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Unit 3 Fourier Analysis and Symmetry

Unit 2 discussed quantum e/*-o9-wave propagation in space and time and introduced
wavevector and frequency (ck,o)-space while deriving the basic Einstein relativistic
transformations and Planck-deBroglie quantum relations. But, what are ei*r-%-waves? One

answer comes from understanding relations between space-time (x,cf) and (ck,w)-space known
matrices and shows their connection to translational symmetry. This with Planck’s axiom gives
the quantum equation of motion known as Schodinger’s time equation, the evolution operator,
and its generator, the quantum Hamiltonain operator, the sine qua non of Schrodinger theory.
Unit 3 continues with a detailed description of quantum beats and revivals using symmetry
analysis. The final chapter describes 2-state and spin-1/2 systems while introducing U(2)

symmetry analysis.
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Expressing arbitrary wavefunctions or states in terms of spectral components or plane waves
is known as Fourier analysis. Fourier transformation matrices relate space and time
(coordinate) bases to wavevector and frequency (Energy-momentum) bases of plane waves.
Fourier analysis comes in different flavors depending on whether various bases are discretely
numbered or continuous. Chapter 7 compares the continuous coordinate bases of Bohr rotor
states to the fully continuous plane wave states of an unbounded continuum. Then a discrete
“‘gquantum-dot” sytsem is introduced in which both coordinates and wavevectors are discrete.
The later is the basis for the introduction of Fourier symmetry analysis in the following Chapter
8 and time evolution in Chapter 9. Discrete symmetry in space and time helps to clarify

quantum beats and “revivals” which all quantum systems will exhibit to some degree.
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Chapter 7. Fourier Transformation Matrices

We have noted that a quantum experiment cannot move at all unless two or more frequency components
can interfere with each other. A single (mono-chromatic) wave ¥ = yei®! is not enough to make anything
happen. Such a W-system is a stationary state and appears to be dead. What we can observe is determined by the
absolute square W*¥, which kills the single oscillating phase.

Similarly, a wave ¥ = yei®* with a single momentum component appears to be a uniform cloud of random
counts in space. To obtain any structure in the quantum world, that is, atoms, molecules, solids, people, and so
forth, we need many momentum components in our matter waves.

The mathematics used to deal with multiple frequency or momentum components is called Fourier
analysis after Jean Baptiste Fourier, a French artillery officer turned mathematician. This section will review the
fundamentals of Fourier theory relevant to quantum theory using the Dirac notation. Fourier analysis has several
flavors depending on whether its coordinates and parameters, that is space-time and wavevector-frquency are
discrete or continuous and whether x or k£ are bounded or unbounded. We consider several distinct cases in turn.

Each has different forms for its completeness and orthonormality axioms-3 to 4.

7.1 Continuous but bounded x. Discrete but unbounded k
One of the most famous and widely used wavefunction systems in quantum theory are the one-
dimensional (1-D) Bohr orbitals \y k(x) = {x | k ). Examples are sketched in Fig. 7.1.1.

ik p,x
em

l//km(x)=<x|km>=m=y/km(x+L) (7.1.1)

These can be thought of as a set of waves on a ring of circumference L. The basic waves have just the right
wavevectors kj, to put integral numbers of whole wavelengths along L and thereby repeat the wave again after
each complete L-revolution. Such requirements are known as periodic boundary conditions.

ik px eikm(x+L)

v =y, (x+D)= =y, (et (7.1.2)

\/norm. - \/norm.

The boundary conditions lead to wavevector quantization conditions.

Eml Lor k, = 2—7tm , where:m=0,+1,+2,+3, ..+ (7.1.3)
L

The allowed wavevectors, while still infinite in number, are forced to be discrete.

This is a very common feature of quantum theory for which it owes its name quantum, but it happens to
classical waves, too. A bounded continuum leads to an unbounded but discrete set of allowed waves. For another
example, cavity modes in the Hall of Mirrors in Sec. 6.3 (d) acquire discrete frequencies as soon as the doors are
shut. If an indiscrete type of wave is put in a cage, then it is forced to be discrete. (Perhaps, this is just another sad

anthropomorphic metaphor.)
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Fig. 7.1.1 Sketches of Bohr orbitals confined to 1-D L-interval and quantum energies ( for m=01to 6 ).

The resulting amplitudes must satisfy Axioms 1-4. In particular, the orthonormality axiom-3 requires (k|

k1)=1but {k;| k») =0 , and so forth, or that the following Kronecker delta representation.

k| kn)=0m n (7.14a)
Completeness axiom-4 requires that | ;) (k;,| sum up to a unit operator or an x-Dirac-delta expression.
Y| ky) (kn| =1, or: 3{x | kpy (kpl x') = {x | x")=0(x-x). (7.1.4b)

(a) Orthonormality axiom-3
Using the integral form (2.1.2) of the completeness relation sum we get the following.

