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Unit 3 Fourier Analysis and Symmetry
Chapter 7. Fourier Transformation Matrices
! We have noted that a quantum experiment cannot move at all unless two or more frequency components 
can interfere with each other. A single (mono-chromatic) wave Ψ = ψe-iω t is not enough to make anything 
happen. Such a Ψ-system is a stationary state and appears to be dead. What we can observe is determined by the 
absolute square Ψ∗Ψ, which kills the single oscillating phase.
! Similarly, a wave Ψ = ψeikx with a single momentum component appears to be a uniform cloud of random 
counts in space. To obtain any structure in the quantum world, that is, atoms, molecules, solids, people, and so 
forth, we need many momentum components in our matter waves.
! The mathematics used to deal with multiple frequency or momentum components is called Fourier 
analysis after Jean Baptiste Fourier, a French artillery officer turned mathematician. This section will review the 
fundamentals of Fourier theory relevant to quantum theory using the Dirac notation. Fourier analysis has several 
flavors depending on whether its coordinates and parameters, that is space-time and wavevector-frquency are 
discrete or continuous and whether x or k are bounded or unbounded. We consider several distinct cases in turn. 
Each has different forms for its completeness and orthonormality axioms-3 to 4.

7.1 Continuous but bounded x. Discrete but unbounded k
! One of the most famous and widely used wavefunction systems in quantum theory are the one-
dimensional (1-D) Bohr orbitals ψ k(x) = 〈x | k 〉. Examples are sketched in Fig. 7.1.1.

! !
  
ψ km

(x) = x km = ei k mx

norm.
=ψ km

(x + L) ! ! ! ! ! (7.1.1)

These can be thought of as a set of waves on a ring of circumference L. The basic waves have just the right 
wavevectors km to put integral numbers of whole wavelengths along L and thereby repeat the wave again after 
each complete L-revolution. Such requirements are known as periodic boundary conditions.

! !
  
ψ km

(x) =ψ km
(x + L) = ei k mx

norm.
= ei k m x+ L( )

norm.
=ψ km

(x)ei k mL ! ! (7.1.2)

The boundary conditions lead to wavevector quantization conditions.

! !
  
ei k mL = 1, or:  km = 2π

L
m ,  where: m = 0,±1, ± 2, ± 3,....± ∞ ! ! (7.1.3)

The allowed wavevectors, while still infinite in number, are forced to be discrete.
! This is a very common feature of quantum theory for which it owes its name quantum, but it happens to 
classical waves, too. A bounded continuum leads to an unbounded but discrete set of allowed waves. For another 
example, cavity modes in the Hall of Mirrors in Sec. 6.3 (d) acquire discrete frequencies as soon as the doors are 
shut. If an indiscrete type of wave is put in a cage, then it is forced to be discrete. (Perhaps, this is just another sad 
anthropomorphic metaphor.) 
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L
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L= 40
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m= ±2

m= ±3

m= ±4

m= ±5

m= ±6

Fig. 7.1.1  Sketches of Bohr orbitals confined to 1-D L-interval and quantum energies ( for m=0 to 6 ).

! The resulting amplitudes must satisfy Axioms 1-4. In particular, the orthonormality axiom-3 requires 〈k1| 
k1〉=1 but 〈k1| k2〉 =0 , and so forth,  or that the following Kronecker delta representation.
! ! ! ! ! 〈km| kn〉=δm n ! ! ! ! ! (7.1.4a)
Completeness axiom-4 requires that | kn〉 〈kn| sum up to a unit operator or an x-Dirac-delta expression.
! ! Σ| kn〉 〈kn| =1,! or:! Σ 〈x | kn〉 〈kn| x' 〉 =  〈x | x' 〉=δ(x-x').! ! (7.1.4b)

 (a) Orthonormality axiom-3
Using the integral form (2.1.2) of the completeness relation sum we get the following. 

 ! !
  
δm n = km kn = dx

−L / 2

L / 2
∫ km x x kn = dx

−L / 2

L / 2
∫

e−i k mx

norm.
ei k nx

norm.
! ! (7.1.5)

The conjugation axiom-2 was used to write

! ! ! !
  

km x = x km
*
= e−i k mx

norm.
! ! ! ! ! (7.1.6)

After integrating, this determines the normalization constant norm. as follows.

!

  

δm n = dx
−L / 2

L / 2
∫

e−i k mx

norm.
ei k nx

norm.
= dx

−L / 2

L / 2
∫

e−i k m−k n( )x
norm.

= e−i k m−k n( )x
−i k m− k n( )norm.

−L / 2

L / 2

       = e−i k m−k n( )L / 2 − ei k m−k n( )L / 2

−i k m− k n( )norm.
=

2sin k m− k n( ) L / 2⎡⎣ ⎤⎦
k m− k n( )norm.

    ! (7.1.8)

Using the quantization conditions (7.1.3) gives the desired norm. value and satisfies axiom-3.
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! !

  

δm n =
2sinπ m − n( )

2π
L

m − n( )norm.
=

0 if : m ≠ n
L

norm.
 if : m = n

⎧

⎨
⎪

⎩
⎪

 , or: norm. = L.! ! (7.1.9)

Normalized wave amplitudes are therefore

! ! ! !
  
ψ km

(x) = x km = ei k mx

L
.! ! ! ! ! (7.1.10)

(b) Completeness axiom-4
! Completeness axiom-4 has a Dirac-delta form in the mixed discrete-continuous wave space.

! ! ! !
  
δ x − x '( ) =

m=−∞

m=+∞
∑ x km km x ' ! ! ! ! (7.1.11)

We test it with amplitudes (7.1.10) using orthonormality (7.1.4) and conjugation (7.1.5).

!
  

dx
−L / 2

L / 2
∫ δ x − x '( ) = dx

−L / 2

L / 2
∫

n=−∞

n=+∞
∑

ei k nx

L

e−i k nx '

L
= e−i k nx '

Ln=−∞

n=+∞
∑ dx

−L / 2

L / 2
∫

ei k nx

L
!(7.1.12)

The last integral is a representation of a Kronecker delta δ0,n . Recall that k0 =0 and use (7.1.4).

! ! !
  

dx
−L / 2

L / 2
∫

ei k nx

L
= L dx

−L / 2

L / 2
∫

e−i k 0x

L

ei k nx

L
= L k0 kn = Lδ0 n

! ! ! !
  

dx
−L / 2

L / 2
∫ ei k nx = Lδ0 n .! ! ! ! ! ! (7.1.13)

Then (7.1.12) is consistent with (7.1.11) and (7.1.10) and the definition of Dirac’s delta.

!
  

dx
−L / 2

L / 2
∫ δ x − x '( ) = dx

−L / 2

L / 2
∫

n=−∞

n=+∞
∑

ei k nx

L

e−i k nx '

L
= e−i k nx '

n=−∞

n=+∞
∑ δ0 n = e−i k 0x ' = 1 ! (7.1.14)

(c) Fourier series representation of a state
! With completeness one can quickly derive a representation of arbitrary state  | Ψ 〉 if you know its 
complex wavefunction Ψ(x) = 〈 x | Ψ 〉 . Formally, you just operate on | Ψ 〉 with the unit 1=Σ|km〉〈 km |.

! !

  

x |Ψ =
m=−∞

m=+∞
∑ x km km Ψ =

m=−∞

m=+∞
∑

ei k mx

L
km Ψ

          =
m=−∞

m=+∞
∑ ei k mx Ψm

! ! ! (7.1.15a)

where the Fourier coefficient Ψm is given by the following integral (Use x-completeness 1=∫dx| x 〉〈x |.)

! !

  

Ψm =
km Ψ

L
= 1

L
dx

−L / 2

L / 2
∫ km x x Ψ = 1

L
dx

−L / 2

L / 2
∫

e−i k mx

L
x Ψ

      = 1
L

dx
−L / 2

L / 2
∫ e−i k mx Ψ(x)

.! (7.1.15b)

The only requirement is that the function be periodic in L, that is, Ψ(x) =  Ψ(x+L). 

(d) Bohr dispersion relation and energies
! In Fig. 7.1.1 the waves with higher km have higher energy Em and are drawn higher according to the E-
values given by the Bohr dispersion function first drawn in Fig. 5.6.3.
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! ! !
   
Em = ωm =

km( )2
2M

 , where: pm = km =  2π
L

m .! ! (7.1.16)

This is just a non-relativistic approximation for energy that neglects the rest energy Mc2 and higher order terms in 
(5.2.5b). It is kinetic energy only, that is KE = 1/2Mu2 = p2/2M with the momentum p=pm and wavevector k=km 
quantized by conditions (7.1.3). The dispersion function is then a simple parabola of discrete values as shown on 
the right hand side of Fig. 7.1.1. Note that each energy value Em , except E0, has two orthogonal wavefunctions ψ
±km or states |±km〉 corresponding to pairs of oppositely moving wavevectors ±km on either side of the dispersion 
parabola. The |±km〉 are called degenerate states because they share a single energy Em. Such degenerate pairs are 
each an example of a U(2) two-state system. As long as the degeneracy remains, any unitary linear combination 
of the two states is also an eigenstate with the same frequency and energy E=hν. 

(e) Sine and cosine Fourier series worth remembering
 A function defined by Fourier series (7.1.15) repeats after its fundamental wavelength L=2π/k1 or period 
T=2π/ω1. So do the real and imaginary parts that are series of sine or cosine functions of mth spatial overtone 
argument kmx or mth overtone frequency argument ω mt. Moving wave terms use both: (kmx-ω mt).
 Let us consider wave functions with zero-DC-bias or zero (k=0)-Fourier component: 0=Ψ0=∫Ψ. The 
integrals and derivatives of unbiased functions may also be unbiased. An example of a series of unbiased 
functions starts with the alternating Dirac delta function adel(x) shown at the top of Fig. 7.1.2. Its integrals and 
derivatives are useful series worth remembering because they are easy to compute and visualize. Compare this 
function to the simple delta pulse train (5.3.2) shown in Fig. 5.3.2.
 The first integral of adel(x) is a square wave function box(x) shown next in line in Fig. 7.1.2. Below it is a 
saw-tooth wave saw(x) and then a parabolic amplitude wave paw(x). Each wave has an overall scale factor 
attached so plots that are not delta-like end up with comparable amplitudes.

Wave paw(x) looks like a sine wave but isn’t quite. The derivative of a genuine sine wave is a cosine 
wave that looks just like a sine wave but is moved back by π/2. The derivative of paw(x) is saw(x), which is 
moved back, but it looks nothing like good old paw(x)! Subsequent derivatives only accentuate the differences 
between sin(x) and paw(x). Differentiation amplifies little blips or bends (It differentiates!) while integration does 
the opposite by smoothing out sharp corners or other differences.

There are at least two famous physics topics that make use of functions that are derivatives or integrals of 
each other. Classical mechanics in one dimension is one such topic where the functions of acceleration a(t), 
velocity v(t), and position x(t), are each the integral of one above or the derivative of the one below. Classical 
electrostatics is another topic in which the charge-density ρ(x), electric field E(x), and potential Φ(x), are so 
related. (Various conventions may put ±signs and scale factors onto these relations.)
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box(x)

saw(x)

paw(x)

adel(x)

Fig. 7.1.2 Fourier series sharing simple integral or derivative relations to each other.

 Some more or less extreme examples of charge and field distributions are sketched in Fig. 7.1.3 on the 
following page. The first set in Fig. 7.1.3(a) is due to alternating charge layers. The field is that of a series of 
alternating parallel-plate capacitors. By taking a derivative of the alternating chasrge layers we make the dipole 
layer distribution shown in the top of the middle Fig. 7.1.3(b). The final example in Fig. 7.1.3(c) actually has a 
Dirac-delta potential lattice, one of many favorite models for nano science these days. We shall be modeling 
periodic potentials, too. The preceding gives you some feeling how difficult it may be to actually produce some 
of these exotic potentials! Seldom is theory so easy and the lab so hard.
 Also it is worth considering these as time-pulse series. As we will explain later, you may taper the Fourier 
series amplitudes gradually to zero and thereby replace the sharp and wrinkled deltas and squares by smoother 
Gauassian or Lorentzian features that are useful spectroscopic models. Of course, you may taper them right back 
to single term series of one sine or one cosine wave each!

Following page: Fig. 7.1.3 Exotic 1-D electric charge and field distributions.
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box(x)

! 2! 3! 4! 5!
Boxcar E-field +1 +1

-1 -1

+1

-1

+1

-1

saw(x)

! 2! 3! 4! 5!

Sawtooth potenial function

-x+!/2

x-3!/2+!/2

-!/2 -x+5!/2 -x+9!/2

x-7!/2 x-11!/2

del(x) +∞

δ(x-0) δ(x-2!) δ(x-4!) δ(x-6!)

δ(x-!) δ(x-3!) δ(x-5!)

+∞ +∞ +∞

-∞ -∞ -∞
(-)
(-)
(-)

(+)
(+)
(+)

(+)
(+)
(+)

(+)
(+)
(+)

(+)
(+)
(+)

(-)
(-)
(-)

(-)
(-)
(-)

Potential
Φ(x)

Electric
Field
Ε(x)

Charge
Density
ρ(x)

(a)

        

box(x)

! 2! 3! 4! 5!

Boxcar Potential field+1 +1

-1 -1

+1

-1

+1

-1

-dell(x) Dirac-delta E-field function
+∞

−δ(x-0) −δ(x-2!) −δ(x-4!) −δ(x-6!)

δ(x-!) δ(x-3!) δ(x-5!)

+∞ +∞ +∞

-∞ -∞ -∞

(-)
(-)
(-)

(+)
(+)
(+)

(+)
(+)
(+)

(-)
(-)
(-)

(+)
(+)
(+)

(-)
(-)
(-)

(+)
(+)
(+)

(-)
(-)
(-)

(-)
(-)
(-)

(+)
(+)
(+)

(-)
(-)
(-)

(+)
(+)
(+)

(-)
(-)
(-)

(+)
(+)
(+)

-(d/dx)del(x) Dirac-delta derivative (dipole layer lattice)

Potential
Φ(x)

Electric
Field
Ε(x)

Charge
Density
ρ(x)

(b)

        

dell(x) Dirac-delta Potential function
+∞

−δ(x-0) −δ(x-2") −δ(x-4") −δ(x-6")

δ(x-") δ(x-3") δ(x-5")

+∞ +∞ +∞

-∞ -∞ -∞

-(d/dx)del(x) Dirac-delta derivative field lattice
Electric
Field
Ε(x)

(-)
(-)
(-)

(+)
(+)
(+)

(-)
(-)
(-)

-(d/dx)2del(x)
Charge
Density
ρ(x)

Dirac-delta double derivative (quadrupole layer lattice)(-)
(-)
(-)

(+)
(+)
(+)

(+)
(+)
(+)

(-)
(-)
(-)

(+)
(+)
(+)

(-)
(-)
(-)

(-)
(-)
(-)

(+)
(+)
(+)

(-)
(-)
(-)

(-)
(-)
(-)

(+)
(+)
(+)

(-)
(-)
(-)

(-)
(-)
(-)

(+)
(+)
(+)

(+)
(+)
(+)

(-)
(-)
(-)

(+)
(+)
(+)

(+)
(+)
(+)

(c)
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7.2 Continuous and unbounded x. Continuous and unbounded k
! In the preceding cases all wavevectors are restricted by the quantization condition (7.1.3).

! ! !
  
 km = 2π

L
m ,  where: m = 0,±1, ± 2, ± 3,....± ∞ ! ! ! (7.1.3)repeated

If you let the "cage" become infinitely large ( L → ∞  ) then the wavevector set becomes finer and finer and 
approaches a continuum. The trick is to replace each sum over index m by an integral over a continuous k-value. 
If it is done right the wave functions will take a continuous form in both x and k. 

! ! ! !
  
ψ k (x) = x k = ei kx

norm.
,!! ! ! ! (7.2.1a)

We need to verify k-orthonormality relations based on wavevector Dirac-delta δ(k′,k)-functions.
! !

  
k ' k = δ k '− k( ) = dx−∞

∞∫ k ' x x k = dx−∞
∞∫ ψ k ' (x)*ψ k (x) ,! ! (7.2.1b)

We also need the usual x-completeness relations based on spatial Dirac-delta δ(x′,x)-functions. 
! !

  
x ' x = δ x '− x( ) = dk−∞

∞∫ x ' k k x = dk−∞
∞∫ ψ k (x ')*ψ k (x) ! ! (7.2.1c)

! It seems that orthonormality and completeness relations are two sides of the same coin. Orthonormality 
(7.2.1b) for the k-states { |k〉...|k' 〉..} expresses completeness for the x-states  |x〉 , and completeness (7.2.1c) of the 
k-states  |k〉 expresses orthonormality for the x-states { |x〉...|x' 〉..}.
! The Dirac notation is extremely efficient but can be confusing. There is a world of difference between the 
states { |k〉...|k' 〉..} of perfectly monochromatic plane waves and the Dirac position states {|x〉...|x' 〉..} of perfectly 
localized particles. Recall that we said that an |x〉 state was physically unrealizable; crushing a particle into a 
single position-x would cost infinite energy. Technically, a |k〉 state is unrealizable, too, since it requires an infinite 
amount of real estate; we have to let its cage dimension L be infinite, but that seems easier than the extreme 
solitary confinement needed to make an |x〉 state. If space is cheaper than energy, then |k〉 is easier to approach 
than |x〉. Lasers easily make approximate |k〉's by being stable and coherent, but producing approximate |x〉's for 
extremely short pulses requires more difficult engineering.
! Use caution to not abuse this notation, though it is easily done. It should be obvious why the following 
rendition of (7.2.1a) is a dreadful mistake.

! ! !
  

k k = ei kk

norm.
= ei k2

norm.
         (Dirac abuse. Very BAD mistake!)

Letters x and k denote very different bases which must not to be confused.

(a) Fourier integral transforms

! To achieve the limit of infinite real estate ( L → ∞  ) we replace sums over 
  
km = 2π

L
m  such as 

! !
  
S =

m=−∞

m=+∞
∑ Φk m

= Δm
m=−∞

m=+∞
∑ Φk m

 , where: Δm = 1 !.! ! (7.2.2)

Integrals over k with differential 
  
Δkm = 2π

L
Δm = 2π

L
→ dk  or: 

  

Δm
Δkm

= L
2π

 are used as follows.
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!
  
S = Δm

m=−∞

m=+∞
∑ Φk m

= Δm
Δk m

Δk mm=−∞

m=+∞
∑ Φk m

 becomes → L
2π

dk−∞
+∞∫ Φ k( ) ! ! (7.2.3)

This, by itself, blows up as we let ( L → ∞ ), but so do the normalization denominators   norm. = L , and they 
cancel. Finally, the Fourier series (7.1.15a) becomes a finite integral.

!
  

x |Ψ =
m=−∞

m=+∞
∑

ei k mx

L
km Ψ  becomes → L

2π
dk−∞

+∞∫
ei k x

L
km Ψ = dk−∞

+∞∫
ei k x

2π
L

2π
km Ψ

The trick is to renormalize the k-bases so 
  

L
2π

km  becomes → k  letting the L’s cancel.

! ! !
  

x |Ψ = dk−∞
+∞∫

ei k x

2π
k Ψ = dk−∞

+∞∫ x k k Ψ ,! ! ! (7.2.4a)

The newly “normalized” plane wave function ψk(x)=〈x⏐k〉 is defined as follows.

! ! ! !
  

x k = ei k x

2π
! ! ! ! ! ! ! (7.2.4b)

This 〈 x⏐k〉 is the kernal of a Fourier integral transform. An inverse follows by converting (7.1.15b).

!
  

km Ψ

L
=

1
L

dx
−L / 2

L / 2
∫ e−i k mx x Ψ  becomes → k Ψ =

L

2π
L
L

dx
−∞

+∞
∫ e−i k x x Ψ ,

! ! !  
  

k Ψ = dx
−∞

+∞
∫

e−i k x

2π
x Ψ = dx

−∞

+∞
∫ k x x Ψ ,! ! ! (7.2.4c)

Here the inverse kernal 〈k⏐x〉 is simply the conjugate of 〈 x⏐k〉 as required by conjugation axiom-2.

! ! ! !
  

k x = e−i k x

2π
= x k

* .! ! ! ! ! (7.2.4d)

(b) Fourier coefficients: Their many names
! The efficiency of the Dirac notation (provided it isn't abused!) should be clear by now. The simple bra-ket 
〈x| k〉 stands for so many different mathematical and physical objects. Let's list some.

! (1)  〈x| k〉 is a scalar product of bra 〈x| and ket |k〉  
! (2)  〈x| k〉 is an x-wavefunction for a state |k〉 of definite momentum p = k.
! (3)  〈k| x〉=〈x| k〉* is an k-wavefunction for a state |x〉 of definite position x .
! (4)  〈x| k〉 is a unitary transformation matrix from position states to momentum states.
! (5)  〈x| k〉 is the kernal of a Fourier transform between position states and momentum states.

! As beautiful and compact as it is, the continuum functional Fourier analysis is merely an infinite and 
unbounded abstraction that lets us use calculus to derive formulas in special cases. Its validity as a limiting case 
for experimental and numerical analysis should always be questioned. Laboratory and computer experiments, on 
the other hand, invariably deal with finite and bounded spaces, and it these that we turn to in the next section. We 
finish this section by relating square-wave Fourier transforms to square-wave Fourier series of the preceding 
section to help clarify discrete-vs.-continuum relations. 
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(c) Time: Fourier transforms worth remembering
! Fourier time-frequency (time-per-time) transforms resemble space-k-vector (space-per-space) transforms 
(7.2.4). But, a negative sign is put in the exponent so the time phasor turns clockwise.

! t |Ψ = dω−∞
+∞∫

e−iωt

2π
ω Ψ = dω−∞

+∞∫ x ω ω Ψ ! (7.2.5a)! t ω =
e−iω t

2π
(7.2.5b)

! ω Ψ = dt
−∞

+∞
∫

eiω t

2π
t Ψ = dt

−∞

+∞
∫ ω t t Ψ ! ! (7.2.5c)! ω t =

eiω t

2π
= t ω * !

Consider, for example, a single square bump of amplitude B and duration T/2. Its Fourier transform (7.2.5c) is an 
elementary diffraction function sin ω/ ω  that is plotted in Fig. 7.2.1.

! ! ω Ψ = dt
−T /4

+T /4
∫

eiω t

2π
B=B e

iωT /4 − e−iωT /4

iω 2π
=
2Bsin ωT / 4( )

ω 2π
! (7.2.6)

It is the first approximation to an optical diffraction function for a single square aperture. 
The Fourier amplitude due to multiple square humps is a combination of finer and finer elementary 

diffraction patterns. Three half-humps give the following frequency function plotted in Fig. 7.2.2(a).

!

ω Ψ = 1
2π

A dt
−3T /4

−T /4
∫ eiω t + B dt

−T /4

+T /4
∫ eiω t + A dt

+T /4

+3T /4
∫ eiω t

⎡

⎣
⎢

⎤

⎦
⎥

=A e
−iωT /4 − ei3ωT /4

iω 2π
+ B e

iωT /4 − e−iωT /4

iω 2π
+ A e

i3ωT /4 − eiωT /4

iω 2π

=
2 B − A( )sin ωT / 4( )

ω 2π
+
2Asin 3ωT / 4( )

ω 2π

! (7.2.7)

The frequency functions in Fig. 7.2.3 are the result of a lot more bumps. Each one consists of a series of spikes 
corresponding to the Fourier series amplitudes 1, 1/3, 1/5, 1/7,… for the fundamental ω=2π/T and odd-overtones 
3ω,  5ω,  7ω, …, respectively, for the box(x) function in Fig. 7.1.2. This is an even box function in Fig. 7.2.3 so 
the series amplitudes alternate sign as 1, -1/3, 1/5, -1/7,…as shown. The very last example is an unbiased funtion 
with no DC (ω=0)-Fourier component.

The "ringing" between the peaks is generally considered to be a nuisance. One way to get rid of ringing is 
to turn on the square wave more gradually. Fig. 7.2.4 shows the Fourier transform of a wave that has been turned 
on and off by a Gaussian (exp-(x/a)2). This windowing kills the ringing. The width of each frequency peak varies 
inversely with the width a of the Gaussian window.

©2013 W. G. Harter      Chapter 7 Fourier transformation matrices  ! 7--



Fig.7.2.1  Elementary diffraction function: Fourier transform of single half square wave.

(a)

(b)

Fig. 7.2.2 Fourier transform of (a) three half- square waves. (b) seven half -square waves.
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(a)

(b)

(c)

Fig. 7.2.3 Fourier transforms of square half-bumps (a) fifteen (b) forty-nine (c) fifty one .
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Fig. 7.2.4 Fourier transform of windowed square waves.

! The idea of the Fourier integral, as opposed to Fourier series, is that any function, periodic or otherwise 
can be approximated by sines and cosines from a frequency continuum. Fourier series require that the function be 
periodic and repeat itself perfectly after some fixed period of time. The Fourier integral is supposed to be an 
enduring and time-invariant frequency map that provides the predestination of a time function forever and ever!
! One should be suspicious of something that requires an infinite continuum of perfect frequency oscillators 
to be behind the scenes running your life. Pure sines and cosines are forever functions but we, like our world, 
certainly are not so enduring. Consider Fourier integrals as a cute limit-taking tool but not ultimately realistic.

Consider the fictitious function of time shown in Fig. 2.6.6. It is only periodic for awhile, but like most of 
us, cannot maintain the pace forever and finally gets in trouble with the hereafter. 

6 AM
Staggers
to work

10 AM
Coffee

12 PM
Lunch

5 PM
Bar

12PM
dec'd

1 AM
rises
again

1 PM
Nap

(maybe)

Fig. 7.2.5  A day in the life of a real function.

 Now we go on to a practical Fourier analysis that is both finite and discrete.
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7.3 Discrete and bounded x. Discrete and bounded k
! This is the most restrictive case, but also, due to practical considerations mentioned previously, the one 
that actually gets used the most these days. However, in spite of its practical value it is not always treated as 
carefully as the more “mathematically sophisticated” continuum case (b). It should be!
! We begin by supposing that space itself is periodic as in case (a) but further is divided into N discrete 
pieces or points. So the only x-values allowed are the following N values 
! ! ! { x0=0, x1=a , x2=2a , x3=3a, ... , xN-1=(N-1)a, xN =0}! ! (7.3.1a)
and there are only N position states are the following. The last |N〉 state is the same as the first |0〉 state. 
! ! ! { |0〉, |1〉 , |2〉 , |3〉 , ... , |N-1〉 , |N〉 =|0〉}! ! ! ! (7.3.1b)
! Fig. 7.3.1 shows ways to visualize this as N beads on a ring of length L = Na that wraps around so that the 
N-th bead is the same as the zero-th. (Zero-based numbering is the modern computing standard.) Otherwise, we 
invoke the so-called periodic or Born-VonKarman boundary conditions and imagine our 1-D world repeats like a 
computer game outside its boundaries. As shown in Fig. 7.3.1, there is a distance a between the lattice of beads. It 
is called the lattice spacing a. 

      

|0〉 |1〉 |2〉 |3〉 |4〉 |5〉 |6〉=|0〉

|0〉 |1〉 |2〉 |3〉 |4〉=|0〉

|0〉 |1〉 |2〉=|0〉

|0〉
|1〉

|2〉
|3〉

|4〉

|5〉

|0〉

|1〉

|2〉

|3〉

N=6

N=4

|0〉

|1〉
N=2

|0〉 |1〉 |2〉 |3〉 |4〉 |5〉=|0〉

|0〉 |1〉 |2〉 |3〉=|0〉

|2〉 |3〉

|4〉

|0〉

|1〉

|0〉

|1〉 |2〉

N=5

N=3

N=1 |0〉 |1〉=|0〉|0〉
a

a a

a a a a

a a a

a a a a a

a

a

a

a

aa

a a

a

a

L=3a

L=5a

L=4a

L=6a

L=2a

! Fig. 7.3.1 Finite coordinate spaces for N-cyclic (CN) discrete systems (N = 1, 2, ...,6...)

! These ideal quantum dots will be among our first examples of 2-state, 3-state, ..., and 6-state systems. By 
studying them carefully, it will be possible to learn important principles which will greatly help later study of 
molecules and solids which have N-states with large-N but the same basic theory. Also, the quantum dots might 
have hidden inventions that could make you wealthy!
! The basic wavefunctions that live on the discrete dots or beads are a subset of the continuum 
wavefunctions eikmx of (2.6.1), as though N equally spaced points of (2.6.1) were extracted and plotted over each 
lattice point xp where
! ! ! ! xp = p a =p L/N  .  ( p = 0, 1, 2, 3, ..., N-1 )! ! ! (7.3.2) 
The basic wavefunctions are given explicitly below.
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! ! !
  
ψ km

(xp ) = xp km = e
i k mxp

N
=ψ km

(xp + L) ! ! ! (7.3.3)

The only change from (7.1.1) is the use of a discrete coordinate xp defined in (7.3.2) above. Also, the 
normalization constant has been set to the dimension N since all N exponentials eikmx  contribute unit magnitude 
(|eikmx |2 = 1) in the normalization sum.

!
  

km km =
p=0

N −1
∑ km xp xp km =

p=0

N −1
∑

e
−i k mxp

N

e
i k mxp

N
= N

1
N

1
N

= 1 ! ! (7.3.4)

! The quantization conditions due to periodicity requirement (7.3.3) over "cage" length L=Na are similar to 
(7.1.3) but now expressed in terms of the discrete number N and spacing a of lattice points.

! ! !
  
ei k mL = 1 , or:  km = 2π

L
m = 2π

Na
m ! ! ! ! (7.3.5a)

Wave amplitude at lattice point p is a power-p of (ei2π/N), the N-th root of unity (normalized, of course)

! ! !
  
ψ km

(xp ) = xp km = e
i k mxp

N
= 1

N
ei 2π / N( )mp

! ! ! (7.3.5b)

All N roots, together, form N-polygons in the complex plane as shown in Fig. 7.3.2. The allowed wave 
amplitudes in Fig. 7.3.2 resemble the "ring" coordinate positions in Fig. 7.3.1. The complex zm,p=exp(ikmxp) are 
the N-th roots of unity (zN=1) introduced in a complex arithmetic review (App 1.A). 

!

N=1

1

e2πi/3 e-2πi/3=(e2πi/3)2

1

N=3

N=2 1

e2πi/4=i

N=4

1

e2πi/5

N=5

1

e2πi/6

N=6
1

-1

(e2πi/5)2 (e2πi/5)3

e-2πi/5=(e2πi/5)4

(e2πi/6)2
-1=(e2πi/3)3

-1=(e2πi/4)2

e-2πi/4=(e2πi/4)3

(e2πi/6)4

e-2πi/6=(e2πi/6)5

Re Ψ

Im Ψ

m=0

m=0

m=0

m=0

m=0

m=1

m=0

m=1

m=1

m=1

m=1

m=-1

m=-1 m=-1

m=-1

m=-2

m=-2

m=2
m=2

m=3

m=2

! Fig. 7.3.2 Discrete wave amplitudes allowed  for N-cyclic (CN) systems (N = 1, 2, ...,6...)
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(a) N-nary counting for N-state systems
! Fig. 7.3.2 shows different counting schemes for odd-N and even-N. In the unbounded cases the k-values 
go from −∞ to +∞. Here, letting m count from -N to +N over-counts and gives 2N+1 states when we know there 
are only N. We could let m count from 0 to N-1, just like the lattice points. Or, we let  m count from -(N-1)/2 to +
(N-1)/2, (odd-N ) and from -(N-2)/2 to +(N)/2 (even-N) as shown below.
! It helps to think of N-state cyclic system as an N-nary computer element. Ever since 1950, we have 
become accustomed to binary (N=2) data storage in 2-bit registers. Inevitably, someone will discover how to 
make N-state registers. Until then, we imagine them. For an N-state register the quantum counting index m is 
defined only by an integer modulo-N or (m)N.
! ! ! ! ! (m)N.= m modulo N  ! ! ! ! (7.3.6)   
! For example, for N=6 in Fig. 7.3.2, all the following values of the quantum index m in a given line below 
have the same value modulo-6. 
! ! ...= (-9)6 = (-3)6 = (3)6 = ( 9 )6 = (15)6 = ...=  3 mod 6
! ! ...= (-8)6 = (-2)6 = (4)6 = (10)6 = ...  != -2 mod 6
! ! ...= (-7)6 = (-1)6 = (5)6 = (11)6 = ...  ! = -1 mod 6  
! ! ...= (-6)6 = ( 0)6 = (6)6 = (12)6 = ...   !=  0 mod 6! ! ! (7.3.7)
! ! ...= (-5)6 = ( 1)6 = (7)6 = (13)6 = ...  ! =  1 mod 6!
! ! ...= (-4)6 = ( 2)6 = (8)6 = (14)6 = ...  ! =  2mod 6!
! ! ...= (-3)6 = ( 3)6 = (9)6 = (15)6 = ...  ! =  3mod 6
! ...= (-8)6 = (-2)6 = ( 4)6 = (10)6 = ...  !  ! = -2 mod 6
How do we choose a km number label? We choose the underlined ones with the smallest |m| and pick the positive 
one if two are equal. This choice {m=-2,-1,0,1,2,3} of N=6 m-values is used in Fig. 7.3.2.

(b) Discrete orthonormality and completeness
! Orthonormality relations for wave states reduce to finite geometric sums.

!
  

km ' km =
p=0

N −1
∑

e
−i k m' xp

N

e
i k mxp

N
= 1

N p=0

N −1
∑ e

i k m−k m'( )xp  , where: xp  = p a  !(7.3.8a)

Substituting (7.3.2) and (7.3.5) gives

!
  

km ' km =
p=0

N −1
∑ z p = 1+ z + z2 + ...+ z N −1

N
 , where: z  = ei k m−k m'( )a = ei2π m−m '( )/ N

The geometric sum yields a result that satisfies km-orthonormality axiom-3.

! !
  

km ' km = 1
N

1− z N

1− z
 = 1

N
1− ei2π m−m '( )

1− ei2π m−m '( )/ N
= δmm ' ! ! ! (7.3.8b)

The km-completeness axiom-4 (or xp- orthonormality) is satisfied for these wave states, as well.

  
  

xp ' xp =
m=0

N −1
∑ xp ' km km xp =

m=0

N −1
∑

e
i k mxp '

N

e
−i k mxp

N
= 1

N m=0

N −1
∑ e

i xp '− xp( )k m = δ p p '  ! (7.3.9)
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(c) Discrete Fourier transformation matrices
! Below are shown Fourier transformation matrices and discrete xp-wavefunctions (7.3.5b)

! ! ! ! 〈 km | xp 〉 =  ψkm(xp)*= e-ikmxp /√N  ! ! ! ! (7.3.10a)!
They are drawn as complex phasor amplitudes for the cyclic N-state systems (CN) for N= 1, 2, 3, 4, 5, and  6. 
Also drawn over the phasors is the Re-part of the "Bohr's ghost" continuum x-wavefunctions
! ! ! ! 〈 km | x 〉 =  ψkm(x)*= e-ikmx /√L  ! ! ! ! (7.3.10b)!
Recall (7.1.10) or Fig. 7.1.1. "Bohr's ghosts" match the discrete waves (7.3.10a) with phasor clocks.

1 1  1
1 -1

1    1    1
1 e-i2π/3 ei2π/3

1 ei2π/3 e-i2π/3

1  1  1  1
1 -i -1     i
1 -1   1-1
1   i  -1    i

__
√2

__
√3 __

√4

-16=
-26=

-25=
-15=

-14=
-13=

Re Ψ

Im Ψ

Fig. 
7.3.3 Discrete Fourier transformation matrices for N-cyclic (CN) systems (N = 1, 2, ...,6...)
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(d) Intoducing aliases and Brillouin zones
! It is important to see the relation between the continuum waves and their "course-grained" images thatves 
with integral wave-numbers of m mod N whole wavelengths within each 〈 km |-row of phasors. We might as well 
call them "row-waves" or "bra-waves."  Note also, that the same wave shape exists in the columns or kets | xp 〉. 
Each “ket-wave” | xp 〉 represents a δ-position state or “pulse” localized at point xp . The inverse Fourier 
transformation 〈 km   | xp 〉 relates | xp 〉 to a bra-wave〈 km |. As required by conjugation axiom-2, namely, 〈 km   | xp 〉=

〈 xp | km 〉∗, the relation is the same as between | km 〉 and 〈 xp |  , except for conjugation.
! For low wave number like, say (mN )=(1)6 or (2)6, it is easy to see the "Bohr's-ghost wave" mirrored in the 
phasors as in the second and third row of the C6 matrix in Fig. 7.3.1. Note however, that these phasors are set so 
the phase of the one to the right is clockwise (that is it appears ahead) of the one to the left. This means, if the 
phasors turned clockwise, that the one to the right is feeding energy into the one to its left, so the wave would be 
moving right-to-left with wave momentum minus (1)6 or minus (2)6, respectively. But, they're conjugated bras so 
their clocks go backwards and so the labels are OK, after all.
! For high wave number like, say (mN )=(4)6 or (5)6, it is not so easy to see the "Bohr's-ghost wave" 
mirrored in the phasors as in the fifth and sixth row of the C6 matrix in Fig. 7.3.1. But, you can see alias waves of 
negative wave momentum (mN )=(-2)6 or (-1)6 , respectively, that is oppositely moving waves of low 
wavenumber. Recall that (4 mod 6) equals (-2 mod 6) and (5 mod 6) equals (-1 mod 6).
! Right in the middle row of the even-N matrix is a wave that isn't going in either direction. In the C6 matrix 
it is the (3)6 wave. Since (3 mod 6) equals (-3 mod 6) this is a good old push-me-pull-you standing wave with all 
real amplitudes of (1, -1, 1, -1, 1, -1). This can only happen for even-N and is known as a first Brillouin zone 
boundary wave in solid-state physics. 
! All cases have a zero-momentum wave (0N ) at the top of the transformation matrix. This is called the 
Brillouin zone center wave in solid-state physics. Indeed, it is centered at the bottom of the dispersion plot in Fig. 
2.6.1. Its phasor settings are the same as that of a higher (NN ), or (2NN ), or (3NN ), ...etc. wave. However, this N-
state system does not count higher than N-1 without recycling.
! Consider, for example, a k-11 wave of wavevector (-11)12 (with minus-eleven-kinks-modulo-12) as plotted 
in Fig. 7.3.4 (a). Since (–11)-mod-12 equals (+1)-mod-12 (that is, (-11)12=(+1)12) it follows that the wave shown 
has the same effect as a (+1)12 wave. Indeed, the twelve masses in Fig. 7.3.4(a) line up on a single-kink (k=1)-
wave moving positively, while the (k=-11)-wave moves negatively. (See WaveIt movie.) This is an example of 
aliasing. In a C12 lattice, (k=-11) is an alias for (k=+1). 
! Fig. 7.3.4(b) shows the k-space with a typical frequency dispersion function plotted above it. The 
difference between any two alias wavevectors such as (k=+1) and (k=-11) is a reciprocal lattice vector k12 or (12)
12=(0)12. The reciprocal lattice vector k12 also spans the first Brillouin-zone from (-6)12 to (+6)12 as shown at the 
bottom of the figure. An important idea here is that a wavevector k-space must have the same N-fold periodic 
symmetry as the coordinate x-space. Moving across row of a 〈 km   | xp 〉 matrix gives the same variation as moving 
up the corresponding column since 〈 km   | xp 〉 is unitary. Both are N-fold periodic!
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xp

-Motion of wave state k-11 same as wave state  k-11+k12=  k+1

(a)
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 -3
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1.00
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1.41
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  5

1.93ω=

  6
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 12

ω=

km
Reciprocal lattice vector k12

1st Brillouin Zone

(b)

Fig. 7.3.4 (a) (-11)-wave has the same effect as its alias (+1)-wave. (b) Difference is zone vector k12.

! To appreciate the symmetry of a Fourier transfom matrix, it may help to examine some larger ones. For 
example, Fig. 7.3.5 shows the Fourier matrix for N=24. Phase of each amplitude 〈 km   | xp 〉 is color coded so it can 
be more easily spotted. Symmetry patterns should now be more evident. Remember, that these patterns repeat 
forever in all directions right and left or up and down in a great checkerboard quilt!
! This beginning discussion of discrete wave analysis should make it clear that there is considerable 
physical and mathematical complexity hiding in these "simple" Fourier structures. Indeed, this is a key to 
understanding fundamental quantum symmetry properties and techniques which are generally labeled by a 
mathematical misnomer as “group theory.” We shall explore some more of this shortly.

HarterSoft –LearnIt    Unit 3 Fourier Analysis and Symmetry   ----18



19

Fig. 7.3.5  Phase color coded Fourier transformation matrix for N=24.
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Problems for Chapter 7
Bohring problems
7.1.1. For a Bohr ring of fixed circumference L =1nm consider the following wavefunction Ψ(x) =〈x|Ψ〉 distributions around 
the ring at t=0, and deduce the amplitudes 〈m|Ψ〉 of each of the eigenstates |m〉 for m=0,±1,±2,.. Let the eigenfrequencies be  
νm = ( 0, 1, 4, . , m2, .)MHz. 
(a) Ψ(x) = const. . ! ! ! ! ! ! (b) Ψ(x) = const.(1+cos 2πx/L) .
(c) Ψ(x) = const. for -L/4<x<L/4 and  Ψ(x) = 0  elsewhere.
For each case evaluate const. assuming one particle occupies the ring. 
(d) For each case (a) to (c) answer: "Is it a stationary state?" If not, calculate, plot, and discusss the wavefunctions of each 
case at time t = 1µsec, and at 0.5µsec .

Continuously boring problems
7.2.1. For an infinite line (-∞<x<∞) consider the following wavefunction Ψ(x) =〈x|Ψ〉 distributions along the line. Calculate, 
plot, and discusss the amplitude functions 〈k|Ψ〉 of each of the eigenstates |k〉 for (-∞<k<∞). Let the eates |k〉 for (-∞<k<∞). 
Let the eigenfrequencies be  νk = ( kL/2π)2MHz. (Let unit length be L =1nm.)
(a) Ψ(x) = const. . ! ! ! ! ! ! (b) Ψ(x) = const.(1+cos 2πx/L) . .
(c) Ψ(x) = const. for -L/4<x<L/4 and Ψ(x) = 0  elsewhere.
Evalu per unit length ( L =1nm.). 
(d) For each case (a) to (c) answer: "Is it a stationary state?" If not, calculate, plot, and discusss the wavefunctions of each 
case at time t = 1µsec, and at 0.5µsec .

Continuously discrete or discretely continuous?
7.3.1. Ch.7 contains discussion of 1D Fourier wave systems with (a) Continuous x and discrete k, (b) Continuous x and 
continuous k, and (c) Discrete x and discrete k. Using physical models of each to discuss how physically relizeable these are. 
Is there a 4th possibility? Discuss.

Aliases on the move
7.3.2. Consider the two aliases (-11) and (+1) in Fig. 7.3.4. Discuss whether a dispersion function ω(k) should repeat 
periodically. Should the period be the zone vector k12? For computation use ω(k)=|sin(πk/12)| as plotted where k=0, ±1, ±2, 
±3 ,… in units of 2π/L. Use Vphase = ω/k and Vgroup = dω/dk .
(a) Is the phase velocity the same for the two alias states (-11) and (+1)? Compute and discuss why or why not.
(a) Is the group velocity the same for the two alias states (-11) and (+1)? Compute and discuss why or why not.
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Fourier analysis is most useful when there is a symmetry G in which all the coordinate points 
are indistinguishable. For an unbounded x-continuum, G is an infinite translational symmetry 
group labeled T. For a bounded xp-ring of “quantum dots” the symmetry G is an N-cyclic 
rotation group labeled CN. In Chapter 8 a fictitious hexagonal beam analyzer with C6 symmetry 
is considered. The transfer matrix eigensolutions of such a device are found using a modern 
form of Fourier analysis known as group representation theory or symmetry analysis, one of 
the most powerful tools in quantum theory. The symmetry of the bounded Bohr x-ring 
continuum is also discussed.
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Chapter 8. Fourier Symmetry Analysis
 From where do the wavefunctions like Ψ = ei(kx - ωt) come? One answer to this involves the concept of 
symmetry analysis and group representation theory. These sound like big names for what is still regarded as a 
pretty scary mathematical subject. However, the basic ideas of this powerful tool are actually quite simple as we 
hope to show now. Most of the needed algebraic work has been done in Ch. 3 regarding spectral decomposition. 
The physical ideas of Fourier analysis and Bohr ring waves are in Ch. 7. Symmetry group representation theory is 
really just a beautiful generalization of Fourier analysis that gives eigensolutions of “difficult” operators using 
simple properties of commuting symmetry operators.

8.1. Introducing Cyclic Symmetry: A C6 example
 A ring of quantum dots was introduced in Section 7.3 as a model for finite Fourier analysis. The Fourier 
tranformation matrix was discussed with examples for N=1, 2, 3, 4, 5, and 6. The idea of cyclic symmetry CN was 
broached as a property of the matrices in Fig. 7.3.3 and Fig. 7.3.5. Here that idea is put on a more solid footing.

(a) Cyclic symmetry CN: A 6-quantum-dot analyzer
 Suppose someone invents some beam analyzer that takes an N-state beam and sorts it into N beams 
arrayed around a circular device as imagined in Fig. 8.1.1 for N=6. Let each beam path entering the device 
contain particles in one of N states {|0〉, |1〉, |2〉, ... , |N-1〉} after which the device does things which causes the 
beams to interfere or be otherwise modified before recombining and counting. 

!

|0〉
|1〉=r |0〉
|2〉=r2 |0〉

|4〉=r4 |0〉
|5〉=r5 |0〉

|0〉=1 |0〉

|3〉=r3 |0〉

|2〉

|3〉

|4〉

|5〉|1〉

rr
|1〉=r |0〉

|0〉

|ΨIN〉
|ΨOUT〉=ΤΤ|ΨIN〉

ΨIN - STATE
PREPARATION
Particle ΨIN-State
Analyzer-Filter

ANALYZER
CHANNELS

ΨOUT - STATE
MEASUREMENT

Particle
Analyzer-Counter

 Fig. 8.1.1 Generic N-state (CN) beam analyzer experiment with (N = 6) channels

 We are intentionally being vague about the nature of the states. (After all, this device hasn't even been 
invented yet!) Let us just say they are some kind of hyper-polarization states. (Put a prefix like 'hyper' on 
something ordinary and people stop asking questions.) The point is that by just knowing the symmetry of a 
device it is possible to work out a lot of the quantum mechanics without knowing so much of the underlying 
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details. It is a lot like the photon polarization and electron spin problems discussed in Chapter 1. Electron and 
photon “spin” are physically quite different but use much of the same mathematical theory.
 By symmetry, we mean any operators r, r2,.. that do not alter the analyzer experiment no matter how 
many times you apply them. In particular, suppose a 60° rotational operator r indicated in Fig. 8.1.1. could be 
done some night by the lab janitor, so when the physicists show up the next morning all their experiments work 
the same as the day before. 
 However, it is important to state what we mean the janitor's r-operation to do. He could just rotate the 
whole lab building by 60°. That, indeed, is a symmetry, but not one we will discuss until later. Besides, a rotation 
like that happens every four hours as the Earth turns; no janitor needed! This is called the symmetry of isotropy of 
space. It is a continuous or Lie symmetry for which 60° has no special significance. 
 Instead, what we have in mind for the janitor to do is rotate just the analyzer in the center of Fig. 8.1.1 by 
60° as indicated in the figure. Well, that analyzer looks pretty heavy, so, instead we'll ask that the janitor just 
rotate the little input source and the little output counter both by minus 60°, which is operation    r -1=r 5. This 
does the same as a whole-Earth/lab rotation by -60° (which no one detects) followed by a positive 60° rotation of 
the big analyzer to "upright" leaving input and output devices behind at -60°. 
 It is important to understand that all transformations are relative transformations; something gets moved 
or mapped relative to something else. You've probably heard it quoted, "Everything's relative!" Well, that's often 
garbage, but here it isn't. Rotations, Lorentz transformations, and our analyzer operators T (Recall Fig. 1.6.1), 
and r in Fig. 8.1.1 are all mappings of one vector or thing relative to another.
 By the way, our helpful suggestion to the janitor won't help much if the input and output devices are big 
analyzers, too. It was noted in Chapter 1 that filters and counters are analyzers set in certain ways. But, the 
analyzer in Fig. 8.1.1 is a more powerful one than heretofore discussed. (And, isn't better always bigger?) So let's 
assume that the janitor can easily do r -1 = r 5 to the smaller input and output devices whose in and out states are 
written as follows in Dirac notation, 
    |ΨOUT (r-1)〉 = r -1|ΨOUT〉  ,     |ΨIN (r-1)〉 = r -1 |ΨIN〉 .  (8.1.1)
 Symmetry of the transformation operator T means it does exactly the same relative thing to any state |
ΨIN〉 as it does to the janitor-rotated state |ΨIN (r-1)〉 , that is 
   |ΨOUT〉 = T |ΨIN〉     implies:  |ΨOUT (r-1)〉 = T |ΨIN (r-1)〉  (8.1.2a)
or 
               r -1|ΨOUT〉 = T r -1|ΨIN〉     (8.1.2b)
      |ΨOUT〉 = r T r -1|ΨIN〉     (8.1.2c)
If this is true for all input states |ΨIN〉 then it follows that effect of analyzer operator T in (8.1.2a) and in (8.1.2c) 
are indistinguishable, or T is invariant to r
      T = r T r -1  or:  r -1T r = T      (8.1.2d)
or, that r commutes with T; the latter being the most common way to say that T has r-symmetry.
       T r = r T      (8.1.2e)
All the above parts of equation (8.1.2) are really the same requirement for r-symmetry of T.
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 Note: This is not the same as just multiplying both sides of |ΨOUT〉 = T |ΨIN〉 by r  or r -1 which just gives 
a whole-Earth/lab rotation, that is, operate with r -1 and insert the identity (r r -1 =1) to get
    r -1 |ΨOUT〉 =  r -1 T |ΨIN〉 =  r -1 T r r -1 |ΨIN〉 .      (8.1.3a) 
This reduces to an expression similar to the original |ΨOUT〉 = T |ΨIN〉 
     |ΨOUT (r-1)〉  =  r -1 T |ΨIN〉 =  r -1 T r |ΨIN (r-1)〉 = T (r-1) |ΨIN (r-1)〉     (8.1.3b)
where T (r-1) is a similarity transformation r -1T r of T . (This is an active transformation; devices move.)
     T (r-1)  = r -1 T r       (8.1.3c)
These relations hold true for any analyzer operator T whether it has symmetry or not. 
 For T to have r-symmetry it is necessary that the similarity transformation leaves T unchanged or 
invariant (T (r-1)  = T), as in (8.1.2d).To recap 
 An analyzer has r-symmetry if and only if its operator T commutes with r , that is (T r = r T).

(b) CN Symmetry groups and representations
 Now, the janitor, having fooled the physicists once, does it again the next night, by rotating by r one more 
time giving the same positions as if r 2 had been done the first night. Then a combination of r 2 and r 3 is tried. 
(This just gives r -1 = r 5 the inverse of which was tried on the first night.) All of these products are symmetries if 
the factors are. (So the physicists end up getting fooled night after night for almost a week of different positions! 
Saturday, they have to take off since they read right-to-left. ) 
 If operators a and b commute with an analyzer T-matrix then so do all their products
   If: aT = Ta  and  bT = T b    then    abT = Tab  and  baT = T ba     (8.1.4a)
and inverses.  If: aT = Ta       then   a-1T = Ta-1       (8.1.4b)
This shows that the set of unitary operators that commute with a particular T-operator must satisfy the group 
axioms (1-4) stated in Sec. 2.2. This set is called a symmetry group G={ a , b , c ,..., g ,..}  of the operator T. We 
are supposing that the analyzer matrix T associated with the experiment in Fig. 8.1.1 has an N-cyclic symmetry 
group C6 = { 1 , r , r2 , r3, r4, r5} of six (N=6) operators that have the following group multiplication table. We 
put the inverses of the first column in the top row so 1 is on the diagonal.

