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For two-state systems the perturbation effects due to oscillating components A, B, C,

and D of its Hamiltonian may be described analytically and geometrically. We

comparison of these results with the first-order approximation given in the preceding

Chapter 18. One type of the effects, as applied to transitions of NH3 states introduced

in Chapter 10, are called the AC-Stark shifts. Related effects were studied much

earlier in nuclear magnetic resonance (NMR) and electronic spin resonance (ESR)

systems. The effects in this Chapter are known mostly by the names Rabi-Ramsey-

Schwinger and Feynman-Vernon-Helwarth after two famous papers by these triplets

of authors. Rotation operator and spin vector visualization tools developed in Chapter

10 help to clarify spin resonance and time-dependent “dressed” eigenstates.
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Chapter 19 Time-Variable Perturbation of Two-State Systems

19.1 "Exact" Time Dependent Perturbation

Low order approximations of time-dependent perturbation (TDP) theory is successful beyond what

one has a right to expect. Using the first-order iterate (18.2.5) one may derive much of the basic theory that

is used in modern physics. The constant transition rate is such a well-established result that it is called the

"golden rule." Roughly speaking, TDP gives time behavior as a power series in time and the "golden rule" is

based on the first term. (But, a quasi-continuum of beats has to average to zero!)

The problem with power series is that eventually they blow up. The spectral intensity function

described around Fig. 18.2.1 is such an example in which cj(1)(t) diverges with time t and probability

|cj(1)(t)|2 blows up as t2. One should note some similarity in error growth for cj(n)(t) iteration and a related

failure of matrix perturbation depicted in Fig. 3.2.2 of Chapter 3.

It seems that polynomials are bad descriptors of quantum phenomena which, being fundamentally

wave-like, are better described by sine, cosine, and exponential, that is, by circular and hyperbolic

functions. Polynomial approximation of the two-level hyperbola in Fig. 3.2.2 eventually fails badly.

Here we consider time-dependent perturbation of a two-level system that, like the matrix

perturbation example in Fig. 3.2.2, has an "exact" hyperbolic description. A hyperbolic "avoided crossing"

was described again in Chapter 10 around Fig. 10.3.1 in connection with E-field splitting of ammonia (NH3)

inversion levels. This is known as a DC Stark effect.

This section will be devoted to basically the same problem, but with an oscillatory or AC electric

field. This is known as an AC Stark effect. Here, as in the DC case, it will be seen how an "exact" theory can

be constructed to replace a failing perturbation sequence. Such a replacement is absolutely necessary in the

presence of strong coherent radiation fields of high spectral purity. Then strong quantum beats dominate

and the "golden rule" goes out the window.

Among the first work to describe and demonstrate oscillatory perturbation of two-state systems

was a paper by Rabi, Ramsey, and Schwinger in connection with nuclear magnetic resonance (NMR). The

analogy between spin resonance and resonance of other two-state systems including NH3-inversion was

pointed out in a paper shortly thereafter by Feynman, Vernon, and Helwarth.

The NH3-inversion experiments by Townes’ group was labeled by the acronym MASER

(Microwave Amplification by Stimulated Emission of Radiation). Soon thereafter, the optical transitions

were found to give light amplification by stimulated emission and the LASER was born. The AC Stark

effect and NMR is closely related to much of laser physics and deserves special attention not only for its

historic significance but also for its fundamental quantum theoretical implications.

These implications include resonance effects in other much older 2-state systems such as optical

polarization and galloping wave dynamics introduced in Chapter 4. It is ironic that earliest physical

realizations of U(2) phenomena are the latest to receive modern attention. So-called photonics is both an

ancient and an ultra-modern field!
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(a) Perturbed 2-state systems

The most general 2-state Hamiltonian H=H† has four real parameters A, B, C, and D.

H
A B iC

B iC D
=

-
+

Ê
ËÁ

ˆ
¯̃

(19.1.1)

Chapter 10 discusses three main symmetry types of ABCD-Hamiltonians. First, the AD-type is

asymmetric-diagonal, the B-type has balanced-bilateral symmetry, and the C-type is complex-chiral and

associated with circular polarization, cyclotron resonance, or coriolis forces.

H
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0

s s
(19.1.2a)
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¯̃

= =
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s s
(19.1.2c)

(Standard XYZ labels of Pauli operators are included, too.) The general Hamiltonian (19.1.1) combines the

A, B, and C symmetry operators with the U(2)-symmetric unit matrix operator s0=1.