5, =k [k)= "1 i, [W) k)= e € (7.15)
= = X X)X = X 1.
" min —-L/2 " " -L/2 norm. N norm.
The conjugation axiom-2 was used to write
—ik x
* e m
<km|x>=<x|km> = T (7.1.6)
norm.
After integrating, this determines the normalization constant norm. as follows.
L/2
L2 gtkm¥ Gikp L2 e‘i(km‘kn)x e‘i(km‘kn)x |
6,,= | s — | dx =—
-L/2 N norm. \/norm —-L/2 norm. —z(km—kn)norm.‘ L (7.1 8)

¢ emkn)L2 _ Uk k)2 2sinl (k,~k,)L/2]
—i(km—kn)norm. - (km—kn)norm.

Using the quantization conditions (7.1.3) gives the desired norm. value and satisfies axiom-3.
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. Oif:m#n
2sinw|{m—n
. =#= I ,or: norm. = L. (7.1.9)
2—ﬂ(m—n)norm. norm ifzm=n
I .

Normalized wave amplitudes are therefore

ik px

l//km(x)=<x|km>=e\/z . (7.1.10)

(b) Completeness axiom-4
Completeness axiom-4 has a Dirac-delta form in the mixed discrete-continuous wave space.

6(x=)= "5 (x[ky )y | (7.1.11)
We test it with amplitudes (7.1.10) using orthonormahty (7.1.4) and conjugation (7.1.5).
sz p 5( ') sz J n:Z_'_oo eiknx e—iknx' nzgoo e—ik x' sz p iknx (7 | 12)
—-L/2 rovT _—L/2 xi’l=—°° \/z \/Z _nz—oo \/z —-L/2 L \/Z o

The last integral is a representation of a Kronecker delta 8o, . Recall that ky =0 and use (7.1 .4).

G AN s SR AL R PN 7
X = X = =
—-L/2 \/Z —-L/2 \/Z \/Z 01%n on

L/2

[ axe™m =15, . (7.1.13)
—-L/2
Then (7.1.12) is consistent with (7.1.11) and (7.1.10) and the definition of Dirac’s delta.
L2 L2 p=teo k¥ hnY pmiee Cikny
dxd(x—x")= | dx X —= X ntg =e 0% =1 7.1.14
o)z f ey s 2 ey, e 7.1.14)

(c) Fourier series representation of a state
With completeness one can quickly derive a representation of arbitrary state | ¥ ) if you know its
complex wavefunction W(x) = (x | ¥ ) . Formally, you just operate on | ¥ ) with the unit 1=X|kn) kn|.

=0 elkmx

(=5 (k)= TS S )

(7.1.15a)
m—tee g x
= Yy e My

m=—oo

m

where the Fourier coefficient P, is given by the following integral (Use x-completeness 1=]dx]| x )(x|.)
v L/2 L2 ~ikm
= < | > | [ dx—F—— ¢ <x|‘P

¥, = \/— \/Z L/2 <m|x><x|\}l> \/Z L2 \/Z > (7.1.15b)

_LH j dee Fm¥p(y)
-L/2

The only requirement is that the function be periodic in L, that is, W(x) = W(x+L).

(d) Bohr dispersion relation and energies
In Fig. 7.1.1 the waves with higher %, have higher energy E,, and are drawn higher according to the E-

values given by the Bohr dispersion function first drawn in Fig. 5.6.3.
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(nk,, )’
oM

2r
E,=ho, = ,where:pm=hkm=h7m . (7.1.16)

This is just a non-relativistic approximation for energy that neglects the rest energy Mc? and higher order terms in
(5.2.5b). It is kinetic energy only, that is KE = {/>Mu? = p?/2M with the momentum p=p,, and wavevector k=k;,
quantized by conditions (7.1.3). The dispersion function is then a simple parabola of discrete values as shown on
the right hand side of Fig. 7.1.1. Note that each energy value £, , except £y, has two orthogonal wavefunctions y
+km OF states |+k;,) corresponding to pairs of oppositely moving wavevectors +k, on either side of the dispersion
parabola. The |+k,) are called degenerate states because they share a single energy E,. Such degenerate pairs are
each an example of a U(2) two-state system. As long as the degeneracy remains, any unitary linear combination

of the two states is also an eigenstate with the same frequency and energy E=hv.

(e) Sine and cosine Fourier series worth remembering

A function defined by Fourier series (7.1.15) repeats after its fundamental wavelength L=2mn/k; or period
T=2m/wi. So do the real and imaginary parts that are series of sine or cosine functions of m™ spatial overtone
argument k,x or m™ overtone frequency argument ® 2. Moving wave terms use both: (knx- uf).