 

   

  

C6 1 r5 r4 r3 r2 r

1 1 r5 r4 r3 r2 r

r r 1 r5 r4 r3 r2

r2 r2 r 1 r5 r4 r3

r3 r3 r2 r 1 r5 r4

r4 r4 r3 r2 r 1 r5

r5 r5 r4 r3 r2 r 1

 (8.1.5a)                       1=

1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

   (8.1.5b)  

Think of the table as a matrix in a basis {|0〉  |1〉  |2〉  |3〉  |4〉  |5〉} defined by operators {1,r,r2,r3,r4,r5}.
 This makes a matrix representation for each operator using the channel states as a basis by simply 
replacing each operator's table entry by a "1" in that position of its matrix and "0" or "dot" (.) elsewhere. 
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        0 1 2 3 4 5                    0 1 2 3 4 5                    0 1 2 3 4 5                    0 1 2 3 4 5                    0 1 2 3 4 5

r=

⋅ ⋅ ⋅ ⋅ ⋅ 1
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,r2 =

⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
⋅ ⋅ ⋅ 1 ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

, r3=

⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,r4 =

⋅ ⋅ 1 ⋅ ⋅ ⋅
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,r5=

⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
1 ⋅ ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

            (8.1.5c)
These are sometimes called the regular permutation representations because they permute each of the p-position 
states. The first column of matrix rp-1 represents the basic ket definition |p〉 = rp-1|1〉 as follows.
  |0〉 = 1|0〉 , |1〉 = r|0〉 , |2〉 = r2|0〉 , |3〉 = r3|0〉 , |4〉 = r4|0〉 , |5〉 = r5|0〉   (8.1.6a)
The r-transform is unitary r†=r -1. The Hermitian conjugate of these relations is the basic bra definition.
  〈0| = 〈0|1 , 〈1| = 〈0|r -1 , 〈2| = 〈0|r -2 , 〈3| = 〈0|r -3 , 〈4| = 〈0|r -4 , 〈5| = 〈0|r -5  (8.1.6b)
These defintions may be summed up by defining a representation matrix R(g) with components Rpq(g).
     Rpq(g)= 〈p|g|q 〉         (8.1.6c)

(c) So whatʼs a group representation?
 To use a more “kosher” mathematical language we should say that the representation matrices in (8.1.5b-
c) are functions R(g) of the group G={1,g1,g2,…}=C6={1,r,r2,r3,r4,r5}. That is, every group operator gets 
mapped onto a matrix so that the matrix R(g1g2) of a group product g1g2 is the matrix product R(g1)• R(g2) of the 
factors. 
     R(g1)• R(g2) = R(g1•g2)       (8.1.7a)
Stated simply, “The product of representations must equal the representation of the product.” The matrices in 
(8.1.5b-c) must obey the group multiplication table (8.1.5a)! It is easy to see that the first matrix (8.1.5b) satisfies 
this requirement trivially.
     R(1)• R(1) = R(1•1) = R(1)     (8.1.7b)
The remainder have to satisfy it because of definition (8.1.6) involve bras and kets which obey Axioms 1-4, that 
is, R(g) is a unitary representation. The conjugation axiom (〈p|q〉*=〈q|p〉) implies that the †-conugate (R†pq= 
R*qp) of a representation must be the representation of the group inverse r†=r -1.
    Rpq(g†)= 〈p|g†|q 〉 = (〈q|g|p〉)*= (Rqp(g))*      (8.1.8a)
Stated more simply this is simply demanding operator unitarity from its representations.
    R†(g) = R(g†) = R(g-1) = R-1(g)      (8.1.8b)
All of the above are properties that are invariant to a change-of-basis transformation U†U=1. Given RU(g) = U R
(g)U†, it follows that the new RU matrices also satisfy (8.1.7) thru (8.1.8). For example,
  RU(g1)RU(g1) = U R(g1)U†U R(g2)U†= U R(g1)R(g2)U† = RU(g1g2) (8.1.9)
Now we discuss finding and applying the diagonalizong transformation or d-tran of R(g).

HarterSoft –LearnIt    Unit 3 Fourier Analysis and Symmetry   ----6



7

8.2 CN Spectral Decomposition: Solving a C6 transfer matrix
 The main analyzer of Fig. 8.1.1 is supposed to have C6  symmetry. However, it is also supposed to do 

some things that we haven't let single analyzers do to an incoming base state |ΨIN 〉 =|p〉, and that is, mix it up! No 
longer will a base state |1〉 or |2〉 just fly on through with nothing more than an extra phase attached, so it just 
comes out eiΩ1|1〉 or eiΩ2|2〉 . From now on, each base state |p〉 is going to get treated to a full-blown 
transformation matrix Τ that is not necessarily diagonal. A general base state |ΨIN 〉 will be output as |ΨOUT〉 , as 
follows,

   

  

0 ΨOUT

1 ΨOUT

2 ΨOUT

3 ΨOUT

4 ΨOUT

5 ΨOUT

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

=

T00 T01 T02 T03 T04 T05

T10 T11 T12 T13 T14 T15

T20 T21 T22 T23 T24 T25

T30 T31 T32 T33 T34 T35

T40 T41 T42 T43 T44 T45

T50 T51 T52 T53 T54 T55

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

•

0 ΨIN

1 ΨIN

2 ΨIN

3 ΨIN

4 ΨIN

5 ΨIN

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

 (8.2.1a)

where off-diagonal (p≠q) matrix elements 
       Tpq = 〈 p | Τ | q 〉       (8.2.1b)
of T are not all zero if |p〉 and |q〉 do not belong to T‘s "own" eigenbasis. (Bilingual redundancy, again.)
 So, are we ready to diagonalize a general six-by-six matrix? No way, Jose'! But, here is where symmetry 
analysis rides to the rescue. If we can diagonalize the r-matrix in (8.1.5) then, barring appearance of nilpotents or 
other obnoxious gremlins, we may be able to also diagonalize the T-matrix (8.2.1). This is because (8.2.1) isn't 
just any old six-by-six matrix; it has C6 symmetry and must therefore commute with each of its symmetry 
operators like r. Recall T r = r T in (8.1.2). This means that T and r share projectors Pk as shown in (3.1.37). 
Diagonalize r and you may have diagonalized T as well!

(a) Spectral decomposition of symmetry operators rp

 The problem of analyzing (8.2.1) is then reduced to diagonalizing r in (8.1.5a), another six-by-six matrix, 
albeit a simpler one. But wait! No matrix need bother us. The minimal equation for r is simply
      rN = 1  (N=6, here.)    (8.2.2)
and all its eigenvalues are the roots of unity given before by (7.3.5) and displayed in Fig. 7.3.3.

   
  
χm = rN( )m = e−i 2π / N( )m =e−i 2π m/ N      where:  m = 0,1,2,..., N −1      (8.2.3)

(Again, N=6). The spectral projectors of r follow easily. To help understand this recall that a spectral 
decomposition of any matrix M come with beautiful and powerful consequential relations. First, M‘s eigen- 
projector Pk  satisfies: MPk = εk Pk  and orthonormality PjPk = δjk Pk. Then there is completeness 
      1 = P1 + P2  + ...+ Pn .     (3.1.15d)repeated 
and spectral decomposition of operator M, and functional spectral decomposition of an operator M .
     M = ε1 P1 + ε2 P2  + ...+ εn Pn     (3.1.15e)repeated 

f(M)= f(ε1) P1 + f(ε2) P2  + ...+ f(εn) Pn    (3.1.17)repeated 
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Applying the spectral relations using the eigenvalues (roots) in (8.2.3) gives a functional (power) spectral 
decomposition (3.1.17)repeated of all powers rp of rotation operator r by putting (χm)p before each Pm. 

   

  

1 =   P0    + P1    + P2    + P3     + P4     + P5

r =   P0 + χ1P1 + χ2P2 + χ3P3 + χ4P4 + χ5P5

r2 = P0 + χ1
2P1 + χ2

2P2 + χ3
2P3 + χ4

2P4 + χ5
2P5

r3 = P0 + χ1
3P1 + χ2

3P2 + χ3
3P3 + χ4

3P4 + χ5
3P5

r4 = P0 + χ1
4P1 + χ2

4P2 + χ3
4P3 + χ4

4P4 + χ5
4P5

r5 = P0 + χ1
5P1 + χ2

5P2 + χ3
5P3 + χ4

5P4 + χ5
5P5

 where: 
  
χm

p = χm( )p
= e−i 2π mp( )/ N   (8.2.4a)

Apart from the normalization, the Pm-to-rp relation above is a unitary linear combination having the same Fourier 
transformation coefficients 〈km|xp〉 as (7.3.10a). The inverse rp-to-Pm relation is obtained by transpose 
conjugating the coefficients χmp above to give coefficients just like 〈xp|km〉 in (7.3.10b).
    ( χmp )* = √N 〈km|xp〉* = √N 〈xp|km〉 = ei2π(mp)/N = ρ pm      (8.2.4b)
Then divide all by the norm N=6 to make the following idempotent projectors.

   

  

P0 = 1   + r     + r2    + r3     + r4     + r5( ) / 6

P1 = 1 + ρ1r + ρ2r2 + ρ3r
3 + ρ4r4 + ρ5r5( ) / 6

P2 = 1 + ρ1
2r + ρ2

2r2 + ρ3
2r3 + ρ4

2r4 + ρ5
2r5( ) / 6

P3 = 1 + ρ1
3r + ρ2

3r2 + ρ3
3r3 + ρ4

3r4 + ρ5
3r5( ) / 6

P4 = 1 + ρ1
4r + ρ2

4r2 + ρ3
4r3 + ρ4

4r4 + ρ5
4r5( ) / 6

P5 = 1 + ρ1
5r + ρ2

5r2 + ρ3
5r3 + ρ4

5r4 + ρ5
5r5( ) / 6

 where: 
  
ρp

m = χm
p* = ei 2π pm( )/ N    (8.2.4c)

Operating on the first position state with these projectors gives the desired eigenstates of the T-matrix. The norm 
is 〈1|P m|1〉 =1/N . (Recall (3.1.13)example) Its root 1/√N  results to give normalized eigenkets.

  
   
km = Pm 0 N =

p=0

N −1
∑ ρp

mr p 0 N / N =
p=0

N −1
∑ ei2π pm( )/ N p / N     (8.2.5a)

The inverse ket relations give position states |xp〉=|p〉 in terms of wave |km〉 eigenkets.

  
   

p = r p 0 =
p=0

N −1
∑ χ p

pPm 0 N =
p=0

N −1
∑ e−i2π mp( )/ N km / N     (8.2.5b)

 The preceding ket relations (8.2.5) and their operator equivalents (8.2.4) are the discrete-N Fourier 
transformations whose N-by-N transformation matrices are pictured for N=1, 2, 3, 4, 5, and 6 in Fig. 7.3.3 and for 
N=24 in Fig. 7.3.5. The physical transformation is between N “quantum-dot” position point |p〉-states (|xp〉=|p〉) 
and their N quantum momentum Fourier-wave |km〉-states. Much of the above is mathematical “legalese” which 
gets short-circuited in the calculations that are described next.
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 (b) Writing transfer operator T in terms of symmetry operators rp 
 In order for main analyzer T-matrix (8.2.1) to have CN  symmetry, it must commute with all the rotation 
operator r-matrices in (2.7.5). T does this by being a linear combination of rp as follows.
   T = A 1 + B r + C r2 + D r3 + C' r4 + B' r5,    (8.2.6) 
The rp-matrices in (2.7.5) are thus combined to give the general C6 -symmetric T-matrix relation (8.2.1).

   

  

0 ΨOUT

1 ΨOUT

2 ΨOUT

3 ΨOUT

4 ΨOUT

5 ΨOUT

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

=

A B ' C ' D C B

B A B ' C ' D C

C B A B ' C ' D

D C B A B ' C '

C ' D C B A B '

B ' C ' D C B A

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

•

0 ΨIN

1 ΨIN

2 ΨIN

3 ΨIN

4 ΨIN

5 ΨIN

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

  (8.2.7)

The undetermined coefficients A, B, C, D, C', and B' correspond to all the transition amplitudes that state |0〉 
could possibly have to other states |0〉, |1〉, |2〉, |3〉, |4〉, and |5〉 as indicated by arrows in Fig. 8.2.1a.

!

        

|0〉
A

B B'
C C'

D

|1〉

|2〉

|3〉

|4〉

|5〉

(a) Paths from |0〉 (b) All Paths

Β=〈1|T|0〉
Α=〈0|T|0〉

C=〈2|T|0〉
D=〈3|T|0〉
C'=〈4|T|0〉
B'=〈5|T|0〉

 Fig. 8.2.1 Generic 6-channel (C6) beam transitions (a) Amplitudes (b) Paths

 In order that the system really have C6 symmetry, the next state |1〉 must make the same amplitudes to the 
states |1〉, |2〉, |3〉, |4〉, |5〉, and |6〉, respectively, and so on for |2〉, |3〉, |4〉, and |5〉. All the equivalent paths are 
indicated in Fig. 8.2.1b. 
 The expression of a quantum operator, such as the analyzer transfer matrix T, in terms of its symmetry 
operators, such as the rp, is a deep and important idea which will be used a lot in the rest of this text. It is useful 
if, as the case is here, the rp and T have the same set of eigenstates or projectors so that a (presumably!) easy 
spectral decomposition of the former also solves the latter. Also, it is useful to label by symmetry operators both 
the system coordinate base states, as in (8.1.6), and the transfer or transition amplitudes or paths between the base 
states, as in Fig. 8.2.1. 
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(c) Spectral decomposition of transfer operator T 
Now a C6-symmetric T operator equation with these A, B, C,.. amplitudes must be diagonalized if represented in 
the symmetry projected |km〉 basis (8.2.5).

  

  

k0 ΨOUT

k1 ΨOUT

k2 ΨOUT

k3 ΨOUT

k4 ΨOUT

k5 ΨOUT

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

=

ε k0( ) 0 0 0 0 0

0 ε k1( ) 0 0 0 0

0 0 ε k2( ) B 0 0

0 0 0 ε k3( ) 0 0

0 0 0 0 ε k4( ) 0

0 0 0 0 0 ε k5( )

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

•

k0 ΨIN

k1 ΨIN

k2 ΨIN

k3 ΨIN

k4 ΨIN

k5 ΨIN

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

  (8.2.8)

 This is because T in (8.2.6) is a combination of symmetry operators (2.7.5) and all the symmetry 
operators have |km〉 as eigenvectors with eigenvalues (8.2.3).
     rp |km〉 =  rp P m|1〉 = e-i2π mp/N  P m|1〉 = e-i2π mp/6 |km〉   (8.2.9)
Eigensolutions for r-operators are examples of elementary Bloch symmetry conditions.

    r |km〉 = e-ikm a |km〉 = e-i2π m/6 |km〉 where:  
  
  km = 2π

Na
m   (8.2.10)

It says that a translation by distance a (60° rotation r along analyzer circumference) sees each phase timer 
advance forward by kma consistent with pictures Fig. 7.3.3 of Bloch (m)N waves. (Remember: phasor clocks turn 
clockwise with time, a negative angle.) Bloch symmetry is based upon the r -eigenoperator relation r P m = χm P 
m with (m)-th-root-of-unity eigenvalues χm = e-i2π m/N of r from (8.2.3). 
An eigenvalue formula for all possible C6 symmetric T-matrices
 To compute the T-eigenvalues we just have to substitute the r-values of (8.2.9) into (8.2.6)!
     〈km|T|km〉 = A 〈km|1|km〉 + B 〈km|r|km〉 + C 〈km|r2|km〉 + D 〈km|r3|km〉 + C' 〈km|r4|km〉 + B' 〈km|r5|km〉
6          = A + B e-ikm a + C e-i2km a + D e-i3km a + C' ei2km a + B' eikm a   (8.2.11a) 
(Note: e-i4km a = ei2km a since -4 mod 6 = 2 mod 6. Also,  e-i5km a = eikm a since -5 mod 6 = 1 mod 6) Another 
way to derive eigenvalues is to put |km〉 into a matrix eigenequation (8.2.7) for T. 

  

  

A B ' C ' D C B

B A B ' C ' D C

C B A B ' C ' D

D C B A B ' C '

C ' D C B A B '

B ' C ' D C B A

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

•

1

eikma

ei2kma

ei3kma

e−i2kma

e−ikma

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎟

= ε km( )

1

eikma

ei2kma

ei3kma

e−i2kma

e−ikma

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎟

  (8.2.11b)

The first row multiplication shows gives the same eigenvalue.
 ε(km) = A + B e-ikm a + C e-i2km a + D e-i3km a + C' ei2km a + B' eikm a  (8.2.11c) 
It is important to understand what has been accomplished. A general eigenvalue and eigenvector formula has 
been derived for all possible matrices T that have the symmetry C6 of this particular “thought-experimental” 
problem. That is pretty neat, and it is just the beginning of a powerful set of symmetry tools!
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What do the km- eigensolutions mean?
 The physical interpretation of CN  eigensolutions is well known to electrical engineers. The ket in 
(8.2.11b) is a 6-phase generalization of the voltage in 3-phase wires commonly used to transport 220V power. A 
C3 example shown in Fig. 8.2.2 resembles the 23=-13-row of the C3 table in Fig.7.3.3 with a time-phase of t=5π/
6. (The 23=-13-bra (row) is the †-conjugate of a 13=-23-ket (column) eigenvector.) The result is a (k=1)-wave 
moving left to right in Fig. 8.2.2a or clockwise in Fig. 8.2.2b. (Recall: phasor-ahead feeds into phasor-behind. 
Imaginary ImΨ precedes the real ReΨ in time since phasors turn like clocks.)

 

      

 Fig. 8.2.2 (k=1) 3-channel (C3) wave eigenstate (a) Real and imaginary waves (b) Phasors
A beam with all amplitudes equally dephased from their next neighbor is a |km〉-state that is not changed by a 
cyclically wired device that has CN  symmetry such as the C6 analyzer sketched in Fig. 8.2.1. Also, if the T-
matrix is unitary (T†=T -1), |km〉-state eigenvalues ε(km) must be unitary, too.
     ε(km)* = 1/ ε(km) or:  ε(km) = eiφm     (8.2.12)
So the effect of the analyzer on an eigenchannel |km〉-state can only be to add an overall phase φm to it.
    T |km〉 = eiφm |km〉        (8.2.13)
The phase φm is sometimes called an eigenchannel phase-shift or eigenphase φm . Below we write the 
eigenchannel basis representation of the T |km〉-equation for a general input state |ΨIN 〉 with arbitrary values for 
its N-eigenchannel-amplitudes 〈km|ΨIN 〉 of (8.2.7).  (This means the N-channel-amplitudes 〈p|ΨIN 〉 in the 
original representation (8.2.6) are arbitrary, too.) Below is for general |ΨIN 〉.

  

  

k0 ΨOUT

k1 ΨOUT

k2 ΨOUT

k3 ΨOUT

k4 ΨOUT

k5 ΨOUT

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

=

eiφ0 0 0 0 0 0

0 eiφ1 0 0 0 0

0 0 eiφ2 0 0 0

0 0 0 eiφ3 0 0

0 0 0 0 eiφ4 0

0 0 0 0 0 eiφ5

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

•

k0 ΨIN

k1 ΨIN

k2 ΨIN

k3 ΨIN

k4 ΨIN

k5 ΨIN

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

 (8.2.14)
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 (d) OK, where did those eikx wavefunctions come from?
 Every student of differential equations is told early on to try the exponential solutions eAt or eiat in 
independent variable t with little reason given except, "It works!...sometimes." Now we can see why and when 

such solutions work. The key to our exponential eigenfunctions  ψkm(xp)= eikmxp /√N  was CN symmetry which 
demanded in (2.7.5) that we use roots of unity, that is, the roots of the minimal equation  rN=1 for symmetry 
operator r. 
 If we let N approach infinity (N→∞) the symmetry approaches continuous translation symmetry C∞, and 
the eigenfunctions ψkm(xp) approach plane waves ψk(x)= eikx /√2π such as given by (2.6.20b) in Sec. 2.6b. 
Symmetry demands independence or invariance to translation of the independent variable x. In other words, you 
should get the same differential equation no matter whether you let the origin be at x=0 or at x=2,517 in 
Timbuktu. For example, the differential equation 

   
  

d2ψ
dx2

+ 2γ dψ
dx

+ k2ψ = 0       (8.2.15)

does have C∞ symmetry so eikx will work, but an equation like 

   
  

d2ψ
dx2

+ 2γ x
dψ
dx

+ k2x2ψ = 0       (8.2.16)

does not have C∞ symmetry because of the x-dependence; it's not the same equation in Timbuktu. An example of 
a CN -symmetric differential equation is Matieu's equation for waves in a periodic solid.

   
  

d2ψ
dx2

+ k2 cos(Nx)ψ = 0

 All that we have said applies as well when the independent variable is time t. For example, the differential 
equation 

   
  

d2ψ
dt2

+ 2Γ dψ
dt

+ω 2ψ = 0       

does have C∞ symmetry so eiωt will work. An example of a CN -symmetric time differential equation is Mathieu's 
equation for a periodic force. Later we use CN -symmetry to help solve this type of equation.

   
  

d2ψ
dt2

+ k2 cos(Nt)ψ = 0
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8.3 Related Symmetry Analysis Examples
 The homo-cyclic two-dot C2 and three-dot C3 sytems are sketched below in the way the C6 system was 
sketched in Fig. 8.2.1. The transfer matrix equations (8.3.1) have eigenket tables (8.3.2).

 

  

0 ΨOUT

1 ΨOUT

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
=

A B
B A

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

0 ΨIN

1 ΨIN

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

 (8.3.1a)   

  

  

0 ΨOUT

1 ΨOUT

2 ΨOUT

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=
A B ' B
B A B '
B ' B A

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

0 ΨIN

1 ΨIN

2 ΨIN

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

(8.3.1b) 

  

      
(a) C2 System

|0〉
A

|1〉

(b) C3 System

|0〉
A

|1〉 |2〉

B B'B

 Fig. 8.3.1 Generic N-channel (CN) quantum dot systems. (a)N=2 (b) N=3
     (8.3.2a)       (8.3.2b)

 

   

C2 x0 = R0 0 x1 = R1 0

0( )2 1 1 / 2

1( )2 1 −1 / 2

 

   

C3 x0 = r0 0 x1 = r1 0 x2 = r2 0

0( )3 1 1 1 / 3

1( )3 1 e2π i /3 e−2π i /3 / 3

2( )3 1 e−2π i /3 e2π i /3 / 3

 

The eigenket tables are from Fig. 7.3.3. Each phasor in the 〈bra| table for C3 in Fig. 7.3.3 is replaced by its 
complex conjugate to make kets. A preceding Fig. 8.2.2 shows a |(1)3〉 wave with eigen-phase shift of –5π/6. The 
corresponding transfer matrix eigenvalues 〈 m N |T| m N〉 in terms of parameters A,B,.. are left as exercises.
 Besides such cyclic CN systems there are an enormous number of ways to connect N-dots in ways that 
have more or less symmetry. A few of these are considered below and in problems. Most of the interesting (Also, 
read “doable!”) quantum problems have an underlying symmetry.

©2013 W. G. Harter      Chapter 8. Fourier Symmetry  ! 8--



(a) Dihedral symmetry D2

 Two 4-dot symmetries are shown in Fig. 8.3.2 below with transfer matrix relations.

      

  

0 ΨOUT

1 ΨOUT

2 ΨOUT

3 ΨOUT

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

=

A B C C
B A C C
C C ′A ′B
C C ′B ′A

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

0 Ψ IN

1 Ψ IN

2 Ψ IN

3 Ψ IN

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

  

  

0 ΨOUT

1 ΨOUT

2 ΨOUT

3 ΨOUT

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

=

A B ′B C
B A C ′B
′B C A B

C ′B B A

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

0 Ψ IN

1 Ψ IN

2 Ψ IN

3 Ψ IN

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

      (8.3.3a)     (8.3.3b)
      

(a)
|0〉
A

|1〉

B

|2〉
A′

B′
C

|3〉

|0〉
A

|1〉

B

|2〉

|3〉

BC

B′

B′

(b)C2v diamond D2 rectangle

C

C

C

C

 Fig. 8.3.2 Generic 4-channel (D2) quantum dot systems. (a)Diamond C2v (b) Rectangular D2.
Consider the rectangular D2 system. Its transfer matrix may be written in terms of four operators.

 

   

                T               = A             1             + B          Rx            + ′B             Ry            +C            Rz                 

A B ′B C
B A C ′B
′B C A B

C ′B B A

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

= A

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

+ B

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

+ ′B

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

+C

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

   (8.3.4)

Each of the operators Rx, Ry, or Rz,  corresponds to 180°-rotations around x, y, or z axes, respectively, the effect 
of which is indicated in Fig. 8.3.1b by transfer path arrows labeled B, B′, and C, respectively. A transfer path B′ 
along the x-direction is done by a y-rotation Ry, while B along y is done by Rx.

D2 group structure
The multiplication table for the Verrgrupe (4-group) is quite famous and relevant to quantum theory. 

      

  

1 Rx Ry Rz

Rx 1 Rz Ry

Ry Rz 1 Rx

Rz Ry Rx 1

      (8.3.5a)

Its structure reduces to a few simple products. The first is (xyz)-cyclic: It holds for (zxy) and (yzx), too.
   Rx Ry = Ry Rx = Rz,  (8.3.5b)    Rx2= Ry2= Rz2= 1.  (8.3.5c)
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D2 spectral decomposition: The old “1=1•1 trick” again
The latter (8.3.5c) are of immediate interest to a quantum algebraist because they give minimal equations.
   Rx2- 1 = 0,  (8.3.5d)      Ry2- 1 = 0.  (8.3.5e)
From the roots (±1) of each minimal equation is constructed a spectral decomposition of Rx and Ry. This is the 
simplest application of the Chapter 3 projector formula (3.1.15a) you will probably ever see.

  

   

Px
+ =

1 + Rx
2

Px
− =

1 − Rx
2

  (8.3.6a)   

   

Py
+ =

1 + R y

2

Py
− =

1 − R y

2

  (8.3.6b)

This spectrally decomposes Rx and Ry separately. We can do Rz, too, but all three must be done together.

  
   

 1  = Px
+ + Px

−

Rx = Px
+ − Px

−
  (8.3.7a)   

   

 1  = Py
+ + Py

−

R y = Py
+ − Py

−
  (8.3.7b)

To make projectors for the whole D2 symmetry together we use the old “1=1•1 trick” from (3.1.36).

  
1 = 1 ⋅1 = Px

+ + Px
−( ) ⋅ Py

+ + Py
−( ) = Px

+ ⋅Py
+ + Px

− ⋅Py
+ + Px

+ ⋅Py
− + Px

− ⋅Py
−   (8.3.8)

The result are irreducible projectors P(i) for the whole D2 symmetry. Irreducible means TraceR(P(i))=1.

   

P++ ≡ Px
+ ⋅Py

+ =
1 + Rx( ) ⋅ 1 + R y( )

2 ⋅2
= 1

4
1 + Rx + R y + R z( )

P−+ ≡ Px
− ⋅Py

+ =
1 − Rx( ) ⋅ 1 + R y( )

2 ⋅2
= 1

4
1 − Rx + R y − R z( )

P+− ≡ Px
+ ⋅Py

− =
1 + Rx( ) ⋅ 1 − R y( )

2 ⋅2
= 1

4
1 + Rx − R y − R z( )

P−− ≡ Px
− ⋅Py

− =
1 − Rx( ) ⋅ 1 − R y( )

2 ⋅2
= 1

4
1 − Rx − R y + R z( )

  (8.3.9a)

Each P is multiplied by its own eigenvalue (±1) of 1, Rx, Ry, and Rz in the D2 spectral decomposition.

  

   

1   = (+1)P++ + (+1)P−+ + (+1)P+− + (+1)P−−    (completeness)

Rx = (+1)P++ + (−1)P−+ + (+1)P+− + (−1)P−−

R y = (+1)P++ + (+1)P−+ + (−1)P+− + (−1)P−−

R z = (+1)P++ + (−1)P−+ + (−1)P+− + (+1)P−−

  (8.3.9b)

Spectral decomposition of D2 transfer matrices
 Spectral decomposition applies to transfer matrix (8.3.4) and yields its eigenvalue spectrum.

  

+ + T + + = ε++ = A 1 + B Rx + ′B R y + C R z = A+ B + ′B + C

− + T − + = ε−+ = A 1 + B Rx + ′B R y + C R z = A− B + ′B − C

+ − T + − = ε+− = A 1 + B Rx + ′B R y + C R z = A+ B − ′B − C

− − T − − = ε−− = A 1 + B Rx + ′B R y + C R z = A− B − ′B + C

 (8.3.10)

Again, this is a formula for all possible D2-symmetric operators in this device space of Fig. 8.3.2b. Higher 
symmetry, such as “square” or tetragonal D4–symmetry is obtained if parameters B and B’ are equal. Then the 
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eigenvalues ε+ − and ε− + become equal or degenerate. Such a symmetry is non-commutative or non-Abelian and 
requires further theory which will be taken up in a later chapter.

(b) Outer product structure: Double qubit registers
 One of the things that makes group algebra powerful is the concept of an outer (×) product of two groups. 
You may have noticed that the D2 group multiplication table was divided up so that the C2 subgroup {1, Rx} was 
isolated from the rest. The outer product is appropriate when two isolated “factors” correspond to orthogonal or 
independent systems such as two separate particles or two dimensions or two qubits. 
D2 is product C2×C2  
 An outer product of the eigenvalue tables in (8.3.2a) yields the D2 eigenvalue table. This is basically what 
was happening in the algebraic maneuver of (8.3.8) based upon the old “1=1•1” trick.

 

   

C2
x 1 Rx

+ 1 1
− 1 −1

  ×   
C2

y 1 R y

+ 1 1
− 1 −1

  =  

C2
x × C2

y 1 ⋅1 Rx ⋅1 1 ⋅R y Rx ⋅R y

+ ⋅+ 1⋅1 1⋅1 1⋅1 1⋅1
− ⋅+ 1⋅1 -1⋅1 1⋅1 -1⋅1
+ ⋅ − 1⋅1 1⋅1 1⋅ (−1) 1⋅ (−1)
− ⋅ − 1⋅1 -1⋅1 1⋅ (−1) -1⋅ (−1)

 (8.3.11a)

 

   

                                                      =   

D2 1 Rx R y R z

+ + 1 1 1 1
− + 1 -1 1 -1
+ − 1 1 −1 −1
− − 1 -1 −1 1

  (8.3.11b)

Note that the numbers in (8.3.11b) are exactly the coefficients of A, B, B′, and C in the eigenvalue formulas for ε+  

+, ε−  +, ε+  −, and ε−  − in (8.3.10). So the ×-product makes this calculation very easy indeed.
The outer product requires every operator in D2 to be uniquely a product of one element in C2x and one element in 
C2y. The elements in C2x must commute with all those in C2y so each product is unique. 

  

   

C2
x × C2

y = 1, Rx{ } × 1, R y{ } =
C2

x × C2
y 1 R y

1 1 ⋅1 1 ⋅R y

Rx Rx ⋅1 Rx ⋅R y

              = 1, Rx ,R y , R z{ } = D2

 (8.3.11c)

If a group G has g operators and a group H has h members, then G×H must have exactly gh members. It can be a 
great help to find a symmetry group is an outer product of its parts.
 Multiple outer products are possible. The D2= C2×C2 system is like a double-binary or 4-bit register. A 
C2×C2×C2 system is a triple-binary or 8-bit register known as 1-byte. A double-binary D2 register differs from a 
quadrary (C4) register as a 1-byte binary systemis not a single octal (C8) system.

Big-endian versus Little-endian 
 Computer scientists differ on whether the right ending bit should be the most significant bit (and least 
rapidly changing) or least significant bit and most often changing. (The former is called the Big-Endian 
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convention while the latter is called the Little-Endian convention after a perjorative folk-song.) The sequence (00, 
01, 10, 11) is Little-Endian and more like our decimal numbering system. The sequence (00, 10, 01, 11) or in 
(8.3.11) (++, -+, +-, --) is Big-Endian and what we are using here.

C6 is product C3× C2 (but C4 is NOT C2× C2) 

 Our first example, the cyclic group C6, is a composite C3×C2 of two of its subgroups C2 and C3 as shown 
below. Here the eigenvalue table (8.3.2a) of C2 is crossed with the C3 table (8.3.2b).

   

C3 1 r r2

0( )3 1 1 1

1( )3 1 e2π i /3 e−2π i /3

2( )3 1 e−2π i /3 e2π i /3

  ×   

C2 1 R

0( )2 1 1

1( )2 1 −1

  =  

C3 × C2 1 r r2 1 ⋅R r ⋅R r2 ⋅R

0( )3 ⋅ 0( )2 1⋅1 1⋅1 1⋅1 1⋅1 1⋅1 1⋅1

1( )3 ⋅ 0( )2 1⋅1 e2π i /3 ⋅1 e−2π i /3 ⋅1 1⋅1 e2π i /3 ⋅1 e−2π i /3 ⋅1

2( )3 ⋅ 0( )2 1⋅1 e−2π i /3 ⋅1 e2π i /3 ⋅1 1⋅1 e−2π i /3 ⋅1 e2π i /3 ⋅1

0( )3 ⋅ 1( )2 1⋅1 1⋅1 1⋅1 1⋅ (−1) 1⋅ (−1) 1⋅ (−1)

1( )3 ⋅ 1( )2 1⋅1 1⋅1 e−2π i /3 ⋅1 1⋅ (−1) e2π i /3 ⋅ (−1) e−2π i /3 ⋅ (−1)

2( )3 ⋅ 1( )2 1⋅1 e−2π i /3 ⋅1 1⋅1 1⋅ (−1) e−2π i /3 ⋅ (−1) e2π i /3 ⋅ (−1)

   

                                                      =   

C3 × C2 = C6 1 r = h2 r2 = h4 R = h3 r ⋅R = h r2 ⋅R = h5

0( )3 ⋅ 0( )2 = 0( )6 1 1 1 1 1 1

1( )3 ⋅ 0( )2 = 2( )6 1 e2π i /3 e−2π i /3 1 e2π i /3 e−2π i /3

2( )3 ⋅ 0( )2 = 4( )6 1 e−2π i /3 e2π i /3 1 e−2π i /3 e2π i /3

0( )3 ⋅ 1( )2 = 3( )6 1 1 1 -1 -1 -1

1( )3 ⋅ 1( )2 = 5( )6 1 e2π i /3 e−2π i /3 -1 -e2π i /3 −e−2π i /3

2( )3 ⋅ 1( )2 = 1( )6 1 e−2π i /3 e2π i /3 −1 −e−2π i /3 −e2π i /3

! (8.3.12)

 The tricky part is to identify the C6 waves (k)6 that belong to a each product (m)3.(n)2. That is,

    e
i k( )6 x

= e
i m( )3 x

e
i n( )2 x

= e
i m

2π
3
+n

2π
2

⎛
⎝⎜

⎞
⎠⎟

x
= e

i 2m+3n( )2π
6

x
.  (8.3.13a)

The desired k-value is:    k = (2m + 3n) mod 6     (8.3.13b)
For, example, the last row of (8.3.12) belongs to C6 wave k=(2.2+3.1) mod 6 = 7 mod 6 = 1 or (1)6. The result is 
a reordered C6 table, but otherwise it is the same as the one first drawn in Fig. 7.3.3. Verify!

Symmetry Catalog 
 Cataloging the number of symmetry groups of a given order N is a difficult problem with a long history. 
But, for commutative or Abelian groups considered so far, it reduces to finding all the distinct outer products 

Cp×Cq×Cr×Cs×Ct … of cyclic groups such that N=pqrst…. is a product of primes. Product Cp×Cq is the same as 
Cpq if p and q share no factor in common so we don’t include Cpq in the catalog if p and q are prime since then 
Cpq = Cp×Cq  as in the case of C6 = C2×C3 above. But we do include both Cp×Cp and Cpp which are distinct as 
were C2× C2 and C4 above. If N=pP is a power of a prime such as N=8=23, then a distinct group exists for each 
partition of the power P. For example, P=3 =1+2 = 1+1+1 has three distinct prime base-(p=2) groups: C8 and 
C4× C2 and C2×C2×C2 are all distinct symmetries.
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Problems for Chapter 8.
Subgroup soup
8.1.1 (a) The C6 symmetry group has subgroups. List all of them except C6 itself.
(b) Do the same for the symmetry groups C3 , C4 , and C5 . What is special about groups CN of prime order N?

Ttrace’o g
8.1.2 (a) By group axioms (Sec. 2.2) show each row and column of a group table has an operator g only once.
(b) Use (a) to show that the regular representation trace TraceR(g) is zero for all but “do-nothing” unit operator g=1.
Turn-about’s fair play
8.2.1 Suppose we are given the eigenvalues {τ0, τ1, τ2, τ3, τ4, τ5} of a unitary C6 transfer matrix T in (8.2.1).
(a) Can the {τ0, τ1, τ2, τ3, τ4, τ5} be any old complex numbers? What restrictions, if any, apply?
(b) Can one give a formula for all 36 components Tpq of T in terms of {τ0, τ1, τ2, τ3, τ4, τ5}? If so do it. If not expalin why 

not and under what conditions you may be able to do it.

A Hex on pairing
8.2.2 Suppose the C6 transfer matrix T is the form of the Pairing operator, that is all components equal Tpq = T .  
(a) Derive the resulting eigenvalue spectrum.
(b) What, if any, limitations need to be placed on parameter T? 
(c) Discuss which waves belong to which eigenvalues

Phase o’Hex
8.2.3 (a) Could the hexagonal C6 analyzer be wired so input |even sites〉=(1,0,1,0,1,0) comes out eiφ |even〉? 
    What km-eigenstates make up |even sites 〉? Does your “rewiring” maintain C6 symmetry?
(b) Could the C6 analyzer be wired so input |even sites 〉 comes out eiφ |odd sites 〉=(0,1,0,1,0,1)? 
    What km-eigenstates make up |odd sites 〉? Does your “rewiring” maintain C6 symmetry?
(c) Could the C6 analyzer be wired so input |odd symm〉=(1,-1,1,-1,1,-1) comes out eiφ |odd symm 〉? 
    What km-eigenstates make up |odd symm 〉? Does your “rewiring” maintain C6 symmetry?
 (d) Could the C6 analyzer be wired so input | odd symm 〉 comes out eiφ |even symm 〉=(1,1,1,1,1,1)? 
    What km-eigenstates make up | even symm 〉? Does your “rewiring” maintain C6 symmetry?

Little diamond
8.3.1. The symmetry eigensolution analysis of the C2v diamond quantum dot device in Fig. 8.3.2(a) is a little different than its 
D2 cousin in Fig. 8.3.2(b). Symmerty multiplication table and spectral decomposition is essentially the same but the transfer 
T-operator is not such a simple linear combination of symmetry operators. Represent the symmetry and give a decomposition 
of symmetry and T-matrix. (Note that x and y-plane mirror reflections are symmetry operators, too. There was no distinction 
between rotations and reflections in the D2 problem.)

Double Crossed
8.3.2. Complete a symmetry catalog of commutative (Abelian) groups in terms of distinct Cp×Cq×... cross products.
(a) for order N=8. (b) N=9. (c) N=10. (d) N=11. (e) N=12. (f) N=16.
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|4〉 |5〉

|6〉
|7〉

|0〉
|1〉

|3〉
|2〉

x

y

z

|0〉

|1〉

|2〉

|3〉

|4〉

|5〉

Problem 8.3.3 “Big box”                                       Problem 8.3.4 “Big diamond”

Big box
8.3.3. Give a complete symmetry eigensolution analysis of the D2h device pictured here. First show that the full symmetry 
with horizontal reflection group Ch ={1, σxy(thru z-axis)} is C2×C2×Ch=C2×C2×C2 which is called D2h.
Derive character table of D2h using the cross product trick of (8.3.11). 

Big diamond
8.3.4. Give a complete symmetry eigensolution analysis of the D2h device pictured above.

Ttrace’o P
8.3.5. Before (8.3.9a) it is noted that TraceR(P)=1 means projector P is irreducible, that is, not a sum P= P1+ P2 of other 
“smaller” projectors. Explain this and verify by constructing the representation of the P++ ,… in (8.3.9).
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Chapter 9

Time Evolution 
and 

Fourier Dynamics

W. G. Harter

Now we consider the transfer operator from Hell, the time evolution operator U. This “grim-
reaper” of the quantum world determines everything that happens in a non-relativistic 
(Schrodinger) system. Nothing escapes U-action including you! So learn U well, and pay 

particular attention to Uʼs generator H which is called the Hamiltonian. The expression e-iHt (for 

constant H) is an icon of modern quantum theory. Quantum dot systems from Chapters 7 and 
8 will be used as examples and provide our first introduction to quantum periodic band theory 
and quantum “revival” beats. (Yes, some waves can survive the grim reaper by reviving 
repeatedly while doing arithmetic, too!)
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Chapter 9. Time Evolution and Fourier Dynamics

9.1 Time Evolution Operator
 It is often said that nothing that is more demanding than the test of time. All the analyzer experiments 
considered so far have required time to do, lots and lots of time. Never forget that all our fancy theory of 
analyzers and wave mechanics is just giving us probabilities; not too different from odds posted at the racetrack. 
Millions of counts need to be registered before those fancy predictions are seen in a laboratory, and all that 
counting takes time. 
 Now we consider a very demanding kind of analyzer, good old Father Time, in the form of the time 
evolution operator U(tFINAL, ; tINITIAL). This "grim reaper" is supposed to be able to take any state at an initial 
time and transform it into what the state will be at a later time.
     |Ψ(tFINAL,) 〉 = U(tFINAL ; tINITIAL)  |Ψ(tINITIAL) 〉    (9.1.1)
The main task of this section will be to begin theory and derivation of U operators. This is the main problem of 
quantum theory, so we won't finish the job here. In fact, we won't be done with U operators until the twelfth hour 
of never!
 Let's first suppose time translation symmetry is present. By that I mean there is no one (such as perfidious 
janitors) "messing" with our analyzers. So, the experiments run the same day and night. Then we can often 
simplify the evolution operator equation by just having one time variable as follows 
      |Ψ(t) 〉 = U(t ; 0)  |Ψ(0) 〉 ,     (9.1.2)
so you may pick a "time origin" (t=0) arbitrarily.

(a) Planck's oscillation hypothesis
 At first, the time evolution problem looks formidable, even for a little six-state beam analyzer problem 
that was studied in Chapter 8. Its evolution equation (9.1.2) looks like the following at any point z in the beam 
and varies with z. We will put off discussing z-dependence until a later chapter.

   

  

1 Ψ t( )
2 Ψ t( )
3 Ψ t( )
4 Ψ t( )
5 Ψ t( )
6 Ψ t( )

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

=

U11 U12 U13 U14 U15 U16

U21 U22 U23 U24 U25 U26

U31 U32 U33 U34 U35 U36

U41 U42 U43 U44 U45 U46

U51 U52 U53 U54 U55 U56

U61 U62 U63 U64 U65 U66

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

•

1 Ψ 0( )
2 Ψ 0( )
3 Ψ 0( )
4 Ψ 0( )
5 Ψ 0( )
6 Ψ 0( )

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

 (9.1.3a)

Here the matrix elements are
        Upq = 〈 p | U(t ; 0) | q 〉     (9.1.3b)
How in the world can one derive all those N2=36 time functions Upq  ? Woe is us!
 But wait! The U-operator and any matrix representing it should have the CN symmetry of the analyzer 
system shown in Fig. 9.1.1. And, like the analyzer T-operator, it should be reduced by the Fourier CN -symmetry  
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|km〉  basis to a diagonal matrix made of phase factors eiφm as in (9.1.17b).  Furthermore, the Planck hypothesis 
indicates that the phase factors should have the time phasor "clock" form e-iωmt  that is conventional clockwise 
phasor rotation. Then the U-operator in (9.1.3) can be made to have a much simpler form if the basis is changed 
to its eigenbasis |km〉 as shown below.

     

  

k0 Ψ t( )
k1 Ψ t( )
k2 Ψ t( )
k3 Ψ t( )
k4 Ψ t( )
k5 Ψ t( )

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

=

e−iω0 t 0 0 0 0 0

0 e−iω1 t 0 0 0 0

0 0 e−iω2 t 0 0 0

0 0 0 e−iω3 t 0 0

0 0 0 0 e−iω4 t 0

0 0 0 0 0 e−iω5 t

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

•

k0 Ψ 0( )
k1 Ψ 0( )
k2 Ψ 0( )
k3 Ψ 0( )
k4 Ψ 0( )
k5 Ψ 0( )

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

 (9.1.4)

Now, instead of N2=36 unknown Upq functions we have only N=6 frequency values ωm to derive.
 This is quite a simplification, if true. It is also a reasonable one since the evolution operators need to form 
a group called the time evolution group that multiplies as follows. (Recall (1.4.12d).)
     U( t3 ; t1 ) = U( t3 ; t2 ) . U( t2 ; t1 )     (9.1.5a)
Also, axioms 1-4 require U( t2 ; t1 ) to be unitary operators. (Recall (1.5.5b).)
      U†( t2 ; t1 ) = U-1( t2 ; t1 ) = U( t1 ; t2 )    (9.1.5b)
These requirements are satisfied by the Planck phasor forms in the diagonal matrix (9.1.4) or as follows,

   U( t2 ; t1 ) = diag{ e-iω0(t2 - t1) , e-iω1(t2 - t1) , .. e-iωm(t2 - t1) , ...  }   (9.1.6a)
since 

 e-iωm(t3 - t1) =  e-iωm(t3 - t2)  e-iωm(t2 - t1), and    ( e-iωm(t2 - t1) )* =  e-iωm(t1 - t2)  (9.1.6b)
which depends only on relative time difference (t1 - t2): U( t1 ; t2 ) = U( t1 - t2 ;0).= U(0;t2 - t1 ) 

 Indeed, we shall demand that a U-eigenbasis { |ω0〉, |ω1〉, ...|ωm〉,   } shall exist even for asymmetric 
evolution operators for which a convenient symmetry basis { |k0〉, |k1〉, ...|km〉,   } is not available to give "instant" 
diagonalization. We shall describe how to generally find eigenkets |ωm〉 so that
     U( t2 ; t1 ) |ωm〉 = e-iωm(t2 - t1) |ωm〉     (9.1.7)
This is always possible in principle since we know that all unitary operators are diagonalizable. (Recall exercises 
in Ch. 3.) However, in practice the problem of diagonalization can be a bit of a chore for large systems consisting 
of millions, billions, or more states! We will need all the help that symmetry analysis can give us.
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9.2 Schrodinger Time Equations
 Time evolution operators and the states they evolve satisfy time differential equations known as 
Schrodinger equations. This is a common way to restate Planck’s oscillation axiom in differential form.

(a) Schrodinger's time equations. Hamiltonian time generators
 If time evolution equation (9.1.4) can predict the quantum state future far in advance, then it should 
certainly give the rate of evolution correctly. The time derivative of (9.1.4) is the following.

  

∂
∂t

k0 Ψ t( )
k1 Ψ t( )
k2 Ψ t( )
k3 Ψ t( )
k4 Ψ t( )
k5 Ψ t( )

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

=-i

ω0e−iω0 t 0 0 0 0 0

0 ω1e−iω1 t 0 0 0 0

0 0 ω2e−iω2 t 0 0 0

0 0 0 ω3e−iω3 t 0 0

0 0 0 0 ω4e−iω4 t 0

0 0 0 0 0 ω5e−iω5 t

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

•

k0 Ψ 0( )
k1 Ψ 0( )
k2 Ψ 0( )
k3 Ψ 0( )
k4 Ψ 0( )
k5 Ψ 0( )

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

Simplifying the notation and factoring gives         (9.2.1)

   

  

∂
∂t

Ψk0
t( )

Ψk1
t( )

Ψk2
t( )

Ψk3
t( )

Ψk4
t( )

Ψk5
t( )

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

=-i

ω0 0 0 0 0 0

0 ω1 0 0 0 0

0 0 ω2 0 0 0

0 0 0 ω3 0 0

0 0 0 0 ω4 0

0 0 0 0 0 ω5

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

•

e−iω0 tΨk0
0( )

e−iω1 tΨk1
0( )

e−iω2 tΨk2
0( )

e−iω3 tΨk3
0( )

e−iω4 tΨk4
0( )

e−iω5 tΨk5
0( )

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

  (9.2.2)

Here we lose the Dirac notation briefly with
    Ψkm(t) = 〈km|Ψ( t )〉 = e-iωmt〈km|Ψ(0〉 = e-iωmt Ψkm(0) .    (9.2.3)
Multiplying by i and then putting back the Dirac notation gives the following. 

   

   

i
∂
∂t

Ψk0
t( )

Ψk1
t( )

Ψk2
t( )

Ψk3
t( )

Ψk4
t( )

Ψk5
t( )

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

=

ω0 0 0 0 0 0

0 ω1 0 0 0 0

0 0 ω2 0 0 0

0 0 0 ω3 0 0

0 0 0 0 ω4 0

0 0 0 0 0 ω5

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

•

Ψk0
t( )

Ψk1
t( )

Ψk2
t( )

Ψk3
t( )

Ψk4
t( )

Ψk5
t( )

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

,  (9.2.4a)
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i
∂
∂t

k0 Ψ t( )
k1 Ψ t( )
k2 Ψ t( )
k3 Ψ t( )
k4 Ψ t( )
k5 Ψ t( )

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

=

ω0 0 0 0 0 0

0 ω1 0 0 0 0

0 0 ω2 0 0 0

0 0 0 ω3 0 0

0 0 0 0 ω4 0

0 0 0 0 0 ω5

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

•

k0 Ψ t( )
k1 Ψ t( )
k2 Ψ t( )
k3 Ψ t( )
k4 Ψ t( )
k5 Ψ t( )

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

, (9.2.4b)

which is called Schrodinger's time equation. Its abstract Dirac form is the following

      
    
i

∂
∂t

Ψ t( ) =H Ψ t( )      (9.2.5a)

where the Hamiltonian energy operator H is related to i times the time evolution operator derivative by

      
    
i

∂
∂t

U t,0( )=H U t,0( )      (9.2.5b)

and is H also called the generator of time translation. An exponential solution to (9.1.5b) is

     
    
U t,0( )=e-i H t / U 0,0( )=e-i H t /   where: U 0,0( ) = 1    (9.2.5c)

if H is an N-by-N constant matrix operator as it is in (9.1.4a-b). (It must be constant if there is time translation 
symmetry. Remember, it is time translation symmetry that permits exponential solutions.)
 All of the above "derivations" of Schrodinger's equations (9.2.5) are really only Planck's frequency and 
energy axiom, starting with (9.1.4) and restated in many fancy ways for an N-state system for N=6. 