H 1

S S S S S
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+
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+ +

= +( ) + -( ) + ( ) + ( ) = + ∑
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2 20 0 0

s s s

W W
(19.1.3a)

Here the spin-1/2 angular momentum operators SN=sN/2 are preferred bases because their coefficients

  W0 = (A+D),    WA = (A-D),    WB = 2B,    WC = 2C.  (19.1.3b)

are angular velocities. The "crank-vector" WWWW=(WA, WB, WC ) determines where and how fast the spin

expectation value ·SÒ precesses (or if it precesses) in (SA, SB, SC )-space due to an ABCD-Hamiltonian H.

The time Schrodinger equation, in units with h=1, is as follows.

  
i
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∂
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∂
∂

( ) = ( ) =
-

+
Ê
ËÁ

ˆ
¯̃

Ê
ËÁ

ˆ
¯̃

Y
Y

Y Y
Y
Y

1

2

1

2
H (19.1.4a)

The solution for constant  A, B, C, and D is by (2.10.20) a t-exponential W0-phase-plus-WWWW-rotation.
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(19.1.4b)
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A similar NMR Hamiltonian for a spin moment m=g S in a B-field (but without an overall phase W0) is

H S=
≠ ≠ ≠ Ø
Ø ≠ Ø Ø
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(19.1.5a)

(Again, let h=1.) The constant-B solution is just an (S=ssss/2)-vector rotation at a beat frequency W.

Y Y Yt e e
g
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gig t i

g
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( ) ( ) ( ) = -
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ˆ
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- ∑ -
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 = = t t 2BB
BB ss
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2 2

1cos sin , (19.1.5b)
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The NMR beat frequency W=g|B|h is the length of "crank vector" WWWW=g(BX, BY, BZ ).

W = = + +g g B B BX Y ZBB 2 2 2 (19.1.5c)

This NMR example is essentially the same as the general ABCD-case except it zeros overall phase W0.

Solution |Y(t)Ò needs to be upgraded if the parameters {A, B, C, D} or fields (BX,BY,BZ ) are time

dependent. An NMR device fixes a large BZ field to get a microwave level splitting W=gBZ, and oscillates

low-amplitude transverse "tickler" components BX(t) or BY(t) close to the resonance frequency W.

Analogous resonant transitions are stimulated in NH3 by an Ez-field oscillating near the resonance

frequency W=2S~24 GHz of an ammonia inversion as described in Chapter 10. The Hamiltonian matrix

N N N N

N N N N

H pE S

S H pE
up up up dn

dn up dn dn

z

z

H H

H H

Ê

Ë
ÁÁ

ˆ

¯
˜̃ =

- -
- +

Ê
ËÁ

ˆ
¯̃

(19.1.6a)

from (10.3.3) contains on its diagonal the field potential energy -pEz of an "up" Nitrogen atom state |NupÒ

versus +pEz of a "down" Nitrogen atom state |NdnÒ. Inversion tunneling amplitude -S is off-diagonal. The

matrix has the form of an AB-type Hamiltonian. Transforming to a {|+Ò,|-Ò} basis interchanges S and pEz.
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-( ) +( ) -( ) -( )

Ê

ËÁ
ˆ

¯̃
=

- -
- +

Ê
ËÁ
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/

/

2

2
(19.1.6b)

In an NH3 resonance experiment, the dipole perturbation pEz(t) will be a time-dependent and is precisely

analogous to the BX(t)-component of the NMR "tickler" field, while NH3 eigenstates {|(+)Ò,|(-)Ò} are

precisely analogous to NMR spin-up-z and spin-dn-z eigenstates {|≠Ò,|ØÒ} in the fixed polarizing BZ-field.

(b) Visualizing quasi-spin space: NH3 vs. NMR

Generally, the A-axis a.k.a. Z-axis is the quantization axis of choice. For the NMR problem a

favored-Z convention is forced by a big fixed BZ-field. (A small BX(t) will be wiggled.) For the NH3 problem

we plan to wiggle B=-pEz(t) in (19.1.6b) and not S. (Nature fixes tunneling amplitude S.) NH3 eigenstates

{|(+)Ò,|(-)Ò} will now be associated with spin-up-A and spin-down-A, with field-free eigenvalues A=H-S and

D=H+S, respectively. In going between (19.1.6a and b), A and B are switched.