Let us consider wave functions with zero-DC-bias or zero (k=0)-Fourier component: 0=¥,=[. The
integrals and derivatives of unbiased functions may also be unbiased. An example of a series of unbiased
functions starts with the alternating Dirac delta function adel(x) shown at the top of Fig. 7.1.2. Its integrals and
derivatives are useful series worth remembering because they are easy to compute and visualize. Compare this
function to the simple delta pulse train (5.3.2) shown in Fig. 5.3.2.

The first integral of adel(x) is a square wave function hox(x) shown next in line in Fig. 7.1.2. Below it is a
saw-tooth wave saw(x) and then a parabolic amplitude wave paw(x). Each wave has an overall scale factor
attached so plots that are not delta-like end up with comparable amplitudes.

Wave paw(x) looks like a sine wave but isn’t quite. The derivative of a genuine sine wave is a cosine
wave that looks just like a sine wave but is moved back by n/2. The derivative of paw(x) is saw(x), which is
moved back, but it looks nothing like good old paw(x)! Subsequent derivatives only accentuate the differences
between sin(x) and paw(x). Differentiation amplifies little blips or bends (It differentiates!) while integration does
the opposite by smoothing out sharp corners or other differences.

There are at least two famous physics topics that make use of functions that are derivatives or integrals of
each other. Classical mechanics in one dimension is one such topic where the functions of acceleration a(t),
velocity v(t), and position x(t), are each the integral of one above or the derivative of the one below. Classical
electrostatics is another topic in which the charge-density p(x), electric field E(x), and potential ®(x), are so
related. (Various conventions may put +signs and scale factors onto these relations.)
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2 EX 5
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Fig. 7.1.2 Fourier series sharing simple integral or derivative relations to each other.

Some more or less extreme examples of charge and field distributions are sketched in Fig. 7.1.3 on the
following page. The first set in Fig. 7.1.3(a) is due to alternating charge layers. The field is that of a series of
alternating parallel-plate capacitors. By taking a derivative of the alternating chasrge layers we make the dipole
layer distribution shown in the top of the middle Fig. 7.1.3(b). The final example in Fig. 7.1.3(c) actually has a
Dirac-delta potential lattice, one of many favorite models for nano science these days. We shall be modeling
periodic potentials, too. The preceding gives you some feeling how difficult it may be to actually produce some
of these exotic potentials! Seldom is theory so easy and the lab so hard.

Also it is worth considering these as time-pulse series. As we will explain later, you may taper the Fourier
series amplitudes gradually to zero and thereby replace the sharp and wrinkled deltas and squares by smoother
Gauassian or Lorentzian features that are useful spectroscopic models. Of course, you may taper them right back

to single term series of one sine or one cosine wave each!

Following page: Fig. 7.1.3 Exotic 1-D electric charge and field distributions.
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7.2 Continuous and unbounded x. Continuous and unbounded k
In the preceding cases all wavevectors are restricted by the quantization condition (7.1.3).

2r

k,, = - ms where: m=0,+1, £2, £3,... %00 (7.1.3)repeated

If you let the "cage" become infinitely large (L — «~ ) then the wavevector set becomes finer and finer and
approaches a continuum. The trick is to replace each sum over index m by an integral over a continuous k-value.
If it is done right the wave functions will take a continuous form in both x and k.

ikx

y/k(x)=<x|k>=\/:07m , (7.2.1a)

We need to verify k-orthonormality relations based on wavevector Dirac-delta 8(k’,k)-functions.
(k'|ky=8(k'= k)= [ dx (k'|x) (x| k) = [ dx w(0) W (x) (7.2.1b)

We also need the usual x-completeness relations based on spatial Dirac-delta 6(x",x)-functions.
(x'x) =8 (x'—x) = [k (x| k) (k| x) = [ dle ()" () (7.2.1c)

It seems that orthonormality and completeness relations are two sides of the same coin. Orthonormality
(7.2.1b) for the k-states { Ik)...lk")..} expresses completeness for the x-states lx) , and completeness (7.2.1¢) of the
k-states k) expresses orthonormality for the x-states { Ix)...lx")..}.

The Dirac notation is extremely efficient but can be confusing. There is a world of difference between the
states { lk)...lk")..} of perfectly monochromatic plane waves and the Dirac position states {Ix)...x")..} of perfectly
localized particles. Recall that we said that an Ix) state was physically unrealizable; crushing a particle into a
single position-x would cost infinite energy. Technically, a |k) state is unrealizable, too, since it requires an infinite
amount of real estate; we have to let its cage dimension L be infinite, but that seems easier than the extreme
solitary confinement needed to make an lx) state. If space is cheaper than energy, then lk) is easier to approach
than Ix). Lasers easily make approximate lk)'s by being stable and coherent, but producing approximate lx)'s for
extremely short pulses requires more difficult engineering.

