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Unit 8 Quantum Rotation
Quantum theory of rotation and angular momentum is described in terms of quantum 
oscillation using a synthesis of ideas developed by Hamilton, Stokes, Schwinger, and 
Feynman. In the present Unit 8 the  theory of quantum 2D oscillator from Unit 7 is used to 
derive 3D quantum rotational states, operators, and their representations. The ABCD model of 
coupled oscillators and 2-state or U(2) spin-1/2 analogies of Unit. 3 Chapter 10 is also part of 
the development as is the non-Abelian symmetry theory of Chapter 15. This unit is a step in 
the development of Wigner-Racah quantum theory of angular momentum that is the foundation 
of modern atomic, molecular, optical, and nuclear physics.
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Chapter 23

Spin and Rotation Operators,

 States, and Dynamics 

W. G. Harter

Using the 2D-harmonic oscillator algebra from the earlier Chapter 21, the quantum mechanics 
of 3D rotation and angular momentum states are developed. By using the ABCD oscillator 2-
state system analogy of Chapter 10 we extend the development, due to Schwinger, of the 
quantum theory of angular momentum to include that of an entire body (nucleus, molecule, 
cluster, etc.) not just a single point particle. The idea of dual sets of quantum operators, 
internal (body) as well as external (lab) operators, was introduced in Chapter 15 and is 
developed again here to make convenient and powerful tools for visualization as well as 
computation of quantum rotational dynamics.
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Chapter 23. Spin and Rotation Operators, States, and Dynamics

23.1 2D Oscillation and 3D Rotation and Rotational Momentum 
 The relationship between the complex U(2) spinor-oscillator {x1+ip1, x2+ip2} space and a three-
dimensional R(3) spin-vector { SX, SY, SZ } or { SB, SC, SA } space was first introduced by the Chapter 10 equation 
(10.5.1b). The preceding Sections 21.1. and 21.2 have described the U(2) operators and quantum 2-D oscillator 
eigensolutions generated by U(2) operators. Here we show the R(3) side of the story that deals with rotations in 
three-dimensions and the beginning of the quantum theory of angular momentum. It also completes the role of U
(2) in quantum theory. This approach to angular momentum theory has parts that are generally credited to Jordan, 
Casimir, and Schwinger. 

(a) Angular momentum generators by U(2) analysis
 Each of the block matrices in (21.1.15c) can be written as linear combinations of representations of 
quantum angular momentum operators { SX, SY, SZ } and the unit operator  S0 = 1. The first one has been used 
many times and most recently in Sec. 21.1 in (21.1.19) to solve (υ=1) or (j=1/2) oscillator.
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The next block  of (21.1.15c) is a 3-by-3 block used to solve (υ=2) or (j=1) oscillation.

         

  

2A 2 B − iC( ) ⋅

2 B + iC( ) A+ D 2 B − iC( )
⋅ 2 B + iC( ) 2D

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

= A+ D( )
1 ⋅ ⋅
⋅ 1 ⋅
⋅ ⋅ 1

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟
+ 2B

⋅ 2
2

⋅

2
2

⋅ 2
2

⋅ 2
2

⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

+ 2C

⋅ −i 2
2

⋅

i 2
2

⋅ −i 2
2

⋅ i 2
2

⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

+ A− D( )
1 ⋅ ⋅
⋅ 0 ⋅
⋅ ⋅ −1

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

The third block  of (21.1.15c) is a 4-by-4 block is the (υ=3) or (j=3/2) submatrix.  (23.1.1b)
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All the block matrices have the form first introduced in (10.5.10). Here, we factor the j-th block. 

 

  

H j−block
= 2 jΩ0 1

j
+               ΩX SX

j
                   +ΩY SY

j
                       +ΩZ SZ

j

                 = 2 jΩ0 1
j
+ ΩX − iΩY( ) SX + iSY

j
+ ΩX + iΩY( ) SX − iSY
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⎣⎢

⎤
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/ 2+ΩZ SZ
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where     S+ = SX + i SY    , and S- = SX  - i SY = S+†    (23.1.2)

are called the angular momentum raising operator S+ and lowering operator S- .

HarterSoft –LearnIt Unit 8 Quantum Rotation 23- 1



2
 Here the fundamental base state labeling will be electron spin-up and spin-dn, exclusively.

  1 = ↑ = 1/ 2
+1/ 2

=a1
† 0 =a↑

† 0 ,      2 = ↓ = 1/ 2
−1/ 2

=a2
† 0 =a↓

† 0 .   (23.1.3)

The optical analog will be temporarily put aside. However, the oscillator state definition (21.1.14) of υ-boson 
states will be used with the connection relations (21.2.5) between (j,m) quanta involving total momentum j and 
sub-quantum m and oscillator quanta (n1 = j+m, n2= j-m) as follows. 
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†( )n1 a2
†( )n2

n1!n2 !
0 0 =
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†( ) j+m a2

†( ) j−m
j +m( )! j −m( )!

0 0 = m
j         (23.1.4)

 The j-blocks later turn out to be irreducible representations of U(2) or R(3). So we will use the D-notation 
introduced in Section 3.6 as well as Dirac bracket notation to designate them. Starting with j=1/2 
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 (23.1.5a)

we see that S+ is represented by an elementary projection operator e12 = |1〉〈2| = P12 first introduced in (3.1.25) 
and featured in (15.1.19). In Chapter 21, such operators were upgraded to creation-destruction operator 
combinations in (21.1.7). The S+ operators can be so written.

   S+ = a1
†a2 = a↑

†a↓   ,            S− = a1
†a2( )†

= a2
†a1 = a↓

†a↑   (23.1.5b)

They do their raising and lowering one-half quantum at a time. S+ destroys a down-spin ↓ and creates an up-spin 

↑ in order to raise by one  unit of angular momentum. S- does vice-versa to lower by one . 
 So also, the fundamental Hamilton-Pauli-Jordan representation of SZ is  
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    (23.1.5c)
and this leads to an a†a form for it.

   SZ =
1
2
a1†a1 − a2†a2( ) = 12 a↑

†a↑ − a↓
†a↓( )       (23.1.5d)

Oscillator matrix formulas (21.1.15a) give the following matrix elements of S+ and S-.

 
a1

†a2 n1n2 = n1 +1 n2 n1 +1n2 −1    ⇒    S+ m
j = j +m +1 j −m m+1

j

a2
†a1 n1n2 = n1 n2 +1 n1 −1n2 +1    ⇒    S− m

j = j +m j −m +1 m−1
j

   (23.1.5e)

The diagonal SZ operator is similarly given by a difference between number operators.

 
a1

†a1 n1n2 = n1 n1 n2

a2
†a2 n1n2 = n2 n1 n2

⎫
⎬
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2
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2 m
j = m m

j     (23.1.5f)
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This is Schwinger's derivation of the angular momentum operator irreducible representations. It is hard to 
imagine a simpler procedure for getting such important and general rules.
 So the H-matrix blocks are once again combinations of group generators, in this case, they are called 
angular momentum generators SK ("Jenerators" if you prefer to label them with J ) . We list two operator 
representations beyond j=1/2, the spin-1 generators and then the spin-3/2 generators.
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 (23.1.6a)
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Fourth on the list are the important "tensor" or spin-2 generators. The pattern is becoming clear.

   

  

D2 S+( ) =

⋅ 4 ⋅ ⋅ ⋅

0 ⋅ 3 ⋅ ⋅

⋅ 0 ⋅ 3 ⋅

⋅ ⋅ 0 ⋅ 4
⋅ ⋅ ⋅ 0 ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟⎟

= D2 S−( )( )†                    D2 SZ( ) =
2 ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅
⋅ ⋅ 0 ⋅ ⋅
⋅ ⋅ ⋅ −1 ⋅
⋅ ⋅ ⋅ ⋅ −2

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

 

  (23.1.6c)

(1) Angular momentum commutation relations
 Historically, the quantum theory of angular momentum began with the Hamilton-Jordan product relations
σασβ = δαβ + iεαβγ σγ  introduced back in Ch. 10. Here is the commutator form for Sα = σα / 2 . 

     SαSβ - SβSα = [Sα, Sβ] = i εαβγ Sγ    (23.1.7a)  
Matrices (23.1.6) satisfy (23.1.7a). More to the point, they satisfy the eigen-commutation relations. 
    [SΖ, S+] = (+1)S+       [SΖ, S−] = (-1)S−   (23.1.7b)
These can be verified quickly using basic [am, a†n] = δmn1 relations from (21.1.5), or even more quickly by 
doing elementary matrix or operator multiplication ejk emn  = δkm ejn  as in (15.1.19) or (3.1.25b).
  [(e11 - e22 )/2 , e12] = +e12  , [(e11 - e22 )/2  , e21] = -e21   (23.1.7c)
The same applies to the up-down commutation relation.
     [S+, S−] = [e12 , e21] = e11 - e22  = 2 SΖ   (23.1.7d)
 Such elementary considerations mean the old commutators aren't needed to derive matrices. But, they do 
provide insight into the idea of using operators to manage a diagonalization problem.
 The main idea here is that if you can find a set of operators (am, a†n) such that a Hamiltonian H or any 
other operator such as SZ will eigen-commute with all (am, a†n) as follows
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4
    [ H, a†n ] = ωn a†n  ,   [ H, am ] = ωm am ,    (23.1.8a)
then the Hamiltonian will be a diagonal combination of number operators.

   H =
n=1

2

∑ ωnan†an =ω1a1†a1 +ω2a2†a2 ≈
ω1 0
0 ω2

⎛
⎝⎜

⎞
⎠⎟

   (23.1.8b) 

This is exactly what we achieve by diagonalizing the fundamental representation as in (21.1.20d). A fundamental  
eigenstate guarantees that all higher quantum matrices will be diagonal, too, and that the higher quantum states 
(23.1.4) have to be H-eigenvectors with the following eigenvalues.

        H n1n2 =
n=1

2

∑ ωnan†an n1n2 = ω1n1 +ω2n2( ) n1n2 = ω1 j + m( ) +ω2 j − m( )( ) m
j  (23.1.8c)

(2) Angular momentum magnitude and uncertainty
 There is one key angular momentum quantity besides SΖ that we generally find to be diagonal. This is the 
angular momentum squared S°S .
    S°S = SX 2 + SY 2 + SZ 2 = (S+S- + S-S+ )/2 + SZ 2   (23.1.9a)
You might think that its eigenvalue would just be the square j2 of the angular quantum number j, but this is not 
so. For example, the j=1/2 fundamental matrices square up not to (1/2)2 =1/4 but to 3/4.

