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Review Topics & Formulas for Unit 3

Fourier Series Coefficients Fourier Integral Transform Fourier Cy, Transformation
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Discrete momentum m Continuous momentum k Discrete momentum m
Continuous position x Continuous position x Discrete position x,
U must be Unitary
Time Evolution Operator U Time Evolution Operator U U?(t) _ U_l(t) V()
|¥(1) = U(1,0)|¥(0)) U(,0)= ¢ 1H/A P
I . _ —id/n\' _ imTn _ iH/R
Hamiltonian Generator H Schrodinger t— Equation (e ) =e =e
ih%U(t,O) =H U(1,0) ih%| V(1)) =H|¥(1) so H is Hermitiam H' = H
Schrodinger time-independent energy eigen equation.
H/ ;) =10, o) =€y 0y,) (9.3.1a)

H-eigenvalues use r-expansion (9.2.6) of H and Cg symmetry rP-eigenvalues from (8.2.9).
{klrPlkyy= e iPkma = e-ipm27W/N where: ky, = m(27/Na)
(kinHlkm) = H (k| Lkm) + S Ckmltlkm) + T Cknle2lkmy + U (kinlr3lkin) + T klr#lki) + S* (ki)

= H + Setkma + Tei2kma + U e-3kma 4 T* ei2kma + §* eikma (9.3.5a)
Bloch dispersion relation. And Bohr limit (k<<s/a) approxiamtion. Band group velocity Veroup.
hoy, =E, = H - 218 cos( ky,a) = H - 2ISI + ISI( kypa )? +.. (9.3.8)
do, _Is| LBl 2
eroup = % = Z?asm(kma) [: Z;kma Jforik <<m/a (9.3.10)
Effective mass M. inversely proportional to S. Meg(0)= h2/( 218 a?) (9.3.11a)

Fourier transform of a Gaussian e"™/Am)? momentum distribution is a Gaussian e"(%/20)? in coordinate o.
(m¥)= e-(m/Am)2 implies: (O W)= e (¢/A0)? (9.3.14)

The relation between momentum uncertainty Am and coordinate uncertainty A is a Heisenberg relation.
Am/2 =1/Ad ,or: AmAG =2 (9.3.15)
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Bohr wave quantum speed limits
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Predicting fractional revivals: Farey Sum & r of the rational fractions n;/d; and ny/d>
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Appendix 9.A. Relative phase of peaks in a revival lattice

The first derivation here of revival amplitudes at stroboscopic time fractions ¢, = T(v/N) and kaleidescopic
angular positions ¢p=21(p/N) assumes N is odd. At times when fraction (V/N) is reduced, all N revival peak sites
hop up with identical magnitude and with particular arrangement of phases that clearly distinguishes each v/N
from all others. First we derive formulas for these phases as a function of site index p and revival time index v.
(If time fraction v/N reduces to Vg/Np, then use (Vg ,Ng) in place of (v,N) to find N peak phases of subgroup
Cny revivals.) The first step is to complete the square of exponent in sum.
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The integer square (2mv-p)? in the exponent is to be treated as an integer-modulo-4VN since the phase
factor repeats after that value. However, as summation index m runs through the integers m = 0, 1, 2, ..., N-1 it
exhausts all the possible values of (2mv-p)? -mod-4vN for a given v and p, and the values are the same no matter
what we take for the range of m. For example, consider tables of phase index (2mv-p)? -mod-4vN for select times

of v=1/ and v=2 for an N=5 level excitation.

(2mv - p)’mod4vN for N=5 (2mv-p);, forN=5
v=l |m=0 1 2 3 415 & v=2|m=0 1 2 3 415 6 7 8 9110
p=0| 0 4 16 16 450 4 p=0| 0 16 24 24 1650 16 24 24 16i 0
1 19 5 901 (A22) 19 9 1 331 9 9 1 25) 1 (A.2b)
2 4 0 4 16 1614 0 2 4 4 36 20 36!4 4 36 20 !
3 9 1 1 9 5 i 9 1 3 9 1 25 1 9 i 9 1 i
4 16 4 0 4 16116 4 4 16 0 16 24 2416 !

Note that N consecutive values for m give the same sum no matter whether the sum starts at m=0 or at a
sum-shift value m=U. The idea is to shift the summation index m to m-u so that a (2mv-p)? -mod-4vN binomials
in row-p can be replaced by a simple square (2mv)? -mod-4vN monomial found in the p=0 row. This will reduce
the exponent to a term independent of site-index p plus a A—term independent of summation-index m.