(b) Schrodinger's matrix equations 
 The thing that makes a Hamiltonian H powerful is that it may be easily derived it in some other basis like 
the original channel basis {|1〉, |2〉, ...|N〉 } and then diagonalized using symmetry techniques or numerical 
methods to find its eigenvectors { |ω0〉, |ω1〉, ...|ωN-1〉} known as energy eigenstates and eigenvalues { ω0, 
ω1, ...ωN-1} known as energy or frequency spectra εm = ωm . This time, the word spectra is used as it was 
intended by the pioneering spectroscopists who first saw atomic spectral lines in laboratory and in astrophysical 
observations. (Mathematicians co-opt the term spectra other ways.)
 Rewriting Schrodinger's time equation (9.2.5a) 

     
    
i

∂
∂t

Ψ t( ) =H Ψ t( )       (9.2.6a)

in an arbitrary basis gives 

   

   

i
∂
∂t

0 Ψ t( )
1 Ψ t( )
2 Ψ t( )
3 Ψ t( )
4 Ψ t( )
5 Ψ t( )

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

=

H00 H01 H02 H03 H04 H05

H10 H11 H12 H13 H14 H15

H20 H21 H22 H23 H24 H25

H30 H31 H32 H33 H34 H35

H40 H41 H42 H43 H44 H45

H50 H51 H52 H53 H54 H55

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

•

0 Ψ t( )
1 Ψ t( )
2 Ψ t( )
3 Ψ t( )
4 Ψ t( )
5 Ψ t( )

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

,  (9.2.6b)
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where the matrix elements
         Hpq = 〈 p | H | q 〉        (9.2.6c)
are generally non-diagonal except in H’s or U’s own (eigen) basis |km〉 as in (9.2.4).

(c) Writing Hamiltonian H in terms of symmetry operators rp 
 If analyzer H -matrix (8.2.1) has C6  symmetry, it commutes with all the rotation operator r-matrices in 
(2.7.5) and is a linear combination of rp as follows.
    H = H 1 +S r + T r2 + U r3 + T* r4 + S* r5,    (9.2.6) 
The rp-matrices in (2.7.5) combine to give a C6 -symmetric H-matrix Schrodinger equation (9.2.7) in analogy to 
the T-matrix transfer equation (8.2.7), and label its tunneling paths from point-to-point.

   

   

i
∂
∂t

0 Ψ t( )
1 Ψ t( )
2 Ψ t( )
3 Ψ t( )
4 Ψ t( )
5 Ψ t( )

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

=

H S * T * U T S

S H S * T * U T

T S H S * T * U

U T S H S * T *

T * U T S H S *

S * T * U T S H

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

•

0 Ψ t( )
1 Ψ t( )
2 Ψ t( )
3 Ψ t( )
4 Ψ t( )
5 Ψ t( )

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

,  (9.2.7)

The undetermined coefficients H, S, T, U, T*, and S* correspond to all the tunneling amplitudes that state |0〉 
could possibly have to other states |0〉, |1〉, |2〉, |3〉, |4〉, and |5〉 as indicated by arrows in Fig. 9.2.1 which are 
analogous to the transfer amplitude paths for the T –matrix (or of a U-matrix) in Fig. 8.2.1.

        

|0〉
H=H*

S S*

T T*

U=U*

|1〉

|2〉

|3〉

|4〉

|5〉

(a) Tunneling Amplitudes
  from |0〉

S = 〈1|H|0〉
H = 〈0|H|0〉=H*

T = 〈2|H|0〉
U = 〈3|H|0〉=U*
T*= 〈4|H|0〉
S*= 〈5|H|0〉

(b) All C6 Tunneling Paths

! Fig. 9.2.1 Generic 6-channel (C6)Hamiltonian tunneling (a) Amplitudes (b) Paths
But, there is one important difference. Hamiltonian matrices must be Hermitian (self-conjugate: H† = H ).
       Hpq = 〈 p | H | q 〉 = 〈 p | H†| q 〉 = Hqp *       (9.2.8a)
Unitary U implies Hermitian H
Hamiltonian H is Hermitian because the time evolution operator is unitary by definition (9.2.5).
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U t,0( )† = e-i H t /( ) †= ei H† t / = U t,0( )−1

= U −t,0( )= ei H t /    (9.2.8b)

So, an inverse tunneling amplitude such as S* is the complex conjugate of the forward one S. Also, diagonal 
components of a Hamiltonian matrix are thus always real.
         Hpp =Hpp *         (9.2.8c)
This means the eigenvalues are also real since relations (9.2.8) are true in any basis including the H operator’s 
own basis or eigenbasis where H is diagonal.
 Note that a diametric tunneling amplitude such as U=U* also is real because its operator r3 is its own 
inverse (r3= r3†= r-3 ). Conjugation reverses direction of rotation for all C6 operators except 1 and r3. †-
conjugation is time reversal for Schrodinger equation (9.2.6). Axiom-2 says bra-clocks run backwards.

9.3 Schrodinger Eigen-Equations
 Time evolution is simple for eigenstates | ωm 〉 because only a single eigenfrequency ωm  is present. 
Energy or frequency eigenstates and eigenvalues satisfy Schrodinger's eigenvalue equation, also called the 
Schrodinger time-independent equation.
      H | ωm 〉 = ωm | ωm 〉 = εm | ωm 〉    (9.3.1a)
In a “quantum-dot” basis this is a matrix eigenvalue problem such as the following for N=6. 

   

   

H00 H01 H02 H03 H04 H05

H10 H11 H12 H13 H14 H15

H20 H21 H22 H23 H24 H25

H30 H31 H32 H33 H34 H35

H40 H41 H42 H43 H44 H45

H50 H51 H52 H53 H54 H55

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

•

0 ωm

1 ωm

2 ωm

3 ωm

4 ωm

5 ωm

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

= ωm

0 ωm

1 ωm

2 ωm

3 ωm

4 ωm

5 ωm

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

,  (9.3.1b)

The Schrodinger time equation (9.2.6b) is a simple 1-dimensional relation for each amplitude. 

    
    
i

∂
∂t

p ωm = p H ωm = ωm p ωm     (9.3.2 )

Its solution has each amplitude 〈p|ωm〉 spinning its clock at the same rate ωm at constant size |〈p|ωm〉|2.

   
  

p ωm t( ) = p ωm 0( ) e−iωmt       (9.3.3)

   
  
 p ωm t( ) 2

= p ωm 0( ) 2
= const.      (9.3.4)

Such is the fate of an eigenstate or stationary state. Its observable probability distribution is forever fixed.
 But, how does one find just the right 〈p|ωm〉 amplitudes to solve (9.3.1)? Aren't we back in hot water again 
with N2=36 unknown constants Hpq  and a big diagonalization job facing us? Woe is us, again! But, fortunately, 
there are all kinds of techniques and approximation tricks to find the Hamiltonian matrix elements and then find 
the energy spectrum. That is what most of the rest of the book is about! 
Chief among the eigensolution techniques is symmetry analysis. The time evolution matrix U and the 
Hamiltonian matrix H for the C6 -analyzer in Fig. 8.1.1 can be treated to the same techniques that worked for the 
analyzer T-matrix. Again, all possible C6–symmetric Hamiltonian matrices are given with a single complete set 
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of eigensolutions. Then all possible motions are obtained from combinations of eigensolutions, which, by their 
completeness are able to produce an arbitrary initial condition. 
After that, the motion is just the interference beating between all the eigenfrequencies that participate in 
producing a given initial state. Remember, it takes two to tango! At least two eigenstates with different 
eigenfrequencies need to be up and spinning to have observable motion. Otherwise, nothin’s happening!
It turns out that while it takes two to tango, three’s a crowd! Two state systems are unique in their harmonic 
simplicity. At the end of this unit we will see how to understand more complicated 3, 4, 5,…level excitations for 
some simple systems.
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 (a) Solving Schrodinger's eigen-equations for C6 system
 H-eigenvalues use r-expansion (9.2.6) of H and C6 symmetry rp-eigenvalues from (8.2.9).
     〈km|rp|km〉= e-ipkma = e-ipm2π/N  where:  km = m(2π/Na)  
    〈km|H|km〉 = H 〈km|1|km〉 + S 〈km|r|km〉 + T 〈km|r2|km〉 + U 〈km|r3|km〉 + T* 〈km|r4|km〉 + S* 〈km|r5|km〉
6          = H + S e-ikma + T e-i2kma + U e-i3kma + T* ei2kma + S* eikma    (9.3.5a) 
Again we check that H eigenvectors |ωm〉 are the |km〉 in (8.2.11) which solved transfer matrix T.

  

   

H S * T * U T S

S H S * T * U T

T S H S * T * U

U T S H S * T *

T * U T S H S *

S * T * U T S H

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

•

1

eikma

ei2kma

ei3kma

e−i2kma

e−ikma

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎟

= ωm

1

eikma

ei2kma

ei3kma

e−i2kma

e−ikma

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎟

  (9.3.5b)

Because of Hermiticity (H† = H) eigenvalues ωm or  εm will be real eigenfrequency and energy spectra.
 ωm = εm = H + S e-ikma + T e-i2kma + U e-i3kma + T* ei2kma + S* eikma (9.3.5c)
 ωm = εm = H + 2|S| cos( km a - σ )+ 2|T |cos( 2km a - τ  ) - U (-1)m    (9.3.5d) 
Here we note: e-i3kma = e-i3πm = (-1)m for N=6. Also, let the complex parameters be in polar form. 

     S = |S| eiσ ,     T = |T| eiτ        (9.3.5e) 
Their phase angles σ and τ correspond to what is sometimes called a gauge symmetry breaking or Zeeman 
splitting parameters. To begin the discussion, we shall let the phase angles be zero or pi.
 A little physical intuition helps to make some sense of the energy eigenvalues. The parameters S, T, and U 
are called tunneling amplitudes because they are "sneak factors" that tell how rapidly (and with what phase σ, τ) 
an evanescent wave in one channel can sneak or tunnel over to one of its neighbors as indicated in Fig. 9.2.1. The 
S, T, U give rates at which the A, B, C amplitudes of a T or U matrix grow.

(b) Energy spectrum and tunneling rates
 We saw how the evanescent waves in (6.3.10a) of Sec. 6.3c(3) decay exponentially and die off with 
distance. Channel waves are like this, a channel wave state |0〉 will be exponentially more likely to tunnel to its 
nearest neighbor channels |1〉 or |5〉 than to more distant channels  |2〉, |3〉, or |4〉 in Fig. 9.2.1. So, the distant 
tunneling amplitudes U and T might be approximated by zero in (9.3.5d) to give
    ωm = εm = H + 2|S| cos( km a - σ ) .    (9.3.5f) 
This is an elementary Bloch dispersion relation. If wavevector km were a continuous variable k the dispersion 
function ω(k) would trace a cosine as shown in Fig. 9.3.1 where the gauge phase is set to pi (σ=π) to make the k0 
state lowest. Now the spectra correspond to hexagonal projections of ei2πm/6 . 
    ωm = εm = H - 2|S| cos( km a ) .  (σ=π )   (9.3.5g) 
Note that while the eigenvalues (ωm = εm) vary with parameters H, S, T, or U, the eigenvectors |ωm 〉 or 
eigenfunctions ψm(xp) are the same for all values of parameters due to CN -symmetry.
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! Fig. 9.3.1 Generic 6-channel (C6) tunneling spectra and Bloch dispersion.

If the tunneling phase σ increases by π/12 it shifts the dispersion relation to the right by π/12 in k-space. It rotates 
the hexagonal spectral diagram by π/12 or 15° as shown in Fig. 9.3.2. The resulting spectra shifts and splits the 
degenerate doublets ±16 and ±26.
      

ω(k)

k0k-2 k-1 k1 k2 k3

06

36
-2626

-1616

σ=π σ=
13π/12

π/12

ω(k0)

ω(k3)

ω(k-2)

ω(k2)

ω(k-1)

ω(k1)

! Fig.9.3.2 Same 6-channel (C6) tunneling spectra with broken symmetry and doublet splitting 

This is equivalent to rotating the analyzer disk in Fig. 8.1.1 at a constant negative or clockwise velocity so 
negatively moving waves increase in energy while the positively moving ones have less energy. 
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 Such a tunneling phase or gauge factor causes a right-left symmetry breaking so right-handed and left-
handed waves are no longer degenerate in energy. It is analogous to the Doppler shift that is observed by an 
observer moving through a monochromatic standing wave and sees red-shifted and blue-shifted frequencies while 
the stationary observer sees equal frequencies. (Recall Sec. 4.2.)
A similar effect occurs if a magnetic field is applied perpendicular to the plane of the analyzer along a beam of 
charged particles. Then the splitting of doublets is called Zeeman splitting which is a very well known atomic 
spectral effect that will be studied later.
 Bloch's waves vs. Bohr's
 One should compare the discrete Bloch spectra and dispersion in Fig. 9.3.1 here to the simple Bohr 
spectra in Fig. 7.1.1. The orbital wavefunctions for both have a plane-wave form of "Bohr's ghost" waves. 

 ψm(x) = eikmx        (9.3.6a)
However, Bloch waves for C6 are discretized into N=6 phasors at discrete points xp. (p=1, 2, ...,6)  
      ψm(xp) = eikmxp= ei2πmp/N         (9.3.6b)
Each Bloch quantum number m=0, 1, 2, ..., 5, is a number m-modulo-6 as in (7.3.7) and in Fig. 7.3.3. 
 Bloch eigenvalues, however, differ from Bohr's. Bohr orbital dispersion or energy is a simple parabola 
(7.1.16) as follows using momentum quantization pm=km=2πm/L with: m=0, ±1, ±2,…

 Em= (km)2/2M = m2 [h2/2ML2]   (9.3.7)
This parabola is a low-energy approximation to the relativistic hyperbola in Fig. 5.2.1. In contrast, the Bloch 
curve is a flipped cosine function (9.3.5g) as plotted in Fig.9.3.3 and superimposed upon the Bohr parabola. For 
larger N  (Fig. 9.3.3 it is N=24) and small m the cosine curve is approximated by a Bloch-like parabola given by a 
Taylor expansion at the origin (k=0=k0) in k-space.
   ωm =Em = H - 2|S| cos( km a)  = H - 2|S| + |S|( kma )2 +..     (9.3.8)
In this limit the Bloch dispersion is approximated by the simple Bohr parabola.
 In the limit of large number N of “quantum dot” coordinates xp. (p=1, 2, 3, 4, ...,N) the continuum 
coordinate x of the Bohr orbitals is approached. As long as the waves considered have low km , that is, are long 
compared to the lattice interval a=L/N that divides up the Bohr coordinate range L, then Bohr and Bloch waves 
have nearly the same dispersion ωm(km) and will behave the same. 

(c) Brillouin's boundary
 For larger wavevector km the wavelength becomes shorter until its waves begin to "fall through the 
cracks" in the lattice. Recall the difficulty in following the "Bohr's ghost" wave through the C6 phasors in Fig. 
7.3.3 for the higher waves (m)N = (4)6 or (5)6 , or even (2)6 . A break occurs when a half-wave length matches the 
lattice spacing a. This is when (m)N =(N/2)N = (3)6, a "half-way point" known as the first  Brillouin zone 
boundary (BZB-1). It is at k12 or (m)N  = (12)24 in Fig. 9.3.3 (N=24).
    (m)BZB-1=(N/2)  or:  kBZB-1 = π/a  or:  λ BZB-1 = 2a    (9.3.9a)
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! Fig.9.3.3 Generic 24-channel (C24) tunneling spectra and Bohr vs. Bloch dispersion.

At this m-number or k-value the wave amplitudes are alternating ±1 at the lattice points xp.
    ψN/2(xp) = eikN/2xp= ei2π(N/2)p/N = eiπp = (-1)p    (9.3.9b)
Phases that are in or π-out of phase make a standing wave with zero group velocity as in Fig. 9.3.4.
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Wavevector k (in units of 2π/L)Wavevector k (in units of 2π/L)
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p= 0 p= 2 p= 4 p= 6 p= 8 p=10 p=12 p=14 p=16 p=18 p=20 p=22 p= 0

|k12〉 = |±1224〉  Brillouin boundary waves Zero group velocity

! Fig.9.3.4 (C24) Brillouin boundary wave must be standing. (No group velocity)

 Postive or negative (k=±12) waves have the same effect on the 24 lattice points; both give standing wave 
motion with no transmission one way or the other. In C24 symmetry +12 mod 24 = -12 mod 24. 
 The wave group velocity is the velocity Vgroup associated with classical particle or "message" velocity. 
(Recall discussions in Sec. 4.4 (b-c).) From (9.3.8) the Vgroup for Bloch (or for low-k Bohr) is 
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Vgroup =
dωm
dkm

= 2
S


a sin kma( )   ≅ 2

S


kma2  , for: km << π / a

⎛

⎝
⎜

⎞

⎠
⎟   (9.3.10)

The group velocity goes to zero at the origin (km=0) and at the Brillouin zone boundary (km=kBZB). This is 
consistent with our picture Fig. 9.3.4 of a standing wave. It just goes nowhere but up and down.

 Effective mass: Another quantum view of inertia
 Low velocity (u<<c) particle momentum is mass times particle velocity: Mu=MVgroup. DeBroglie 
relation (5.2.5c) gives momentum as km. For low-km-Bloch waves (Bohr waves), (9.3.10) gives Vgroup 
proportional to the tunneling amplitude S implying an effective mass Meff inversely proportional to S.
      Meff(0)= 2/( 2|S| a2 )    (9.3.11a)
This is consistent with a comparison of Bohr energy values εm= 1/2(km)2/M and the low-km Bloch energy 
eigenvalues (9.3.8). Recall the quantum effective mass introduced in (5.3.13) and repeated here. 

  

   

Meff = F
a
=  k

dVgroup

dt

⎛

⎝
⎜

⎞

⎠
⎟

=  k
dVgroup

dk
dk
dt

⎛

⎝
⎜

⎞

⎠
⎟

= 

d2ω
dk2

⎛

⎝
⎜

⎞

⎠
⎟

 
  
where: Vgroup = dω

dk
  (9.3.11b)

Effective mass is inversely proportional to the curvature of the dispersion relation.  As km increases in Fig. 9.3.3 
the effective mass starts out at k=0 with the Meff(0) value (9.3.11a). Then it increases until it goes to infinity at km 
= kN/4  = k6 . Then it comes back from negative infinity losing much of its negativity to end up at (Meff(k12)=-Meff

(0)) on the Brillouin zone boundary km = kN/2 = k12 . There ωBloch(k) is a downward curving dispersion like Dirac 
negative-energy anti-particle band in the lower half of Fig. 5.4.1. But, ωBloch(k) in Fig. 9.3.3 differs from a 
continuum relativistic dispersion relation (5.2.8) 

   
   
E = ωrelativistic = ± Mc2⎛

⎝⎜
⎞
⎠⎟

2
+ ck( )2    (5.2.8)repeated 

For ωrela.(k) effective mass approaches infinity only as the momentum or k becomes large. For a vacuum , a 
constant applied electric field would cause k to increase uniformly. But, for a CN lattice k-space is periodic so a 
field causes a charged particle to just oscillate back and forth each time k passes through another Brillouin zone. 
Based on this, relativistic symmetry appears quite different from that of a Bloch lattice. But then, have we really 
looked closely enough at that vacuum continuum? It may take some pretty high k-values to do so!
 The final sections of this unit are devoted to dynamics of Bohr waves shown in space-time plots of the 
following Fig. 9.3.5-6. Recall also Fig. 5.5.5-6. The interference anti-nodes that spring up and then vanish are 
called revivals, a term coined by Joe Eberly to describe atom-laser simulations he noticed around 1976. Much of 
the intricate structure are called fractional revivals  first noticed in molecular rotor simulations around 1980. 
Much of the first analyses of fractional revivals, done during the 1990’s, involves particle-in-a-box and atomic 
Rydberg states. However, Bohr orbitals provide the clearest understanding of revivals because of their underlying 
CN symmetry. 
(Next pages: Figs. 9.3.5a-c)
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! ! ! !  (Preceding pages: Figs. 9.3.5a-c Bohr wavepact revivals in space-time )  
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(d) Bohr wavepacket dynamics: Uncertainty and revival
 We now study Bohr waves that are a Gaussian combination of momentum-m plane waves.

   
  
Ψ(φ,0) = φ,0 Ψ = 1

2π
e− m 2/Δm2

ei mφ

m=−∞

∞
∑       (9.3.12a)

Here, m=0, ±1, ±2, ±3,...are momentum quantum numbers in Bohr energy formula (9.3.7).
     Em= (km)2/2M = m2 [h2/2ML2]= m2hυ1 = m2ω1   (9.3.12b))
The fundamental Bohr frequency ω1=2πυ1 is the lowest transition (beat) frequency υ1 =(E1-E0)/h.
Completing the square of the exponent provides a simpler φ-angle wavefunction. 

      
  
Ψ(φ,0) = 1

2π
e
− m

Δm
− iΔm

2
φ

⎛
⎝⎜

⎞
⎠⎟

2
− Δm

2
φ

⎛
⎝⎜

⎞
⎠⎟

2

m=−∞

∞
∑ =

A Δm,φ( )
2π

e
− Δm

2
φ

⎛
⎝⎜

⎞
⎠⎟

2

    (9.3.13a)

Only the lower-m terms with m<Δm in the sum A(Δm,φ) have significant e-(m/Δm)2 values, but for larger Δm the 
number of significant terms grows until sum A approaches a Gaussian integral independent of φ . 

  
  
A Δm,φ( ) = e

− m
Δm

− iΔm
2
φ

⎛
⎝⎜

⎞
⎠⎟

2

m=−∞

∞
∑ Δm>>1

⎯ →⎯⎯⎯ dk−∞
∞∫ e

− k
Δm

⎛
⎝⎜

⎞
⎠⎟

2

= πΔm     (9.3.13b)

The variable factor e-(Δm φ/2)2 is a Gaussian function of angle φ or position x. It is remarkable that the Fourier 
transform of a Gaussian e-(m/Δm)2 momentum distribution is a Gaussian e-(φ/Δφ)2 in coordinate φ. 
    〈m|Ψ〉 =  e-(m/Δm)2   implies:   〈 φ |Ψ〉 =  e-(φ/Δφ)2      (9.3.14)
The relation between momentum uncertainty Δm and coordinate uncertainty Δ φ is a Heisenberg relation.
     Δm/2 =1/ Δ φ , or:   Δm Δ φ  =2     (9.3.15)
A Gaussian is an eigenvector of the Fourier Cn transformation matrix. (More about this later.)  
 Three space-time plots are given in Fig. 9.3.5a, b, and c, respectively, with decreasing momentum half-
width  Δm=9, 3, and 1.5 and courser spatial resolution Δφ/2π=2%, 6%, and 12% . Each is plotted for a full time 
period τ1 = 1/υ1= 2π/ω1  after which it repeats. The first Fig. 9.3.5a uses fine spatial resolution Δx.=0.02 which 
requires 9-quantum excitation (Δm=9). It shows a labyrinth of increasingly fine self-similar X-patterns of wave 
revivals. In the second and third figures (9.3.5b and c), of lower excitation (Δm=3, and 1.5, respectively), the 
finer X-patterns begin to disappear leaving one big X over Fig. 9.3.5c.

Semi-classical Theory: Farey Sums and Quantum Speed Limits
 Fig. 9.3.5c provides a clue to the theory of revivals. Its X is like a zero crossing in the Lorentz grid in Fig. 

4.2.9, but with momentum values restricted by Δm=1.5 to the first two levels m=0 , ±1, leaving two group (or 
phase) velocities V±1 =±L/τ1 by (4.2.20), that is, a Bohr length L per Bohr time unit τ1.

  
  
Vgroup

Bohr m ↔ n( ) = ωm −ωn
km − kn

=
m2 − n2( )hυ1

m − n( )h / L
= (m + n) L

τ1
= (m + n)V1  (9.3.16)

The X in Fig. 9.3.5c has two zeros doing one lap in opposite directions around the Bohr ring in a Bohr period τ1. 
The packet anti-nodes or "particles" do laps, too, but their paths are not as contiguous.
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Fig. 9.3.6 Intersecting wave space-time X-path trajectories of nodes and anti-nodes.
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(Anti-nodal revival peaks and phases are discussed later.) |Ψ|-nodes, being virtually dead, have an 
indestructibility not had by zeros of ReΨ that annihilate and re-create as they gallop through Fig. 4.2.9.
 Relaxing the momentum uncertainty Δm allows more m-values and wave velocities: ±V1,±2V1,±3V1,... 
ranging up to 2ΔmV1. By (9.3.16) the maximum lap rate or quantum speed limit is 2Δm, i.e., twice the maximum 
|m|. Each velocity gives a fractional lap time of 1/1, 1/2, 1/3, ..., 1/(2Δm) of the Bohr period. Such fractions are 
written in the margin of Fig. 9.3.5 at the point where a lap trajectory passes the point φ=±π opposite the origin 
φ=0 of the wave packet. An n-th multiple n/D of an allowed fraction 1/D corresponds to the n-th lap of a wave 
node ("zero") if D is odd or the n-th lap of a wave anti-node ("particle") if D is even.
 The n/D fractional lines in Fig. 9.3.6 highlight the wave paths in Fig. 9.3.5a. As excitation Δm increases, 
even-D "particle" paths show up as dark shadows in between the odd-D "zero" paths in Fig. 9.3.5a. Also seen in a 
high-Δm plot (Fig. 9.3.5a) are "particle" paths with odd and even fractional slopes emanating from the origin φ=0 
of the wave packet. This is indicated in Fig. 9.3.6, too.
 The geometry of generic group velocity rays is sketched in Fig. 9.3.7 using two rays to form an 
asymmetric X around an intersection. (A symmetric X has equal group speeds d1 and d2.) Fig. 9.3.5a is a 
patchwork of self-similar X patterns of nodal (odd-dk ) or anti-nodal (even-dk ) rays. The equations for the two 
lines in Fig. 9.3.6 are 
   φ = −d1t + n1 +1 / 2                       φ = d2t − n2 +1 / 2      (9.3.17)

Subtracting the first φ equation from the second gives the intersection time for the center of the X.

   
  
t12− intersection =

n2 + n1
d2 + d1

=
n2
d2

⊕F
n1
d1

    (9.3.18)

The resulting combination is called a Farey Sum ⊕ F of the rational fractions n1/d1 and n2/d2 after John Farey, an 
1800's geologist.
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Fig. 9.3.7 Farey-sum geometry and algebra of intersecting wave space-time trajectories.
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The Farey sum has been used to analyze classically "chaotic" or "fractal" structures , but its use in organizing 
quantum resonance structure is new. It begins with a fundamental Farey sum relating the beginning fraction (0/1) 
and ending fraction (1/1) of the (0↔1)-quantum beat or fundamental revival.

     
  
0
1
⊕F

1
1
= 1

2
      (9.3.19)

This is the instant t/τ1=1/2 for a half-time revival and the zero at the center of the fundamental X in Fig. 9.3.5c. 
The fundamental sum makes up the second row of a Farey Tree of such sums shown in (9.3.20). The sums in the 
D-th row of a Farey tree are an ordered set of all reduced fractions with denominator equal to D or less. The tree 
need not go beyond D>2Δm where denominator D exceeds the wave quantum speed limit 2Δm of (9.3.16). Finer 
revivals will be unresolvable. More energy is needed to see finer X’s.
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(9.3.20)

 The tracking of crests or wave peaks yields information about classical particle-like or group-wave 
motion. It is comforting to see familiar classical paths in what is often bewildering quantum cacophony but, the 
clearest X-paths in Fig. 9.3.5a are zeros emanating from the point φ=±π where the particle packet originally was 
not. Quantum wave dynamics differs from classical dynamics is that multiple Fourier components easily interfere 
much of a wave to death. Most path phases lead to non-existence except near (rare) stationary-phase paths that 
may be familiar classical ones. This is what is responsible for particle localization that allows us to enjoy a 
Newtonian world and largely conceals its quantum wave nature from us. Where the wave is not provides 
important quantum clues. One recalls Sherlock Holmes' revelation that it is the "dog that did not bark" which 
solved a mystery.
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9.4  Homo-cyclic Cn Revivals
 Wave phase is key to the CN dynamics beginning with the “beats” of two-state C2 system. As we have 
said, “It takes two to tango.” First we review the two-state-system dynamics with analogies to optical polarization 
from Chapter 1 and coupled pendulum dynamics. (Later chapters will use this analogy.) C2 holds the first key to 
analyzing the revivals introduced in the preceding section.
We have also said, “Three’s a crowd.” The dynamics associated with C3 systems is discussed after that of C2 and 
then that of C4, C5, C6, and C15 systems. Each is part of the revival milieu of Fig. 9.3.5. 

(a) Two–state C2 systems: Beats 
 Motion of anti-nodal revivals for a 2-level excitation such as Fig. 9.3.5c are like beats of coupled 
pendulums. Fig. 9.4.1a shows phasor pictures of 2-cyclic (C2) eigenstates. Phasor "clocks" are phase-space plots 
of ReΨ vs. ImΨ for wavefunction Ψ(p) at each spatial point p=0,1. ReΨ is up, ImΨ is to the left, and the area π|
Ψ|2 of the phasor is proportional to probability |Ψ|2 at point p. 
 Each eigenstate phasor rotates clockwise at its Bohr eigenfrequency ωm = m2ω1 , that is, 
Ψ(t)=e-iωmtΨ(0). The C2  eigenstates are labeled even (02)=(+) or odd (12)=(−) as usual.
     | +〉 =| 02 〉 = (| x〉 + | y〉 )/ 2      (9.4.1a)     | −〉 =| 12 〉 = (| x〉 − | y〉 )/ 2     (9.4.1b)

    Bohr eigenfrequency: ω0 = 0    (9.4.2a)   Bohr eigenfrequency: ω1    (9.4.2b)
|m2〉 eigenfrequencies ωm are ω0 = 0 and ω1 = h/(2ML2) by (9.3.12b). States |m2〉 are + or − combinations of a 
local oscillator base state labeled |x〉=|r0〉 (localized at spatial point p=0 or φ=0) and a "flipped" base state |y〉=r|x〉
=|r1〉 (localized at point p=1 or φ=π). States |+〉 and |−〉 are also eigenstates of C2 "flip" operator r defined by r|x〉
=|y〉 and r|y〉=|x〉, that is, r|+〉=+|+〉 , and r|−〉=-|−〉. State |+〉 is analogous to +45° polarization which is the "slow" 
eigenstate. State |−〉 is analogous to the “fast" -45° optical axis. 
 An initial 50-50 combination of the |+〉 and |−〉 eigenstates briefly recovers the |x〉=|r0〉 local base    

 |x〉 = ( |+〉 + |−〉 )/√2 = ( |02〉 + |12〉 )/√2,   (Time t=0)
lying between |+〉 and |−〉 in Fig. 9.4.1b. The |12〉-eigenstate is faster than the |02〉-eigenstate (which does not move 
at all by (9.4.2a)) The |x〉-state is always a sum of 02 and 12 phasors. (Left and right 02 phasors are at 12 PM in 
Fig. a while the left 12 phasor starts at 12 PM and the right 12 phasor at 6 PM.) After 12 PM the 12 phasors “tick” 
but 02 phasors are stuck at 12PM. Their sum |x〉 varies with time. 
By 1/4 of beat period τ1, the fast |12〉 clocks are 90° ahead of the stuck |02〉. (Clockwise is –i.)
    |L〉 = ( |+〉 − i |−〉 )/√2 = ( |02〉 − i  |12〉 )/√2.  (Time t=(1/4) τ1 )
The left and right hand 12 clocks move to 3 PM and 9 PM, respectively, but 02 clocks are stuck at 12 PM. On the 
left: 12 PM plus 3 PM is half-size clock at 2:30 PM. On the right: 12 PM plus 9PM is a half-size clock at 10:30 
PM. Note two half-phasors at -45° (2:30 PM) and +45° (10:30 PM) at 1/4-period. The 1/4 period situation is 
analogous to optical 1/4-wave plates that change |x〉-polarization to left-circular |L〉. 
By τ1/2 the fast 12 -clocks go 180° ahead to give the "flipped" local base state of y-polarization.

  |y〉 = (|+〉−|−〉)/√2 = ( |02〉 −  |12〉 )/√2    (Time t=(1/2) τ1 )
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Fig. 9.4.1 (a) C2 eigenstate phasors. (b) 50% combination states de localizing and reviving.
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At τ1/2, the left 12 clock is at 6 PM the right one at 12 PM, but both 02 clocks still read 12PM . On the left: 12 PM  
plus 6 PM is zero (a node). On the right: 12 PM plus 12PM is big 12 PM. All the wave flips to the |y〉-state. The 
1/2-period situation is like 1/2-wave plate changing |x〉-polarization to |y〉. 
 Still later at (3τ1/4) the initial |x〉-state has become a right circular state. (Fig. 9.4.1b bottom) 
    |R〉 = ( |+〉 + i |−〉 )/√2 = ( |02〉 + i  |12〉 )/√2   (Time t=(3/4) τ1 )
Finally, at full-time (1/1)τ1 the initial |x〉 state (top of Fig. 9.4.1b) is once again back to being |x〉 and would 
reappear beneath Fig. 9.4.1b to begin repeating the revival sequence. 

In Fig. 9.4.1b, dotted lines making an X are drawn around the phasors to connect places where wave 
amplitude is low like the X-pattern in Fig. 9.3.5c. Low m-uncertainty (Δm=1.5) means the revival wave is mostly  
a combination of the first two Bohr eigenlevels m=0 and |m|=1 having just two group (or phase) velocities +V1 
and -V1. In other words, Fig. 9.3.5c is essentially just a two-state system, and the major half and full revivals are 
just binary beat of two coupled symmetric pendulums. 
 The 1/4 fractional revival corresponds to transition state |L〉 = ( |x〉 − i |y〉 )/√2 (analogous to left circular 
polarization) between the major revivals. In |L〉 the left hand position phasor is 90° ahead of the right hand one 
being resonantly pumped up. The roles of the two phasors are reversed at 3τ1/4.

 (b) Cn group structure: n=3, 4,...6 Eigenstates
 To understand finer X-zero patterns and fractional revivals between zeros in Fig. 9.3.5 a-b we go beyond 
the binary {|02〉 |12〉} basis to, at least, the base-3 basis {|03〉 |13〉 |23〉} of C3  The bra state vectors {〈03 | 〈13 | 〈23 |} 
were defined in Fig. 2.6.4 and are re-drawn in Fig. 9.4.2a. The C3  wave states have quantized momentum m=0, 
1, and 2 modulo 3 . Each m labels a row of three phasors in Fig. 9.4.2a which are a discrete sampling of the 
waves in the first three Bohr levels m=0,1, and 2.
 In Fig. 9.4.2b are 4-nary C4 base states of m=0, 1, 2 and 3 modulo 4 quanta and Fig. 9.4.3a reintroduces 
5-nary C5 bases of m=0, 1, 2,3, and 4 modulo 5 quanta, and similarly in Fig. 9.4.3b for C6. These systems are 
like counters; a binary C2 system can count only to two, that is, 0 to 1, but each of the CN systems are capable of 
counting to N, that is, 0, 1, 2,3,..,N-1. 
 Physically the CN waves are bases of a finite and discrete Fourier analysis. Each CN  character table in 
Fig. 9.4.2a-b or 9.4.3a-b (if all divided by √N) is the N-by-N unitary (U(n)) transformation matrix 〈p|m〉 of 
discrete Fourier transformation coefficients. (Recall Fig. 7.3.3 and discussion.) 

  
  

p m( )N
= ei p m/ 2πN / N = m( )N

p
*

    (p,m = 0,1,2,...,N - 1)  (9.4.3a)

 Each phasor in Fig. 9.4.2-12 sits at one of N equally spaced lattice points p=0, 1, ...,N-1. Each phasor 
gives for a particular angular point p=0, 1, 2,3,..,N-1 the complex wave amplitude (7.3.10a)
    ψ±m(2πp/N) = 〈p|(m)N 〉 = 〈(m)N |p〉* 
of a continuous running wave that is one of Bohr-Schrodinger eigenfunctions ψ±m(φ). 
A real (cosine) part of the eigenfunction is drawn for each eigenstate |(m)N〉 in Fig. 9.4.2-3 to help connect it to 
the latter. The state notation (m)N  labels these waves and should be read m-modulo-N (or m%N in C) meaning 
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that waves having m± nN wavelengths or quanta will give a physically and mathematically identical state (m)N . 
(They are Fourier aliases (m)N = (m± nN)N, states differing only by reciprocal lattice vectors K= ± nN .)
 In Fig. 9.4.2-12 each one of N equally spaced lattice points p=0, 1, 2, 3,...,N-1, is labeled by a p-th power 
rp of a fundamental CN  group rotation r by angle 2π/N , that is, by r0=1 , r1, r2, r3 ... , rN-1 , rN=1 respectively. 
This labeling notation simply lists the operator elements of the cyclic CN  symmetry group as was done in 
equations (8.1.5a). The entries e-ipm/2πN are m-th eigenvalues of r0,r1,r2...,rp.   
 The phasors are graphical representations of the complex eigenvalues or characters of the various cyclic 
groups. It should be noted that the binary C2 phasor table (Fig. 9.4.1a) is embedded as a subset in the C4 table 
since C2 is a subgroup of C4. C2  is also seen in the C6 table (Fig. 9.4.3b) or any CN  table of even-N since C2  is 
a subgroup of all C2n. The C6 table also has the C3 table (Fig. 9.4.2a) embedded. Symmetry embedding is of 
utmost importance for analyzing group algebra, their representations, and their physical applications. Here it is 
what gives the revival structure down to the finest observable details of revival wave phase or amplitude shown 
in Fig. 9.3.5 a.

The same numbers (without the √N ) serve triple or quadruple duty in algebraic group theory. Besides 
Fourier transforms they are irreducible representations Dm(rp) of CN  

     
   
D

m( )N r p( ) = e
−i p m

2πN      (9.4.3b)

such that     Dm(a) Dm(b) = Dm(ab) .
This goes along with the Dm(c) being eigenvalues of the group operators c=rp. (Note (rp)† =r -p.)

    
   
r p m( )N

= D
m( )N r p( ) m( )N

= e
−i p m

2πN m( )N
   (9.4.3c)

    
   

m( )N
r p = D

m( )N r p( ) m( )N
= e

−i p m
2πN m( )N

   (9.4.3d)

Also, each row of the character table in Fig. 9.4.2-3 is an eigen-bra-vector wavefunction of discrete points p or 
powers of rp. As shown in Sec. 9.2, each bra 〈(m)N| and ket |(m)N〉 must also be an eigenvector of any 
Hamiltonian operator H that commutes with CN , i.e., has CN  symmetry (Hrp=rpH). So the character tables 
serve finally as universal energy eigenvectors and eigenstates, too. All the above apply to the generic CN  groups 
and all their embedded subgroups which include all smaller Cn  for which n is an integral divisor of N.
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Fig. 9.4.2  C3  and C4 eigenstates and revivals. 
 (a) and (b) C3  and C4 eigenstate characters.         
(c) and (d) C3  and C4  revival space time patterns.

(c) Cn dynamics: n=3, 4,...6 Fractional Revivals
 For each subgroup embedding there is a corresponding embedding of the revival tables that are shown in 
Fig. 9.4.2c-d and 9.4.3c-d. Revival tables are obtained, as in Fig. 9.4.1b, by first summing all the rows of phasors 
in each character table C3 , C4, C5 , or C6  of Fig. 9.4.2-3a-b. This localizes the initial wave 100% onto the first 
phasor position state |x0〉. Because 〈(m)N| x0〉 = 1 identically, we have
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x0 = m( )Nm=0

N −1
∑ m( )N

x0 = m( )Nm=0

N −1
∑     (9.4.4a)

This is called a group completeness relation or resolution of the identity. All phasors are equivalent due to CN  
symmetry, so arbitrarily picking the first column (r0=1) does not affect the general utility of Fig. 9.4.2-3. 
Translation by rp rephases the sum (9.4.4a) according to (9.4.3c) and translates all waves rigidly.

         
   
xp = r p x0 = r p m( )Nm=0

N −1
∑ = e

−i
pm

2πN m( )Nm=0

N −1
∑    (9.4.4b)

 Then each term |(m)N〉 in the sum (9.4.3) is allowed to advance its Bohr phase e-iωmt  = e-im2ω1t  in discrete 
time fractions 1/N of τ1 for N-odd or 1/2N for N-even, that is, through stroboscopic instants tυ.

 

  

x0 (tυ ) = e−im2ω1tυ m( )N
       

m=0

N −1
∑ tυ =

υ
τ1
N

= 2π υ
ω1N

  υ = 1,2,..., N −1( ) for N − odd

υ
τ1
2N

= π υ
ω1N

  υ = 1,2,..., 2N −1( ) for N − even

⎧

⎨

⎪
⎪

⎩

⎪
⎪

  (9.4.5)

For each stroboscopic instant or row in Fig. 9.4.3 there is an array of equally-sized and equally-spaced phasors, 
that is, a kaleidoscopic phasor array. At each tυ, phasors are either revived or else zeroed-out. 
 An even-N=2p revival table, such as N=4 and N=6 in Fig. Fig. 9.4.3 has embedded the N=2 revival or 
"beat" table in Fig. Fig. 9.4.1b since C2  is a C2p  subgroup. So besides the obvious 1/2-time revival halfway 
around, there must be 1/4-time and 3/4-time revivals for N=2 at each of the 1/4-lattice points, that is for N=6, at 
t=3/12 and t=9/12, and for N=4, at t=2/8 and t=6/8. Because N=6 is also divisible by 3 there will be N=3 
revivals embedded at t=4/12=1/3 and t=8/12=2/3. Also, N=3 revivals embedded relative to the 1/2-time revival 
at t=1/3-1/2=-1/6 and t=1/3+1/2=5/6 and t=2/3-1/2=1/6 and at  t=2/3+1/2=7/6. The phase angle 
"combinations" for each of the embedded phasors are reproduced perfectly and periodically as in a kind of 
quantum "odometer" or counter.
 An even-N revival table must start all over again at half-time, but from a point half-way around the ring at 
φ=π if it started at φ=0. This is required by CN  symmetry and by C2 half-time revival having 100% probability 
on the antipodal (half-way) point p=N/2 if 100% probability starts on the initial p=0 point. So the C4 phasors 
below the (p=2, t=2/4=1/2) point in Fig. Fig. 9.4.3b, namely, t=5/8, 3/4, and 7/8, must have positions, 
amplitudes, and phases relative to the mid-point p=2 that are identical to ones at t=1/8, 1/4, and 3/8, respectively, 
below the initial t=0=p point. Similar repetition is seen for N=6 in Fig. 9.4.3c and for any even-N revival table 
below t=1/2.
 A prime-N  revival table (like N=3 in Fig. 9.4.2c or N=5 in Fig. 9.4.3c) has no embedded structure 
because prime CN  has no subgroup but C1. After the initial localized state each revival has probability distributed 
equally on all N lattice sites but with distinct phase combinations as in a kind of base-N quantum odometer. In 
contrast, base-N counters with N=2p , p! or other composite numbers like N=4 or 6 in Fig. 9.4.2d or 9.4.3d have 
the greatest variety of revival amplitudes.
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Fig. 9.4.3  C5  and C6 eigenstates and revivals. 
(a) and (b) C5  and C6  eigenstate characters.        
(c) and (d) C5  and C6   revival space time patterns.

 The N=6 space-time wave patterns of Fig. 9.4.3d match phasor-for-peak with the revival intensity 
structure of the 1/12ths, 1/6th's, 1/4th's, 1/3rd's, and 1/2 revivals in Fig. 9.4.5 a or b if Fig. 9.4.3 tables are 
rescaled to the same size and overlapped with their edges centered in Fig. 9.4.5 a or b. Also, each table gives 
exactly the correct amplitude and phase of each revival peak that belongs to it as well as showing where the zeros 
reside. Similar character-revival tables of C5 (Fig. 9.4.3c), C7, C9,...  will account for finer odd-fractional revivals 
occurring at stroboscopic odd-time fractions like the 1/5th's, 1/7th's, 1/9th's,...and so on. (Recall 1/8th's are 
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revivals for C4 shown in Fig. 9.4.2d. They will be copied by a C8 revival table in between its (new) 1/16th's.) The 
medium resolution wave plot of Fig. 9.4.5b displays N=2, 3, 4, ...,8 structure more clearly than high-Δm Fig. 
9.4.5a by suppressing or defocusing the even finer revivals and prolonging fewer but more robust peaks or zeros 
of the more fundamental revivals. But, all zero-centered excitations ( m =0) for larger-Δm such as shown in Fig. 
9.4.5a-b have the same fundamental X of a (0↔1) C2 beat in Fig. 9.4.5c, that is, they show a half-time revival 
that peaks around the center of the largest X.

 Cyclic subgroup hierarchies
       

   
Cn ⊂ Cpn ⊂ C

p2n
⊂ C

p3n
⊂  

are here being used to organize quantum fractal revival dynamics. Schrodinger's approach to quantum theory, 
which eschewed the gruppenpest in favor of differential equations, is not set up to explain the origins of such 
discrete fractal structure. This is because each successive integer N starts a new hierarchical group family. If the 
integer is prime the family is entirely new. But, if it is not prime, then older smaller families belonging to each of 
N's factors are copied and embedded in the new family. In contrast, Schrodinger's wave equation treats every 
value of its independent variables as just another dumb x or t, and rational structure is glossed over.

 Each new odd integer N=2m+1 will have N new revival peaks at time fractions t/τ=ν/N=1/N,...q/N .. but 
only for fractions q/N that are irreducible. Reducible fractions q/N  that reduce to q/N = qR/r (by dividing out a 
highest common factor f=N/r=q/qR ) just recreate the "old" r=N/f-peak revivals already seen for a lesser or 
reduced integer NR =r=N/f. Similarly, for even N=2m the only new revivals are at found irreducible time 

fractions t/τ=ν/2N=1/2N,...q/2N ... . All the rest belong to subgroups CNR (if any) of CN  including Cm  and C2. A 
formula for new revival phasors based on sum (9.4.5) is given in Appendix 3.A. Now we consider a quasi-
classical way to understand revival dynamics.
 Odd-N revivals clearly display the prime factors and their multiples of the integer N. If N is a prime 
number as it is for N=3 in Fig. 9.4.2c and for N=5 in Fig. 9.4.3c then all reviving kaleidoscopes except the initial 
one consist of uniform distributions of N phasors of probability 1/N. However, for a composite odd integer such 
as N=15, the phasor distributions are not uniform as shown in Fig. 9.4.4. There are nodes at the p=±1 points for 
all revivals that correspond to factors of the integer N=15, namely at the revivals numbered 1, 3, 6, 9, 12, and 1, 
5, 10, and 15. The latter are copies of C3 revivals seen in Fig. 9.4.2c and the former are copies of C5 revivals seen 
in Fig. 9.4.3c. Their presence is simply a result of C3  and C5  being subgroups of C15. 
 By definition, 1 is a factor of all N and C1 is a subgroup of all CN . This is manifest by the first row of 
each revival table. The only even prime integer is N=2. This helps to account for the unique status of the C2  
revival table in Fig. 9.4.1b and the extra significance of the C2 parity of each integer N, that is, the distinction 
between odd and even integers.
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Fig. 9.4.4 Bohr space-time revival pattern for C15 Bohr system. 
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Bohr vs. Bloch dispersion
 The value of the CN  models increases when the purely quantum effects, particularly those of a single CN, 
are to be isolated. One imagines having a discrete Bohr ring like those sketched Fig. 9.4.5 composed of N atoms, 
quantum dots, optical fibers, or Josephson circuits homo-cyclically coupled is such a way that the usual quadratic 
Bohr dispersion spectrum ωm =  m2ω1 is obtained with a finite number N of states per band. As a first 
approximation, such a ring has a Bloch dispersion spectrum ωm = (H0-2H1 cos am) where H1  is the nearest 
neighbor coupling amplitude. Such a Bloch spectrum only approximates a Bohr spectrum for low m-values, and 
so high-Δm revivals would decay eventually. However, by inserting cross-connecting coupling paths H2 , H3 , 
H4 , ...HN/2 , as shown in Fig. 9.4.5, it is possible to achieve any spectrum, including m2, by adjusting coefficients 
Hk in a Fourier series. 
   ωm = H0-2S1 cos am-2H2 cos 2am-2H3 cos 3am...-HN/2 cos Nam/2 .
A quadratic spectrum (Em=hυm2) is achieved for general N by setting Hamiltonian parameters as follows.

   
  
hυm2 = H p e

−i p m
2π
N

p=0

N −1
∑ ,   where:  H p = hυ

N
m2 e

i p m
2π
N

m{ }
∑   (9.4.6)

For example, a 4-level N=6 quadratic spectrum {E0=0, E±1=12 E±2=22, E3=32.} involves six eigenstates: |(m)6〉 
= |(0)6〉, |(±1)6〉, |(±2)6〉, and |(3)6〉, using the following coupling amplitudes as given in the N=6 row of Table 9.1. 
   H0=3.16, H1=-2.0=H5*, H2= 0.67=H4*, H3=-0.5 ,    (9.4.7)
 With the adjustments in Table 9.1. of Hk coupling, pure CN revivals like those in Fig. 9.4.2-3 would repeat 
at frequency υ=h-1 until the coupling is turned off. Such a device would be an N-ary counter as implied before. 
By incorporating the N-ring as the crossection of a coaxial N-fiber cable, it would be possible for the revival 
evolution to occur as an N-phase wave propagated down the cable. The possibility of storing, processing, and 
transporting quantum or classical N-ary data for N>>2 using just one kind of basic hardware may yet warm the 
heart (and portfolio) of a future cyber-entrepreneur.
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p=4

N=5

H1

H2

p=1

p=0

p=2

p=3

N=4

H1
H2

p=0

p=1p=2

N=3

H1p=0 p=1

N=2

H1

Fig. 9.4.5 Quantum dot or co-axial cable structures with arbitrary dispersion

Table 9.1. N-Discrete m2-Hamiltonian Coupling Amplitudes. All devices have a unit revival rate: hυ=1 .
H0 H1 H2 H3 H4 H5 H6 H7 H8 H9

N=2 1/2 -1/2
N=3 2/3 -1/3
N=4 3/2 -1 1/2
N=5 2 -1.1708 0.1708
N=6 19/6 -2 2/3 -1/2
N=7 4 -2.393 0.51 -0.1171
N=8 11/2 -3.4142 1 -0.5858 1/2
N=9 20/3 -4.0165 0.9270 -1/3 0.0895
N=10 17/2 -5.2361 1.4472 -0.7639 0.5528 -1/2
N=11 10 -6.0442 1.4391 -0.5733 0.2510 -0.0726
N=12 73/6 -7.4641 2 -1 2/3 -0.5359 1/2
N=13 14 -8.4766 2.0500 -0.8511 0.4194 -0.2028 0.06116
N=14 33/2 -10.098 2.6560 -1.2862 0.8180 -0.6160 0.5260 -1/2
N=15 57/3 -11.314 2.7611 -1.1708 0.6058 -1/3 0.1708 -0.0528
N=16 43/2 -13.137 3.4142 -1.6199 1 -0.7232 0.5858 -0.5198 1/2
N=17 24 -14.557 3.5728 -1.5340 0.81413 -0.4732 0.2781 -0.1479 0.0465
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Problems for Chapter 9.
Evolution   (A 2000 Qualifying exam problem) 
9.1.1. A two-state quantum system evolves as follows in 5 sec. (First: Is the evolution unitary?)

