11 T12  T1n
T21 T22  T2n
   

Tn1 Tn2  Tnn

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

	

 	

 	

 (3.1.4c)

Then the problem is one of diagonalization which consists of using n2 matrix Tij numbers to solve the 
following problems:

	

 	

 (Problem A) Find T's eigenvalues{  ε1 ,   ε2 ,  . ., εn } (Find n  numbers  εj  )
	

 	

 (Problem B) Find T's eigenket basis { | ε1 〉, | ε2 〉, ..,| εn 〉} (Find n2 numbers  〈 i | εj 〉 )
The lions share of work and information (particularly for large n) is in the n2 components 〈 i | εj 〉 of the 
diagonalization transformation (d-tran) matrix which will reduce (3.1.4c) to diagonal form (3.1.4b). The d-
tran matrix 〈 i | εj 〉 has in its columns the desired eigenkets { | ε1 〉, | ε2 〉, ..,| εn 〉}. (Recall (2.1.8).)
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(1) Secular equations
	

 The eigenvalue equations (3.1.2) for a general matrix operator M can be written as follows
	

 	

 	



   
M εk = εk εk ,   or:  M − εk 1( ) εk = 0 	

 	

 	

 	

 (3.1.5a)

and represented by 

	

 	



    

1 M 1 1 M 2  1 M N

2 M 1 2 M 2  2 M N

   
N M 1 N M 2  N M N

⎛

⎝

⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟⎟

1 ε j

2 ε j



N ε j

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟⎟

= ε j

1 ε j

2 ε j



N ε j

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟⎟

	

 	

 (3.1.5b)

or

	

 	



    

1 M 1 − ε j 1 M 2  1 M N

2 M 1 2 M 2 − ε j  2 M N

   
N M 1 N M 2  N M N − ε j

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

1 ε j

2 ε j



N ε j

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟⎟

=

0
0

0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

	

 	

 (3.1.5c)

These amount to n equations for each of n eigenvalues {ε1, ε2, ..,εn} or n2 equations in all. The eigenvalues 
may be found by demanding that the determinant of the matrix in (3.1.5c) be zero. This is called the secular 
equation 

	

 	


    
det M − ε1 = 0 = −1( )n ε n + a1ε

n−1 + a2ε
n−2 +…+ an−1ε + an( ) 	

 	

 (3.1.5d)

where the polynomial coefficients are

	

  
    
a1 = −TraceM,,  ak = −1( )k diagonal k-by-k minors of ∑ M,,   an = −1( )n det M

	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 (3.1.5e)
The secular equation has n-factors, one for each eigenvalue.

	

 	

 	


    
det M − ε1 = 0 = −1( )n ε − ε1( ) ε − ε2( ) ε − εn( ) 	

 	

 	

 (3.1.5f)

	

  It may help to see some examples. For a two-by-two matrix H 
  

n = 2( )  diagonalization is comparatively 

simple. The 
  

n = 2( )  secular equation is:

	

 	


  

0 = det
H11 − ε H12

H21 H22 − ε
= ε2 − H11 + H22( )ε + H11H22 − H12H21( ) 	

 (3.1.5)example	



and the polynomial coefficients are just related to matrix trace and determinant.

	

 	

 	

 	


  

a1 = − (H11 + H22 ) = −TraceH
a2 = H11H22 − H12H21 = det H

	

 	

 	

 	

 (3.1.5e)example

Had we done this with a diagonal matrix then the coefficients in terms of eigenvalues would be

	

 	

 	

 	


  

a1 = −(H11 + H22 ) = − ε1 + ε2( )
a2 = H11H22 − 0 = ε1ε2 	

 	

 	

 	

 (3.1.5e)example
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7

The preceding two equations must give the same numbers because the secular equation and its roots must not 
depend on the basis used to represent the abstract operator. Trace, determinant, and aj are invariant.
	

 For numerical examples, let us use two different matrices given below. One is Hermitian (self-
conjugate) and one is not. (You might call them "good-cop" and "bad-cop", respectively.)

	

 	


   

H = 4 −i 3
i 3 2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= H† 	

 	

 	

 	

 	



  
K = 4 1

3 2

⎛

⎝⎜
⎞

⎠⎟
≠ K†

	

 	

 	

 	

 	

 (3.1.6a)	

 	

 	

 	

 	

 	

 (3.1.6b)
They both have the same secular equation:

	

 	

 	

 	

 	


  

0 = S ε( ) = ε2 − 6ε + 5

0 = ε −1( ) ε − 5( )
	

 	

 	

 	

 	

 (3.1.7) 

and same roots or eigenvalues ( ε1 = 1  and  ε2 = 5 ). However, the "bad-cop" matrix K is not one that you are 
likely to see in quantum theory since it is neither unitary nor Hermitian. Still, it is instructive to see what the 
diagonalization formalism does with a pathological case such as this one. The "good-cop" matrix is not unitary, 
so it won't represent ideal analyzers, but because it is Hermitian, it could show up in other roles such as density 
operator or Hamiltonian matrices. (To be discussed later)

(2) Hamilton-Cayley equations
	

 If each variable ε in the secular equation (3.1.5f) is replaced by the matrix operator M and each εk  by 
εk 1 then the following matrix equation results.
	

 	

 	



    
0 = M − ε11( ) M − ε21( ) M − εn1( ) 	

 	

 	

 	

 (3.1.8)

This operator equation is known as the Hamilton-Cayley (HC) equation or Hamilton-Cayley theorem.
	

 The HC-equation is obviously true if M has the diagonal form of (3.1.4b). But, that is circular logic 
since one needs to prove the diagonal form is possible first. We shall arrive at this proof in a roundabout way. 
For now a quick check of the HC-equation for the "bad-cop" K-matrix (3.1.6b) is done below.

	



  

K2 − 6K + 51 = 4 1
3 2

⎛

⎝⎜
⎞

⎠⎟

2

− 6 4 1
3 2

⎛

⎝⎜
⎞

⎠⎟
+ 5 1 0

0 1

⎛

⎝⎜
⎞

⎠⎟
= 19 6

18 7

⎛

⎝⎜
⎞

⎠⎟
− 24 6

18 12

⎛

⎝⎜
⎞

⎠⎟
+ 5 0

0 5

⎛

⎝⎜
⎞

⎠⎟
= 0 0

0 0

⎛

⎝⎜
⎞

⎠⎟

                     = 4 1
3 2

⎛

⎝⎜
⎞

⎠⎟
−1 1 0

0 1

⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

4 1
3 2

⎛

⎝⎜
⎞

⎠⎟
− 5 1 0

0 1

⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= 3 1
3 1

⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−1 1
3 −3

⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 (3.1.8)example
The HC-equation works fine in this case, as it does for all matrices.
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(b) Eigenvector projectors (Distinct eigenvalues)
	

 To obtain eigenvectors we construct projection operators pk by replacing k-th factor (M - εk 1) from 
HC eq.(3.1.8) by unit matrix (   1   ) as follows. (We assume distinct eigenvalues  ε1 ≠ ε2 ≠ ...   here.)

	

 	

 	



    

p1 =      1     ( ) M − ε21( ) M − εn1( )
p2 = M − ε11( )      1     ( ) M − εn1( )
      
pn = M − ε11( ) M − ε21( )      1     ( )

  or: pk = 
  j≠k
∏ M − ε j1( ) 	

 	

 (3.1.9)

Each operator pk has a delightful property. The pk  solve the original eigenvector equation (3.1.5a).  

	

 	

 	

 (M - εk 1) pk  = 0  	

 or:	

 M pk = εk pk  	

 	

 	

 	

 (3.1.10a)
	

 	

 	

 pk (M - εk 1)  = 0    	

 or:	

 pk M = εk pk  	

 	

 	

 	

 (3.1.10)b

This is true because putting back the k-th factor (M - εk 1) restores the original HC-equation and gives zero. 
Relation M pk = εk pk implies that pk contains ket eigenvectors |εj) in its columns and pk  M= εk pk  implies 
that bra eigenvectors (εj|  in its rows. (The "soft-bra-ket" notation ( | or | ) denotes un-normalized left or right 
eigenvectors.) Consider the "bad cop" example again. First, here are its projectors worked out.

  
  
K −5⋅1= 4 1

3 2
⎛

⎝⎜
⎞

⎠⎟
−5 1 0

0 1
⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= −1 1

3 −3
⎛

⎝⎜
⎞

⎠⎟
=p1 ,    K −1⋅1= 4 1

3 2
⎛

⎝⎜
⎞

⎠⎟
−1 1 0

0 1
⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 = 3 1
3 1

⎛

⎝⎜
⎞

⎠⎟
=p2. (3.1.9)example

Note that matrix K eigenvector relations are satisfied many ways by the pj 's. Here are the "right handed" un-
normalized |εj)-ket solutions.

