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Angular Momentum Coupling and Tensor 
Operators

W. G. Harter

The quantum mechanics of coupled angular momentum states are developed. The 
development begins with the simplest example of two spin-1/2 particles and spin-spin 
interaction for atomic hydrogen hyperfine states obtained by Clebsch-Gordan coupling and 
their 21-centimeter resonance used by astronomers to gauge free H-atom population. Non-
relativistic electron spin-spin and spin-orbit coupling models are introduced. The boson 
algebraic derivation  in Chapter 23 of  Wigner-D functions is extended to deriveCG and Wigner 
3j coefficientsas we continue to develop Clebsch-Gordan-Wigner angular momentum calculus.  
Examples of R(3) subgroup CG coefficients are also derived .
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Chapter 24. Angular Momentum Coupling and Tensor Operators

24.1 Angular Momentum States and Atomic Level Structure
The electron and the proton each have a spin-1/2 and a magnetic moment. As has become customary in this text, 
we begin by describing the finest spectral details first, namely, electron-proton spin-spin interaction as an 
example of coupling and symmetry and the simplest example of hyperfine spectra.  Then atomic orbit-orbit and 
spin-orbit coupling and atomic fine structure is introduced
 Proton-electron spin-spin interaction is very weak compared to other atomic forces such as the Coulomb 
attraction that binds the lowest energy states of H. This allows us to focus on just the spin states of the proton 
nucleus and electron fixed in a zero-orbit (1s) ground state. Details of H-orbital states 1s, 2s, 2p, 3s, 3p, 3d, ... are 
treated in Chapter 26 but are not needed for the approximations used here.

a. Spin-spin (1/2)2 product states: Hydrogen hyperfine structure
Without spin-spin interaction the following four outer ⊗−product “ket-ket” states would be degenerate 
eigenstates. Such products were introduced in Section 21.1 equation (21.1.12) as a 2D harmonic oscillator basis. 
The relevant ket-kets are listed below just for the fundamental spin-up and spin-dn states.

↑ ↑ =
1
2
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2
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2
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2
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, ↓ ↓ =
1
2

− 1
2

proton 1
2

− 1
2

electron

The column matrix representations of each ket-ket are the following.
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For zero interaction we may rotate either spin independently without varying energy. This is done using spin-1/2 

representation Dm,n
1/2 αβγ( ) =  m

1/2 R αβγ( )   n
1/2  applied in turn to proton and electron kets.
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  (10.A.1)repeated 
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rotation uses the same U(2) representation matrix of equation (10.A.1) but proton angles (αp, βp, γp) may differ from 

(αe,  βe, γe) for the electron. The result is an outer product symmetry U(2)proton×U(2)electron. 

Each operator (Rproton, Relectron) is a ×-product of two parts: Rproton operates only on proton kets while Relectron 

operates only on electron kets. This makes a Kronecker product D
1
2 ⊗ D

1
2 matrix representation. Kronecker 

product components are D
′mp mp
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2 .

   D
1
2 ⊗ D

1
2 =          (24.1.2)  
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For example, with just the y-rotation Euler angles βp and βe, the Kroneker matrix is as follows.
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⎟
⎟

The cross-product matrix (24.12) is an irreducible representation of the cross-product R3 × R3  group.

Spin-spin interaction reduces symmetry R(3)pxR(3)e to R(3)pe  
 If electron and proton spins are coupled then operator [R(α pβ pγ p ),R(α eβeγ e )] is no longer a symmetry 

operator unless α p = α e , β p = βe , and γ p = γ e  because only “rigid” rotations preserve the relative orientation of the 

two spins and are still symmetry operators. Rotation operators such as 
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                                      R 0β p0( ), R 0βe0( )( ) = e− iβpJyproton e− iβeJyelectron       (24.1.3)

are generated by individual angular-momentum operators Jyproton  and Jyelectron  but now must be multiplied by equal 

angles (β p = βe ≡ βep ) . With equal angles the rigid rotation about the y-axis simplifies as follows.