! ! ! State |1〉 becomes state |1'〉 = -√3/2 |1〉 - i/2  |2〉 
! ! ! State |2〉 becomes state |2'〉 =     -i/2|1〉 -√3/2|2〉 

(a) Derive a complete set of states as combinations of |1〉 and |2〉 so that each combination would stay the same (except for a 
possible overall phase) at all times. 
(b) Compute the energy level splitting ΔE=E2-E1 for this system assuming ΔE is the lowest possible to achieve the 5 sec. 
evolution given in part (a).
(c) Derive an expression for any state at any time t and give |1(t)〉 and |2 (t)〉 numerically at t=1 sec.
(d) Does this evolution correspond to a Hamiltonian H? If so, what H?

Revolution
9.1.2. A two-state quantum system evolves as follows in t sec. (First: Is the evolution unitary?)

! ! ! State |1〉 becomes state |1'〉 = cos ωt |1〉  -  sin ωt |2〉 
! ! ! State |2〉 becomes state |2'〉 = sin ωt |1〉 + cos ωt |2〉 

 (a) Does this time evolution correspond to a Hamiltonian H? If so, what H? Is it Hermitian?

__________________________________________________________________

Hexapairs
9.3.1  The hexagonal C6 eigenstates |06〉 and |36〉 are standing waves while [|+16〉, |-16〉] and [|+26〉, |-26〉] are right and left moving 
wave pairs. 

(a) Do [|+36〉, |-36〉] a moving wave pair make? Explain why or why not? 
(b) Can the [|+16〉, |-16〉] pair make a pair of standing waves? If so make them and plot the phasors. If not, explain.
(c) Can the [|+26〉, |-26〉] pair make a pair of standing waves? If so make them and plot the phasors. If not, explain.
(d) What values, if any, for tunneling parameters |S|, σ, |T|, τ, and U allow standing-wave-pair eigenstates. Must they always 

be degenerate?

Octapairs
9.3.2 Consider an octagonal C8 system of 8 quantum dots.

(a) Write the general form of its Hamiltonian.
(b) Display its eigenkets and write a formula for its energy eigenvalues.

Back to Roots...again
9.3.3. Eigensolutions of C2 and C3 symmetric H can be turned into quadratic and cubic root formulas. 

(a) Eigenvalues of H=
 

A B
B A

⎛

⎝⎜
⎞

⎠⎟
, namely λ=A±B give solutions to λ2-2Aλ+A2-B2=0  Use this to derive the familiar quadratic 

formula for roots of aλ2+bλ+c=0 .

(b) Use the above and C3-derived eigenvalues of H=

 

A C B
B A C
C B A

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

 to derive the less familiar formula for roots to general cubic 

equation aλ3+bλ2+cλ+d=0. (Hint: First consider λ3+pλ+q=0 .)
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_____________________________________________________________________________
Quantum baseball
9.3.3 Suppose the Asumma Tummy Quantum Computer Co. has taken over the world and you are the only one in your country that 
still knows the difference between an amplitude and a phase. Your assignment is to design, make or experiment with some 
quantum dot computer elements diagrammed below having charge carrier matter-waves that tunnel along edges and diagonals of 
squares as indicated below. 

!

H

S

S*

T
H = 〈ρ|H |ρ〉=H*

(b)C4  Quantum Dots

S S

S

S* S*

S*

H

H

H

(a) Tunneling P aths

 〈0 |H|0〉=H+ΔH
(c) Broken symmetry

H

H

H

H+ΔH

S+ΔS S+ΔS

 〈1|H |0〉  = S+ΔS =   〈0|H|1〉

S=S* S=S*
T=0

 〈0|H |3〉  = S+ΔS =   〈3|H|0〉

|0〉

|2〉

|3〉
|1〉

|2〉

|3〉

|0〉

|1〉

S = 〈ρ+1|H|ρ〉

S* = 〈ρ|H|ρ+1〉
T=0

Suppose edge tunneling amplitudes are equal and real (S =-1.0) while diagonal tunneling amplitudes are zero (T=0 ) to give C4 
symmetry as shown in Fig. (b). Suppose at time t=0 the charge carrier amplitude is 100% on "home" base state |0〉.( 〈0|Ψ(t=0)〉=1).

(a) Derive eigenlevels and calculate the time dependence of the home-base amplitude 〈0|Ψ(t)〉=?  Find the period τrebound of 
time it takes home-base to rebound to a maximum again after initially decreasing. Does it rebound to 100% the first time?  
ever?  
(b) Sketch phasors for each of the four bases |0〉, |1〉, |2〉, and |3〉 at 1/4- τrebound time intervals and indicate by arrows 
between phasors the direction of instantaneous charge flow from one to the other. (Tell how you determine this just by 
looking at the phasors.) Does first, second, or third base ever hold 100% of the charge?
(c.) Suppose all edge tunneling amplitudes are equal but (possibly) complex (S =-eiσ) while diagonal tunneling amplitudes 
are zero (T=0 ). 
(a) Adjust the tunneling phase angle σ so as to make four equally spaced energy eigenlevels with quantum numbers m=(0)4, 
(-1)4, (1)4, and (2)4 , in that order. 
Is the order (0)4, (1)4, (2)4, and (3)4 = (-1)4 also possible using this adjustment? If not, can some other kind of adjustment 
achieve it without changing the form of the eigenstates? Discuss.

Janitor’s revenge
9.3.4. Suppose a janitor hits the home-base dot-0 with his broom handle and accidentally resets some H-matrix elements shown in 
Fig. (c) by small amounts: the first diagonal by ΔH=A and the first off-diagonal by ΔS=ΔS*=B. All other matrix elements remain 
the same as in Problem 9.3.3. Let the new "broken" Hamiltonian be a sum H' = H + V(A,B).

(a) Derive a matrix representation of the janitor's perturbation V(A,B) in the original  |0〉 to |3〉 basis, in the moving-wave basis  
|(0)4〉, |(-1)4〉, |(1)4〉, and |(2)4〉, and in the standing-wave cosine and sine basis |(0)4〉, |(c1)4〉, |(s1)4〉, and |(2)4〉, where: !|(c1)

4〉 = (|(-1)4〉+|(1)4〉)/√2   , and:   |(s1)4〉 = (|(-1)4〉-|(1)4〉)/i√2 . 

(b) Use (a) and perturbation theory to estimate (to 2nd order |A|2=|ΔS|2 or |b|2=|ΔH|) the effect of the V(A=0.1,B=0.2) on 
energy eigenlevels ε(0)4,  ε(±1)4, and ε(2)4 as ε(m)4 turn into eigenlevels of the "broken" Hamiltonian H'. Which 
representation from (a) should be used and why? Show your work. 

(c.)   Discuss the effect, if any, on the original eigenstates  |(0)4〉, |(-1)4〉, |(1)4〉, and |(2)4〉, and sketch their phasor diagrams 
next to the corresponding eigenlevels. Are moving-wave eigenstates still possible after the janitor does his or her work?
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! !

 (a) (b) (c) (d)

Beware the pentagram
 9.3.5. Suppose a pentagonal C5 device in prob. 9.3.3(a). 
(a)  Could it ever rebound to 100%? Discuss devices (a), (b), and (c).
(b) Discuss the possibility (or impossibility) of constructing such a device that would give a "runner-going-around-the-bases" 
effect with 100% probability occurring briefly but consecutively on first base, then second base, then third base, and finally 
home base. If such a device could be made would it also be capable of running in the opposite direction without modifying 
the H-matrix?

Quantum dot.com
9.3.6 The CN quantum dots in Fig. 9.4.5 are supposed to belong to an infinite family of structures whose ωm-spectrum is 
quadratic in quantum number mN. This assumes a sequence of tunneling paths or connecting couplers described by (9.4.6).
The N=2 example seems an exception having only a single H1 = S connector on each dot. Is this right? Should the 

Hamiltonian be 
  
H = H S

S H

⎛

⎝⎜
⎞

⎠⎟
 or should it be 

   
H = H 2S

2S H

⎛

⎝⎜
⎞

⎠⎟
 to conform with the rest? Discuss. Compare the N=2 

case with, say, that of N=4.

Quantum dot.com again
9.3.7 The CN quantum dots in Fig. 9.4.5 might be made to have other spectral band functions such as 
(Q) Quadratic spectrum: ω(m)=ε(m)/= m2 = 1, 0, 1, 4, 9,… for (m)N= -1, 0, 1, and ±2, ±3,….
(L) Linear spectrum: ω(m)=ε(m)/= |m|= 1, 0, 1, 2,3,… for (m)N= -1, 0, 1,  ±2, ±3,…
(SL) Super-linear spectrum: ω(m)=ε(m)/= m = -1, 0, 1, ±2, ±3,… for (m)N= -1, 0, 1, ±2, ±3,…
! (a) Derive N=8 coupling parameters for each of these spectra.
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Review Topics & Formulas for Unit 3

  

Fourier SeriesCoefficients

km Ψ = dx
−L / 2

L / 2
∫ km x x Ψ

   km x = e−ikmx

L
= x km

*

  !

  

Fourier Integral Transform

k Ψ = dx
−∞

∞
∫ k x x Ψ

Kernal : k x = e−ikx

2π
= x k

*

  

Fourier CN Transformation

km Ψ = km xp xp Ψ
p=0

p=N −1
∑

  km xp = e
−ikmxp

N
= xp km

*

x-Wavefunction Ψ(x)=! ! ! x-Wavefunction Ψ(x)=! ! x-Wavefunction Ψ(x)=

 

x Ψ = x km km Ψ
m=−∞

m=∞
∑

Ortho −Completeness
! !

 

x Ψ = dk
−∞

∞
∫ x k k Ψ

Ortho −Completeness
!

  

xp Ψ = xp km km Ψ
m=0

m=N −1
∑

Ortho −Completeness

  

x km km ′x
m=0

m=∞
∑ = δ x − ′x( )

dx
−L / 2

L / 2
∫ km x x k ′m = δm, ′m

!

 

dk
−∞

∞
∫ x k k ′x = δ x − ′x( )

dx
−∞

∞
∫ k x x ′k = δ k − ′k( )

!

  

xp km km x ′p
m=0

m=N −1
∑ = δ p, ′p

km xp xp k ′m
p=0

p=N −1
∑ = δm, ′m

Discrete momentum m!! Continuous momentum k! ! Discrete momentum m
Continuous position x!! ! Continuous position x!! ! Discrete position xp
_____________________________________________________________________________________________________________________________

    

Time EvolutionOperator U
Ψ(t) = U(t,0) Ψ(0)

HamiltonianGenerator H

i ∂
∂t

U(t,0) = H U(t,0)

! !

    

Time EvolutionOperator U

U(t,0) = e−i t H /

Schrodinger t − Equation

i ∂
∂t

Ψ(t) = H Ψ(t)

! !
    

U must beUnitary

U†(t) = U−1(t) = U(−t)

e−itH /( )† = eitH† / = eitH /

so H is Hermitiam H† = H

__________________________________________________________________________________
Schrodinger time-independent  energy eigen equation.
! ! ! !  H | ωm 〉 = ωm | ωm 〉 = εm | ωm 〉! ! ! ! (9.3.1a)
H-eigenvalues use r-expansion (9.2.6) of H and C6 symmetry rp-eigenvalues from (8.2.9).
! ! !   〈km|rp|km〉= e-ipkma = e-ipm2π/N  where:  km = m(2π/Na)  
     〈km|H|km〉 = H 〈km|1|km〉 + S 〈km|r|km〉 + T 〈km|r2|km〉 + U 〈km|r3|km〉 + T* 〈km|r4|km〉 + S* 〈km|r5|km〉
6          = H + S e-ikma + T e-i2kma + U e-i3kma + T* ei2kma + S* eikma!  ! ! (9.3.5a) 
Bloch dispersion relation. And Bohr limit (k<<π/a) approxiamtion. Band group velocity Vgroup.
! !  ωm =Em = H - 2|S| cos( km a)  = H - 2|S| + |S|( kma )2 +..!  ! ! (9.3.8)

! !
   

Vgroup =
dωm
dkm

= 2
S


a sin kma( )   ≅ 2

S


kma2  , for: km << π / a

⎛

⎝
⎜

⎞

⎠
⎟ ! ! (9.3.10)

Effective mass Meff inversely proportional to S.!  Meff(0)= 2/( 2|S| a2 )! ! (9.3.11a)

_________________________________________________________________________________
Fourier transform of a Gaussian e-(m/Δm)2 momentum distribution is a Gaussian e-(φ/Δφ)2 in coordinate φ. 
! !   〈m|Ψ〉 =  e-(m/Δm)2   implies:! !  〈 φ |Ψ〉 =  e-(φ/Δφ)2   ! ! ! (9.3.14)
The relation between momentum uncertainty Δm and coordinate uncertainty Δ φ is a Heisenberg relation.
! ! ! !  Δm/2 =1/ Δ φ ,!or: ! ! Δm Δ φ  =2  ! ! ! (9.3.15)
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Bohr wave quantum speed limits

! !
  
Vgroup

Bohr m ↔ n( ) = ωm −ωn
km − kn

=
m2 − n2( )hυ1

m − n( )h / L
= (m + n) L

τ1
= (m + n)V1 ! (9.3.16)

Predicting fractional revivals: Farey Sum ⊕ F of the rational fractions n1/d1 and n2/d2

! ! !
  
t12− intersection =

n2 + n1
d2 + d1

=
n2
d2

⊕F
n1
d1
! ! ! ! (9.3.18)
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Appendix 9.A. Relative phase of peaks in a revival lattice
 The first derivation here of revival amplitudes at stroboscopic time fractions tν = τ(ν/N) and kaleidescopic 
angular positions φρ=2π(ρ/N) assumes N is odd. At times when fraction (ν/N) is reduced, all N revival peak sites 
hop up with identical magnitude and with particular arrangement of phases that clearly distinguishes each ν/N 
from all others. First we derive formulas for these phases as a function of site index ρ and revival time index ν. 
(If time fraction ν/N reduces to νR/NR, then use (νR ,NR) in place of (ν,N) to find NR peak phases of subgroup 
CNR revivals.) The first step is to complete the square of exponent in sum.

       

  

ψ 0 φρ , tν( ) = 1

N m=0
N −1∑ e

i m ρ− m2 ν⎛
⎝⎜

⎞
⎠⎟

2π
N = 1

N m=0
N −1∑ e

−i m2 ν−mρ+ ρ
2

4ν

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

2π
N

e
i ρ

2

4ν
2π
N

                  = 1

N m=0
N −1∑ e

−i mν− ρ
2

⎛
⎝⎜

⎞
⎠⎟

m−
ρ

2ν
⎛
⎝⎜

⎞
⎠⎟

2π
N e

i ρ
2

4ν
2π
N

                  = 1

N m=0
N −1∑ e

−i 2mν−ρ( )2 2π
4νN e

i ρ
2

4ν
2π
N

  (A.1)

 The integer square (2mν-ρ)2 in the exponent is to be treated as an integer-modulo-4νN since the phase 
factor repeats after that value. However, as summation index m runs through the integers m = 0, 1, 2, ..., N-1 it 
exhausts all the possible values of (2mν-p)2 -mod-4νN for a given ν and ρ, and the values are the same no matter 
what we take for the range of m. For example, consider tables of phase index (2mν-ρ)2 -mod-4νN for select times 
of ν=1 and ν=2 for an N=5 level excitation.

   

   

(2mν − ρ)2mod4νN    for N =5  

ν=1 m = 0 1 2 3 4 5 6
ρ = 0 0 4 16 16 4 0 4

1 1 1 9 5 9 1 1
2 4 0 4 16 16 4 0
3 9 1 1 9 5 9 1
4 16 4 0 4 16 16 4

  (A.2a)  

    

(2mν − ρ)4νN
2    for N =5  

ν=2 m = 0 1 2 3 4 5 6 7 8 9 10
ρ = 0 0 16 24 24 16 0 16 24 24 16 0

1 1 9 9 1 25 1 9 9 1 25 1
2 4 4 36 20 36 4 4 36 20
3 9 1 25 1 9 9 1
4 16 0 16 24 24 16

(A.2b)

 Note that N consecutive values for m give the same sum no matter whether the sum starts at m=0 or at a 
sum-shift value m=µ. The idea is to shift the summation index m to m-µ so that a (2mν-ρ)2 -mod-4νN binomials 
in row-ρ can be replaced by a simple square (2mν)2 -mod-4νN monomial found in the ρ=0 row. This will reduce 
the exponent to a term independent of site-index ρ plus a Δ−term independent of summation-index m. 
 It would be nice if the Δ−term were also independent of ρ but the tables show that is asking too much! So, 
Δ = Δ(ρ,ν) and, each of the rows ρ =1, .., N-1 differ from the ρ=0 row by a single modular difference Δ(ρ,ν) in 
phase index which is overlined in the table and is the single unpaired number in each row. For example, 
subtracting Δ(1,1)=5-mod-20 = (5)20 from the (ρ=1) row of the (ν=1) table and shifting forward by µ1=2 gives 
the (ρ=0) row (mod-20) . The shifts needed to line up rows ρ=1, 2, 3, and 4 are µ1=2, µ2=4, µ3=6, and µ4=8 
respectively, that is µρ=µ1ρ. These observations are summarized by a modular equation.

 
  

2 m − µρ( )ν − ρ( )2 mod 4νN ≡ 2 m − µρ( )ν − ρ( )
4νN

2
= 2mν( )4νN

2
− Δ ρ,ν( )      (A.3a)

This is supposedly valid for all values of m so for m=0 the equation reads
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−2µρν − ρ( )

4νN

2
= 0 − Δ ρ,ν( )  ,      (A.3b)

where      
 
µρ = µ1ρ .        (A.3c)

Subtracting equation (A.3b) from (A.3a) gives the following, again valid for all m. 

  

   

2 m − µρ( )ν − ρ( )
4νN

2
− −2µρν − ρ( )

4νN

2
= 2mν( )4νN

2

4mν −2µρν − ρ( )( )
4νN

= 0( )4νN
= κ 4νN = 0, 4νN , 8νN ,…,4νN (N −1)

Next, set m=1, and solve for the m-sum-shift µρ of row ρ.

  

   

−8µρν
2 − 4νρ = −κ 4νN = 0, -4νN , -8νN ,…,-4νN (N −1)

2µρν + ρ = κN = 0, N , 2N ,…,N (N −1) or: µρ=
κN − ρ

2ν
= (integer)N

   (A.4a)

A value κ=0,1,2,..,N-1 is selected so that m-sum-shift µρ is an integer µρ=0,1,2,..,N-1, too. Substituting the 
resulting µρ value in (A.3a) gives the phase modular difference Δ first defined there and in (A.3b).

      
  
Δ ρ,ν( ) = − 2νµρ + ρ( )

4νN

2
= − 2ν κN − ρ

2ν
⎛
⎝⎜

⎞
⎠⎟
+ ρ

⎛

⎝⎜
⎞

⎠⎟ 4νN

2

= − κN( )4νN
2

 ,      (A.4b)

where

    
  
κ =

2νµρ + ρ

N
.        (A.4c)

Puttiing (A.3a) into the revival wavefunction sum (A.1) gives 

     

  

ψ 0 φρ , tν( ) = 1

N m=0
N −1∑ e

−i 2mν−ρ( )2 2π
4νN e

i ρ
2

4ν
2π
N

                = 1

N m=0
N −1∑ e

−i 2mν( )2 −Δ ρ,ν( )⎡
⎣⎢

⎤
⎦⎥

2π
4νN e

i ρ
2

4ν
2π
N              using:(A.3a)⎡⎣ ⎤⎦

                = 1

N m=0
N −1∑ e

−i 2mν( )2 + κ N( )2 −ρ2⎡
⎣⎢

⎤
⎦⎥

2π
4νN                     using:(A.4b)⎡⎣ ⎤⎦

                = 1

N m=0
N −1∑ e

−i 2mν( )2 +4µρ
2ν2 +4µρνρ

⎡
⎣⎢

⎤
⎦⎥

2π
4νN              using:(A.4c)⎡⎣ ⎤⎦

 

   
  
                = P(ν )e

−i µρ
2ν+µρρ

⎡
⎣⎢

⎤
⎦⎥
2π

N = P(ν )e

−i µ1
2ν+µ1

⎡
⎣⎢

⎤
⎦⎥
ρ2 2π

N      using:(A.3c)⎡⎣ ⎤⎦  (A.5a)

The overall phase and amplitude prefactor P(ν) is a Gaussian sum discussed in Appendix 9B.

  
  
P ν( ) = 1

N m=0
N −1∑ e

−i 2mν( )2 2π
4νN = 1

N m=0
N −1∑ e

−iνm2 2π
N     (A.5b)

 Finally, the (ρ=1) m-sum-shift µ1 is the first fraction (N-1)/2ν, (2N-1)/2ν, (3N-1)/2ν, ..., or (N2-1)/2ν, to 
yield an integer according to (A.4a). Recall that it was assumed that N and ν are relatively prime, that is, have no 
common factors. It seems evident that the integer arithmetic behind base-N counter revivals is not trivial, even for 
the case of odd-N .To complete this particular N=5 example we find the sum-shift µ1 at each revival time ν=1- 4.
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µ1 =
κN −1

2ν
κN −1= 4 9 14 19 24

2ν = 2 2 . 7 . 12
2ν = 4 1 . . . 6
2ν = 6 . . . . 4
2ν = 8 . . . . 3

    (A.6)

From the discussion of Appendix 9B come the overall prefactors P(v=1)=1/√5,  P(2)=-1/√5, P(3)=-1/√5, and P
(v=1)=1/√5, which are needed to complete the following N=5 revival table using (A.5).

  

  

ψ ρ,ν( ) ρ = 0 ρ = 1 ρ = 2 ρ = 3 ρ = 4

ν = 0 1 0 0 0 0
ν = 1 1 / 5 e1

* e1 e1 e1
*

ν = 2 −1 / 5 −e2 −e2
* −e2

* −e2

ν = 3 −1 / 5 −e2
* −e2 −e2 −e2

*

ν = 4 1 / 5 e1 e1
* e1

* e1

 where: 

e1 = ei2π /5 / 5

e2 = e2i2π /5 / 5

 (A.7)

A phasor gauge plot of the N=5 revivals (A.7) is shown in Fig. 9.4.3c.
 The summation (A.1) for even-N is mostly the same as the above. Time index υ is replaced by υ/2.

   

  

ψ 0 φρ , tν( ) = 1

N m=0
N −1∑ e

−i mν−ρ( )2 2π
2νN e

i ρ
2

2ν
2π
N , where;   tν = ν 2π

2N
,   for N -even.

                

 

                     = P(ν )e

−i µρ
2ν+2µρρ

⎡
⎣⎢

⎤
⎦⎥
2π

2N = P(ν )e

−i µ1
2ν+2µ1

⎡
⎣⎢

⎤
⎦⎥
ρ2 2π

2N         (A.8a)

where 

  
  
µ1=κN −1

ν
= first integer in N −1

ν
, 2N −1

ν
, 3N −1

ν
, ...     (A.8b)

Again the overall phase and amplitude prefactor P(ν) is a Gaussian sum discussed in Appendix B.

  
  
P ν( ) = 1

N m=0
N −1∑ e

−i mν( )2 2π
2νN = 1

N m=0
N −1∑ e

−iνm2 2π
2N     (A.8c)

This works for odd-numerator time fractions 1/2N, 3/2N, 5/2N,...=υ/2N . For the even numerator ones, we take 
advantage of the revival sequence υ/N = 1/N, 2/N, 3/N,.... for N cut in half and shifted by π. If N/2 is odd then (A.
5) is used. If N/2 is even then (A.8) is used again, but with N cut in half to N/2. Note that fractions with singly-
even denominators have zeros at φ=0 and peaks at φ=±π. Fractions with odd denominators have peaks at φ=0 
and zeros at φ=±π.  Fractions with doubly-even denominators have zeros at φ=0 and φ=±π. 
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Appendix 9.B. Overall phase of peaks in a revival lattice
 The evaluation of the N-term integral Gaussian sum 

    
  
G ν( ) = m=0

N −1∑ e
−iνm2 2π

N = NP ν( )      (B.1)

in the prefactor P(ν)=G(ν)/N given by (A.5b) is, perhaps, the least trivial part of the revival formulation. The 
develpment involves complex Gaussian integer analysis, a subject which occupied Gauss for more than the first 
decade of his most productive years. Here we will be content with giving a list of the results for the first few 
integer combinations that would be relevant for the revivals shown previously.

   

  

N = 2 3 4 5 6 7 8 9 10 11 12

m=0
N −1∑ e

−im2 2π
N = 0 −i 3 1− i( ) 4 5 0 −i 7 1− i( ) 8 9 0 −i 11 1− i( ) 12

m=0
N −1∑ e

−i2m2 2π
N = 2 i 3 0 − 5 −i 12 −i 7 1− i( )4 9 20 i 11 0

m=0
N −1∑ e

−i3m2 2π
N = 0 3 1+ i( ) 4 − 5 0 i 7 − 1+ i( ) 8 −i 27 0 −i 11 1− i( )6

m=0
N −1∑ e

−i4m2 2π
N = 2 −i 3 4 5 i 12 −i 7 0 9 − 20 −i 11 −i 48

m=0
N −1∑ e

−i5m2 2π
N = 0 i 3 1− i( ) 4 5 0 i 7 − 1− i( ) 8 9 0 −i 11 − 1− i( ) 12

m=0
N −1∑ e

−i6m2 2π
N = 2 3 0 5 6 i 7 1+ i( )4 i 27 − 20 i 11 0

m=0
N −1∑ e

−i7m2 2π
N = 0 −i 3 1+ i( ) 4 − 5 0 7 1+ i( ) 8 9 0 i 11 − 1+ i( ) 12

             (B.2)
Particuarly simple general results are had for the case of doubly-even integer.

  

  

N = 2n 4 = 2 ⋅2 8 = 2 ⋅4 12 = 2 ⋅6 16 = 2 ⋅8 20 = 2 ⋅10

m=0
N −1∑ e

−im2 2π
N = 1− i( ) 1− i( ) 2 1− i( ) 3 1− i( ) 4 1− i( ) 5

  (B.3)

A complex vector diagram of the first few G(u) sums is shown below in Fig. 9B.1.

!

HarterSoft –LearnIt    Unit 3 Fourier Analysis and Symmetry   9-39



40

!

0 1

4

4

1

9

0
1

4

9

4

9

5

349
5

3

0

1

0
1

0 14 4
0 1

4
3

√5/2 0+ i0

0

4

0 1

4

0+ i0

0
1

4

0
1

4

7

√9/2

24

4
7

1
4

6 5

9

N=3

N=5

N=7

N=9

N=11

N=4

N=6

N=8

N=10

N=12

(1- i )√4/2

(1- i )√8/2

(1- i )√12/2- i√11/2

- i√3/2

- i√7/2
1

 Fig. 9B.1 Sums of modular squares (m2)N  = m2 mod N  (N = 3-12).

©2013 W. G. Harter    Chapter 9 Time Evolution  9-



HarterSoft –LearnIt    Unit 3 Fourier Analysis and Symmetry   9-41



A

-A

C

-C

B

-B

H crank-Ω vector
for negative B=-S

|(+)〉

|(−)〉

|R〉

|L〉

|x〉

|y〉

Ω

Unit 3 - Chapter 10
Two-State Evolution, Coupled 

Oscillators, and Spin
W. G. Harter

Schrodinger time evolution is analogous to the motion of coupled oscillators or 
pendulums. This analogy is valuable for theoretical insight, visualization, and for 
developing computer simulations. Particularly valuable is the insight into the use of 

Hamilton-Pauli algebra of reflection-symmetry operators σA, σB, and σC, which are 

known as spinor or quaternion operators and generate the U(2) group. Hamiltonians 

made of the σµ apply to many 2-state phenomena including the NH3 maser, spin 

resonance, and optical polarization introduced in Chapter 1. We have said that in 
quantum dynamics, “It takes two to tango.” Now we begin to see how the pros do it!
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4
Chapter 10. Two-State Evolution and Analogies
10.1 Mechanical Analogies to Schrodinger Dynamics
 The quantum Schrodinger time evolution equations (9.2.5) are similar to the classical Newtonian 
equations of motion for coupled pendulums. This analogy may help to understand quantum dynamics in this 
and later chapters. Indeed, for certain constant H Hamiltonian operators, the classical and quantum equations 
are mathematically and dynamically identical. Also, the concept of spin will be introduced.
 We begin with the simplest non-trivial quantum systems having just two-states (N=2) such as optical 
polarization and electron spin-polarization introduced in Chapter 1. This U(2) system is such an experimentally 
important system that we will devote several units to its technology. This chapter will provide an introduction to 
U(2) systems and their symmetry by using classical mechanical analogies.
 The simplest non-trivial quantum system is the two-level atom or a spin-1/2 particle.  The Schrodinger 
equation (9.2.5) for these systems has the general form:

    
   
i ∂

∂t
Ψ t( ) = H Ψ t( )       (10.1.1a)

where  H  is a two-by-two Hermitian (H†=H) matrix operator

    
  
H = A B − iC

B + iC D
⎛

⎝⎜
⎞

⎠⎟
.     (10.1.1b)

and ket Ψ  is a two-dimensional complex phasor vector xj+ipj 

     
  

Ψ =
Ψ1

Ψ2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

x1 + ip1

x2 + ip2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

.     (10.1.1c)

 Separating real xj and imaginary pj parts of the amplitudes (10.1.1c) lets us convert the complex 
Schrodinger equation (10.1.1a) into twice as many real differential equations.  The results are as follows.

 
   

x1 = Ap1 + Bp2 − Cx2

x2 = Bp1 + Dp2 + Cx1
  (10.1.2a)  

   

p1 = −Ax1 − Bx2 − Cp2

p2 = −Bx1 − Dx2 + Cp1
 (10.1.2b)

 The same equations arise from the following classical coupled oscillator Hamiltonian in which 
 
x j  and 

 
p j  are canonical coordinates and momenta, respectively.

  
  
Hc = A

2
p1

2 + x1
2( ) + B x1x2 + p1p2( ) + C x1p2 − x2 p1( ) + D

2
p2

2 + x2
2( )   (10.1.3a)

Hamilton’s classical canonical equations of motion are the following:

 

   

x1 =
∂Hc
∂ p1

= Ap1 + Bp2 − Cx2

x2 =
∂Hc
∂ p1

= Bp1 + Dp2 + Cx1

   (10.1.3b) 

   

p1 = −
∂Hc
∂x1

= − Ax1 + Bx2 + Cp2( )

p2 = −
∂Hc
∂x2

= − Bx1 + Dx2 − Cp1( )
 (10.1.3c)

Note that these are identical to Schrodinger’s equations (10.1.2).
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 To see a connection with conventional second order coupled oscillator equations, we differentiate the 

  
x j  

equations (10.1.3b) and substitute the 
  
p j  expressions (10.1.3c).  (Note:  Canonical momentum here is not the 

usual 
  
p j = mx j . See exercises at the end of the chapter.)

    x1 = Ap1 + Bp2 − C x2

     
  
= −A Ax1 + Bx2 + Cp2( ) − B Bx1 + Dx2 − Cp1( ) − C Bp1 + Dp2 + Cx1( )

                
  
= − A2 + B2 + C2( ) x1 − AB + BD( ) x2           − A+ D( )Cp2      (10.1.4a)

    x2 = Bp1 + Dp2 + C x1

      
  
= −B Ax1 + Bx2 + Cp2( ) − D Bx1 + Dx2 − Cp1( ) + C Ap1 + Bp2 − Cx2( )

      
  
= − AB + BD( ) x1 − B2 + D2 + C2( ) x2          + A+ D( )Cp1     (10.1.4b)

 If the complex parameter C  is zero this reduces to classical coupled oscillator equations
     −x1 = K11x1 + K12x2  ,   (10.1.5a)    −x2 = K21x1 + K22x2 ,  (10.1.5b)

where the force or acceleration or spring matrix Kij depends on masses and spring constants in Fig. 10.1.1a and 
is related as follows to the Schrodinger  H -matrix parameters A, B, and D.

    m1K11 = A2 + B2 = k1 + k12,      m1K12 = AB + BD = −k12,   (10.1.5c)

    m2K21 = AB + BD = −k12,       m2K22 = B2 + D2 = k2 + k12 . (10.1.5d)

 

x1k k kx21 12 2

m1 m2

(a)

 θ1

θ2

κ

1

m

m2

2

(b)

1

   

x  = 01

x 
 =

 0
2

m

(c)

 Fig.10.1.1 Classical analogs for spatially asymmetric U(2) quantum system.

HarterSoft –LearnIt Unit 3 Fourier Analysis and Symmetry   10-



6
Fig. 10.1.1 shows (a) two masses , (b) two pendulums, and (c) a single mass m hung by diagonal springs. Each 
has an isotropic kinetic energy T (m is divided out) and an anisotropic potential V.

      
    
T = 1

2
x1

2 + 1
2
x2

2 = 1
2
x • x    

   
V = 1

2
K11x1

2 + 1
2

K12 + K21( )x1x2 +
1
2

K22x2
2 = 1

2
x •K • x

(10.1.6a)        (10.1.6b)
Constant-V curves (equipotentials) are ellipses as shown in Fig. 10.1.2 below. The parameters A, B, and D in the 
K-matrix (10.1.5) or H-matrix (10.1.1b) determine the shape of the ellipses and inclination of their major axes 
which correspond to different K-matrix eigenvalues and eigenvectors, that is, different frequencies and normal 
modes in the classical models and different energy states in the original quantum U(2) model. We now study 
different cases and see how they correspond to different symmetries.

x1

x2

x1

x2

4455°°
x1

x2

(a-b) C2AABB-symmetry (b) C2BB-symmetry
A 0
0 D

A B
B D

A B
B A

slow

fast
slow

fast slo
w

fas
t |e 1

>=
|+

|e
2 >=|-

(a) C2AA-symmetry

Fig. 10.1.2 Potentials for (a) C2A-asymmetric-diagonal, (ab) C2AB-mixed , (b) C2B-bilateral U(2)system.

(a).  ABCD Symmetry operator analysis
Following the lead of Chapters 8 and 9, we decompose the Hamiltonian (10.1.1b) into four ABCD 

symmetry operators that are so labeled to provide helpful mnemonics in sections following.

   

A B − iC
B + iC D

⎛

⎝⎜
⎞

⎠⎟
= A 1 0

0 0
⎛

⎝⎜
⎞

⎠⎟
+ B 0 1

1 0
⎛

⎝⎜
⎞

⎠⎟
+C 0 −i

i 0
⎛

⎝⎜
⎞

⎠⎟
+ D 0 0

0 1
⎛

⎝⎜
⎞

⎠⎟
= Ae11 + BσB +CσC + De22

   

                           = A+ D
2

1 0
0 1

⎛

⎝⎜
⎞

⎠⎟
+ B 0 1

1 0
⎛

⎝⎜
⎞

⎠⎟
+C 0 −i

i 0
⎛

⎝⎜
⎞

⎠⎟
+ A− D

2
1 0
0 −1

⎛

⎝⎜
⎞

⎠⎟

                        H = A+ D
2

        σ1   + B        σB    +C          σC    + A− D
2

   σ A

 (10.1.7)

The {σ1, σA, σB, σC} are best known as Pauli-spin operators { σ1= σ0 , σB= σX , σC= σY , σA= σZ }but they (or 
ones quite like them) were discovered almost a century earlier by Hamilton. (He carved them into a bridge in 
Dublin in 1843.) Hamilton was looking for a consistent generalization of complex numbers to 3-dimensional 
space. One day he hit upon the idea of a four-dimensional set of operators which he labeled {1, i, j, k}. 
Hamilton’s quaternions are related as follows to the ABCD or ZXY0 operators. 
    {σ1=1= σ0 , iσB=i= iσX , iσC=j= iσY , iσA=k= iσZ }     (10.1.8)
Note: i2 = j2 = k2 = -1. They square to negative-1 like imaginary number i2=-1. Pauli’s form removes the 

imaginary i so the σµ all square to positive 1 (σX 2 = σY2 = σZ2 = +1) and each belongs to a C2 group. Note that 
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our first operator σA (or Pauli’s third σZ ) is a difference σA =e11- e22 of elementary operators e11 and e22. σA is 
a group operator but ekk are not since they are projectors and do not have inverses.
 Now each C2 group C2A={1, σA}, C2B={1, σB}, and C2C={1, σC} is considered in turn. They are labeled 
A (asymmetric-diagonal), B (bilateral balanced beat), and C (circular) symmetry for reasons that will become 
clear. Each of them represents a different physical archetype and a different kind of dynamics. Mnemonic 
alliteration is used for pedagogical enhancement, particularly the C (circular) symmetry for which the following 
C-adjectives apply: complex, circular, chiral, cyclotron, Coriolis, centrifugal, curly, and circulating-current. 
 The last symmetry adjective explains its important distinction and the coloring scheme used in formulae 
and illustrations. The A and B designations are colored the yellow, orange or red color of traffic signals for 
CAUTION, or  STOP since these symmetries refer to real-standing waves. The green or blue-green GO signal 
color applies to the C (current-like) symmetry of imaginary or complex moving or galloping waves.

HarterSoft –LearnIt Unit 3 Fourier Analysis and Symmetry   10-



8
10.2 The ABCDʼs of 2-State Dynamics
 Operators  σ A , σ B , any σ C within each C2 group C2A={1, σA}, C2B={1, σB}, and C2C={1, σC} do not 
commute with each other. Therefore they are first considered separately as is done in the following sections 
labeled, appropriately, (a), (b), and (c). Then follows a discussion of how they intermix.

(a) Asymmetric-Diagonal or C2A symmetry
 The first case involves an H-matrix that is asymmetric-diagonal, that is (B=0=C) and (A<D)

    
   

H = A 0
0 D

⎛

⎝⎜
⎞

⎠⎟
 ,   or:   K = A2 0

0 D2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

.   (10.2.1a)

The A-matrix gives uncoupled oscillators in (10.1.5) or a single mass in a diagonal potential (10.1.6).

  
  
V = 1

2
K11x1

2 + 1
2

K22x2
2        where: K11 = A2 =

k1
m

,  and:  K22 = D2 =
k2
m

 (10.2.1b)

Such an elliptical potential is plotted in Fig. 10.1.2a. Here cross coupling is zero (k12=0), so each mass or 
pendulum in Fig. 10.1.1a-b is disconnected and independent of the other one. Motion that is purely along one of 
the Cartesian axes in Fig. 10.1.2a, say purely along the x or x1-axis, or else purely along the y or x2-axis, will be 
simple harmonic motion whose frequency is a "slow" A=√(k1/m) or else a "fast" D=√(k2/m), respectively. This 
is because the force or gradient for any mass on the x -axis is also along the x or x1-axis driving it directly back 
to the origin. The same holds for the x2-axis but the force constant k2 is presumed stronger than k1 making the 
x2-axis gradient steeper so x2-axial motion is faster than x1-axial motion.
 Arrows in Fig. 10.1.2a indicate elementary normal modes of the uncoupled x-and y-dimensions. The 
modes are plotted (using the program Color U(2) ) as separate functions of time in Fig. 10.2.1a and b.

slow fast

x1

p1

x2

p2

x1

x2

p2

Ψ1

Ψ1= 0 Ψ2

Ψ2= 0

Fig. 10.2.1  Pure normal modes for C2A-asymmetric-diagonal potential (a) Slow x-mode (b) Fast y-mode
 By setting both the x-and-y-modes in motion at once we get a plot like the one shown below in Fig. 
10.2.2. In this mixed mode the two motions go about their business as though the companion oscillator was not 
even present. Note that the x vs. y plot of coordinates x1=ReΨ1 and x2=ReΨ2 shows the beginning of a 
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Lissajous pattern caused by the unequal frequencies of the Ψ1 and Ψ2 phasors, but the phasors themselves are 
each unfazed, so to speak, by the motion of their companion. The x vs. y trajectory curves due to the potential 
gradient whose direction varies continuously for points not following x or y axes.

 

x1

p1

x2

p2
slow&fast

Ψ1

Ψ2

Fig. 10.2.2  Mixed modes for C2A-asymmetric-diagonal potential
 This H-matrix Hamiltonian or K-matrix potential in Fig. 10.2.2 above has a most elementary example of 
symmetry, namely axial-reflection symmetry C2A or Cartesian mirror-plane symmetry. The potential ellipse is 
invariant to reflecting the y or x2-axis (x2→-x2). We define an x-plane-reflection operator σΑ accordingly to 
reflect the y-base ket |2〉 but leave the x-base ket |1〉 alone.
      σΑ |1〉 =  |1〉   ,     σΑ |2〉 =  -|2〉     (10.2.2a)
Operator σΑ and unit operator 1 make the following C2A group multiplication table and representation. 

 

   

C2 1 σ A

1 1 σ A

σ A σ A 1

    
1 1 1 1 1 2

2 1 1 2 1 2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= 1 0

0 1
⎛

⎝⎜
⎞

⎠⎟
 ,    

1 σ A 1 1 σ A 2

2 σ A 1 2 σ A 2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= 1 0

0 −1
⎛

⎝⎜
⎞

⎠⎟
    (10.2.2b)

And, as required of symmetry g-operators (H=gHg† or gH = Hg), σΑ must commute with H and K.  

   
   
σ AH = Hσ A , or : 

1 0
0 −1

⎛

⎝⎜
⎞

⎠⎟
A 0
0 D

⎛

⎝⎜
⎞

⎠⎟
= A 0

0 D
⎛

⎝⎜
⎞

⎠⎟
1 0
0 −1

⎛

⎝⎜
⎞

⎠⎟
      (10.2.2c)

So, also, must the negative -σΑ operator which is a y-plane-reflection operator σ−Α defined as follows to reflect 
the x-base ket |1〉 but leave the y-base ket |2〉 alone.
      -σΑ |1〉 =  -|1〉   ,     -σΑ |2〉 =  |2〉     (10.2.2d)
Operator -σΑ and the unit operator 1 make a similar C2A group multiplication table and representation. 

  

   

C2 1 −σ A

1 1 −σ A

−σ A −σ A 1

        
1 − σ A 1 1 − σ A 2

2 − σ A 1 2 − σ A 2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= −1 0

0 1
⎛

⎝⎜
⎞

⎠⎟
      (10.2.2e)
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Furthermore, the product of the two reflection operators is a symmetry, too, since if two operators commute 
with H then so do their group products. The product (-σΑ)(σΑ) is a 180° rotation matrix R.

   
    
−σ Aσ A = 1 0

0 −1
⎛

⎝⎜
⎞

⎠⎟
−1 0
0 1

⎛

⎝⎜
⎞

⎠⎟
= −1 0

0 −1
⎛

⎝⎜
⎞

⎠⎟
= R 180( )       (10.2.2f)

Together, all four operators {1,σΑ,-σΑ,R} form a famous group called the four-group DA2 or CA2v with the 
group multiplication table shown below. It is like the group D2 in (8.3.5) and will be used later.

    

   

C2v 1 σ A −σ A R

1 1 σ A −σ A R

σ A σ A 1 R −σ A

−σ A −σ A R 1 σ A

R R −σ A σ A 1

    (10.2.2g)

Here,  σΑ and 1 are sufficient to describe the H-matrix which, as in Sec. 9.3 (Recall especially (9.3.5).), is a 
linear combination of its own symmetry operators. This is the A-case of expansion (10.1.7).

  
   

A 0
0 D

⎛

⎝⎜
⎞

⎠⎟
= A+ D

2
1 0
0 1

⎛

⎝⎜
⎞

⎠⎟
+ A− D

2
1 0
0 −1

⎛

⎝⎜
⎞

⎠⎟
, or : H = A+ D

2
1+ A− D

2
σ A  (10.2.2h)

(b) Bilateral or C2B symmetry
 The next case-B involves identical coupled oscillators such are shown in Fig. 10.2.3 below. These have a 
symmetry called bilateral or C2B symmetry. We should be very familiar with this symmetry since it is the only 
one that our human bodies approximate. A diagonal-reflection operator σΒ is defined which simply reflects left 
and right sides of Fig. 10.2.3a-b or trades the x or x1-axis with the y or x2-axis. 
 In terms of base kets we define such a reflection as follows.
      σΒ |1〉 =  |2〉   ,     σΒ |2〉 =  |1〉     (10.2.3a)
Operator σΒ and the unit operator 1 make a C2B group multiplication table and representation. 

 

   

C2 1 σΒ

1 1 σΒ

σΒ σΒ 1

    
1 1 1 1 1 2

2 1 1 2 1 2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= 1 0

0 1
⎛

⎝⎜
⎞

⎠⎟
 ,    

1 σΒ 1 1 σΒ 2

2 σΒ 1 2 σΒ 2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= 0 1

1 0
⎛

⎝⎜
⎞

⎠⎟
 (10.2.3b)

The Hamiltonian matrix H in (10.1.1b) must be invariant to σΒ operator if H is to have C2B symmetry.
      H = σΒ H σΒ† =  σΒ H σΒ     (10.2.4a)
Stated another way: H must commute with σΒ . H σΒ† =  σΒ H

  

1 H 1 1 H 2

2 H 1 2 H 2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

0 1
1 0

⎛

⎝⎜
⎞

⎠⎟
= 0 1

1 0
⎛

⎝⎜
⎞

⎠⎟
1 H 1 1 H 2

2 H 1 2 H 2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

or 
  

 
1 H 2 1 H 1

2 H 2 2 H 1

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

2 H 1 2 H 2

1 H 1 1 H 2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

The last result demands equality of the following H-matrix component pairs.
     〈1| H |1〉 = 〈2| H |2〉    (10.2.4b),         〈1| H |2〉 = 〈2| H |1〉      (10.2.4c)
This reduces the number of free parameters in the H-matrix (10.1.1) and A-matrix components (10.1.5b-c).
     A = D  ,      B - iC = B + iC      (10.2.4b)
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1 H 1 1 H 2

2 H 1 2 H 2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= A B

B A
⎛

⎝⎜
⎞

⎠⎟
   or: 

   

1 K 1 1 K 2

2 K 1 2 K 2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= A2 + B2 2AB

2AB A2 + B2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

  (10.2.4c)

The complex parameter C must be zero to have C2B symmetry. (We also needed C=0 to get (10.1.5a) but the 
extra symmetry A=D was not required there. Now we demand A=D , as well.)

x1k k k
x2

12

m m

 

x  = 01
x 

 =
 0

2

m

θ1
θ2

κ




m
m

(b) (c)

 Fig. 10.2.3 Classical analogs for C2-symmetric U(2) quantum system.

C2B projectors and eigenstates: Normal modes

 The C2B projectors follow from the minimal equation for C2B operator σΒ that is simply
    σΒ2 = 1  , or  σΒ2 - 1 = 0 = (σΒ - 1). (σΒ + 1)  
We put the roots {ε+=1, ε_=-1} in the general projection formula (3.1.15a) which is repeated below.

    Pk =

  

j≠k
∏ M − ε j1( )
j≠k
∏ εk − ε j( )  ,     (3.1.15a)repeated

With M=σΒ this gives two normalized symmetric (+) and anti-symmetric (-) projectors 

     P(+) = (1 + σΒ)/2 ,   P(-) = (1 - σΒ)/2 ,     (10.2.5)
giving two normalized eigenstates of σΒ and the C2B-symmetric H and K operators in (10.2.4c) 

    |+〉 = P(+) |1〉 √2 = (|1〉 + |2〉)/√2 ,     |−〉 = P(-) |1〉 √2 = (|1〉 − |2〉)/√2 ,   (10.2.6a) 
This yields a σΒ- or H-diagonalizing transformation (d-tran).
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1 + 1 −

2 + 2 −

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= 1 / 2 1 / 2

1 / 2 −1 / 2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

 .   (10.2.6b)

This C2B-d-tran is actually a rare example of a d-tran matrix that is Hermitian (T†=T) as well as unitary 
(T†=T-1). More about this later. The columns are eigenvectors of any matrix that commutes with C2B-operator 
σΒ. This includes the H-matrix (10.2.4c) that is diagonalized as follows.

  
  

+ 1 + 2

− 1 − 2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

A B
B A

⎛

⎝⎜
⎞

⎠⎟
1 + 1 −

2 + 2 −

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= A+ B 0

0 A− B
⎛

⎝⎜
⎞

⎠⎟
   (10.2.6c)

The H eigenvalues are
       〈+|H|+〉 = A+B,           〈−|H|−〉 = A-B.     (10.2.7a)
The K eigenvalues are
    〈+| K |+〉 = A2+2AB+A2 = (A+B)2,       〈−| K |−〉 = A2-2AB+A2 = (A-B)2.    (10.2.7b)
 The physical meaning of eigenvalues is different for quantum mechanics than for the classical analogies. 
For quantum mechanics, H eigenvalues are eigenstate energies or  times eigenfrequencies.

     ε+ = ω+ = A+B,            ε− = ω− =A-B.     (10.2.8)
Classical K-eigenvalues are squares of normal mode frequencies. (Classical energy is mω2/2.)
    ω2(+)mode = (A+B)2 = k/m,        ω2(-)mode =(A-B)2 = (k+2k12)/m.   (10.2.9)

 Understanding C2B eigenstates: Tunneling splitting

 C2B eigenstates (10.2.6a) point at ±45° angle to the base states |1〉 and |2〉 as shown in Fig. 10.1.2c and in 
Fig. 10.2.4 below. Why exactly ±45° ? It's because the ±45° directions are the ±σΒ mirror planes halfway 
between coordinate axes |1〉 and |2〉 that are C2B-equivalent or "indistinguishable." 
 The +45° mode |+〉 corresponds to two masses moving perfectly in phase with each other as in Fig. 
10.2.4a. It is the (0)2 "wave" in the C2 table in Fig. 9.4.1a. The -45° mode |−〉 corresponds to two masses 
moving π out of phase with each other as in Fig. 10.2.4b, or a (1)2 wave in the C2 table.
 The -45° mode has a higher frequency than the +45° mode since it stretches the connecting k12 spring. 
The +45° mode would behave the same if the k12 spring was gone. The |+〉-mode direction is a major or "slow" 
axes of equipotential ellipses in Fig. 10.1.2c or Fig. 10.2.4; the |−〉-mode use minor or "fast" axes. The steepest 
slope is found along the -45° "fast" mode line, and the gentlest slopes are found along the +45° "slow" mode 
line. Along these eigen-axes the motion is simple harmonic oscillation just as it was along x-or y-axes for the 
uncoupled oscillators in Fig. 10.2.1.
 The preceding pictures apply as well to polarization oscillation inside optical analyzers which have 
"slow" or "fast" optical axes like the X or Y charge axes in the model given in Chapter 1 by Fig. 1.2.2 or the 
two-spring axes of the single-mass oscillator in Fig. 10.2.1c. Photons initially polarized along a "slow" or "fast" 
eigenvector direction pass unchanged except for overall phase that undergoes "slow" or "fast" harmonic 
oscillation, respectively. However, other polarizations are combinations of X and Y, and they undergo multi-
harmonic "beating" that changes polarization as will be shown next.
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x1

x2

x1(t)

x2(t)

x1

x2

x1(t)

x2(t)

(a)
Symmetric
(0)2 or (+)

mode

(b)
Anti-symmetric

(1)2 or (-)
mode

Ψ1

Ψ1

Ψ2

Ψ2

      Fig. 10.2.4 Classical analog modes for C2B-symmetric U(2) quantum system. (m=1, k=13, k12=7)

 Understanding C2B dynamics: Beats and transition frequency

 We noted that quantum eigenstates are motionless except for their unobservable phase oscillation. Of 
course, phase oscillation is the motion for the classical analog normal modes in Fig. 10.2.4; we can see that 
easily. But, note that the phasor clocks Ψ1 or Ψ2 do not change in size or norm. (Ψm*Ψm =const.) The norm is 
all we can see in a quantum system. Pure energy states are motionless blobs of probability.
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 However, mixed energy states or combinations of eigenstates will oscillate at a rate equal to the beat 
frequency or transition frequency that is the difference between their eigenfrequencies. (Recall Sec. 4.4.a and 
Fig. 9.4.1b.) In the example of Fig. 10.2.4 the eigenfrequecies are (from (10.2.9))
       ω(+)mode = (A+B) = √k = √13 =3.6     ω(-)mode =(A-B) = √(k+2k12)= √27 = 5.2  (10.2.10)
and the transition frequency is the beat frequency | 2B |  (Actually, B is negative here.)
  ω(+ -)transition = ωbeat = | ω(+)mode - ω(-)mode | = | 2B | = 5.2 - 3.6 = 1.6  (10.2.11a)
which has the beat period shown in Fig. 10.2.5.
    τbeat = 2π / ωbeat = 3.9 s      (10.2.11b)

 

x1

x2

x1(t)

x2(t)

 Mixed
(|+〉 +  |−〉)

mode

Beat
period

Ψ1

Ψ2

     Fig. 10.2.5 Analog mixed modes for C2B-symmetric U(2) quantum system. (m=1, k=13, k12=7)

 The mixed state in Fig. 10.2.5 was made by initially giving all the amplitude to the first coordinate 
(x1=Ψ1(0) =1) but none to the second (Ψ2(0) =0). This equivalent to having initial normal coordinates of
    〈+|Ψ(0)〉 = 1/√2 ,     〈−|Ψ(0)〉 = 1/√2 .       (10.2.12)
The time behavior of the state is then predetermined by the normal modes each oscillating at their 
eigenfrequencies according to a general diagonal evolution equation,  a 2-D case of (9.2.1). 