	

 	



  

        K ⋅p1      =1⋅p1 ,                      K ⋅p2       =5 ⋅p2  ,  

4 1
3 2

⎛

⎝⎜
⎞

⎠⎟
−1 1
3 −3

⎛

⎝⎜
⎞

⎠⎟
= 1⋅ −1 1

3 −3

⎛

⎝⎜
⎞

⎠⎟
 ,       4 1

3 2

⎛

⎝⎜
⎞

⎠⎟
3 1
3 1

⎛

⎝⎜
⎞

⎠⎟
= 5 ⋅ 3 1

3 1

⎛

⎝⎜
⎞

⎠⎟

4 1
3 2

⎛

⎝⎜
⎞

⎠⎟
−1
3

⎛

⎝⎜
⎞

⎠⎟
       = 1⋅ −1

3

⎛

⎝⎜
⎞

⎠⎟
 ,               4 1

3 2

⎛

⎝⎜
⎞

⎠⎟
3
3

⎛

⎝⎜
⎞

⎠⎟
     = 5 ⋅ 3

3

⎛

⎝⎜
⎞

⎠⎟

	

 (3.1.10a)example

Here are the "left handed" or (εj|-bra solutions.

	

 	



  

        p1 ⋅K          =1⋅p1 ,                        p2 ⋅K        =5 ⋅p2  ,  

−1 1
3 −3

⎛

⎝⎜
⎞

⎠⎟
4 1
3 2

⎛

⎝⎜
⎞

⎠⎟
= 1⋅ −1 1

3 −3

⎛

⎝⎜
⎞

⎠⎟
 ,       3 1

3 1

⎛

⎝⎜
⎞

⎠⎟
4 1
3 2

⎛

⎝⎜
⎞

⎠⎟
= 5 ⋅ 3 1

3 1

⎛

⎝⎜
⎞

⎠⎟

−1 1( ) 4 1
3 2

⎛

⎝⎜
⎞

⎠⎟
   = 1⋅ −1 1( )  ,           3 1( ) 4 1

3 2

⎛

⎝⎜
⎞

⎠⎟
 = 5 ⋅ 3 1( )

	

 (3.1.10b)example

This is a powerful way to calculate eigenbras and eigenkets. But, there is much more power hidden in this 
approach. We're just getting started! Read on.
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(1) Projector normalization
	

 We may normalize pk  operators to make the idempotent projection operators Pk  defined by 

     Pk =

  

j≠k
∏ M − ε j1( )
j≠k
∏ εk − ε j( )    	

 	

 	

 	

 	

 	

 (3.1.11)

The normalized projectors are denoted by upper case P and satisfy p-eigen-equations (3.1.10), too.

	

 	

  M Pk = εk Pk  ,	

 (M)2Pk  = (εk )2Pk  ...	

 	

 	

 	

 	

 (3.1.12a)
	

 	

 Pk M  = εk Pk  ,	

  Pk (M)2= (εk )2Pk ...	

 etc.	

 	

 	

 	

 (3.1.12b)
This normalization make P's idempotent (P2=P) as follows using: f(M)Pk = f(εk )Pk .

	

 	

 	

 PkPk =

  

j≠k
∏ M − ε j1( )
j≠k
∏ εk − ε j( ) Pk = j≠k

∏ εk − ε j( )
j≠k
∏ εk − ε j( ) Pk  = Pk 	

 	

 	

 (3.1.13a)

A projector orthonormalization relation follows since projectors, normalized or not, are mutually orthogonal. 
	

 	

 	

 pjpk = 0   for j≠  k      or:	

  PjPk = δjk Pk  	

 	

 	

 (3.3.13b)
Consider a "bad cop" example after (3.1.10) to begin seeing what power Pk-normalization relations give.

	

 	

 	


  

P1 =

−1 1
3 −3

⎛

⎝⎜
⎞

⎠⎟

1−5( ) = 4
1 −4

1

−4
3

4
3

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

            P2 =

3 1
3 1

⎛

⎝⎜
⎞

⎠⎟

5−1( ) = 4
3

4
1

4
3

4
1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
	

 	

 (3.1.11)example

Idempotence implies 4 ready-made sets of scalar products between 2 rows (bras) and 2 columns (kets).

    
  

P1 = P1P1 =
4
1 −4

1

−4
3

4
3

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

4
1 −4

1

−4
3

4
3

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

= 4
1 −4

1

−4
3

4
3

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

,       P2 = P2P2 =
4
3

4
1

4
3

4
1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

4
3

4
1

4
3

4
1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
= 4

3
4
1

4
3

4
1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

(3.1.13)examples

For example, (1st row)·(1st column) dot product  (εk|εk)  is already given by Pk-matrix element    (Pk)11  .

	


   

    (ε1 |ε1)= 4
1 −4

1( ) 4
1

−4
3

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

 = 1
4
= (P1)11  ,                        (ε2 |ε2 )= 4

3
4
1( ) 4

3

4
3

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

= 3
4
= (P2)11 .

One way to get a normalized bra 〈εk| or ket |εk〉 is to divide un-normal row-(εk| or column-|εj) by
   

(Pk)11 . 

    
   

ε1 =
|ε1)

(P1)11

= 1

4
1

4
1

−4
3

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

, ε1 =
(ε1 |

(P1)11

=
4
1 −4

1( )
4
1

,     ε2 =
|ε2 )

(P2)11

= 1

4
3

4
3

4
3

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

, ε2 =
(ε2 |

(P2)11

= 
4
3

4
1( )

4
3

.

A more elegant way is to ⊗-factor (Recall (2.1.22)) each Pj-matrix as shown here or in Fig. 3.1.3 below.

	



   

P1 =
4
1 −4

1

−4
3

4
3

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
= k1

2
1

−2
3

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
⊗ 2

1 −2
1( )/k1

=  ε1 ε1             

   (3.1.14a)	



   

P2 = 4
3

4
1

4
3

4
1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
= k2

2
1

2
1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
⊗ 2

3
2
1( )/k2

  =  ε2 ε2

      (3.1.14b)

This way shows you may shift magnitude and phase between a ket-factor |εj〉 and its companion bra-factor 〈εj| 
by varying a gauge adjustment constant kj to any non-zero value, real or complex. All the projection algebra 
discussed below is invariant to kj. (The first way above has (k1=1, k2=1/√3). Figure 3.1.3 has k1=1=k2.)
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〈 ε2 |= (3/2 1/2)/k2
1/2
1/2

|ε2 〉=k2

1/2
-3/2

|ε1 〉=k1

〈 ε1 |= (1/2 -1/2)/k1

| 1 〉 or 〈1 |

| 2 〉
or
〈2 |

1/4 1/2 3/4 5/41 3/2

-1/2

-1

-3/2

1/4

1/2

3/4Eigen-bra-ket
projectors
of matrix:

M= 4 1
3 2

 Fig. 3.1.3 Normalized eigenbras and eigenkets for asymmetric "bad cop" matrix K. (Here k1=1=k2 .)

The first thing to notice is that the "bad cop" eigenvectors do not satisfy quantum conjugation relations 
associated with axiom-2, that is eigenbra 〈εj| is NOT equal to Hermitian conjugate |εj〉† of eigenket  |εj〉.  Still, 
they are orthonormal and satisfy axiom-3. (They satisfy the "letter of the law" but not the intent, just like a 
"bad cop" would!) Each 〈εj| is 90° from |εk≠j〉 in Fig. 3.1.3 and normalized as per (3.1.13b) regardless of kj.
	

 	

 	

  〈ε1 |ε2〉 = 0 = 〈ε2 |ε1〉    	

 	

 	

 〈ε1 |ε1〉 = 1 =  〈ε2 |ε2〉 .   	


If you want to double the length of the first ket  |ε1〉 in Fig. 3.1.3, you may increase k1 from 1 to 2. Note this will 
halve the length of the first bra 〈ε1| so the scalar products and projectors do not change. It is remarkable that 
you may then vary the second ket  |ε2〉 and bra 〈ε2| similarly and independently of the first. These are simple 
examples of gauge transformations that revise length or wave amplitude standards for plots like Fig. 3.1.3.
	

 You should calculate P-matrices for the complex ("good cop") matrix H in (3.1.6a), and show that their 
eigenbra-kets also satisfy both the full quantum orthonormality and conjugation relations. The correct name for 

a “good cop” matrix is a normal matrix N, which simply means it commutes with its †-conjugate: N†N = NN†. 
Quantum theory is mainly concerned with normal matrices of which Hermitian (H† = H) and unitary (U†=U-1) 
matrices are the most common. However, we need to learn to deal with the “abnormal” matrices, as well. 
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Matrix products and eigensolutions for polarizer-counter arrangements

Consider a 45° tilted (θ1=β1/2=π/4 or β1=90°) sheet of polarizer lying below a y-sheet, that is, a β1=90° (45°-
polarized) filter followed by a β2=0° filter with bottom path open which is like a y-polarized sheet.

 

Polarizer pair = Analyzer pair
|ΨΙΝ〉

=|y〉
|Ψ
OUT

〉
=0.5|y〉

2Θin =

β
in
=180°

analyzerΘ = 45°=β/2analyzerΘ = 0°=β/2

2Θin =

β
in
=90°

(The β2=0° filter with bottom path open is the same as a β2=180° filter with top path open.) The transfer 
matrices for these filters are those of projection operators for the states they let pass. (Recall (2.1.22).)

