Review Topics \& Formulas for Unit 3

Fourier Series Coefficients

$$
\begin{aligned}
\left\langle k_{m} \mid \Psi\right\rangle & =\int_{-L / 2}^{L / 2} d x\left\langle k_{m} \mid x\right\rangle\langle x \mid \Psi\rangle \\
\left\langle k_{m} \mid x\right\rangle & =\frac{e^{-i k_{m} x}}{\sqrt{L}}=\left\langle x \mid k_{m}\right\rangle^{*}
\end{aligned}
$$

x-Wavefunction $\Psi(x)=$
$\langle x \mid \Psi\rangle=\sum_{m=-\infty}^{m=\infty}\left\langle x \mid k_{m}\right\rangle\left\langle k_{m} \mid \Psi\right\rangle$
Ortho - Completeness

$$
\begin{aligned}
& \sum_{m=0}^{m=\infty}\left\langle x \mid k_{m}\right\rangle\left\langle k_{m} \mid x^{\prime}\right\rangle=\delta\left(x-x^{\prime}\right) \\
& \int_{-L / 2}^{L / 2} d x\left\langle k_{m} \mid x\right\rangle\left\langle x \mid k_{m^{\prime}}\right\rangle=\delta_{m, m^{\prime}}
\end{aligned}
$$

Discrete momentum m Continuous position x

Fourier Integral Transform Fourier C_{N} Transformation

$$
\begin{aligned}
& \langle k \mid \Psi\rangle=\int_{-\infty}^{\infty} d x\langle k \mid x\rangle\langle x \mid \Psi\rangle \quad\left\langle k_{m} \mid \Psi\right\rangle=\sum_{p=0}^{p=N-1}\left\langle k_{m} \mid x_{p}\right\rangle\left\langle x_{p} \mid \Psi\right\rangle \\
& \text { Kernal }:\langle k \mid x\rangle=\frac{e^{-i k x}}{\sqrt{2 \pi}}=\langle x \mid k\rangle^{*} \quad\left\langle k_{m} \mid x_{p}\right\rangle=\frac{e^{-i k_{m} x} p}{\sqrt{N}}=\left\langle x_{p} \mid k_{m}\right\rangle^{*}
\end{aligned}
$$

$$
x \text {-Wavefunction } \Psi(x)=\quad x \text {-Wavefunction } \Psi(x)=
$$

$\langle x \mid \Psi\rangle=\int_{-\infty}^{\infty} d k\langle x \mid k\rangle\langle k \mid \Psi\rangle \quad\left\langle x_{p} \mid \Psi\right\rangle=\sum_{m=0}^{m=N-1}\left\langle x_{p} \mid k_{m}\right\rangle\left\langle k_{m} \mid \Psi\right\rangle$
Ortho - Completeness
Ortho - Completeness
$\int_{-\infty}^{\infty} d k\langle x \mid k\rangle\left\langle k \mid x^{\prime}\right\rangle=\delta\left(x-x^{\prime}\right)$

$$
\int_{-\infty}^{\infty} d x\langle k \mid x\rangle\left\langle x \mid k^{\prime}\right\rangle=\delta\left(k-k^{\prime}\right)
$$

$$
\begin{aligned}
& \sum_{m=0}^{m=N-1}\left\langle x_{p} \mid k_{m}\right\rangle\left\langle k_{m} \mid x_{p^{\prime}}\right\rangle=\delta_{p, p^{\prime}} \\
& p=N-1
\end{aligned} k_{m}\left|x_{p}\right\rangle\left\langle x_{p} \mid k_{m^{\prime}}\right\rangle=\delta_{m, m^{\prime}}
$$