    
 
D

1
2 SX

2 + SY
2 + SZ

2( ) = 1
4

0 1
1 0

⎛
⎝⎜

⎞
⎠⎟
⋅

0 1
1 0

⎛
⎝⎜

⎞
⎠⎟

+ 1
4

0 −i
i 0

⎛
⎝⎜

⎞
⎠⎟
⋅

0 −i
i 0

⎛
⎝⎜

⎞
⎠⎟

+ 1
4

1 0
0 −1

⎛
⎝⎜

⎞
⎠⎟
⋅

1 0
0 −1

⎛
⎝⎜

⎞
⎠⎟

= 3
4

1 0
0 1

⎛
⎝⎜

⎞
⎠⎟

 

(Remember that Pauli σ-matrices square to 1.) In terms of a-operators the squared momentum operator is

  S•S = 1
4
2a1†a2a2†a1 + 2a2†a1a1†a2 + a1†a1 − a2†a2( ) a1†a1 − a2†a2( )⎡⎣ ⎤⎦ . (23.1.9b)

Using ama†n = a†n am + δmn1 gives S°S as number operators. (Normal order: left←creation, destruct→right.)

 S•S = 1
4
2 a2†a2 +1( )a1†a1 + 2 a1†a1 +1( )a2†a2 + a1†a1 − a2†a2( ) a1†a1 − a2†a2( )⎡⎣ ⎤⎦  (23.1.9c)

So it is an eigenvector for all oscillator states. The eigenvalue formula is then found.

  
S •S n1n2 =

1
4

2 n2 +1( )n1 + 2 n1 +1( )n2 + n1 − n2( ) n1 − n2( )⎡⎣ ⎤⎦ n1n2

                  = 1
4

2n1 + 2n2 + 4n1n2 + n1 − n2( ) n1 − n2( )⎡⎣ ⎤⎦ n1n2

 (23.1.10a)

Using angular quanta in (23.1.4) where n1=j+m and n2=j-m , an important general result follows.

 S•S m
j = 1

4
2 j +m +1( ) j −m( ) + 2 j −m +1( ) j +m( ) + 4m2⎡⎣ ⎤⎦ m

j = j j +1( ) m
j  (23.1.10b)

 For large angular quanta the S°S eigenvalue approaches j2 , as you might guess, but the magnitude of 
angular momentum |S| approaches j+1/2. That little 1/2 makes a lot of difference in the quantum world.

  S m
j = S•S m

j = j j +1( ) m
j ≅ j + 1

2
⎛
⎝⎜

⎞
⎠⎟ m

j    (23.1.10c)

This extra length of S is like a zero-point vibration in oscillators. Oscillator zero-point motion may be blamed on 
non-commuting operators x and p not being simultaneously diagonal eigenoperators. This prevents them from 
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both having zero values as discussed in Section 20.2(b4). So it is with angular momentum since non-commuting 
operators SX and SY cannot either be diagonal eigenoperators if SZ is diagonal as assumed. This prevents them 
from both having zero values and putting S right on the Z-axis.
 Instead S has to "fuzz-out" in the SX and SY plane defined by the SZ eigenvalue of the magnetic quantum 
number m. As shown in Fig. 23.1.1 there is an angular "uncertainty cone" for each j and m value. The angular 
momentum uncertainty angle Θjm is given by 

    
  

Θm
j = arccos m

j j +1( )
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

     (23.1.11)

The resulting angles such as the ones shown in Fig. 23.1.2 for j=30 are useful for estimating eigenvalues of 
angular momentum Hamiltonians just as the linear ΔxΔp uncertainty relation estimates power-law potential 
energies in (20.2.22). This "literal" interpretation of QTAM is often called Dirac's vector model.

(b) Generating rotations and rotational wavefunctions
 A fundamental Euler transformation (10.A.1) is here written in three notations.

  

1 ′1 1 ′2
2 ′1 2 ′2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

1R αβγ( ) 1 1R αβγ( ) 2

2 R αβγ( ) 1 2 R αβγ( ) 2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

D11
1/2 αβγ( ) D12

1/2 αβγ( )
D21

1/2 αβγ( ) D22
1/2 αβγ( )

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

                                                                        =
e
− iα+γ

2 cos β
2

-e
− iα−γ

2 sin β
2

e
iα−γ

2 sin β
2

e
iα+γ

2 cos β
2

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

  (23.1.12a)

This generates a transformation of the fundamental creation operators similar to (21.1.20d).

  
a ′1

† =D11
1/2 αβγ( )a1

† + D21
1/2 αβγ( )a2

†  =e
− iα+γ

2 cos β
2
a1

† + e
iα−γ

2 sin β
2
a2

† ,    

a ′2
† =D12

1/2 αβγ( )a1
† + D22

1/2 αβγ( )a2
† =-e

− iα−γ
2 sin β

2
a1

† + e
iα+γ

2 cos β
2
a2

† ,
 (23.1.12b)

The goal here is to find the corresponding transformation Dj(αβγ) matrix for a 2j-quantum state (23.1.4). This 
will be the derivation of a very important result, the general formula for all irreducible representations (ireps) of 
R(3) and U(2). A lot of theory (and labor-saving devices) depends on the next few steps
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m=J
m=J-1
m=J-2
m=J-3
.
.

z-Component of J :
J = m | 〉Jmz

Magnitude
of J :

J = J(J+1)
2

J ( J+1)

| 〉Jm

| 〉Jm| 〉Jm
Fig. 23.1.1 Angular momentum uncertainty cones and geometry.

 
Fig. 23.1.2 Angular momentum uncertainty cones for j=30.
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 For a 2j-quantum state (23.1.4) a rotation needs to be performed to the new "prime" basis.

  

R αβγ( ) n
j =

a ′1
†( ) j+n a ′2

†( ) j−n
j + n( )! j − n( )!

0 0

                 =
D11a1

† + D21a2
†( ) j+n D21a1

† + D22a2
†( ) j−n

j + n( )! j − n( )!
0 0

  (23.1.13)

Expanding the binomials yields a double sum over binomial coefficients 
n
k

⎛
⎝⎜

⎞
⎠⎟
= n!/ k!(n − k)!  .

 

R αβγ( ) n
j = 

∑
k
∑ 

j+n( ) D11a1
†( ) D21a2

†( ) j+n− k
j−n( ) D12a1

†( )k D22a2
†( ) j−n−k

j + n( )! j − n( )!
0 0

                 = j + n( )! j − n( )! 
∑

k
∑ D11a1

†( ) D21a2
†( ) j+n− D12a1

†( )k D22a2
†( ) j−n−k

! j + n − ( )!k! j − n − k( )! 0 0

                 = j + n( )! j − n( )! 
∑

k
∑ D11( ) D21( ) j+n− D12( )k D22( ) j−n−k

! j + n − ( )!k! j − n − k( )! a1
†( )+k a2

†( )2 j−−k
0 0

We replace the a†-operator powers with the j-m and j+m forms they had in the beginning.
   j+m =  + k  ,  j - m = 2j -  - k    or,      = j + m - k  
The sum over  becomes a sum over m.

R αβγ( ) n
j = j + n( )! j − n( )! m

∑
k
∑ D11( ) j+m−k D21( )n−m+k D12( )k D22( ) j−n−k

j +m − k( )! n −m + k( )!k! j − n − k( )! a1
†( ) j+m a2

†( ) j−m 0 0

                = j + n( )! j − n( )! m
∑

k
∑ j +m( )! j −m( )! D11( ) j+m−k D21( )n−m+k D12( )k D22( ) j−n−k

j +m − k( )! n −m + k( )!k! j − n − k( )! m
j

            (23.1.14)
The resulting general irreducible representation of U(2) is the following.

 

 

m
j R αβγ( ) n

j = Dm,n
j αβγ( ) =

              j + n( )! j − n( )! j + m( )! j − m( )! k
∑ D11( ) j+m− k

D21( )n−m+ k
D12( )k D22( ) j−n− k

j + m − k( )! n − m + k( )!k! j − n − k( )!
            (23.1.15a)
Inserting fundamental D-values from Euler rotation (23.1.12), simplifies the irep a little.
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The result is a general SU(2) irreducible representation for Euler angles (αβγ). It’s a powerful result!

m
j R αβγ( ) n

j = Dm,n
j αβγ( ) =

              j + n( )! j − n( )! j + m( )! j − m( )!
−1( )k

k
∑ cos β

2
⎛
⎝⎜

⎞
⎠⎟

2 j+m−n−2k

sin β
2

⎛
⎝⎜

⎞
⎠⎟
n−m+2k

e− i mα +nγ( )

j + m − k( )! n − m + k( )!k! j − n − k( )!    

(23.1.15b)

(The Darboux angle representation is left as an exercise.) The k-sum is done over all positive integral values of k 
such that none of the denominator factors contain a negative integer. So k ranges between zero or m-n (whichever 
is largest) up to j-m or j-n (whichever is least). The phase factor involving α and γ angles is best left to be 
inserted later as shown in the j = 1 example below.

  

  

D1 αβγ( ) =
e−iα ⋅ ⋅
⋅ 1 ⋅

⋅ ⋅ eiα

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1+ cosβ
2

− sinβ
2

1− cosβ
2

sinβ
2

cosβ − sinβ
2

1− cosβ
2

sinβ
2

1+ cosβ
2

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

e−iγ ⋅ ⋅
⋅ 1 ⋅

⋅ ⋅ eiγ

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

                    =

e−iα 1+ cosβ
2

e−iγ e−iα − sinβ
2

e−iα 1− cosβ
2

eiγ

sinβ
2

e−iγ cosβ − sinβ
2

eiγ

eiα 1− cosβ
2

e−iγ eiα sinβ
2

eiα 1+ cosβ
2

eiγ

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

  (23.1.15c)

Here half-angle identities cos2 β
2
=

1+ cosβ
2

,   sin2 β
2
=

1− cosβ
2

,  sin β
2

cos β
2
=

sinβ
2

,  are used. The three Euler 

factors of the R(α)R(β)R(γ) form in (10.A.1) shown by Fig. 10.A.1. Below we list the tensor (j=2) irep.

  

D2 αβ0( ) =

e−i2α 1+ cosβ
2

⎛
⎝⎜

⎞
⎠⎟

2

e−i2α 1+ cosβ
2

⎛
⎝⎜

⎞
⎠⎟

sinβ 3
8

e−i2α sin2 β e−i2α 1+ cosβ
2

⎛
⎝⎜

⎞
⎠⎟

sinβ e−i2α 1− cosβ
2

⎛
⎝⎜

⎞
⎠⎟

2

e−iα 1+ cosβ
2

⎛
⎝⎜

⎞
⎠⎟

sinβ e−iα 1+ cosβ
2

⎛
⎝⎜

⎞
⎠⎟

2cosβ −1( ) − 3
2

e−iα sinβ cosβ e−iα 1− cosβ
2

⎛
⎝⎜

⎞
⎠⎟

2cosβ +1( ) −e−iα 1− cosβ
2

⎛
⎝⎜

⎞
⎠⎟

sinβ

3
8

sin2 β 3
2

sinβ cosβ 3cos2 β −1
2

3
2

sinβ cosβ 3
8

sin2 β

eiα 1+ cosβ
2

⎛
⎝⎜

⎞
⎠⎟

sinβ eiα 1− cosβ
2

⎛
⎝⎜

⎞
⎠⎟

2cosβ +1( ) 3
2

eiα sinβ cosβ eiα 1+ cosβ
2

⎛
⎝⎜

⎞
⎠⎟

2cosβ −1( ) −eiα 1+ cosβ
2

⎛
⎝⎜

⎞
⎠⎟

sinβ

ei2α 1− cosβ
2

⎛
⎝⎜

⎞
⎠⎟

2

ei2α 1− cosβ
2

⎛
⎝⎜

⎞
⎠⎟

sinβ 3
8

ei2α sin2 β ei2α 1+ cosβ
2

⎛
⎝⎜

⎞
⎠⎟

sinβ ei2α 1+ cosβ
2

⎛
⎝⎜

⎞
⎠⎟

2

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

             (23.1.15d)
Here the third Euler "twist" angle was set to zero, but it is easily reinserted column by column. That angle is not 
needed for atomic electronic wavefunctions since they are completely described by two polar angles of azimuth φ 
= α and the polar angle θ = β. For this case only the center (n=0) column is used, but its conjugate with factor √(2l
+1/4π) gives a normalized and properly phased set of spherical harmonics Ym.
     Dm,n=0

 * φθ0( ) 2 +1 / 4π = Ym
 φθ( )     (23.1.16)

Such is the power of algebraic methods that solve countless differential equations all at once.
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(c) Rotational R(3) and U(2) wavefunctions and projectors
 One thing that uses the SU(2) ireps is the Wigner-Weyl projector Pm,nj  . Such a projector was introduced in 

(15.1.20d) for the D3 subgroup of R(3). The following applies to all of SU(2) and R(3). 