Use caution to not abuse this notation, though it is easily done. It should be obvious why the following
rendition of (7.2.1a) is a dreadful mistake.

2

el kk el k

(k|k)= (Dirac abuse. Very BAD mistake!)

\/norm. - \/norm.

Letters x and k denote very different bases which must not to be confused.

(a) Fourier integral transforms

. .. . . 2
To achieve the limit of infinite real estate (L — ~ ) we replace sums over k, = Tﬂm such as

m=-+oo m=-4oo
§= ¥ @ = 3 Adekm,where:Amzl. (7.2.2)

m=—oo m nm=—oo

Integrals over k with differential Ak, = 2T”Am = 2771 — dk or: AAk_m — L are used as follows.

mZn
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=+o0 Mm=-+oco
s=" S Amd, = Z ﬂAk ®, becomes - zijf: dkCD(k) (72.3)
T

This, by itself, blows up as we let (L — < ), but so do the normalization denominators +norm. = JL , and they
cancel. Finally, the Fourier series (7.1.15a) becomes a finite integral.

=00 ik pyx ikx ikx
(x1¥)="% %{kmlﬂbecomese%ﬁ:dk%@mlﬂ FW«J—ﬁ(mM

m=—oco
k,, | becomes — (k| letting the L’s cancel.

=

ot "
ikx

(x|¥)=[*2 \e/%<k|‘}’>=]f:dk<x|k><k|‘{’>, (7.2.42)

The newly “normalized” plane wave function yi(x)=(x|k) is defined as follows.

The trick is to renormalize the k-bases so

(x[x) = f/% (7.2.4b)

This ( x|k) is the kernal of a Fourier integral transform. An inverse follows by converting (7.1.15b).

(h|¥) 1 112 JL L+

JL —Z_Lj/zdxe_ikmx <x|‘I’> becomes—><k|‘P>—E— j dx e k¥ <x|‘I’> ,
<k|xp>{f"dxjg (s)=T (k] o] ¥) (7240)

Here the inverse kernal {k|x) is simply the conjugate of { x|k) as required by conjugation axiom-2.
—ikx

(k|x)= 3% = (x[k) . (7.2.4d)

(b) Fourier coefficients: Their many names
The efficiency of the Dirac notation (provided it isn't abused!) should be clear by now. The simple bra-ket

(x| k) stands for so many different mathematical and physical objects. Let's list some.

(1) (x| k) is a scalar product of bra (x| and ket |k)

(2) (x| k) is an x-wavefunction for a state |k) of definite momentum p = hk.

(3) (k| x)=(x| k)Y* is an k-wavefunction for a state |x) of definite position x .

(4) (x| k) is a unitary transformation matrix from position states to momentum states.

(5) (x| k) is the kernal of a Fourier transform between position states and momentum states.

As beautiful and compact as it is, the continuum functional Fourier analysis is merely an infinite and
unbounded abstraction that lets us use calculus to derive formulas in special cases. Its validity as a limiting case
for experimental and numerical analysis should always be questioned. Laboratory and computer experiments, on
the other hand, invariably deal with finite and bounded spaces, and it these that we turn to in the next section. We
finish this section by relating square-wave Fourier transforms to square-wave Fourier series of the preceding

section to help clarify discrete-vs.-continuum relations.
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(c) Time: Fourier transforms worth remembering
Fourier time-frequency (time-per-time) transforms resemble space-k-vector (space-per-space) transforms

(7.2.4). But, a negative sign is put in the exponent so the time phasor turns clockwise.

<t|\y>=j_:dwﬁ<w|q’>=j_:jdw<x|a)><w|\y> (72.5a) (t|w)= s (7.2.5b)
<w|‘P>=_{oth<t|‘}’>=_£odt<a)|t><t|‘{‘> (7.2.5¢) <w|z>:ﬂ=<z|w>

Consider, for example, a single square bump of amplitude B and duration 77/2. Its Fourier transform (7.2.5¢) is an

elementary diffraction function sin ®/® that is plotted in Fig. 7.2.1.
+T/4 it ioT/4 _ —ioT/4 2Bsin(wT /4
(0|¥)="| dr— B=B" ¢ = ( )

714 2z ioN2n o2

It is the first approximation to an optical diffraction function for a single square aperture.