Continuous momentum k

Continuous position x

Discrete momentum m

 Discrete position x_{p}| Time Evolution Operator \mathbf{U} | Time Evolution Operator \mathbf{U} | \mathbf{U} must beUnitary |
| :--- | :--- | :--- |
| $\|\Psi(t)\rangle=\mathbf{U}(t, 0)\|\Psi(0)\rangle$ | $\mathbf{U}(t, 0)=e^{-i t \mathbf{H} / \hbar}$ | $\mathbf{U}^{\dagger}(t)=\mathbf{U}^{-1}(t)=\mathbf{U}(-t)$ |
| Hamiltonian Generator \mathbf{H} | Schrodinger $t-$ Equation | $\left(e^{-i t \mathbf{H} / \hbar}\right)^{\dagger}=e^{i t \mathbf{H}^{\dagger} / \hbar}=e^{i t \mathbf{H} / \hbar}$ |
| $i \hbar \frac{\partial}{\partial t} \mathbf{U}(t, 0)=\mathbf{H} \mathbf{U}(t, 0)$ | $i \hbar \frac{\partial}{\partial t}\|\Psi(t)\rangle=\mathbf{H}\|\Psi(t)\rangle$ | so \mathbf{H} is Hermitiam $\mathbf{H}^{\dagger}=\mathbf{H}$ |

Schrodinger time-independent energy eigen equation.

$$
\begin{equation*}
\left.\left.\mathbf{H} / \omega_{m}\right\rangle=\hbar \omega_{m} / \omega_{m}\right\rangle=\varepsilon_{m}\left|\omega_{m}\right\rangle \tag{9.3.1a}
\end{equation*}
$$

\mathbf{H}-eigenvalues use \mathbf{r}-expansion (9.2.6) of \mathbf{H} and C_{σ} symmetry \mathbf{r}^{p}-eigenvalues from (8.2.9).

$$
\begin{gather*}
\left\langle k_{m}\right| \mathbf{r} p\left|k_{m}\right\rangle=\mathrm{e}^{-i p k_{m} a}=\mathrm{e}^{-i p m} 2 \pi / N \text { where: } k_{m}=m(2 \pi / N a) \\
\left\langle k_{m}\right| \mathbf{H}\left|k_{m}\right\rangle=H\left\langle k_{m}\right| \mathbf{1}\left|k_{m}\right\rangle+S\left\langle k_{m}\right| \mathbf{r}\left|k_{m}\right\rangle+T\left\langle k_{m}\right| \mathbf{r}^{2}\left|k_{m}\right\rangle+U\left\langle k_{m}\right| \mathbf{r}^{3}\left|k_{m}\right\rangle+T^{*}\left\langle k_{m}\right| \mathbf{r}^{4}\left|k_{m}\right\rangle+S^{*}\left\langle k_{m}\right| \mathbf{r}^{5}\left|k_{m}\right\rangle \\
=H+S \mathrm{e}^{-i k_{m} a}+T \mathrm{e}^{-i 2 k_{m} a}+U \mathrm{e}^{-i 3 k_{m} a}+T^{*} \mathrm{e}^{i 2 k_{m} a}+S^{*} \mathrm{e}^{\mathrm{i} k_{m} a} \tag{9.3.5a}
\end{gather*}
$$

Bloch dispersion relation. And Bohr limit $(\mathrm{k} \ll \pi / \mathrm{a})$ approxiamtion. Band group velocity $V_{\text {group }}$.

$$
\begin{align*}
& \hbar \omega_{m}=E_{m}=H-2|S| \cos \left(k_{m} a\right)=H-2|S|+|S|\left(k_{m} a\right)^{2}+. . \tag{9.3.8}\\
& V_{\text {group }}=\frac{d \omega_{m}}{d k_{m}}=2 \frac{|S|}{\hbar} a \sin \left(k_{m} a\right) \quad\left(\cong 2 \frac{|S|}{\hbar} k_{m} a^{2}, \text { for: } k_{m} \ll \pi / a\right) \tag{9.3.10}
\end{align*}
$$

Effective mass $M_{\text {eff }}$ inversely proportional to S.

$$
\begin{equation*}
M_{e f f}(0)=\hbar^{2} /\left(2 / S / a^{2}\right) \tag{9.3.11a}
\end{equation*}
$$

Fourier transform of a Gaussian $e^{-(m / \Delta m)^{2}}$ momentum distribution is a Gaussian $e^{-(\phi / \Delta \phi)^{2}}$ in coordinate ϕ.