   
 
Pm,nj = 

j

N
d αβγ( )Dm,n

j* αβγ( )∫ R αβγ( )     (23.1.17a)

Here:      j = 2j+1        (23.1.17b)
is the irreducible representation dimension or multiplet degeneracy for SU(2) or R(3) symmetry
 For  SU(2) and R(3), the sum over rotations is now an integral over the Euler angles (αβγ). For integral-
j=0, 1, 2,.. the R(3) integral is used. Polar angle β only ranges from 0 to π.

  
 
for R(3) : 

j

N
d αβγ( )∫ =

2 j +1
8π 2 dα

0

2π

∫ dβ sinβ
0

π

∫ dγ
0

2π

∫ = 2 j +1   `(23.1.17c)

For half-integral-j=1/2, 3/2, 5/2,.. the SU(2) integral is used. β now ranges from -π to π.

  
 
for SU(2) : 

j

N
d αβγ( )∫ =

2 j +1
16π 2 dα

0

2π

∫ dβ sinβ
−π

π

∫ dγ
0

2π

∫ = 2 j +1   (23.1.17d)

The latter is twice as big as the R(3) domain since the polar angle β has to cover its negative territory in the SU(2) 
world. This was shown when a full 4π SU(2) rotation was demonstrated in Fig.10.A.5.
 As explained in the discussion of Fig. 10.A.4, (α, β) are azimuth α and polar β angles for the body frame 
zenith relative to the lab frame, while (−β, −γ) are polar angle −β and azimuth −γ for the lab zenith in the body 
frame. From the start we will treat both the internal or dual description and the external or laboratory reference 
frames on mostly equal footing. I say "mostly" because the body frame is not the one that is familiar to most 
students of atomic physics. Electrons are quantum point particles.
 However, for molecular or nuclear theory the concept of a quantum body is very much a part of things, 
and it needs an "inside" azimuth −γ or "twist" angle to define its orientation. Atomic points, electrons and nuclei, 
are not allowed to "twist" so only one kind of azimuth α is needed. 
 Eigenstates of angular momentum are built from projected initial position states |000〉.

   

 

m,n
j =

Pm,n
j 000
 j

= 1
N

d αβγ( )Dm,n
j* αβγ( )∫ R αβγ( ) 000  j

                             = 1
N

d αβγ( )Dm,n
j* αβγ( )  j∫ αβγ

 (23.1.18)

The angular position states of a body are defined by a rotational duality relativity relation like (15.3.8)

   R αβγ( ) 000 = αβγ =R† αβγ( ) 000     (23.1.19a)

This relates ordinary lab-based operators R(αβγ) to body-based operators R αβγ( )  that share exactly the same 

group properties but move the lab relative to their body frame instead of vice-versa. It is important to remember 
that these two sets are mutually exclusive (disjoint) and mutually commuting.

  R αβγ( )R ′α ′β ′γ( ) =R ′α ′β ′γ( )R αβγ( )    for all αβγ( )    and  ′α ′β ′γ( )  (23.1.19b)

 The two kinds of operators work different sides of the street. Analogous to (15.3.10) their effect is cleanly 
split between the left hand (lab-m) and right hand (body-n) quantum numbers. 
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 R αβγ( ) m,n
j = D ′m ,m

j αβγ( ) ′m ,n
j

′m =− j

j

∑         R αβγ( ) m,n
j =

′n =− j

j

∑ D ′n ,n
j* αβγ( ) m, ′n

j

     (23.1.20a)     (23.1.20b)
Note how body operators act in a reverse or conjugated sense. They view positive momentum as the lab spinning 
in a negative or clockwise sense. The same applies to the generators JZ or SZ of SU(2) or R(3). 

  SZ m,n
j = m m,n

j                                                        SZ m,n
j = −n m,n

j

     (23.1.20c)     (23.1.20d)
The reversed sign is regarded as a nuisance, so it is often customary to define reversed momentum operators that 
give a positive sign.

      SZ m,n
j = +n m,n

j               SZ = −SZ   (23.1.20b)

 As an example of a rotor spectrum consider the Hamiltonian of a symmetric top molecule.

    Hsymmetric top = BJX
2 + BJY

2 + AJZ
2          (23.1.21a)

where the constants are inverse moments of inertia.

    
1

2IX

= B =
1

2IY

  ,            A =
1

2IZ

    (23.1.21b)

This Hamiltonian can be rewritten in terms of two commuting observables, the JZ and J2 operators.

  Hsymmetric top = BJX
2 + BJY

2 + BJZ
2 + A − B( )JZ2 =BJ•J+ A − B( )JZ2  (23.1.21c)

The eigenvalue spectrum is given here and plotted in Fig. 23.1.3.

  
Hsymmetric top m,n

j = BJ•J+ A − B( )JZ2 m,n
j

                              = BJ(J +1)+ A − B( )n2⎡⎣ ⎤⎦ m,n
j

    (23.1.21d)

 The rotational j-levels are spaced quadratically like an elementary Bohr or Bloch problem with no 
potential, but the levels are split by the asymmetry of the rotor. If the rotor is a discus shape or oblate top its 
splittings are negative as in the left hand side of Fig. 23.1.3. If it is a sausage shape or prolate top, its splittings 
are positive as shown on the right hand side. 
 Each n-stack of the eigenvalue spectrum is quadratic like the elementary Bohr rotor. However, n stops at j 
and the degeneracy is more than 1 or 2 of the Bohr singlet or doublet levels. Even the n=0 levels are 2j+1-fold 
degenerate and if n is non-zero the degeneracy is 4j+2. The degeneracy for the case (A=B) is a huge (2j+1)2 = 0, 
9, 25, 49,... for j= 0, 1, 2, 3, ... This case is known as a spherical top and has the super symmetry R(3)*R(3) 
similar to D3*D3 introduced in Sec. 15.4.(2). Once again, this is a simple eigenvalue spectrum with a great 
variety of orthogonal wavefunctions hiding behind practically every level. It is necessary to understand the shape 
and symmetry, both global and local, of these waves in order to use them for understanding physics. Next we 
consider a few simple but important examples.
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j = 0

j = 1

2B

A-B

Prolate Top (A>B)Oblate Top (A<B)

j = 2

A-B

3(A-B)

n=±1

n=±1

n=±2

n=0

n=0

j = 3

A-B

3(A-B)

n=0

5(A-B)

n=±1

n=±2

n=±3

j = 0

j = 1

2B

A-B

j = 2
A-B

3(A-B)

n=±1

n=±1

n=±2

n=0

n=0

j = 3

n=0

n=±1

n=±2

Fig. 23.1.3 Quantum rotor levels for  j=0, 1, 2, 3,...
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23.2 Structure and Applications of SU(2)−R(3) D-Functions 
 The D-matrix functions Djmn(α,β,γ) of Euler angles (α,β,γ) derived in 23.1.15 are extremely powerful stuff 
and serve many purposes. Their role as wavefunctions that go with the symmetric molecular rotor energy levels 
in Fig. 23.1.3 is just the first of many applications. Here we will discuss the molecular waves but also their most 
well known role as rotational transformation matrices for spin-j polarization analysis. Indeed, we have come full 
circle now from the discussion of spin-1/2 and optical polarization matrices first introduced in Chapter 1. 
(23.1.15) is the generalization of the fundamental matrix

  Dm,n
j=1/2 0,β ,0( ) =

↑ ↑ ' ↑ ↓ '

↓ ↑ ' ↓ ↓ '

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=
cosβ / 2 − sinβ / 2
sinβ / 2 cosβ / 2

⎛
⎝⎜

⎞
⎠⎟

 ,  (23.2.1a)

introduced in (1.2.13) and related to the optical polarization (2-D oscillator) fundamental matrix 

  Dm,n
j=1/2 0,2θ ,0( ) = x x ' x y '

y x ' y y '
⎛

⎝⎜
⎞

⎠⎟
=
cosθ − sinθ
sinθ cosθ

⎛
⎝⎜

⎞
⎠⎟

,   (23.2.1b)

first shown in (1.2.1). There as here we shall be first concerned with the behavior of the transformation vis-à-vis 
the middle or polar Euler angle β and leave for later discussion of the comparatively simpler functional behavior 
of lab azimuth α and body azimuth γ.
(a) Polarization analysis
 Suppose a spin-j state | jm〉 with lab z-component-m is rotated by (23.1.20a) to give the following.

   R αβγ( ) m
j =

′j =0

∞
∑ ′m

′j
′m
′j

′m =− ′j

′j
∑ R αβγ( ) m

j     (23.2.2)

A rotation cannot change total spin-j so the completeness sum reduces to just 2j+1 terms of D-matrices.

   R αβγ( ) m
j = ′m

j
′m

j

′m =− j

j
∑ R αβγ( ) m

j = ′m
j

′m =− j

j
∑ D ′m m

j αβγ( )  (23.2.3a)

The overlap of this state with its unrotated brethren is exactly equal to the corresponding D-matrix element.