  
T 2( ) = y y = 0

1

⎛

⎝⎜
⎞

⎠⎟
0 1( ) = 0 0

0 1

⎛

⎝⎜
⎞

⎠⎟

  

T 1( ) = ′x ′x =

1
2

1
2

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

1
2

1
2

⎛

⎝
⎜

⎞

⎠
⎟ =

1
2

1
2

1
2

1
2

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 (for ′x :θ2 = β2 / 2 = 45°)

Their matrix product is the transfer matrix for the total system of two filters.

	

 	

 	

 	



  

T (total) = T 2( ) ⋅T 1( ) = 0 0
0 1

⎛

⎝⎜
⎞

⎠⎟

1
2

1
2

1
2

1
2

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=
0 0
1
2

1
2

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

The product's eigenvectors determine the eigenstates or "own-states" that may pass with only a change of 
overall magnitude or phase. The secular equation yields two eigenvalues and two projectors.

	



  

λ2 − 1
2
λ + 0 = 0, or: λ=0, 1

2
 ,  gives projectors  P0 =

−1
2

0

1
2

1
2
− 1

2

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

0 − 1
2

= 1 0
−1 0

⎛

⎝⎜
⎞

⎠⎟
,   P1

2

=

0 0
1
2

1
2
− 0

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

1
2
− 0

= 0 0
1 1

⎛

⎝⎜
⎞

⎠⎟

The first eigenket is the non-zero column of P0, namely, 
 
0 = 1

−1

⎛

⎝⎜
⎞

⎠⎟
 with zero eigenvalue, that is, zero transfer. 

The second eigenket is the non-zero column 
 

1
2

= 0
1

⎛

⎝⎜
⎞

⎠⎟
 of P1/2 with eigenvalue 1/2, giving 50% amplitude. The 

figure above shows the latter eigenstate, namely y-polarization (βIN =180°), entering on the right then 
emerging on the left with its amplitude cut in half and the probability cut by (1/2)2= 1/4 or 25%, according to 

  
T total( ) 1

2
= 1

2

1
2

. The eigenbras, namely 
 

0 = 1 0( )  and 
 

1
2

= 1 1( )  describe what gets through going the 

opposite way, that is, left-to-right, according to equations 
   

0 T total( ) = 0  and 
  

1
2

T total( ) = 1
2

1
2

  These equations 

say that x-polarization gets stopped from going in the left end while 45° polarization would have a 50% 
transfer. The matrices T(β=180°) and T(β=90°) do not commute. Reversing their order gives a different 
product and a different set of eigensolutions. In this case, since the factor matrices are Hermitian, reversal 
would simply interchange the eigenbras with the eigenkets, that is, a †-operation. 
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(2) Projector completeness and spectral decomposition
	

 The normalized projection operators derive from matrix operator M and its eigenvalues εk.

	

 	

 	

 	

 	

 Pk =

  

j≠k
∏ M − ε j1( )
j≠k
∏ εk − ε j( )    	

 	

 	

 	

 	

 (3.1.15a)

The projectors Pk have been shown to be eigenoperators for M.
	

 	

 	

 	

 	

 Pk  M= M Pk = εk Pk  . 	

 	

 	

 	

 (3.1.15b)
They have also been shown to satisfy projector orthonormality and idempotency. 
	

 	

 	

 	

 	

  PjPk = δjk Pk  . 	

 	

 	

 	

 	

 (3.1.15c)
Now we will demonstrate that they also satisfy a projector completeness relation  
	

 	

 	

 	

      1 = P1 + P2  + ...+ Pn  	

 	

 	

 	

 	

 (3.1.15d)
and a very powerful relation called spectral decomposition of an operator M.
	

 	

 	

 	

  M = ε1 P1 + ε2 P2  + ...+ εn Pn  	

 	

 	

 	

 (3.1.15e)
	

 The completeness relation (3.1.15d) resembles the abstraction (2.1.20) of axiom-4 repeated here.

	

 	

 	

 	

 	


   
1 =

k=1

n
∑ Pk =

k=1

n
∑ k k 	

 	

 	

 	

 	

 (3.1.16)

The similarity is no accident, but there is a logical difference between (3.1.15d) and (3.1.16). The latter is a 
physical axiom of quantum wave path completeness, while the former is a algebraic theorem being proved 
here. The spectral decomposition relation (3.1.15e) follows by operating on the completeness relation (3.1.15d) 
with the matrix  M using its eigen-operator relation (3.1.15b) that is an algebraic result.
	

 First, let us check that (3.1.15d) and (3.1.16) are correct for examples (3.1.14) expressed in terms of an 
outer or Kronecker tensor (⊗) product of eigen-bras and kets from "bad cop" matrix K.

    
   

P1 =
4
1 −4

1

−4
3

4
3

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
= k1

2
1

−2
3

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
⊗ 2

1 −2
1( )/k1 = ε1 ε1 ,   P2 =

4
3

4
1

4
3

4
1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
= k2

2
1

2
1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
⊗ 2

3
2
1( )/k2 = ε2 ε2 ,       (3.1.14)repeat

This agrees with the original results in (3.1.11)example . Furthermore, they sum up to 1 as required. More 
importantly, they provide the following spectral decomposition (3.1.15e) of K .  

   
  

1 = 1 0
0 1

⎛

⎝⎜
⎞

⎠⎟
= 4

1 −4
1

−4
3

4
3

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
+ 4

3
4
1

4
3

4
1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

  (3.1.15d)example              
  

K = 4 1
3 2

⎛

⎝⎜
⎞

⎠⎟
= 1 4

1 −4
1

−4
3

4
3

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
+5 4

3
4
1

4
3

4
1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

(3.1.15e)example

Spectral decomposition quickly finds the 100th power K100 of K using (3.1.15e).

	

 	


  

K100 = 4 1
3 2

⎛

⎝⎜
⎞

⎠⎟

100

= 1100 4
1 −4

1

−4
3

4
3

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
+5100 4

3
4
1

4
3

4
1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
= 1

4
1+3⋅5100 5100 −1
-3+3⋅5100 5100 + 3

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

Idempotence and orthonormality (3.1.15c) kills all cross terms so a function f(M) of a matrix M reduces to a 
sum of projectors weighted with the function evaluated at M-eigenvalues εk.
	

 	

 	

 	

 f(M)= f(ε1) P1 + f(ε2) P2  + ...+ f(εn) Pn  	

 	

 	

 (3.1.17)

This is a functional spectral decomposition of an operator M . (Try K-1, or √K to test this technique.)
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 Now to prove the matrix completeness relation (3.1.15d) we will appeal to the numerical analysis lore. 
The formula (3.1.17) for functional spectral decomposition resembles the terms in the famous Lagrange 
interpolation formula of a function f(x) approximated by its value at N discrete points.

	

 	

 	



  

L f (x)( ) = f (xm)·
m=1

N
∑ Pm(x)     where:  Pm(x) =

Π
j≠m

N
x − x j( )

Π
j≠m

N
xm − x j( )

 	

 	

 	

 (3.1.18)

Lagrange’s formula fits a polynomial of degree   N −1  to  N  arbitrary points 
   

x1,x2,,xn{ }  on a function curve 

  y = f (x) .  Note that each polynomial term   Pm(x)  has zeros at each point 
 
x = x j  except  x = xm where  Pm(xm)=1 . So 

at each of these points xm  this L-approximation becomes exact: 
  
L f (xm)( )= f (xm) .  

	

 If   f (x)  happens to be a polynomial of degree   N −1  or less, then the L-approximation is exact 
everywhere, that is, 

  
L f (x)( )= f (x)  for all points x.  This is true since one point determines a constant, two 

points uniquely determine a line, three points uniquely determine a parabola, and N points uniquely determine 

an 
  

N −1( )th  degree curve.  Hence if 
  

N > 1( )  the following special cases of a constant 
  

f (x) = 1( )  and a line 

  
f (x) = x( )  are exactly determined by

  
L f (x)( )= f (x)  for all points x . 

	

 	

 	

 	


  
 1= Pm x( )

m=1

N
∑ ,	

 	

 	

 	



  
x= xmPm x( )

m=1

N
∑

The first corresponds to matrix completeness (3.1.15d) and the second one to spectral decomposition (3.1.15e). 

	

 Now a matrix M and its powers Mn obey the same algebra as a simple variable x and its powers xn. So 
completeness relation is proved. Furthermore, it is true for all distinct values of the eigenvalue parameters 
{ ε1 , ε2 , .., εn }. Completeness relation (3.1.15d) seems to be more than true! This is easily seen for N=2.

     

   

P1 + P2 =
j≠1
∏ M − ε j1( )
j≠1
∏ ε1 − ε j( ) + j≠1

∏ M − ε j1( )
j≠1
∏ ε2 − ε j( ) =

M − ε21( )
ε1 − ε2( ) +

M − ε11( )
ε2 − ε1( ) =

M − ε21( )− M − ε11( )
ε1 − ε2( ) =

−ε21+ ε11
ε1 − ε2( ) = 1 (for all  ε j ) 

Direct algebraic verification of universal identity of completeness (3.1.15d) grows algebraically laborious for 
larger N=3,4,..., so it is nice that the Lagrangian analogy shows its εk independence for all N.
	

