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The most prevalent example of harmonic oscillator systems are electromagnetic fields, that

is, light itself. Light is the genesis of Einstein-Planck quantum theory, and as shown in Unit 2,

the putative source of relativity and quantum matter. A single plane em-wave mode is a 2D

harmonic oscillator with two orthogonal polarization directions as described in Unit 1. So also

is a single mode of a microwave cavity described by classical models in Unit 2 and by

semi-classical models of light-matter interaction introduced in Unit 6. In this Unit 7 the light-

matter interactions are extended to allow each protagonist, matter and light, to exhibit its

quantum wave behavior in concert  with the other.
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22.1  QUANTUM ELECTROMAGETIC FIELDS AND TRANSITIONS
The fully quantum-mechanical treatment of electromagnetic spectral transitions will be given now. It

begins by converting the classical em field equations to harmonic oscillator equations for which the

quantum states are well known.

A linearly polarized plane wave may be described by the following classical vector potential

derived after (17.1.12) in Unit 6.

                                             ( )+= ta rke  A
1

sin2  . (22.1.1a)

This gives the following em fields (We add later the nonradiative or static field =E ):
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(22.1.1b)

The electric E-polarization vector at zero phase is along unit vector e1:
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= . (22.1.1c)

At the same time the magnetic B-polarization vector is along a unit vector b1=e2, which is orthogonal to e1

and wave vector k:

                                     B0b1 = B0 k e1( ) = e2 2 a c Let: k = c( ) (22.1.1d)

In preparation for a quantum-mechanical theory we shall rewrite the vector potential A as follows:
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where the complex phasor amplitude a = ak,1 is given by

                                                            .1,
1,1,

ki

kk
eaia = (22.1.2b)

This sets us up to make classical canonical phase-space coordinates (a, a*) for the field and, eventually,

the quantum field operators (a,  a† ) .

It is instructive to calculate the magnitude of the phasor for one quantum of em action. In other

words, we need the magnitude of the vector potential for a wave which contains one "photon" in a cavity

of volume V. The time averaged em field energy <U>V for a plane wave in volume V follows using

2

12
cos =t . Average wave energy of E and B fields are equal, yet we think of B as the lesser field.
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We relate this to the Einstein-Planck energy-frequency relation 
 

U V = n( )  for n=1 photon.
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                (for one (n=1) photon). (22.1.4)

This is the "photon unit" of quantum field A. Note that it is an inverse root function of frequency, which

in turn is proportional to the magnitude k of wave vector k through the vacuum dispersion relation

00
µkck == . Again, note that E and B contribute equally in (22.1.3).

a.   Classical  Electromagnetic Fields and Operators
To completely describe an electromagnetic field in a box or "cavity" we need one phasor term like (22.1.2)

for every possible value of k and for each choice e1 or e2 of polarization orthogonal to k. The complete

expression for the classical A is a sum over the possible modes:

      A = ak1e1 + ak2e2( )ei k r t( )
+ c.c.

k
= ak e e

i k r t( )
+ ak

* e e
i k r t( )

=1

2

k
. (22.1.5a)

Here the k vector satisfies box boundary conditions, that is, periodic conditions .
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We let L be the length of each side of a cubic box. An A time derivative gives electric E field.

                                    E =
A
t
= iak e e

i k r t( ) iak
* e e

i k r t( )

k
. (22.1.5c)

An A curl gives electric field. magnetic B field.

                                   B = A = iak kb e
i k r t( ) iak

* kb e
i k r t( )

k
, (22.1.5d)

Where unit vector k/ekb =  is orthogonal to k and E-polarization unit vector e.

Classical Phasor Energy Relations  

The classical Hamiltonian is a volume V integral of energy density (22.1.3). The electric contribution is
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This simplifies if we use wave and polarization normalization conditions:
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The magnetic energy =
0

3
2urdVU

B
BB  is like (22.1.6) if we do the following substitutions.
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After integration the cross terms have the opposite sign as they did in (22.1.6bv). We get 2
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(22.1.8)

The second line uses the optical dispersion relation.

                                                      ( )
00

2222 µkkc == (22.1.9)

A change of sign makes the electric cross-terms in (22.1.7) cancel the magnetic ones in (22.1.8). Their sum

is then just a sum of elementary mode energy density values (22.1.3). That simple formula leads to the

basic Hamiltonian needed to set up quantum field theory in terms of quantum oscilators.
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Each k and polarization ek,  labeled mode is described by a classical complex phasor variable ak, .

The real and imaginary parts of ak,  can be treated as classical position Qk,  and momentum Pk,  of an

oscillator of unit mass as described in Chapter 20 in close analogy is to the 2-dimensional ABCD oscillator

variables (X , P ) defined by (10.1.1).

Classical Field Oscillator Variables   

Let us factor the phasor expression for field energy as follows so it becomes 2N dimensional oscillator

energy.
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Note that vacuum dispersion frequency is a linear function =c·k of k, but may be a non-linear function

for light-matter waves (polarons) in solids. The canonical phase space variables are
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The inverse of the foregoing gives the original phasor variables and their conjugates in terms of P's and Q's:
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The cavity energy UV in (22.1.11) shall be the classical electromagnetic field Hamiltonian function

H = H(Q,P). H describes a set of independent harmonic oscillators. To obtain a quantum field theory we

make these into quantum oscillators. The situation is very similar to molecular or solid state vibration

problems in which classical normal modes are quantized to give "phonons" or "polarons."
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b. Quantum Field Operators    
Oscillator ladder operations a and a† are defined by (20.2.1) in terms of coordinate and momentum

operators of a mass-M particle. For each (k, ) mode this definition, with M=1, becomes the following.

                                              ( )
kkk PQa i+=

2
, (22.1.14a)

                                              ( )
kk

†

k PQa i=
2

, (22.1.14b)

Here boldface notation Qk_ and Pk_ indicates the quantum operators that correspond to the classical phase

variables Qk_ and Pk_, respectively.

By comparing (22.1.14) with (22.1.13) we note that the ladder operators are proportional to

whatever operator would correspond to the classical phasor amplitude. So with correspondence Qk  with

Qk_ and Pk_ with Pk_ we have the following phasor correspondence relations:
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(22.1.15)

The proportionality or scale factor in (22.1.15) is just the “photon amplitude” derived in (22.1.4). Note

that coordinate and momentum operators are observables and are self-conjugate (Q = Q† and P = P†). The

phasor operator a is a complex combination of observables and thus not a self-conjugate observable itself.