(7.2.6)

The Fourier amplitude due to multiple square humps is a combination of finer and finer elementary
diffraction patterns. Three half-humps give the following frequency function plotted in Fig. 7.2.2(a).
-T/4 +T/4 +3T /4

(0|W)=—=|A | dte’® +B [ dte'® +A | dre'®™
N2m | 374 —T/4 +T/4
LioT/4_ BT/ ieT/4 _ —ioT/4  BoT/4 _ ioT/4
e —e e —e e —e
=A +B +A (72.7)

io2r io2r io2r
_2(B-A)sin(wT /4) . 2Asin(30T /4)

o2 o2

The frequency functions in Fig. 7.2.3 are the result of a lot more bumps. Each one consists of a series of spikes

corresponding to the Fourier series amplitudes 7, 1/3, 1/5, 1/7,... for the fundamental w=2n/7 and odd-overtones
30, 5o, 70, ..., respectively, for the box(x) function in Fig. 7.1.2. This is an even box function in Fig. 7.2.3 so
the series amplitudes alternate sign as 7, -1/3, 1/5, -1/7,...as shown. The very last example is an unbiased funtion
with no DC (w=0)-Fourier component.

The "ringing" between the peaks is generally considered to be a nuisance. One way to get rid of ringing is
to turn on the square wave more gradually. Fig. 7.2.4 shows the Fourier transform of a wave that has been turned
on and off by a Gaussian (exp-(x/a)?). This windowing kills the ringing. The width of each frequency peak varies

inversely with the width a of the Gaussian window.
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M

Fig.7.2.1 Elementary diffraction function: Fourier transform of single half square wave.
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Fig. 7.2.2 Fourier transform of (a) three half- square waves. (b) seven half -square waves.
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Fig. 7.2.3 Fourier transforms of square half-bumps (a) fifteen (b) forty-nine (c) fifty one .
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Fig. 7.2.4 Fourier transform of windowed square waves.

The idea of the Fourier integral, as opposed to Fourier series, is that any function, periodic or otherwise
can be approximated by sines and cosines from a frequency continuum. Fourier series require that the function be
periodic and repeat itself perfectly after some fixed period of time. The Fourier integral is supposed to be an
enduring and time-invariant frequency map that provides the predestination of a time function forever and ever!

One should be suspicious of something that requires an infinite continuum of perfect frequency oscillators
to be behind the scenes running your life. Pure sines and cosines are forever functions but we, like our world,
certainly are not so enduring. Consider Fourier integrals as a cute limit-taking tool but not ultimately realistic.

Consider the fictitious function of time shown in Fig. 2.6.6. It is only periodic for awhile, but like most of

us, cannot maintain the pace forever and finally gets in trouble with the hereafter.

00
27 I~
“Leam L1 L L L L0 L L = 1AM
Staggers 10 AM 12PM 1PM 5 PM 12PM rises
to work Coffee Lunch Nap Bar dec'd again masbo)

Fig. 7.2.5 A day in the life of a real function.

Now we go on to a practical Fourier analysis that is both finite and discrete.
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7.3 Discrete and bounded x. Discrete and bounded k

This is the most restrictive case, but also, due to practical considerations mentioned previously, the one
that actually gets used the most these days. However, in spite of its practical value it is not always treated as
carefully as the more “mathematically sophisticated” continuum case (b). It should be!

We begin by supposing that space itself is periodic as in case (a) but further is divided into N discrete

pieces or points. So the only x-values allowed are the following N values

{x0=0, x;j=a, x2=2a, x3=3a, ..., xN.;=(N-1)a, xy =0} (7.3.1a)
and there are only N position states are the following. The last |N) state is the same as the first |0) state.
L10) 1), 12),13), .., IN-1), IN) =[0)} (7.3.1b)

Fig. 7.3.1 shows ways to visualize this as N beads on a ring of length L = Na that wraps around so that the
N-th bead is the same as the zero-th. (Zero-based numbering is the modern computing standard.) Otherwise, we
invoke the so-called periodic or Born-VonKarman boundary conditions and imagine our 1-D world repeats like a
computer game outside its boundaries. As shown in Fig. 7.3.1, there is a distance a between the lattice of beads. It

is called the /lattice spacing a.

|0> N1 |0> 11)=/0) A |0) ~ |0) |1> 12)=10)
° o—o " N=2 o—e—o
<] =2a>
0) [0)
A 0) 1) 12) [3)=10) @ 0) (1) [2) 3) [4)=0)
oo 3 o—e—e—e—o
n & o < L=a> & > <— L=4a —>
12
o 10) 11y 12) 13y 14 [5)=10) 010y 1) 12 1B 14 15 16)=]0)
1) @7 O &0 I —eo—0o—0o—o o
< b 2) Wy < L=ba——>
2) 13) 13)

Fig. 7.3.1 Finite coordinate spaces for N-cyclic (Cy) discrete systems (N =1, 2, ...,6...)