 However, the εk are required to be the correct eigenvalues εk of matrix M for the other relations in 
(3.1.15) such as orthogonality and spectral theorems.
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Eigensolutions are stationary or extreme-value solutions

	

 Eigenvalues λ of a matrix L can be viewed as stationary-values of its quadratic form QL(r)=〈r|L|r〉, 
that is, the min-max values of the function Q(r) subject to the constraint of unit norm: C(r)=〈r|r〉=1. Multi-
dimensional constrained min-max problems may be solved using Lagrange multiplier theory as we will sketch 
here. The idea is to find those values of QL and vector r for which the QL(r) curve just touches the constraint 
curve C(r). Stated another way, imagine walking around the constraint circle C(r)=〈r|r〉=1 in the figure below 
and looking for those places where one of the QL(r)=const. ellipses is tangent to the unit circle C(r)=1. 
Lagrange pointed out that such points would have the gradient ∇QL pointing in the same direction as ∇C , that 
is, the two gradient vectors ∇QL and ∇C would be proportional to each. In honor of Lagrange, the 
proportionality constant is taken to be λ in	

 ∇QL = λ ∇C, where λ is called a Lagrange Multiplier. 

	

 	



Constraint curve
〈r|r〉=C=1

Eigenvector
|r〉=|ε2〉

where
∇∇QL=λ∇∇C
with
λ=ε2

Quadratic curves
〈r|L|r〉=QL=const.

.

QL=ε2

QL=ε1
Eigenvector
|r〉=|ε1〉

where
∇∇QL=λ∇∇C
with
λ=ε1

The fact that λ symbolizes both the eigenvalue and a Lagrange multiplier is no coincidence; they are equal 
here. The gradients ∇QL =〈r|L + L|r〉  and ∇C=〈r| + |r〉 in Lagrange equation give eigenvalue equations.
	

 	

 	

 	

 	

  L|r〉 =  λ|r〉  and  〈r|L=〈r| λ  
On the eigen-directions the Lagrange multiplier is also the value of the quadratic form: λ=QL(r)=〈r|L|r〉  
	

 for: |r〉= |ε1〉 , QL(r)=〈ε1|L|ε1〉= ε1,  	

 	

  and for: |r〉= |ε2〉 , QL(r)=〈ε2|L|ε2〉= ε2. 
〈r|L|r〉 is called an expectation value of matrix L at r. Eigenvalues are extreme expectation values.
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(3) Diagonalizing transformations from projectors
	

 The real goal of many quantum problems is to find a d-tran matrix, the transformation matrix that 
diagonalizes some quantum analyzer matrix T or other types of matrices not yet discussed like a scattering 
matrix S or a Hamiltonian matrix H. If all (meaning a complete set) of the projection matrices Pk are known 
for a given matrix M then the diagonalization transformation (d-tran) matrix is easy to get.
	

 Here's how. First you use the columns of the Pk matrices to give a set of normalized eigenket vectors. 
This was described in the preceding section using an asymmetric ("bad cop") matrix K as an example and will 
be discussed further in the following sections. Then you load these columns into the d-tran matrix in whatever 
order you find convenient. That's all there is to it. 
	

 Consider that old "bad cop" matrix K again. Since it is asymmetric it requires an extra step you won't 
need for quantum matrices, but it's instructive to see this, too, given our eigenvectors (3.1.14) in Fig. 3.1.3. 

	



  

 ε1 = 2
1 −2

1( ), ε2 = 2
3

2
1( ){ }   ,    ε1 = 2

1

−2
3

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

, ε2 = 2
1

2
1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

    (ε1,ε2 )← (1,2) d−Tran matrix               (1,2)← (ε1,ε2 ) INVERSE d−Tran matrix

   
ε1 1 ε1 2

ε2 1 ε2 2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= 2

1 −2
1

2
3

2
1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

      ,   
1 ε1 1 ε2

2 ε1 2 ε2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= 2

1
2
1

−2
3

2
1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

 

Load distinct bras 〈ε1| and 〈ε2| into d-tran rows, and load kets |ε1〉 and |ε2〉 into inverse d-tran columns. It helps 
to use Dirac labeling for all components so actual transformation is done correctly as shown below.

	



  

 
ε1 1 ε1 2

ε2 1 ε2 2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
⋅  

1 K 1 1 K 2

2 K 1 2 K 2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
⋅

1 ε1 1 ε2

2 ε1 2 ε2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

ε1 K ε1 ε1 K ε2

ε2 K ε1 ε2 K ε2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

       2
1 −2

1

2
3

2
1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

       ⋅        4 1
3 2

⎛

⎝⎜
⎞

⎠⎟
              ⋅     2

1
2
1

−2
3

2
1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

        =             1 0
0 5

⎛

⎝⎜
⎞

⎠⎟

It is a good idea to check that your inverse-d-tran is really the inverse of your d-tran.

	

 	



  

 
ε1 1 ε1 2

ε2 1 ε2 2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
⋅

1 ε1 1 ε2

2 ε1 2 ε2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

ε1 1 ε1 ε1 1 ε2

ε2 1 ε1 ε2 1 ε2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

      2
1 −2

1

2
3

2
1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

        ⋅   2
1

2
1

−2
3

2
1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

         =             1 0
0 1

⎛

⎝⎜
⎞

⎠⎟

In standard quantum matrices, inverse of a d-tran matrix is its Hermitian conjugate (†). (Not so above!)

	



 

ε1 1 ε1 2

ε2 1 ε2 2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

1 ε1 1 ε2

2 ε1 2 ε2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

†

=
1 ε1

*
2 ε1

*

1 ε2
*

2 ε2
*

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
=

1 ε1 1 ε2

2 ε1 2 ε2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

−1

The outer matrices are equal in all cases, even for "bad cop" matrix K. The inner matrix definition of (†) can be 
set equal to the outer ones for unitary or Hermitian matrices like the "good cop" example H.
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Matrix products and eigensolutions for active analyzers

Consider a 45° tilted (θ1=β1/2=π/4 or β1=90°) analyzer followed by a untilted (β2=0) analyzer shown below. 
Active analyzers have both paths open and a phase shift e-iΩ between each path as in the examples introduced 
in Fig. 1.3.5. Here the first analyzer has Ω1=90°. The second has Ω2=180°. 

	



|ΨΙΝ〉|ΨOUT〉
|ΨΙΝ〉=|y〉

2Θin =

β
in
=180°

The transfer matrix for each analyzer is a sum of projection operators for each open path multiplied by the 
phase factor that is active at that path. Here we will simply apply the entire phase factor e-iΩ1 =e-iπ/2 to the top 
path in the first analyzer and the factor e-iΩ2 =e-iπ to the top path in the second analyzer.

  
  
T 2( ) = e−iπ x x + y y = e−iπ 0

0 1

⎛

⎝
⎜

⎞

⎠
⎟          

  

T 1( ) = e−iπ / 2 ′x ′x + ′y ′y = e−iπ / 2

1
2

1
2

1
2

1
2

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

+

1
2

−1
2

−1
2

1
2

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=

1− i
2

−1− i
2

−1− i
2

1− i
2

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

The matrix product T(total)=T(2)T(1) relates input states |ΨIN〉 to output states: |ΨOUT〉 =T(total)|ΨIN〉 

	



  

T total( ) = T 2( )T 1( ) = −1 0
0 1

⎛

⎝⎜
⎞

⎠⎟

1− i
2

−1− i
2

−1− i
2

1− i
2

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=

−1+ i
2

1+ i
2

−1− i
2

1− i
2

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

= e−iπ / 4

−1
2

i
2

−i
2

1
2

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

~

−1
2

i
2

−i
2

1
2

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

We drop the overall phase e-iπ/4  since it is unobservable. T(total) yields two eigenvalues and projectors.

	



  

λ2 − 0λ −1= 0, or: λ=+1, −1
,  gives projectors    P+1 =

−1
2
+1 i

2
−i
2

1
2
+1

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

1− −1( ) =

−1+ 2 i
−i 1+ 2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

2 2
,   P−1 =

1+ 2 −i
i −1+ 2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

2 2

The first eigenvector |+1〉=
  

−1+ 2
−i

⎛

⎝
⎜

⎞

⎠
⎟ =

0.414
−i

⎛

⎝⎜
⎞

⎠⎟
 is a vertical left-handed ellipse with ratio x:y=0.414:1. This 

eigen-ellipse must exit analyzer-2 as the same ellipse. Analyzer-3 yields α3 =90° and β3 =-135°.

       

|ΨΙΝ〉

=|+1〉
|ΨOUT〉
=|+1〉

2Θin =

β
in
=-135°

The other eigenvector |−1〉 is horizontal right-handed ellipse with inverse ratio x:y=1:2.414 and angles α3 =90° 
and β3 =45°. The meaning of the electron spin angles α and β is described in section 2.10.
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(c) Eigenvector projectors (Degenerate eigenvalues)
	

 We have just shown that any matrix with distinct eigenvalues can be spectrally decomposed, i.e., 
diagonalized. What if the secular equation (3.1.5d) of a an N-by-N matrix H has some degenerate eigenvalues 

  
ε1 = ε2 = ε1 ? If so, it is possible that H cannot be completely diagonalized, though this is rarely the case. It 
all depends upon whether or not the HC equation (3.1.8) really needs its repeated factors. Suppose each 
eigenvalue 

 
ε j  is 

  
 j -fold degenerate so the secular equation factors as follows:

	

 	


   
S ε( ) = 0 = −1( )N

ε − ε1( )1 ε − ε2( )2 … ε − ε p( ) p 	

 	

 	

 (3.1.19a)

where 
   
1 + 2 +…+  p = N .  Then the   N -th  degree HC equation is:

	

 	


    
0 = −1( )N

H − ε11( )1 H − ε21( )2 … H − ε p1( ) p 	

 	

 	

 (3.1.19b)

Each eigenvalue 
 
ε j  is repeated 

  
 j  times as is each factor 

  
H − ε j1( )  in the HC equation. The number 

  
 j  is 

called the degree of degeneracy of eigenvalue 
 
ε j .