$$
\begin{equation*}
\langle m \mid \Psi\rangle=e^{-(m / \Delta m)^{2}} \quad \text { implies: } \quad\langle\phi \mid \Psi\rangle=e^{-(\phi / \Delta \phi)^{2}} \tag{9.3.14}
\end{equation*}
$$

The relation between momentum uncertainty Δm and coordinate uncertainty $\Delta \phi$ is a Heisenberg relation.

$$
\begin{equation*}
\Delta m / 2=1 / \Delta \phi, \text { or: } \quad \Delta m \Delta \phi=2 \tag{9.3.15}
\end{equation*}
$$

Bohr wave quantum speed limits

$$
\begin{equation*}
V_{\text {group }}^{\text {Bohr }}(m \leftrightarrow n)=\frac{\omega_{m}-\omega_{n}}{k_{m}-k_{n}}=\frac{\left(m^{2}-n^{2}\right) h v_{1}}{(m-n) h / L}=(m+n) \frac{L}{\tau_{1}}=(m+n) V_{1} \tag{9.3.16}
\end{equation*}
$$

Predicting fractional revivals: Farey Sum \oplus_{F} of the rational fractions n_{1} / d_{1} and n_{2} / d_{2}

$$
\begin{equation*}
t_{12-\text { intersection }}=\frac{n_{2}+n_{1}}{d_{2}+d_{1}}=\frac{n_{2}}{d_{2}} \oplus_{F} \frac{n_{1}}{d_{1}} \tag{9.3.18}
\end{equation*}
$$

Appendix 9.A. Relative phase of peaks in a revival lattice

The first derivation here of revival amplitudes at stroboscopic time fractions $t_{\mathrm{V}}=\tau(\mathrm{v} / \mathrm{N})$ and kaleidescopic angular positions $\phi_{\rho}=2 \pi(\rho / N)$ assumes N is odd. At times when fraction (v / N) is reduced, all N revival peak sites hop up with identical magnitude and with particular arrangement of phases that clearly distinguishes each v / N from all others. First we derive formulas for these phases as a function of site index ρ and revival time index v. (If time fraction v / N reduces to v_{R} / N_{R}, then use $\left(v_{R}, N_{R}\right)$ in place of (v, N) to find N_{R} peak phases of subgroup $C_{N_{R}}$ revivals.) The first step is to complete the square of exponent in sum.

$$
\begin{align*}
\psi_{0}\left(\phi_{\rho}, t_{v}\right) & =\frac{1}{N} \sum_{m=0}^{N-1} e^{i\left(m \rho-m^{2} v\right) \frac{2 \pi}{N}}=\frac{1}{N} \sum_{m=0}^{N-1} e^{-i\left(m^{2} v-m \rho+\frac{\rho^{2}}{4 v}\right) \frac{2 \pi}{N}} e^{i \frac{\rho^{2}}{4 v} \frac{2 \pi}{N}} \\
& =\frac{1}{N} \sum_{m=0}^{N-1} e^{-i\left(m v-\frac{\rho}{2}\right)\left(m-\frac{\rho}{2 v}\right) \frac{2 \pi}{N}} e^{i \frac{\rho^{2}}{4 v} \frac{2 \pi}{N}} \tag{A.1}\\
& =\frac{1}{N} \sum_{m=0}^{N-1} e^{-i(2 m v-\rho)^{2} \frac{2 \pi}{4 v N}} e^{i \frac{\rho^{2}}{4 v} \frac{2 \pi}{N}}
\end{align*}
$$

The integer square $(2 m v-\rho)^{2}$ in the exponent is to be treated as an integer-modulo- $4 v N$ since the phase factor repeats after that value. However, as summation index m runs through the integers $m=0,1,2, \ldots, N-1$ it exhausts all the possible values of $(2 m \nu-p)^{2}-m o d-4 v N$ for a given v and ρ, and the values are the same no matter what we take for the range of m. For example, consider tables of phase index $(2 m v-\rho)^{2}-m o d-4 v N$ for select times of $v=1$ and $v=2$ for an $N=5$ level excitation.