Do not confuse the z-axis of the NH3 molecule with the A or Z-axis in its quasi-spin (SA, SB, SC )-

space. Nor is the x-axis of the NH3 molecule to be confused with the B or X-axis. But, all three B-field

components (BX(t),BY(t),BZ ) are meaningful real parameters {A=BZ, B=BX(t), C=BY(t), D=-BZ,} of the

NMR Hamiltonian (19.1.5a), while the NH3 inversion Hamiltonian (19.1.6b) has only the z-dipole energy

pEz(t) as a meaningful real field parameter in the set {A=H-S, B=-pEz(t), C=0, D=H+S}.

The dipole balance parameter B quantifies a (-qE•r) coupling between two states |(+)Ò and |(-)Ò.
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  B=-pEz(t)=-·(+)|qzEz(t)|(-)Ò = r cos(w  t)=(r/2)(eiw t + e-iw t) (19.1.7a)

B is gBx(t)/2 for the NMR example. For NH3 it is the interaction strength or Rabi rate parameter r.

  B= r = -pEz(0) (19.1.7b)

B contains the oscillator strength or electric dipole matrix element  

  p=q·(+)|z|(-)Ò,    (19.1.7c)

in product with the field magnitude Ez(0) for which a real monochromatic radiation field is assumed.

  Ez(t) = cos(w  t)=(1/2)(eiw t + e-iw t) . (19.1.7d)  

Below is the exact NH3 inversion-resonance Hamiltonian (19.1.6b) in its Schrodinger equation.
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 ,      where: (19.1.8a)

The H-crank WWWW-components (19.1.3b) are below. The unperturbed (r=0) case is shown in Fig. 19.1.1b.

  W0 = H ,    WA = e,    WB = r cosw  t,    WC = 0.  (19.1.8b)

The H-crank vector WWWW swings to-and-fro in the AB-plane at constant WA=e as shown later. (Fig. 19.1.2b)

The NH3-electric dipole moment of any state is related to the transverse ·S^Ò-component of the

quasi-spin vector ·SÒ expectation. In NMR, ·m^Ò=g·S^Ò is the magnetic moment transverse to the main

BZ-field. The NH3 dipole ·pzÒ=q·zÒ is a product of p and 2SB=2Rey+*y- using (2.10.8b) and (19.1.7).

p

S p p p

z
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= = + + -( ) + + -( )
= + - + - = - +
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p p p
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* *
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        (using  

        (using (2.10.8b) and 

2

2

(19.1.9a)

Symmetry rules out diagonal z-matrix elements ·+|z|+Ò=0 =·-|z|-Ò. Here is the time derivative of ·pzÒ.

˙ ˙ ˙ ˙ ˙ ˙ ˙

Im ˙
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* * * *

*

p p p p

p

p

z z z z

z

z

= + = + + +( ) + -
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                (using: =   )
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2

i

S p p pC

(19.1.9b)

Fig. 19.1.1a shows a "real" NMR spin moment m=gS precessing around its W-cranking gBZ-field. Fig.

19.1.1b shows an analogous NH3 quasi-spin S similarly precessing around its A-axis at rate e =2S. The

transverse NMR moment m^ lies in the projection or "shadow" of m in the XY-plane. An analogous NH3

Lorentz phasor vector p^=q(·zÒ,-· ż Ò/e ) rotates in the BC-plane according to (19.1.9) at rate W =2S=e .

This relates the first Euler angle a to an atomic oscillator phase angle f=-a, as shown in Fig. 19.1.1b.
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Z

X

Y

S
m=gS

(a) NMR Spin S and moment m

S^̂
m^̂

gBz=W=e

a=coherence angle

b

  

                

A

B

C

S

(b) NH3 Quasispin S and phasor p^̂

S^̂
 Lorentz phasor p^̂

2S=W=e

a=coherence angle

b

Fig. 19.1.1 W-Cranked polarization and spin vectors for (a) NMR and (b) NH3 inversion resonance.

p^ is a quantum version of the classical Lorentz atomic oscillator phasor p(t)=p(0)e-ie t which has a real

value p(0) cos e t and an imaginary value -p(0) sin e t corresponding to dipole time derivative (dp/dt)/e.