   

  

+ Ψ t( )
− Ψ t( )

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟
= e−iω+ t 0

0 e−iω− t

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

+ Ψ 0( )
− Ψ 0( )

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

    (10.2.13a)

   
  
Ψ t( ) = e−iω+ t + + Ψ 0( ) + e−iω− t − − Ψ 0( )    (10.2.13b)

This has the following coordinate phasor representation (Replacing abstract kets with representations.)
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                      Ψ t( )  = e−iω+ t      +   + Ψ 0( ) + e−iω− t      −  − Ψ 0( )
Ψ1 t( )
Ψ2 t( )

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

1 Ψ t( )
2 Ψ t( )

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟
= e−iω+ t 1 +

2 +

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

+ Ψ 0( ) + e−iω− t 1 −

2 −

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

− Ψ 0( )

                                 = e−iω+ t 1 / 2
1 / 2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

  1 / 2   + e−iω− t 1 / 2
−1 / 2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

  1 / 2

 (10.2.14a)

This reduces to the following. (Recall the use of the expo-sine identity in (4.4.3c).)

 

  

Ψ1 t( )
Ψ2 t( )

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= 1

2
e−iω+ t + e−iω− t

e−iω+ t − e−iω− t

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= e−i(ω+ +ω− )t / 2

2
e−i(ω+ −ω− )t / 2 + ei(ω+ −ω− )t / 2

e−i(ω+ −ω− )t / 2 − ei(ω+ −ω− )t / 2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

                 = e−i(ω+ +ω− )t / 2 cos (ω+ −ω− )t / 2⎡⎣ ⎤⎦
i sin (ω+ −ω− )t / 2⎡⎣ ⎤⎦

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

 (10.2.14b)

According to this, the bottom Ψ2(t) phasor amplitude grows sinusoidally from zero to its maximum with a rate 
that is half the beat frequency.
   ωhalf-beat = ωbeat /2 = | ω(+)mode - ω(-)mode |/2    (10.2.15)
As seen in Fig. 10.2.5, the bottom Ψ2(t) phasor goes around 90° behind the top Ψ1(t) phasor. That is the i factor 
in the Ψ2(t) part of (10.2.14b). The overall phase rotates at an average rate   
   ωaverage = ( ω(+)mode + ω(-)mode  )/2.      (10.2.16)
Then, just as the bottom Ψ2(t) phasor passes its maximum, it moves 90° ahead of the top Ψ1(t) phasor that has 
just gone through zero and starts to grow. The bottom Ψ2(t) phasor returns to zero amplitude every beat period 
τbeat given by (10.2.11b) just as the top Ψ1(t) phasor reaches its maximum amplitude. 
 The relative phase between the two phasors is important classically as well as in the quantum analog. 
Whichever phasor is ahead is the one feeding energy to the other that grows while its feeder shrinks. One should 
recall an important resonance theorem: (Prove this if it's new to you. See exercises.)
     Power transfer between two isochronous linearly connected oscillators is proportional to the 
 product of their amplitudes and the sine of their relative phase. 
A relative phase of 90° gives the best possible work rate. This type of resonance transfer is important in 
quantum mechanics. A relative phase of 0° or 180° gives no transfer, as in a classical normal mode or a quantum 
stationary state; having no net energy gain or loss by individual parts makes them stationary.
 Another way to visualize beats is by analogy to optical polarization-wave-plates introduced in Fig. 
1.3.6b. One quarter of a beat corresponds to a quarter wave plate. The effect is to convert X-polarization into 
right circular polarization as shown below in Fig. 10.2.6a. A half-beat converts X=x1 to Y=x2 as in Fig. 10.2.6b 
and corresponds to a half-wave plate as shown below in Fig. 10.2.6b. For this example, the coupling constant 
2B = √k -√(k+2k12) is reduced from -1.6 in (10.2.11a) to -0.26 to slow the beat from 3 periods to about 18. Real 
wave-plate beats take millions of periods so 18 is still way too fast.
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(a)
Quarter Wave

( Right-Circular
Polarization)

Ψ1

Ψ2

  

(b)
Half Wave

( Y Polarization)

Beat
period

Ψ1∼0

Ψ2

 Fig. 10.2.6 Polarization evolution from X to (a) Circular, and (b) Y. (m=1, k=19.1, k12=1.17)
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(c) Circular or C2C symmetry 
 Now we consider the very different case in which all parameters are zero except C. Then a continuous 
circular rotational C∞  symmetry or R(2) symmetry is present. The reflection symmetry associated with the C-
parameter is called C2C or R(2)=C∞. C2C-symmetry states are characterized by circularity and chirality or 
"handedness." Now the circular motion in Fig. 10.2.6a is an eigenstate.

 C∞-symmetry means a two-by-two Hermitian Hamiltonian 
  

H† = H( )  matrix operator

   
   

H =
1 H 1 1 H 2

2 H 1 2 H 2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= A B − iC

B + iC D
⎛

⎝⎜
⎞

⎠⎟
.     (10.1.1b)repeated

commutes with any rotation operator R(φ) defined as follows. (Recall (2.2.1) in Chapter 2.)
   R(φ) |1〉 = cos φ |1〉 + sin φ |2〉   ,     R(φ) |2〉 = -sin φ |1〉 + cos φ |2〉  (10.2.18a)
Rotation R(φ) has the following R(2)=C∞  group multiplication rule and C∞  representation. 

 
  

 R φ( ) ⋅R φ '( )=R φ + φ '( )  ,    
1 R 1 1 R 2

2 R 1 2 R 2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

cosφ − sinφ
sinφ cosφ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

   (10.2.18b)

 Since matrix H must commute with R(φ) for all φ, it must also commute with the derivative of R(φ) at 
zero rotation (φ=0 and R(0) = 1 ). The derivative of a transformation operator near 1 is called the generator G 
of the operator. The generator of the rotation R(φ) is as follows.

 

   

 G=
∂
∂φ

R φ( ) φ=0 =
− sinφ − cosφ
cosφ − sinφ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
φ=0

= 0 −1
1 0

⎛

⎝⎜
⎞

⎠⎟
,  or:  R φ( ) = R 0( )eφG = eφG  (10.2.18c)

The set R(2)=C∞ of all R(φ) operators is an example of continuous or Lie group symmetry. It is very much like 
the "empty time" symmetry made of all time evolution operators U(t)=e-iH t. The generator of the evolution 
operators U(t) is the Hamiltonian H itself.
 Multiplying R(φ) generator G by i and gives a third C2C-Hamilton-Pauli reflection operator σC .

   
   
 σC= 0 −i

i 0
⎛

⎝⎜
⎞

⎠⎟
=iG,  where:  σC

†σC = σC
2 = 1     (10.2.18d)

The i makes σC Hermitian-unitary like σA and σB, and gives it a (-1) determinant.(det|σC|=-1) So σC has 
similar properties to a reflection operator, but it sure doesn’t look like one!. 
 Reflection operator σC for circular C2C-symmetry is imaginary unlike σA and σB that are real. However, 
the C2C rotation matrices R(φ) are all real, but we will find imaginary rotations associated with C2A-symmetry 
or C2B-symmetry. Imaginary rotations are Lorentz transformations! More on this later.
 The physical idea is that C2A or C2B-symmetries are associated with "static" or standing wave states that 
have a real (±)-reflection symmetry about their nodes or anti-nodes. For the classical analogies the nodes 
corresponded to normal modes or polarization planes. The nodes, modes, or planes sit in different places 
depending on whether it is C2A, C2AB, or C2B-symmetry, but they must sit still.
 In contrast, states having C2C-symmetry are moving waves that have no fixed nodes or anti-nodes. 
Instead, they are characterized by a real (±)-direction of motion and a chirality of left or right handed motion. 
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This is why C2C-rotation operators are real while it is the reflection operators that are real for C2A, C2AB, or 
C2B-symmetries. The former has a constant momentum, the latter a constant position. 
 Commutation with reflection σC or generator G yields C2C-symmetry restrictions on H-matrices.

   

  

                        H ⋅  G        =        G ⋅H

1 H 1 1 H 2

2 H 1 2 H 2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

0 −1
1 0

⎛

⎝⎜
⎞

⎠⎟
= 0 −1

1 0

⎛

⎝⎜
⎞

⎠⎟
1 H 1 1 H 2

2 H 1 2 H 2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

 

           
1 H 2 − 1 H 1

2 H 2 − 2 H 1

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

− 2 H 1 − 2 H 2

1 H 1 1 H 2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

  (10.2.19a)

Thus, R(2)=C∞ or C2C-symmetry demands the following for H matrix components.
       〈1| H |1〉 = 〈2| H |2〉   ,       〈1| H |2〉 = -〈2| H |1〉       (10.2.19b)
For the H example (10.1.1b) we have
      A = D  ,      B - iC = -(B + iC )    (10.2.19c)

so only two free parameters remain. 
   

1 H 1 1 H 2

2 H 1 2 H 2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= A −iC

iC A
⎛

⎝⎜
⎞

⎠⎟
    (10.2.19d)

This H matrix is easy to diagonalize, but let's use symmetry projection just to get some more practice.

 R(2)=C∞ projectors and C2C eigenstates

 The R(2)=C∞ projectors follow from the secular equation for R(2)=C∞ operator R(φ) which is 
     ε2 - (trace R(φ)) ε + (det R(φ)) = 0 =  ε2 - (2cos φ) ε + 1      (10.2.20)
The ±eigenvalues are labeled L and R for "Left" and "Right" for reasons that we'll see below.

     εL = cosφ + cosφ2 −1 = cosφ + isinφ = eiφ     (10.2.21a)

     εR = cosφ − cosφ2 −1 = cosφ − i sinφ = e−iφ    (10.2.21b)

Substituting the roots {εL=eiφ, εR=e-iφ} of M=R(φ) in the projection formula ((3.1.15) repeated below)

    Pk =

  

j≠k
∏ M − ε j1( )
j≠k
∏ εk − ε j( )  ,     (3.1.15a)repeated

gives two normalized projectors 

 

   

P( L) =

cosφ − e−iφ − sinφ

sinφ cosφ − e−iφ

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

eiφ − e−iφ
 ,      P( R) =

cosφ − eiφ − sinφ

sinφ cosφ − eiφ

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

e−iφ − eiφ

       =

i sinφ − sinφ
sinφ i sinφ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

2i sinφ
=

1 i
−i 1

⎛

⎝⎜
⎞

⎠⎟

2
 ,             =

i sinφ − sinφ
sinφ i sinφ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

−2i sinφ
=

1 −i
i 1

⎛

⎝⎜
⎞

⎠⎟

2

 ,  (10.2.22)

which in turn, give two normalized eigenstates of the R(2) -symmetric H operator in (10.2.19d) 

    |L〉 = P(L) |1〉 √2 = (|1〉 −i |2〉)/√2 ,     |R〉 = P(R) |1〉 √2 = (|1〉 +i |2〉)/√2 ,   (10.2.23a) 
and a diagonalizing transformation
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1 L 1 R

2 L 2 R

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= 1 / 2 1 / 2

−i / 2 i / 2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

 .   (10.2.23b)

The columns are eigenvectors of any matrix that commutes with R(2)=C∞ operator R(φ). This includes the H-
matrix (10.2.19d) that is diagonalized as follows.

  
  

L 1 L 2

R 1 R 2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

A −iC
iC A

⎛

⎝⎜
⎞

⎠⎟
1 L 1 R

2 L 2 R

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= A− C 0

0 A+ C
⎛

⎝⎜
⎞

⎠⎟
  (10.2.23c)

The H eigenvalues are (for =1) eigenfrequencies that determine the time evolution dynamics.
     εL = 〈L|H|L〉 = A-C = ωL  ,       εR = 〈R|H|R〉 = A+C= ωR  , (10.2.24)

Understanding C2C eigenstates: Zeeman-like splitting and coriolis or cyclotron motion

  The eigenstate evolution is given below and represented in the original xy or {|1〉, |2〉} basis.

  
  

L(t) = L e−iωLt =
1 L

2 L

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

e−iωLt ,      R(t) = R e−iωRt =
1 R

2 R

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

e−iωRt       (10.2.25)

To help visualize the R(2) base states {|L〉, |R〉} we plot their real parts in the center parts of Fig. 10.2.7.

  
  

Re
1 L(t)

2 L(t)

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= Re e−iωLt / √ 2

−ie−iωRt / √ 2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

=
cosω Lt

− sinω Lt

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

 ,  Re
1 R(t)

2 R(t)

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= Re e−iωRt / √ 2

ie−iωRt / √ 2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

=
cosωRt

sinωRt

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

       

                     (10.2.26)

 

ω t -sin ω t

cos ω t
(a)

Left Circular
(L)  mode

〈1|L〉

〈2|L〉

〈1|L〉      1/√2
〈2|L〉   -i/√2

Fig. 10.2.7 R(2)=C∞ symmetry eigenstates  (a) Left circular
 From the Figures 10.2.7 a and b it seen how |L〉 and |R〉 stand for left and right handed circular 
polarization states. Previously, we have seen how to briefly achieve right circular polarization using a 1/4-beat 
of mixed C2-mode or a quarter wave plate in Fig. 10.2.6a. Here it's a pure R(2) mode. Circular orbits are also 
known as cyclotron modes. They are the orbits that a positively charged particle in an isotropic 2-D oscillator 
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potential could have in the presence of a magnetic field normal to the orbit plane. They are also called Coriolis 
modes or Foucault orbits if the oscillator is on a rotating table. 

 

ω t sin ω t

cos ω t
(b)

Right Circular
(R)  mode

〈1|R〉

〈2|R〉

〈1|R〉      1/√2
〈2|R〉     i/√2

 Fig. 10.2.7 R(2)=C∞ symmetry eigenstates  (a) Left circular  (b) Right circular polarization
 With no magnetic field or rotation the particle orbits either way with the same orbit frequency as shown 
on the left-hand side of Fig. 10.2.8. It is only necessary that the centrifugal force mω2r balance the attractive 
"spring" force -kr of the oscillator. But, a magnetic field B or rotation Ω will either help to attract or else repel 
the particle depending on the particles direction of orbit. For left handed |L〉-orbits the magnetic F=qvxB force 
(or Coriolis force F=mvxΩ) teams up with the attractive F = -kr of the oscillator. So, the centrifugal force must 
increase to balance these two and keep the particle at the same radius. That means faster orbit frequency ω as 
shown in the upper right hand side of Fig. 10.2.8. For right hand |R〉-rotation the magnetic qvxB force or 
Coriolis mvxΩ teams up with the centrifugal force mω2r against the attractive -kr, so mω2r must be reduced to 
maintain a given orbit radius, hence reduced orbit frequency ω.
 This mechanics is also analogous to our prevailing weather phenomena. The Earth's counter clockwise 
rotation tends to create counterclockwise cyclones in the Northern hemisphere and the opposite ω in the 
Southern latitudes. Anti-cyclones are not impossible, just energetically disfavored.
 The classical analogs for the rotational R(2)-symmetric (Zeeman-like) quantum splitting are quite 
different from the corresponding analogs for bilateral AB-symmetric (Stark-like) splitting described later. The 
frequency equation resulting from cyclotron orbits in Fig. 10.2.8 is a force balance equation.

  
  
Fcentrifugal + FB− field + Foscillator = 0 = mrω 2 + qBrω − kr    (10.2.27a)

It has quadratic solutions that are plotted in Fig. 10.2.9.

 
  
ω =

−qB ± qB( )2 + 4mk

2m
= −qB

2m
± qB

2m
⎛
⎝⎜

⎞
⎠⎟

2

+ k
m

=
ωC
2

±
ωC
2

⎛

⎝⎜
⎞

⎠⎟

2

+ ωO( )2  (10.2.27b)

The vacuum cyclotron frequency ωC and zero-B-field harmonic oscillator frequency ωO are labeled.
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ωC = −qB

m
 ,                  ωO = k

m
        (10.2.27c)

--kk rr

--kk rr

--kk rr

--kk rr FFBB ffiieelldd ==
qq vvxxBB

Fcentrif.ugal =
mω2 r

Fcentrif.ugalFFBB ffiieelldd

Fcentrif.ugal

Fcentrif.ugal

ωr=vv

--kk rr

--kk rr
+

++

+

BB

BB
BB==00

BB==00
ωr=vv

ωr=vv

ωr=vv

HHiigghheerr OOrrbbiitt
SSppeeeedd

LLoowweerr OOrrbbiitt
SSppeeeedd

SSaammee OOrrbbiitt
SSppeeeeddss

Fig. 10.2.8 Cyclotron or Coriolis orbit degeneracy lifted by B-field or rotation.

Note: the cyclotron frequency ωC is minus the field parameter qB while ωO is a positive (+)-root of 
parameter k/m. While ωO is positive, orbit frequency or angular velocity ω or ωC can each be positive or 
negative. In the vacuum case (k=0), positive qB means negative ω=ωC and clockwise or left L orbits only, as 
shown on the extreme upper right hand side of Fig. 10.2.9. Negative qB means positive ω=ωC and counter 
clockwise or R orbits only, as shown on the extreme upper left hand side of Fig. 10.2.9. The negative (-)-root in 
(10.2.10b) gives a zero frequency mode, that is, no motion at all, as indicated by dashed circles in Fig. 10.2.9. 
(A B-field does not affect effect a stationary charge.)
 The plot in Fig. 10.2.9 is one of orbital speed |ω| which is quantum phasor velocity or energy |ω| rather 
than classical orbital velocity ω . An orbital velocity ω-plot would flip the ascending curve about the x-axis so it 
was below the axis and descending parallel to the other descending one. Classical kinetic energy is simply 
1/2mr2|ω|2 and resembles Fig. 10.2.9, too.

HarterSoft –LearnIt Unit 3 Fourier Analysis and Symmetry   10-



22

    

| Frequency |

qB>0
k=0

qB=0
k=1

qB<0
k=0

Fig. 10.2.9 Cyclotron orbital speed for varying B-field (qB=x) and oscillator spring constant k=|1-x|.

 Consider the limiting cases. For weak oscillator potential (ωO<<|ωC| ) or strong qB-field, the 
approximate frequencies shift quadratically in ωO. 

  

   

ω = −qB
2m

± qB
2m

⎛
⎝⎜

⎞
⎠⎟

2

+ k
m

=
ωC
2

±
ωC
2

⎛

⎝⎜
⎞

⎠⎟

2

+ ωO( )2 ≈
ωC
2

±
ωC
2

+
ωO( )2
ωC


⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
=

ωC +
ωO( )2
ωC

−
ωO( )2
ωC

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

             (10.2.28a)
For strong potential (ωO>>|ωC| ) or weak qB-field, the approximate frequencies split linearly in ωC .

  

   

ω = −qB
2m

± qB
2m

⎛
⎝⎜

⎞
⎠⎟

2

+ k
m

=
ωC
2

± ωO( )2 +
ωC
2

⎛

⎝⎜
⎞

⎠⎟

2

≈
ωC
2

± ωO +
ωC

2

8ωO


⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
=

ωO +
ωC
2

+
ωC

2

8ωO

−ωO +
ωC
2

−
ωC

2

8ωO

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

            (10.2.28b)
Compare this to phasor frequencies (10.2.24) that, unlike the orbital velocities, are positive. 
     ωL = A-C ≈ ( ωO - ωC /2 ) ,       ωR  = A+C ≈ ( ωO + ωC /2 ) . (10.2.29)
This connects the ωC  to the off-diagonal C-parameter in (10.2.19d) and ωO to A, but only for weak qB.

 Understanding C2C dynamics: Faraday rotation
 The effect of mixing R and L modes in Fig. 10.2.7a-b is quite dramatic as shown in Fig. 10.2.10 where a 
50-50 mixture gives perfect beats as were seen in Fig. 10.2.6 when x-polarization evolved into elliptic then 
circular then y-polarization. However, in Fig. 10.2.10 there is a rotation or precession of the plane of 
polarization directly from x to y. In the classical analogy this is a famous effect called Foucault precession 
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demonstrated in many science museums which trace the daily motion of a great pendulum due to Earth rotation. 
In optics, this is known as Faraday rotation of the plane of polarization.
 A 50-50 mixture of R and L modes with the same frequency would just be plain old (or plane old) x-
polarization. However, if, as in Fig. 10.2.10, R is a little faster in its counter-clockwise orbit than L is in going 
the other way then they will meet further and further to the right each period. The result is a nearly planar 
polarization ellipse that is slowly rotating to the right as shown in Fig. 10.2.10 where a half beat rotates x-into-
y-polarization. Note that a whole beat will only be half a rotation, that is, x-polarization will only been rotated 
into minus-x-polarization. Later, we will see this is related to the spin-1/2 half-angle conundrum we 
encountered in Chapter 1. There in (1.2.12) a "whole" rotation by β=2π of a spin vector only rotates spin-up ↑  

by β/2=π and into minus spin-up (- ↑ ). Same math, different  physics!

 

Beat
period

 Mixed
|R〉 and  |L〉

modes
(half-beat)

 Fig. 10.2.10 Faraday rotation from X to Y. (A=4.1=D, C=0.1, B=0)

 The picture changes radically if right handed rotation is much faster than the left handed orbit which 
would be zero in a purely negative qB-field cyclotron indicated on the left of Fig. 10.2.9. This sort of motion is 
shown in Fig. 10.2.11 where left-handed orbit is nearly zero and a cyclotron orbit circle is seen precessing 
around a circle of nearly the same radius.

HarterSoft –LearnIt Unit 3 Fourier Analysis and Symmetry   10-



24

 

 Mixed
|R〉 and  |L〉

modes
(ωL<<ωR)

 Fig. 10.2.11 Hyper-Faraday rotation. (A=4.1=D, C=4.2, B=0)

  The analogy between Foucault precession and magnetic cyclotron orbiting, and Faraday rotation are 
profound and deep ones. The Foucault precession is due to an underlying rotation such as that of our Earth. The 
cyclotron orbit is due to an applied magnetic field as is, in some cases, the Faraday effect. The remarkable 
similarities of magnetism and rotation of space might lead one to speculate that magnetism is, in some sense, a 
rotation of space. Perhaps, we will have more to say about this later.
 The magnetic or Zeeman like splitting seen in Fig. 10.2.9 starts out as a first order effect, that is, linear 
in the field, and then quadratic or second order effects show up at higher fields. The B-field splitting (C-type 
symmetry) is sketched below in Fig. 10.2.12b and mirrors behavior seen in Fig. 10.2.9.

 

Stark (Electric) Splitting
(2nd Order then 1st order)

Zeeman (Magnetic) Splitting
(1st Order then 2nd Order)

 Fig. 10.2.12 Two archetypical splittings (a) Stark-like (1st order) (b) Zeeman-like (2nd order)

The next sections treat electric or Stark-like splitting which is quite the opposite. As sketched in Fig. 
10.2.12a below, the electric or Stark-like splitting starts out as a second order effect and then becomes linear at 
higher E-fields. The symmetry differences between electric dipole or Stark effects (A-type symmetry) on one 
hand, and magnetic dipole or Zeeman effects (C-type symmetry) on the other, are important ones and are 
connected with quite different physics. Also, quadratic or 2nd order variation of energy eigenvalues is a first sign 
that eigenstates are changing. Now we study some examples.
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10.3 Mixed A and B Symmetry
 So far our study of symmetry analysis has concentrated on its “easy” side. We found “easy” eigenvalue 
formulas that varied linearly with Hamiltonian parameters H, S, T, or A, B, C, and D , but the “easy” eigenstates 
remained fixed. This “easy” situation requires all the relevant symmetry operators commute with each other as 
do r, r2, … in Chapter 8 and 9. This is about to change because there is no such commutation between operators 
σA , σB , or σC. that make up a general U(2) Hamiltonian, 

  
   
 H = A+ D

2
σ1 + BσB  +CσC  + A− D

2
σ A     (10.3.1)

The following non-commutation relations mean no two of σA , σB , and σC can be diagonalized together.
 σAσB =-σBσA =σC ,   σBσC =-σCσB =σA , σCσA =-σAσC =σB ,   (10.3.2)

So eigenvalues may vary non-linearly with parameters A, B, C, and D . Most important: So do the eigenstates. 
The study of mixed symmetries is not as “easy” but it’s quite interesting!

 (a) Asymmetric bilateral C2AB symmetry: Stark-like-splitting
 Consider the 2-state Hamiltonian with zero complex constant C=0 but nonzero A, B, and D.

   
   
H =                        A B

B D

⎛

⎝⎜
⎞

⎠⎟
                         =

H − pE −S
−S H + pE

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

 (10.3.3a)

      H = ( A+ D) / 2 σ1 + BσB + ( A− D) / 2σ A = Hσ1 − 2S  σB − pE  σ A  (10.3.3a)

The presence of unequal diagonal energies (A>D) spoils bilateral C2B symmetry even if the complex constant 
vanishes (C=0). It makes the C2B projectors less useful. It appears one has to diagonalize the H-matrix brute 
force. (Later, we will see how to elegantly "finesse" this C2AB case, too.)
 Above it is imagined that a potential energy field pE=(A-D)/2 is turned on to make the |1〉 state lower in 
energy (or higher if pE is negative) than the |2〉 state. The coupling constant B has intentionally been set 
negative (B=-S) to match sign of the constant K12 in the coupled pendulum analogy (10.1.5a-c). The S-constant 
is a "sneak rate" or tunneling amplitude S like the S introduced in Fig. 9.3.5. (That was negative, as well, in 
(9.3.5g).) A positive field (pE>0) corresponds to making the number-1 pendulum lower, slower, and longer than 
its number-2 neighbor as shown in Fig. 10.1.1b.
 Now for the diagonalization. First the secular equation for H in (10.3.3a) is (recalling (3.1.5))
    ε2 - (trace H) ε + (det H) = 0 =  ε2 - (2H) ε + (H2-(pE)2-S2 ).    (10.3.4) 
The eigenvalues are hyperbolic conic sections plotted above a pE-S axes in Fig. 10.3.1a-b.

    
  
εhi = H + pE( )2 + S2       (10.3.5a)

    
  
εlo = H − pE( )2 + S2      (10.3.5b)

The high and low eigenvalues form two halves of an intersecting vertical cone in Fig. 10.3.1a. (Michael Berry 
calls the cone a diablo after a child's toy top. The intersection is called a diabolical point since it’s a devilish 
singularity, as we will see.) The corresponding eigenvector projectors are (using (3.1.15))
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Phi =

H − pE − εlo −S

−S H + pE − εlo

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

εhi − εlo
=

− pE + pE( )2 + S2 −S

−S pE + pE( )2 + S2

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

2 pE( )2 + S2
 (10.3.5c)

    

   

Plo =

H − pE − εhi −S

−S H + pE − εhi

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

εlo − εhi
=

pE + pE( )2 + S2 S

S − pE + pE( )2 + S2

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

2 pE( )2 + S2
 (10.3.5d)

 For constant S>0 and varying pE the two eigenvalues trace hyperbolic conic sections or a Wigner 
avoided level crossing as shown in Fig. 10.3.1. Crossing happens only at one "diabolical" point where tunneling 
and field both vanish (S=0=pE). In Fig. 10.3.1b, relative amplitudes for the "up-field" or |2〉=|y〉 versus "dn-
field" or |1〉=|x〉 states vary from 50-50 for pE=0 to 99up-1dn when pE field is up (pE=+1) or 1up-99dn for 
(pE=−1) for the "ground" states on the bottom hyperbola. Meanwhile, the "excited" states on the top curve go 
against the field. For smaller S, polarization shifts near the diabolical point become sharper, finally jumping 
from 100up-0dn to 0up-100dn right at pE=0.  We now see how this works.

 High field splitting: Strong C2A or weak C2B symmetry

 For large |pE| and small tunneling (|pE|>>S) the approximate eigenvalues are growing up or down 
linearly with the applied field energy pE as the energy eigenvalues approach the hyperbolic asymptotes.

   
   
εhi = H + pE( )2 + S2 ≈ H + pE + S2

2 pE
+     (10.3.6a)

   
   
εlo = H − pE( )2 + S2 ≈ H − pE − S2

2 pE
+ for: pE>>S( )  (10.3.6b)

 In this limit, the eigenvectors get their symmetry broken, too. With zero field (pE=0) the lowest 
eigenstate |+〉 is a perfect 50-50 combination of the "down-field" state |1〉 and the "up-field" state |2〉 as in 
(10.2.6a). With a large field, the lowest state becomes nearly 100%  "down-field" state |1〉 and negligible 
amplitude in the "up-field" direction of state |2〉, as seen in the following first column of (10.3.5d).

 

   

εlo =
1 εlo

2 εlo

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= 1

norm.
pE + pE( )2 + S2

S

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

                        ≈ 1

norm.
2 pE + S2 / 2 pE +

S

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
→ 1

0

⎛

⎝⎜
⎞

⎠⎟
= 1  for: pE>>S( )

 (10.3.7a)

Meanwhile, the highest eigenstate |−〉 , also once a (minus) 50-50 combination, behaves in a contrary fashion 
and "fights" its way against the field toward almost 100% "up-field" direction of state |2〉.
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εhi =
1 εhi

2 εhi

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= 1

norm.

−S

pE + pE( )2 + S2

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

                        ≈ 1

norm.

−S

2 pE + S2 / 2 pE +

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
→ 0

1

⎛

⎝⎜
⎞

⎠⎟
= 2  for: pE>>S( )

 (10.3.7b)

Fig. 
10.3.1 (a) Two state eigenvalue "diablo" surfaces and conical intersection and pendulum eigenstates.
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Fig. 10.3.1 (b) Wigner avoided level crossing. (Fixed tunneling S and variable pE field.)
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 The tendency for a  ground state system to acquiesce or "polarize" in the direction of the applied field is 
quite natural. (Don't you feel like just "giving in" sometimes?) Most systems that we "push" in our classical 
world are in their ground states and respond accordingly. However, an excited quantum state can be a very 
different beast and will display a "passive aggressive" behavior, to use an anthropomorphic analogy. (That's 
right...fight the #%*@ system no matter what it takes!) 
 The pendulum analogy helps to understand this behavior in terms of resonance, or the lack thereof. If we 
reduce symmetry by making pendulum-1 longer and slower than pendulum-2 as in Fig. 10.1.1b then we spoil 
the resonance between them, particularly if the coupling is weak ( |k12|<<|k2 - k1|). The response of faster 
pendulum-2 to the slower one drops off according to Lorentz's classical formula (Append. 1.B) 
  response of 2 due to 1~k12/(ω22-ω12)=k12/(k2 - k1) = -response of 1 due to 2. 
So the low-frequency mode is mostly the slow pendulum swinging. The fast pendulum swing is less by a factor 
(~S/2pE) in (10.3.7a). But, the high frequency mode is mostly the fast pendulum-2 swinging. The slow 
pendulum-1 response is down by about (-S/2pE) and π out of phase. (See (-) sign in (10.3.7b).)
 For a geometric picture of the effect of reduced symmetry see Fig. 10.1.2(a) and (ab). For lower S/|pE| 
the mode lines move away from mode axes |+〉 (low ω) or |−〉 (high ω) and toward the local axes |x〉=|1〉 (slow) 
or |y〉=|2〉 (fast) of individual pendulums. That is shown in Fig. 10.3.1b, too.

 Low field splitting: Strong C2B or weak C2A symmetry and A→B basis change

 For weak fields (|pE|<<S) the symmetry breaking and energy splitting is much less severe. The 
eigenvalue splitting is approximately quadratic or 2nd order in the field pE near the hyperbolic minima.

   
   
εhi = H + pE( )2 + S2 ≈ H + S +

pE( )2
2S

+     (10.3.8a)

   
   
εlo = H − pE( )2 + S2 ≈ H − S −

pE( )2
2S

+ for: S>>pE( )   (10.3.8b)

At first, as pE becomes non-zero, there is little change of eigenvalues or eigenvectors. Low pE favors B-
symmetry eigenvectors |+〉 and |−〉 being the basis. The d-tran (10.2.6c) does the A→B change of basis.
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 (10.3.9b)

Note that field energy pE and tunneling energy S switch places. Now (10.3.8) are perturbations of H±S values 
due to an off-diagonal component -pE. In A-bases, tunneling energy –S perturbs H±pE values.

 (b) Ammonia (NH3) maser
 If you imagine the ε vs. pE hyperbolas in Fig. 10.3.1 are effectively potential energy curves it is possible 
to understand how the first MASER (Microwave Amplification by Stimulated Excitation of Radiation) was 
made. To obtain a population of predominately excited ammonia (NH3) molecules, Charles Townes and co-
workers put a hot beam of NH3 through a non-uniform electric field that acted as a sorter that distinguished 
which states belonged to one or the other of the two hyperbolic "potential" energies. 
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 Fig. 10.3.2 Ammonia (NH3) inversion states  (a) Base states (b) C2-Eigenstates

 The NH3 molecule can be viewed as a C2B-symmetric two-state system in which the N-atom has two 
possible position base states |1〉 = |N-up〉 and |2〉 = |N-dn〉 wherein the N-atom resides on one or the other side of 
the H3 plane as shown below in Fig. 10.3.2a. It is assumed that the system has a bilateral C2B-reflection 
symmetry about the H3 plane.
 Ammonia is a peculiar "fluxional" molecule that won't "stick" to one side or another, that is, it has states 
|1〉 = |N-up〉 and |2〉 = |N-dn〉 are not stationary states. In fact if NH3 were to start out in state |1〉 = |N-up〉 it 
would "beat" or "tunnel" up and down between state |1〉 and state |2〉 = |N-down〉 with a beat or transition 
frequency of 24 GHz. This is analogous to the beat oscillations between X=x1 and Y=x2 in Fig. 10.2.6 and Fig. 
9.4.1. It might oscillate like this forever. However, it is a tiny charged dipole coupled to the electromagnetic 
field as we'll study later. While oscillating its charge, it behaves like a tiny microwave antenna broadcasting at 
the transition frequency. After billions of cycles it finally must "damp out" to a stationary eigenstate |εlo〉 = |+〉, 
that is, it decays to its ground state emitting a 24 GHz photon.
 For zero or low E-field the molecules start out in one of two inversion eigenstates |εlo〉 = |+〉 and |εhi〉 = |−〉 
sketched in Fig. 10.3.2b. The temperature and statistical mechanics determine how many of each. The hotter the 
beam is, the more nearly the excited |εhi〉 state population will become equal to unexcited ground |εlo〉 state 
population.
 Eigenstates are made of 50-50 (or 1/√2, ±1/√2 ) combinations of |1〉 = |N-up〉 and |2〉 = |N-dn〉 exactly like 
the C2B prototypes in (10.2.6). In other words, the N-atom is "fuzzed-out" so it has the same probability of 
being found on either side of the H3 plane, and the same or opposite quantum phase. These two states are 
analogous to the normal modes (+) and (−) in Fig. 10.2.4a and b, respectively.
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 As the beam of  |εlo〉 = |+〉 and |εhi〉 = |−〉 molecules enters a non-uniform field the excited |εhi〉 = |−〉 state 
molecules fall away from the strong field because they are on the upper branch of the hyperbola in Fig. 10.3.1 
and can get to lower energy by heading for the (pE=0) point. They become separated from ground state (|εlo〉 = |
+〉)-molecules that gain kinetic energy by “gravitating” toward high field. 
 This makes it possible to cull out particles in the |εhi〉 = |−〉 state. The excited output is fed into a cavity 
tuned to the 24 GHz transition "broadcast" frequency which has a wavelength of 1.25 cm. , and it begins to 
resonate strongly and coherently. And so, the laser (and kitchen microwave) revolution began!

 C2AB Symmetry : Weyl reflections

 The symmetry of a Stark Hamiltonian matrix with A≠D might not be as obvious as the C2B symmetry of 
an H-matrix with A=D. However, if you look again at the normal coordinate axes of the C2B modes in Fig. 
10.1.2b you can see they are rotations of the original Cartesian xy-axes in Fig. 10.1.2a by an angle φ=45°. The 
normal coordinate axes of the "symmetry-broken" modes in Fig. 10.1.2ab are rotations of the original base 
states in Fig. 10.1.2a by some other angle φ=β/2 that is less than 45°. In fact, each set of axes pictured in Figs. 
10.1.2 (a), (ab), and (b) has its own reflection symmetry operator σΑ, σΑΒ, and σΒ, respectively, and each is 
related to the other by rotational transformation.
 We have used the bilateral reflection σΒ given by (10.2.3b) to switch x-axes with y-axes. The operation 
σΒ is a reflection through a 45° mirror plane lying on major axes of B-potential ellipses. (VB=const.) As such, 
σΒ is a 45° rotation of the σΑ mirror reflection through an x-axial plane lying on major axes of A-potential 
ellipses (VA=const.) in Fig. 10.1.2.
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The matrices σΑ and σΒ are two real Hamilton-Pauli-Jordan spinor operators. (The third σC operator is the 
complex one.) The reflections σΑ and σΒ do so-called Weyl reflections after the famous theorist Hermann Weyl. 
Moving the rotations to the left side gives a diagonalization of σΒ and HB.
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This is like d-tran (10.2.6c) except it is done here by a rotation R[-45°] instead of a reflection through the 22.5° 
plane that is what we unknowingly wrote down in (10.2.6a). How can this be understood?

HarterSoft –LearnIt Unit 3 Fourier Analysis and Symmetry   10-



32
 To understand this we need a couple of lessons from this elementary introduction of Weyl and Hamilton 
operations. First, as seen first in (10.1.7), all H-matrices are made of "pieces" of their symmetry groups. (It's 
true whether or not we can easily see it!) Here, HB is made of C2B "pieces" 1 and σΒ.
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Rotation R[-45°] diagonalizes σΒ and HB. A φ=22.5° mirror reflection can do it, too, as in Fig. 10.3.3a. 
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Fig. 10.3.3 Rotations and reflections that convert σΑ into  (a) σΒ , (b) σΑΒ 
Generalizing (10.3.9c) for a rotation by angle φ=β/2 yields a general φ-tipped σΑΒ plane-reflection.
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This shows we can bring a φ-tipped AB-plane parallel to the x-plane in two ways. We can do a rotation R[-φ] 
that "untips" by angle -φ=−β/2 or we can perform a reflection through a mirror plane that is tipped by φ/2=β/4  
half-way between the x-plane and the AB-plane. Here is the latter.
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This transformation then also diagonalizes the general HAB matrix made of C2AB "pieces" 1 and σΑΒ.
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Then tipping angle φ=β/2 of the normal coordinate axes is found from the parameters A, B, and D.

This is a shortcut to solving HAB  eigenvalues and eigenvectors. It generalizes to U(2) “spin” in Section 10.5.
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Unitary U(2) versus Special Unitary SU(2)
 Before continuing, we should elaborate on some fine points and terminology. In Sec. 2.2 (d) and (e) we 
introduced the unitary group U(n) of operators U that satisfy unitarity (U†U=1) and its subgroup called the 
special unitary group SU(n) which had an additional requirement of unimodularity. (det|U|=1 )
Note that rotational operators like R[-45°] belong to SU(2) while reflection operators like σΑΒ belong to U(2) 
(σ†σ=σσ=1) but not SU(2) because σ's have (-1) determinants. ( det|σ|=-1) Mirror reflections change left 
handed gloves into right handed ones. Since two reflections through the same mirror is an identity operation 
(σσ=1) it follows that reflections are both Hermitian (σ†=σ) and unitary (σ†σ=1). In some sense they are the 
most “perfectly normal” operators.
 If you multiply two members of SU(2) the product has to be an SU(2) member, too. (Closure axiom) So, 
products of rotations can never yield a reflection. However, the product of two reflections will have a positive 
unit determinant, in fact, it will be a rotation. This is easily see by an example that multiplies x-plane reflection 
σΑ in (10.2.13a) by an AB-plane or φ-tipped reflection σΑΒ in (10.2.14a) .

    

  

 σ φ tipped plane⎡⎣ ⎤⎦   ·      σ A      =           R 2φ⎡⎣ ⎤⎦                 , or:        σ A      ·  σ φ tipped plane⎡⎣ ⎤⎦   =     R −2φ⎡⎣ ⎤⎦  

cos2φ sin2φ
sin2φ −cos2φ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

1 0
0 −1

⎛

⎝⎜
⎞

⎠⎟
=

cos2φ −sin2φ
sin2φ cos2φ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

   , or:  1 0
0 −1

⎛

⎝⎜
⎞

⎠⎟
cos2φ sin2φ
sin2φ −cos2φ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
=

cos2φ sin2φ
−sin2φ cos2φ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

  (10.3.12)

In other words, rotations are composed of reflections, and not vice-versa. The σ's are more fundamental than the 
R's. In some sense reflections are "square roots" of rotations. One only needs half the angle φ=β/2 to do the job 
that a full angle 2φ=β rotation would need. As seen in (10.3.10) a pair of mirror planes separated by angle φ=β/2 
will perform a rotation by either β or -β , depending on the order of action. 

 Complete sets of commuting operators
 One may turn the discussion of symmetry inside-out by asking what are all the operators Q that 
commute with a given H-matrix (or set of commuting H-matrices). Spectral decomposition gives the answers to 
such questions, for if Pk are the irreducible projectors of H  (or set of H's) then the answer is
    Q = Σ αk Pk (= α1 P1  + α2 P2  , for 2-by-2 Q)   (10.3.13a)
for arbitrary complex numbers αk . If you further restrict Q to be unitary (in U(n)) then the answer is
    Q = Σ eiαk Pk (= eiα1 P1  + eiα2 P2  , for 2-by-2 Q)  (10.3.13b)
for arbitrary real numbers αk . Finally, if you want Q to be unimodular (in SU(n)), too, then the answer is
    Q = Σ eiαk Pk (= e-iαP1  + eiαP2  for 2-by-2 Q)   (10.3.13c)
where angles in exponents must sum to zero or multiples of 2π. (Σαk = 2πn)
 For example, the SU(2) symmetry operators that commute with HB must be of the form
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In other words, the only rotations that commute with HB are imaginary or complex. It turns out these are 
representations of Lorentz transformations that provide a relativistic theory of polarization.

HarterSoft –LearnIt Unit 3 Fourier Analysis and Symmetry   10-



34
10.4 Mixed ABCD Symmetry: U(2) quantum systems
With no symmetry restrictions the U(2) modes or eigenstates assume a general nondescript form of conjugate 
elliptical polarization. An example in Fig. 10.4.1 shows results of competition between all three archetypes of 
the asymmetric (A), bilateral (B), and circular (C) types of symmetry described previously. 

 

 
 Fig.10.4.1 Typical asymmetric elliptical modes. (A=4.1, B= 0.67, C=1.16, D=3.3)

 The types of general 2-state Hamiltonian matrix 10.1.1b discussed so far have involved varying the 
parameters A, B, and D while parameter C is set to zero. If A=D then bilateral C2B-symmetry is present and 
parameter B=-S determines tunneling splitting. If pE=|A-D|>0 then bilateral C2B-symmetry changes to C2AB-
symmetry and second order Stark splitting occurs. If pE grows so |A-D|>>B then parameter B becomes 
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irrelevant and asymmetric-diagonal C2A-symmetry takes effect. The parameter pE=|A-D| for C2A-symmetry 
determines first order Stark splitting. Adding the circular C2C-symmetry makes ellipses.

(a) ABC Symmetry catalog: Standing, moving, or galloping waves
 Let us review the archetypes C2A, C2B and R(2)⊃C2C symmetry using one-dimensional plane waves or 
Bohr orbitals (7.1.10) as the base states of a U(2) two-state system, and compare that to the coupled-oscillator 
and optical polarization analogies. Various symmetries are summarized in Fig. 10.4.2.

    A, B, and AB-Archetypes are standing waves (Linear polarization)
 Asymmetric C2A systems discussed in 10.2(a) have x-plane | x1〉 and y-plane | x2〉 modes. These are 
analogous to a pair of cosine and sine Bohr orbital |c〉 and |s〉 standing waves. The symmetry operation of 
reflection σA through x=0 (that is x→-x ) gives a positive eigenvalue (+1) for symmetric cosine function 〈x|c 〉 
and a negative (-1) value for anti symmetric sine wave 〈x|s〉.
 〈x|c 〉 = cos mx = cos-mx =+ 〈−x|c 〉 ,  〈x|s 〉 = sin mx = -sin-mx  = − 〈−x|s〉         (10.4.1a)
Taking (cos φ, sin φ) combinations of (10.4.1a) gives states of C2AB systems discussed in 10.2ab.  
      〈x|+〉 = cos φ cos mx + sin φ sin mx            〈x|−〉 = -sin φ cos mx + cos φ sin mx  
  =  cos (mx -  φ)                 =  sin (mx -  φ)         (10.4.1b)
These are standing waves, too. However, their nodes are shifted by angle φ to accommodate a new origin and 
symmetry plane at x=φ/m. Weak D-field or strong B-coupling shifts angle toward φ =±45° of bilateral 
symmetric C2B system coupled modes. The decoupled system is a C2A system with |x1〉, |x2〉 bases. Decoupling is 
encouraged by applying a strong polar vector field like a Stark electric pE field.

    C-Archetypes are moving waves (Circular polarization)
The opposite to the standing-wave systems is the chiral or circularly symmetric RC(2) or C∞C system with left 
handed and right handed modes |R〉 and |L〉. For the Bohr orbitals |R〉 and |L〉 correspond to positive and negative 
exponential moving waves, respectively. These involve complex combinations.
  〈x |R〉 = e+imx = cos mx + i sin mx      〈x |L〉 =  e-imx = cos mx - i sin mx        (10.4.2)
A symmetry reduction of U(2) to RC(2) is caused by an axial vector field like a Zeeman magnetic B field or a 
rotational velocity vector axis Ω. It is sometimes called "gauge symmetry" breaking.

….All others are galloping waves (Elliptical polarization)
 The general Hamiltonian is labeled as a C1 system, that is, no symmetry. It will have eigenstates that are 
general linear combination of the above, that is, elliptical polarized eigenstates like Fig. 10.4.1.
    〈x |Ψ〉 = aR 〈x |R〉 +  aL〈x |L〉  =  aR e+imx  +  aL e-imx         (10.4.3)
In other words, the vast majority of "nondescript" or asymmetric eigenstates are simply the galloping waves we 
introduced Chapter 4. (Fig. 4.2.6) The galloping phase velocity noticed there is related to the polar angle of the 
elliptic orbit. As the ellipse becomes more eccentric, that is, more like a standing wave states A, B, or AB, the 
polar angle has to gallop more and more rapidly at the passage of the minor axis. To conserve angular 
momentum it "gallops" faster at lesser radius and is faster at an orbital perigee than at an apogee. Newton and 
Kepler were first to note that Coulomb orbits sweep out equal area in equal time, but the same is true of any 
central force orbit including the isotropic harmonic oscillator which is a full U(2) symmetric system. (Recall Fig. 
4.2.6b and Fig. 4.2v8.)
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Fighting rotational isotropy are the anisotropic (Stark-like) non-central "tensor" C2AB-symmetry-

breaking forces. The A, B, or AB Hamiltonians do not conserve angular momentum and try to stretch orbits 
along certain directions and away from their circular R(2) symmetric shape. The compromise is elliptical or 
galloping eigenstates such as are pictured in Fig. 10.4.1. Rotational R(2)⊃C2C symmetry is the mortal enemy of 
“tensor” C2AB-symmetries, a yin-and-yang that live together as subgroups in the encompassing quantum 
operator group U(2) of a 2-state system. 

With isotropic U(2)-symmetry all possible ellipses of any tipping or ratio or handedness are degenerate 
eigenstates. This is the case listed in the first column on the extreme lefthand side of Fig. 10.4.2. Then and only 
then do all four operators {σ1, σA, σB, σC} or all four quaternions {1, i, j, k} or all four elementary operators 
{ e11, e12, e21, e22} commute with the Hamiltonian which is necessarily reduced to a constant H times a unit-1 
matrix. All vectors are eigenstates of such an operator.

 HU(2)= H 1= H σ1= H(e11 + e22)    (10.4.4)

(b) General HABCD eigenvalues
 The opposite extreme portrayed on the extreme right hand side of Fig. 10.4.2, is a Hamiltonian with no 
apparent symmetry in which all parameters A, B, C, and D are allowed. 

   

                        H = A+ D
2

1 0
0 1

⎛

⎝⎜
⎞

⎠⎟
+ B 0 1

1 0
⎛

⎝⎜
⎞

⎠⎟
+C 0 −i

i 0
⎛

⎝⎜
⎞

⎠⎟
+ A− D

2
1 0
0 −1

⎛

⎝⎜
⎞

⎠⎟

                        H = A+ D
2

       σ1    + B       σB     +C       σC        + A− D
2

     σ A

 (10.4.5a)

Being made of all four {σ1, σA, σB, σC} guarantees  H will commute only with the unit operator itself. 
Eigenstates are detemined by values of parameters A, B, C, and D. Any single operator of the form (10.4.5a) can 
be diagonalized and represented in its (own) eigen-basis as follows.

   

                        H = A+ D
2

1 0
0 1

⎛

⎝⎜
⎞

⎠⎟
+ H ABCD

1 0
0 −1

⎛

⎝⎜
⎞

⎠⎟

                        H = A+ D
2

   σ1       + H ABCD        σ ABCD

   (10.4.5b)

The constant HABCD is a Pythagorean sum and σABCD is a reflection operator with (±1)-eigenvalues.