The oscillator Hamiltonian operator for the quantum field is the same form as (20.2.4), namely,
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k
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2( ). (22.1.16)

This is the same for the classical energy (8.5.10) or (22.1.11) except for the extra 
 

k , 2  terms which are

each (k, ) mode's quantum zero-point energy. Number operator ( k

†
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.1

,11

,1

,11

''''''''

''''''''

''''

''''

=

++=

=

++=

kkkkkk

kkkkk

†

k

kkkkkk

kkkkk

†

k

a

a

a

a

nnnnn

nnnnn

nnnnn

nnnnn

(22.1.17)



HarterSoft –LearnIt Unit 7 Quantum Oscillators 22- 7

These relations follow (20.2.13). Here each additional quanta contributes an increase in A amplitude equal

to the scale factor V
0

2  that appears in the correspondence relation (22.1.15).

The quantum A-field operator corresponding to the classical field (22.1.5a) is found by replacing

k
a  and †

ka  according to (22.1.15):

                             

 

A =
2 0 V

ak e e
i k r t( )

+ ak
† e e

i k r t( )

k
. (22.1.18)

Time dependence of ladder operators is determined by Bloch equations: [ ]OHO ,=i  [Recall (10.5.12)]:

                    

 

i ak = H,ak                            i ak
†

= H,ak
†

= ak                                    = ak
†

Here we use the a†a form (22.1.16) of the field Hamiltonian and the N-dimensional commutation

relation (21.1.5) that is repeated in the following [Recall also (20.2.3)]:

                                                  ak ,ak ' '
†

= k,k ' , '1. (22.1.19)

According to the foregoing a  equations the ladder operators have the following time-dependent phases:

                            ak = ak (0)ei t ,                           ak = ak
† (0)e i t

The phases cancel time factors in (22.1.18) to give a time-independent field operator.

                                  

 

A =
2 0 Vk

ak 0( )eik r
+ ak

† 0( )e ik r e (22.1.20a)

The electric and magnetic quantum field operators follow from (22.1.15).
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2 0 Vk

i ak 0( )eik r i ak
† 0( )e ik r e (22.1.20b)

                                

 

B =
2 0 Vk

ikak 0( )eik r ikak
† 0( )e ik r b (22.1.20c)

When atoms are much smaller than the wavelength k2=  of the radiation, the fields can be

simplified by the dipole approximation 1
rki

e .
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k
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k
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B
2 0 Vk

ik ak ak
† b . (22.1.20f)

Note also the simple connection between the approximate A and E and the canonical field coordinates Qk_

and momenta Pk_ which follows from (22.1.14).

c. Electromagnetic Quantum States and Atomic Transitions
Consider an atom coupled to an electromagnetic cavity. Suppose this system starts in a state in which the

atomic state is s  and all the photon numbers s
n
k

 are definitely known. We consider some of the

possible final states and their probabilities as a function of time.

The states of the whole system at the start and finish will be labeled S  and F , respectively.

The starting state S  is a ket-ket product of atomic s  and radiation ss
nn

''kk
 states:

                                                 ss
nnsS

''kk
=

The final state is written in a similar way:

                                                  ff nnfF
''kk

=

One may picture the states by imagining atomic and electromagnetic levels as sketched in Fig.

22.1.1. A typical transition that conserves energy (more or less) can be imagined as going from the state on

one side of the figure to the other. There we imagine that the atom jumps up from level s  to f  while

simultaneously one mode number jumps down one level. This is an atomic absorption process. (The atom

appears to swallow a photon.) If this is reversed, or if the atom jumps down from level s  to 'f  while a

mode number jumps up, the process is called an emission. (The atom appears to spit out a photon.) As

we will see, these two processes are usually the most likely ones.

The derivation of the probabilities for quantum field atomic transitions of the type shown in Fig.

22.1.1 are given now. This derivation uses the first-order perturbation formula that only involves creating

or destroying one photon. Higher Nth-order processes involve products of the 1st-order factors discussed

below and are called N-photon processes for that reason.
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Fig.  22.1.1   Atom-field energy levels for initial and final states in an atomic absorption process involving

a single photon from a resonant electromagnetic field mode.

The 1st-order perturbation results of (18.2.5) involve integral terms that is a spectral functions S( ,t) .

    
 

cF
(1) t( ) = FS +

1

i
dt10

t ei FW ti F H1 S = FS +
1

i
S FS ,t( ) F H1 S  where:  S ,t( ) = 2eit 2 sin t 2( )

          (22.1.21)

The spectral function is plotted Fig. 18.2.1. Here its detuning parameter  includes the difference of both

the atomic and radiation energy.

                        = FS F S = f + nk
f

+ 1
2( ) k

k
s + nk

s
+ 1

2( ) k
k

. (22.1.22)

For the absorption process depicted in Fig.  22.1.1 the mode number has gone down one step for the (k, )

mode nk
f
= nk

s 1  while the atom went up. Other quanta stay the same, so the detuning is

                                                     = f s k = fs k .

Zero detuning means having a mode whose frequency k  matches the atomic transition frequency fs, just

like the semi-classical definition (18.2.5g) for absorption resonance. (Compare it to the  above.)

Now we see some important differences between quantum field theory calculations and semi-

classical ones. For one thing, if you really insist on counting every photon, then the absorption and

emission processes become quite distinct.

Single-Mode Atomic Dipole Transitions    

A 1st-order S to F transition probability 
2

F
c  obtained follows from (22.1.21) assuming S  F.

                                           

 

P
F S

= cF
2
= F HI S

2 sin2 t 2( )
2 2( )

2
. (22.1.23)

We now evaluate the matrix element of the E·r interaction operator in (17.1.20)
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HI = qE r q
2 0 Vk

i ak i ak
† e r (22.1.24)

The quantized E field (22.1.20b) is used with the dipole approximation 1
rki

e . The matrix element

consists of a field part followed by the atomic matrix elements f r s = ( f x s , f  y s , f  z s ).

                   

 

F HI S = q nk
f iak

† nk
s nk

f iak nk
s

k 2e0V
e f r s .