$(2 m v-\rho)^{2} \bmod 4 v N$	for $N=5$						
$v=1$	$m=0$	1	2	3	4	5	6
$\rho=0$	$\overline{\mathbf{0}}$	4	16	16	4	0	4
1	1	1	9	$\overline{\mathbf{5}}$	9	1	1
2	4	$\overline{\mathbf{0}}$	4	16	16	4	0
3	9	1	1	9	$\overline{\mathbf{5}}$	9	1
4	16	4	$\overline{\mathbf{0}}$	4	16	16	4

$$
(2 m v-\rho)_{4 v N}^{2} \quad \text { for } N=5
$$

$v=2$	$m=0$	1	2	3	4	5	6	7	8	9	$10 \cdots$
$\rho=0$	$\overline{\mathbf{0}}$	16	24	24	16	0	16	24	24	16	0
1	1	9	9	1	$\overline{\mathbf{2 5}}$	1	9	9	1	25	1
2	4	4	36	$\overline{\mathbf{2 0}}$	36	4	4	36	20		
3	9	1	$\overline{\mathbf{2 5}}$	1	9	9	1				
4	16	$\overline{\mathbf{0}}$	16	24	24	16					

Note that N consecutive values for m give the same sum no matter whether the sum starts at $m=0$ or at a sum-shift value $m=\mu$. The idea is to shift the summation index m to $m-\mu$ so that a ($2 m v-\rho)^{2}-m o d-4 v N$ binomials in row- ρ can be replaced by a simple square $(2 m v)^{2}-\bmod -4 v N$ monomial found in the $\rho=0$ row. This will reduce the exponent to a term independent of site-index ρ plus a Δ-term independent of summation-index m.

It would be nice if the Δ-term were also independent of ρ but the tables show that is asking too much! So, $\Delta=\Delta(\rho, v)$ and, each of the rows $\rho=1, \ldots, N-1$ differ from the $\rho=0$ row by a single modular difference $\Delta(\rho, v)$ in phase index which is overlined in the table and is the single unpaired number in each row. For example, subtracting $\Delta(1,1)=5-\bmod -20=(5)_{20}$ from the $(\rho=1)$ row of the $(v=1)$ table and shifting forward by $\mu_{1}=2$ gives the $(\rho=0)$ row (mod-20). The shifts needed to line up rows $\rho=1,2,3$, and 4 are $\mu_{1}=2, \mu_{2}=4, \mu_{3}=6$, and $\mu_{4}=8$ respectively, that is $\mu_{\rho}=\mu_{I} \rho$. These observations are summarized by a modular equation.

$$
\begin{equation*}
\left(2\left(m-\mu_{\rho}\right) v-\rho\right)^{2} \bmod 4 v N \equiv\left(2\left(m-\mu_{\rho}\right) v-\rho\right)_{4 v N}^{2}=(2 m v)_{4 v N}^{2}-\Delta(\rho, v) \tag{A.3a}
\end{equation*}
$$

This is supposedly valid for all values of m so for $m=0$ the equation reads

$$
\begin{equation*}
\left(-2 \mu_{\rho} v-\rho\right)_{4 v N}^{2}=0-\Delta(\rho, v) \tag{A.3b}
\end{equation*}
$$

where

$$
\begin{equation*}
\mu_{\rho}=\mu_{1} \rho \tag{A.3c}
\end{equation*}
$$

Subtracting equation (A.3b) from (A.3a) gives the following, again valid for all m.

$$
\begin{aligned}
& \left(2\left(m-\mu_{\rho}\right) v-\rho\right)_{4 v N}^{2}-\left(-2 \mu_{\rho} v-\rho\right)_{4 v N}^{2}=(2 m v)_{4 v N}^{2} \\
& \left(4 m v\left(-2 \mu_{\rho} v-\rho\right)\right)_{4 v N}=(0)_{4 v N}=\kappa 4 v N=0,4 v N, 8 v N, \ldots, 4 v N(N-1)
\end{aligned}
$$

Next, set $m=1$, and solve for the m-sum-shift μ_{ρ} of row ρ.

$$
\begin{align*}
& -8 \mu_{\rho} v^{2}-4 v \rho=-\kappa 4 v N=0,-4 v N,-8 v N, \ldots,-4 v N(N-1) \\
& 2 \mu_{\rho} v+\rho=\kappa N=0, N, 2 N, \ldots, N(N-1) \text { or: } \mu_{\rho}=\frac{\kappa N-\rho}{2 v}=(\text { integer })_{N} \tag{A.4a}
\end{align*}
$$