          R 0βep0( ), R 0βep0( )( ) = e− iβepJyproton e− iβepJyelectron = e− iβep Jyproton +Jyelectron( ) = e− iβep Jy
total( )     (24.1.4)

The total angular momentum is a symmetry operator generator. Individual spin momentum of each proton or 

electron may no longer be conserved by an interaction, but total momentum is still constant.

                                                     Jtotal = Jproton + Jelectron      (24.1.5)
  
By total momentum we mean here total spin angular momentum J = S. The orbital momentum of the H s-state 

electron is zero here. Spin-orbit and orbit-orbit interactions will be introduced later.

Reduced symmetry reduces representation D1/2⊗D1/2 to D1⊕D0

The Kronecker product D 1
2 ⊗ D

1
2 (Recall (24.1.2).) is an irreducible representation (irrep) of R3xR3 , but it is a 

reducible representation of the reduced symmetry generated by J total operators. The following transformation 

(which we derive shortly) of the matrix D 1
2 ⊗ D

1
2  shows how (24.1.2) reduces when only rigid rotations 

( (β p = βe ≡ β ) ,etc.) are allowed.
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⎜
⎜
⎜
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⎟
⎟
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β
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β
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β
2
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β
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2 cos
β
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2

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
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2
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2
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2
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⎜
⎜
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⎟
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2
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2
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2 0
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2
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2

0
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2
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2
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⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
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⎟
⎟

  (24.1.6a)
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In matrix notation this is the following. Note that the D1 above agrees with D1 in (23.1.15c). 

                        C ⋅D
1
2 (0β0)⊗ D

1
2 (0β0) ⋅C =

D1(0β0)
0
0
0

0 0 0 D0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

= D1⊕ D0 .   (24.1.6b)

Standard index notation for this block transformation is shown below.

                                        ∑
m1 ′m1

∑
m2 ′m2

Cm1

1
2

′m1

1
2

M
J Dm1m2

1
2 D ′m1 ′m2

1
2 Cm2

1
2

′m2

1
2

′M
′J =δ J ′J DM ′M

J        (24.1.6c)

Here the transformation matrix components are called Clebsch-Gordan (CG) coefficients or CGC.

                                                 Cmp

1
2

me

1
2

M
J ≡

1
2

mp

1
2

me

J
M

         (24.1.6d)

CGC combine ket-kets into single kets of definite total-momentum quantum J and z-component M.

            M
J ( 12⊗

1
2 ) = ∑

mp ,me
mp

1
2

me

1
2

mp

1
2

me

1
2

M
J = ∑

mp ,me

Cmp

1
2

me

1
2

M
J

mp

1
2

me

1
2     (24.1.6e)

Also, CGC reduce the product representation D 1
2 ⊗ D

1
2  of  R3Rigid  symmetry as shown in (24.1.6). CGC are 

tabulated just as they appear in their transformation matrix. For example, (24.1.6a) is tabulated below.

                              C
1
2

⋅

1
2

⋅

⋅

⋅
⋅ =

j1 = 1
2 ⊗ j2 = 1

2
J =1

M =1

1

0

1

−1

0

0

m1 = 1
2 m2 = 1

2
1 ⋅ ⋅ ⋅

+ 1
2 − 1

2 ⋅
1
2 ⋅

1
2

− 1
2 + 1

2 ⋅
1
2 ⋅

−1
2

− 1
2 − 1

2 ⋅ ⋅ 1 ⋅

     (24.1.7)

More general derivation of coupling coefficients can be done by appealing to the generators 

Jz
total = Jz

particle1 + Jz
particle1 and J±

total = J±
particle1 + J±

particle2 . First, Jztotal is applied to a general coupled ket made of 

particle-1 of spin j1 and particle-2 of spin j2, that is, like (24.1.6) but with general spin values j1 and j2.
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    M

J
( j1⊗ j2 ) = ∑

m1 ,m2
Cm1

j1
m2
j2

M
J j1

m1

j2
m2

          (24.1.8a)

Each z-component operator sidles up to its respective eigenstate and yields its m-eigenvalue. 