    ′m
′j R αβγ( ) m

j = δ ′j jD ′m m
j αβγ( ) = ′m

′j
m
j

R
   (23.2.3b)

Here we ignore any hidden or internal quantum numbers such as the body-z-component n.
 As in Chapter 1, let us imagine some sort of magnetic beam sorter that can sort a beam into separate 
beams of states | jm〉 as shown in Fig. 23.2.1. Each of 2j+1 beams that come out contain particles that have 
"chosen" to change entirely from the initial state R(α,β,γ)| jm〉 entering on the right into a particular final | jm'〉 state 
emerging on the left. 
 In Fig. 23.2.1 the total spin is (j=2), and so there are 2j+1=5 possible input and output channels. In the 
figure all input channels except the (m=1)-channel have been filtered from the output of the first sorter. The first 
sorter, shown on the extreme upper right hand side, is rotated by an angle β so it produces states R(0,β,0)| 2m〉 of 
which only R(0,β,0)| 21〉 is fed into the next analyzer. Each beam is indicated by angular-momentum cones from 
Fig. 23.1.1 belonging to j=2 states. Note that the m'=-1 plot peaks at β=π.
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| 〉21R(0β0)

| 〉22
| 〉21
| 〉20
| 〉2-1
| 〉2-2

βD (0β0)
2
2 1

D (0β0)
2
1 1

D (0β0)
2
0 1

D (0β0)
2
-1 1

D (0β0)
2
-2 1

ββ

J=2 m'=2 m=1

ββ

J=2 m'=1 m=1

ββ

J=2 m'=0 m=1

ββ

J=2 m'=-1 m=1

ββ

J=2 m'=-2 m=1

D (0β0)
2
m' m

|D (0β0)|2
m' m

2

β=π

β=π

Fig. 23.2.1 (j=2)-Polarization analysis. Plots of D-amplitude and probability for each channel.
 The fact that a | 21〉 cone tipped over by 180° (β=π) is the same as a | 2-1〉 cone is reassuring. Flipping the 
system should flip the momentum from m=1 to m'=-1. 
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14
 To gain a better picture of the D-amplitudes and the polarization process, Fig. 23.2.2 shows plots as the 
function of m' instead of β for a ten-times higher value j=20 of spin magnitude. Note particularly how the lips of 
the β-tipped angular momentum cones project onto the z-axis a region of higher probability or wave amplitude. 
As β rotates, a "semi-classical region" follows underneath the cone base.

β=85.9°β=85.9°

-20 -10 10 20
-15 -5 5 15

1

0.5

m'm'

J=20

m=20

β=45.8°β=45.8°

-20 -10 10 20
-15 -5 5 15

1

0.5

m'

m=19

-20 -10 10 20
-15 -5 5 15

1

0.5

m'm'

m=20

-20 -10 10 20
-15 -5 5 15

1

0.5

m'm'

J=20
m=19

semi-classical
regions

semi-classical
regions

(a) (b)

(c) (d)

D (0β0)20
m' m

|D (0β0)|20
m' m

2

Uncertainty=15.3°
Uncertainty=25.8°

Fig. 
23.2.2 (j=20)-Polarization analysis. m'-Plots of D-amplitude and probability for each channel.

 Each dot in the wave or probability plot of Fig. 23.2.2(a) and 23.2.2(c) corresponds to a D20m'20(0β0) or |
D20m'20(0β0)|2 value for a different m'-channel and represents an entirely different function of angle β=45.8° or 
β=45.8°, respectively. Yet, the dots form a curve that resembles a one-dimensional Gauss-like wavefunction! Fig. 
23.2.2(b) and 23.2.2(d) plot a D20m'19(0β0) or |D20m'19(0β0)|2 in a similar fashion and form what looks like the 
wave of the first excited 1-D oscillator Gaussian! In each case the cone limbs or lips project what appear to be 
classical turning points of this 1-D discrete wave.
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 Polarization analysis for integral and half-integral spin uses the same D-function formula (23.1.15). 
However, there is one important difference as seen by comparing the matrix plots of j=1/2, and j=1, in Fig. 
23.2.3(a-b) below. These are simply plots of (23.2.1a) and (23.1.15c). Both plots give similar periodic functions 
of period 2π for probability. But, the spin-1/2 amplitudes change sign after a β=2π rotation.
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Fig. 23.2.3 b-Plots of D-amplitude and probability for (a) j=1/2, and (b) j=1.
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(b) Molecular rotors: a quantum coordinate frame
 The application (23.1.17) of D-matrix functions as molecular wavefunctions is a beautiful example of 
symmetry analysis and a quantum frame. The molecule has a body-frame but is usually quite uncertain how it is 
oriented in the lab frame in a rotor state of definite lab-z-value m and body-z-value n as for

    
 
m,n
j = 1

N
d αβγ( )Dm,n

j* αβγ( )  j∫ αβγ .   (23.2.4a)

(Recall (23.1.18).) The probability amplitude Dj*mn(α,β,γ) for finding the rotor at Euler position (α,β,γ) is quite 
"fuzzy" usually, only for the higher j, m, and n-quanta does it "sharpen up" noticeably.
 To help visualize the situation we shall plot its Djmn(0,β,0) waves using to the geometry of its angular-
momentum uncertainty cones as in Fig. 23.2.4. In so doing, we are ignoring the plane wave phase factors 
associated with the total wavefunction around the lab α-azimuth and the body γ-azimuth.

  αβγ m,n
j =Dm,n

j* αβγ( ) 2 j +1=ei mαDm,n
j* 0β0( )ei nγ 2 j +1 .  (23.2.4b)

These are needed to get proper time behavior, but they do not affect pure-state probability distributions.

 

J

m

n

Lab z-axis fixed
in Lab

Body z-axis

z
zz

| 〉Jm n
Rotor
state

√J(J+1) ~J+ 12 √J(
J+1
) ~
J+
1
2

Fig. 23.2.4 Lab view of rotor in definite j, m, and n-quantum state. 

 The Fig. 23.2.4 shows schematically the range of motion permitted by the demands of angular 
quantization with definite values for J=j, m, and n-quanta. The J-vector can swivel around its lab-fixed cone of 
altitude m while it simultaneously swivels about the body-fixed cone of altitude n. However, in the lab frame, the 
body is doing its share of swiveling, too. This reflected in the D-distributions shown for j=2 in Fig. 23.2.5. The 
second column D-plots are the same as those in Fig. 23.2.1.
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 While it is tempting, we cannot equate the lab and body J-cones with the classical ω-cones. The latter 
relate to angular velocity ω, which is classically related to momentum J=I•ω by inertia tensor I.
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Fig. 23.2.5 Lab views of rotor cones and wave distributions in definite j=2, m, and n-quantum states. 
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18
 The distribution widths are consistent with the swivel angles allowed by the angular momentum cones, 
which for j=2 are at least a radian or two. To obtain a more precisely peaked distributions it is necessary to make 
all three quantum numbers as high as possible. Some examples with ten times the momentum, or j=20, are shown 
in Fig. 23.2.6. The highest m and n values have narrow D-distributions.
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Fig. 23.2.6 Lab view of rotor in definite j=20, and upper m, and n-quantum states.

 Narrow bi-modal or two-peak distributions occur for the same high j and m but with n=0 as shown by 
examples in Fig. 23.2.7. For a prolate molecular rotor (long and narrow like the one sketched in preceding 
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figures) the low-n states have the lowest energy levels of a given j. (Recall Fig. 23.1.3(b).) Narrow bodies require 
huge kinetic energy in order to achieve a given angular momentum along their narrow bodies so high-n means 
high energy. A diatomic molecule made of two point particles would require infinite energy to achieve even n=1. 
The same holds for a single orbiting particle, so the n=0 states are their only option. Each (j, n=0)-state has 2j+1 
different m-values (m = -j, -j+1,..., j-1, j), which for a free-rotation belong to a (2j+1)-fold degenerate rotational 
energy level.
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Fig. 23.2.7 Lab view of rotor in definite j=20, and upper m, but (n=0)-quantum states.

 We now turn our attention to some of the properties of such orbital levels and study orbital wavefunctions 
useful in the study of electronic structure of atoms and molecules.
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23.3 Orbital Wave-Functions 
 We now examine wavefunctions of point-like bodies such as electrons or line-like bodies such as diatomic 
molecules whose bodies have no bodies! Like high-fashion models, their Z-body axial inertia is zero, or in the 
case of nuclear rotors, near-zero. This means the A-parameter in (23.1.21) is infinite or, for nuclei, some millions 
of Volts. So, non-zero n-quanta have huge energy. Energetically allowed energy waves are just the center (n=0) 
column of the D j-matrices. (Half-integral j have no (n=0) states.)

(a) (j=1) 3-Vector or dipole waves and transformations
 For j=1 the center column of (23.1.15a) has three functions which make a complex unit 3-vector.

   

 

4π / 3 Ym=1
=1 φθ( ) =

4π / 3 Ym=0
=1 φθ( ) =

4π / 3 Ym=−1
=1 φθ( ) =

D1,0
1* φθ0( ) =

D0,0
1* φθ0( ) =

D−1,0
1* φθ0( ) =

−eiφ sinθ
2

cosθ

e−iφ sinθ
2

   (23.3.1)

This is seen by converting the Euler spherical polar coordinates to Cartesian unit vector coordinates.
    x/r = cos φ sin θ ,  y/r = sin φ sin θ  ,  z/r = cos θ      (23.3.2)
A 3-vector begins to emerge.

   

D1,0
1* φθ0( ) = −eiφ sinθ

2
= −

cosφ sinθ + i cosφ sinθ
2

= −
x + iy
r 2

D0,0
1* φθ0( ) = cosθ       =               cosθ                   =  z / r

D−1,0
1* φθ0( ) = e−iφ sinθ

2
=

cosφ sinθ − i cosφ sinθ
2

=
x − iy
r 2

 (23.3.3)

The two components involving x and y have the complex circular polarization form (x±iy). It is tempting to view 
this as a coordinate transformation from real Cartesian {x,y,z}. But, we must resist temptation to deviate from our 
rule of always defining base vectors first before coordinates. We define a base state relation based on (23.3.3). (It 
is just writing moving-wave states in terms of standing-wave bases.)

  

1
1 = −1

2 x
1 − i

2 y
1

0
1 =                                 z

1

−1
1 = 1

2 x
1 − i

2 y
1

  (23.3.4a) 

  

x
1

1
1

x
1

0
1

x
1

−1
1

y
1

1
1

y
1

0
1

y
1

−1
1

z
1

1
1

z
1

0
1

z
1

−1
1

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

=

− 1
2

0 1
2

− i
2

0 − i
2

0 1 0

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

The inverse (†) of (23.3.4a) is the 3-dimensional linear-to-circular polarization transformation matrix.
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    (23.3.4b)

Applying the circular-to-linear transformation of the D1 matrices yields familiar real rotation matrices.
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For example the Euler β-rotation around the Y-axis is just exactly that.   (23.3.5a)
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 (23.3.5b)

The Euler α-rotation around the Z-axis is in the correct direction, too.   
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  (23.3.5c)

Combining these gives the real vector Euler rotation first derived in (10.A.6b).
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            (23.3.5d)
The only finite energy waves for a diatomic molecule (or a point particle in a spherical potential) are the three 
functions in the last (z) column of the D-matrix (23.1.20a). (This is now the (n=0)-column.)