A value $\kappa=0,1,2, . ., N-1$ is selected so that m-sum-shift μ_{ρ} is an integer $\mu_{\rho}=0,1,2, ., N-1$, too. Substituting the resulting μ_{ρ} value in (A.3a) gives the phase modular difference Δ first defined there and in (A.3b).

$$
\begin{equation*}
\Delta(\rho, v)=-\left(2 v \mu_{\rho}+\rho\right)_{4 v N}^{2}=-\left(2 v\left(\frac{\kappa N-\rho}{2 v}\right)+\rho\right)_{4 v N}^{2}=-(\kappa N)_{4 v N}^{2}, \tag{A.4b}
\end{equation*}
$$

where

$$
\begin{equation*}
\kappa=\frac{2 v \mu_{\rho}+\rho}{N} . \tag{A.4c}
\end{equation*}
$$

Puttiing (A.3a) into the revival wavefunction sum (A.1) gives

$$
\begin{align*}
\psi_{0}\left(\phi_{\rho}, t_{v}\right) & =\frac{1}{N} \sum_{m=0}^{N-1} e^{-i(2 m v-\rho)^{2} \frac{2 \pi}{4 v N}} e^{i \frac{\rho^{2}}{4 v} \frac{2 \pi}{N}} & & \\
& =\frac{1}{N} \sum_{m=0}^{N-1} e^{-i\left[(2 m v)^{2}-\Delta(\rho, v)\right] \frac{2 \pi}{4 v N}} e^{i \frac{\rho^{2}}{4 v} \frac{2 \pi}{N}} & & {[\text { using:(A.3a)] }} \\
& =\frac{1}{N} \sum_{m=0}^{N-1} e^{-i\left[(2 m v)^{2}+(\kappa N)^{2}-\rho^{2}\right] \frac{2 \pi}{4 v N}} & & {[\text { using:(A.4b)] }} \\
& =\frac{1}{N} \sum_{m=0}^{N-1} e^{-i\left[(2 m v)^{2}+4 \mu_{\rho}^{2} v^{2}+4 \mu_{\rho} v \rho\right] \frac{2 \pi}{4 v N}} & & {[\text { using:(A.4c)] }} \\
& =P(v) e^{\frac{-i\left[\mu_{\rho}^{2} v+\mu_{\rho} \rho\right] 2 \pi}{N}}=P(v) e^{\frac{-i\left[\mu_{1}^{2} v+\mu_{1}\right] \rho^{2} 2 \pi}{N}} & & {[\text { using:(A.3c)] }} \tag{A.5a}
\end{align*}
$$

The overall phase and amplitude prefactor $P(v)$ is a Gaussian sum discussed in Appendix 9B.

$$
\begin{equation*}
P(v)=\frac{1}{N} \sum_{m=0}^{N-1} e^{-i(2 m v)^{2} \frac{2 \pi}{4 v N}}=\frac{1}{N} \sum_{m=0}^{N-1} e^{-i v m^{2} \frac{2 \pi}{N}} \tag{A.5b}
\end{equation*}
$$

Finally, the $(\rho=1) m$-sum-shift μ_{1} is the first fraction $(N-1) / 2 v,(2 N-1) / 2 v,(3 N-1) / 2 v, \ldots$, or $\left(N^{2}-1\right) / 2 v$, to yield an integer according to (A.4a). Recall that it was assumed that N and v are relatively prime, that is, have no common factors. It seems evident that the integer arithmetic behind base- N counter revivals is not trivial, even for the case of odd- N.To complete this particular $N=5$ example we find the sum-shift μ_{1} at each revival time $v=1-4$.