Lorentz oscillators are classical harmonic oscillators and grow to infinity if the driving frequency w

approaches the natural frequency W=e. Not so for the quantum model of a two level atom pictured in Fig.

19.1.1b. The dipole expectation value ·pzÒ=q·zÒ starts at zero for the ground |(+)Ò-eigenstate (b=0) then

grows toward its saturation value of p for a (50-50) state such as a spin-up-B wave (y+, y-)=(1/÷2, 1/÷2)

with spin at b=p/2 . The value p is as large as ·pzÒ can be for the 2-level system.

Saturated (50-50)-states have S-vector normal (b=p/2) to the crank WWWW-vector. This includes the

Nitrogen-up state |NupÒ=(|(+)Ò+|(-)Ò)/÷2 the Nitrogen-down state |NdnÒ=(|(+)Ò-|(-)Ò)/÷2 whose S-vector

is along the ±B-axes, or transition states |±CÒ=(|(+)Ò±i|(-)Ò)/÷2 whose S-vector is along the ±C-axes. An

increase in amount of excited state |(-)Ò above 50-50 decreases the dipole moment in the BC-plane; it is

zero for a pure excited state |(-)Ò or a pure ground state |(+)Ò. Lorentz "phasor space" unbounded and flat,

but a 2-state (|(+)Ò,|(-)Ò) phasor or coherence space is a bounded spherical projection and periodic. The

quantum quasi-spin world, unlike Lorentz’s “flat” classical phasor world, is “round.”

(c) Rotating wave solutions

We first solve a rotating wave approximation to (19.1.8) obtained by dropping eiw t from Ez(t).

i
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∂
∂
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2
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ËÁ
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Ë

Á
Á
Á

ˆ

¯

˜
˜
˜

Ê
ËÁ

ˆ
¯̃

= -
= =
= =

-

+
+ ≠

- Ø
 ,  where:  ,  and: (19.1.10a)

The H-crank vector WWWW rotates around the Z-axis tracing an inverted cone of altitude e as in Fig. 19.1.2a.

  W0 =H=0, WZ =WA = e,  WX =WB = r cosw  t,  WY =WC = r sinw  t.  (19.1.10b)
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XR

Z
or
A

X or B

Y or C

(a)  Crank vector WW  precesses around Z

wt=frame rotation angle

YRr r

e

w=

precession rate

  

              

Z

X

Y

(b)  Crank vector WW  swings in XZ plane

r

re

w=

swing rate

Fig. 19.1.2 W-Crank time dependence for (a) Rotating crank approximation (b) Exact planar swing.

This H is like that of an NMR resonance with a fixed Bz field added to a rotating Bx(t) and By(t) field.

  Bz = 2e,    Bx(t) = 2r cosw  t,    By(t) = 2r sinw  t.  (19.1.10c)

For such a B-field (19.1.10a) is an exact equation. In the analogous NH3 equation (19.1.8) only the X-or-B-

component oscillates as shown in Fig. 19.1.2b. But, it turns out that the circular polarized B or WWWW motion

(19.1.10b-c) like Fig. 19.1.2a has much the same effect as a ZX-plane swinging WWWW (19.1.8b) in Fig. 19.1.2b

provided the amplitude Bx  (or Rabi radius r) is much less than the splitting frequency e (r<<e).

To solve (19.1.10a) we boost by rotation RZ[w t] to a rotating frame {XR, YR, ZR,=Z}shown in Fig.

19.1.2a, where the crank vector WWWW would appear to be standing still. This is something like the change-of-

picture boost which zeros the vector potential A in (17.1.16). New R-base states |kÒR are defined first.

 |≠ÒR=RZ[w t]|≠Ò=e-iw t JZ |≠Ò=e-iw t/2 |≠Ò ,  R·≠| = ·≠|R†[w t]=·≠|e+iw t/2 (19.1.11a)

 |ØÒR=RZ[w t]|ØÒ=e-iw t JZ |ØÒ=e+iw t/2 |ØÒ ,  R·Ø| = ·Ø|R†[w t]=·Ø|e-iw t/2 (19.1.11b)

This gives the needed transformation matrix and inverse.
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Ë
Á
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Ë
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-
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w

/

/

2

2
0

0
(19.1.11c)

Then transformed wave amplitudes yR= R†y  and a new Hamiltonian HR = R†H.R follow . 
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(19.1.11d)

The new Hamiltonian HR  does indeed have a constant WWWW-vector and no explicit time dependence.