The field part of this matrix element is quite selective. If more than one mode changes its photon

number, the whole thing is zero. (Recall that 
'

'
nn

nn = .) The only possible nonzero elements occur

when a single mode goes up or down by exactly one photon. The two possible types of nonzero matrix

elements are listed in the following:

     

 

F H1 S = i nk
s

+1 + 0
2 0V

qe rfs if all nf = ns except 1+=
sf nn
kk

  (1 photon emission)

     

 

F H1 S = 0 i nk
s

2 0V
qe rfs      if all nf = ns except 1=

sf nn
kk

  (1 photon absorption)

         F H1 S =  0,        otherwise.                                    (22.1.25)

Field matrix elements follow from (22.1.17). Atomic dipole expectation value is denoted by r
fs
= f r s .

If matrix element (22.1.25) allows any transition between S  and F  it is an emission or else an

absorption but not both. If it allows one, then the probability for the other is zero. This is very different

from the semi-classical transition amplitude (18.2.5) or (18.3.2) in which both processes would

simultaneously have non-vanishing probability. The semi-classical amplitude is a sum of a resonant and a

non-resonant spectral function. The quantum amplitude (22.1.21) has only one spectral function in the cF

expression. Strict photon counting prevents absorption from interfering with emission.

  Multimode Atomic Dipole Transitions   

Suppose we accept (or are forced to accept) any of a set of possible final photon states ranging from state

 
F = f nk 1 nk ' '  in which mode (k, ) lost a photon to state 

 
F ' = f nk nk ' ' 1  in which

mode (k',  ') lost a photon. In each case the atom jumps up from state s  to state f , but here we let it

accept a photon from a range of cavity modes. It is only necessary that the donor modes have nonzero
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photon number and a frequency k  that is close enough to the atomic transition frequency 
f s

=
fs

 so

the spectral function 
2

S  gives a measurable value.

The total probability for the atomic sf  transition will be a sum of probabilities 
 
c

F

2
+ + c

F

2

as though the contribution of each mode is distinct:

                         

 

P
f s

= cF
2
+ + cF

2
= cF

2

k

k' '
=

sin2 t 2( )
2 2( )

2
HI

2

k

k' '
. (22.1.26)

Since we are effectively counting the photons from each mode, the amplitudes 
'FF

cc …  have random

relative phases and interference between them is washed out. Hence the total probability is the sum of

their squares 
2

F
c  instead of the more complicated square of the sum 

2

F
c . (Recall the distinction

between incoherent “peeking” and coherent intrferrence in equations (1.3.10) and (1.3.11) of Ch. 1.)

The sum over mode wave vector k can be converted to an integral over k = [k] or over mode

frequency ck= . According to (22.1.5b) the k sum is a sum over integer values of photon number

,,2,12 …== Lkn  that converts to the following integral.

                         =

k
nx ny nz dkx
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kx

dky
nznynx
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ky
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nz

kz

=
L

2

3

dkx dky dkz .

Here the sum is converted to an integral over Cartesian k components using

                        nx = 1=
L

2
kx , ny = 1=

L

2
ky , ny = 1=

L

2
kz .

This sum can then be converted to a polar coordinate integral in k space.

                        =
k

L

2

3

d3k =
V

2( )
3

d k k2dk =
V

2( )
3

d k d k sin k (22.1.27)

 k , k( )  are azimuth and polar angles of k, d k is the incremental solid angle in k-space, and V = L3 is the

cavity volume. This reduces the probability sum (22.1.26) to an integral over solid angle and k or =ck.

      

 

P
f s

=
V
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3

d k k2
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F

2
=

V
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3
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d c
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=
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(22.1.28)
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Now we approximate the integral of the spectral function ( )
2

, tS  by assuming that time t is large

enough that 
2

S  becomes very narrow. (Recall Fig.  18.2.2.) Then most of the probability comes from the

neighborhood around zero detuning (  = 0). We may set k =  = fs and put all other functions of

frequency outside the integral.

 

Pf s
V

2( )
3

d k

2

2c3
HI

2
d0

sin2 t s( )
2 2( )

2

The area under the spectral function is simply the elapsed time multiplied by 2  as was noted after the

Fermi Golden Rule equation (18.7.10).

                                            

 

Pf s d k
V

2( )
3 2c3

HI

2
2 t (22.1.29)

The peak of the spectral function at  = 0 goes up quadratically with time, but the area only increases

linearly. The width of the peak decreases linearly with time according to the uncertainty relation (18.2.9).

As a result the time derivative or rate sfsf PR =  of the transition probability is a constant in this

approximation, the Fermi golden rule of constant transition rates. (Recall (18.2.11).)

                                         ( ) ,
k 2

2 2

Ifssf HdR (22.1.30a)

Here the spectral density of modes ( ) is defined.

                                                            ( ) =
V 2

2( )
3

c3
. (22.1.30b)

The absorption dipole matrix element (22.1.25) gives the following rate if the photon number in

near-resonant modes is nn
s

k
:

 

Rf s = n
V 2

2( )
3

c3

2
2 2 0V

q2 d k e rfs

2

= n
3

c3

q2

4 o

d k e1 rfs

2
+ e2 rfs

2
.

The polarization sum and integral is simplified by using the vector relation

r
2
= e1 r

2
+ e2 r

2
+ k̂ r

2
.
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If we let the induced dipole r = rfs be along the polar z axis, then 
k

rr k cosˆ
fsfs = . The sum and integral

is then easily evaluated:

              

d k e  rfs

2
= d k e1  rfs

2
+ e2  rfs

2
+ k̂  rfs

2
k̂  rfs

2

                              = d k 1 cos2
k( ) rfs

2
= d d sin3 rfs

2
=

8

3
rfs

2
.

The resulting absorption rate is

                                       
 

Rf s (absorption) nA = n
4 3

3 c3
rfs

2
= B . (22.1.31)

The corresponding emission rate is similar except (n + 1) replaces n in the matrix element (22.1.25):

                                       Rf s emission( ) = n +1( )A = A+ B (22.1.32a)

The first term is the famous Einstein-A-coefficient or spontaneous decay rate of an excited atom in a

vacuum (n = 0):

                                                       

 

A =
4 3

3 c3

q2

4 0

 rfs

2
. (22.1.32b)

The second term is the Einstein-B-coefficient, which is the stimulated decay rate induced by the presence

of n resonant photons:

                                                       .r 
2

0

2

3

3

43

4

fs

q

c
nnAB == (22.1.32c)

B is the only contribution to the absorption rate (22.1.31) since spontaneous excitation is impossible in

this approximation.

c.  "Impotence" of Photon Number States

We noted that the first-order transition amplitude ( )1
F
c  in (22.1.21) could only have an absorption

term or else an emission term but not both. This is because the quantum field transition matrix element