It would be nice if the A—term were also independent of p but the tables show that is asking too much! So,
A= A(p,v) and, each of the rows p =1, .., N-1 differ from the p=0 row by a single modular difference A(p,v) in
phase index which is overlined in the table and is the single unpaired number in each row. For example,
subtracting A(7,1)=5-mod-20 = (5),¢ from the (p=1) row of the (v=1) table and shifting forward by ;=2 gives
the (p=0) row (mod-20) . The shifts needed to line up rows p=1, 2, 3, and 4 are p;=2, ur=4, u3=6, and Ls=8

respectively, that is Wp=[1;p. These observations are summarized by a modular equation.
2

(Z(m— ,up)v— p)2 mod4vN = (Z(m— up)v— p)4VN = (2mv)ivN - A(p,v) (A.3a)

This is supposedly valid for all values of m so for m=0 the equation reads
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2

(—Zypv - p)4VN =0- A(p,v) , (A.3b)

where 1y =P (A.3¢)
Subtracting equation (A.3b) from (A.3a) gives the following, again valid for all m.

(2ms )=, =2, =

(4mv(—2/,t V- p)) (0),,,, = K4VN =0, 4VN, VN.... 4YN(N - 1)

4N
Next, set m=1, and solve for the m-sum-shift 1, of row p.
—Supv2 —4vp=-x4vN =0, -4vN, -8VN,...,-4vN(N - 1)
2 v+ p=kN=0,N, 2N,...NOV =1 or: it =X =P _ (integer) (A4
P R P2y N
Avalue ¥=0,1,2,..,N-1 is selected so that m-sum-shift i, is an integer Wp=0,1,2,..,N-1, too. Substituting the
resulting [, value in (A.3a) gives the phase modular difference A first defined there and in (A.3b).

2
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A(p,v) = —(Zvup + p)4VN = —(2v[ >y j+ pj = —(K'N)4vN , (A.4b)
4vN
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o TP (A.4c)
N
Puttiing (A.3a) into the revival wavefunction sum (A.1) gives
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The overall phase and amplitude prefactor P(v) is a Gaussian sum discussed in Appendix 9B.
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Finally, the (p=1) m-sum-shift [ is the first fraction (N-1)/2v, (2N-1)/2v, (3N-1)/2v, ..., or (N?-1)/2v, to
yield an integer according to (A.4a). Recall that it was assumed that N and v are relatively prime, that is, have no
common factors. It seems evident that the integer arithmetic behind base-/N counter revivals is not trivial, even for

the case of odd-N .To complete this particular N=5 example we find the sum-shift 1] at each revival time v=1- 4.
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1=’dv_1 KN—1= 4 9 14 19 24
2v
2v=2 2 7 12 (A.6)
2v=4 1 . . . 6
2v==6 R |
2v=8 3

From the discussion of Appendix 9B come the overall prefactors P(v=1 )=IN5, P2)=-1N5, P(3)=-1N5, and P
(v=1)=1A5, which are needed to complete the following N=5 revival table using (A.5).

v(p.v)| p=0 p=1 p=2 p=3 p=4

v=0 1 (1 0 0 (1 e =ei27r/5/\/g
v=1 1 /\/g e e e e
. . where: (A.7)
v=2 | -1/ \/g -e, —e, -e, —e,
* % 2i2mw/5
v=3 —1/\/5 -e, —e, —e —e, e =e o /‘/g

* *

v=4 1/\/§ e e e e

A phasor gauge plot of the N=5 revivals (A.7) is shown in Fig. 9.4.3c.

The summation (A.1) for even-N is mostly the same as the above. Time index v is replaced by v/2.
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v v v 1%

Again the overall phase and amplitude prefactor P(v) is a Gaussian sum discussed in Appendix B.

22w

—ivm~ ——

1 —i(mv)zzi 1
P(V)ZEZZ;E) e 2vN :;ZN—I o N (A.8¢)

m=0

This works for odd-numerator time fractions 1/2N, 3/2N, 5/2N,...=v/2N . For the even numerator ones, we take
advantage of the revival sequence v/N = I/N, 2/N, 3/N,.... for N cut in half and shifted by &. If N/2 is odd then (A.
5) is used. If N/2 is even then (A.8) is used again, but with N cut in half to N/2. Note that fractions with singly-
even denominators have zeros at =0 and peaks at ¢==z. Fractions with odd denominators have peaks at ¢p=0

and zeros at ¢==z. Fractions with doubly-even denominators have zeros at =0 and ¢==x.
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Appendix 9.B. Overall phase of peaks in a revival lattice

The evaluation of the N-term integral Gaussian sum

—iv

m2 2—”
G(v)=zN e N =NP(v) (B.1)
in the prefactor P(v)=G(v)/N given by (A.5b) is, perhaps, the least trivial part of the revival formulation. The
develpment involves complex Gaussian integer analysis, a subject which occupied Gauss for more than the first
decade of his most productive years. Here we will be content with giving a list of the results for the first few

integer combinations that would be relevant for the revivals shown previously.
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Particuarly simple general results are had for the case of doubly-even integer.
N =2n 4=2-2 8=2-4 12=2-6 16=2-8 20=2-10
221 (B3)

sy e "V = (1=0) (1=iV2 (1=i3 (1-iVE (1-i)5

A complex vector diagram of the first few G(u) sums is shown below in Fig. 9B.1.
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