      
  
±H ABCD = ± A− D

2
⎛
⎝⎜

⎞
⎠⎟

2

+ B2 +C2        (10.4.5c)

The combination operator σABCD  defined as follows 

  
 σ ABCD = B

H ABCD
σB    + C

H ABCD
 σC    + A− D

2H ABCD
σ A    (10.4.5d)

is a reflection symmetry (σABCD)2=1 because of the {σ1, σA, σB, σC}-multiplication rules.
     σAσB =-σBσA =σC ,   σBσC =-σCσB =σA , σCσA =-σAσC =σB ,     σA 2=σB2=σC2=1 (10.4.6)
A generalization of the AB solution (10.3.11) results. Eigenvectors are discussed in Sec. 10.5.
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                                                                             Catalog of Two -State Hamiltonians

H = H† =
HU (2) =

A 0
0 A

⎛

⎝⎜
⎞

⎠⎟

H
C2

A =

A 0
0 D

⎛

⎝⎜
⎞

⎠⎟

H
C2

AB =

A B
B D

⎛

⎝⎜
⎞

⎠⎟

H
C2

B =

A B
B A

⎛

⎝⎜
⎞

⎠⎟

H
C2

C =

A −iC
iC A

⎛

⎝⎜
⎞

⎠⎟

H
C1

=

A B − iC
B + iC D

⎛

⎝⎜
⎞

⎠⎟

Commute
with :

U =
U11 U12

U21 U22

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

R(θ ) =

e−iθ 0

0 eiθ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

R(ζ ) =

cosζ
−icsinζ

−issinζ

−issinζ
cosζ

+icsinζ

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

R(χ ) =

cosχ −isinχ
−isinχ cosχ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

R(ϕ ) =

cosϕ −sinϕ
sinϕ cosϕ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

1(λ) =

eiλ 1 0
0 1

⎛

⎝⎜
⎞

⎠⎟

Generated
by :

e11 =
1 0
0 0

⎛

⎝⎜
⎞

⎠⎟

e12 = 0 1
0 0

⎛

⎝⎜
⎞

⎠⎟

e21 =
0 0
1 0

⎛

⎝⎜
⎞

⎠⎟

e22 = 0 0
0 1

⎛

⎝⎜
⎞

⎠⎟

GA =
dR(θ )

dθ 0
=

−i 0
0 i

⎛

⎝⎜
⎞

⎠⎟

GAB =
dR(ζ )

dζ 0
=

−ic −is
−is ic

⎛

⎝⎜
⎞

⎠⎟

GB =
dR(χ )

dχ 0
=

0 −i
−i 0

⎛

⎝⎜
⎞

⎠⎟

GC =
dR(ϕ )

dϕ 0
=

0 −1
1 0

⎛

⎝⎜
⎞

⎠⎟

G1 =
dR(λ)

dλ 0
=

1 0
0 1

⎛

⎝⎜
⎞

⎠⎟

Spin
Operator :

(all)

σA =
iGA =

1 0
0 −1

⎛

⎝⎜
⎞

⎠⎟

σAB =
iGAB =

c s
s −c

⎛

⎝⎜
⎞

⎠⎟

σB =
iGB =

0 1
1 0

⎛

⎝⎜
⎞

⎠⎟

σC =
iGC =

0 −i
i 0

⎛

⎝⎜
⎞

⎠⎟

σ0 =

1 0
0 1

⎛

⎝⎜
⎞

⎠⎟

Symmetry : U (2) C2
A ⊂ R A 2( ) C2

AB ⊂ R AB 2( ) C2
B ⊂ RB 2( ) C∞

C ⊂ RC 2( ) C1

H
Eigenkets

( Any ket
isan

eigenvector)

x

1
0

⎛

⎝⎜
⎞

⎠⎟
,

y

0
1

⎛

⎝⎜
⎞

⎠⎟

x '

cos
β

2

sin
β

2

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

y '

− sin
β

2

cos
β

2

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

+( )
1
1

⎛

⎝⎜
⎞

⎠⎟
,

2

−( )
1
−1

⎛

⎝⎜
⎞

⎠⎟

2

L

1
−i

⎛

⎝⎜
⎞

⎠⎟
,

2

R

1
i

⎛

⎝⎜
⎞

⎠⎟

2

( ε Depends

on
A, B,C,and D)

     

|x〉
|y〉

|x'〉|y'〉

|(-)
〉

|(+
)〉|L〉 |R〉

Plane 0° Plane β/2 Plane 45° Circular Elliptical

Two State
Unitary
Group
U(2)
Algebra

RA(2)⊃ CA2 RAB(2)⊃ CAB2
RB(2)⊃ CB2

RC(2)⊃ CC∞
2-D Rotation
Sub-Groups

C1

cosβ/2

standing waves moving waves galloping waves

sinβ/2c = cosβ
s = sinβ

 Fig. 10.4.2 Catalog of 2-state Hamiltonians, symmetry groups, eigenstates and analogs
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10.5 Spin-Vector Pictures for Two-State Quantum Systems
 Our most common atomic "particles" are the electron with its 2-component (up,dn) spin-/2 and the 
photon with its two-component (x,y) polarization. Then there is the NH3 inversion states (UP,DN) that gave us 
the laser revolution. These three are summarized in Fig. 10.5.1. Add to these the 2-component Bohr-waves or 
spins of neutrinos, neutrons, protons, quarks, etc.; it appears that our world is lousy with U(2) objects! We need 
ways to picture them. Here we introduce another way called the spin-vector. 

 

|χ〉=

χ↑

χ↓
=

x1=
Re χ1

p1=Im χ1

=

〈↑|χ〉

〈↓|χ〉

=|↑〉〈↑|Ψ〉+|↓〉〈↓|Ψ〉

(a) Electron Spin-1/2-Polarization

Spin-up

Spin-dn

|ψ〉=

ψx

ψy

= =

〈x|ψ〉

〈y|ψ〉

=|x〉〈x|ψ〉+|y〉〈y|ψ〉

(b) Photon Spin-1-Polarization

Plane-x

Plane-y

(c) Ammonia (NH3) Inversion States
N-UP

N-DN
|ν〉=

ν
UP

ν
DN

=

xDN

pDN=

〈UP|ν〉

〈DN|ν〉

=|UP〉〈UP|ν〉+|DN〉〈DN|ν〉

xUP

pUP

y

py

x

px

p2
x2

| 1 〉=|↑〉

| 2 〉=|↓〉

| 1 〉=|x 〉

| 2 〉=|y 〉

| 1 〉=|UP 〉

| 2 〉=|DN 〉

Fig. 10.5.1 Some of the most famous 2-state systems and their two-complex-component coordinates.
 
Ways to "picture" these U(2) worlds begins with the U(2) 2-phasor or spinor pictures shown in Fig. 10.5.2 (a-b) 
The full picture (b) is four dimensional but the polarization picture (a) takes only the real parts to make a 2D 
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orbit path. This was used earlier. If we can ignore overall phase, a three-dimensional R(3)-SU(2) spin-vector 
picture shown in Fig. 10.5.2(c) is sufficient and useful to define a U(2)-state. 

x1=ReΨ1

p1=ImΨ1

x2=ReΨ2

p2=ImΨ2

Ψ1 = x1+ip1 = |Ψ1| eiφ1

(b) 2-Phasor
U(2) SpinorPicture

φ1

φ2

Ψ2 = x2+ip2 = |Ψ2| eiφ2

(c) 3-Dimensional Real
R(3)-SU(2)Vector Picture

SAor
SZ SC

or

SY
SB
or

SX
SA = (Ψ1* Ψ1 - Ψ2* Ψ2)/2
SB = (Ψ1* Ψ2 + Ψ2* Ψ1)/2
SC = (Ψ1* Ψ2 - Ψ2* Ψ1)/2i

S
x1

x2

(a) Real Spinor
Space Picture

x1=ReΨ1
x2=ReΨ2

(2D-Oscillator Orbit)

Fig. 10.5.2 Spinor, phasor, and vector descriptions of 2-state systems .

 A set of four real coordinates of U(2) states from (10.1.1) are listed here with phase angles (φ1,φ2).

    

  

Ψ =
Ψ1

Ψ2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

1 Ψ

2 Ψ

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

x1 + ip1

x2 + ip2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

Ψ1 eiφ1

Ψ2 eiφ2

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

 ,   where: 
x1 = ReΨ1 , and: p1 = ImΨ1

x2 = ReΨ2  , and: p2 = ImΨ2
 (10.5.1a)

Overall-phase-independent quantities Ψm*Ψn define the following three spin-vector coordinates.

   

  

SZ = SA = 1
2

Ψ1
*Ψ1 −Ψ2

*Ψ2( ) = 1
2

Ψ1
2
− Ψ2

2⎛
⎝

⎞
⎠

SX = SB = 1
2

Ψ1
*Ψ2 +Ψ2

*Ψ1( ) = ReΨ1
*Ψ2 = Ψ1 Ψ2 cos φ2 −φ1( )

SY = SC = 1
2i

Ψ1
*Ψ2 −Ψ2

*Ψ1( ) = ImΨ1
*Ψ2 = Ψ1 Ψ2 sin φ2 −φ1( )

    (10.5.1b)
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(a) Density operators and Pauli σ-operators
 The Ψm*Ψn  quantities from which a spin-vector is built, are components of a very useful operator 
called the density operator ρ = |Ψ〉〈Ψ| , first employed by U. Fano. ρ is defined as an outer (tensor ⊗ ) product 

of ket-bras as are projection operators in (2.1.19) but it's for a general state |Ψ〉, not just a base state |1〉 or |2〉.

  

 

ρ = Ψ Ψ =
Ψ1

Ψ2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
⊗ Ψ1

* Ψ2
*( ) = Ψ1Ψ1

* Ψ1Ψ2
*

Ψ2Ψ1
* Ψ2Ψ2

*

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

  (10.5.2)

We have three spin-vector components (SX =SB, SY =SC , SZ =SA ) and a fourth quantity, the norm N 
   N = Ψ1*Ψ1 + Ψ2*Ψ2       (10.5.3)
(Norm or total probability must be unity (N=1) for base states but may be less than 1 for general states.) the 
density matrix components can be inverted from (10.5.1) to give

  

  

ρ11 = Ψ1
*Ψ1 = 1

2
N + SZ  ,    ρ12 = Ψ2

*Ψ1 = SX − iSY,    

ρ21 = Ψ1
*Ψ2 = SX + iSY  ,    ρ22 = Ψ2

*Ψ2 =
1
2

N − SZ.
   (10.5.4)

Density operator ρ = |Ψ〉〈Ψ| becomes the following.

 

   

ρ11 ρ12

ρ21 ρ22

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

=
Ψ1

*Ψ1 Ψ2
*Ψ1

Ψ1
*Ψ2 Ψ2

*Ψ2

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

=

1
2

N + SZ SX − iSY

SX + iSY
1
2

N − SZ

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

                   = 1
2

N 1 0
0 1

⎛

⎝⎜
⎞

⎠⎟
 + SX

0 1
1 0

⎛

⎝⎜
⎞

⎠⎟
 + SY

0 −i
i 0

⎛

⎝⎜
⎞

⎠⎟
 + SZ

1 0
0 −1

⎛

⎝⎜
⎞

⎠⎟

                                        ρ =     1
2

N         1       + SX        σX       + SY        σY        + SZ       σZ        

  (10.5.5a)

where the σ matrices are known as the Pauli spin(or) operator matrices.

  
   
  1 = 1 0

0 1
⎛

⎝⎜
⎞

⎠⎟
 ,    σX = 0 1

1 0
⎛

⎝⎜
⎞

⎠⎟
 ,    σY = 0 −i

i 0
⎛

⎝⎜
⎞

⎠⎟
 ,    σZ = 1 0

0 −1
⎛

⎝⎜
⎞

⎠⎟A

    (10.5.5b)

These are the spin generators σ0 , σB , σC , and σA  listed in Fig. 10.4.2 catalog of 2-state Hamiltonians and 
symmetry. This is no accident; these operators are all set up to do an elegant job of completely solving the 2-
state Schrodinger problem and quite a bit more. We saw some of this in equation (10.4.5).
 Furthermore, the ρ-operator lets us treat statistical ensembles of possibly dephased particles that suffer 
"peeking" or other randomizing effects as in Sec. 1.3b. For pure-state beams, each of N particles contributes a 
spin-1/2 so the total expected spin magnitude S exactly equals half-norm N/2 where

    
  
S = SX

2 + SY
2 + SZ

2 = SB
2 + SC

2 + SA
2    (10.5.6)

Beams with S<N/2 are known as depolarized or "dirty" beams, and S=0 corresponds to completely depolarized 
(or "filthy"-random) beams. Pure-state (S=N/2) beams are also called 100%-polarized.

 Before, beginning ρ-analysis, let us explore some of the possible states in various U(2) worlds.  Fig. 
10.5.3 below shows the S-vectors for our most commonly used base states. Examples 1 and 2 belong to the 

spin-up or dn (|↑〉, |↓〉), or x-or-y-polarization (|x〉, |y〉), or NH3 base states (|UP〉, |DN〉).  Spin vector S is, 
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indeed, up or down, in Example 1 or 2, that is ±180°, while in real spinor space |↑〉 and |↓〉 bases are 90° apart. 
Recall 2:1 ratio between R(3) and U(2) angles first noted in (1.2.13).

Spin-up

Plane-x

N-UP

x1=Re χ1

p1=Im χ1

x2=Re χ2

p2=Im χ2

SA
or

SZ

SCor SYSBor
SX

S=
1

0
0
0
1/2

=

Example 1:

x1=Re χ1

p1=Im χ1

x2=Re χ2

p2=Im χ2

SA
or

SZ
SB

S

=
0

1 0
0
-1/2

=

Example
2: Spin-dn

Plane-y

N-DN

x1=Re χ1

p1=Im χ1

x2=Re χ2

p2=Im χ2

SA
or

SZ
SCor SYSB

S

=
1/√2

1/√2 1/2
0
0

=

Spin-"north

Plane-45°

N-Ground
State

Example 3:

SCor SY

Fig. 10.5.3 Examples of spinor, phasor, and vector base states for electron, photon, or NH3 .

 Example 3 is an eigenstate of bilateral C2B-symmetric Hamiltonian

    
  
H

C2
B =

A B
B A

⎛

⎝⎜
⎞

⎠⎟
     (10.2.4a)repeated 

such as the ±45° normal modes |(+)〉 and |(−)〉 shown previously in Fig. 10.2.4 or NH3 ground and excited states 
shown in Fig. 10.3.2b. The C2B-type S-eigenvectors lie on the bilateral B-axis.
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=
1/√2

i/√2 0
1/2
0

=

Spin-West

Right
Circular

NH3-
Resonant
State

Example 4:

=
1/√2

-i/√2

0
-1/2
0

=
Spin-East Example 5:

S

S
Left
Circu-
lar

=
e−iα/2 cosβ/2

cos α sin β
sin α sin β
cos β

=1/2
Spin-somewhere

(α,β)
Generic Example 6:

S

NH3

Symmetry
Broken &
Resonating

Elliptic
Polarization

eiα/2 sinβ/2
e-iγ/2 S

NH3-
Resonant
State

SA

SB SC
Fig. 10.5.4 Other spinor, phasor, and vector base states for electron, photon, or NH3 .

 Examples 4 and 5 shown in Fig. 10.5.4 are eigenstates of circular C2C-symmetric Hamiltonians

    
  
H

C2
C =

A −iC
iC A

⎛

⎝⎜
⎞

⎠⎟
     (10.2.19d)repeated

such as the left and right-circular-polarization eigenstates |L〉 and |R〉 shown in Fig. 10.2.7. The S-vectors for the 
circular eigenbasis are "East" and "West" respectively, that is, along the circular C-axis.  |L〉 and |R〉 are resonant 
"beat" modes or transition states for the NH3 model. Recall how the beat in Fig. 10.2.6 briefly has two phasors; 
one "donor" phasor 90° ahead of a "receiver" phasor to give |L〉-circular polarization like a 1/4-wave plate. State 
|L〉 corresponds to NH3 actually undergoing an inversion. In example 4, the N-atom probability is moving down 
(because UP-phasor is ahead of DN), but in Example 5 the N-atom is moving up since the UP-phasor is behind 
that of DN. Recall phase principle stated after (10.2.16).
 Finally, note that Examples 1 and 2 belong to eigenbasis of basic C2A-symmetric Hamiltonians
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H

C2
A =

A 0
0 D

⎛

⎝⎜
⎞

⎠⎟
     (10.2.2h)repeated

which have no off-diagonal coupling components of either the bilateral (B) or circular (C) types. Their S-vectors 
must lie "up" and "down" along the A-axis as shown in Fig. 10.5.3. At the other extreme are the vast majority of 
generic Hamiltonians with generic eigenstates like the one sketched in Example 6 of Fig. 10.5.4. For a generic 
state it is convenient to introduce Euler phase-angle coordinates (α, β, γ) along with a norm N.

  

  

Ψ =
Ψ1

Ψ2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

1 Ψ

2 Ψ

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

x1 + ip1

x2 + ip2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= N

e−iα /2 cos
β
2

eiα /2 sin
β
2

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

e−iγ /2    (10.5.8a)

From (10.5.1) this gives a length-S=N/2 spin S-vector with polar angles (α, β) in ABC-space!

  

  

SZ = SA = 1
2

Ψ1
2
− Ψ2

2⎛
⎝

⎞
⎠ =

N
2

cos2 β
2
− sin2 β

2
⎛
⎝⎜

⎞
⎠⎟
= N

2
cosβ

SX = SB = ReΨ1
*Ψ2           = N cosα cos

β
2

sin
β
2

  = N
2

cosα sinβ

SY = SC = ImΨ1
*Ψ2           = N sinα cos

β
2

sin
β
2

   = N
2

sinα sinβ

    (10.5.8b)

Spin S-vector components are one-half the Pauli spinor operator expectation values 〈Ψ|σµ|Ψ〉 .

 

  

Ψ σZ Ψ = 2SA = Ψ1
* Ψ2

*( ) 1 0
0 −1

⎛

⎝⎜
⎞

⎠⎟
Ψ1

Ψ2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

 = N cosβ     = N p1
2 + x1

2 − p2
2 − x2

2( )

Ψ σ
X

Ψ = 2SB = Ψ1
* Ψ2

*( ) 0 1
1 0

⎛

⎝⎜
⎞

⎠⎟
Ψ1

Ψ2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

   = N cosα sinβ   = 2N x1x2 + p1p2( )

Ψ σY Ψ = 2SC = Ψ1
* Ψ2

*( ) 0 −i
i 0

⎛

⎝⎜
⎞

⎠⎟
Ψ1

Ψ2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

  = N sinα sinβ    = 2N x1p2 − x2 p1( )

(10.5.8c)

For 2-state systems, like the electron or photon, which actually carry real-live-spin-angular momentum we need 
to introduce Jordan spin operators J = S = (1/2)σ that are 1/2 of Pauli's "quasi-spin" σ-operators.
Note that the Y-or C-component JC = SC is precisely the angular momentum xpy - ypx of an orbit in the 
mechanical analogy involving 2-dimensional oscillators. 
  〈Ψ|JY|Ψ〉 =〈Ψ|JC|Ψ〉 = 〈Ψ|SC|Ψ〉 = 2〈Ψ|σC|Ψ〉 = N(xpy - ypx )    (10.5.9)
This is analogous to photon-spin momentum. Circularly polarized photons hitting make you twist!

(b) Hamiltonian operators and Pauli-Jordan spin operators (J=S)
 Symmetry and operator analysis solves the generic asymmetric Hamiltonian (10.1.1). The trick is to 
expand H in terms of the spinor σ-operators as was done for the state density ρ-operator in (10.5.5a). Instead, 
we use Jordan's J = (1/2)σ operators so as to respect that spin-1/2 factor.
       JB=SB = (1/2)σB = (1/2)σX  ,       JC=SC = (1/2)σC = (1/2)σY ,        JA=SA = (1/2)σA = (1/2)σZ 
The resulting generic H Hamiltonian operator expansion is here.
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H11 H12

H21 H22

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

1 H 1 1 H 2

2 H 1 2 H 2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=  A B − iC

B + iC D

⎛

⎝⎜
⎞

⎠⎟

            H / = 1
2

A+ D( ) 1 0
0 1

⎛

⎝⎜
⎞

⎠⎟
 + 2B 0 1

1 0
⎛

⎝⎜
⎞

⎠⎟
1
2

 + 2C 0 −i
i 0

⎛

⎝⎜
⎞

⎠⎟
1
2

 + A− D( ) 1 0
0 −1

⎛

⎝⎜
⎞

⎠⎟
1
2

            H / =   1
2

A+ D( )      1        + 2B      SX          + 2C        SY           + A− D( )       SZ        

            H / =   1
2

A+ D( )     σ0       + 2B       SB         + 2C        SC           + A− D( )       SA        

 (10.5.10a)

The three constants (2B, 2C, A-D) multiplying the respective ( σX,  σY, σZ ) = ( σB,  σC, σA ) operators are 
components of what is called the Hamiltonian Ω-cranking vector  
  Ω = (ΩX, ΩY, ΩZ) = (2B, 2C, A-D)= (ΩB, ΩC, ΩA)    (10.5.10b)
while the coefficient (A+D)/2 of the unit operator σ0 is just the average overall phase rate or energy ε/.
     Ω0 = (A+D)/2     (10.5.10c)
The Hamiltonian expression involves an operator scalar product Ω•S = Ω•σ/2.
      H = Ω0s0 + Ω•


S = Ω01+ Ω•


S     (10.5.10d)

Here Ω is an ordinary 3-vector made of three numerical components ΩX, ΩY, and ΩZ, but S is an operator 3-
vector made of three Jordan-Pauli spin operators SX= (1/2)σX, SY= (1/2)σY, and SZ= (1/2)σZ.
 Each of the B, C, or A type H-matrices (10.5.7 A-C) has its Ω-vector pointing along the  B, C, or A axis, 
respectively, precisely the direction of the S-vector for H-eigenstates in each case. This lining up of S and Ω is 
particularly useful since it's true for the generic H-matrices, too. S-vectors of all H-eigenstates must lie along (or 
against) its Hamiltonian Ω-vector. 

Bingo! The Hamiltonian Ω-vector completely determines the observable dynamics of all states, not just 
H-eigenstates. The result is a closed-form analytic and pictorial solution of all possible eigenvectors and 
dynamics, that is, all possible states of all possible U(2) Hamiltonians! The first result is frequency 

 
  
Ω = ΩX

2 +ΩY
2 +ΩZ

2 = 2B( )2 + 2C( )2 + A− D( )2   (10.5.10e)

which is the beat-transition frequency difference between ABCD eigenlevels of (10.4.5). (That factor of 1/2 in 
defining spin S is key to getting the right Ω-cranking rate or beat frequency Ω=ωhi -ωlo.)

(c) Bloch equations and spin precession
 The notion of cranking or precession of a gyroscope is an old classical one. Here it is appearing in a 
purely quantum mechanical context and applies to all the Schrodinger 2-state dynamics described so far.

Precession arises from the density operator ρ by writing the Schrodinger equation backwards and 
forwards in time, that is, as a ket equation (forwards) and as a "daggered" bra-equation (backwards).

  
   
i Ψ =H Ψ ,     ⇐ Daggar† ⇒    -i Ψ = Ψ H     (10.5.11)

Note: H† = H. Combining these gives a time derivative of the density operator ρ = |Ψ〉〈Ψ| 

  
  
i ∂
∂ t

ρ = i ρ = i Ψ Ψ + i Ψ Ψ =H Ψ Ψ − Ψ Ψ H    (10.5.12a)

The result is called a Bloch equation. This is the “professional” version of the Schrodinger equation.
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i ∂
∂ t

ρ = i ρ =Hρ − ρH = H,ρ⎡⎣ ⎤⎦      (10.5.12b)

Then we write ρ and H in terms spin S-vector and crank Ω-vector by (10.5.5) and (10.5.10), respectively.

       

    

Hρ = Ω01+ 
2
Ω •σ

⎛
⎝⎜

⎞
⎠⎟

N
2

1+ S•σ
⎛
⎝⎜

⎞
⎠⎟
= Ω0

N
2

1+ N
4
Ω•σ + Ω0S•σ + 

2
Ω •σ( ) S•σ( )

ρH = N
2

1+ S•σ
⎛
⎝⎜

⎞
⎠⎟
Ω01+ 

2
Ω •σ

⎛
⎝⎜

⎞
⎠⎟
= Ω0

N
2

1+ N
4
Ω•σ + Ω0S•σ + 

2
S•σ( ) Ω •σ( )

Only the last terms don't cancel, and then only if the spin S and crank Ω point in different directions.

                
   
Hρ − ρH = 

2
Ω •σ( ) S•σ( )− 2 S•σ( ) Ω •σ( )     

To finish this we need to derive the Pauli-Hamilton identity. This uses σ-multiplication rules (10.4.6).

   

   

A •σ( ) B•σ( ) = Aα Bβσασβ = Aα Bβ δαβ + iεαβγσγ( )    
                       =Aα Bα + iεαβγ Aα Bβσγ

                       =A •B + i A ×B( ) ⋅ σ
   (10.5.13)

So finally the time dynamics is reduced to the following.

    

    

i ∂
∂ t

ρ = i ρ = i
2

Ω× S( )•σ − i
2

S×Ω( )•σ

i ∂
∂ t

N
2

1+ S•σ
⎛
⎝⎜

⎞
⎠⎟
= i S•σ = i Ω× S( )•σ

  

Factoring out •σ  gives a gyroscopic precession equation.

     
   
∂ S
∂ t

= S = Ω× S       (10.5.14)

Perhaps, the Fig. 1.2.4 sketch of “helicopter” electrons in Stern-Gerlach analyzers is not so silly after all!

    Magnetic spin precession (ESR, NMR,..)
 Indeed, the classical Hamiltonian for a magnetic moment m in a magnetic B-field is H=-m•B. If the 
particle's magnetic moment is proportional to its spin angular momentum 
      m = g S        (10.5.15a)
where g is called a gyromagnetic ratio then the Hamiltonian can be written
    H=-m•B = -g S•B = -g (BxSx + BySy + BzSz )     (10.5.15b)
Replacing each classical spin component Sµ by a spin operator Sµ  gives the quantum Hamiltonian.
    H= -g S•B = -g (BxSx + BySy + BzSz )      (10.5.15c)
The matrix representation of this has the Ω•S form of the generic U(2) Hamiltonian (10.5.10).

  

    

H = −gB •S = g
2

Bx
0 1
1 0

⎛

⎝⎜
⎞

⎠⎟
+ By

0 −i
i 0

⎛

⎝⎜
⎞

⎠⎟
+ Bz

1 0
0 −1

⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

                     = g
2

Bz Bx − iBy

Bx + iBy −Bz

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

   (10.5.16a)

The Ω-crank is the gB/2-field vector! It will make the spin S-vector precess around Ω at a rate given by the 
magnetic resonance frequency Ω. 
     Ω=g|B|/2       (10.5.16b)
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 In other words, if you have seen one U(2) Hamiltonian, you have seen them all! They are basically all 
the same no matter whether it describes nuclear magnetic resonance (NMR), electron spin resonance (ESR), 
muon spin resonance (MSR), and so forth, as long there are just two base states. The difference lies in how we 
set the parameters Bx, By, and, Bz or, for our generic H matrix, the parameters 2B, 2C, and (A-D) . Finally (and 
most important!) we need to understand how parameters may be varied with time to cause a desired resonance. 

(d) Visualizing quantum dynamics as S-precession
 Perhaps, the greatest advantage of the 3-space spin vector rotational formulation is its power of 
visualization. Let us return to the earlier 2-state models and analogies to see this. We begin with the bilateral B-
type Hamiltonian (Sec. 10.2(b)) of NH3 and our coupled pendulum analogy. This will then be compared with 
the C-type Zeeman-like Hamiltonians of Sec. 10.2(c). Then we see how this changes to the basic A-type 
problem via the "avoided-crossing" Stark-like AB-types discussed in Sec. 10.3(a). The B-type Hamiltonian 

    
   

1 H 1 1 H 2

2 H 1 2 H 2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= A B

B A
⎛

⎝⎜
⎞

⎠⎟
    (10.2.4a)repeated

has a cranking Ω-vector on the X or B-axis of the spin 3-vector space according to (10.5.10b). 
  Ω = (ΩX, ΩY, ΩZ) = (2B, 0, 0 )= (ΩB, ΩC, ΩA)    (10.5.17)
It has no effect, except for overall phase advance, on the ±45° or B-eigenvectors |(+)〉 or |(−)〉 whose spin vectors 
lie up and down the B-axis as shown in Examples 3 and 4, respectively, of Fig. 10.5.3. However, if the initial 
state is the first base state |1〉 = |x〉 of x-polarization whose spin S-vector lies on the A-axis then it begins to 
precess at the beat frequency of Ω=2B. If 2B = -2S  is negative (our choice in (10.3.3)), the precession is 
clockwise from A to the positive C-axis and then to -A  as shown in the Fig. 10.5.5 below. This is a "birds-eye" 
view of what happened in Fig. 10.2.6.

 

A

-A

C

-C

B

-B

H crank-Ω vector
for negative B=-S

|(+)〉

|(−)〉

|R〉

|L〉

|x〉

|y〉

Ω

     Fig. 10.5.5 Time evolution of a B-type beat. S-vector rotates from A to C to -A to -C and back to A.
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 Contrast that to what happened in Fig. 10.2.10 with a circular C-type Zeeman-like Hamiltonian.

     
   

1 H 1 1 H 2

2 H 1 2 H 2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= A −iC

iC A
⎛

⎝⎜
⎞

⎠⎟
   (10.2.19d)repeated

Its cranking Ω-vector is aligned with the C- or Y-axis.
   Ω = (ΩX, ΩY, ΩZ) = (0, 2C, 0 )= (ΩB, ΩC, ΩA)    (10.5.18)
The resulting rotation is shown in Fig. 10.5.6. It is a very simple Faraday Rotation of the initial x-plane of 
polarization. However, it is a funny kind of rotation since the plane only rotates at half the angle β of the 
precessing spin S-vector. When the spin is at β=60° the plane is only at β/2=30°, as seen in the figure. This 
makes big trouble when the S-vector arrives back at A after going β=360°, all the way around the globe. The 
polarization is back to being a level x-polarization, but it is exactly β/2=180° out of phase! That is, the plane has 
only gone half-way. Once again, there is a 2:1 ratio between what happens to spin vectors and spinors.

|x(120°)〉

A

-A

C
B

-B

H crank-Ω vector
for C=1

|x(45°)〉=|(+)〉

|(−)〉

|x〉

|y〉

Ω

|x(30°)〉

|x(15°)〉

|x(60°)〉

|x(150°)〉

β/2=30°
β=60°

Fig. 10.5.6 Time evolution of a C-type beat. S-vector rotates from A to B to -A to -B and back to A.

 If you follow carefully the evolution of the beat in the previous Fig. 10.5.5 you find that it, too, acquires 
a 180° phase shift upon one "complete" 360° rotation. So do electrons or any U(2) object. It is a fundamental 
property of rotational space, and a quite mysterious one. This is studied in a later chapter.
 By breaking the bilateral B-symmetry we make it more difficult for the initial A-spin state to resonate or 
rotate around the R(3) globe. This is shown in Fig. 10.5.7 which diagrams the effect of a Stark-like ABD-type 
Hamiltonian 
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1 H 1 1 H 2

2 H 1 2 H 2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= A B

B D

⎛

⎝⎜
⎞

⎠⎟
 =

H − pE −S
−S H − pE

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

 (10.3.3a)repeated

Its cranking Ω-vector is between the A- or Z-axis and the B- or X-axis..
  Ω = (ΩX, ΩY, ΩZ) = (2B, 0, A-D ) = (-2S, 0, -2pE ) = (ΩB, ΩC, ΩA)  (10.5.19)
The chosen parameters are tunneling S=1, and symmetry breaking pE= √3. The resulting rotation goes along a 
much smaller circle that only "throws" the S-vector out to β=60°, twice as far as the polar angle ϑ=30° of the 
Ω-vector. Along the way the polarization becomes elliptical briefly with its ellipse always contained in a box 
which is tipped by exactly the angle ϑ/2=15°. (Prove this!)

A

-A

C
B

-B

H crank-Ω vector
for negative B=-S
and pE = -B√3

|x(45°)〉=|(+)〉

|(−)〉

|x〉

|y〉

Ω

|x(30°)〉

|x(15°)〉

Ω

Ω

2B=-2S

2pE
=-2√3

S30°

Fig. 10.5.7 Time evolution of a AB-type beat. S-vector rotates from A to β=60° and back to A.

 Notice how effectively the symmetry breaking parameter pE quenches resonance when it gets much 
larger than the coupling or tunneling parameter S. The Ω-vector approaches the A-axis closely. Since the Ω-
vector determines the two S-vectors that represent eigenstates of H, it is seen that the original A-type base states 
of x and y polarization are recovered quite closely. These are the eigenstates of the A-Hamiltonian that start the 
ABC classification in Sec. 10.2a.

    
  
H

C2
A =

A 0
0 D

⎛

⎝⎜
⎞

⎠⎟
     (10.2.2h)repeated
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Crank Ω polar angles (ϕ,ϑ) versus Spin S polar angles (α,β) 

 The azimuth-α and polar-β angles of spin S of a state |ψ〉 are set in (10.5.8b). We need azimuth-ϕ and 
polar-ϑ angles of crank vectors Ω or Θ=Ω·t of a Hamiltonian H. These are defined below and in Fig. 10.5.8. 
 SX =(N/2) cos α sin β =Reψ1* ψ2     ΩX =Ω cos ϕ sin ϑ =2Re Η21=2B  (10.5.20a)
 SY =(N/2) sin α sin β =Imψ1* ψ2     ΩY =Ω sin ϕ sin ϑ =2Im Η21=2C  (10.5.20b)
 SZ =(N/2)  cos β =(ψ1* ψ1-ψ2* ψ2 )/2 ΩZ =     Ω cos ϑ =Η11- Η22=A-D  (10.5.20c)
 S0 =(N/2)           =(ψ1* ψ1+ψ2* ψ2 )/2 Ω 0=    :             =Η11+Η22=A+D  (10.5.20d)
Since eigenstate S aligns to Ω, finding |εhi〉 or |εlo〉 means equating angles: (α ,β) = (ϕ ,ϑ) or (ϕ ,ϑ+π).
This is a very powerful way to analyze and understand eigensolutions of U(2) systems. It will be used later.
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-B
-C

|R〉

|L〉

|x(120°)〉

A

-A

C
B

H crank-Ω vector
(for ϕ=75° ϑ=65°)

|x(45°)〉=|(+)〉

|(−)〉

|x〉

|y〉

ΩΩ|x(30°)〉

|x(15°)〉

|x(60°)〉

|x(150°)〉

β=45°

ϑ=65°

ϕ=75°

α=15°

R(3) World : Real 3D Vectors

SS

H-Operator
AAnngguullaarr vveelloocciittyy

ΩΩ==

|Ψ〉 State
SSppiinn VVeeccttoorr

SS

Ψ1

Ψ2

2-State ket |Ψ〉=

Ψ1

Ψ2

=

√Ne-iα/2cosβ/2

e-iγ/2

√Neiα/2sinβ/2

U(2) World : Complex 2D Spinors

Ψ2

α−γsinβ/2 2
x2

p2

Ψ1 −α−γ

cosβ/2

2

x1

p1 = x2+ip2

= x1+ip1

|x〉or |x1〉

|y〉or |x2〉

A B-iC

B+iC D

ΩB

ΩC

ΩA

2B

2C

A-D

Ωsinϑcosϕ

Ωsinϑsinϕ

Ωcosϑ

==

SSBB

SSCC

SSAA

Nsinβcosα

Nsinβ sinα

Ncosβ

=

(for α=15° β=45°)

1
2

α
2

ψ

Fig. 10.5.8 Comparison of  (a) Complex U(2) spinor picture in (ψ1,ψ2)-space,
With (b)  Real R(3) vector picture in (A,B,C)-space. 
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Hamilton’s generalization of exp(-iω t)=cosω t-isinω t : exp(-i σ t)=What? 

 When Hamilton generalized imaginary numbers to quaternions he had also generalized the famous 
Theorem of DeMoivre (e-iα=cosα -isinα). Engineers use eiα to rotate phase by α in AC theory, and a 2D Planck 
time phasor e-iω t=cosω t-isinω t of wave theory generalizes to a 3D rotation e-iΩσ t.
 An exponential expression for a 2-by-2-polarization rotation matrix was given in (10.2.18).

  
  
R ϕ( ) = eϕG  ,   represented by:  

cosϕ - sinϕ
sinϕ cosϕ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
= e

ϕ 0 −1
1 0

⎛

⎝⎜
⎞

⎠⎟ = e
−iϕ 0 −i

i 0

⎛

⎝⎜
⎞

⎠⎟   (10.5.21)

This is a C- or Y-rotation by ϕ in (x,y)-space, and ϕ is half the angle β=2ϕ that S rotates in 3-space.

    

   

RC ϕ( ) = e−iϕσC             = e−i2ϕSC                                             =       1        cosϕ   -i         σC    sinϕ  

              = e
−iϕ 0 −i

i 0

⎛

⎝⎜
⎞

⎠⎟ = e
−i2ϕ 0 −i

i 0

⎛

⎝⎜
⎞

⎠⎟
1
2 =

cosϕ -sinϕ
sinϕ cosϕ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
= 1 0

0 1

⎛

⎝⎜
⎞

⎠⎟
cosϕ − i 0 −i

i 0

⎛

⎝⎜
⎞

⎠⎟
sinϕ

 (10.5.22)

The rotation e-iϕσC breaks down to a sum of a unit operator 1 times cos(ϕ) minus iσC times sin(ϕ), a  
generalization of the DeMoivre exponential: e-iφ = cos φ -i sin φ. These represent enormous milestones in the 
history of mathematics, but Hamilton's contribution is particularly powerful as we will see. It is hard to imagine 
quantum theory without either one of these great developments. 
 The other two types A and B of rotations are listed in the U(2) catalog in Fig. 10.4.2. The A or Z-type 
rotation generated by asymmetric-diagonal σA is also diagonal but complex.

    

   

RA θ( ) = e−iθσA         = e−i2θSA                                       =        1      cosθ   -  i      σA    sinθ  

         = e
−iθ 1 0

0 −1

⎛

⎝⎜
⎞

⎠⎟ = e
−i2θ 1 0

0 −1

⎛

⎝⎜
⎞

⎠⎟
1
2 = e−iθ 0

0 eiθ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
= 1 0

0 1

⎛

⎝⎜
⎞

⎠⎟
cosθ − i 1 0

0 −1

⎛

⎝⎜
⎞

⎠⎟
sinθ

     (10.5.23)

The B or X type rotation is complex and non-diagonal. (Check it by doing a σB spectral decomposition.)

    

   

RB χ( ) = e−iχσB             = e−i2χSB                                            =         1       cosχ   -  i  σB  sinχ  

           = e
−iχ 0 1

1 0

⎛

⎝⎜
⎞

⎠⎟ = e
−i2χ 0 1

1 0

⎛

⎝⎜
⎞

⎠⎟
1
2 =

cosχ -isinχ
−isinχ cosχ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
= 1 0

0 1

⎛

⎝⎜
⎞

⎠⎟
cosχ − i 0 1

1 0

⎛

⎝⎜
⎞

⎠⎟
sinχ

(10.5.24)

 The key idea here is that e-iφσ = cos φ -iσ sin φ works not just for separate σ  =σB, σC, or σA but for any 
combination-reflection σ  =σAB or σABCD provided σ2=1. Evolution operator U= e-iΗ t (=1) has Hamiltonian 
H=σ•Ω/2=(Ω/2)σ defined by crank vector Ω or rotation axis vector Θ=Ω t as in (10.5.10). 

 
   
U = e−iHt = e

−iΘ
2
Θ̂•σ

=R[Θ] = cos
Θ
2

 1− isinΘ
2

 Θ̂ •σ = e
−i1

2
Θ•σ

= e−iΘ•S   (10.5.25a)

The rotation axis is given by its polar coordinates (ϕ , ϑ) and angle of turn Θ = 
  
ΘX

2 +ΘY
2 +ΘZ

2 =Ω t.

 Θ = (ΘX, ΘY, ΘZ) = |Θ|· (cosϕ sinϑ, sinϕ sinϑ, cosϑ)= (ΘB, ΘC, ΘA)  
Representing σX   =σB, σY   =σC, and σZ   =σA by their usual matrices gives a representation of U=R.  

   

R Θ⎡⎣ ⎤⎦= cos
Θ
2

         1       −   i    σX      Θ̂X sin
Θ
2

  − i     σY        Θ̂Y sin
Θ
2

 − i     σ Z        Θ̂Z sin
Θ
2

          = cos
Θ
2

1 0
0 1

⎛

⎝⎜
⎞

⎠⎟
 − i 0 1

1 0

⎛

⎝⎜
⎞

⎠⎟
Θ̂X sin

Θ
2

 − i 0 −i
i 0

⎛

⎝⎜
⎞

⎠⎟
Θ̂Y sin

Θ
2

 − i 1 0
0 −1

⎛

⎝⎜
⎞

⎠⎟
Θ̂Z sin

Θ
2

Unit rotation axis vector 
 
Θ̂ = Θ̂X, Θ̂Y, Θ̂Z( ) = cosϕ sinϑ sinϕ sinϑ cosϑ( )  is defined.
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1R Θ⎡⎣ ⎤⎦ 1 1R Θ⎡⎣ ⎤⎦ 2

2 R Θ⎡⎣ ⎤⎦ 1 2 R Θ⎡⎣ ⎤⎦ 2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

cos
Θ
2
− iΘ̂Z sin

Θ
2

−isinΘ
2

Θ̂X − iΘ̂Y( )
−isinΘ

2
Θ̂X + iΘ̂Y( ) cos

Θ
2
+ iΘ̂Z sin

Θ
2

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

  (10.5.25b)

In terms of polar axis angles [ϕ,ϑ,Θ=Ω·t] this expands to a general SU(2) rotation matrix.  

  

   

R Θ⎡⎣ ⎤⎦  =
cos

Θ
2
− icosϑ sin

Θ
2

−isinΘ
2

cosϕ sinϑ − isinϕ sinϑ( )

−isinΘ
2

cosϕ sinϑ + isinϕ sinϑ( ) cos
Θ
2
+ icosϑ sin

Θ
2

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=R ϕϑΘ⎡⎣ ⎤⎦  =
cos

Θ
2
− icosϑ sin

Θ
2

−ie−iϕ sinϑ sin
Θ
2

−ieiϕ sinϑ sin
Θ
2

cos
Θ
2
+ icosϑ sin

Θ
2

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

= e−iHt = e−iΘ•S

 (10.5.25c)

H eigenstates |εhi(α ,β)〉 or |εlo(α ,β)〉 have angles (α ,β) in (10.5.8) given by (ϕ ,ϑ) or (ϕ ,ϑ+π).

Why the 1/2?
 The 1/2 in front of angle Θ is there because Θ =Ω·t is the angle of rotation in 3D- ABC space in Fig. 
10.5.8b. Angle Θ or β is twice the 2D-spinor-space angle ϕ or β/2 in Fig. 10.5.8a. Why is this?
 One answer is that to transform spinor operator O from O to O'=ROR† by rotation R requires two R‘s. 
For example, O= σZ=σA transformed by RY = RC is the following. 

     

 

                    RY ϕ( )          σ Z            RY ϕ( )†                                   =     σX        sin2ϕ  +      σ Z      cos2ϕ

cosϕ -sinϕ
sinϕ cosϕ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

1 0
0 −1

⎛

⎝⎜
⎞

⎠⎟
cosϕ sinϕ
−sinϕ cosϕ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

=
cos2ϕ − sin2ϕ 2sinϕ cosϕ

2sinϕ cosϕ sin2ϕ − cos2ϕ

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

cos2ϕ sin2ϕ
sin2ϕ -cos2ϕ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
= 0 1

1 0

⎛

⎝⎜
⎞

⎠⎟
sin2ϕ + 1 0

0 −1

⎛

⎝⎜
⎞

⎠⎟
cos2ϕ

(10.5.26)

For angle 2ϕ=π/2, this relates σZ=σA to σX=σB as is done in (10.3.9). A rotation by 2ϕ=Θ=β in ABC-operator 
3-space (σX, σY, σZ) is twice the angle ϕ used for spinor 2-space. Spinor-1/2 factors double in vector 3-space, 
and spinors have half-angles ϕ = β/2 so that β=Θ is a real 3D-rotation. Also, recall in (10.3.12) that two mirror 
planes separated by ϕ yield rotations by 2ϕ. 
The evolution-rotation-operator U= e-iΘ  • σ/2 = e-iΘ  • S by 3D-angle Θ may be viewed two ways: A 3D rotation 
by Θ generated by spin vector operator S=σ/2, or a 2D rotation by Θ/2 generated by a spinor operator σ. The 
1/2-factors have quite deep significance. They are related to electrons having 1/2 quantum of spin S=σ/2. They 
deserve deep consideration. We shall try again later to explain more about the mysterious 1/2!
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Problems for Chapter 10.
ABCDanonical? 
10.1.1. The canonical definition of momentum does not always give pj=m dxj/dt. (See “Deep Classical..” Chapter 5.3)

(a) What is the general definition of pj in terms of a Lagrangian L? First, what is L in terms of Hamiltonian H? 
(b) Find L and pj for the classical ABCD Hamiltonian (10.1.3c).
(c) Is the Schrodinger-to-Classical-Oscillator analogy correct if there is explicit time dependence A(t), B(t),..etc.?

All fall down
10.1.2. The fall-line at any point in a 2D potential V(x,y) is determined by ∇V (or -∇V, which?)

(a) Relate acceleration-force vector (10.1.5) for the general potential V=(1/2)x•A•x (10.1.6b) to the gradient ∇V.
(b) Find eigenvectors and eigenvalues of acceleration matrix A . Show how eigenvectors relate to V-ellipse axes for:.

case A: (A=4, D=1, B=0, C=0) , case B: (A=D=4, B=-1, C=0) , case AB: (A=4, D=1, B=1, C=0) .
Relate each to a classical normal mode frequency.

(c) Find eigenvectors and eigenvalues of Hamiltonian matrix H for:.
case A: (A=4, D=1, B=0, C=0) , case B: (A=D=4, B=-1, C=0) , case AB: (A=4, D=1, B=1, C=0) .
Relate each to a quantum energy or eigenfrequency.

Groupie quaternions
10.1.3 Do the quaternions {1, i, j, k} by themselves make a group? How about Pauli { σ1, σA , σB , σC }?

(a) How about the set { 1, i, j, k , -1, -i, -j, -k} ? Construct a 4x4 multiplication table for {1, i, j, k}.
(b) How about the set { σ1,σA ,σB ,σC ,-σ1,-σA ,-σB ,-σC } ? Construct a 4x4 multiplication table.
[c]  Show that σm · σn = δmn1 + iemnp σp .

__________________________________________________________________
Use the Phase Luke!
10.2.1  Suppose a particle is oscillating at frequency ω according to x(t) = A sin (ω t) while experiencing an applied force at the 
same frequency but ahead in phase angle φ according to F(t) = F sin (ω t-φ) . 

(a) Does positive φ represent a force ahead or behind ?
(b) Sketch a F versus x (Work-cycle) diagram for φ = 0 , π/4, π/2, π, and 3π/2 .
(c) Calculate the work F does on x each cycle as a function of φ and indicate how it relates to area of F-x plots (b).
(d) At the moment shown in Fig. 10.2.6, what is the phase angle φ between x1 and x2. Who’s ahead? How does the phase 

angle vary with time? How does the energy flow (in the classical model) between the two vary with time?

__________________________________________________________________
B versus C
10.3.1The H-matrix for the symmetry B, and C was given in the form of the tunneling amplitudes (B=-S) plus magnetic Zeeman 
(dipole) energy shifts (C ) . As the relative magnitudes of these vary the eigenstates, eigenvalues, and symmetry changes, too.

(a) Write the H(H, B, C=0) matrix in a basis that is most appropriate for  its (What?  B, or C?)-symmetry and use the lowest 
order perturbation theory to describe the effect of small C-value. Compare your result to that of the exact avoided crossing 
eigenvalues for (B=1, C=0.2). Describe the set or group of matrix operators that commute with H(H, B, C=0) and with H
(H,  B=1, C=0.2) , that is, give both finite "rotation" matrices and their generators. 
Sketch eigenstate phasor and polarization diagrams† for each case.
Sketch ABC Ω and S vector diagrams† for each case.
(b) Write the H(H, B=0, C) matrix in a basis that is most appropriate for its (What? B, or C?)-symmetry and use the lowest 
order perturbation theory to describe the effect of small B-value. Compare your result to that of the exact avoided crossing 
eigenvalues for (B=0.2, C=1). Describe the set or group of matrix operators that commute with H(H, B=0, C) and with H
(H, B=0.2, C=1) , that is,  give both finite "rotation" matrices and their generators.
Sketch eigenstate phasor and polarization diagrams† for each case.
Sketch ABC Ω and S vector diagrams† for each case.   †See Sec. 10.5.

Commute or else!
10.3.2 Use spectral decompositions to derive the form of the general U(2) matrix that commutes... 

(a) ...with 
  
σ A = 1 0

0 −1

⎛

⎝⎜
⎞

⎠⎟
 (b) ...with 

  
σ B = 0 1

1 0

⎛

⎝⎜
⎞

⎠⎟
 ,(c) ...with 

  
σC = 0 −i

i 0

⎛

⎝⎜
⎞

⎠⎟
 , (d) ...with 

  
M = 4 1

3 2

⎛

⎝⎜
⎞

⎠⎟
.

(e to h) Derive the form of the most general SU(2) matrices that commute with each of the above.
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Eigenvalues easy as ABCD
10.4.1 The expansion (10.4.5b-c) gives a closed form expression for eigenvalues of a general HABCD. 

(a) Verify all parts of (10.4.5).
(b) Show the eigenvalues so obtained agree with a direct diagonalization of HABCD.
(c) Show that this is a special case of HAB eigenvalues in (10.3.11).

Ellipses on ellipses
10.4.2 The elliptical eigenstate orbits of Fig. 10.4.1 are seen to correspond to the elliptical equipotential level curves.

(a) Do they really? How so?
(b) Work the eigensolutions for Fig. 10.4.1 and plot their ellipses.
(c) Are the ellipse major axes of orthogonal eigenvectors themselves orthogonal? Why or why not?

_____________________________________________________
Eigenvectors easy as ABCD
10.5.1 The prescription (10.5.20) for finding general U(2) eigenvectors is powerful and important.

(a)  Write it out in detail for the AB-Hamiltonian in Fig. 10.5.7. Give eigenstates easily. (Recall (10.5.8a)
(b) Show how a polarization ellipse would evolve and fill a rectangle if x-polarization were fed to this H.
(c) Do similarly with the Hamiltonian and initial spin shown in Fig. 10.5.8.

Very cross prodots
10.5.2 Using the σ-operator definitions and the Levi-Civita tensor definition

derive the following. (First prove Levi-Civita rule:  εabcεdec = δadδbe − δaeδbd )  

(a) 
 
σ aσb = δab + i εabcσ c

c
∑  (b)   σ aσbσ a = 2δabσ a − σb  (c) 

  
σ •A( ) σ •B( ) = A •B( ) + i A ×B( )•σ   

Spinor round
10.5.3 Use spectral decomposition to derive three rotation operators(A-C) and base transforms (d-g).

(a) 

   

R θxy( ) = e
−i
θxy

2
σ z = 1cos

θxy

2
− iσ z sin

θxy

2
= e

−iθxy / 2
0

0 e
iθxy / 2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

(b) 
   
R θ yz( ) = e

−i
θ yz

2
σ x = 1cos

θ yz

2
− iσ x sin

θ yz

2
=

______ ______
______ ______

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

(c) 
   
R θzx( ) = e

−i
θzx

2
σ y = 1cos

θzx
2

− iσ y sin
θzx
2

=
______ ______
______ ______

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

(d) 
   
R θab( ) ⋅1 ⋅R† θab( ) = 1  

(e)  
   
R θab( ) ⋅σ a ⋅R

† θab( ) = σ a cosθab +σb sinθab        

(f)  
   
R θab( ) ⋅σb ⋅R

† θab( ) = −σ a sinθab +σb cosθab        

(g) 
   
R θab( ) ⋅σ c ⋅R

† θab( ) = σ c    (Let:εabc =1)       

The Lorentz district
10.5.4 Use spectral decomposition to derive three Lorentz operators (A-C) and base transforms (d-f).