$\mu_{1}=\frac{\kappa N-1}{2 v}$	$\kappa N-1=$	4	9	14	19	24
$2 v=2$		$\overline{\mathbf{2}}$	\cdot	7	.	12
$2 v=4$		$\overline{\mathbf{1}}$	\cdot	\cdot	\cdot	6
$2 v=6$		\cdot	\cdot	\cdot	\cdot	$\overline{\mathbf{4}}$
$2 v=8$		\cdot	\cdot	\cdot	\cdot	$\overline{\mathbf{3}}$

From the discussion of Appendix 9B come the overall prefactors $P(v=1)=1 / \sqrt{ } 5, P(2)=-1 / \sqrt{ } 5, P(3)=-1 / \sqrt{ } 5$, and P $(v=1)=1 / \sqrt{ } 5$, which are needed to complete the following $N=5$ revival table using (A.5).

$$
\begin{array}{c|cccccll}
\psi(\rho, v) & \rho=0 & \rho=1 & \rho=2 & \rho=3 & \rho=4 & \\
\hline v=0 & 1 & 0 & 0 & 0 & 0 & & \tag{A.7}\\
v=1 & 1 / \sqrt{5} & e_{1}^{*} & e_{1} & e_{1} & e_{1}^{*} & e_{1}=e^{i 2 \pi / 5} / \sqrt{5} \\
v=2 & -1 / \sqrt{5} & -e_{2} & -e_{2}^{*} & -e_{2}^{*} & -e_{2} \\
v=3 & -1 / \sqrt{5} & -e_{2}^{*} & -e_{2} & -e_{2} & -e_{2}^{*} & e_{2}=e^{2 i 2 \pi / 5} / \sqrt{5} \\
v=4 & 1 / \sqrt{5} & e_{1} & e_{1}^{*} & e_{1}^{*} & e_{1} &
\end{array}
$$

A phasor gauge plot of the $N=5$ revivals (A.7) is shown in Fig. 9.4.3c.
The summation (A.1) for even- N is mostly the same as the above. Time index v is replaced by $v / 2$.

$$
\begin{align*}
\psi_{0}\left(\phi_{\rho}, t_{v}\right) & =\frac{1}{N} \sum_{m=0}^{N-1} e^{-i(m v-\rho)^{2} \frac{2 \pi}{2 v N}} e^{i \frac{\rho^{2}}{2 v} \frac{2 \pi}{N}}, \text { where; } t_{v}=v \frac{2 \pi}{2 N}, \text { for } N \text {-even. } \\
& =P(v) e^{\frac{-i\left[\mu_{\rho}^{2} v+2 \mu_{\rho} \rho\right] 2 \pi}{2 N}}=P(v) e^{\frac{-i\left[\mu_{1}^{2} v+2 \mu_{1}\right] \rho^{2} 2 \pi}{2 N}} \tag{A.8a}
\end{align*}
$$

where

$$
\begin{equation*}
\mu_{1}=\frac{\kappa N-1}{v}=\text { first integer in } \frac{N-1}{v}, \frac{2 N-1}{v}, \frac{3 N-1}{v}, \ldots \tag{A.8b}
\end{equation*}
$$

Again the overall phase and amplitude prefactor $P(v)$ is a Gaussian sum discussed in Appendix B.

$$
\begin{equation*}
P(v)=\frac{1}{N} \sum_{m=0}^{N-1} e^{-i(m v)^{2} \frac{2 \pi}{2 v N}}=\frac{1}{N} \sum_{m=0}^{N-1} e^{-i v m^{2} \frac{2 \pi}{2 N}} \tag{A.8c}
\end{equation*}
$$

This works for odd-numerator time fractions $1 / 2 N, 3 / 2 N, 5 / 2 N, \ldots=\mathrm{v} / 2 N$. For the even numerator ones, we take advantage of the revival sequence $v / N=1 / N, 2 / N, 3 / N, \ldots$. for N cut in half and shifted by π. If $N / 2$ is odd then (A. 5) is used. If $N / 2$ is even then (A.8) is used again, but with N cut in half to $N / 2$. Note that fractions with singlyeven denominators have zeros at $\phi=0$ and peaks at $\phi= \pm \pi$. Fractions with odd denominators have peaks at $\phi=0$ and zeros at $\phi= \pm \pi$. Fractions with doubly-even denominators have zeros at $\phi=0$ and $\phi= \pm \pi$.