 
Ψ x

1 φ,θ( ) = Dx,z
1 φ,θ,0( ),     Ψ y

1 φ,θ( ) = Dy,z
1 φ,θ,0( ),     Ψ z

1 φ,θ( ) = Dz,z
1 φ,θ,0( )

              = cosφ sinθ,                    =sinφ sinθ,                    = cosθ.
 (23.3.6a)

 Plotting angular three-dimensional wavefunctions is tricky, and there are many ways to do it. In Fig. 
23.3.1 is a plot of the three wave functions done by simply setting r=Ψ(φθ). Each plot is two kissing spheres 
lined up along the x, y, or z axes with one representing a (+) phase and the other a (-) phase. One idea conveyed 
by this plot is the electric dipole-vector geometry of the j=1 waves. Indeed, it resembles the wave amplitude 
pattern of a dipole antenna. Other names for these waves are "p-orbitals" where p stands for "principal" lines in 
H-spectra. (This ancient notation doesn't tell you much about the shape of the waves.) They are called vector 
ligands (meaning "fingers") or π-bonds in chemistry , and are important for holding our molecules together. By 
taking any linear combination 

   
ΨABC

1 φ,θ( ) = AΨ x
1 φ,θ( ) + BΨ y

1 φ,θ( ) + CΨ z
1 φ,θ( )

                  = Acosφ sinθ + Bsinφ sinθ + C cosθ.
   (23.3.6b)

it is possible to point the "finger" in any direction (A, B, C) in Cartesian 3-space.
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ΨΨxx == DD11xx00ΨΨyy == DD11yy00

ΨΨzz == DD11zz00

j = 1
Standing
p-Waves

        23.3.1 Point particle or dipole rotor p-waves for triplet  j= 1..(Only rotor n=0 allowed).

 As long as there is no potential field around to split this triply degenerate set, we are allowed to mix them 
arbitrarily and still have an eigenstate. Making them back into the moving-wave spherical harmonics is certainly 
an option. Mixing the x- and iy-ligands gives moving waves in the xy-plane. Ψ0 is unaltered.

 
  

Ψ1
1 φ,θ( ) = D1,0

1* φ,θ ,0( ) ,     Ψ−1
1 φ,θ( ) = D−1,0

1* φ,θ ,0( ) ,     Ψ0
1 φ,θ( ) = D0,0

1* φ,θ ,0( )
           = −eiφ sinθ / 2,              = e−iφ sinθ / 2,             = cosθ.

 (23.3.6c)

Degenerate probability distributions |X1±1 |2 don't move unless some j=0 or other energy state is added. But, the |
X1±1 |2 are symmetric in the xy-plane as shown in Fig. 23.3.2. (Recall Fig. 4.6.5, too.)
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||ΨΨ--11 ||22== ||DD11--1100 ||22 ||ΨΨ11 ||22== ||DD111100 ||22

||ΨΨxx ||22== ||DD11xx00 ||22 ||ΨΨyy ||22== ||DD11yy00 ||22

||ΨΨzz ||22== ||DD11zz00 ||22
Standing p-Wave
Distributions

Moving p-Wave
Distributions

   23.3.2 Point particle or dipole rotor ( j=1) probability distribution for standing and moving waves.
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(b) (j=2) Tensor or quadrupole waves
 R(3) rotational states of two quanta (j=2) correspond to SU(2) oscillator states with four (υ=4) quanta. 
Both the diatomic rotor (for which n=0) and an orbiting point particle have the same (j=2) quantum state 
degeneracy with five substates. The five moving-wave functions or spherical harmonics are from the center (n=0) 
column of the conjugated D 2-matrix (23.1.15d)

  

   

4π / 5 Ym=2
=2 φθ( )  = D2,0

2* φθ0( ) =   3
8

ei2φ sin2 θ         = 3
8

x + iy( )2
r2

4π / 5 Ym=1
=2 φθ( )   = D1,0

2* φθ0( ) = − 3
2

eiφ sinθ cosθ    = − 3
2

x + iy( ) z

r2
 

4π / 5 Ym=0
=2 φθ( )    = D0,0

2* φθ0( ) =    3cos2 θ −1
2

        =    3z2 − r2

2r2

4π / 5 Ym=−1
=2 φθ( )  = D−1,0

2* φθ0( ) = 3
2

e−iφ sinθ cosθ  =   3
2

x − iy( ) z

r2

4π / 5 Ym=−2
=2 φθ( )  = D−2,0

2* φθ0( ) =   3
8

e−i2φ sin2 θ     = 3
8

x − iy( )2
r2

  (23.3.7)

Spherical 2k-multipole functions Xkq or X-functions are Y-functions times the k-th power of radius (rk).

    Xq
k = rkDq,0

k* =
4π
2k +1

rkYq
k      (23.3.8)

The (k=2) X-functions or quadrupole functions X2q  are complex quadratic polynomials of x, y, and z.

   

   

X±2
2 = 3

8
x ± iy( )2 = 3

8
x2 − y2 ± i2xy( )2

X±1
2 =  3

2
x ± iy( ) z = 3

8
xz + iyz( )2

X0
2 = 1

2
3z2 − r2( ) = 1

2
2z2 − x2 − y2( )

    (23.3.9a)

The real and imaginary parts of the X2q are the standing-wave eigenfunctions of total angular momentum (j=2) 
but zero expected z-component momentum.(〈JZ〉=0) Standing waves are plotted in Fig. 23.3.3.

  

  

X+2
2 + X−2

2( ) / 2 = 3 x2 − y2( ) / 2 ,    X+2
2 − X−2

2( ) / 2 = i 3 xy( ) ,
X+1

2 + X−1
2( ) / 2 = i 3 yz( )  ,                  X+1

2 − X−1
2( ) / 2 = 3 xz( ).

 (23.3.9b)

Wave crests (+) and troughs (-) are shown. The corresponding moving-wave distributions are shown below for 
magnetic quanta m = 2, 1, and 0. The last case |X20|2 is the distribution of the wave

   X0
2 =

1
2
2z2 − x2 − y2( ) = r2P2 cosθ( )     (23.3.9c)

which is not moving. X20 is the only wave of the five that has zero current or momentum (m=0), and it represents 
the only state with non-zero probability on the z-axis and the only one of the five that has a cylindrically 
symmetric wavefunction X20 . Its probability function |X20 |2 is symmetric, too, as are |X2±1 |2 and |X2±2 |2, but 
X2±1  is a ±-rotating X2xz or X2yz wave, and X2±2  is a ±-rotating X2xy or X2x2-y2  wave.
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XXxxzz
XXyyzz

XXxx22--yy22 XX22zz22--xx22--yy22

||XX2222 ||22
||XX2211 ||22

||XX2200 ||22

j = 2
Standing
d-Waves

j = 2 Moving d-Wave Distributions
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Fig. 23.3.3  (Upper)( j=2)Standing waves  (Lower) Probability distributions for ( j=2) moving waves.
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(c) (j=)  2-Pole Multipole potentials and waves
  Zero azimuthal angular momentum (m=0)-orbital waves for any integral total momentum  are expressed 
in terms of Legendre polynomials P as follows.

     X0
 = r



D0,0
 ⋅θ ⋅( ) = r P cosθ( )     (23.3.10)

The Legendre P (cosθ) functions are a basis for multipole waves and angular potentials. They may be viewed as 
derivatives of the simple monopole potential field of a single charge.

    V monopole r( ) = q
r
=
qP0 cosθ( )

r
    (23.3.11)

The z-derivative of r raised to a power is used below.

   
∂
∂z

r( )n = n r( )n−1 ∂
∂z

x2 + y2 + z2 = n r( )n−2 z    

A z-derivative of Vmonopole is equivalent to putting an (+)-charge infinitesimally below a (-)-charge, that is, V(z
+dz)-V(z). We flip the sign so a (+) charge is above a (-)-charge as in Fig. 23.3.4.The resulting potential field is a 
dipole potential. Its angular dependence is the (=1) Legendre function.

  V dipole r( ) = −
∂
∂z
V monopole r( ) = qz

r3
=
qcosθ
r2

=
qP1 cosθ( )

r2
   (23.3.12)

Now imagine copying a dipole, but with opposite charges, and placing the copy Δz above the original as shown in 
Fig. 23.3.4. For infinitesimal Δz, this is the same as another z-derivative. A z-derivative of the dipole potential 
gives the quadrupole potential with angular dependence of the (=2) Legendre function. In order to get exactly 
the (=2) Legendre function in (23.3.7) it is necessary to insert a factor of -1/2.

  V quadrupole r( ) = −
1
2
∂
∂z
V dipole r( ) = −

1
2
∂
∂z

qz
r3

= q 3z
2 − r2

2r5
=
qP2 cosθ( )

r3
 (23.3.13)

Similarly the (=3) octupole function is -1/3 of a z-derivative of the quadrupole potential.

 V octupole r( ) = −1
3

∂
∂z
V quadrupole r( ) = −1

3
∂
∂z
3z2 − r2

2r5
= q 5z

3 − 3z
2r5

=
qP3 cosθ( )

r4
 (23.3.14)

The copy-with-sign-change-and-displace process can be continued indefinitely and each time the number of 
monopoles doubles as shown in Fig. 23.3.4. After  derivatives by z there are 2 poles. The resulting field is the 
general linear multi-pole or 2-pole potential field.

   
 
V 2 − pole r( ) = −1( )

!
∂ 

∂z
q
r

⎛
⎝⎜

⎞
⎠⎟
=
qP cosθ( )

r+1
    (23.3.15)

More reasons for the extra factors (-1) and 1/! are seen later. The resulting discrete charge distributions are 
shown in the upper portion of Fig. 23.3.4. Each distribution for  = 1, 2, 3, 4, 5,.. is made of charges equal to q 
times the binomial coefficients Cn =!/(-n)!n! with alternating signs such as occur in the Pascal array (3.1.25) 
for discrete derivative representations. 
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Fig. 23.3.4  Linear 2k-pole charge arrays and potential or wave function plots.
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A list the first five P (cosθ)  functions which are plotted in the lower part of Fig. 23.3.4 is here.

  

P0 z( ) = 1 ,                                            P1 z( ) = z  ,     

P2 z( ) = 1
2

3z2 −1( )  ,                            P3 z( ) = 1
2

5z3 − 3z( )  ,   

P4 z( ) = 1
8

35z4 − 30z2 + 3( )  ,            P5 z( ) = 1
8

63z5 − 70z3 +15z( )  ,     

(23.3.15)examples

The node structure of the P (cosθ) functions reflects the discrete point sources used to define them. The relation 
between the potential function V(r,θ) and the infinitesimal linear point charge distribution which produces it is 
fairly easy to see. A positive or negative charge contributes a concentric positive or negative potential sphere 
around it. Stacking the charges on top of each other flattens the spheres in the middle and elongates the spheres 
on the ends. 
 Neighboring flattened spheres have opposite sign as do their source charges. In between neighboring 
spheres are special polar angular directions or cones on which the potential is exactly zero. These angles are 
called magic angles. Perhaps, the best known of these is the d-function magic angle along which the Legendre 
function P2 (cosθ)  is zero.
    P2 (cosθ) = 0 = (3 cos2θ -1)/2   , or:   θmagic= cos-1(1/√3) = 54.7°  (23.3.16)
This angle happens also to be the polar angle of the main diagonal (111) direction of a cube. (Magic angles are 
not to be confused with angular momentum vector uncertainty-cone angles (23.1.11) which, for a wavefunction 
P (cosθ) having zero m, must be 90°.) 
 The magic zero-potential cones are also nodal planes for the quantum mechanical wavefunctions Ψ0 . 
Indeed, it is remarkable consequence of R(3) symmetry that molecules, atoms, and nuclei have wave functions or 
probability amplitudes Ψ0 that mimic perfectly the potential functions P (cosθ) of multipole charge 
distributions. Of course, the observed probability distributions |Ψ0 |2, are squares of P (cosθ) so, at first sight, it 
might seem the physical connection is spoiled somewhat.
 However, a commonly observed atomic radiation field has precisely the shape of the dipole function P1 
(cosθ) shown in Fig. 23.1.4 . This comes about because a common atomic state mixture Ψ is that of a scalar 
ground state Ψ00 and a vector excited state Ψ10 . Such a Ψ has an oscillating Ψ10 - shaped charge distribution in 
much the same way that (4.3.5a) has an oscillating linear dipole.