(a) 
   

L θtz( ) = e
θtz
2
σ z = 1cosh

θtz
2

+σ z sinh
θtz
2

= eθtz / 2 0

0 e−θtz / 2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

(b) 
   
L θtx( ) = e

θtx
2

σ x = 1cosh
θtx
2

+σ x sinh
θtx
2

=
______ ______
______ ______

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

©2013 W. G. Harter   Chapter10 Two-State Time Evolution   10-



55

(c) 
   
L θty( ) = e

θty
2

σ y = 1sinh
θty

2
+σ y cosh

θty

2
=

______ ______
______ ______

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

(d) 
   
L θta( ) ⋅1 ⋅L† θta( ) = 1coshθta +σ a sinhθta        

(e)  
   
L θta( ) ⋅σ a ⋅L

† θta( ) = 1sinhθta +σ a coshθta          

(f) 
   
L θta( ) ⋅σ c ⋅L

† θta( ) = σ c    (Let:εabc =1)

Fig. 1
10.5.5. Suppose an NMR spin system described by Hamiltonian H=gS•B=g/2σ•B is initially in a state

   
 
Ψ 0( ) = 3

2
↑ + 1

2
↓ = 3 / 2

1 / 2

⎛

⎝
⎜

⎞

⎠
⎟    (5.1)

(a) Write out  H and its Schrodinger equation using 2-dimensional matrix notation.
(b) Write out  H and its Bloch equation using 2-dimensional matrix notation.
(c) Define a set of H that make state (5.1) stationary. What other state(s) are also stationary.
(d) Find constant Hamiltonian H which will drive state (5.1) thru spin-up ↑  in a given time τ. 

    
  
↑ Ψ τ( ) 2

= 1      but: ↑ Ψ t( ) 2
≠ 1  for : t<τ     (5.2)

A number of H satisfy (5.2) but we prefer one which requires the least energy. Explain by describing a set of H. (Hint: Does 
least energy this also mean least angle of spin vector rotation?)
(e) Give the eigenkets and energy eigenvalues of the Hamiltonian resulting from (d) in terms of τ and  and sketch an 
energy level diagram.
(f) Give a formula for the angular frequency of radiation in terms of τ and  that might be observed as the state (5.1) and 
Hamiltonian from (d) are allowed to time-evolve. 
(g) Indicate where on Fig. 1 would be the initial spin vector, the driving magnetic B-field, and path followed by spin vector.
(h) Let this be the analogous optical polarization problem. Show how the polarization E evolves.

(j)What is the maximum energy or frequency of radiation that can result from (5.1-2) above. 
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Review Topics & Formulas for Unit 3

  

Fourier SeriesCoefficients

km Ψ = dx
−L / 2

L / 2
∫ km x x Ψ

   km x = e−ikmx

L
= x km

*

   

  

Fourier Integral Transform

k Ψ = dx
−∞

∞
∫ k x x Ψ

Kernal : k x = e−ikx

2π
= x k

*

  

Fourier CN Transformation

km Ψ = km xp xp Ψ
p=0

p=N −1
∑

  km xp = e
−ikmxp

N
= xp km

*

x-Wavefunction Ψ(x)=   x-Wavefunction Ψ(x)=  x-Wavefunction Ψ(x)=

 

x Ψ = x km km Ψ
m=−∞

m=∞
∑

Ortho −Completeness
  

 

x Ψ = dk
−∞

∞
∫ x k k Ψ

Ortho −Completeness
 

  

xp Ψ = xp km km Ψ
m=0

m=N −1
∑

Ortho −Completeness

  

x km km ′x
m=0

m=∞
∑ = δ x − ′x( )

dx
−L / 2

L / 2
∫ km x x k ′m = δm, ′m

 

 

dk
−∞

∞
∫ x k k ′x = δ x − ′x( )

dx
−∞

∞
∫ k x x ′k = δ k − ′k( )

 

  

xp km km x ′p
m=0

m=N −1
∑ = δ p, ′p

km xp xp k ′m
p=0

p=N −1
∑ = δm, ′m

Discrete momentum m  Continuous momentum k  Discrete momentum m
Continuous position x   Continuous position x   Discrete position xp
_____________________________________________________________________________________________________________________________

    

Time EvolutionOperator U
Ψ(t) = U(t,0) Ψ(0)

HamiltonianGenerator H

i ∂
∂t

U(t,0) = H U(t,0)

  

    

Time EvolutionOperator U

U(t,0) = e−i t H /

Schrodinger t − Equation

i ∂
∂t

Ψ(t) = H Ψ(t)

  
    

U must beUnitary

U†(t) = U−1(t) = U(−t)

e−itH /( )† = eitH† / = eitH /

so H is Hermitiam H† = H

__________________________________________________________________________________
Schrodinger time-independent  energy eigen equation.
     H | ωm 〉 = ωm | ωm 〉 = εm | ωm 〉    (9.3.1a)
H-eigenvalues use r-expansion (9.2.6) of H and C6 symmetry rp-eigenvalues from (8.2.9).
     〈km|rp|km〉= e-ipkma = e-ipm2π/N  where:  km = m(2π/Na)  
     〈km|H|km〉 = H 〈km|1|km〉 + S 〈km|r|km〉 + T 〈km|r2|km〉 + U 〈km|r3|km〉 + T* 〈km|r4|km〉 + S* 〈km|r5|km〉
:          = H + S e-ikma + T e-i2kma + U e-i3kma + T* ei2kma + S* eikma    (9.3.5a) 
Bloch dispersion relation. And Bohr limit (k<<π/a) approxiamtion. Band group velocity Vgroup.
   ωm =Em = H - 2|S| cos( km a)  = H - 2|S| + |S|( kma )2 +..     (9.3.8)

  
   

Vgroup =
dωm
dkm

= 2
S


a sin kma( )   ≅ 2

S


kma2  , for: km << π / a

⎛

⎝
⎜

⎞

⎠
⎟   (9.3.10)

Effective mass Meff inversely proportional to S.  Meff(0)= 2/( 2|S| a2 )  (9.3.11a)
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__________________________________________________________________________________
Fourier transform of a Gaussian e-(m/Δm)2 momentum distribution is a Gaussian e-(φ/Δφ)2 in coordinate φ. 
    〈m|Ψ〉 =  e-(m/Δm)2   implies:   〈 φ |Ψ〉 =  e-(φ/Δφ)2      (9.3.14)
The relation between momentum uncertainty Δm and coordinate uncertainty Δ φ is a Heisenberg relation.
     Δm/2 =1/ Δ φ , or:   Δm Δ φ  =2     (9.3.15)

Bohr wave quantum speed limits

  
  
Vgroup

Bohr m ↔ n( ) = ωm −ωn
km − kn

=
m2 − n2( )hυ1

m − n( )h / L
= (m + n) L

τ1
= (m + n)V1  (9.3.16)

Predicting fractional revivals: Farey Sum ⊕ F of the rational fractions n1/d1 and n2/d2

   
  
t12− intersection =

n2 + n1
d2 + d1

=
n2
d2

⊕F
n1
d1

    (9.3.18)

U(2)-Oscillation and R(3)-Rotation Analogies for 2-Dimension or Spin-1/2 Systems

  

  

GeneralU (2)Hamiltonian Matrix

A B − iC
B + iC D

⎛

⎝⎜
⎞

⎠⎟
=

2Ω0 +ΩZ ΩX − iΩY

ΩX + iΩY 2Ω0 − ΩZ

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

1
2

  

  

GeneralU (2) State Vector Ψ =

Ψ1

Ψ1

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

x1 + i p1

x2 + i p2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

= N
e−iα / 2 cosβ / 2

eiα / 2 sinβ / 2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

e
−i

γ
2

   

Asymmetric Diagonal C2
A

H = A 0
0 D

⎛

⎝⎜
⎞

⎠⎟
= Ω01 +ΩAσ A

= A+ D
2

1 0
0 1

⎛

⎝⎜
⎞

⎠⎟
+ A− D

2
1 0
0 −1

⎛

⎝⎜
⎞

⎠⎟    

Bilateral(Balanced ) C2
B

H = A B
B A

⎛

⎝⎜
⎞

⎠⎟
= Ω01 +ΩBσ B

          = A 1 0
0 1

⎛

⎝⎜
⎞

⎠⎟
+ B 0 1

1 0

⎛

⎝⎜
⎞

⎠⎟

 

   

Circular,Cyclotron,Curly C2
C

H = A −iC
iC A

⎛

⎝⎜
⎞

⎠⎟
= Ω01 +ΩCσC

             = A 1 0
0 1

⎛

⎝⎜
⎞

⎠⎟
+ C 0 −i

i 0

⎛

⎝⎜
⎞

⎠⎟

Hermitian Hamilton-Jordan-Pauli-Jones ABC or XYZ operator basis for U(2) Hamiltonians

  

A - Type or Z - Spin Op
iqZ
2

=JZ =SZ =
σZ
2

         

       =SA= 1 0
0 −1

⎛

⎝⎜
⎞

⎠⎟
1
2

  

  

B - Type or X - Spin Op
iqX

2
=JX =SX =

σ X
2

         

       =SB = 0 1
1 0

⎛

⎝⎜
⎞

⎠⎟
1
2

 

  

C - Type or Y - Spin Op
iqY
2

=JY =SY =
σY
2

         

       =SC = 0 −i
i 0

⎛

⎝⎜
⎞

⎠⎟
1
2

  

A− Spin ExpectaionValue

SZ = SA = Ψ SZ Ψ  

=N  p1
2 + x1

2 − p2
2 − x2

2( ) / 2

 = N/2( )  cosβ

 = Ψ1
*Ψ1 -Ψ2

*Ψ2( ) /2     

  

  

B − Spin ExpectaionValue

SX = SB = Ψ SX Ψ  

 =N  x1x2 + p1p2( )
 = N/2( )  cosα sinβ

 =Re Ψ1
*Ψ2      

  

  

C − Spin ExpectationValue

SY = SC = Ψ SY Ψ  

 =N  x1p2 − x2 p1( )
 = N/2( )  sinα sinβ

 =Im Ψ1
*Ψ2      
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H = A B − iC

B + iC D
⎛

⎝⎜
⎞

⎠⎟

  
   

U (2)HamiltonianOperatorH
H =Ω01+Ω •S  ,   Ω•S =

 =ΩXSX +ΩYSY +ΩZSZ

 =ΩX
σ X

2
+ΩY

σ Z
2

+ΩZ
σ Z
2

 

   

U (2)  H in ABC  notation
H =Ω01+Ω •S  ,   Ω•S =

= A− D( )SA + 2BSB + 2CSC

= A− D
2

σ Z +  Bσ X + C σY

ΩZ= ΩA= H11 -H22  = A-D   ΩX= ΩB= 2ReH21  = 2B  ΩY= ΩC= 2ImH21  = 2C
 =Ω   cosϑ    (H-Crank A-Component)  =Ω cosϕ  sinϑ      (Ω B-Component)  =Ω sinϕ  sinϑ      (Ω C-Component)

_____________________________________________________________________________________________________________________________

Density Operator (Pure 2-state only) 

 

ρ = Ψ Ψ =
Ψ1

Ψ2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
⊗ Ψ1

* Ψ2
*( ) = Ψ1Ψ1

* Ψ1Ψ2
*

Ψ2Ψ1
* Ψ2Ψ2

*

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

   

ρ11 ρ12

ρ21 ρ22

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

=
Ψ1

*Ψ1 Ψ2
*Ψ1

Ψ1
*Ψ2 Ψ2

*Ψ2

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

=     ρ =     N
2

 1+ SXσX +SYσY +SZσZ        =N/2 1 + S•σ 

Bloch equations.  
  
i ∂
∂ t

ρ = i ρ =Hρ − ρH = H,ρ⎡⎣ ⎤⎦      or:      
   
∂ S
∂ t

= S = Ω× S

Hamilton-Pauli Identities
 

   
A •σ( ) B•σ( )=A •B + i A ×B( )•σ ,   σµ σν =   δµν 1 + i εµνλ σλ .

SU(2) rotation matrix by rotation axis vector Θ=Ω t. and   Two-state evolution operator   

   
R Θ⎡⎣ ⎤⎦= cos

Θ
2

   1       −   iσX   Θ̂X sin
Θ
2

   −  iσY     Θ̂Y sin
Θ
2

    −    iσ Z    Θ̂Z sin
Θ
2

  

   
1R Θ⎡⎣ ⎤⎦ 1 1R Θ⎡⎣ ⎤⎦ 2

2 R Θ⎡⎣ ⎤⎦ 1 2 R Θ⎡⎣ ⎤⎦ 2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

cos
Θ
2
− iΘ̂Z sin

Θ
2

−isinΘ
2

Θ̂X − iΘ̂Y( )
−isinΘ

2
Θ̂X + iΘ̂Y( ) cos

Θ
2
+ iΘ̂Z sin

Θ
2

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

  (10.5.25b)

The rotation axis is given by its polar coordinates (ϕ , ϑ) and angle of turn Θ = 
  
ΘX

2 +ΘY
2 +ΘZ

2 =Ω t.

 Θ = (ΘX, ΘY, ΘZ) = Θ (cosϕ sinϑ, sinϕ sinϑ, cosϑ)= (ΘB, ΘC, ΘA)  

Unit rotation axis vector 
   
Θ̂ =

Θ / Θ = Θ̂X , Θ̂Y , Θ̂Z( ) = cosϕ sinϑ sinϕ sinϑ cosϑ( )

 

   

R Θ⎡⎣ ⎤⎦  =
cos

Θ
2
− icosϑ sin

Θ
2

−isin
Θ
2

cosϕ sinϑ − isinϕ sinϑ( )

−isin
Θ
2

cosϕ sinϑ + isinϕ sinϑ( ) cos
Θ
2
+ icosϑ sin

Θ
2

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=R ϕϑΘ⎡⎣ ⎤⎦  =
cos

Θ
2
− icosϑ sin

Θ
2

−ie−iϕ sinϑ sin
Θ
2

−ieiϕ sinϑ sin
Θ
2

cos
Θ
2
+ icosϑ sin

Θ
2

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

= e−iHt = e−iΘ•S

 (10.5.25c)

Hamiltonian generator determines crank rate Ω.
ΩZ= ΩA= H11 -H22  = A-D   ΩX= ΩB= 2ReH21  = 2B  ΩY= ΩC= 2ImH21  = 2C
=Ω   cosϑ    (H-Crank A-Component)  =Ω cosϕ  sinϑ      (Ω B-Component)  =Ω sinϕ  sinϑ      (Ω C-Component)
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U(2)-R(3) Two-State and Spin-Vector Summary
Hamiltonian H Hamiltonian Ω-vector Eigenvectors |ε〉,|ε'〉 and Spin expectation S-vector
Operator & matrix          mirror planes (if any) for each eigenvector
in  |1〉,|2〉-basis in ABC-space        in |1〉,|2〉-space   in ABC-space

   

H =Ω01+Ω •S 

=
A+ D( )

2
1+ A− D( )SA

    + 2BSB + 2CSC

= A B − iC
B + iC D

⎛

⎝⎜
⎞

⎠⎟

    

   


Ω =

ΩA

ΩB

ΩC

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

=
A− D
2B
2C

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

  

  

ε =

x1 + ip1

x2 + ip2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

′ε =

′x1 + i ′p1

′x2 + i ′p2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

  

   

S =

SA

SB

SC

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=

ε SA ε

ε SB ε

ε SC ε

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=

x1
2 + p1

2 − x2
2 − p2

2

2
x1x2 + p1p2

x1p2 − x2 p1

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

_____________________________________________________________________________________

   

A. Asymmetric − Diagonal

HA =

A+ D( )
2

1 + A− D( )SA

   = A 0
0 D

⎛

⎝⎜
⎞

⎠⎟

    

   


Ω =

ΩA

ΩB

ΩC

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

=
A− D

0
0

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

    

 

ε1 =

1
0

⎛

⎝⎜
⎞

⎠⎟

ε2 =

0
1

⎛

⎝⎜
⎞

⎠⎟

  

  

ε1 SA ε1

ε1 SB ε1

ε1 SC ε1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=
1 / 2

0
0

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

ε2 SA ε2

ε2 SB ε2

ε2 SC ε2

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=
−1 / 2

0
0

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

  

  

B

A

C

Ω

 

  

|ε1〉

|ε2〉

σA mirror
    plane

−σ
A

 m
ir

ro
r

   
 p

la
ne

  

   

B

A

C

〈ε1|S|ε1〉

〈ε2|S|ε2〉

__________________________________________________________________________________

   

B. Bilateral − Balanced

HB =

   A ⋅1 + 2BSB

   = A B
B A

⎛

⎝⎜
⎞

⎠⎟

   

   


Ω =

ΩA

ΩB

ΩC

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

=
0

2B
0

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

         

 

′ε1 =

1 / 2
1 / 2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

′ε2 =

−1 / 2
1 / 2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

          

  

′ε1 SA ′ε1

′ε1 SB ′ε1

′ε1 SC ′ε1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=
0

1 / 2
0

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

′ε2 SA ′ε2

′ε2 SB ′ε2

′ε2 SC ′ε2

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=
0

−1 / 2
0

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

SB =
1
2

0 1
1 0

!

"#
$

%&
= 1
2
! B

   

   

B

A

C
Ω

ϑ= 90°

 

  

|ε' 1〉
|ε' 2〉

σB
 m

irr
or

    
pla

ne
−σ

B m
irr

or

    
pla

ne

θ = β/2
45°

 

   

B

A

C
〈ε'1|S|ε'1〉

〈ε'2|S|ε'2〉β= 90°
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AB. Asymmetric − Bilateral

HAB =
A− D( )

2
1 +

   + A− D( )SA+2BSB

   = A B
B D

⎛

⎝⎜
⎞

⎠⎟

 

   


Ω =

ΩA

ΩB

ΩC

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

=
A− D
2B
0

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

     

 

′′ε1 =

cosθ
sinθ

⎛

⎝⎜
⎞

⎠⎟

′′ε2 =

− sinθ
cosθ

⎛

⎝⎜
⎞

⎠⎟

  

  

′′ε1 SA ′′ε1

′′ε1 SB ′′ε1

′′ε1 SC ′′ε1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

= 1
2

cosβ
sinβ

0

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

′′ε2 SA ′′ε2

′′ε2 SB ′′ε2

′′ε2 SC ′′ε2

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

= 1
2

− cosβ
− sinβ

0

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

            

    

B

A

C
Ω A-D

2B

ϑ= 40°

                       

  

−σ
Α

B  m
irro r

    p la ne

σΑB mirror

    plane

|ε" 2〉

|ε" 1〉
θ = β/2

20°

    

   

〈ε"2|S|ε"2〉B

〈ε"1|S|ε"1〉

A

C

β= 40°

________________________________________________________________________________

   

C. Circular − Complex

HC =

   A ⋅1 + 2CSC

   = A −iC
iC A

⎛

⎝⎜
⎞

⎠⎟

        

   


Ω =

ΩA

ΩB

ΩC

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

=
0
0

2C

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

       

  

R =

1 / 2
i / 2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

L =

1 / 2
−i / 2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

                          

  

R SA R

R SB R

R SC R

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=
0
0

1 / 2

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

L SA L

L SB L

L SC L

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=
0
0

−1 / 2

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

  

SC = 1
2

0 −i
i 0

⎛

⎝⎜
⎞

⎠⎟

    = 1
2
σC

         

    

B

A

C
Ω

2C

ϑ= 90°

ϕ= 90°   

  

|R〉
|L〉

     

B

A

C
Ω

2C

β= 90°

α= 90° 〈R|S|R〉

〈L|S|L〉

_____________________________________________________________________________________
Polar Angle Descriptions of U(2) Hamiltonian H and its state space  |ε〉,|ε'〉...  

Crank Axis angles (ϕ,ϑ,Ω) (
  
Ω = ΩX

2 +ΩY
2 +ΩZ

2 )        Spin Vector Euler angles (α,β,γ)

    

H =Ω01+

Ω•S =

1
2

2Ω0 +ΩZ ΩX − iΩY

ΩX + iΩY 2Ω0 −ΩZ

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

    

   


Ω =

ΩA

ΩB

ΩC

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

=
A− D
2B
2C

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟
=

ΩZ

ΩX

ΩY

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

=Ω
cosϑ

cosϕ sinϑ
sinϕ sinϑ

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

     

  

ε =

e−iα / 2 cosβ / 2

eiα / 2 sinβ / 2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

e
−iγ

2

′ε =

−e−iα / 2 sinβ / 2

eiα / 2 cosβ / 2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

e
−iγ

2

       

   

S =

SA

SB

SC

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=

ε SA ε

ε SB ε

ε SC ε

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

   S =
cosβ

cosα sinβ
sinα sinβ

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
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                                                                             Catalog of Two -State Hamiltonians

H = H† =
HU (2) =

A 0
0 A

⎛

⎝⎜
⎞

⎠⎟

H
C2

A =

A 0
0 D

⎛

⎝⎜
⎞

⎠⎟

H
C2

AB =

A B
B D

⎛

⎝⎜
⎞

⎠⎟

H
C2

B =

A B
B A

⎛

⎝⎜
⎞

⎠⎟

H
C2

C =

A −iC
iC A

⎛

⎝⎜
⎞

⎠⎟

H
C1

=

A B − iC
B + iC D

⎛

⎝⎜
⎞

⎠⎟

Commute
with :

U =
U11 U12

U21 U22

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

R(θ ) =

e−iθ 0

0 eiθ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

R(ζ ) =

cosζ
−icsinζ

−issinζ

−issinζ
cosζ

+icsinζ

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

R(χ ) =

cosχ −isinχ
−isinχ cosχ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

R(ϕ ) =

cosϕ −sinϕ
sinϕ cosϕ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

1(λ) =

eiλ 1 0
0 1

⎛

⎝⎜
⎞

⎠⎟

Generated
by :

e11 =
1 0
0 0

⎛

⎝⎜
⎞

⎠⎟

e12 = 0 1
0 0

⎛

⎝⎜
⎞

⎠⎟

e21 =
0 0
1 0

⎛

⎝⎜
⎞

⎠⎟

e22 = 0 0
0 1

⎛

⎝⎜
⎞

⎠⎟

GA =
dR(θ )

dθ 0
=

−i 0
0 i

⎛

⎝⎜
⎞

⎠⎟

GAB =
dR(ζ )

dζ 0
=

−ic −is
−is ic

⎛

⎝⎜
⎞

⎠⎟

GB =
dR(χ )

dχ 0
=

0 −i
−i 0

⎛

⎝⎜
⎞

⎠⎟

GC =
dR(ϕ )

dϕ 0
=

0 −1
1 0

⎛

⎝⎜
⎞

⎠⎟

G1 =
dR(λ)

dλ 0
=

1 0
0 1

⎛

⎝⎜
⎞

⎠⎟

Spin
Operator :

(all)

σA =
iGA =

1 0
0 −1

⎛

⎝⎜
⎞

⎠⎟

σAB =
iGAB =

c s
s −c

⎛

⎝⎜
⎞

⎠⎟

σB =
iGB =

0 1
1 0

⎛

⎝⎜
⎞

⎠⎟

σC =
iGC =

0 −i
i 0

⎛

⎝⎜
⎞

⎠⎟

σ0 =

1 0
0 1

⎛

⎝⎜
⎞

⎠⎟

Symmetry : U (2) C2
A ⊂ R A 2( ) C2

AB ⊂ R AB 2( ) C2
B ⊂ RB 2( ) C∞

C ⊂ RC 2( ) C1

H
Eigenkets

( Any ket
isan

eigenvector)

x

1
0

⎛

⎝⎜
⎞

⎠⎟
,

y

0
1

⎛

⎝⎜
⎞

⎠⎟

x '

cos
β

2

sin
β

2

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

y '

− sin
β

2

cos
β

2

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

+( )
1
1

⎛

⎝⎜
⎞

⎠⎟
,

2

−( )
1
−1

⎛

⎝⎜
⎞

⎠⎟

2

L

1
−i

⎛

⎝⎜
⎞

⎠⎟
,

2

R

1
i

⎛

⎝⎜
⎞

⎠⎟

2

( ε Depends

on
A, B,C,and D)

 

|x〉
|y〉

|x'〉|y'〉

|(-)
〉

|(+
)〉|L〉

|R〉

Plane 0° Plane β/2 Plane 45° Circular Elliptical

Two State
Unitary
Group
U(2)
Algebra

RA(2)⊃  CA2 RAB(2)⊃  CAB2
RB(2)⊃  CB2

RC(2)⊃  CC∞
2-D Rotation
Sub-Groups

  C1

cosβ/2

standing waves moving waves galloping waves

sinβ/2c = cosβ
s = sinβ
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-B
-C

|R〉

|L〉

|x(120°)〉

A

-A

C
B

H crank-Ω vector
(for ϕ=75° ϑ=65°)

|x(45°)〉=|(+)〉

|(−)〉

|x〉

|y〉

ΩΩ|x(30°)〉

|x(15°)〉

|x(60°)〉

|x(150°)〉

β=45°

ϑ=65°

ϕ=75°

α=15°

R(3) World : Real 3D Vectors

SS

H-Operator
AAnngguullaarr vveelloocciittyy

ΩΩ==

|Ψ〉 State
SSppiinn VVeeccttoorr

SS

Ψ1

Ψ2

2-State ket |Ψ〉=

Ψ1

Ψ2

=

√Ne-iα/2cosβ/2

e-iγ/2

√Neiα/2sinβ/2

U(2) World : Complex 2D Spinors
Ψ2

α−γsinβ/2 2
x2

p2

Ψ1 −α−γ

cosβ/2

2

x1

p1

= x2+ip2

= x1+ip1
|x〉or |x1〉

|y〉or |x2〉

A B-iC

B+iC D

ΩB

ΩC

ΩA

2B

2C

A-D

Ωsinϑcosϕ

Ωsinϑsinϕ

Ωcosϑ

==

SB

SC

SA

Nsinβcosα

Nsinβ sinα

Ncosβ

=

(for α=15° β=45°)

1
2

α
2

ψ
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|x'〉
|y'〉

|(+
)〉

|(-)
〉

|x'〉
|y'〉

H+pE

H-pE

-S

-S

A(<<B)

D(>>B)

B

B
=

A

A

B

B
=

B
=

D(<<B)

A(>>B) B

pE = 0

0.1 -0.995 = 〈y'| 0.995 -0.1 = 〈x'|

1/√2 -1/√2 = 〈(-)|

0.1 0.995 = 〈y'|0.995 0.1 = 〈x'|

1/√2 1/√2 = 〈(+)|

Energy
or

Frequency
Eigenvalues

 pE

Positive  ENegative  E
Zero  E

y
or

“up”

|x〉

|y〉

x
or

“dn”

|x〉

|y〉

|x〉

|y〉

|x〉

|y〉

y
or

“up”

x
or

“dn”

yx

yx

Avoided-crossing Hyperbolas. Eigenvalues and eigenstates of AB-symmetry Stark-effects.
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Easy eigensolution and evolution for polarizer-analyzers based on spin-crank allignment 
 The behavior of spin-1/2 or optical polarization states inside analyzers is easy to understand and 
calculate using the polar angles (α,β) of the state spin vector S and the polar angles (ϕ,ϑ) of the analyzer crank 
Θ. The first eigenstate (own-state) of the analyzer which flies through the upper path unscathed (except for 
phase shift) is simply one whose S angles (α,β) equal the angles (ϕ,ϑ) of crank Θ , that is, a state whose spin S 
lies along analyzer crank Θ, or α=ϕ and β=ϑ.The second eigenstate which flies through the lower path is a state 
whose spin S lies opposite to the analyzer crank Θ, so α=ϕ and β=ϑ−π. Below ϑ=90° and ϕ=0° so the 
eigenstates have spin up-B (β=90° and α=0°) or else spin down-B (β=-90° and α=0°). 
    

S-spin up
 B-axis

|+45°〉 polarization
takes high road

|+45°〉
|+45°〉

β =90°

θ =β/2
=+45°

Θ crank on
 +B-axis

S-spin down
 B-axis

|−45°〉 polarization
takes low road

|−45°〉

|−45°〉

ϑ =90°

θ =β/2
=-45°

However, other polarization states such as |x〉 (spin-S along the A-axis) are changed by going through the 
analyzer. Now the Θ=90° shift of one path over the other has the effect of rotating the spin vector by Θ=90°. So 
the first analyzer takes |x〉 into |L〉 (left circular or spin down-C) and another identical analyzer takes  |L〉 into |y〉 
(vertical or spin down-A) . Each of these analyzers acts like a quarter-wave plate.

 

   

|0°〉=|x〉|90°〉=|y〉

Left circular
polarization

|L〉

Θ=90° crank on
 +B-axis

Second Θ=90°
rotation around

 +B-axis

First Θ=90°
rotation around
 +B-axis

θ =β/2
=0°
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√ I

ν=β/2
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I
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B
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βA=2ν αA=2ϑ
A2

(a) (x1,x2) Space (b) (A,B,C) Space

A-axis
polar
angle

2ν=βA=60°

Stokes
vector
S

A-axis
Azimuth
angle

2ϑ=αA=60°

phase lag
2ϑ=αA=60°

2ν=βA=60°
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Appendix 10.A. U(2) Angles and Spin Rotation Operators
 Every U(2) state |Ψ(αβγ)〉 can be obtained from an original base state |1〉 by doing three rotations 
shown in Fig. 10.A.1, the first by γ around the Z (or A) axes, the second by β around Y (or C) and the third 
by α around Z again. This “favors” the Z-axis. Equivalent axial choices are discussed in Appendix 10.B.

 

  

Ψ =R αβγ( ) 1 =R α  around Z( )  R β  around Y( )    R γ  around Z( )   1

                         = e
−iα

2 0

0 e
iα
2

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

 
cos

β
2

−sin
β
2

sin
β
2

cos
β
2

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 e
−iγ

2 0

0 e
iγ
2

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

 
1

0

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

 

A matrix representation of this gives exactly the original state definition (10.5.8a) with unit norm (N=1).

  

  

R αβγ( ) 1 =    R α  00( )  R 0β  0( )  R 00γ( )          1   =  Ψ

               =
e
−iα+γ

2 cos
β
2

−e
−iα−γ

2 sin
β
2

e
iα−γ

2 sin
β
2

e
iα+γ

2 cos
β
2

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

1

0

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
=

e
−iα

2 cos
β
2

e
iα
2 sin

β
2

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

e
−iγ

2
  (10.A.1a)

 The resulting Euler (αβγ)-angle matrix is simpler in form and construction than the Θ-axis matrix 
(10.5.25c) using [ϕ,ϑ,Θ] angles. Do not confuse the two kinds of angles! We use parentheses () around 
Euler angles as in R(αβγ) while square braces [] are used when a rotation is labeled R[ϕ,ϑ,Ωt=Θ] by axis-
angles. It is important to relate the two. A Hamilton expansion of R(αβγ) yields its Θ-axis.

 

  

R αβγ( ) =
e
−iα+γ

2 cos
β
2

−e
−iα−γ

2 sin
β
2

e
iα−γ

2 sin
β
2

e
iα+γ

2 cos
β
2

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

= cos
α + γ

2
cos

β
2

1 0
0 1

⎛

⎝⎜
⎞

⎠⎟

−i 0 1
1 0

⎛

⎝⎜
⎞

⎠⎟
sin

γ −α
2

sin
β
2
− i 0 −i

i 0

⎛

⎝⎜
⎞

⎠⎟
cos

γ −α
2

sin
β
2
− i 1 0

0 −1

⎛

⎝⎜
⎞

⎠⎟
sin

α + γ
2

cos
β
2

  (10.A.1b)

We equate R(αβγ)'s expansion term-by-term to the Θ-axis-angle R[ϕ,ϑ,Θ] expansion (10.5.25a-c).

 

   

R

Θ⎡⎣ ⎤⎦=

cos
Θ
2
− iΘ̂Z sin

Θ
2

−isinΘ
2

Θ̂X − iΘ̂Y( )
−isinΘ

2
Θ̂X + iΘ̂Y( ) cos

Θ
2
+ iΘ̂Z sin

Θ
2

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

= cos
Θ
2

1 0
0 1

⎛

⎝⎜
⎞

⎠⎟

         − i 0 1
1 0

⎛

⎝⎜
⎞

⎠⎟
Θ̂X sin

Θ
2

 − i 0 −i
i 0

⎛

⎝⎜
⎞

⎠⎟
Θ̂Y sin

Θ
2

 − i 1 0
0 −1

⎛

⎝⎜
⎞

⎠⎟
Θ̂Z sin

Θ
2

 (10.5.25a-c)repeated 

The Re-Im 4-D phasor coordinates (xj=ReΨj, pj=ImΨj) show up in the Euler vs. Axis angle relations. 
 x1 =  cos[(γ+α)/2] cosβ/2  =       cos Θ/2  
 -p2=  sin[(γ−α)/2] sinβ/2  =  Θ̂ X sin Θ/2  = cos ϕ  sin ϑ  sin Θ/2 
 x2 =  cos[(γ−α)/2] sinβ/2  =  Θ̂ Y sin Θ/2  = sin ϕ  sin ϑ  sin Θ/2   (10.A.1c)
 -p1=  sin[(γ+α)/2] cosβ/2  =  Θ̂ Z sin Θ/2  = cos ϑ   sin Θ/2 
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Solving these relations yields the following Euler angles in terms of axis angles
  α = ϕ −π/2 + T, β = 2sin-1(sinΩ/2 sinϑ),  γ = π/2 −ϕ + T ,   (10.A.1d)
where; T= tan-1(tan (Ω/2) cos ϑ ) while the axis-angles in terms of Euler angles are
     ϕ = (α − γ + π)/2 , ϑ = tan-1[tan β/2/ sin(α+γ)/2] , Ω = 2 cos-1[cos β/2 cos(α+γ)/2].: (10.A.1e)
 It is important to understand the practical difference between Euler angles (αβγ) and axis angles 
[ϕ,ϑ,Θ]. Euler angles (αβγ) are coordinates of rotated states of position while axis-angles [ϕ,ϑ,Θ] are 
parameters of rotation operators or angular velocity.  Euler angles (αβγ) serve as convenient polar 
coordinates of spin vectors S (Recall Fig. 10.5.2) and for orbiting or spinning bodies as shown below, 
while axis angles [ϕ,ϑ,Θ] are the polar coordinates and rotation angle of a crank-axis Ω for an operation.  
Euler angles (αβγ) label the state and density operator of a U(2) system, while axis angles [ϕ,ϑ,Θ] label 
its Hamiltonian and time-evolution operator. Euler (αβγ) tell where S is; axis [ϕ,ϑ,Ω] where it's going.
 Fig. 10.A.1 shows explicitly how to construct a general spin state or density operator labeled by 
Euler (αβγ)-angles by illustrating the sequence of rotations: (1) Z-rotation R(00γ) by angle γ, followed by 
(2) Y-rotation R(0β0) by angle β, followed by (3) Z-rotation R(α00) by angle α. The result is a spin 
vector S pointing with polar angle β or beta (often labeled by its ryhmesake 'theta') and an azimuthal 
angle α (often labeled with a 'phi'), in exact agreement with (10.5.8c) and Example 7 in Fig. 10.5.4. 
 One new 'twist' added here is not found in other treatments of U(2). We interpret the third Euler 
angle γ and overall phase or gauge factor e-iγ/2 in (10.A.1a) as a twist of a rigid body attached to the spin 
S-vector. Indeed, the first Z-rotation R(00γ) by angle γ twists the spin vector as shown in the upper right 
hand γ-part of Fig. 10.A.1. This means that the overall phase, which got canceled out of the 3D-density -
spin-operator formulas involving Ψ*Ψ quantities, is still present if we consider a 3D spin-body instead of 
just a spin vector. Twisting a spin vector by γ does nothing if it's just a line, but a solid vector body 
actually "feels" a twist by γ. Nuclear, molecular and atomic spin rotations all have a twist angle.
 A note of caution is in order with respect to exponential operator notation. Axis angle operations 
were given in (10.5.15) using a single exponential-of-a-sum expression. 

    R[

Θ] = e−i


Θ•S = e−i ΘXSX +ΘYSY +ΘZSZ( ) = e−iΘ Θ̂XSX +Θ̂YSY +Θ̂ZSZ( )   (10.A.2a)

Euler angle operation (10.A.1a) is a product of three separate single exponentials.

     R(αβγ ) = e−iαSZ e−iβSY e−iγ SZ      (10.A.2b)

Unless operators A and B commute, you cannot combine eiA eiB into ei(A+B) nor can you factor ei(A+B). 
In rare cases (and this is one of them) where two operators commute with their commutator you can write
   eA eB e-[A,B]= e(A+B) = eB eA e[A,B]  if: [A, [A, B]] = 0 = [A, [A, B]]  (10.A.3)
This is the first part of what is known as the Baker-Campbell-Hausdorf theorem. 
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Sequence R(α00)R(0 β 0) R(00γ) sets Euler Angle position state-⏐αβγ〉

using Z-rotation R(α00) following Y-rotation R(0β 0) following Z-rotation R(00γ)= R(γ00) 

 

S

SYSX
S

SZ

S

S

SZ

S

(1) Rotate by γ
around Z

β

γ

(2) Rotate by β
around Y

(3) Rotate by α
around Z

γ

α
β

Original
Spin State |1〉
= |↑〉

General Spin State
|Ψ〉=R(αβγ) |↑〉

β

α

SY=Ssinα sinβ

S Z
=S
co
sβ

SX=

Scosα si
nβ

SY

γ

Fig. 10.A.1 The operational definition of Euler (αβγ)-angle coordinates applied to a spin-state.
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! (a) Equivalence transformations of rotations
 Another way to factor the axis-angle expression (10.A.2a) is to find a transformation T that builds 

the rotation R[ϕ,ϑ,Θ] by Θ about an axis Θ at polar angle (ϕ, ϑ) out of a Z-axis twist rotation e-iΘSZ.
   R[ϕ,ϑ,Θ] = T e-iΘSZ T†       (10.A.4)
The desired transformation T is just the Euler operation R(ϕϑ0) such as was diagrammed in Fig. 10.A.1, 
only we leave off the twist γ since it would just cancel out. Effectively, we take the Θ-axis from polar-
angle location [ϕ,ϑ] to the Z-axis with an inverse Euler-op T† = R†(ϕϑ0), then do the Z-twist e-iΘSZ, and 
finally, return the axis to its original (ϕ,ϑ)-position with the Euler rotation (sans twist) T = R(ϕϑ0).
   R[ϕ,ϑ,Θ] = R(ϕϑ0) e-iΘSZ R†(ϕϑ0) = R(ϕϑ0) R(00Θ) R†(ϕϑ0)    (10.A.5a) 
Expanding the Euler rotations using (10.A.2b) gives (Note: R†(0ϑ0) = R(0−ϑ0) and R†S† = (SR)† )
   R[ϕ,ϑ,Θ] = R(ϕ00) R(0ϑ0) R(00Θ) R(0−ϑ0) R(-ϕ00)      (10.A.5b) 
   R[ϕ,ϑ,Θ] =  e-iϕSZ    e-iϑSY  e-iΘSZ   e+iϑSY   e+iϕSZ    (10.A.5c)
So axis-defined R[ϕ,ϑ,Θ]  factors into five monomial exponentials instead of three factors found in the 
much simpler Euler rotation R(αβγ). (Check that this gives the desired 2-by-2 matrix (10.5.25c).) The 
expression of rotations in terms of just a Y and two Z rotations keeps the matrix arithmetic to a minimum 
since generally the Z-rotations are diagonal and the Y-rotations, while not diagonal, are generally real. 
This is very important when we deal with big 201-by-201 spin-100 matrices! But, it helps even with 
medium-sized 3-by-3, 4-by-4, and 5-by-5 spin-1, spin-3/2, and spin-2 matrices seen later on.
 It is important to understand the transformation (10.A.4) as a simple R(ϕϑ0)-rotation of an 
operator's crank-vector Θ. The magic-vector of an operator like a rotation R or a Hamiltonian H or a time 
evolution operator U gets transformed just like the spin vector S in Fig. 10.A.1, which, after all, is the 
magic vector of the spin-state density operator ρ. Such a transformation R' = T R T† is called a similarity 
or equivalence transformation because the resulting rotation R' must be similar or equivalent to the 
original R. In particular, it must have the same trace, determinant, eigenvalues, etc., which means it must 
rotate by the same angle Θ as the original. So, the crank vector has the same Θ =|Θ| length as the original, 
but, it will be in a different direction Θ' = R•Θ . Let's see how to quickly calculate a 3-by-3 direction-
cosine R-matrix.

! (b) Euler equivalence transformations of 3-vectors
 The 3-by-3 transformation matrix R(αβγ) describing an Euler rotation of real 3-vectors is a little 
more complicated than the 2-by-2 spinor matrix (10.A.1), but simpler than the axis-angle matrix R[ϕϑΘ]  
you will derive later. The triple product rotation R(αβγ) made 3-by-3 rotation matrices is  

  

  

R αβγ( ) = R α00( )                R 0β0( )             R 00γ( )

      = 
cosα -sinα 0
sinα cosα 0

0 0 1

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

cosβ 0 sinβ
0 1 0

-sinβ 0 cosβ

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

cosγ -sinγ 0

sinγ cosγ 0

0 0 1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

  (10.A.6a)

The resulting transformation matrix is
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                                   eX =R αβγ( ) eX             eY =R αβγ( ) eY       eZ =R αβγ( ) eZ

R αβγ( ) =

eX

eY

eZ

 
cosα cosβ cosγ − sinα sinγ -cosα cosβ sinγ − sinα cosγ cosα sinβ
sinα cosβ cosγ + cosα sinγ -sinα cosβ sinγ + cosα cosγ sinα sinβ

−cosγ sinβ sinγ sinβ cosβ

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

(10.A.6b)

 The third column contains the Cartesian components of the R(αβγ)-rotated Z-axis which is labeled
 

   
êZ = eZ = ( cosα sinβ, sinα sinβ, cosβ)      or:         eZ = eX cosα sinβ + eY sinα sinβ + eZ cosβ

It is the same as the polar coordinate components ( cosα sinβ, sinα sinβ, cosβ) seen in Fig. 10.A.1 or 
(10.5.8b). The matrix gives  the X, Y, Z-direction cosines 

    
eX • eX = X X ,   eX • eY = X Y ,etc. so any 

vector be quickly transformed passively (Recall Fig. 2.2.2) or actively (Recall Fig. 2.2.3).

(c) Euler angle goniometer: Double valued position
 Research laboratories which need to orient crystals or X-ray targets or perform angular scattering 
experiments of any kind must be equipped with some sort of goniometer such as is sketched in Fig. 10.A.
1 or Fig. 10.A.2 and photographed there and in Fig. 10.A.3. Theorists, too, would do well to "equip" their 
minds with such a device since it is a powerful "thought tool" for understanding the R(3) and SU(2) group 
properties of Euler angles.
 Two metal frames labeled x' and x", respectively, are used to connect the laboratory or LAB frame 
{X,Y,Z} to the body or BOD frame {  X ,Y , Z } through a series of three bearings labeled and measured by 

dials that keep track of the Euler angles (αβγ). The goniometer shows a number of things immediately. 
 First, it demonstrates clearly that  Euler angles are primarily position coordinates. While the 
operator definition given by Fig. 10.A.1 had to be performed in a definite (Zα), (Yβ), and (Zγ) order, the 
dials shown in Fig. 10.A.2 are totally independent of each other. You may set them in any order and the 
same position state will be obtained and exactly the one obtained by operators in Fig. 10.A.1.
 Second, the device shows how Euler angles are natural choices for any laboratory or theoretical 
problem involving 3D rotation. Indeed, (αβγ) are the same as yaw (α), pitch (β), and roll (γ) used by a 
pilot of space ship, airplane, or submarine to track the bow or  Z -axis of the craft body relative to Earth or 
stars. 
 Third, the convention used in Fig. 10.A.1-2 makes the first two Euler angles (α and β) into 
azimuth and polar angles of the body zenith  Z . This is the appropriate for atomic and molecular physics 
where the body zenith  Z  is a symmetry axis, radius vector, or other significant body point. 
 Fourth, it is seen from Fig. 10.A.2 the second two Euler angles (β and γ), more correctly, their 
minuses (-β and -γ) are also azimuth and polar angles, but for the LAB zenith Z relative to the body 
frame. Note that the last row of matrix (10.A.6b) has exactly the polar coordinate form using -β and -γ as 
azimuth and polar angle, respectively. This is sketched in the upper left hand corner of Fig. 10.A.4.
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Fig. 10.A.2 Euler angle device relates body frame to lab frame through a succession of frames and dials.

((bb)) PPoossiittiioonn ssttaattee |α=50°,β=60°,γ=70°〉〉〉 ((cc)) PPoossiittiioonn ssttaattee |α=-130°,β=-60°,γ=-110°〉

β=+60°
γ=70°

α=50°α=50°

β=+60°

β=-60°β=-60°

γ=70° γ=-110°γ=-110°

α=-130°α=-130°

|50°,60°,70° 〉 |-130°,-60°,-110°〉

(d) Origin
position state
|α=0°,β=0°,γ=0°〉

For β=0° ,ball frame
holds its position as
the α and γ frames
swivel by angleφ to
any state of form
|α=φ,β=0°,γ=−φ°〉
including origin state
|α=0°,β=0°,γ=0°〉.

α=0°α=0°

γ=0°γ=0°

β=0°β=0°
|0°,0°,0° 〉

(d)

EEuulleerr
aannggllee

ggoonniioommeetteerr

Euler Angle Dial
γ

(Twist coordinate)

Euler Angle Dial
α

(Azimuthal coordinate)

(a)
|α,β,γ 〉 β

α γ

β
x=x1

y=x2

z=x3

x=x1

y=x2

z=x3

An
astronomer’s
diagram

Euler Angle Dial
β

(Polar coordinate)
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 Other slightly different conventions exist for Euler angles. Indeed, the first were based on 
astronomical orientation of planetary orbits and celestial stellar tracks. In this case the zenith of an orbit 
plane is not a measurable or observable point. The azimuth and polar angle of the orbit zenith is useless. 
Instead the astronomer records the azimuth of the points where the body rises or sets; the so-called 
ascending or descending nodes. These are located exactly ±90°, respectively, from the azimuth of the 
orbital zenith so old Euler definitions measure azimuth α from the ±Y-axis instead of the X-axis. The 
astronomer will also record the orbital inclination which is the same as β except, possibly, for a ±-sign.
 One should be aware of the fact that Euler angles, and for that matter, any 3D angular coordinates, 
are intrinsically and fundamentally double valued. This is no surprise to us; Fig. 10.5.6 shows that 3D 
spin vectors went around twice (4π) every time the U(2) spinor rotation went around once (2π). However, 
a mechanical demonstration of this is shown in Fig. 10.A.5b-c. It is easy to see that two different settings, 
one with positive β (α, β, γ) and another with negative β (π-α, −β, π−γ) leave the body in the same lab-
relative position. Calculus texts restrict polar angle θ to being positive to avoid dealing with this.
 The case of β=0 (Fig. 10.A.2d) might seem to avoid double valued trouble, but unfortunately, 
things just get worse there. Then the two remaining α and γ coordinates become infinite-valued since the 
state (α, 0, γ) is the same position as (α−φ, 0, γ+φ) for all φ. This worst of all singularities occurs right at 
the origin of R(3) and U(2) group parameter space namely (α=0, β=0, γ=0) or, more likely to be found, 
(α=φ, β=0, γ=−φ). There is another such singularity at β=π, too. The singular φ−floppiness is a killer, 
literally; the singularity at (000) corresponds to gyroscopic gimbal-lock so dreaded by pilots who fly 
acrobatic maneuvers that depended upon gyroscopic instruments. 
 However, the infinite valued rotational origin is a necessary to allow an arbitrary axis-angle 
rotation R[ϕ,ϑ,Θ] operator to produce the Euler-(αβγ)-angle position states
   R(αβγ) |000〉 = | αβγ〉 = R[ϕ,ϑ,Θ] |000〉= R[ϕ,ϑ,Θ] |ϕ−π/2, 0, π/2−ϕ〉 (10.A.7)
according to Euler-axis angle relations (10.A.1). The device which demonstrates this is shown attached to 
the Euler angle goniometer in Fig. 10.A.3. However, gimbal-lock prevents motion from the original 
position until the goniometer x'-frame is tucked under the axis-angle crank support at azimuth ϕ, that is, 
until the origin is reset from (α=0, β=0, γ=0) to (ϕ−π/2, 0, π/2−ϕ). Recall, that an azimuth of α puts the x'-
frame at α-90°. Then, the continuous rotation by axis angle Θ=Ω·t may begin as shown below in in Fig. 
10.A.5.
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Spin S

Fig. 10.A.3 Mechanical crank axis angles [ϕ,ϑ,Θ] operating on sphere having Euler angles (α,β,γ)
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BOD frame view
z

x y

−β

−γ

Polar angles of
LAB zenith z=x3 are
(azimuth angle=−γ,
polar angle=−β )

z
LAB frame view

α

Polar angles of
BOD zenith z=x3 are
(azimuth angle=α,
polar angle=β )

z

x y
z
β

LAB x=x1 axis
α
Dial

LAB
z=x3
zenith

BOD
z=x3
zenith

β
Dial

γ
Dial

BOD y=x2
axis

BOD x=x1 axis

α
α

β

β

γ

γ

x′-Frame
x′′-Frame

x′′1=x1cos α+x2sin α

x′′2=-x1sin α+x2cos α

x-Frame

Fig. 10.A.4 Mechanical device demonstrating Euler angles (α,β,γ) as coordinates of a body BOD-frame 
relative to a “star-fixed” LAB-frame. 
  LAB-frame view sees BOD-Z axis with polar angles of azimuth α and polar angle β.
BOD-frame view sees LAB-Z axis with polar angles of azimuth -γ and polar angle -β.
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Fig. 10.A.5 Rotational 4π sequence 1st Row: (a) First origin state ω=Θ=0, (b-f) First position states.

!
(d) Axis angle rotation: Double valued operation
 In Fig. 10.A.5 we attempt to follow an entire 720° or 4π rotation that connects the two positions 
shown in Fig. 10.A.2(b-c). First use relations (10.A.1) to derive the axis angles [ϕ=80°, ϑ=34°, Θ=129°] 
for the “first” initial Euler position state (α=50°, β=60°, γ=70°) in Fig. 10.A.5(c) and Fig. 10.A.3(a).
    R(α=50°, β=60°, γ=70°) |000〉 = R[ϕ=80°, ϑ=34°, Θ=129°] |000〉  (10.A.8a)
It starts from a "first" origin state in Fig. 10.A.5(a). (Note figure notation: φ=ϕ, θ=ϑ, ω=Θ)
   |000〉 = |ϕ−π/2, 0, π/2−ϕ〉 = |α=−10°, β=0°, γ=10°〉= R[ϕ, ϑ, Θ=0°] |000〉   (10.A.8b)
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Fig. 10.A.5    2nd Row: (g) 2nd origin state ω=Θ=2π, (h-l) 2nd negative-β position states.