These ideal quantum dots will be among our first examples of 2-state, 3-state, ..., and 6-state systems. By
studying them carefully, it will be possible to learn important principles which will greatly help later study of
molecules and solids which have N-states with large-N but the same basic theory. Also, the quantum dots might
have hidden inventions that could make you wealthy!

The basic wavefunctions that live on the discrete dots or beads are a subset of the continuum
wavefunctions efkm¥ of (2.6.1), as though N equally spaced points of (2.6.1) were extracted and plotted over each
lattice point x, where

Xp=pa=p L/N . (p=0123, .. N-1) (73.2)

The basic wavefunctions are given explicitly below.
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ikmxp

o) = eT =y, (v, +1) (73.3)

v, ()=,

The only change from (7.1.1) is the use of a discrete coordinate x,, defined in (7.3.2) above. Also, the
normalization constant has been set to the dimension N since all N exponentials e?smX contribute unit magnitude

(letkmx |2 = 1) in the normalization sum.
N1 o Kmp JKm P

(kmlkm)%‘gol (o) (3, [ ) = R N ff

The quantization conditions due to periodicity requirement (7.3.3) over "cage" length L=Na are similar to

(7.3.4)

(7.1.3) but now expressed in terms of the discrete number N and spacing a of lattice points.

eFmt =1 o k =2—ﬂm=2—nm (7.3.5a)
moL Na

Wave amplitude at lattice point p is a power-p of (ei2%/N), the N-th root of unity (normalized, of course)

v ()= (x,[k,)= J_p J_(’Z”/N)mp (73.5b)

All N roots, together, form N-polygons in the complex plane as shown in Fig. 7.3.2. The allowed wave

amplitudes in Fig. 7.3.2 resemble the "ring" coordinate positions in Fig. 7.3.1. The complex zm p=exp(ikmxp) are
the N-th roots of unity (zV=1) introduced in a complex arithmetic review (App 1.A).

m=044 |
Re ¥
ImY¥Y
N=3 |1
e—2ni/4=(62ni/4)3
m=-1
2mi/3 2 i
g2mi/3 2% e 27:1/3:(62751/3)2 ‘
-l (627[1/4)2
N=5
m=0) 1
; : : 275 16_, . 2mi/6
o27u/5 e—2m/5=(e2m/5)4 e V0 (e=T/0y5
m=1 m=-1
. _ 27i/6\4
i ; 27i/6 - m=2 (e )
(e2m/5)2 z e (ezm/5)3 (e 1 )2 m=2

(233

m=3

Fig. 7.3.2 Discrete wave amplitudes allowed for N-cyclic (Cy) systems (N =1, 2, ...,6...)
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(a) N-nary counting for N-state systems

Fig. 7.3.2 shows different counting schemes for odd-N and even-N. In the unbounded cases the k-values
go from —oeo to +oo. Here, letting m count from -N to +/N over-counts and gives 2N+ states when we know there
are only N. We could let m count from 0 to N-1, just like the lattice points. Or, we let m count from -(N-1)/2 to +
(N-1)/2, (odd-N ) and from -(N-2)/2 to +(N)/2 (even-N) as shown below.

It helps to think of N-state cyclic system as an N-nary computer element. Ever since 1950, we have
become accustomed to binary (N=2) data storage in 2-bit registers. Inevitably, someone will discover how to
make N-state registers. Until then, we imagine them. For an N-state register the quantum counting index m is
defined only by an integer modulo-N or (m)y.

(m)N.= m modulo N (7.3.6)
For example, for N=6 in Fig. 7.3.2, all the following values of the quantum index m in a given line below

have the same value modulo-6.

~=(96=(-3)6=0B)s=(9)6=(15)6=..= 3mod 6
=(-8)6=(2)6=#6=(10)¢=... =-2mod6
~=(Ne=(De=0B)=(11)¢=.. =-1mod6
.=(6)6=(0)g=(6)6=(12)6=... = 0mod6 (7.3.7)
w=(5)e=(De=(Te=(13)¢=.. = 1mod6
= Ae=(2)6=B)6=(14)e=... = 2mod 6
~=(3)6=(3)6=96=(15¢6=.. = 3mod6
w=(-8)6=(2)g=(4)6=(10)6 = ... =-2mod 6

How do we choose a k;, number label? We choose the underlined ones with the smallest |m| and pick the positive

one if two are equal. This choice {m=-2,-1,0,1,2,3} of N=6 m-values is used in Fig. 7.3.2.

(b) Discrete orthonormality and completeness
Orthonormality relations for wave states reduce to finite geometric sums.