 Ψ*Ψ r,θ,t( ) = Ψ0
0 r( ) 2 + Ψ0

1 r,θ( ) 2 + 2Ψ0
0 r( )Ψ0

1 r,θ( )cos ω0
1 −ω0

0( )t( ) / 2
The oscillating term has precisely the angular dependence of a dipole wave Ψ10 =P1 (cosθ). So will the Fourier 
spectral component of the resulting potential field at the transition (beat) frequency. Similarly, a tensor or 
quadrupole Ψ20  can combine with Ψ00  to give an oscillating quadrupole wave, though, as we will see later, this 
process is not as prevalent.
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23.4 Multipole Expansions 
 The Legendre functions P  in (23.3.10), the Xm in (23.3.8), and Dmn functions (23.1.15) from which the 
P  and Xm are derived, may be used to expand both Hamiltonian operators or potentials and their eigenstates or 
wavefunctions. This is a generalization of the Fourier analyses in Sec. 3.7(b) and Sec. 3.8 which use plane wave 
functions Dk(r)=eikr to expand both the Hamiltonian potential and its wave solutions. Symmetry ireps Dk(r) or 
Dmn (αβγ) define spectral decomposition of both the Hamiltonian operators and the symmetry operators from 
which they are made. Hence, the ever-present D-functions serve multiple duty as wavefunctions and matrices that  
transform the wavefunctions.

(a) Linear multipole expansions
 The extra factors (-1) and 1/! in (23.1.25e) help simplify Taylor expansions. For example, consider the 
potential at r due to a charge q at an arbitrary point r'= z'ez  = r'ez on the z-axis. 

 

 

q
r − ′r

=
q
r

    − ′r
∂
∂z

q
r

⎛
⎝⎜

⎞
⎠⎟

    + ′r( )2

2 !
∂ 2

∂z2

q
r

⎛
⎝⎜

⎞
⎠⎟

       − ′r( )3

3!
∂ 3

∂z3

q
r

⎛
⎝⎜

⎞
⎠⎟
++

− ′r( )
 !

∂ 

∂z
q
r

⎛
⎝⎜

⎞
⎠⎟


          = q
r
+
q ′r
r2 P1 cosθ( ) + q ′r( )2

r3 P2 cosθ( ) + q ′r( )3

r4 P3 cosθ( ) ++
q ′r( )
r+1 P cosθ( )

            (23.4.1a)
This is called a linear multipole expansion. It converges if the field point radius r is greater than the source point 
radius r'. If the source is farther away then r and r' must be switched to make a convergent series.

 
 

q
r − ′r

=
q
′r
+

qr
′r( )2

P1 cosθ( ) + qr2

′r( )3
P2 cosθ( ) + qr3

′r( )4
P3 cosθ( ) ++

qr

′r( )+1
P cosθ( )

            (23.4.1b)
The potential at far-r due to an array of point charges q1, q2, q3, ... at r'1, r'2, r'3,...respectively, is  

 
 
Vfar (r) =

Qnear
0

r
+
Qnear
1

r2
P1 cosθ( ) + Qnear

2

r3
P2 cosθ( ) ++

Qnear


r+1
P cosθ( )  (23.4.2a)

where near linear multipole moments Q are defined for near source radii r'k < r causing far fields.

 
 
Qnear

0 = qk
k
∑  ,   Qnear

1 = qk ′rk
k
∑  ,   Qnear

2 = qk ′rk
2

k
∑  ,.....Qnear

 = qk ′rk


k
∑    (23.4.2b)

For far sources at large radii r'k > r the second type of expansion is needed to have convergence.
  Vnear (r) = Qfar

0 +Qfar
1 r P1 cosθ( ) +Qfar

2 r2P2 cosθ( ) ++Qfar
 rP cosθ( )  (23.4.2c)

where far linear multipole moments Q are defined for far source radii r'k > r causing near fields.

 
 
Qfar

0 =
qk
′rkk

∑  ,      Qfar
1 =

qk
′rk

2
k
∑  ,      Qfar

2 =
qk
′rk

3
k
∑  ,   .....Qfar

 =
qk
′rk
+1

k
∑    (23.4.2d)

 Far-linear charge distributions are confined to the far z-axis. They are undefined or ambiguous for source 
radii that are zero or negative. Now we discuss the full three-dimensional theory that resolves sign ambiguity and 
works for practically any array of charges, near and far. It uses full Ylm functions.
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(b) The addition (multiplication) theorem
 Legendre polynomial terms rP (cosθ) or (1/r+1)P (cosθ) are fine for expanding a potential V due to 
charges that are all lined up on the z-axis. Such a V has azimuthal-rotational Rz(2)-symmetry and is a function V
(r,θ) only of radius r and polar angle θ. But, a potential due to a charge at an arbitrary position (r,α,β) requires a 
more general expansion in terms of spherical harmonic Ym(φ,θ)-functions (23.1.16) or multipole Xm(φ,θ)-
functions (23.1.22) which have the necessary dependence on an azimuthal angle φ.
 Euler symmetry rotations R(α,β,γ) are very helpful for rotating on-z-axis charge points in angular position 
state |0,0,0〉 to an arbitrary off-axis position state |α,β,0〉. We use (23.1.19a)
       R(α,β,0) |0,0,0〉 = |α,β,0〉       
The third Euler "twist" angle γ can be ignored since a point charge has "smooth" internal azimuthal symmetry and 
no definable body orientation to twist about its radial axis. The same operator R(α,β,0) may be applied to any 
state of azimuthal symmetry including an (m=0)-angular momentum state  0

  with a Legendre P (cosθ) 

wavefunction. Lab transform rule (23.1.20a) is used with harmonic definition (23.1.16).

       
 
0


α ,β( )
≡R α,β, 0( ) 0,0 = m,0



m=−


∑ Dm,0

 α,β, 0( ) = m,0


m=−


∑ Ym

* α,β( ) 4π
2 +1

 (23.4.4a)

The amplitude at polar position state |φ,θ,0〉 for rotated Legendre 
 0


α ,β( )
 state is their bra-ket product.

    

 

φ,θ 0


α ,β( )
= φ,θ R α,β, 0( ) 0,0



                    = φ,θ m,0


m=−


∑ Ym

* α,β( ) 4π
2 +1

                    = Ym
 φ,θ( )

m=−


∑ Ym

* α,β( ) 4π
2 +1

    (23.4.4b)

As seen in Fig. 23.4.1, a rotated Legendre state is still symmetric about its new z(α,β) axis, and so the amplitude 
(23.4.4b) must equal P (cosΘ) with Θ being the angle between axes z(φ,θ) and z(α,β).

    
 
P cosΘ( ) = Ym

 φ,θ( )
m=−



∑ Ym
* α,β( ) 4π

2 +1
    (23.4.5a)

This relation is known as the harmonic addition theorem. It could also be called the multiplication theorem since 
it is the (0,0) component of a representation of a group product R†(α,β,0)R(φ,θ,0) = R(Φ,Θ,0).

     

 

α ,β( ) 0


0


φ,θ( )
=         0

 R† α,β, 0( )R φ,θ, 0( ) 0
 = 0

 R Φ,Θ, 0( ) 0


                        = D0,m
† α,β, 0( )Dm,0

 φ,θ, 0( )
m=−


∑ = D0,0

 Φ,Θ, 0( ) = P cosΘ( )
  (23.4.5b)

We will show that the Euler angles of operator R(Φ,Θ,0) are the polar angles α=Φ and β=Θ of the z(φ,θ) axis in 
the (αβ)-tipped "body-frame" that has the Legendre function on its z(α,β) axis. (See Fig. 23.4.1.) Indeed, the P3
(cosθ) function, which happens to be the example used in Fig. 23.4.1, could be a wavefunction of a rotating 
diatomic molecule, or an electronic f-orbital, or some other object with total angular momentum =3. Or, it could 

represent the potential of charge array with an octupole moment. In any case, the z(α,β) axis can be regarded as a 
"body-axis" of something with azimuthal symmetry, and, because of that symmetry, no component of angular 
momentum along its body axis. 
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Fig. 23.4.1  Coordinate geometry of (α,β ) tipped Legendre function and arbitrary field point z(φ,θ ).

 A p-wavefunction (=1:P1(cosθ)=cosθ) has the simple symmetry of a unit-vector. It, too, can be pointed 
in the z(α,β) direction of Fig. 23.4.1 by combining the x, y, and z waves shown in Fig. 23.3.1. 
For (=1), (23.4.5b) is the (z,z)-direction cosine in the vector irep (23.3.5a). Vectors |z〉(α,β) and |z〉(φ,θ) are polar-
angular forms residing in the (third) z-column of (23.3.5a) with the following dot-product.