	

 Suppose, now you find that only one of each distinct factor is needed to give a matrix zero, that is, the 
following p-th degree equation holds.

	

 	

 	


    
0 = H − ε11( ) H − ε21( )… H − ε p1( ) 	

 	

 	

 	

 (3.1.20)

This is just like the distinct eigenvalue situation in equation (3.1.8), so the matrix  H  is completely 
diagonalizable and spectrally decomposable using the same techniques described previously.

(1) Minimal equation and diagonalizability criterion
	

 Otherwise, if  H  does not satisfy a non-degenerate equation then it is not diagonalizable. The lowest 
degree polynomial equation a matrix  H  can satisfy is called its minimal equation.  (If all roots are distinct, that 
is p=N,then the HC-equation is the minimal equation.)  

	

 When only one of each of p distinct factors 
  

H − ε j1( )  in the minimal polynomial is needed to give zero, 

then removing that factor gives p non-zero 
  

p −1( )-th  degree operators 
   

P1,P2 ,...,Pp{ }  following (3.1.15a). They 

are idempotent 
   

Pj
2 = Pj( ) , orthogonal 

   
PiPj = 0 if i ≠ j( )  and complete 

   
Pj

j=1

p
∑ = 1

⎛
⎝⎜

⎞
⎠⎟

 just as in the case of no repeated 

roots. Here is the key diagonalizability criterion.

	

 In general, an orthogonal and complete set of 
   
Pj's  is possible, if and only if, the H minimal 

 equation has no repeated factors. Then and only then is matrix H diagonalizable.

(2) Nilpotent operators ("Bad" degeneracy)

	

 Repeated 
  

H − ε j1( )  factors in the minimal equation are always fatal for the process of building a 
complete set of idempotents Pj.  Even one repeat is fatal, suppose:
	



   
0 = H − ε11( )2 H − ε21( )…,  but:  N= H − ε11( ) H − ε21( )… ≠ 0 	

 	

 	

 (3.1.21)

Removal of one repeat gives a non-zero operator  N  whose square has the missing 
  

H − ε11( )  that gives zero.
	



   
 N2 = H − ε11( )2 H − ε21( )2 … = 0
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(The presence of additional commuting factors 
   

H − ε21( )…  does not save it.)  Such an operator is called a 

nilpotent operator or, simply a nilpotent. A nilpotent is a troublesome and 'unwanted beast' for the basic 
diagonalization process but an essential feature of Non-Abelian symmetry analysis.
	

 For example, consider a 'bad' degenerate matrix. (This is not just a "bad cop" but a real "crook"!)

	

 	

 	

 	

 	

 	


   
B = b 1

0 b
⎛

⎝⎜
⎞

⎠⎟
	

 	

 	

 	

 	



Its secular equation has two equal roots 
  
ε = b twice( ) .

	

 	

 	

 	


  
S ε( ) = ε2 − 2bε + b2 = ε − b( )2 = 0 	

 	

 	

 	



The HC equation is then as follows.

	

 	

 	

 	


   
S B( ) = B2 − 2bB + b21 = B − b1( )2 = 0 	

 	

 	



The matrix factor 

	

 	

 	

 	

 	


   
N = B − b1 = 0 1

0 0

⎛

⎝⎜
⎞

⎠⎟
,	

 	

 	

 	

 	

 (3.1.22)

is an example of nilpotent eigen-projector which satisfies 

	

 	

 	


   
N2 = 0 but N ≠ 0( )  and:  BN = bN = NB .	

 	

 	

 	

 (3.1.23)

The nilpotent contains only one non-zero eigenket and one eigenbra. 

	

 	

 	


  
b = 1

0

⎛

⎝⎜
⎞

⎠⎟
,           b = 0 1( )  	

 	

 	

 	

 	

 	

 (3.1.24)

Also, they are orthogonal to each other!  ( 
 

b b = 0  ) There can be no completeness, orthonormality, spectral 

decomposition or diagonalization for this 'bad' degenerate matrix in the ordinary sense of (3.1.17).
	

 Let us not give the impression that nilpotents or other "bad" matrices are not valuable for general 
quantum theory. In fact the operator described in (3.1.22) is an example of an elementary operator eab  
	

 	

 	

 	

 e12 =  | 1 〉〈 2 |   	

	

 	

 	

 	

 	


Along with its partners it makes up a 4-dimensional (recall Sec. 2.2d) U(2) unit tensor operator space 
	

 U(2) op-space= {e11 =  | 1 〉〈 1 | , e12 =  | 1 〉〈 2 | , e21 =  | 2 〉〈 1 | , e22 =  | 2 〉〈 2 | } (3.1.25a)
out of which all U(2) operators are made by linear combination. They obey a simple matrix algebra 
	

 	

 	

 eij ekm = δjk eim 	

 	

 	

 	

 	

 	

    	

 (3.1.25b)
This is very useful stuff later on. Just be aware you cannot diagonalize an eab for a≠b !
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(3) Multiple diagonalization ("Good" degeneracy)
An example of a 'good' degenerate (but still diagonalizable) matrix is the anti-diagonal "gamma" matrix G 
which Dirac used to generate Lorentz transformations.

	

 	

 	

 	



  

G =

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

	

 	

 	

 	

 	

 	

 (3.1.26)

It has a 4th degree secular equation.

	

 	

 	

 	


  
S ε( ) = 0 = ε4 − 2ε2 +1= ε −1( )2 ε +1( )2

There are two pairs of degenerate roots 
 
ε = ±1,  twice( ) , but  G  satisfies only a second degree minimal equation. 

(Check this!)
	

 	

 	

 	

 	

 0 = (G - 1) (G + 1)	

 	

 	

 	

 	

 (3.1.27)
This allows us to use theory based on projection formula (3.1.15) to derive two projection operators.

	



   

P1
G =

G − −1( )1
1− −1( ) = 1

2

1 0 0 1
0 1 1 0
0 1 1 0
1 0 0 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

	

 	



   

P−1
G =

G − 1( )1
−1− 1( ) = 1

2

1 0 0 −1
0 1 −1 0
0 −1 1 0
−1 0 0 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

	

 	

 	

         	

 	

 (3.1.28a)	

 	

 	

 	

 	

 	

 (3.1.28b)
These satisfy all orthonormality and completeness or spectral decomposition relations (3.1.15a-d).
	

 The main difference here is that each of these projectors contains two linearly independent ket vectors:  
from the first and second columns of   P1  we get 

 
11)  and 

 
12 ) , and from   P−1  we get 

 
−11)  and 

 
−12 ) .  (Recall that 

we showed in (3.1.20)example H that each 
  
Pj  contains all the scalar products and normalization constants of its 

bra-rows and ket-columns.)

	



 

11 =
11)

2
= 1

2

1
0
0
1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

12 =
12 )

2
= 1

2

0
1
1
0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

−11 =
−11)

2
= 1

2

1
0
0
−1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

−12 =
−12 )

2
= 1

2

0
1
−1
0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 (3.1.29)

This example is particularly convenient since the 
 
1( 2)  components 

   
Pj( )12

 happen to be zero, and therefore first 

and second rows are already orthogonal 
  

j1 j2( ) = 0( ) . Otherwise we would need to orthogonalize to get a second 

orthonormal eigenket. Such a process is called Gram-Schmidt orthogonalization which is described below.
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Gram-Schmidt orthogonalization

	

 Suppose a non-zero scalar product 
  

j1 j2( ) ≠ 0( )  exists between two vectors. Then we would need to 

orthogonalize to get a second orthonormal eigenket
	

 	

 	

 	

 	



  
jnormal 2 = N1 j1) + N2 j2 ) 	

 	

 	

 	

 (3.1.30a)

such that
	

 	

 	



  
j1 jnormal 2( = 0 = N1 11( ) + N2 1 2( )

	

 	


  

jnormal 2 jnormal 2 = 1= N1
2 11( ) + N1N2 1 2( ) + 2 1( )( ) + N2

2 2( 2)
As we noted the a-row and b-column scalar product matrix is just the 

  
Pj  matrix, itself.  

	

 	

 	

 	

 	


  

a b( ) = Pj( )ab
	

 	

 	

 	

 	



 
a b( )  is sometimes called a Grammian matrix. Solving for (3.1.30a) coefficients gives

	

 	


  
N1 = −N2

1 2( )
11( )    where 

  

N2 = 1

2 2( ) − 1 2( ) 2 1( )
11( )

	

 	

 	

 	

 	

 (3.1.30b)

 This Gram Schmidt orthonormalization (3.1.30) is not a unique solution since any linear combination of 
degenerate eigenvectors is still an eigenvector. To help sort this out we consider below a more elegant 
procedure using spectral decomposition.