A 2π rotation (a-g) by Θ=ω = 360° gives the "second" origin state in Fig. 10.A.5(g).
    R[ϕ=80°, ϑ=34°, Θ=360°] |000〉 =  |α=170°, β=0°, γ=190°〉   (10.A.8c) 
The ball “looks” the same in the "second" initial state of Fig. 10.A.5(i) or Fig. 10.A.3(b) as in the “first.” 
    R[ϕ=80°, ϑ=34°, Θ=489°] |000〉 =  |α=230°, β=−60°, γ=250°〉   (10.A.8c) 
However, “looks” by classical eyes are deceiving in quantum rotations. In fact, the α,γ-Euler angles and 
the goniometer x'-frame for each “second” position in figures 10.A.5(g-l) are π-flipped from those above 
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them in figures 10.A.5(a-f). Also, β is negative. Another "full" 2π rotation (either way) is needed to finish 
a full-quantum rotation of 0-modulo-4 π and return apparatus to first initial position in Fig. 10.A.5(c).
 There is a double-valued nature of the 3D-space we occupy. It has been noted repeatedly in 
Chapter 10 comparisons of the real 3-D R(3) spin-vector world versus the complex 2-D U(2) spinor world 
in Fig. 10.5.8. Photon polarization spin-vector S goes twice (4π) around R(3) space while the polarization 
E-vector or Ψ-spinor goes just once around U(2) space in Fig. 10.5.5 and Fig. 10.5.6. Also, spinor 
reflections only need half the angle of the rotations they accomplish in Fig. 10.3.3. They also provide a 
more elegant formula and graphical “slide-rule” for rotation group products as we show now.

       (1) Combining rotations: U(2) group products
 The product of R[Θ'] R[Θ'] of any two rotations is another rotation operator R[Θ"] which can be 
computed using Hamilton's axis-angle expansion. First we multiply the separate expansions.

   

    

R[ ′

Θ ]R[


Θ] = cos

′Θ
2

 1− isin ′Θ
2

 ′Θ̂ iσ
⎛
⎝⎜

⎞
⎠⎟

cos
Θ
2

 1− isinΘ
2

 Θ̂iσ
⎛
⎝⎜

⎞
⎠⎟

    = cos
′Θ

2
cos

Θ
2

 1− i cos
′Θ

2
sin

Θ
2

 Θ̂ + cos
Θ
2

sin
′Θ

2
 ′Θ̂

⎡

⎣
⎢

⎤

⎦
⎥iσ − sin

′Θ
2

sin
Θ
2

′Θ̂ iσ( ) Θ̂iσ( )
  (10.A.9)

Then the Jordan-Pauli identity (10.5.13) is used to reduce (Θ'•σ)(Θ•σ) to (Θ'•Θ)1+(Θ'×Θ)σ.

      

    

R[ ′

Θ ]R[


Θ] =  cos

′′Θ
2

⎛
⎝⎜

⎞
⎠⎟

 1    −                    i sin
′′Θ

2
 ′′Θ̂

⎡

⎣
⎢

⎤

⎦
⎥ iσ                    = R[ ′′Θ ]

= cos
′Θ

2
cos

Θ
2
− sin

′Θ
2

sin
Θ
2

′Θ̂ iΘ̂
⎛
⎝⎜

⎞
⎠⎟

 1− i cos
′Θ

2
sin

Θ
2

 Θ̂ + cos
Θ
2

sin
′Θ

2
 ′Θ̂

⎡

⎣
⎢

⎤

⎦
⎥ + sin

′Θ
2

sin
Θ
2

′Θ̂ ×Θ̂
⎡

⎣
⎢

⎤

⎦
⎥iσ

   (10.A.10a)

It is straightforward to solve for the new product angle Θ" and axis unit vector ′′Θ̂  of crank Θ" . 

       

  

    cos
′′Θ

2
⎛
⎝⎜

⎞
⎠⎟

 = cos
′Θ

2
cos

Θ
2
− sin

′Θ
2

sin
Θ
2

′Θ̂ iΘ̂
⎛
⎝⎜

⎞
⎠⎟

    

sin
′′Θ

2
 ′′Θ̂

⎡

⎣
⎢

⎤

⎦
⎥ = cos

′Θ
2

sin
Θ
2

 Θ̂ + cos
Θ
2

sin
′Θ

2
 ′Θ̂ + sin

′Θ
2

sin
Θ
2

′Θ̂ × Θ̂
⎡

⎣
⎢

⎤

⎦
⎥

        (10.A.10b)

This is the U(2) group product formula. Now a simple way to visualize this product is done with mirrors!.

 (2) Mirror reflections and Hamilton's turns
 In Section 10.3b we noted that mirror reflection operations are more fundamental than rotations 
and are done by real Pauli matrices such as σA and σB or their combination σφ below. Recall Fig. 10.3.3

 
  
σ A = 1 0

0 −1

⎛

⎝⎜
⎞

⎠⎟
  ,   σ B = 0 1

1 0

⎛

⎝⎜
⎞

⎠⎟
   ,   σφ =

cosφ sinφ
sinφ −cosφ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

=σ A cosφ +σ B sinφ  

Their action is displayed in Fig. 10.A.6. σφ reflects through a plane inclined at half-angle φ/2 to the x-axis. 
The product σφσA is a rotation R[φ] by angle φ, while σA σφ is a rotation R[-φ] the opposite way (-φ).
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σφσ X =
cosφ sinφ
sinφ −cosφ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

1 0
0 −1

⎛

⎝⎜
⎞

⎠⎟
 ,       σ Xσφ = 1 0

0 −1

⎛

⎝⎜
⎞

⎠⎟
cosφ sinφ
sinφ −cosφ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

          =
cosφ −sinφ
sinφ cosφ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

=R[φ]  ,                   =
cosφ −sinφ
sinφ cosφ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

=R[-φ]  

 (10.A.11)

 

φ/2

φ
σφ|x〉=cosφ|x〉+sinφ|y〉

σφ|y〉= sinφ|x〉−cosφ|y〉

|x〉

|y〉|y〉

|x〉

σA|x〉= |x〉

σA|x〉=−|y〉

σφσA
σB

 Fig. 10.A.6 Mirror reflections σA through xz-plane and σφ through rotated plane.

 Hamilton saw this as a neat way to visualize three-dimensional rotations. Simply install two 
mirrors so they intersect on a Θ crank vector with half-angle Θ/2 between the first and the second as 
shown in Fig. 10.A.7. It is like a clothing store mirror which lets you rotate an image of yourself by Θ as 
you adjust the angle Θ/2 between mirrors. A unit normal vector N1 and N2 is constructed from each 
mirror plane and a Θ/2 arc-vector drawn between the first and second plane normals. This arc is called 
Hamilton's turn vector (N1→N2). It is these Hamilton turns that can be "added" like vectors to give U(2) 
group products!

 

N1

N2
Hamilton Turn
N1→→N2

Θ/2
Rotation vectorΘΘ
Rotation angle = Θ

(Θ/2 Arc)

1st Mirror
plane
2nd Mirror
plane

 Fig. 10.A.7 Mirror reflection planes, normals, and Hamilton-turn arc vector.
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 Notice that only the relative angle Θ/2 or π−Θ/2 between mirrors is important in defining rotation 
R[Θ] ; their absolute position is irrelevant. You can swivel the two mirrors anywhere around the Θ-axis. 
The trick to making products is to swivel the Hamilton turn arc N1→N2 for the first rotation R[Θ] around 
so it meets head-to-tail with the Hamilton turn arc N'1→ N'2 of the second rotation as R[Θ'] as shown in 
Fig. 10.A.8. 

Then the two mirrors associated with N2 and N'1 lie on top of each other and cancel since two reflections 
by the same mirror is no reflection. That leaves only first mirror (N1) and last mirror (N'2), and so the 
resultant Hamilton-turn arc N1→N'2 is the arc of the desired product R[Θ"]=R[Θ']R[Θ].

N1
N2 N'1

N'2

ΘΘ

ΘΘ'

R[ΘΘ']•R[ΘΘ]

N1

N'2

ΘΘ"

Product R[ΘΘ"]
=R[ΘΘ']•R[ΘΘ]

 Fig. 10.A.8 Adding Hamilton-turn arcs to compute a U(2) product R[Θ"]=R[Θ']R[Θ].

 It is important to note that all Hamilton-turn arcs lie on great or equatorial circles and slide along 
the equatorial circles of the rotation axis vector Θ of the rotation R[Θ] .
 Also, note that each Hamilton arc Θ/2, Θ'/2, or Θ"/2 is half of the actual angle Θ, Θ', or Θ" of 
rotation R[Θ] , R[Θ'] , or R[Θ"], respectively. That means that an arc Θ/2 between N1 and N2 and its 
supplement angles (Θ±2π)/2 = Θ/2±π between N1 and -N2 represent the same classical rotation by Θ. For 
classical objects, a rotation by Θ±2π is the same as one by Θ. However, for a quantum spin-1/2 object, the 
arc pointing from N1 to the antipodal normal -N2 represents a Θ-rotation with an extra π-phase factor e±iπ 
= -1, that is, -R[Θ] . Recall rotation by 2π of the U(2) polarization state in Fig. 10.5.6 and Fig. 10.5.7 
always comes up the same state, but it's π-out of phase. Hamilton's turns account for this.

(3) Similarity transformation and Hamilton's turns
 Finally, the Hamilton-turn "vector addition" on a sphere gives different results if the vectors are 
added in the reverse order to give R[Θ''']=R[Θ]R[Θ'] instead of R[Θ"]=R[Θ']R[Θ]. The arc-diagram for 
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this forms a spherical parallelogram as shown in Fig. 10.A.9. It also shows the effect of a similarity 
transformation of rotation R[Θ"] by rotation R[Θ] to give rotation R[Θ'''].
  R[Θ] R[Θ"] R[-Θ] = R[Θ''']     (10.A.12a)   R[-Θ] R[Θ'''] R[Θ] = R[Θ"]      (10.A.12b)
As in (10.A.4), a rotation R[Θ] of a rotation R[Θ''] is just that. So everything associated with that rotation 
R[Θ''] gets rotated by the full angle Θ around axis Θ. This includes its ‘crank vector’ Θ and now its 
Hamilton-turn arc which, in Fig. 10.A.9 gets moved by exactly two R[Θ] Hamilton-turn arcs into path of 
the R[Θ'''] turn arc below it, that is, two R[Θ] Hamilton-turn Θ/2 arcs amount to one whole angle Θ.
Fig. 10.A.9 shows a similarity transformation of rotation R[Θ'''] by rotation R[Θ'] to gives R[Θ"].
     R[Θ'] R[Θ'''] R[-Θ'] = R[Θ"]    (10.A.12c)
There are an infinite number of rotations that transform  R[Θ"] into R[Θ'''] . Of these, there is one that is 
by the smallest angle Θ. Can you tell where this one's crank and Hamilton-turn is located in Fig. 10.A.9?

 

ΘΘ"

Product R[ΘΘ"]
= R[ΘΘ']•R[ΘΘ]

Product R[ΘΘ''']
= R[ΘΘ]•R[ΘΘ']

ΘΘ'''

Product
R[ΘΘ']•R-1[ΘΘ]

Product
R-1[ΘΘ]•R[ΘΘ']

Fig. 10.A.9 Hamilton-turn arc parallelogram with  R[Θ"]=R[Θ']R[Θ] and  R[Θ''']=R[Θ]R[Θ']

(e) Quaternion and spinor algebra (again)
Suppose we rotate a spin ket |↑〉 or |Ψ〉 with an operator like the R above to give a new state
     |Ψ'〉 = R |Ψ〉 
and a new density operator 
     ρ' = |Ψ'〉〈Ψ'| = R |Ψ〉〈Ψ'| R† = R ρ R†    (10.A.13a)
Use (10.5.5) to write ρ = N/2 1 + S•σ in terms of its S-vector gives  
    ρ' = R (N/2 1 + S•σ) R† = (N/2 1 + S•[R σ R†])    (10.A.13b)
which is just the same S-vector referred to a rotated spinor basis; in other words an Θ-rotated spin vector. 
It is important to remember that R acts only on the U(2) operators (σX, σY, σZ) and pays no attention to 
the scalar component N/2 or the components of the S-vector. But, the effect is the same as it would be 
applying the 3-by-3 matrix transformation R to the S-vector and leaving the spinor σ's alone. 
   ρ' = R (N/2 1 + S•σ) R† = (N/2 1 +  S'•σ) , where: S'm = RmnSn  (10.A.13c)
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We will derive the 3-by-3 R-matrix by considering each unit base operator (σX, σY, σZ) in turn. This 
involves Hamilton's original algebra of quaternions (qX, qY, qZ) = (-iσX, -iσY, -iσZ) which satisfies cyclic 
multiplication rules below along with the negative squares:  qX qX = qY qY =qZ qZ =-1 ,    .   
  qX qY = qZ = - qY qZ ,       qZ qX = qY = - qX qZ ,      qY qZ = qX = - qZ qY .   (10.A.14a)
These are summarized using the δυν and ελυν-tensors (Recall ελυν... in Appendix 3.A)
  qµ qν =  -δµν 1 + εµνλ qλ   or: σµ σν =   δµν 1 + i εµνλ σλ    (10.A.14b)
Here, we've written the multiplication rules for Pauli's "σµ-quaternions" as well as Hamiltion's qµ = -iσµ.

  

   

• 1 qX qY qZ

1 1 qX qY qZ

qX qX −1 qZ −qY

qY qY −qZ −1 qX

qZ qZ qY −qX −1

   ,         

• 1 σ X σY σ Z

1 1 σ X σY σ Z

σ X σ X 1 iσ Z −iσY

σY σY −iσ Z 1 iσ X

σ Z σ Z iσY −iσ X 1

   (10.A.14c)

Also, we need commutation rules for Pauli's operators as well as Jordan's spin-ops: Jµ = Sµ = σµ/2.
     σµσν - σνσµ = [σµ, σν] = 2i ευνλ σλ  or:   SµSν - SνSµ = [Sµ, Sν] = i εµνλ Sλ  (10.A.14d)
The latter are the very important angular momentum commutation relations which we will apply later.
 Now the application of σ-rules to the derivation of the expression for a general rotation R[Θ] of an 
arbitrary unit 3-vector eL or unit spinor σL  is tricky. But, it's something important that every physicist 
should do at least once in their life! Therefore we leave the following result as an exercise.

  

    

R[

Θ]σ LR[


Θ]†  = cos

Θ
2

 1− isinΘ
2

 Θ̂Kσ K
⎛
⎝⎜

⎞
⎠⎟
σ L cos

Θ
2

 1− isinΘ
2

 Θ̂Nσ N
⎛
⎝⎜

⎞
⎠⎟

†

                =σ L ' =σ L cosΘ− εLKMΘ̂Kσ M sinΘ + 1− cosΘ( )Θ̂L Θ̂Nσ N( )
  (10.A.15a)

You should also demonstrate that this is equivalent to the following 3-vector expression.

  
   

eL ' = eL cosΘ− εLKMΘ̂Ke M sinΘ + 1− cosΘ( )Θ̂L Θ̂N eN( )
    = eL cosΘ + Θ̂ × eL sinΘ + 1− cosΘ( )Θ̂ Θ̂ • eL( )     (10.A.15b)

The 3-vector transformations are a lot more complicated than the 2-spinor ones. But, they do have one 
simple property; they all use cosines of whole angles Θ of rotation while the 2-space spinor operations all 
use half-angles Θ/2 or square-root cosines cos Θ/2 = √[1/2+1/2cos Θ] of the rotation angle. 

Why rotations are such a big deal
 In Chapters 8 and 9 we introduced the idea of labeling quantum channels or states using rotational 
symmetry operators r, r2,..., and then discovered that the Hamiltonian was made of linear combinations of 
the rp's, as were their projectors which solved the eigenvalue problem. Similar relations apply to 2-state 
systems. Indeed, all SU(2) operators are related to rotations in some way including the grand time 
evolution operator U(t). When you have a hammer; everything's a nail! 
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Appendix 10.B Spin control and ellipsometry
 So far, rotational analysis has been referred to the Z-axis or, as we have re-labeled it, the A-axis. 
This “favors” base states (spin-up-Z, spin-dn-Z) for electrons, (Plane-x, Plane-y) states for photons, and 
(N-UP, N-DN) for NH3 shown in Fig. 10.5.1. It favors an A-symmetry (asymmetric-diagonal) Haniltonian 
in the U(2) catalog of Fig. 10.4.2 which begins with A-type base states introduced in Section 10.2(a).
 In fact, any axis may be a home base. Three choices A, B, and C (or Z, X, and Y) belong to obvious 
symmetries. A Hamiltonian near one has archetypical physics. One should be able to quickly relate them.
 To begin this, recall the Z-axis or A-type Euler angle (αβγ) definition from (10.A.1).

  
 
Ψ =R αβγ( ) 1 =R α  00( )  R 0β  0( )  R 00γ( ) 1

  

represented
in A− basis
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e
−iα

2 cos
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2

e
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2
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⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

e
−iγ

2    (10.B.1)

Now we define X or B-type Euler angles (ABG) and Y or C-type Euler angles (abg). A general state is 
defined by any and all of the following three sets of Euler angles; one set for each choice A, B, or C.
 

   
Ψ = RZ (α )RY (β)RZ (γ ) ↑ Z = R X ( A)RZ (B)R X (G) ↑ X = RY (a)R X (b)RY (g) ↑ Y    (10.B.2)

A main-axis operator Z (for choice-A), X (for choice-B), or Y (for choice-C) sets overall phase of its 
particular favored number-1 state |1〉 of spin-up-Z, spin-up-X, or spin-up-Y, respectively.

:
   
Ψ = RZ (α )RY (β) ↑ Z e−iγ / 2 = R X ( A)RZ (B) ↑ X e−iG / 2 = RY (a)R X (b) ↑ Y e−ig / 2        (10.B.3)

Each gives a different algebraic and numerical representation for the same general state |Ψ〉.
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   (10.B.4a)   (10.B.4b)    (10.B.4c)
Relating the three kinds of Euler angles begins by connecting the two spin-vector "polar angles" 
      (α ,β) related to (a,b) related to ( A, B)    

We cyclicly permute the polar coordinates combinations (cos_, sin_sin_, sin_cos_) in (10.5.8c) and solve.

   

  

  Aor Z − based                     C orY − based             Bor X − based             .

SA = SZ = cosβ                   =SZ = sinbcosa          =SZ = sin Bsin A         

SC = SY = sinβ sinα           =SY = cosb                  =SY = sin Bcos A           

SB = SX = sinβ cosα           =SX = sinbsin a          =SX = cos B           

   (10.B.5)

Fig. 10.B.1a below shows the three sets of (azimuth, polar) angles in the top-down-Z view. Arcs drawn are 
great circles except for two straight lines that meet the spin vector at the β, b, B triple intersection that are 
lesser circles at the base of a cone of constant X-polar angle B or constant Y-polar angle b, respectively.
 The diagram shows ways to solve a common "spin-erection" problem, finding operations that 
return an arbitrary initial spin vector to one of the three main axes such as spin-up the Z axis, spin-up the 
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Y axis, or spin-up the X axis. This also suggests ways to classify and control optical polarization for an 
arbitrary state of elliptical polarization as will be shown a few pages ahead.

 

S(initial)

X

ZS(final) A

B

b

b

B

a

α

β

Y
β

αα−π/2
X

"Direct"
rotation
axis

Z

Y
S(initial)

S(final)

Fig. 10.B.1(a) Map of three different sets of Euler polar angles (αβγ) , (abg), and (ABG).

 Three examples of ways to relate a state with an arbitrary spin S(α,β) to the state of spin-up-Z are 
sketched below in Fig. 10.B.1. The paths shown are all done using single or double applications of only X 
and Y generators GX = -iJX and GY = -iJY (or, in the first "direct" case, a linear combination of them) to 
relate the two states. 

 

 | S〉=Rdirect [β]| ↑z〉 = Ry(a)Rx(b-90°) | ↑z〉    =  Rx(A-90°)Ry(90°-B) | ↑z〉

β

90°-b

a 90°-B

90°-A| S〉 | S〉

| ↑z〉 | ↑z〉

| S〉

| ↑z〉

1-operation 2-operations
Fig. 10.B.1(b) Map of 1-and 2-op transformations that connect spin-up-Z to an arbitrary spin state.

 The "direct" rotation is done using an axis-angle rotation made from a crank vector lying in the X-
Y plane with an azimuth of α−π/2 as shown on the left hand side of Fig. 10.B.1a.
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R Θ⎡⎣ ⎤⎦ = exp−i(Θcos α−π / 2( )JX +Θ sin α−π / 2( )JY ) , where: Θ = β   (10.B.6a)

The resulting matrix is found from the axis-angle matrix (10.5.15).

 

   

R β direct⎡⎣ ⎤⎦ = exp−i(β sinαJX −ΘcosαJY ) =
cos

β
2

e−iα sin
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2
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2
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β
2

⎛

⎝

⎜
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⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

  (10.B.6b)

We check that the desired transformation "erects" a general spin state (10.A.1a) back to spin-up-Z.
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2
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⎟
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2

e−iα / 2

sin
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eiα / 2
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⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

e−iγ / 2 = e−iα / 2

0

⎛

⎝
⎜

⎞

⎠
⎟ e−iγ / 2   (10.B.6c)

Indeed, it does, and it does not change the phase φ = −(α+γ)/2 of the first component. This transformation 
is "twist-free" in the sense of moving a rigid body attached to spin vector S without changing the γ-dial. 
The other transformations in Fig. 10.B.1b will affect the overall phase differently. One may set a desired 
state and its overall phase to a particular value by applying the X and Y rotations three times, following 
paths like the ones in Fig. 10.B.2. The same can be done by a single operator made up of X, Y, and Z 
generators such that its crank vector Ω lies in the Z-S bisection plane and has an azimuthal angle 
measured from the "direct" rotation axis equal to the desired phase. This phase is related to the so-called 
the "Berry phase" but the geometry behind it goes back to the time of Thales of Miletus around 600 BCE.

 

| S〉 | S〉

| ↑z〉 | ↑z〉

3-operations

µ
λ'

µ'

λ
ν'

ν

Fig. 10.B.2 Map of 3-op transformations that connect spin-up-Z to an arbitrary spin state and phase.

 A multitude of Euler angles may be used singly or together to give various kinds coordinates for 
photon polarization states. An (over complete) example is shown in Fig. 10.B.3 in which several 
competing types of angles are drawn at once to characterize the polarization ellipse. Perhaps, the most 
commonly used set of coordinates are the Faraday tip angle ϕ and elliptical shape angle ψ shown in Fig. 
10.B.3a. Twice these angles (2ϕ, 2ψ) or more precisely (a = 2ϕ, b = π/2−2ψ) are Y or C-based polar angles 
in R(3) space for the resulting spin vector S. In other words (a = 2ϕ, b = π/2−2ψ) are Euler angles (a,b) 
measured relative to the Y-axis or C-type basis of circular polarization states.

HarterSoft –LearnIt Unit 3 Fourier Analysis and Symmetry  10.B



4

 No less useful, however, are a set of coordinates (2ϑ, 2ν) based upon the Z-axis or A-type basis of 
x and y plane polarization. These are the standard Euler angles (α,β) introduced previously. Not shown in 
the Fig. 10.B.3 is a third set of angles based upon the bilaterally symmetric B-type basis of ±45° plane 
polarization states or NH3 eigenstates. All these possible coordinates have varying advantages and 
disadvantages which depend on what Hamiltonian and physics is being studied.
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|y〉

I

A
B

C

SS
Ω

α=2ϕ

β=2ψ

(a)
Stokes Vector
ABC-Space

(b)
Polarization
xy-Space

|x〉

√ I

ϕ=α/2
a

b

|y〉

|R〉

|x〉

|L〉

-A-B

ψ= β/2

Fig. 10.B.3 Examples of Euler-like coordinates for (a)U(2) polarization ellipse and (b)R(3) spin vector.
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(a). Polarization ellipsometry coordinate angles
 Optical polarization is analogous to the 2D-harmonic oscillator shown in Section 10.1. 
Polarization is usually defined by giving the real x and y electric field amplitudes.
    Re Ex = Re 〈x|Ψ〉 ,      Re Ey = Re 〈y|Ψ〉 .  (10.B.8)
The complex amplitudes Ex = 〈x|Ψ〉 and Ey = 〈y|Ψ〉 define the general U(2) polarization state.
      |Ψ〉 = |x〉〈x |Ψ〉  +  |y 〉〈y |Ψ〉      (10.B.9)
Re 〈x |Ψ〉 and Re 〈y |Ψ〉 are analogous to oscillator coordinates x=x1 and y=x2 as described by (10.1.1c). 
For an isotropic oscillator potential V = k(x2+y2)/2, the general orbit is an ellipse like the one shown in 
Fig. 10.B.3a. An isotropic oscillator corresponds to the A=D and B=0=C case of U(2) symmetry on the 
extreme left hand table in the catalog of 2-state symmetry of Fig. 10.4.2. Any ellipse or polarization state 
is an eigenstate of a Hamiltonian H=A1=D1 , and any coordinate basis is equally convenient.
 However, each lower symmetry case A, AB, B, C, or U(1) in Fig. 10.4.2 has definite eigenstates 
and coordinates that are most conveinient for its analysis. For example, |Ψ〉 can be written three ways
    |Ψ〉 = |x〉〈x |Ψ〉 + |y 〉〈y |Ψ〉 = |+〉〈+ |Ψ〉 + |−〉〈− |Ψ〉 = |r〉〈r |Ψ〉 + |〉〈 |Ψ〉 ,  (10.B.10)
using eigenbasis of A (asymmetric diagonal), B (bilaterally symmmetric), or C (circular) Hamiltonians. 
The corresponding transformation matrices from plane A-type or (x,y) polarization are as follows.
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   (10.B.11a)    (10.B.11b)   (10.B.11c)
These are introduced in Sections 10.2a, b, and c, respectively. An intermediate case labeled AB-type 
polarization corresponds to plane polarization inclined at angle β/2= Θ, as shown in Sec. 10.3 and Fig. 
10.1.2ab. AB-transformation can be either a rotation matrix R(β/2)=R[Θ] or a reflection matrix σ(β/2).
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     (10.B.12a)      (10.B.12b)
The only difference is is the ±-sign of the second column. A rotation has a determinate det|R|=+1 while a 
reflection has det|σ|=-1. σ(β/2) belongs to U(2) but not SU(2). Rotation R(β/2) belongs to both. 
 Unit-determinant or unimodular SU(2) transformations are area or volume-preserving. This is 
sometimes an advantage, particularly if you are trying to apply R(Θ) to solid objects in a laboratory! But, 
light is easier to reflect than to rotate. Transformation (10.B.11b) is a reflection σ[π/4] through a mirror 
plane half-way between x and 45°-line. Transformation (10.B.11c) is also a refelection and not in SU(2). 
From now on we use the following SU(2) C-toA transformation. Its phase differs from (10.2.23b).
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    (10.B.13)

The difference is the sign of the R-column. (This is called a Condon-Shortely phase convention.)

  (1) Type-A ellipsometry Euler angles
 Now we define Euler-angle coordinates (following (10.A.1a)) for A-type linear polarization basis.

    |Ψ〉 = (Xe-iϑ |x〉 + Ye iϑ |y 〉)e-iθ  = √I(cosν e-iϑ |x〉 + sinν e iϑ |y 〉)e-iθ     (10.B.14a)
Here the magnitudes of the E-field components are defined by an A or Z-based Euler polar angle β=2ν .
     X = √I cos ν = √I cos β/2  = |Ex(ϑ,ν,θ)|=|〈x |Ψ〉|     (10.B.14b)
     Y = √I sin ν  = √I sin β/2  = |Ey(ϑ,ν,θ)|=|〈y |Ψ〉|    (10.B.14c)
The real E-field components are defined by an A or Z-based Euler azimuthal angle α/2=ϑ  and overall 
phase angle γ/2 = θ. (Note: Do not confuse ϑ or ϕ used below with axis-operator angles defined before.)
    x1= ReEx(ϑ,ν,θ) = Re 〈x |Ψ〉 = X cos(ϑ+θ)     (10.B.14d)
    x2= ReEy(ϑ,ν,θ) = Re 〈y |Ψ〉 = Y cos(ϑ−θ)     (10.B.14e)
Coordinates x1 and x2 trace an ellipse in a horizontial 2X-by-2Y box where azimuth α=2ϑ  determines the 
orientation or shape of the ellipse in the box and overall phase angle γ =2θ  ("twist") locates each orbiting 
point on the ellipse. The enclosing box aspect ratio X:Y is fixed by polar angle β=2ν  in (10.B.14b-c).
 Fig. 10.B.4 shows three cases which differ only by the angle α=2ϑ  which has value α= 45°=2
(22.5°) in the upper Fig. 10.B.4 and increases to α= 90° and then α= 180° in the successive lower figures. 
In each case, the box-diagonal angle β/2 = ν  remains fixed at ν = 30° or β=60°.
 The Stokes spin S-vector diagram for each polarization ellipse is drawn in ABC space on the right 
hand side of the figures. Note that polar angle of the S-vector remains fixed at β= 2ν =60° with respect to 
the A-axis, while the azimuth α=2ϑ  rotates from α= 45° to α= 90° and finally to α= 180°. 
 The α-evolution seen in Fig. 10.B.4 is an A-axis rotation similar to that which an A-type 
(asymmetric-diagonal) Hamiltonian would cause. If the precession rate Ω = α   of the S-vector is much 
slower than phase angle "orbit" rate  γ / 2 = θ  around the ellipse, then you can imagine an ellipse changing 

shape slowly. However, if the precession rate Ω= α   becomes a significant fraction of the overall phase 
rate   γ / 2 = θ   or actually exceeds it, then each ellipse is not given time to be fully drawn before shape-

angle α=2ϑ changes significantly. Fig. 10.2.2 is an example of such hyper-A-rotation.
 In most optical polarization experiments so far, the overall phase rate for optical polarization 
evolution is hundreds of tera-Hertz and many times that of typical precession rates. However, modern 
experiments may not be so slow in changing the state of polarization.
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 X1

 X2

√I
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I
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C
 S

 Ω

2ν
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2ϑ

Fig. 10.B.4 A-Type polarization angles (α=2ϑ,β=2ν ,γ=2θ) with rotation to α= 45°, 90°, and 180°. 
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      (2) Type-C ellipsometry Euler angles
 Now we define Euler-angle coordinates (following (10.A.1a)) for C-type linear polarization basis.

    |Ψ〉 = [Re-iϕ|r〉 + Le iϕ|〉]e-iΦ = [Re-iϕ (|x〉+i|y〉)+ Le iϕ(|x〉-i|y〉)]e-iΦ/√2    (10.B.15a)
The right and left circular bases |r〉=(|x〉+i|y〉)/√2 and |〉=(|x〉-i|y〉)/√2 from (10.B.11c) are expanded.
    |Ψ〉 = [Re-iϕ + Le iϕ] |x〉e-iΦ/√2  =  [(R+L)cosϕ - i(R-L)sinϕ] |x〉(cosΦ-isinΦ)/√2 
 +i[Re-iϕ - Le iϕ] |y〉e-iΦ/√2      +i[(R-L)cosϕ -i(R+L)sinϕ] |y〉(cosΦ-isinΦ)/√2 
Separating the real and imaginary parts gives a ϕ-rotation transformation for each part.
     |Ψ〉 =[(R+L)cosϕ cosΦ −(R-L)sinϕ sinΦ − i(R+L)sinϕ sinΦ-i(R-L)sinϕ cosΦ] |x〉/√2 
 +[(R+L)sinϕ cosΦ+(R-L)cosϕ sinΦ+i(R+L)cosϕ cosΦ -i(R+L)sinϕ sinΦ] |y〉/√2  (10.B.15b)
The real E-field (x1,x2)-plots in Fig. 10.B.5 are thus given as follows
    x1=ReEx(ϕ,ψ,Φ) = Re 〈x |Ψ〉 = (a cosΦ)cosϕ  -  (b sinΦ)sinϕ     (10.B.15c)
    x2=ReEy(ϕ,ψ,Φ) = Re 〈y |Ψ〉 = (a cosΦ)sinϕ  +  (b sinΦ)cosϕ     (10.B.15d)
where the ellipse semi-major axis a and semi-minor axis b are defined using a new angle ψ.
       a = (R + L)/√2 = √I cos ψ       (10.B.15e)
       b = (R - L)/√2  = √I sin ψ       (10.B.15f)
The ellipse box aspect ratio a:b is defined by ψ, related below to a C-based Euler polar angle b=π/2-2ψ, 
just as the X:Y ratio is defined by an A-based Euler polar angle β=2ν  in (10.B.14b-c). The real E-field 
components (x1,x2) are defined by a C-based Euler azimuthal angle a=2ϕ  and overall phase angle g/2=Φ. 
(10.B.15) are analogous to the defininition in (10.B.14d-e) by an A-based Euler azimuthal angle α=2ϑ 
and an overall phase angle γ/2 =θ. Furthermore, C-type evolution or Faraday rotation in Fig. 10.B.5 is 
rotation about the C-axis by azimuthal angle a=2ϕ , just as A-type evolution in Fig. 10.B.4 was A-axial 
rotation by angle α=2ϑ . The latter is called birefringence. 
 Fig. 10.B.5 shows three cases differing only by the angle a=2ϕ  which has value a= 30° =2(15°) in 
the upper Fig. 10.B.5 and increases to a= 90° and then a= 170° in the successive lower figures. In each 
case, the ellipse-box-diagonal angle b/2 = π/4-ψ  remains fixed at ψ= 30° or b=30° (ψ=30°=b is just a 
coincidence!). As we will show, the C-axial Euler polar angle of the S-vector is b=π/2-2ψ, in general. The 
complimentary angle 2ψ=π/2-b=bc is a spin polar elevation angle or latitude, not a polar angle. 
 As in Fig. 10.B.4, the objects in the real ABC S-vector 3-space move twice as fast as the ones in 
the complex |Ψ〉-spinor or polarization 2-space. Ellipse rotation by ϕ is a rotation of the S-vector by 
a=2ϕ. The same applies to the overall phase angle Φ which is related by a factor of 2 with the Euler twist 
or "gauge" angle g = 2Φ around the S-vector axis. Examples of normal (Φ>>ϕ) and hyper-Faraday 
rotation (Φ∼ϕ) are sketched in  Fig. 10.2.10 and Fig. 10.2.11, respectively.

Fig. 10.B.5 C-Type polarization angles (a=2ϕ ,b=π/2-2ψ ,g=2Φ) with C-axial rotation to a= 30°, 90°, and 
170°. Polar angle of S from C-axis is fixed at  b=π/2-2ψ=30°.  
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Fig. 10.B.5 C-Type polarization angles (a=2ϕ ,b=π/2-2ψ ,g=2Φ) with C-axial rotation to a= 30°, 90°, and 
170°. Polar angle of S from C-axis is fixed at  b=π/2-2ψ=30°.  
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To define polar angles of the S-vector relative to A, B, or C-axes we can use the transformation relations 
given by (10.B.5). However, we need to be aware of the base changing transformations behind such 
shortcuts. For example, suppose we define C-axis as our true Z-axis of "up" and "down" so that

     
  

C σN( ) = r σN r r σN 

 σN r  σN 

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

   (10.B.16)

is the following representation of the three Pauli (Hamilton) operators in the C (circular) basis {|r〉,|〉}.

 
  
C σ A( ) = 0 1

1 0

⎛

⎝⎜
⎞

⎠⎟
  (10.B.17a)  

  
C σ B( ) = 0 −i

i 0

⎛

⎝⎜
⎞

⎠⎟
  (10.B.17b)    

  
C σC( ) = 1 0

0 −1

⎛

⎝⎜
⎞

⎠⎟
 (10.B.17c)

This would be the conventional definition of (σX,σY,σZ )=(σA,σB,σC ) of Pauli operators in that order 
with the third (σZ or σC) diagonal. In this text we have had σA be the diagonal one. But, in the A basis 
(Asymmetric diagonal or linear) σA is diagonal. A basis change by (10.B.11c) proves this as shown below. 

   

L σN( ) = x σN x x σN y

y σN x y σN y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=  

x r x 

y r  

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

   
r σN r r σN 

 σN r  σN 

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

 
r x r y

 x  y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

          =       T ⋅C σN( ) ⋅T †          = 1 / 2 1 / 2
i / 2 −i / 2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

 
r σN r r σN 

 σN r  σN 

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

 1 / 2 −i / 2
1 / 2 i / 2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

(10.B.18)

The following is the representation of the three operators in the A (linear) basis {|x〉,|y〉}.

 
  
L σ A( ) = 1 0

0 −1

⎛

⎝⎜
⎞

⎠⎟
  (10.B.19a)   

  
L σ B( ) = 0 1

1 0

⎛

⎝⎜
⎞

⎠⎟
  (10.B.19b)    

  
L σC( ) = 0 −i

i 0

⎛

⎝⎜
⎞

⎠⎟
 (10.B.19c)

This has been the conventional representation for this text, so far. Relative to (10.B.17) it is a cyclic 
reordering A→B→C→A, that is, a 120° rotation around the [111] axis in ABC-space. 
 σN -expectation values are basis-independent (provided the right representations are used for both 
the states and the operator!) Consider first the linear A-representations using (10.B.19) and (10.B.14). 

 
  

Ψ σ A Ψ = Xe−iϑ Yeiϑ( )*  1 0
0 −1

⎛

⎝⎜
⎞

⎠⎟
 Xe−iϑ

Yeiϑ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

  = X 2 − Y 2    (10.B.20a)

 
  

Ψ σ B Ψ = Xe−iϑ Yeiϑ( )*  0 1
1 0

⎛

⎝⎜
⎞

⎠⎟
 Xe−iϑ

Yeiϑ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

    = 2XY cos 2ϑ    (10.B.20a)

 
  

Ψ σC Ψ = Xe−iϑ Yeiϑ( )*  0 −i
i 0

⎛

⎝⎜
⎞

⎠⎟
 Xe−iϑ

Yeiϑ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

   = 2XY sin 2ϑ    (10.B.20b)

Now do the same values in the circular C-representations using (10.B.17) and (10.B.15). 

 
  

Ψ σ A Ψ = Re−iϕ Leiϕ( )*  0 1
1 0

⎛

⎝⎜
⎞

⎠⎟
 Re−iϕ

Leiϕ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

  = 2RLcos 2ϕ = a2 − b2( )cos 2ϕ  (10.B.21a)

 
  

Ψ σ B Ψ = Re−iϕ Leiϕ( )*  0 −i
i 0

⎛

⎝⎜
⎞

⎠⎟
 Re−iϕ

Leiϕ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

  = 2RL sin 2ϕ = a2 − b2( )sin 2ϕ  (10.B.21b)
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Ψ σC Ψ = Re−iϕ Leiϕ( )*  1 0
0 −1

⎛

⎝⎜
⎞

⎠⎟
 Re−iϕ

Leiϕ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

  = R2 − L2 = 2ab    (10.B.21c)

 Equating A-defined and C-defined S-vector components SN= 〈Ψ|σN|Ψ〉 relates A-based and C-
based Euler angles. Use A-definitions (10.B.14) and C-definitions (10.B.15) as follows.

   

S-vector A Linear Basis C Circular Basis

Ψ σ A Ψ = X 2 − Y 2 =            I cos 2ν = 2RLcos 2ϕ = (a2 − b2 )cos 2ϕ = I cos 2ψ  cos 2ϕ

Ψ σ B Ψ = 2XY cos 2ϑ = I cos 2ϑ  sin 2ν = 2RL sin 2ϕ = (a2 − b2 ) sin 2ϕ = I cos 2ψ  sin 2ϕ

Ψ σC Ψ = 2XY sin 2ϑ = I sin 2ϑ  sin 2ν = R2 − L2     = 2ab        = I sin 2ψ

Ψ 1 Ψ = X 2 + Y 2 = I = R2 + L2     = a2 + b2

(10.B.22)

 First notice how the polar coordinates for the C-basis are defined in the right-most column of 
(10.B.22). The C-azimuth plane projection is (I cos2ψ   cos2ϕ, I cos2ψ   sin2ϕ ) while the main C-axial 
projection is I sin2ψ . This is different from the A-basis defined in the middle column of (10.B.22) with A-
azimuth plane projection is (I sin2ν  cos2ϑ, I sin2ν  sin2ϑ ) while the main A-axial projection is I cos2ν . 
 For A-bases angle β=2ν  is a true polar angle measured from the main A-axis as shown in Fig. 
10.B.4. For C-bases angle bc=2ψ  is an elevation angle or complement bc=π/2-b of a true polar angle 
b=π/2-2ψ  measured from the main C-axis as shown in Fig. 10.B.5. This is consistent with (10.B.5) which 
relates Euler polar angles β, b, and B.
 The C-component of the S-vector is an oscillator or "photon"  angular momentum component 
   SC= I(xpy-ypx )= I(x1p2-x2p1 )=2ab = R2 - L2      (10.B.23)
according to fundamental definitions (10.5.8c). Comparing this to (10.B.22) above shows that SC is 
proportional to the area πab of the polarization ellipse. This makes the C-axis or Z-axis the important one 
in angular momentum theory which will be treated in later chapters. Given the importance of U(2)>R(3) 
isotropy and the quantum theory of angular momentum in atomic and nuclear physics, this probably 
explains why the Pauli representation (10.B.17) is the most widely accepted convention.
 However, for anisotropic condensed matter the A-axis (which we have up to now called the Z-axis) 
has an important anisotropy or Stark-Splitting component. 
    SA=  I(x12+ p1 2 − x22− p2 2)= X2 − Y2     (10.B.24)
Maximum or minimum values of the A-component correspond to pure x or pure y polarization just as 
maximum or minimum values of the C-component correspond to pure R or pure L polarization. 
Development of the bilateral or B-component and coordination is left as an exercise.
 Transformations which change the bases-of-choice or quantization axis from A to B or C belong to 
a dual or “external” U(2) group that commutes with the U(2) group from which Hamiltonian and 
evolution operators are made. Dual symmetry is an important topic which will be introduced in Chapter 
15 and applied again in Chapters 24, 25, and 30.
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(b) Beam evolution of polarization
 Evolution of optical polarization is often a function of distance z along a propagating beam. The 

evolution is described classically by Maxwell's equations which are second order in position.

  
   
∇2E − ∇ ∇ •E( ) = 1

c2
∂2E
∂t2

+ 1
c2ε0

∂2P
∂t2

 where:    P = ε0

α •E    (10.B.25)

This simplifies if all field E and polarization vectors P are in the x-y direction transverse to beam line z.

The polarizability α-tensor relation is then two-dimensional.

      P = ε0

α •E  becomes: 

  

1
ε0

Px

Py

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

α xx α xy

α yx α yy

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

Ex

Ey

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

  (10.B.26)

Furthermore, we assume single frequency vector amplitudes depend on the z-coordinate only

  
   
P z, t( ) = P z( )e−iω t  ,                  E z, t( ) = E z( )e−iω t

Maxwell's equations simplify under the preceding conditions.

  

  

∂2

∂ z2

x φ z( )
y φ z( )

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟
= − ω

2

c2

1+α xx α xy

α yx 1+α yy

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

x φ z( )
y φ z( )

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

 ,       (10.B.27a)

where the complex polarization field is related to the real E-field.

    

  

Re  
Ex z( )
Ey z( )

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
= Re

x φ z( )
y φ z( )

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

    (10.B.27b)

 The forward propagating wave solutions are used in the simplest beam approximation.

   

  

x φ z( )
y φ z( )

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟
= e

iz
kxx kxy
kyx kyy

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ x φ 0( )

y φ 0( )
⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

       (10.B.28a)

A wave-vector matrix k is the doubly-positive (++) square root of the susceptability tensor χ=1+α..

  

   

kxx kxy

kyx kyy

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= ω

c

1+α xx α xy

α yx 1+α yy

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

+,+( )

1/2

=ω
c

+ χ1Pχ1
+ χ2 Pχ2( )   (10.B.28b)

In the absence of absorption or gain the eigenvalues (χ1,χ2) of χ are assumed positive-real while the 
matrix k and the projectors Pχ1 and Pχ2  of χ and k are assumed all to be Hermitian. (k†=k)  
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Pχ1

=

χxx − χ2 χxy

χ yx χ yy − χ2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

χ1 − χ2
,          Pχ2

=

χxx − χ1 χxy

χ yx χ yy − χ1

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

χ2 − χ1
  (10.B.28c)

In this approximation the spatial z-evolution (10.B.28a) due to eikz proceeds quite analogously with the 
temporal t-evolution due to a Hamiltonian e-iHt/ discussed previously. One difference is that a positive k 
will correspond to a negative or clockwise Ω=−|Ω| crank motion in ABC-space. (As you move down the 
beam you are effectively "undoing" time ω t and looking at what has already passed you.) Also, time 
enters here as a simple overall e-iωt phase contribution to give a polarization wave operator eikz-iωt. The 
opposite moving wave e-ikz-iωt is assumed zero. Interference of counter-propagating waves is studied in 
the next unit. 

Problems for Appendix 10.A and B
Euler Can Canonize
10.A.1 An 2D-oscillator canonical phase state-(x1, p1, x2, p2) and a spin-state-⏐α, β, γ〉 are both defined by the Euler angles 
(α, β, γ) through (10.A.1a-b) as well as by axis angles [ϕ, ϑ, Θ] through (10.A.1c). (First, verify all parts of (10.A.1).) If 
rotation-axis-Θ polar angles [ϕ, ϑ] are fixed while rotation angle Θ=Ωt  varies uniformly with time, Euler angles (α, β, γ) 
and phase point (x1, p1, x2, p2) trace spin and oscillator trajectories, respectively. Verify this for the following cases by 
discussing plots requested below. 
(a) [ϕ =0, ϑ =0] , (b) [ϕ =0, ϑ =π/2] , (c) [ϕ =π/2, ϑ =π/2] , (d) [ϕ =0, ϑ =π/4] , (e) [ϕ =π/2, ϑ =π/4] .  
For each case sketch 2D-paths -p1 vs. x1 and x2 vs. x1 and sketch  Θ̂ sinΘ/2 in a 3D ( -p2,x2,-p1)-space which should also have 
paths for –p2 vs. x2 and x2 vs. -p1 etc. Also, indicate the paths followed by the tip of the S-spin-vector (10.5.8c) in 3D-spin space
(SX, SY, SZ) and characterize as A-type, B-type, or C-type motion, etc., in each case.

Invariantipodals
10.A.2 When an Euler sphere is rotated from origin |1〉 state (0=α=β=γ) to some angles (α, β, γ), there are always points 
on the sphere which end up exactly where they were before the rotation. Verify this and express the polar-coordinates 
(φ,θ) of all such invariant points in terms of (α, β, γ).

Spinor-Vector-Rotor
10.A.3 Prove and develop the result (10.A.15) as described below.

 

    

R[

Θ]σ LR[


Θ]†  = cos

Θ
2

 1− isinΘ
2

 Θ̂Kσ K
⎛
⎝⎜

⎞
⎠⎟
σ L cos

Θ
2

 1− isinΘ
2

 Θ̂Nσ N
⎛
⎝⎜

⎞
⎠⎟

†

                =σ L ' =σ L cosΘ− εLKMΘ̂Kσ M sinΘ + 1− cosΘ( )Θ̂L Θ̂Nσ N( )
(a) Using the σ-product definitions and the Levi-Civita tensor identity
    εabcεdec = δadδbe − δaeδbd   (Prove this, too!)

to derive the above result. (Equation (10.A.15))
(b) Check if the above result (Eq. (10.A.15a)) yields Eq. (10.A.15b) and sketch the resulting vectors Θ and eL (before rotation) 
and  e'L (after rotation) for a rotation of eZ by Θ=120° around an axis with polar angle ϑ=54.7° = arcos(1/√3) and azimuthal 
angle ϕ=45°. (As is conventional, we measure polar angles off the Z(or A) axis and azimuthal angles from the X(or B) axis 
counter clockwise in the XY (or BC) plane. What semi-famous-name axis is this Θ? Give Cartesian coordinates.)  
(b) Use the above to write down a general 3-by-3 matrix in terms of axis angles [ϕ, ϑ, Θ], and test it using angles in (b).
(c) Derive the Euler angles (α, β, γ) for this rotation matrix.
(d) Compare formulas and numerics for 3-by-3 R(3) matrices to the corresponding 2-by-2 U(2) matrices for the same rotations.
(e) Find 3-by-3 R(3) and 2-by-2 U(2) matrices for rotation Ry by 90° around Y (or C)-axis. 
(f) Do products Ry R[ϕ, ϑ, Θ] and R[ϕ, ϑ, Θ]Ry numerically and check with product formula (10.A.10). Describe results.
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Spinor-Vector-Rotor Polarized
10.B.1. Suppose a Hamiltonian H has an Ω-vector pointing along the Θ-vector in a preceding problem 10.A.3b. Here we 
will let =1, and let Θ=Ωt with Θ=2π/3 at t=1. 

(a) Write down the 2-by-2 Hamiltonian matrix H.
(b) Give at least two sets of values for Euler angles which give an eigenstate of H. 
(c)Write out the corresponding complex U(2) eigenstates of H obtained using (b) and sketch their polarization 
ellipse-orbit (the real spinor space picture), U(2) phasor picture, and S-vectors.
(d) Describe what happens to the initial A-state |Ψ(t=0)〉 = |x〉 (x-polarization or spin-up) given this Hamiltonian  H. 
Does  |Ψ(t)〉  ever return 100% to |x〉? 
(e) Does x-polarization ever get close to y-(-A)-polarization? …45°-(B)-polarizaton? …R-(C)-polarizaton? 
How long does it take to get from |Ψ(t=0)〉 to the closest approach to each?

Spin erection. Does it phase U(2)?
10.B.2. The following general problem may certainly become relevant if the mythical quantum computer materializes. It 
involves erecting an arbitrary state with spin vector S to the spin-up Z (or A) position with a particular overall phase Φ. In 
each case make the description of your solution as simple as possible as though you needed to explain it to engineers.

(a) For a state of 0-phase with spin on the X (or B), describe a single operator that does the above.
(b) For a state of 0-phase with spin at β in the XZ (or AB) plane, describe a single operator that does the above.

The trouble with ϑ 
10.B.3. The polarization angle ϑ defies placement in the U(2) diagram of Fig. 10.B.3. (That is, it's not there!) Is it easier 
to locate if ν=45°=ϕ ? Discuss contact points on XY box. Let a cardboard cut-out ellipse of a given I and ν rotate 360° on 
the floor in the corner of a room always tangent to two walls. What simple curve does its center describe? Does it change 
radically as ν→0 ? (It's a lot easier to answer this using U(2) ellipse geometry than by algebraic machination.)

Strange susceptibility

10.B.4. A solid has an xy-susceptibility tensor  
    

ω 2

c2 (1+

α) = 1.8 −0.9+ 0.9i

−0.9− 0.9i 2.7

⎛

⎝⎜
⎞

⎠⎟
 for a z-beam.

(a) Derive (ϕ, ψ) and sketch ellipses for all polarization states whose ellipses go unchanged.
(b) A circular |R〉-state (ν=45°) enters at z=0. Discuss its z-evolution. How far is a "π-pulse" (Half-wave plate or π 
rotation of S)?

To B or not 
10.B.5. A B-axial description applies to NH3 states or a ±45° polarization eigenvector medium. First, write the form of 
the B-type (bilaterally symmetric) Hamiltonian or xy-susceptability tensor. 

(a) Given an algebraic description of U(2) bases and R(3) spin vectors using B-type Euler angles (A,B,G).
(b) Give a geometric sketch of U(2) ellipses and R(3) spin vectors like Fig. 10.B.4-5 as they might evolve under a B-
type Hamiltonian or susceptibility tensor. Start with the case (ϕ=45°, ψ=30°, Φ=0°) in center of Fig. 10.B.5, convert 
it to (A,B,G) angles, then sketch result of subsequent 45°, 90°, and 180° rotations of S around B-axis.
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