  
R R R R
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But, change-of-picture (19.1.11d) has time dependence so time derivative i∂/∂t yR yields extra terms.
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(19.1.13a)
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The original Schrodinger equation i∂/∂t|yÒ=H|yÒ becomes one for |yRÒ=R†[w t]|yRÒ by inserting R†R=1.
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The new HR has extra diagonal terms ±w /2 but off-diagonal time dependence e±iw t of (19.1.10) is gone.
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The crank vector WWWWR in the rotating frame is indeed motionless but has (-w) added to its Z-component.

  WR0 = HR11+HR22,    WZ = HR11-HR22,    WX  = 2ReHR12 ,    WY = 2ImHR12.  

= 0,           = e-w =D,            = r ,       = 0. (19.1.15b)

The resulting crank WWWWR depends on the detuning parameter D=e-w as shown in Fig. 19.1.3. D is

zero at resonance. A zero detuning makes the beat frequency or crank length become a minimum value r.

 W D
D D

D
R r

r  (far from resonance)

r r (close to resonance)
= ± + @

± <<
± <<

Ï
Ì
Ó

2 2    for: 

   for:     
(19.1.15c)

The minimum beat frequency r is called the Rabi frequency and was given (for h=1) by (19.1.7).

  r = -q·(+)|z|(-)ÒEz(0)   (19.1.16)

Two-state quantum resonant beat frequency WR, unlike a classical resonance, approaches r but not zero as

detuning D goes through zero. But, when detuning exceeds r, we recover the classical relation WR=D

between beat rate and natural-minus-stimulus frequency difference D=e-w, as shown in (19.1.15c).
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S

(a) w far below resonance

 w << e     or   D >> 0
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r
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(b) w below resonance

 w < e     or   D >0

YR

rD

ZR

     

                

XR
W=r

S

(c) w on resonance

 w = e     or   D = 0

YR

ZR

Fig. 19.1.3 WWWWR-crank turns spin S-up state in rotating frame (a) w<<e (b)w<e (c) Resonance w = e .

Two-state quantum response does not blow up at D=0 like the classical Lorentz oscillator (18.3.1)

or like the first order approximation (18.2.6). As noted after Fig. 19.1.1, maximum dipole response has its

spin S normal to the Z-axis (b=p/2). This happens to an initial ground state (spin-up |≠ÒR) if D lies inside

±r as in Fig. 19.1.3b-c. Time evolution operator UR(t)=e-iHRt is a rotation around crank WWWWR of polar angle

JR for cosJR=D/WR and sinJR=r /WR. Rotation matrix e-iWWWWt •J comes from (10.5.25c) in Ch. 10.
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 (19.1.17)

The excited |ØÒR-state component gives the transition probability from ground |≠ÒR-state as a function of

time t, Rabi amplitude r, and detuning D. For large D it reduces to the spectral intensity value (18.2.6).
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D
D

D D                        for : 

(19.1.18)

A plot of 2-state transition is given in Fig. 19.1.4 to compare with a first order approximation in Fig. 18.2.1.

The Rabi surface in Fig. 19.1.4 below has the same markings as the first-order approximation in Fig. 18.2.1.

Notice the uncertainty hyperbolas that are at the bottom of valleys in Fig. 18.2.1 have been lifted up in Fig.
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19.1.4 by encroaching beatlet peaks that used to surround them. This lifting effect becomes most

pronounced near the resonance origin (D=0) but diminishes in regions far from resonance.

As mentioned before, the first-order approximation is most happy to stay away from resonance

where it unhappily blows up. Fig. 18.2.1 and Fig. 19.1.4 are practically the same everywhere except in the

tiny region blown up in the two figures.
          

t=1

t=2

t=3

t=4

2-Level Rabi Intensity
I(r,D,t)=

   r2sin2(t  (D2+r2)/2)
        (D2+r2)

         (r=2 /5)

 -0.4p
 -0.2p

    D=0
 +0.2p

 +0.4p

                       t .D =  ±2p�
Uncertainty hyperbolas are
forced up encroaching peaks

 t .D = -2p

�

Fig. 19.1.4  Rabi spectral intensity function I(r,D,t) for 2-level rotating wave for r=2p/5.