(22.1.25) cannot be nonzero for both processes at once. We also noted that the semi-classical transition

amplitude (18.2.5) does have terms from both processes. In fact, the derivation of resonant excitation of

the oscillator expectation value <x> depends upon the precise interference between these two terms to

reproduce the classical result. [Recall comparison in (18.3.5).] At first this might seem to be a case where

quantum theory is failing to approach the correct classical limit. We need to resolve this issue.
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The calculation of the atomic position expectation value x  using quantum field number

states is quite different and so are the results. The perturbed atom-field state is

= S + e i FStcF F
F S

 ,

where the first-order approximation to the amplitude is

 

cF
1( )
= FS +

1

i
dt1e

i
FS

t
F HI S0

t  ,

according to the basic time-dependent perturbation formulas (18.2.5). The matrix element is given by

matrix elements (22.1.25) between the initial state 
field

s

k

s

katom
= nnsS  and final state

field

f

k

f

katom
= nnfF . The atom part only requires that the induced dipole moment qsfq fs rr

be nonzero. The field part is more restrictive; it requires that exactly one mode gain or lose a single

photon. The result is a perturbed state of the form

 

= S = s nk
s nk

s
+ dk f( ) f nk

s 1 nk
s

+

                           + dk f( ) f nk
s nk

s 1 +

                           + dk
e f( ) f nk

s
+1 nk

s
+

                           + dk
e f( ) f nk

s nk
s

+1 + ,

Here the transition amplitude to a higher state f  due to absorption from mode (k, ) is

 

dk
a f( ) =

e i Ft

dt10
t eit1 wk nk +1 e rf s                = fs k( )

The transition amplitude to a lower state f  due to emission from mode (k, ) is

 

dk
e f( ) =

e i Ft

dt10
t eit1 wk nk +1 e rf s                = fs + k( )

In each case wk is the scale factor (22.1.4) times frequency  and charge q.

V
qw

k

kk

0
2

=
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If s  is the atomic ground state, the emission terms with de amplitudes are nonexistent. However,

there may be several atomic states …,, ff  that can be reached by near-resonant absorption. The same

goes for state reached by emission if s  is an excited state.

Now the expectation value x  can be evaluated. We write the bra and ket on the left and top,

respective, of the box in the following, and we collect the scalar products inside:

 

x =

s nk
s

+ dk
a f nk

s 1 +

               nk
a s x s x s 1 + dk

a s x f 0 +

+dk
* nk

s 1 f x dk
* f x s 0 + dk

2
f x f 1 +

The sum includes only one field mode and one higher atomic state f . This is enough to see that all the

results must be zero if the atomic states have definite parity sxfsxs == 0 . The orthogonality

nk nk 1 = 0( )  of the photon states kills the possibility of any contribution from the induced moment

matrix elements fxs  or sxf , however large they may be.

So photon number states are "impotent"; they cannot create a coherent excitation of an atom. This

is consistent with the idea that classical phase is completely uncertain or random for a field oscillator

eigenstate that has probability distributed more or less evenly over its phase space. To have a well-defined

phase we need a non-stationary coherent oscillator state k  for a mode (k, ) instead of a stationary

eigenstate 
k
n . This will give a wave packet in Qk , Pk( )  phase space or (A, E) space which may have

well-defined phase as shown in the Sec. 20.3.

Photon number states may be "impotent" but they are not powerless. They can create large

fluctuations in expectation x2  even though x  is identically zero. From the foregoing

calculation we get the following:

                                          
 

x2
= s x2 s + dk

a
2

f x2 f + . (22.1.33)

The expectation of x2 is proportional to the photon intensity _, the square 
2

fsr  of the atomic induced

moment, and the mean square x for the final state f .
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d   Coherent Radiation States    
A much better description of a laser-cavity mode includes the nonstationary coherent or wave packet

states k . According to (20.3.25) these may be defined as follows in terms of photon number states

k
n  for a single-cavity mode (k, ):

                                     

 

k = e k

2
/2

k( )
nk

nk
nk 00 / nk ! . (22.1.34)

The complex parameter k  is a field phasor expectation value and a quasi-eigenvalue of operator .

                           
 
ak k = k k ,              k  ak

†
=   k  k

*  . (22.1.35)

Recall (20.3.25c). Here only the (k, ) mode is excited and all others are in their ground or vacuum states.

The A-field expectation value should equal the classical expression (22.1.2a) we began with:

 

k A k =
2 0 V k ak k + k ak

†
k e

                       =
2 0 V k + k

* e = k e i t
+ k

* ei t e

In the last line is the classical value. Note that the dipole approximation 1
rki

e  is used here. The _ has

the necessary ti
e  time dependence noted in (20.3.29). This gives the non-stationary phase packet

motion described by (20.3.34). The relation between k and the classical amplitude a involves the phasor

and the quantum scale (22.1.4):

 
k = ak e i k t 2 0 V

.

The k  expectation value of the –qE • r interaction in a coherent state k  then becomes equal

to the classical value quoted in (8.4.35a):

k HI k = i kq  e • r k e i t
k
* ei t( ).

It has the positive and negative frequency parts needed to coherently excite an atom.

This might lead you to believe that a coherent quantum field can reproduce the effect on an atom of

a classical wave. Indeed, for very high k  and short enough time the effect of the two are nearly the same.

However, eventually the coherent wave produces dephasing and rephrasing effects that are quite

remarkable. These coherent decays and "revivals" are discussed in works listed at the end of this chapter.

A model of coherent QED by Jaynes and Cummings is discussed next.
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Do low-quantum fields make good coordinate frames?

In the meantime, it is interesting to speculate on the ability of quantum fields, in particular, low -

quantum fields, to make the kind of space-time coordinate grids that were used to develop the quantum

theory and relativity in Unit 2.

A fundamental laser mode in a 0.25µm cubic cavity such as the E-wave sketched in one half-wave

strip of Fig. 22.1.2(c), has green light with  = 4 10 19 Joule  or 2.5eV per photon. The average photon

number is thus n =
2
= 1010  for a laser with mean energy 

 
E = U V = n = 4.0 nanoJ  in a volume V = (4

1 µm)3 .

That amounts to a very intense micro laser! Photon number uncertainty is n = = 105 in a coherent state

(22.1.34) and it varies inversely to its phase uncertainty which here is a tiny value  = / 3 10 5 .