       
J

z

total

M
J ( j1⊗ j2 ) = ∑

m1 ,m2
Cm1

j1
m2
j2

M
J J

z

total j1
m1

j2
m2

=M M
J ( j1⊗ j2 ) = M ∑

m1 ,m2
Cm1

j1
m2
j2

M
J j1

m1

j2
m2

∑
m1 ,m2

Cm1
j1

m2
j2

M
J J

z

particle1 j1
m1

j2
m2

+ j1
m1

J
z

particle2 j2
m2

⎛
⎝⎜

⎞
⎠⎟ = ∑

m1 ,m2
Cm1

j1
m2
j2

M
J m1 + m2( ) j1

m1

j2
m2

    (24.1.8b)         

Product states are orthonormal and so (24.1.8) impliesC m1
j1

m2
j2

M
J = 0  unless M = m1 + m2 .

                           j1
′m1

j2
′m2

j1
m1

j2
m2

= j1
′m1

j1
m1

j2
′m2

j2
m2

= δ j1
′m1

j1
m1
δ j2

′m2

j2
m2

                                 (24.1.8c)    

       
The total z component M must be the sum of the z components of the factor states. The state with the highest 

momentum M = m1 + m2 =J is made from factors j1 and j2 each of which has its highest possible m-value, namely, 

m1 = j1 and m2 = j2, that is, if M = j1 + j2 =J, then we have Cj1
j1
j2
j2

j1 + j2
j1 + j2= 1 .  

                                                    j1
j1

j2
j2

=
M = j1+ j2

J= j1+ j2
( j1 ⊗ j2 ) .     (24.1.9)

The total lowering operator J−total  is then applied to this highest state using relations (23.1.5c-d).

                                

J−
total

J

J
( j1⊗ j2) = J−

particle1
j1
j1 J−

particle2
j2
j2 ,

2( j1 + j2 ) J −1

J
( j1⊗ j2 ) = 2 j1 j1 −1

j1
j2
j2 + 2 j2 j1

j1
j2 −1
j2 ,

J −1

J
( j1⊗ j2 ) = j1

j1 + j2 j1 −1
j1

j2
j2 + j2

j1 + j2 j1
j1

j2 −1
j2 ,

  (24.1.10)

For example, the proton-electron problem has j1 = 1
2 = j2 and that yields the following.
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J = 1
1
2 ⊗

1
2( )

M = 0
=

1
2

1
2
−1
2

1
2
+1
2

+
1
2

1
2
+1
2

1
2
−1
2

    (24.1.10) example 

This is in the 2nd-column of the table of (24.1.7). Applying J−total  again gives the 3rd-column state

J = 1
1
2 ⊗

1
2( )

M = −1
=

1
2
−1
2

1
2
−1
2

.

Finally, the 4th-column state results by making it normal to the 2nd-column (J=1, M=0) state (24.1.10)ex. The 

result is the (J=0, M=0)-singlet state of the Hydrogen hyperfine level spectrum.

                                        

J = 0
1
2 ⊗

1
2( )

M = 0
= eiφ 1

2

1
2
−1
2

1
2
+1
2

−
1
2

1
2
+1
2

1
2
−1
2

⎛

⎝⎜
⎞

⎠⎟
    (24.1.11)

The result is defined only up to an overall phase factor eiφ. In this case the phase is conventionally chosen to be 

eiπ =-1. At first, phase conventions for CGC seem arbitrary and capricious.  In Sec. 24.2 we make them seem less 

arbitrary by deriving relations between C m1
j1

m2
j2

M
J , CM

J
m1
j1

m2
j2 and C m1

j1
M
J

m2
j2 . 

Reduced representation D1⊕D0 implies singlet-triplet splitting 

This reduction of a four-by-four representation D 1
2 ⊗ D

1
2  to a three-by-three “vector” irrep D1 and a one-

by-one “scalar” irrep D0 implies a splitting of the four spin energy levels of Hydrogen into a (J=1) “triplet” and a 

(J=0) “singlet,” as shown in Figure 24.1.1 on the following page.