The most striking contrast between Rabi 2-level I(r,D,t) and the approximate I(D,t) is that the Rabi

(D=0)-peak goes to a maximum value: I(r, D=0, t=p/r)=1 then back to zero at t=2p/r. Meanwhile, the

approximate I(D=0,t)=t2 just goes up!  In other words, after one Rabi period, the transition probability is

back to zero since the spin vector in Fig. 19.1.3c has completed one full revolution. No such return to initial

state is possible in a first (or even 2nd or 3rd ) order polynomial perturbation approximation.
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Rabi 2-level response I(r,D,t) beats faster than I(D,t) near D=0. Beat rate WR (19.1.15c)

depends on stimulus amplitude through Rabi rate r as well as on stimulus frequency w through D=e-w. If r

increases, beats get faster and bigger near D=0 since Rabi-r is both a rate and a radius of WWWWR-cranking. A

top view of I(r,D,t) with twice the rate r (r=4p/5) is shown below in Fig. 19.1.5. Note how the zeros of

I(r,D,t) veer away from uncertainty hyperbolas of I(r,t) and toward a (D=0)-rendezvous at each Rabi

period.

Fig. 19.1.5  Top-down view of Rabi spectral intensity function I(r,D,t) for r=4p/5.

As zeros move toward low-D, the probability moves away. Larger and faster beats also appear in

the ±D wings of the spectrum as r is increased. This effect, known as power broadening, changes the

spectral profile (19.1.17) from a narrow inverse-D-square (r2/D2) to a fatter Lorentzian (r2/[D2+r2]).
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The frame {XR, YR, ZR,} of Fig. 19.1.3 rotates at the stimulus frequency w about the (Z=ZR)-axis as

shown in Fig. 19.1.2. So, an XR, spin component or related polarization p^ or m^in Fig. 19.1.2 also has a

w-field-driven rotation. Oscillation or rotation of electric or magnetic moments radiates electromagnetic

waves at the frequency w of the oscillation. w-Radiation from 2-state system rises when the slower WWWWR-

rotation drives the spin vector S away from the ZR-axis in Fig. 19.1.3, but it falls as the same WWWWR brings S

back to the ZR-axis. Neither a pure ground state |(+)Ò or |≠Ò nor a pure excited state |(-)Ò or |ØÒ can radiate.

Radiating moments require state mixture, preferably a saturated 50-50 mixture.

(d) AC Stark levels: Dressed eigenstates
To better understand an increasingly intimate relation between atomic and nuclear moments for two

levels (E≠=0, EØ=he) and its stimulating radiation field ER=hw , let us plot the important frequencies as a

function of detuning D=e-w by the stimulus frequency w off the zero-field transition frequency e. The

simplest of these plots is the zero-coupling case of Fig. 19.1.6a for which the Rabi-rate is zero. (r=0) It is a

45° line representing the laser stimulus crossing horizontal lines representing the two levels 0 and e.
      

D = 0D = e D = -e

e
Detuning

D=e-w

Laser
w

Atom
e=1

(a) r = 0

(w +e)/2

      

Rabi splitting
r = 0.2

(b) r = 0.2

DC
Stark
shift

d(e)/2

w = 0 w = e w = 2e

      
(c) r = 1.0

AC Stark shifts

Beat frequency

WR(D)
D = 0D = e D = -e

d+/2 d-(D)/2

d-/2 d+/2

Fig. 19.1.6  Rotating wave eigenfrequencies versus detuning frequency. Rabi rate r=(a) 0, (b) 0.2, (c) 1.0.

Plotted are eigenvalues of the rotating wave Hamiltonian (19.1.15) plus an overall frequency W0=(e+w)/2.
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(19.1.19)

Eigenvalues of HR+W0 1 are called dressed eigenfrequencies W0 ±WR/2. WR is the crank rate (19.1.15c).

 Whi= W0 + WR/2 = e   +(WR -e + w)/2   = e  +(WR -D)/2  = e   +d- /2  (19.1.20a)

 Wlo= W0 - WR/2 = w   -(WR -e + w)/2  = w  -(WR -D)/2 = w   -d- /2  (19.1.20b)
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Eigenstate |WhiÒ or |WloÒ has spin S aligned or anti-aligned to crank vector WWWWR. (b=JR or b=p+JR)

The polar angle JR of the rotating crank WWWWR is shown in Fig. 19.1.3 with cosJR=D/WR and sinJR=r /WR.