Amplitude expectation value n A n  is zero for n states due to incoherence of phase, but number

value 
 

n ak
†
ak n = n  is exact as is proper frequency n  due to the phase factor (e i t )n of 

 
(a1

† )n . For any

volume V,  these (n = 1010 ) -photons have total energy E = n  or mass M = E / c2
= 10 25 kg  equal to that of

59.79 H-atoms, but it’s not “real” mass. (Real e + e  pair-creation means raising from 600Thz to mec
2 / h

or 100MegaThz.) Nevertheless, “real” 10 25 kg and an “optical”10 25 kg share a hyperbola 1010 quanta above

the n=1 hyperbola in Fig. 5.1.1. Lorentz symmetry demands that.

A coherent-state = 105  also has a mass M = 10 25 kg  but with uncertainty M = 10 30 kg . Its phase

uncertainty 3 10 5  is low enough to plot grids like Fig. 22.1.2(c) or Fig. 22.1.3(a). A low-  wave state such

as is used in Fig. 22.1.3(c) has too few photon counts-per-grid to plot sharply. Fig. 22.1.3(d) simulates an

n-photon eigenstate n . It is a wash even for high n since n = 0  has = .

However, an incoherent space-time “baseball diamond” grid like Fig. 22.1.2(d) is less sensitive to

lack of phase coherence and so pure-n photon number states could form diamonds since the coherent

interference required for the Cartesian grid of Fig. 22.1.2(c) is not required for a pulse wave diamond grid.

So, do low-quantum fields make good coordinate frames? The answer, you see, is yes or no!
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Fig. 22.1.2 Simulated space time wave coordinate grids  (a-c) 600Thz Continuous Wave (CW) Cartesian per-space-

time (a) and space-time. (b-d) Pulse wave (CW) light waves in per-space-time (b) and space-time (d).

(a) |α=105〉 (b) |α=103〉 (c) |α=101〉 (d) |n=1010〉
Quantum field coherent α-states Photon number n-states

Fig. 22.1.3  Simulated spacetime photon counts for coherent (a-c) and photon-number states (d).
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22.2 SPECTRA OF ATOMS IN LASER CAVITY
When atoms interact strongly or resonantly with an electromagnetic field, the distinction between the field

and the atom is blurred. Observer and the observed become a single entity that is more than just a sum of

its parts. It is as though the atom had become part of a molecule in which the excited levels involve

excitation of all the constituent parts. Intra-cavity atomic theory is sometimes called Cavity Quantum

Electrodynamics or CQED co-opting the more famous acronym QED for quantum field theory.

An atom interacting strongly with a single mode of a simple cavity is described by what is called

the Jaynes-Cummings model. Here we will give a brief qualitative sketch of states and levels of this model.

This is an important model for beginning to understand spectroscopic effects of strong laser fields. It is

also a simple solvable example of an atom interacting with something that has a multitude of states. This is

also the kind of problem one encounters when atomic motions go together to make a molecular rotation or

vibration spectrum that are the subject of Unit 8.

a. Jaynes-Cummings Hamiltonian
In a static electric field the two-level atomic system Hamiltonian has the following representation in the

basis of atomic eigenstates given by (10.3.3) in Unit 3 or (19.1.6) in Unit 6:

                   Hatom = H
1 0

0 1
+ S

1 0

0 1
pE

0 1

1 0
= H1+ S z pE x . (22.2.1a)

The electric field-dipole potential energy factor pE is folded into a Rabi coefficient in (19.1.7).

                                                           zpEr = (22.2.1b)

An oscillating electric field Hamiltonian is transformed into rotating-wave form (19.1.10).

                                    HRW =
2

1 0

0 1
+

r

2

0 1

1 0
=

2 z +
r

2 x . (22.2.2a)

Detuning factor  is the difference between the atomic transition angular frequency  and the angular

frequency  of the stimulating laser.

                                                                 = (22.2.2b)
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In preparation for using a quantum field we need to separate the atomic and radiative contributions

to the Hamiltonian. The terms that involve the laser frequency  have been collected into the first simple

term labeled Hfield. The atom’s two levels Hatom  and their interaction Hinteraction come next.

                    

HRW =
0 0

0 1

+

2

1 0

0 1
+

1 0

0 0
+

r

2

0 1

1 0

= Hfield +
2 2 +1( ) +

r

2 x

= Hfield + Hatom        + Hinteraction

In the Jaynes-Cummings model the classical electric field is replaced by an expression using its

quantized form. However, only one mode of the field is considered and only the dipole terms (21.1.20e)

are used. Also, the unit matrix term dropped. The simplified Hamiltonian is as follows.

                                     

HJC = Hfield + Hatom        + Hinteraction

       = a†a +
2 z +1( ) + i

g

2
a† a( ) x

(22.2.3a)

The constant g is the Rabi factor that would correspond to a one-photon laser field. [Recall (22.1.4).]

                                                   
12

2
0

zq

V
g = (22.2.3b)

The field amplitude for an N-photon field is proportional to N , so we have the following relation

between the semiclassical and quantum interaction constant.

                                                              Ngr = (22.2.3c

We let ak, a  since only one laser cavity mode (k ) of frequency  =  is being considered. By

expressing x in terms of spinor raising and lowering operators, x = ( + + -), this becomes

                                 HJC = a†a +
2 z +1( ) + i

g

2
a† a( ) +

+( ) (22.2.4)

A final approximation to the model keeps only the interaction term a†  for a photon created as the atom

drops from the upper-( )-level 2 to the lower-( )-level 1 and the term a
+

that does the reverse.

                                 HJC = a†a +
2 z +1( ) + i

g

2
a† a

+( ) (22.2.5)
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Let us apply the Hamiltonian (22.2.5) in turn to the radiation-atom product states with N = 0, 1, 2,

. . . photons that we label {
 
0 , 0 , 1 , 1 , 2 , 2 ,…}. The following state operations

involve operations 
 
a n = n n 1  and 

 
a† n = n +1 n +1  and spin operations = , and so on.

HJCM 0 = 0 + 0( ) 0 + i
g

2
0 0( ),

HJCM 0 = 0 +( ) 0 + i
g

2
1 1 0( ),

HJCM 1 = 1 + 0( ) 1 + i
g

2
0 1 0( ),

HJCM 1 = 1 +( ) 1 + i
g

2
2 2 0( ),

HJCM 2 = 2 + 0( ) 2 + i
g

2
0 2 1( ),

HJCM 2 = 2 +( ) 2 + i
g

2
3 3 0( ). (22.2.6)

An infinite series of two-by-two matrices represents HJCM in this basis.