=ik p'x ik yx
N-1 m>p N=l ik —k
¢ ¢ py el(km Emp , where:x  =pa (7.3.8a)

1
k'l V=3 =—
< " | m> p=0 \/N \/ﬁ Np
Substituting (7.3.2) and (7.3.5) gives

N1 2 N-1 .
<k '|k >= S Zp=1+Z+Z +..t+z ,where:z=el(
m m p:0 N

k m—k m')a: ei272,'(m—m')/N

The geometric sum yields a result that satisfies k;,-orthonormality axiom-3.
1 1=2V i27r(m—m')

1 1-
(e lhn) =5 17 =N

2r(m-m )N Omm’
e

(7.3.8b)

1-
The ky-completeness axiom-4 (or x,- orthonormality) is satisfied for these wave states, as well.

TG S O o A & g P SR

m=0 m=0 \/N \/ﬁ N m=0 pp
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(c) Discrete Fourier transformation matrices
Below are shown Fourier transformation matrices and discrete x,-wavefunctions (7.3.5b)
(el xp) = Wi, (xp) = ethmp [y (7.3.10a)
They are drawn as complex phasor amplitudes for the cyclic N-state systems (Cy) for N=1, 2, 3, 4, 5, and 6.

Also drawn over the phasors is the Re-part of the "Bohr's ghost" continuum x-wavefunctions
(ki x) = Wi, ()= e hm> 1y, (7.3.10b)
Recall (7.1.10) or Fig. 7.1.1. "Bohr's ghosts" match the discrete waves (7.3.10a) with phasor clocks.

0 01
Cy v Re }¥ C, r 1

o, [T . Mool N

L5(DQG) L] 1D 1
TN %8 N 0760 0 =

0 o T 1 2 3 4 5
C- Ce 11 1 17 1 U

.

........

25 @@@ Q@ 2% @@.@@@.@
25=35 (DO 3:(DQOWOO
RustasicEusisluse]
-16=3¢ @@...@

7.3.3 Discrete Fourier transformation matrices for N-cyclic (Cy) systems (N = 1, 2, .

A S

Fig.
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(d) Intoducing aliases and Brillouin zones

It is important to see the relation between the continuum waves and their "course-grained" images thatves
with integral wave-numbers of m mod N whole wavelengths within each (%, |-row of phasors. We might as well
call them "row-waves" or "bra-waves." Note also, that the same wave shape exists in the columns or kets |x,).
Each “ket-wave” | x,) represents a 8-position state or “pulse” localized at point x, . The inverse Fourier
transformation (%, |x, ) relates |x, ) to a bra-wave(ky,|. As required by conjugation axiom-2, namely, &y, |xp)=
(xplkm )*, the relation is the same as between |k, ) and (xpl ,except for conjugation.

For low wave number like, say (mpy)=(1)g or (2)g, it is easy to see the "Bohr's-ghost wave" mirrored in the
phasors as in the second and third row of the Cs matrix in Fig. 7.3.1. Note however, that these phasors are set so

the phase of the one to the right is clockwise (that is it appears ahead) of the one to the left. This means, if the
phasors turned clockwise, that the one to the right is feeding energy into the one to its left, so the wave would be
moving right-to-left with wave momentum minus (1)¢ or minus (2)g, respectively. But, they're conjugated bras so
their clocks go backwards and so the labels are OK, after all.

For high wave number like, say (my)=(4)g or (5)s, it is not so easy to see the "Bohr's-ghost wave"
mirrored in the phasors as in the fifth and sixth row of the C matrix in Fig. 7.3.1. But, you can see alias waves of

negative wave momentum (my)=(-2)g or (-1)¢ , respectively, that is oppositely moving waves of low
wavenumber. Recall that (4 mod 6) equals (-2 mod 6) and (5 mod 6) equals (-1 mod 6).

Right in the middle row of the even-N matrix is a wave that isn't going in either direction. In the Cs matrix
it is the (3)¢ wave. Since (3 mod 6) equals (-3 mod 6) this is a good old push-me-pull-you standing wave with all
real amplitudes of (/, -1, 1, -1, 1, -1). This can only happen for even-N and is known as a first Brillouin zone
boundary wave in solid-state physics.

All cases have a zero-momentum wave (0y) at the top of the transformation matrix. This is called the
Brillouin zone center wave in solid-state physics. Indeed, it is centered at the bottom of the dispersion plot in Fig.

2.6.1. Its phasor settings are the same as that of a higher (Ny), or (2Ny), or (3Ny), ...etc. wave. However, this N-
state system does not count higher than N-/ without recycling.