Appendix 9.B. Overall phase of peaks in a revival lattice

The evaluation of the N -term integral Gaussian sum

$$
\begin{equation*}
G(v)=\sum_{m=0}^{N-1} e^{-i v m^{2} \frac{2 \pi}{N}}=N P(v) \tag{B.1}
\end{equation*}
$$

in the prefactor $P(v)=G(v) / N$ given by (A.5b) is, perhaps, the least trivial part of the revival formulation. The develpment involves complex Gaussian integer analysis, a subject which occupied Gauss for more than the first decade of his most productive years. Here we will be content with giving a list of the results for the first few integer combinations that would be relevant for the revivals shown previously.

$N=$	2	3	4	5	6	7	8	9	10	11	12
$\sum_{m=0}^{N-1} e^{-i m^{2} \frac{2 \pi}{N}}=$	0	$-i \sqrt{3}$	$(1-i) \sqrt{4}$	$\sqrt{5}$	0	$-i \sqrt{7}$	$(1-i) \sqrt{8}$	$\sqrt{9}$	0	$-i \sqrt{11}$	$(1-i) \sqrt{12}$
$\sum_{m=0}^{N-1} e^{-i 2 m^{2} \frac{2 \pi}{N}}=$	2	$i \sqrt{3}$	0	$-\sqrt{5}$	$-i \sqrt{12}$	$-i \sqrt{7}$	$(1-i) 4$	$\sqrt{9}$	$\sqrt{20}$	$i \sqrt{11}$	0
$\sum_{m=0}^{N-1} e^{-i 3 m^{2} \frac{2 \pi}{N}}=$	0	3	$(1+i) \sqrt{4}$	$-\sqrt{5}$	0	$i \sqrt{7}$	$-(1+i) \sqrt{8}$	$-i \sqrt{27}$	0	$-i \sqrt{11}$	$(1-i) 6$
$\sum_{m=0}^{N-1} e^{-i 4 m^{2} \frac{2 \pi}{N}}=$	2	$-i \sqrt{3}$	4	$\sqrt{5}$	$i \sqrt{12}$	$-i \sqrt{7}$	0	$\sqrt{9}$	$-\sqrt{20}$	$-i \sqrt{11}$	$-i \sqrt{48}$
$\sum_{m=0}^{N-1} e^{-i 5 m^{2} \frac{2 \pi}{N}}=$	0	$i \sqrt{3}$	$(1-i) \sqrt{4}$	5	0	$i \sqrt{7}$	$-(1-i) \sqrt{8}$	$\sqrt{9}$	0	$-i \sqrt{11}$	$-(1-i) \sqrt{12}$
$\sum_{m=0}^{N-1} e^{-i 6 m^{2} \frac{2 \pi}{N}}=$	2	3	0	$\sqrt{5}$	6	$i \sqrt{7}$	$(1+i) 4$	$i \sqrt{27}$	$-\sqrt{20}$	$i \sqrt{11}$	0
$\sum_{m=0}^{N-1} e^{-i 7 m^{2} \frac{2 \pi}{N}}=$	0	$-i \sqrt{3}$	$(1+i) \sqrt{4}$	$-\sqrt{5}$	0	7	$(1+i) \sqrt{8}$	$\sqrt{9}$	0	$i \sqrt{11}$	$-(1+i) \sqrt{12}$

Particuarly simple general results are had for the case of doubly-even integer.

$$
\begin{array}{cccccc}
N=2 n & 4=2 \cdot 2 & 8=2 \cdot 4 & 12=2 \cdot 6 & 16=2 \cdot 8 & 20=2 \cdot 10 \tag{B.3}\\
\hline \sum_{m=0}^{N-1} e^{-i m^{2} \frac{2 \pi}{N}}=(1-i) & (1-i) \sqrt{2} & (1-i) \sqrt{3} & (1-i) \sqrt{4} & (1-i) \sqrt{5}
\end{array}
$$

A complex vector diagram of the first few $\mathrm{G}(\mathrm{u})$ sums is shown below in Fig. 9B.1.

Fig. 9B.1 Sums of modular squares $\left(m^{2}\right)_{N}=m^{2} \bmod N(N=3-12)$.