                     

 

0 0 1 1 2 …

0 0 + 0

0 0 +
ig 1

2

1
ig 1

2
1 +

1 1 +
ig 2

2

2
ig 2

2
2 + 0

(22.2.7)

The general form of each two-by-two matrix is the following:

                            hJCM =

N 1 N 1

N 1 N 1 +
ig N

2

N
ig N

2
N + 0

(22.2.8)

In the classical limit of large N the two-by-two matrix begins to look something like the semi-

classical matrix (22.2.2a). We can write the two-by-two part of the Hamiltonian as follows:
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hJCM = N 1( )
1 0

0 1
+

0 0

0 1
+

0 i

i 1

= N 1( ) +
+

2

1 0

0 1
+

2

1 0

0 1
+

g N

2

0 i

i 0

= N 1( ) +
+

2

1 0

0 1
+

2

1 0

0 1
+

r

2

0 i

i 0

= N 1( ) +
+

2
1            +

2 z          +
r

2 y

(22.2.9)

N-photon-Rabi-factor r = g N  reappears on 
y
 due to a choice of phase for field operators. The physics

is unchanged if we use a modified JCM Hamiltonian that uses 
x
 instead of 

y
.

HJC = a†a +
2 z +1( ) +

g

2
a†

+ a
+( )

This lets us use semi-classical dressed eigensolutions (19.1.20) to real two-by-two matrices.

hJCM =

N 1 N

N 1 N 1( ) +
g N

2

N
g N

2
N

= N 1+

r

2
r

2
0

= N 1( ) +
+

2
1+ 2

r

2
r

2 2

= N 1( ) +
+

2
1+

2 z +
r

2 x

(22.2.10)

These matrices have the same eigenvectors as the semi-classical matrices. The only difference is that the

Rabi factor r depends upon photon number N and there is a level pair for all N greater than zero. The

eigenvalues are the similar, too, except for the unit matrix term that yields a ladder of doublet eigenvalues.

We examine this ladder of levels now.

b. Jaynes-Cummings Eigensolutions
An attempt to picture the dressed eigenlevels is made in Fig.  22.2.1. A column containing stacks of energy

levels is shown for each of three cases of detuning: (a) laser tuned below atomic transition (  >0); (b) at

resonance ( =0), and (c) laser tuned higher ( <0). Recall that the detuning parameter is =  - .

Two stacks of horizontal lines on each side of the (a), (b), and (c) columns in Fig.  22.2.1 indicate

what the levels would be without any interaction between atom and field ( 0== Ngr ). An N-photon

level in which the atom is in the first 1 =  or second 2 =  state is labeled 1, N  or 2, N ,
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respectively. Each of these levels for N > 0 is connected to a pair of lines in the center of the column that

are shifted up and down by ± 2 . The quantity  is the AC-Stark shift discussed in Section 19.1 (Recall

(19.1.20a)). The shifted lines are the “dressed” eigenlevels with interaction turned on r = g N > 0( ) . The

lines that connect the shorter lines to the zero-field levels indicate the relative the greater of the two

amplitudes (sin /2 or cos /2) of the zero-field states in each the dressed eigenstates corresponding to that

level. Recall Eqs. (19.1.20c) and (19.1.20d).

Below resonance (  > 0) the Hamiltonian rotation vector  makes an acute angle (  < /2) with the

z-axis. The lower dressed eigenstate 1D N +1, N  indicated at the top left-hand side of Fig.  22.2.1 is mostly

composed of the atom-field product state 1, N +1 , while the higher-dressed state 2D N +1, N  is mostly

composed of 2, N .

As the detuning approaches resonance ( =0), the zero-field levels get lined up, the AC-shifts reach

their maximum, and the rotation angle  approaches /2. One may use the diagrams from Fig. 19.1.6 to

quantify the variation. However, caution should be used since the Rabi parameter r = g N  is here a

function of N. In other words, the Rabi parameter, which was a constant in the semi-classical theory, is

now dependent upon what level you are on. It increases with the laser mode electric field amplitude,

which is proportional to the root N  of the photon number.

At resonance ( =0) the rotation angle is  =  /2. Then the Hamiltonian rotation vector  makes an

angle of /2 with the z-axis and has its minimum magnitude of = r , which is the Rabi frequency. This

was shown in Fig.  19.1.3c. The resonance values for the dressed eigenstate amplitudes are sin /2 = 1/ 2

and cos /2 = 1/ 2 . This corresponds to 50-50 mixtures of the atom-field product states 1, N +1  and 2, N

in the dressed eigenstates 1D N +1, N  and 2D N +1, N .

Above resonance (  < 0) the Hamiltonian rotation vector  makes an obtuse angle (  > /2) with

the z-axis. Now the lower-dressed eigenstate 1D N +1, N  is mostly composed of 2, N , while the upper-

dressed state 2D N +1, N  is mostly composed of 1, N +1 , as shown in the upper right-hand side of the

Fig.  22.2.1.
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Fig.  22.2.1 Level structure of 2-level atom and 1-mode cavity showing elementary transition processes of

fluorescence, Rayleigh scattering, and three-photo coherent Stokes-Raman scattering (CSRS). Transitions

are between levels belonging to dressed eigenstates.

c. Transitions in the Jaynes-Cummings Model

The diagram of levels in Fig.  22.2.1 involves just one L =  mode interacting with the two-level atom.

We have ignored all the other field mode levels such as were sketched in Fig.  22.1.1. We have just

concentrated on loading photons into one laser cavity mode whose frequency L =  is being tuned close

to the value  = f - s of the atomic transition.
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However, if these other modes are off-resonance by enough or only have one or two photons, one

can treat them using perturbation theory as was discussed in Section 22.1.b. Transition rates between the

dressed states of a laser-driven atom can be derived using the Fermi golden rule (22.1.30).

Rayleigh scattering and fluoresence

Some of the commonly observed transitions are indicated by vertical arrows in the Fig.  22.2.1.

The strongest transitions involved the so-called Rayleigh Scattering processes such as 1, N +1   1, N  for

N = 0, 1, 2, … or 2, N   2, N 1  for N = 1, 2, …, where only the photon number changes and the system

emits one of its laser-mode photons into an external mode of the same frequency L . These transitions

yield light with the frequency of the laser just like classical Rayleigh scattered light .