Consider, for example, a k;; wave of wavevector (-17);2 (with minus-eleven-kinks-modulo-12) as plotted
in Fig. 7.3.4 (a). Since (—11)-mod-12 equals (+1)-mod-12 (that is, (-11)12=(+1)2) it follows that the wave shown
has the same effect as a (+1);2 wave. Indeed, the twelve masses in Fig. 7.3.4(a) line up on a single-kink (k=1)-
wave moving positively, while the (k=-11)-wave moves negatively. (See Wavelt movie.) This is an example of
aliasing. In a C;; lattice, (k=-11) is an alias for (k=+1).

Fig. 7.3.4(b) shows the k-space with a typical frequency dispersion function plotted above it. The
difference between any two alias wavevectors such as (k=+1) and (k=-11) is a reciprocal lattice vector ki2 or (12)
12=(0)12. The reciprocal lattice vector k;> also spans the first Brillouin-zone from (-6);2 to (+6);2 as shown at the
bottom of the figure. An important idea here is that a wavevector k-space must have the same N-fold periodic
symmetry as the coordinate x-space. Moving across row of a (ky, |x,) matrix gives the same variation as moving

up the corresponding column since {ky, |x,) is unitary. Both are N-fold periodic!
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Fig. 7.3.4 (a) (-11)-wave has the same effect as its alias (+1)-wave. (b) Difference is zone vector kj>.
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To appreciate the symmetry of a Fourier transfom matrix, it may help to examine some larger ones. For
example, Fig. 7.3.5 shows the Fourier matrix for N=24. Phase of each amplitude (k;, |x,) is color coded so it can
be more easily spotted. Symmetry patterns should now be more evident. Remember, that these patterns repeat
forever in all directions right and left or up and down in a great checkerboard quilt!

This beginning discussion of discrete wave analysis should make it clear that there is considerable
physical and mathematical complexity hiding in these "simple" Fourier structures. Indeed, this is a key to
understanding fundamental quantum symmetry properties and techniques which are generally labeled by a

mathematical misnomer as “group theory.” We shall explore some more of this shortly.
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7.3.5 Phase color coded Fourier transformation matrix for N
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Problems for Chapter 7

Bohring problems

7.1.1. For a Bohr ring of fixed circumference L =1nm consider the following wavefunction W¥(x) =(x|¥) distributions around
the ring at =0, and deduce the amplitudes {m|¥) of each of the eigenstates |m) for m=0,+1,%2,.. Let the eigenfrequencies be
Vi =(0 1,4, ., m? JMH:z.

(a) Y(x) = const. . (b) W(x) = const.(1+cos 2nx/L) .

(c) W(x) = const. for -L/4<x<L/4 and ¥(x) = 0 elsewhere.

For each case evaluate const. assuming one particle occupies the ring.

(d) For each case (a) to (c) answer: "Is it a stationary state?" If not, calculate, plot, and discusss the wavefunctions of each
case at time ¢ = /\sec, and at 0.5sec .

Continuously boring problems

7.2.1. For an infinite line (-co<x<oo) consider the following wavefunction ¥ (x) =(x|¥) distributions along the line. Calculate,
plot, and discusss the amplitude functions (k|'¥') of each of the eigenstates |k) for (-co<k<oo). Let the eates |k) for (-co<k<co).
Let the eigenfrequencies be vj = ( kL/Zn')ZMHz. (Let unit length be L =/nm.)

(a) Y(x) = const. . (b) W(x) = const.(1+cos 2rx/L) . .

(c) Y(x) = const. for -L/4<x<L/4 and ¥(x) = 0 elsewhere.

Evalu per unit length ( L =/nm.).

(d) For each case (a) to (c) answer: "Is it a stationary state?" If not, calculate, plot, and discusss the wavefunctions of each
case at time ¢ = /lsec, and at 0.5usec .

Continuously discrete or discretely continuous?

7.3.1. Ch.7 contains discussion of 1D Fourier wave systems with (a) Continuous x and discrete &, (b) Continuous x and
continuous k, and (c) Discrete x and discrete k. Using physical models of each to discuss how physically relizeable these are.
Is there a 4th possibility? Discuss.

Aliases on the move

7.3.2. Consider the two aliases (-11) and (+1) in Fig. 7.3 .4. Discuss whether a dispersion function w(k) should repeat
periodically. Should the period be the zone vector ki2? For computation use w(k)=Isin(stk/12)! as plotted where k=0, +1, +2,
%3 ... in units of 2a/L. Use Vphase = Wk and Vgroup = do/dk .

(a) Is the phase velocity the same for the two alias states (-11) and (+1)? Compute and discuss why or why not.

(a) Is the group velocity the same for the two alias states (-11) and (+1)? Compute and discuss why or why not.