  
  α ,β( ) 0

1
0
1

φ ,θ( )
=    cosα sinβ sinα sinβ cosβ( ) •

cosφ sinθ
sinφ sinθ

cosθ

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

= α ,β( ) z
1

z
1

φ ,θ( )
=cos φ −α( )sinθ sinβ + cosθ cosβ = P1 cosΘ( ) = cosΘ

 (23.4.5c)
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The last line is an ancient spherical triangular cosine law relating the cosine of the great-circle arc Θ to its 
adjacent θ and β arcs and opposite angle (φ−α) as sketched in the upper portion of Fig. 23.4.1.
 It is important to understand the matrix multiplication (23.4.5b-c) geometrically. The operations
     R(Φ,Θ,0) |z〉(0,0)   = R†(α,β,0)R(φ,θ,0) |z〉(0,0)     (23.4.5d)
       |z〉(Φ,Θ)   = R†(α,β,0) |z〉(φ,θ)  ,
say, "R(Φ,Θ,0)-rotating lab |z〉(0,0)-axis over to |z〉(Φ,Θ) axis is the same as R(φ,θ,0)-rotating the lab |z〉(0,0)-axis 
over to the |z〉(φ,θ)-axis and then undoing the body |z〉(α,β)-axes tipping using R†(α,β,0)." 
 In other words, polar angles for the |z〉(φ,θ)-axis in the body frame are (Φ,Θ) and in the lab frame, too, if 
you R†(α,β,0)-rotate body frame and |z〉(φ,θ) back to the lab. So, the body frame polar azimuth Φ and Θ are found 
from y-and-z-components in the z-column of the R†(α,β,0)R(φ,θ,0) product matrix.

  
cosα cosβ sinα cosβ − sinβ
− sinα + cosα 0

cosα sinβ sinα sinβ cosβ

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ ⋅

cosφ cosθ − sinφ cosφ sinθ
sinφ cosθ + cosφ sinφ sinθ
− sinθ 0 cosθ

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ =

⋅ ⋅ cosΦsinΘ
⋅ ⋅ sinΦsinΘ
⋅ ⋅ cosΘ

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

 (23.4.5e)

=
⋅ ⋅ cosα cosβ cosφ sinθ + sinα cosβ sinφ sinθ − sinβ cosθ
⋅ ⋅ − sinα cosφ sinθ + cosα sinφ sinθ
⋅ ⋅ cosα sinβ cosφ sinθ + sinα sinβ sinφ sinθ + cosβ cosθ

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ =

⋅ ⋅ cos φ −α( )cosβ sinθ − sinβ cosθ
⋅ ⋅ sin φ −α( )sinθ
⋅ ⋅ cos φ −α( )sinβ sinθ + cosβ cosθ

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

 

A determining Φ equation results that is a spherical triangular sine law for arcs in Fig. 23.1.8.
    sin Φ sinΘ = sin(φ−α ) sinθ     or:  sin Φ / sin(φ−α ) = sinθ  / sinΘ   (23.4.5f)
It equates the ratios sin(arc) / sin( opposite angle) for a spherical triangle sketched in Fig. 23.1.8.
  Finally, consider the (α,β)-tipped equivalent S of R(Φ,Θ,0) defined as follows.
     S  = R(α,β,0)          R(Φ,Θ,0)        R†(α,β,0)        (23.4.6)
S does the same rotation of the "body" axis z(α,β) to the field point axis z(φ,θ) that R(Φ,Θ,0) did to rotate the lab 
axis z(0,0) to the equivalent field point axis z(Φ,Θ). S is R(Φ,Θ,0) with switched factors.
     S! = R(α,β,0) R†(α,β,0)R(φ,θ,0) R†(α,β,0) = R(φ,θ,0) R†(α,β,0)   (23.4.7a)
    = R(φ,0,0) R(0,θ−β,0) R(−α,0,0) = R(φ,θ−β,−α)     (23.4.7b)
This switched rotation reduces to an Euler form S= R(φ,θ−β,−α) which is a simpler function of angles (α,β,φ,θ) 
than the original rotation R(Φ,Θ,0) given by (23.4.5d). You should verify the effect of S= R(φ,θ−β,−α) on z
(α,β) : first a z-rotation by -α, y-rotation by θ−β, and finally a z-rotation by φ. Use Fig. 23.4.1 to help follow the 
Euler chain of operations that rotate "body" axis z(α,β) to the field point z(φ,θ). 
 It is easy to show that S=R(φ,θ−β,−α) rotates vector axes z(α,β) into z(φ,θ) axes as follows.  
   z φ ,θ( ) = S z α ,β( ) =R φ,θ ,0( )R† α ,β,0( ) z α ,β( ) =R φ,θ ,0( ) z 0,0( )  ,  (23.4.8a)

It does the same for linear multipole states, potentials, or waves of arbitrary  = 1,2, that sit on these axes.

    
 0


φ ,θ( )
= S 0



α ,β( )
=R φ,θ ,0( )R† α ,β,0( ) 0



α ,β( )
=R φ,θ ,0( ) 0



0,0( )
    (23.4.8b)
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(c) 3-Dimensional multipole expansions
 Linear multiple expansions such as (23.4.1) may be upgraded to 3-dimensional ones by using the addition 
theorem (23.4.5). A single point charge q1 located on an arbitrary "body" axis at r1 =(r1, φ1, θ1) is expanded as 
follows according to whether the charge radius r1 is near (r1 <r) or far (r1 >r) . 

     

 

q1
r − r1

= =0
∑ q1 r1



r+1 P cosΘ1( ) =
=0
∑

m=−



∑ 4π q1 r1


2 +1( )r+1 Ym
* φ1,θ1( )Ym φ,θ( )     for:  r>r1

=0
∑ q1 r



r1
+1 P cosΘ1( ) =

=0
∑

m=−



∑ 4π q1 r


2 +1( )r1+1 Ym
* φ1,θ1( )Ym φ,θ( )     for:  r<r1

⎧

⎨
⎪
⎪

⎩
⎪
⎪

   (23.4.9)

For an array of charges q1, q2,  ... at (r1, φ1, θ1), (r2, φ2, θ2) ,....the potential expands into two series, one for 
"near" charges and one for "far" charges. It is assumed that all radii r and rc are positive. 

   

 

V r,φ,θ( ) = qc
r − rcc

∑ = =0
∑

m=−


∑

Qm
 near( )
r+1 Ym

 φ,θ( )     for:  r>rC

=0
∑

m=−


∑ Qm

 far( ) r Ym φ,θ( )     for:  r<rC

⎧

⎨
⎪⎪

⎩
⎪
⎪

  (23.4.10a)

Here the spherical coordinate multipole moments Qlm of the charge array are as follows.

   

 

Qm
 near( ) = 4π

2 +1( ) charges c
∑ qc rc

Ym
* φc ,θc( )         for near  rc < r( )

Qm
 far( ) = 4π

2 +1( ) charges c
∑ qc

rc
+1 Ym

* φc ,θc( )            for far  rc > r( )
  (23.4.10b)

Moments of a continuous charge distribution ρ(r, φ, θ) are summed by spherical volume integrals.

  

 

Qm
 near( ) = 1

2 +1( ) dφ
0

2π

∫ dθ sinθ
0

π

∫ ρ r,φ,θ( ) r Ym
* φ,θ( )         for near  rc < r( )

Qm
 far( )   = 1

2 +1( ) dφ
0

2π

∫ dθ sinθ
0

π

∫
ρ r,φ,θ( )

r +1 Ym
* φ,θ( )            for far  rc > r( )

 (23.4.10c)

The zeroth-moments are simply √4π times the total near-charge or the total potential for far-charge. 

  Q0
0 near( ) = 4π qc

near rc <r( )
charges c

∑    ,          Q0
0 far( ) = 4π qc

rcfar rc >r( )
charges c

∑        (23.4.10d)

The total zeroth-order potential is the limiting value of V(r) as r approaches the origin r=0 and all charges (except 
the one precisely at r=0 ) are reclassified as far-charges.

  V
zeroth
approx. r,φ,θ( ) = Q0

0 near( )
r 4π

+
Q0
0 far( )
4π

=
qc
rnear rc <r( )

charges c

∑ +
qc
rcfar rc >r( )

charges c

∑ ≅
qc
r − rcc

∑   (23.4.10e)

 The factors √4π can be annoying. They result from a century-old convention of hanging the square root of 
a normalization factor on each wavefunction instead of putting it under the integral (or discrete sum) where it 
belongs. For wavefunctions Ψ(h) defined by group representations D*(h) , as in (23.1.16) or (23.2.4b), this old 
convention looks silly. The D-normalization is determined by the matrix multiplication rules (D(g).D(h) = D(gh)) 
or by projector idempotency (P.P=P) as first seen in (3.1.10) through (3.1.15). You cannot "hang" extra factors on 
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D-functions or projectors. Such factors that arise from a particular coordinate integration, summing, or counting 
procedure, such as (23.1.17), should be attached to that procedure, particularly in the case of a Wigner-Weyl 
group summation as in (23.2.4a).

Example: "Tripole" array
 Calculation of multipole moments for a near-localized fixed charge distribution is made easier by using 
symmetry. For example, consider an array of three charges such as those shown in Fig. 23.4.2. The field has at 
least C3 symmetry, actually, a full D3 trigonal symmetry. (Recall Fig. 15.1.2.) If there were such a thing as a 
"tripole moment" this charge array would have it.
 Recall that allowed Fourier components of a D3 -symmetric potential must be zero-modulo-3, that is m= 
03 = 0, ±3, ±6,... So, the smallest non-zero azimuthal Fourier component is m=±3, and this means that the least 
multipolarity is =3 which is a 23-pole or octupole moment. The only quadrupole or dipole fields that might be 
allowed by D3  symmetry are ones with m=0, that is X20 or X10. Furthermore, the only octupole moment 
coefficients Qm  in (23.4.10) that need to be evaluated are Q30 , and Q3±3.  For general D3 -symmetric 
potentials, only. Q0  , Q±3  , Q±6  , ...that is, Q03 -moments, may be non-zero.   
 A list of (m=0,±3)-octupole functions derived from (23.3.8) and (23.1.15b) begins this analysis.

    4π
7
r3Y3

3 = X3
3 = −

5
4

x + iy( )3 / 4 = −
5
4
r3e3iφ sin3θ   (23.4.11a)

    4π
7
r3Y0

3 = X0
3 =

1
2
5z3 − 3zr2( ) = 12 r3 5 cos3θ − 3cosθ( )  (23.4.11b)

    4π
7
r3Y−3

3 = X−3
3 =

5
4

x − iy( )3 / 4 = 5
4
r3e−3iφ sin3θ   (23.4.11c)

The far-charge case of (23.4.10b) gives the multipole moments Q30 , and Q3±3 for Fig. 23.4.2. 

   Qm
3 far( ) = 4π

7 charges c
∑ qc

rc
4 Ym

3* φc ,θc( ) = 4π
7 charges c

∑ qc
rc
4 Xm

3* φc ,θc( ) / rc3

The resulting moment coefficients are as follows.

    

Q3
3 far( ) = 4π

7
q
a4

5
4

e−3i0 + e−3i2π /3 + e3i2π /3( ) = 4π
7
3q 5
4a4

Q0
3 far( ) = 0

Q−3
3 far( ) = 4π

7
3q 5
4a4

(23.4.12a)

The resulting multipole expansion to the third order is from (23.4.10a).

  

 

V far q r,θ,φ( ) =Q0
0Y0

0 +Q3
3r3Y3

3 +Q−3
3 r3Y−3

3 =
3q
a

+
3q 5
4a4 r3e3iφ +

3q 5
4a4 r3e−3iφ

              = 3q
r
+

3q 5
2a4 r3 cos 3φ +                 for : r << a( )

 (23.4.12b)

If the charges are nearer the origin the expansion reverts to the following.
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Vnear q r,θ,φ( ) = Q0
0

r
Y0

0 +
Q3

3

r4 Y3
3 +

Q−3
3

r4 Y−3
3 =

3q
r
+

3qa3 5
4

e3iφ

r4 +
3qa3 5

4
e−3iφ

r4

              = 3q
r
+

3qa3 5
4

cos 3φ
r4 +                 for :a << r( )

 (23.4.12c)

The angular form is a Mathieu potential discussed after (16.1.6). The resulting orbital splitting sketched in Fig. 
23.4.2(b) below is discussed next.