The other transitions are more complicated. One called Fluorescence is a transition between

dressed states which involve fundamental transitions such as 2, N   1, N  or 2, N 1  and 1, N 1 . The

latter is the major part of the transition indicated by an F  arrow in the upper left-hand side of the figure

since the initial (upper) dressed state 2D N , N 1  is mostly composed of 2, N 1  and 1D N , N 1  is

mostly composed of 1, N 1  in the final (lower) dressed state.

The fluorescence transition angular frequency is the difference between the initial and final dressed

eigenlevels connected by the F  arrow. The initial and final eigenvalues are

D 2, N , N 1( ) = N L + + 2,

D 1, N 1, N 2( ) = N 1( ) L 2.

The difference is the fluorescence transition frequency,

                                            F = L + + = L +
2
+ r2 . (22.2.11)

For small Rabi factor (r<< ) or large detuning ( >>r) it becomes the atomic transition frequency.

F L + = (22.2.12)

This transition drops the atom from its upper state 2  to its lower state 1  but takes no photons out of

the cavity mode since N stays constant. It emits one photon into an external mode of frequency F.

Coherent Stokes Raman scattering

Another transition called the three-photon process or Coherent Stokes Raman Scattering (CSRS) is

a transition between dressed states, which mostly involves transitions of the type 1, N   2, N 2 . The

latter is the major part of the transition indicated by an 3 arrow in the upper left-hand side of the figure
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since the initial (upper) dressed state 1D N , N 1  is mostly composed of 1, N , and 2D N 1, N 2  is

mostly composed of 2, N 2  in the final (lower) dressed state.

The CSRS transition angular frequency is the difference between the initial and final dressed

eigenlevels connected by the 3 arrow. The initial and final eigenvalues are

( )

( ) ( ) .212,1,2

,21,,1

+=

=

L

D

L

D

NNN

NNN

The difference is the CSRS transition frequency.

                                   22

3
r

LL
+===

CSRS
(22.2.13)

For small values of the Rabi factor (r << ) or large detuning (r<< ) this becomes

                                     22

3
2 r

LL
+==

CSRS
(22.2.14)

which is the difference between two laser photons and the atomic transition frequency. This transition

raises the atom from its lower state N,1  to its upper state N,2 . It also takes two photons out of the

cavity mode since N decreases by two. It emits one photon into an external mode of frequency 3 , which

is approximately the difference between 2  and the atomic transition frequency .

A direct transition of frequency =+
22
r  between 1,1 NN

D  and 2,12 NN
D  is

forbidden by C2 parity. However, in a system that does not have C2 symmetry it would be possible to

have such a transition as is indicated by the small vertical arrow near the bottom of Fig.  22.2.1(a).

The next Fig. 22.2.2 shows the JTM transitions and their frequency dependence in more detail.
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Fig.  22.2.2  Structure of the Mollow spectrum and its elementary processes of fluorescence, Rayleigh

scattering, and three-photon coherent Stokes-Raman scattering (CSRS).

The three allowed transitions account for the three main spectral components that may be

observed coming out of the sides of a laser atom cavity. It consists of a strong Rayleigh line at L =  and

two sidebands F and 3 as shown in Fig.  22.2.2. The triple-pronged spectral line is called the Mollow

Line Shape. One sideband is centered at F = +  which is approximately +  far from resonance, and

the other is at 3 = - , which is approximately - .

Near resonance at =0 the sidebands will follow AC Stark shift hyperbolic paths given by

(22.2.11) and (22.2.13) rather than simply collapsing upon  at  = 0. The hyperbolic curves in the

semiclassical level diagram in Fig. 19.1.6 are approximate traces of the spectral sidebands for variable

detuning  around resonance. At resonance ( =0) there will still be two sidebands but now they will be
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located at ± r, where r is the Rabi parameter. In general, the sidebands are located at ± , where

+=
22
r  is the frequency of the Rabi precession or crank rotation shown in Fig. 19.1.3.

The sidebands correspond roughly to fluorescence and CSRS processes, respectively. With

positive detuning (  -  =  >0) the upper sideband ( F = +  + ) is due (mostly) to fluorescence

while the lower sideband ( 3  = -   -  is due (mostly) to the three-photon CSRS process. Above

resonance the detuning parameter reverses sign ( -  =  < 0) and the order is reversed. At resonance

( =0) it is not possible to distinguish the two processes since initial states 1, N  and 2, N 1  and

2, N 2  are mixed 50-50 as are the final states 1, N 1  and 2, N 2 .

Below resonance (  > 0) the CSRS 3 photon has lower frequency than the F fluorescence

photon. It also must come earlier in time. The CSRS process pumps the atom from its lower state-1 into

its excited state-2. Only then can it emit a fluorescence photon to put it back into its ground state. Above

resonance (  < 0) the 3 photon from the CSRS process has higher frequency than the fluorescence F

photon. Then the higher frequency sideband comes earlier. These time correlations have been observed.

This concludes our introduction to the recent fundamental developments in laser spectroscopy.

Many details have been left out of this discussion and many new effects will soon be discovered as this

new set of tools becomes more widely used. Perhaps the most important development so far lies in the

way we are coming to think about the observed object (atom or molecule) and the observer’s tool

(radiation). In modern laser spectroscopy the distinction between the observer and the observed has

practically disappeared, and the atom-radiation-cavity becomes a single quantum object.
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ADDITIONAL READING

Discussions of semiclassical quantization and wave-packet dynamics are in the following.

E. J. Heller, J. Chem. Phys., 62, 1544 (1975); J. Chem. Phys., 68, 3891 (1978).

M. J. Davis and E. J. Heller, J. Chem. Phys., 71, 3383 (1979).

S. Y. Lep and E. J. Heller, J. Chem. Phys., 71, 4777 (1979); J. Chem. Phys., 76, 3035 (1982).

D. J. Tannor and E. J. Heller, J. Chem. Phys., 77, 202 (1982).

N. DeLeon and E. J. Heller, J. Chem. Phys., 78, 4005 (1983); J. Chem. Phys., 81, 5957 (1984).

M. B. Blanco and E. J. Heller, J. Chem. Phys., 83, 1143 (1985).

J. R. Reimers and E. J. Heller, J. Chem. Phys., 83, 516 (1985).

N. DeLeon, J. Chem. Phys., 87, 4722 (1987); Comp. Phys. Rep., 8, 321 (1988).

An early paper on action quantization that uses color graphics to approximate quantum wave

fronts is

M. J. Davis and E. J. Heller, J. Chem. Phys., 75, 3916 (1981).

The computer program Color U(2) mentioned at the end of Chapter 7 uses color quantization and

color animation to show the dynamics of quantum wave fronts.