(d) Projector splitting:  A key to algebraic reduction
	

 Dirac notation for the  G  example completeness relation using eigenvectors (3.1.29) is the following:

	

 	


   
1= P1

G + P−1
G = 11 11 + 12 12 + −11 −11 + −12 −12 	

 	

 	

 	

 (3.1.31a)

	

 	

 	

       
  
= P11

+ P12
+ P−11

+ P−12
	

 	

 	

 	

 	

 	

 (3.1.32b)

Here the original projection operators (3.1.28) have each been “split” in two.

	



   

P1
G = P11

+ P12
= 1

2

1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

+ 1
2

0 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

                                     
 
= 11 11 + 12 12 	

 	

 	

 	

 	

 	

 	

 (3.1.32c)

	



   

P−1
G = P−11

+ P−12
= 1

2

1 0 0 −1
0 0 0 0
0 0 0 0
−1 0 0 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

+ 1
2

0 0 0 0
0 1 −1 0
0 −1 1 0
0 0 0 0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

                                         
 
= −11 −11 + −12 −12 	

 	

 	

 	

 	

 	

 (3.1.32d)
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Idempotent projector splitting, such as (3.1.32c-d), is an important process in the application of symmetry 
groups to quantum theory. Our first examples are the completeness splitting of the unit operator  1 .  Let us now 
see the power of splitting algebra and an important technique in symmetry analysis.
	

 Suppose we are given two mutually commuting matrix operators:  the  G  from (3.1.26) before, and 
another operator  H .

	

 	

 	

 	



  

H =

0 0 2 0
0 0 0 2
2 0 0 0
0 2 0 0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

	

 	

 	

 	

 	

 	

 (3.1.33)

(First, it is important to verify that they do, in fact, commute.)

	



  

GH =

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

0 0 2 0
0 0 0 2
2 0 0 0
0 2 0 0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=

0 2 0 0
2 0 0 0
0 0 0 2
0 0 2 0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=

0 0 2 0
0 0 0 2
2 0 0 0
0 2 0 0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

= HG

	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 (3.1.34)

This implies that the projection 
  
Pg

G  operators (3.1.28) of  G  commute with any new projection operators   Pk
H  

generated by  H .  This will lead to a combined set   PGH  which simultaneously spectrally decomposes both  G  
and  H . The new   Pk

H  operators follow from the secular and minimal equations for  H .

	


   
P2

H =
H − −2( )1( )
2 − −2( ) 	

 	

 	

 	



   
P−2

H =
H − 2( )1( )
−2 − 2( )

                  

 

= 1
2

1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

	

	

 	

       

 

= 1
2

1 0 −1 0
0 1 0 −1
−1 0 1 0
0 −1 0 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

	

 	

 	

 (3.1.35a)

These obey the following completeness relations and spectral decomposition for  G  and  H , separately.

	

 	

    1 = P1
G + P−1

G 	

 	

 	

 	

 	

    1 = P2
H + P−2

H 	

 	

 	

 (3.1.35b)

	

 	


   
G = 1( )P1

G + 1( )P−1
G 	

 	

 	

 	



   
H = 2( )P2

H + −2( )P−2
H 	

 	

 (3.1.35c)

The old "1=1.1 trick"
By multiplying the two completeness relations one obtains a set of projectors that, together, satisfy 

orthonormality 
   

because Pj
GPk

H = Pk
H Pj

G( )  and completeness 
  

because 1=1 ⋅1( ) .

	

 	


   
1=1 ⋅1 = P1

G + P−1
G( ) P2

H + P−2
H( ) 	

 	

 	

 	

 	

 	

 (3.1.36a)

	

 	


   
1 = P1

GP2
H + P1

GP−2
H + P−1

G P2
H + P−1

G P−2
H( ) 	

 	

 	

 	

 	

 (3.1.36b)

(We call this the 'the old one-equals-one-times-one' trick!) Matrix multiplication gives four new operators 
which in this case are orthonormal and complete projectors. 
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P1,2
GH ≡ P1

GP2
H = P1,−2

GH ≡ P1
GP−2

H = P−1,2
GH ≡ P−1

G P2
H = P−1,−2

GH ≡ P−1
G P−2

H =

1
4

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

1
4

1 −1 −1 1
−1 1 1 −1
−1 1 1 −1
1 −1 −1 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

1
4

1 −1 1 −1
−1 1 −1 1
1 −1 1 −1
−1 1 −1 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

1
4

1 1 −1 −1
1 1 −1 −1
−1 −1 1 1
−1 −1 1 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 (3.1.37a)
(This isn't the way it always works out. Some may come out zero, but the ones that are not zero must be 
orthonormal idempotent projectors.) Each is automatically an eigen-operator of both  G  and  H . (Note:  H  
commutivity is needed!)

	


   
GPg ,h

GH = GPg
GPh

H = εg
GPg ,h

GH 	

 	

 	


   
HPg ,h

GH = HPg
GPh

H = Pg
GHPh

H = εh
H Pg ,h

GH

	

 	

 	

 	

 (3.1.37b)	

 	

 	

 	

 	

 	

 (3.1.37c)

Thus, the 
   
Pj,k

GH  spectrally decompose both  G  and  H , simultaneously.

	

 	


   
G = 1( )P1,2

GH + 1( )P1,−2
GH + −1( )P−1,2

GH + −1( )P−1,−2
GH 	

 	

 	

 	

 (3.1.37d)

	

 	


   
H = 2( )P1,2

GH + −2( )P1,−2
GH + 2( )P−1,2

GH + −2( )P−1,−2
GH 	

 	

 	

 	

 	

 (3.1.37e)

	

 So, by simple matrix multiplication we have accomplished an idempotent splitting like that in (3.1.32) 
without needing to Gram-Schmidt orthogonalize bra-kets. (Yes!)

	

 	


   
P1

G = P1,2
GH + P1,−2

GH    (3.1.38a)	

 	


   
P−1

G = P−1,2
GH + P−1,−2

GH      (3.1.38b)

Most important, the splitting is “just right” for the new  H  matrix; finding the “right” Gram-Schmidt 
combination (3.1.30) to diagonalize both H and G at once, would require even more calculation.
	

 In this case, no further idempotent splitting of (3.1.36b) is possible.  For  N − by − N  matrix operators 
there can have no more than  N  linearly independent eigenvectors and no more than N orthonormal projectors.  

Each 
   
Pg ,h

GH  in (1.2.50c) has in its columns and rows one and only one independent eigenvector.  Such an 

‘unsplittable’ projector is called an irreducible idempotent or projector.
	

 You can tell how many irreducible projectors are "hiding" inside a given idempotent projector P
(reducible) matrix by taking its trace. This splitting number is equal to the trace.
	

 Splitting number = TraceP(reducible)= Number of irreducible projectors in P 	

 (3.1.39)
Irreducible projectors have unit trace!
	

 	

 	

 	

 TraceP(irreducible)= 1 	

 	

 	

 	

 	

 (3.1.40)
Each of (3.1.37c) projectors have a unit trace as they should.
	

 	

 Note that such a complete splitting as we saw in (3.1.37) was not guaranteed. It depends on 

what  H  operator we chose to do the splitting. It could have happened that one or more of the 
   
Pg

GPh
H = Pg ,h

GH  

products in (3.1.37b) came out to be zero. Then some of the non-zero 
   
Pg ,h

GH will not be irreducible. Suppose, for 

example, we chose   H = 2G :  then 
   
P1,−2

GH  and 
   
P−1,2

GH  are zero while 
   
P1,2

GH = P1
G  and 

   
P−1,−2

GH = P−1
G  remain reducible. 
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 Having a set of N irreducible  G  and  H projectors like (3.1.37) is useful since any N-by-N operator  K  
which commutes with  G  and  H  must share exactly the same  N  projectors no matter what is the form of  K ‘s 
individual completeness relation.

	

 	

 	

 	

 	


   
1 = Pk

K

k=1

n
∑   n ≤ N( )

To see this note that a product of  K completeness relation by 
   
Pg ,h

GH  must have one and only one non-zero term.

	

 	

 	

 	


   
Pgh

GH = Pg ,h
GH

k=1

N
∑ Pk

K = Pg ,h
GH Pk '

K 	

 	

 	

 	

 	

 (3.1.41)

Since 
   
Pg ,h

GH  is irreducible it cannot split into new orthogonal idempotent projectors, and this implies that each 

  PGH  is already an eigen-operator for  K .
	

 	

 	

 	



   
KPg ,h

GH = Pg ,h
GH KPk ' = εk '

K( )Pg ,h
GH 	

 	

 	

 	

 (3.1.42)

We will then have diagonalized K with less mathematical labor than the old Gram-Schmidt methods.

(e) Why symmetry groups are useful
	

 The results ending with (3.1.42) illustrate an important symmetry technique. Imagine you wanted to 
diagonalize a complicated matrix  K  and knew that it commutes with some other operators  G  and  H  for which 
irreducible projectors are more easily found.  Then you don’t have to bother with the secular equation of  K  
and may just multiply  K  by the projectors provided by  G and  H  as in (3.1.42) above.