 

a

E
E

E
E
A2

A1

A2
j=5

E

E
E

A1

A2

A1
j=4

E
E

A2

A1

A2
j=3

E
E

A1

j=2

E

A2

j=1

j=0
A1

(a) D3 Octupole Field (b) R(3)⊃D3 Level Splitting

Fig. 23.4.2 Effects of D3 symmetric field. (a) Trigonal charges around orbitals. (b) Orbital level splitting.

(d) Character analysis of orbital splitting
 Putting in a triangular charge array reduces the spherical symmetry enjoyed previously by any molecule 
or atom occupying the space. The spherical R(3) symmetry has a continuum of equivalent directions and 
operations that are all equivalent and the atom behaves the same regardless of orientation. The presence of the 
charge array changes all that by reducing the symmetry to a sub-group D3 of R(3) that only has six operations or 
equivalent positions.
 Reduction of symmetry generally means lifting of degeneracy or level splitting. Higher symmetry like  R
(3) demands higher degeneracy 2j+1 for j-quantum levels, but lower symmetry such as D3 is less demanding; for 
example D3 never demands more than 2-fold or doublet degeneracy associated with its E=E1 irreducible 
representations.
 The Djmn(αβγ) matrices of (23.1.15) are, for integral j=, irreducible representations of the enormous R
(3) symmetry, that is, you cannot simultaneously block-diagonalize or reduce all Djmn(αβγ) matrices at once. 
However, you might be able to reduce or even diagonalize some subset of them, and you can certainly completely  
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diagonalize any one of them. The result of doing this would be just the matrix that represents an ω-rotation 
around the z-axis that has the following diagonal form. (Recall (23.1.15c).) 

  

 

D ω00( ) =

e− i ( )ω

e− i −1( )ω

e− i −2( )ω



ei −1( )ω

ei ( )ω

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

 (23.4.13)

Furthermore, it will be possible to "almost diagonalize" the D3 sub-group of Djmn(αβγ) matrices to 1-by-1 and 2-
by-2 blocks of D3 irreducible representations, that is, something like the following.

  

 

D D3( ) =

DA1

DA2

D11
E D12

E

D21
E D22

E




⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

= DA1 ⊕ DA2 ⊕⊕ DE ⊕  (23.4.14)

Each such reduction dictates the form of an -level splitting shown in Fig. 23.4.2 caused by a D3 field. By 
knowing which D3 matrices "hide" in a Dmn(D3) matrix we find the symmetry types and degeneracy of levels 
that will split from an -level. The exact position and ordering of the split levels is not obtained by the calculation 
about to be described; that comes later. However, familiarity with similar splitting in Sec. 3.5 and Sec. 3.7 
provides some clues for this example.
  We use trace or character analysis using D3 characters (15.1.13) and the following trace of D(ω). 
           TraceD

 ω( ) =                   e− i ( )ω + e− i −1( )ω + e− i −2( )ω +…+ ei −1( )ω + ei ( )ω  

Deriving the sum of this geometric series is similar to spectral sums from wave optics.

  e
− iω  TraceD ω( ) = e− i +1( )ω + e− i ( )ω + e− i −1( )ω + e− i −2( )ω +…+ ei −1( )ω

Subtracting the preceding two equations yields a trace formula.

    1− e− iω( )  TraceD ω( ) = −e− i +1( )ω + ei ( )ω

It reduces to a familiar sinx/x form of an elementary diffraction function.

  

 

TraceD ω( ) =
e− iω /2 ei +1/2( )ω − e− i +1/2( )ω( )
e− iω /2 e− iω /2 − e− iω /2( )  =

sin  + 1
2

⎛
⎝⎜

⎞
⎠⎟ω

sinω
2

     (23.4.15a)

A geometric realization of this sinx/x form in Fig. 23.4.3 associates R(3) traces segments of Dn polygons.
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Θ=

n = 12
n = 7

n = 5

n
2π

= n
πΘ

2

=Θ
2
j


j
= 4


j
= 1,2,3

n
π
j

1/sinn
π

sin( )/sinn
π
j

n
π

1/tann
π


j
= 1,2


j
Θ

= n
πΘ

2

(a) (j)th n-gon segments
χj(2π/n)= sin( )/sinn

π
j

n
π


j
= 2j+1

χ0(2π/5)=1
χ1/2(2π/5)=1.618...

=(1+√5)/2=

χ0(2π/7)=1
χ1/2(2π/7)=1.802...
χ1(2π/7)=2.247...
χ3/2(2π/7)=2.247...

χ1/2(2π/12)=1.932...
χ1(2π/12)=2.732...
χ3/2(2π/12)=3.346...

χ2(2π/12)=3.732...
χ5/2(2π/12)=3.864...
χ3(2π/12)=3.732...


j
= 1

(b) Integer j for n=12

χ0(2π/12)=1


j
= 3


j
= 5


j
= 7


j
= 2

(c) 1/2-Integer j for n=12


j
= 4


j
= 6


j
= 8

j=3

j=2

j=1

j=0

j=3/2

j=1/2

j=5/2

j=7/2

χ1(2π/12)=2.732..

χ2(2π/12)=3.732..

χ3(2π/12)=3.732..

χ4(2π/12)=2.732..

χ1/2(2π/12)=1.932...

χ3/2(2π/12)=3.346...

χ5/2(2π/12)=3.864...

χ7/2(2π/12)=3.346...

χ9/2(2π/12)=1.932...

             Fig. 23.4.3 Geometry of R(3)~U(2) character χj(2π/n) realized by segments of n-polygons. 
             (a) n=5,7,12 (b-c) n=12 details for integral spin and half-integral spin
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     A table of R(3) characters for just D3 rotations is to be compared below with D3 characters from (15.1.13).

   

 

TraceD ω( ) = sin  +1 / 2( )ω
sin ω / 2( )

ω = 0° ω = 120° ω = 180°
 = 0 1 1 1
1 3 0 −1
2 5 −1 1
3 7 1 −1
4 9 0 1
5 11 −1 −1
6 13 1 1

       

TraceD α( ) ω( )   for  D3  symmetry
ω = 0° ω = 120° ω = 180°

A1 1 1 1
A2 1 1 −1

E1 = E 2 −1 0

 (23.4.15b)

From this follows the D3 symmetry content of each R(3) -level splitting shown in Fig. 23.4.2. 

 
 
α − contentD ↓ D3( ) = f α =TraceD(Pα )/ α         

 
= 1 / °D3( ) χω

α( )*°cωTraceD
 ω( )

classω
∑   (23.4.15c)

 

 

orbital f A1 f A2 f E1 levels
 = 0 1 0 0 s( ) = A1
1 0 1 1 p( ) = A2 ⊕ E
2 1 2 0 d( ) = A1 ⊕ E⊕ E
3 1 2 2 f( ) = A2 ⊕ E⊕ E⊕ A1 ⊕ A2
4 2 1 3 g( ) = A1 ⊕ E⊕ E⊕ A2 ⊕ A1 ⊕ E
5 1 2 4 h( ) = A2 ⊕ E⊕ E⊕ A1 ⊕ A2 ⊕ E⊕ E
6 3 2 4 i( ) = A1 ⊕ E⊕ E⊕ A2 ⊕ A1 ⊕ E⊕ E⊕ A2 ⊕ A1

   (23.4.15d)

The content formula follows from analysis of class decomposition (15.2.5). The content number or “frequency” 
fα is proportional to the reducing representation trace of all-commuting projector Pα. The proportionality factor is 
dimension α, the number of 1’s in each Da(Pα). Then (15.2.5a) gives (23.4.15.c)

The A1EEA2A1EE A2A1... pattern is a familiar one for splitting seen before in Fig. 14.2.8(a) and Fig. 
15.3.3. The latter only has a single regular D3 band cluster A1E(gap) E A2(gap), and this what you will see 
repeating over and over in high orbital splitting. Deep within high D3 barriers three levels A1E correspond to C3 
waves 03 and ±13 that are nearly degenerate followed by gap and three more C3 waves E A2 of ±23 and a  ±33 pair 
A2(gap)A1. Above the barriers the normal Bohr-like doublet sequence resumes.

 03, ±13, ±23=±13, ±33=±03, ±43=±13, ±53=±13, ±63=±03,…   (23.4.16) 
For hexagonal symmetry splitting is quite similar with added B (Brillouin “back-and-forth”) 

representations and two kinds of doublets E1 and E2. Typical level splitting bands are shown in Fig. 14.2.9 and 
Fig. 15.5.2. Their sequence is A1E1E2B1B2 E1E2 A2A1 E1E2 … repeated.

This band cluster structure takes on more complex form in higher octahedral-cubic and icosahedral 
symmetries explored later on. 
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Problems for Chapter 23
Zeno Redux
23.1.1. A Type-j atomic beam sorter is capable of sorting atoms of total spin-j into 2j+1 separate beams, but only 
the top (m=j)-window is open. Suppose N of these Type-j analyzers are lined up to receive the preceding one's 
output and pass on only atoms that manage to go out its top window. The zeroth analyzer is untipped but each 
succeeding one is tipped by an additional π/N around the beam so that the N-th and final sorter is completely 
upside down.

(a) Give a formula for the fraction f(j,N) of atoms that make it all the way through. (First: What's the final state of 
any atom that gets through?)
(b) Give approximate f(j,N) for high N and j by algebraic expression f~(j,N) and evaluate numerically for N=4 
and j=10 and for N=4 and j=1/2. Check each f~ against f.

Fundamental literal interpretations
23.1.2. If a Type-j analyzer is tipped by angle β (not necessarily small) and feeds its top window into a second 
untipped Type-j analyzer, the latter will sort the output into all of its 2j+1 state-m-counters. However, for high-j 
relatively few counters get most of the counts.
(a) Use literal interpretation of |  j m〉 to derive approximate formula for number Δm of busy counters and most 
probable m-value. Test out your formula with j=20 for β=45° and for β=90°. (May refer to Fig. 23.2.2a-c.) 
(b) If you were to add the count rates of each counter-m in the second analyzer multiplied by the actual value m, 
that would give an expectation value 〈JZ〉R for the z-component JZ of angular momentum coming out of the first 
β-tipped analyzer. 

(a) Show that:  
 
JZ

R =
R j

j
JZ

j
j
R

    where: 
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(b) Give an exact formula for 〈JZ〉R in terms of j and β.
(Hint : First derive R†(0β0) JZ R(0β0)= (?) JZ + (?) JX .) 
(c) Give exact formula for 〈(JZ)2〉  in terms of j and β .
(d) Derive standard deviation  ΔJZ (j,β)= √〈(JZ−〈JZ〉)2〉 and compare to Δm in part (a).   

Splat!
23.1.3. A diatomic molecule is in a (j=2 , m=0) eigenstate. (First, what is the body n-quantum number?) Suppose 
a quantum "fly swatter" smashes the thing onto the XZ-plane. Compare the probability it winds up tipped between 
54.73° and 54.74° from the Z-axis to that probability for a (j=0 , m=0) eigenstate.  (with ±1% error)
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