The eigenstate components use cos2JR/2=(1+ D/WR]/2 and sin2JR/2=(1- D/WR]/2 to give AC-Stark states
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where we define the AC-Stark shifts d ± as follows. (See also: Fig. 19.1.6.)

  d -= d(D)    = WR -D = ÷[D2 + r2] -D   (19.1.20e)

  d += d(-D) = WR +D = ÷[D2 + r2] +D   (19.1.20e)

Half shifts d -/2 and d +/2 give the deviation of each eigenfrequency from the zero-field frequencies w or e

as seen in (19.1.20a-b) and Fig. 19.1.6c. The sum of d -/2 and d +/2 is the total splitting WR , their

difference is the detuning D, and the shift product d -d + is the Rabi rate squared.

 d -/2+d +/2 = WR  (19.1.20f)  d -/2-d +/2 = D  (19.1.20g) .d -d +=r2  (19.1.20h)

Finally, note the AC Stark state norm.

 d ±+r2 = (WR±D)2+r2 = 2WR(WR±D) = 2WRd ±    (19.1.20i)

The AC Stark states are also called adiabatic dressed eigenstates because the dipole moment p^ or

m^ oscillation is correlated or "clothed" with that of the stimulating radiation particularly near resonance.

They are the states that arise from a zero-field eigenstate if r or D are turned on slowly (adiabatic).

Consider two AC dressed eigenstate amplitudes in a 50-50 duet at frequencies Whi and Wlo.

 e-iWhit + e-iWlot   = e-i(e + d/2)t + e-i(w - d/2)t  = e-i(e + w)t/2 cos(e-w+d)t/2

     = e-iW0t cosWRt/2

It is an amplitude modulation (AM) of a carrier frequency W0=(e + w)t/2 by a modulation frequency WRt/2

giving two side bands belonging to the two Whi and Wlo curves in Fig. 19.1.6 above and below W0 .

  whigh sideband  = W0 +WR/2 = Whi = e  +d- /2  (19.1.18a)

  wlow sideband  = W0 -WR/2  = Wlo = w  -d- /2    (19.1.18b)

The modulation arises because the radiating dipole p^= p sinJR varies with polar angle JR of spin vector S

as the crank vector WWWWR turns in Fig. 19.1.3. As the S vector rotates from the spin-up ground state (JR=0)

the radiation moment beats up and down. For D=r, a maximum p^=p occurs at JR=p/2 as in Fig. 19.1.3b.

For D~0, angleJR rotates at uniform rate WR~r from 0 to 2p as in Fig. 19.1.3c. Dipole p^ has beat maxima
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at p/2 and 3p/2 and a zero in between at angle JR=p of the excited (spin-down) state. As in the discussion

of (18.210), amplitude beat frequency is WR/2 while intensity (square-amplitude) beats at WR.

A geometric sketch of the spin-crank angle JR and related frequencies WR, d ± and D is given in Fig.

19.1.7. Concentric circles of radii d - and d + define the WWWWR vector by (19.1.20f) and D  by (19.1.20g). The

figure relates angles JR , JR/2, and components (cosJR/2, sinJR/2) of AC states (19.1.20c-d).
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Fig. 19.1.6  AC Stark eigensolution geometry. Rabi rate r=(a) 1.2, (b) 0.4.
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Problems for Chapter 19.

Jailhouse Rock’round the Clock(again)

19.1.1 In Problem 18.3.1 (Jailhouse Rock’n Roll) prisoner-M is in the infinite-well maximum-security

prison of Chapter 12 suffering from an Earthquake (caused perhaps by a heavy-metal rock band) that seems

to go on forever. M remains in any of its eigenstates only in the absence of perturbations. But now the

prison floor tilt angle varies: f= flimit sin(wrockt) giving Vrock’n roll(x) of Problem 18.1.1. Using only the first

term in Vrock’n roll(x), discuss transition from the ground state |e1Ò to |e2Ò stimulated by frequency wrock of

amplitude flimit =p/10. At first assume no other levels participate, then estimate possible “leakage.”.

(a) wrock = e1 (=1 in theorist h=1 units)

(b) wrock = 2e1.

(c) wrock = 3e1..

(d) wrock = 4e1...

In each case plot the resulting Rabi-Spin S-vector and its driving crank WWWW-vector. Indicate on a plot like Fig.

19.1.6 the dressed eigenstates and the maximum transition amplitude.