	

 In later chapters we will see how having a group of operators 
   

G, H, …{ }  that commute with a big 

system matrix  K  helps to reduce its secular equation and sometimes solve it completely. When transformation 
operators  G, H,..(like rotations) commute with an analyzer matrix T=K (or other type of quantum system 
matrix K ) it means that 

	

 	

 K G = G  K  	

 or 	

  G† K G = K  or  G K G† = K  	

 	

 (3.1.43)
which means K is invariant to the transformation induced by G. This is called a symmetry of the system K 
stands for and it is often pretty easy to spot. The group of these operators is called a symmetry group.
	

 Entire groups can be spectrally decomposed into irreducible projection operators, and then these can be 
used to decompose the system matrix K into one set of P’s made of G, H, symmetry operators.

More to the point, because K is a spectral combination (3.1.15c) of P’s and P’s are in turn 
combinations (3.1.15a) or (3.1.37) of powers and products of G, H,… it follows that K is a linear combination 
of its own group of symmetry operators, including G, H,… and their products. This is a very powerful idea! It 
will be useful in some problems and then be used extensively following Unit 3.

To summarize, we use the spectral decomposition of some easily “killed” operators to attack more 
difficult ones, much as a “killed” virus in a vaccine saves us from suffering troublesome or dangerous diseases.
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Quadratic surfaces help to visualize matrix operations

	

 The mapping M|c〉=|r〉 of a unit circle 〈c|c〉=1 by symmetric matrix M is an ellipse 1=〈r|M-2|r〉 as 
shown in a previous sidebar. If, instead of mapping vectors |c〉 on a circle, we map vectors |q〉 on a surface 
corresponding to a unit constant quadratic form 1 = 〈q|M|q〉, the resulting vectors |p〉 = M|q〉 of this mapping 
will lie on a related quadratic surface given by 
	

 	

 	

 	

 	

   1 = 〈q|M|q〉 = 〈q|p〉= 〈p|M-1|p〉    
The surface 1 = 〈p|M-1|p〉 defined by vectors |p〉 is called the conjugate or inverse quadratic form. An example 
of such a mapping is displayed in the figure below. The semi-axes of the |p〉 ellipse are square roots of 
eigenvalues √ε1 and √ε2 while |q〉 ellipse axes are inverse roots 1/√ε1 and 1/√ε2. 

	



M

√ε2 1/√ε1
√ε1 1/√ε2

〈q|M|q〉=1〈p|M-1|p〉=1

|q〉|p〉 M maps |q〉 into |p〉=M|q〉

The precise geometry of this mapping is found by considering the gradient of the quadratic curves.
	

 	

 	

 	

   ∇(〈q|M|q〉)=〈q|M + M|q〉 = 2 M|q〉 = 2 |p〉  
Let matrix M be real symmetric so there is no distinction between bras and kets. This shows that the mapped 
vector |p〉 must lie along the gradient ∇(〈q|M|q〉) that is normal to the tangent to curve at |q〉.

	



M-1

〈q|M|q〉=1〈p|M-1|p〉=1

∇∇〈q|M|q〉/2=M|q〉=|p〉
|q〉|p〉

90°90°
|q〉 |p〉

M-1 maps |p〉 into |q〉=M-1|p〉

The inverse map works in the same way since |q〉 is normal to the tangent at mapped point |p〉. It should be 
noted that quadratic surfaces can be hyperbolic as well as elliptic if there are negative eigenvalues. Eigen-
vectors are any vectors that are in the same direction as quadratic curve gradient at their point.
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3.2 Approximate Eigensolutions by Perturbation Techniques
	

 One of the alternatives to numerical diagonalization or symmetry analysis techniques is called 
perturbation analysis. This often is a viable alternative for problems with little or no symmetry because such 
problems usually do not have resonances or degeneracies that often come with having symmetry. Then 
eigenvalues and vectors may change by only tiny amounts that can be approximated. 
	

 Perturbation techniques, like most "approximologies" are many and varied. Their use can be more art 
than a science. We discuss one here based upon analysis of the secular determinant (3.1.5d). 

    

0 = det H − λ1 = det

H11 − λ H12 H13 H14 

H21 H22 − λ H23 H24 

H31 H32 H33 − λ H34 

H41 H42 H43 H44 − λ 

    

= det

D11 D12 D13 D14 

D21 D22 D23 D24 

D31 D32 D33 D34 

D41 D42 D43 D44 

    

where: 	

	

 	


  

Dµν =
Hµµ − λ  if: µ=ν

Hµν      if: µ ≠ ν

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
= Hµν − δµνλ 	

	

 	

 (3.2.1)

(a) Secular determinantal expansion
	

 The ε-tensor sum of permutations reviewed in Appendix 3.A-B. We do the sum class by class since 
each class of permutation is either all even (+) or all odd (-). We'll show only the terms for N=4.
	



    
0 = det H − λ1 = εαβγδperm

N !∑ D1α D2β D3γ D4δ 	

 	

 	

 	

 	

 (3.2.2)

First there is the "zero-flip" term corresponding to partition 1+1+1+1...
	



    
0 = det H − λ1 = D11D22D33D44 = H11 − λ( ) H22 − λ( ) H33 − λ( ) H44 − λ( ) 	

 (3.2.3a)

Then we subtract (odd) "one-flip" terms corresponding to partition 2+1+1... (There are N(N-1)/2 of these)

	



   

− I(12) − I(13) − I(14) =− H12H21D33D44 − H13D22H31D44 − H14D22D33H41

               − I(23) − I(24)                                   − D11H23H32D44 − D11H24D33H42

                           − I(34)                                                               − D11D22H34H43

	

(3b)

Add the "two-flip" terms corresponding to partition 3+1... (There are N(N-1)(N-2)/3 of these.) Recall that (143)
=(314)=(431) means, "1 goes where 4 was, 4 goes where 3 was, and 3 goes where 1 was," and the inverse is 

(143)-1 = (134) =(341)=(413). It's called "two-flip" because (abc)=(ac)(bc) is two flips.

  

.+ I(123) + I(124) + I(134) + I(234).. = .+ H13H21H32D44 + H14H21D33H42 + H14D22H31H43 + D11H24H32H43..

.+ I(132) + I(142) + I(143) + I(243).. = .+ H12H23H31D44 + H12H24D33H41 + H13D22H34H41 + D11H23H34H42..

	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 (3c)
Add the "two-flip" terms corresponding to partition 2+2... (There are N(N-1)(N-2)(N-3)/8 of these.)

  .+ I(12)(34) + I(13)(24) + I(14)(23).. = .+ H12H21H34H43 + H13H24H31H42 + H14H23H32H41 + ..

	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 (3d)
Finally, (if N were really 4) subtract (odd) "three-flip" terms.  (There are N(N-1)(N-2)(N-3)/4 of these.)
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.− I(1234) − I(1324) − I(1423).. = .− H14H22H32H43 − H14H23H31H42 − H13H24H32H41..

.− I(1432) − I(1423) − I(1324).. = .− H12H23H34H41 − H13H24H32H41 − H14H23H31H42..
	

 (3e)

Collect these results and replace diagonal Dmm factors with Hmm-λ.
   

   
0 = H11 − λ( ) H22 − λ( ) H33 − λ( ) H44 − λ( ) 	

 	

 	

 	

 	

 	

 (3.2.4a)

and include the N(N-1)/2=6 terms for "one-flip" partition 2+1+1... 

   

   

− H12H21 H33 − λ( ) H44 − λ( ) − H13 H22 − λ( )H31 H44 − λ( ) − H14 H22 − λ( ) H33 − λ( )H41

                                                   − H11 − λ( )H23H32 H44 − λ( ) − H11 − λ( )H24 H33 − λ( )H42

                                                                                                   − H11 − λ( ) H22 − λ( )H34H43

	

 (4b)

and the N(N-1)(N-2)/3=8 terms for "two-flip" partition 3+1...

  

   .+ H13H21H32 H44 − λ( ) + H14H21 H33 − λ( )H42 + H14 H22 − λ( )H31H43 + H11 − λ( )H24H32H43..

   .+ H12H23H31 H44 − λ( ) + H12H24 H33 − λ( )H41 + H13 H22 − λ( )H34H41 + H11 − λ( )H23H34H42..
 (4c)

and the N(N-1)(N-2)(N-4)/8=3 terms for the other "two-flip" partition 2+2...

     .+ H12H21H34H43 + H13H24H31H42 + H14H23H32H41 + .. 	

 	

 	

 	

 	

 (4.d)
and, finally the N(N-1)(N-2)(N-4)/4=6 terms (for N=4) "three-flip" partition 4...

  

  .− H14H22H32H43 − H14H23H31H42 − H13H24H32H41..

  .− H12H23H34H41 − H13H24H32H41 − H14H23H31H42..
	

 	

 	

 	

 	

 	

 (4.e)

(b) Perturbation approximations
	

 Now we look at the art of approximation. Suppose we want to approximate the one unknown 
eigenvalue λ = E1 closest to the known H-matrix diagonal element H11. Suppose further that all the other 
diagonal differences |H11 - H22 |, |H22 - H33 |, |H33 - H44 |,.. are larger than the magnitudes off-diagonal matrix 
elements H12 , H13, ..., H24, H34  , etc. Then we can divide the secular equation by the large factors (H22 - λ)
( H33 - λ)( H44 - λ) and leave behind the (supposedly) small factor ( H11 - λ). Then we collect terms on the 
right hand side ( H11 - λ) terms that can be discarded since they should be tiny.