The idea of wave-packet coherent states can be traced back to Schrödinger.

E. Schrödinger, Naturwissenschaften, 14, 664 (1926).

Their introduction in quantum optics is probably due to Glauber.

R. J. Glauber, Phys. Rev., 131, 2766 (1966).

Other approaches to semiclassical quantization are found in the following papers (this is by no

means an exhaustive list of this large and growing field):

I. C. Percival, Adv. Chem. Phys., 36, 1 (1977).

D. W. Noid, M. L. Kosykowski, and R. A. Marcus, Ann. Rev. Phys. Chem., 32, 267 (1981).
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S. A. Rice, Adv. Chem. Phys., 471, 117 (1981).

W. Eastes and R. A. Marcus, J. Chem. Phys., 61, 4301 (1974).

D. W. Noid and R. A. Marcus, J. Chem. Phys., 62, 2119 (1975).

I. C. Percival and N. Pomphrey, Mol. Phys., 31, 97 (1976).

S. Chapman, B. C. Garrett, and W. H. Miller, J. Chem. Phys., 64, 502 (1976).

C. Jaffe and W. P. Reinhardt, J. Chem. Phys., 71, 1862 (1979).

R. T. Swim and J. B. Delos, J. Chem. Phys., 71, 1706 (1979).

R. B. Shirts and W. P. Reinhardt, J. Chem. Phys., 77, 5204 (1982).

C. C. Martens and G. S. Ezra, J. Chem. Phys., 86, 279 (19875).

C. W. Eaker and G. C. Shatz, J. Chem. Phys., 81, 2394 (1984).

W. H. Miller, J. Chem. Phys., 81, 3573 (1984).

References to the original EBK quantization are as follows:

A. Einstein, Dent. Ges. Berlin Verh., 19, 9/10 (1917).

M. L. Brillouin, J. Phys. Paris (Ser. 6), 7, 353 (1926).

J. B. Keller, Ann. Phys. (N.Y.), 4, 180 (1958).

F. Reiche, The Quantum Theory, (Methuen, London, 1922).

A good modern reference to classical, semiclassical, and quantum theory of radiation for

spectroscopy is the following:

C. Cohen-Tannoudiji, J. Dupont-Roc, and G. Grynberg, Photons and Atoms (Wiley Interscience,

New York, 1989).

This discusses the A · P versus E · r perturbations and the Power-Zienau-Wolley transformation. A

simplified discussion and other references are in the following paper:

E. A. Power and T. Thirunamachandran, Ann. J. Phys., 46, 370 (1976).

An early paper which gave a classical transformation between E · r and A · p Hamiltonians is by

Marie Goeppert-Mayer:
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M. Goeppert-Mayer, Ann. Physik (Lpzg.), 9, 273 (1931).

The first paper to give a quantum mechanical transformation of E · r and A · p is by Richards. H. S.

Synder is credited in the paper.

P. I. Richards, Phys. Rev., 73, 254 (1948).

A restricted version of this transformation for the case of a magnetic field constant in space and

time appears in the following paper:

W. E. Lamb, Phys. Rev., 85, 259 (1952).

It was used again in the same restricted context by the following authors:

B. R. Johnson, J. O. Hirschfelder, and K. H. Yang, Rev. Mod. Phys., 55, 109 (1983).

Another discussion of the problem is in the following paper:

J. R. Ackerhalt and P. W. Milonni, J. Opt. Soc. Am., B11, 116 (1984).

For an example of some of the confusion surrounding the A · p interaction see the following paper:

D. H. Kobe, Phys. Rev. Lett., 40, 538 (1978).

Some modern treatments of laser-atom lineshape and two-level atom models are listed below. The

first papers are seminal ones by B. R. Mollow:

B. R. Mollow, Phys. Rev., 188, 1969 (1969); Phys. Rev. A, 2, 76 (1969); Phys. Rev. A, 12, 1919

(1969); Phys. Rev. A, 13, 758 (1969).

A discussion that uses the two-level quasi-spin is by Courtens and Szöke, Phys. Rev. A, 15, 1588

(1977).

The two-level atom is presented as a generalization to classical resonance in the following text:

L. Allen and J. H. Eberly, Optical Resonance and Two-Level Atoms (Wiley Interscience, New York,

1975).

Applications of radiation theory to laser dynamics is the subject of the following book, which also

relates the classical Lorentz model to modern theory:

P. W. Milonni and J. H. Eberly, Lasers (Wiley Interscience, New York, 1988).
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Recent developments of the problem of an isolated atom-cavity system are based upon the

Jaynes-Cummings model.

E. T. Jaynes and F. W. Cummings, Proc. IEEE, 51, 89 (1963).

The phenomenon of “collapse” and “revival” of Jaynes-Cummings solutions is discussed in the

following:

J. H. Eberly, N. B. Narozhny, and J. J. Sanchez-Mondragon, Phys. Rev. Lett., 44, 1323 (1980).

H. J. Yoo, J. J> Sanchez-Mondragon, and J. H. Eberly, Phys. Rep., 118, 259 (1985).

Recent discoveries have been made about the behavior of the Bloch vector during collapse and

revival.

J. Gea-Banacloche, Phys. Rev. Lett., 65, 3385 (1990); Phys. Rev. A, 44, 5913 (1991); Optical

Commun. 88, 531 (1992).

Much of the future work on atoms or molecules in cavities will use so-called driven Jaynes-

Cummings models. Some discussions of these have just been published.

P. Alsing and H. J. Carmichael, Quantum Optics, 3, 13 (1991).

P. Alsing, D. S. Guo and H. J. Carmichael, Phys. Rev. A, 45, 5135 (1992).

Time correlation between parts of the resonance spectrum are described in the following paper.

A. Aspect, G. Roger, S. Reynaud, J. Dalibard, and C. Cohen-Tannoudiji, Phys. Rev. Letters, 45,

617 (1980).
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Many have contributed to angular momentum coupling besides the originators Wigner, Racah,

Clebsch and Gordan. Some have gone on to develop similar formulas for higher unitary groups U(m).

Pioneers in this area include Schwinger, Baird, Biedenharn, Bincer, Gelfand, Louck, and Moshinsky.
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