   

0 = H11 − λ( ) − H12H21
H22 − λ( ) −

H13H31
H33 − λ( ) −

H14H41
H44 − λ( )                 −

H11 − λ( )H23H32

H22 − λ( ) H33 − λ( ) −
H11 − λ( )H24 H42

H22 − λ( ) H44 − λ( )

                                         "keepers"( )                                         "discards" ⇒( )  −
H11 − λ( )H34 H43

H33 − λ( ) H44 − λ( )

   

..+
H12H23H31 + H13H32H21

H22 − λ( ) H33 − λ( ) +
H12H24H41 + H14H42H21

H22 − λ( ) H44 − λ( )      +
H11 − λ( ) H23H34 H42 + H24 H43H32( )

H22 − λ( ) H33 − λ( ) H44 − λ( )

                         +
H13H34H41 + H14H43H31

H33 − λ( ) H44 − λ( ) +..                                                          

  
  

 .+ H12H21H34H43 + H13H24H31H42 + H14H23H32H41 + ..
H22 − λ( ) H33 − λ( ) H44 − λ( )
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 .− H14H43H32H22 − H14H42H23H31 − H13H32H24H41..
H22 − λ( ) H33 − λ( ) H44 − λ( )

  .− H12H23H34H41 − H13H32H24H41 − H14H42H23H31..
H22 − λ( ) H33 − λ( ) H44 − λ( )

Now we have an equation for the unknown perturbed eigenvalue λ with one more approximation, that is, to 
replace every λ in the "keeper" denominators by the approximate energy λ ~ H11 = E1(0). (In fact, this 
substitution kills the "discard" terms.)

   
λ = H11 −

H12H21
H22 − H11( ) −

H13H31
H33 − H11( ) −

H14H41
H44 − H11( )   

  
..+

H12H23H31 + H13H32H21
H22 − H11( ) H33 − H11( ) +

H12H24H41 + H14H42H21
H22 − H11( ) H44 − H11( ) +

H13H34H41 + H14H43H31
H33 − H11( ) H44 − H11( ) +..

The terms that are fourth order in Hmn are left off above, but included below in the final result.

   

λ = E1 +
j≠1

N
∑

H1 j H j1

E1 − E j( ) + j≠1

N
∑

k≠1, j

N
∑

H1 j H jk Hk1

E1 − E j( ) E1 − Ek( ) + j=1

N
∑

k≠ j

N
∑

≠ j,k

N
∑

H1 j H jk HkH1
E1 − E j( ) E1 − Ek( ) E1 − E( )

	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 (3.2.5a)
Here the diagonal terms are denoted as approximate eigenvalues:
	

 	

 	

 	

 Em = Hmm	

 	

 	

 	

 	

 	

 	

 (3.2.5b)
A diagrammatic representation of this is given in Fig. 3.2.1. Note that the choice of the number-1 value is 
arbitrary. This approximation works just as well replacing 1 by 2, 3, ..., or N. The figure indicates number 1 as 
the lowest eigenvalue but that is not a necessary condition, either. Neither are all the terms in the order chosen 
for the figure; it shows only one of many combinations and permutations of the 3rd and 4th order terms.

	



1 1 1 1

jj jj jj

kk kk

mm

λ= Η11 + ΣΗ1jΗj1 + ΣΣΗ1kΗkjΗj1 + ΣΣΣΗ1mΗmkΗkjΗj1j j k j k m
Δ1j Δ1kΔ1j Δ1mΔ1kΔ1j

Η11 Η1j
Ηj1 Ηj1

Ηkj

Η1k
Ηj1

Ηkj

Η1m

Ηmk

Δ11jj ==EE11--EEjj

Δ11kk ==EE11--EEkk
Δ11mm ==EE11--EEmm

 Fig. 3.2.1 Diagrammatic description of perturbation series
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 Later, in Chapter 9, we will show how the eigenvalues of the Hamiltonian energy matrix H correspond 
to quantized energy levels Ej and energy eigenstates |εj〉 . According to this we interpret each perturbation term 
as tracing a path or circuit between the approximate eigenvalues Ej = Hjj which correspond to, as yet, 
imprecisely defined energy states |εj〉 which are initially nothing but the original base states |εj〉 ~ |j〉 for the 
problem. 
	

 Each path begins and ends on the level that one is interested in defining more precisely. (In Fig. 3.2.1 it 
is called level E1 .) The path visits a number of intermediate levels Em = Hmm once (and only once) and each 
one has what is called an energy or resonance denominator 
	

 	

 	

 	

  Δm = E1 - Em = H11 - Hmm 	

 	

 	

 	

 	

 (3.2.6)
This determines, along with matrix element products HkmHmj , a contributing factor HkmHmj / Δm for the 
intermediate base state |εm〉 ~ |m〉 to the energy correction for that path. Obviously, a zero or near-zero energy 
denominator Δm would signal a major or infinite contribution of one path and one base state. Unfortunately, it 
would also signal the invalidity of the perturbation approximation.

(c) Testing perturbation approximation with exact 2x2 eigenvalues
	

 In order to see how well perturbation theory works, it helps to compare its lowest order predictions 
with that of direct and exact diagonalization. By choosing a simple two-by-two matrix such as 

	

 	

 	

 	


   

H =
H11 H12

H21 H22

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

E1 V

V E2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

,	

 	

 	

 	

 (3.2.7)

this test is easy to do. We choose off-diagonal V to be real to make it even easier.
	

 First, do the perturbation calculation. (It's often the first thing to try!) Up to second order we have the 
following approximate eigenvalues using (3.2.5) to the second order term.

	

 	

 	



  

λ1 = E1 +
V 2

E1 − E2
 ,          

λ2 = E2 + V 2

E2 − E1
 .   

	

 	

 	

 	

 (3.2.8)

	

 Then the exact calculation starts with the secular equation (3.1.5).

	

 	

 	


   
λ2 − TraceH( )λ + det H = 0 = λ2 − E1 + E2( )λ + E1E2 −V 2( )   	

 (3.2.9a)

The two roots are 

	


  
λ1,2 =

E1 + E2 ± E1 + E2( )2 − 4E1E2 + 4V 2

2
=

E1 + E2 ± E1 − E2( )2 + 4V 2

2
 , 	

 (3.2.9b)

	

 The comparison is made by assuming (as in (3.2.5)) that V is small compared to |E1 - E2| Then the 
binomial approximation (a+b)1/2 ~ a1/2 +b/(2a1/2) ...gives 
	

 	

 	



  
λ1,2 = 1 / 2 E1 + E2 ± E1 − E2( ) ± 4V 2 / 2 E1 − E2( )( )( ) ,	

 	

 (3.2.9c)

which agrees perfectly with second order perturbation approximation (3.2.8).
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 The results are plotted in Fig. 3.2.2 below to show the differences. The 2nd order perturbation 
approximation fits a parabola to the exact hyperbola of each eigenvalue trace versus the off-diagonal element 
V. As expected, the perturbation approximation deviates as the off-diagonal matrix element V increases. 
However, it would improve with an increase in the difference |E1 - E2 |, the two are related and it is a larger 
ratio of V to |E1 - E2 | that will make a perturbation approximation less accurate.

	



Exact

Eigenvalues

2nd Order

Perturbation

2nd

4th

10th

8th

V
E1

E2

6th

 Fig. 3.2.2 Comparison of exact vs. 2nd-order thru 8th-order perturbation approximations
	


Second order perturbation formulas are simple, easy to apply, and, for this example, at least, quite an effective 
approximation for a range of V roughly equal to |E1-E2|. The same cannot be said for higher order perturbation 
terms, particularly those of 6th or higher which seem to follow a law of diminishing returns. Even a 10th order 
formula only extends the range of validity a little in Fig. 3.2.2. Worse, a simple application of (3.2.5) to the 
two-level problem is wrong for 6th and higher orders. A direct application of (3.2.5) gives

	

 	


   
E2 = Δ

2
+ V 2

Δ
− V 4

Δ3
+ V 6

Δ5
− V 8

Δ7
+ V 10

Δ9
  , where: Δ= E1 − E2

while the correct binomial expansion of the exact result (3.2.9) which is plotted in Fig. 3.2.2 is 

	

 	


   
E2 = Δ

2
+ V 2

Δ
− V 4

Δ3
+ 2V 6

Δ5
− 5V 8

Δ7
+ 14V 10

Δ9


But, even the corrected polynomials are miserable approximations to the hyperbola approaching its asymptote. 
Also, the series is divergent. Similar problems exist for 3, 4,..., or N-level systems.
	

 The problem is that eigenvalues are generally more like oscillatory (sinusoidal) or exponential and 
hyperbolic functions and to not take kindly to being represented by polynomials. Check this out by comparing 
a sine wave to its Taylor series polynomial approximation. How many orders do you need to approximate one 
full oscillation to 1% or better? And, note what happens outside that range of validity!
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