The observed magnitude of this splitting is small, but very important to radio astronomers. It is one of the 

more precisely measured quantities: 1,420,405,751.8 ± 0.03 Hz or approximate equivalents 5.88 x 10-5 eV; 

0.0474 cm-1, or 1/(21.2 cm). It is the well-known 21-cm line that is used to locate atomic Hydrogen in 

intergalactic space. This is described by the Fermi spin-spin contact interaction Hamiltonian.

                                                        Hcontact = aepJ
proton • J electron           (24.1.12a)
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The name “contact” refers to a δ (0) -function interaction based on the value ψ (0)  of the electronic wave function 

at the location of the proton at origin. The classical theory is reviewed in Appendix 24A.

    aep = 2µ0 / 3( )geβegpβ p ψ 0( )2         (µ0 = 4π ⋅10−7 N/Amp2 )        (24.1.12b)

The electron Compton wavelength   Compton =  / 2mec = 2rDirac  is greater than that of the proton by a factor of mp/ 

me=1836. As sketched in Fig. 5.4.2 and Appendix 24A, the electron “engulfs” the tiny proton. But, all that 

matters is Hydrogen (1s) wave function probability ψ 1s (0)
2  at the origin inside the tiny “belly” of the proton 

where the proton B-field is most monstrous. Hydrogen waves are described in Chapter 26.

                                                            ψ 1s 0( ) 2 = 1 / πa03( )          (24.1.12c)

Potential energy of a magnetic dipole m in a B-field has the form –m•B. The proton’s dipole m=apJ points along 

its spin angular momentum vector Jproton that then tends to line up with B. The electron’s dipole m=-aeJ is 

opposite its spin Jelectron so it tends to anti-align to B, which in this case is the proton’s B-field.

1
1 =

1
0 = ↑

p
↓
e + ↓

p
↑
e( ) / 2

1
−1 = ↓p↓e

+

0
0 = ↑

p
↓
e

− ↓
p
↑
e( ) / 2

↑
p
↑
e

↑
p
↑
e

a/4

-3a/4

Triplet Spin-1

Singlet Spin-0

↓
p
↑
e

↓p↓e↑
p
↓
e

1
2

⎛
⎝⎜

⎞
⎠⎟
⊗

1
2

⎛
⎝⎜

⎞
⎠⎟
= 1( )⊕ 0( )

21-centimeter
H transition

Observed
1,420,405,751.8±.03Hz

Calculated
1.4227 GHz

Fig. 24.1.1 21-cm Singlet-triplet splitting of levels for interacting spin-1/2 electron and proton.

The Bohr radius as given by (5.4.3) is  a0 = 
2 / me2 = 0.5292x10−10 m. The g-factors ge (=2.0023) and gp  

(=5.585) depend on internal structure of the electron and proton, respectively. Gyro-magnetic constants 

 µe(= e / 2me = 9.27401 ⋅10
−24 Joule /Tesla)  and  µp (= e / 2mp = 5.05078 x10

−27 J /T )  are magneton moments 

for the electron and proton, respectively, and vary inversely with rest mass.  Classical development of the g and µ 
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constants is presented in Appendix 24A. (See Tables after (24.1.18). More rigorous derivation of spin interaction 

involves the Dirac algebra and will be discussed in later units.)

 The eigenvalues of the contact interaction are easy to find if it is rewritten in terms of operators that are 

diagonal in the bases of triplet and singlet states (24.1.10)x and (24.1.11):

                         
aepJ

proton ⋅ J electron =
aep
2

J proton + J electron( )2 − J proton( )2 − J electron( )2⎡
⎣

⎤
⎦

=
aep
2

J total( )2 − J proton( )2 − J electron( )2⎡
⎣

⎤
⎦.

    (24.1.13)

This trick is often used to evaluate the eigenvalues of interaction operators as in the example here.

             
M
J ( 1

2⊗
1
2 ) Hcontact M

J ( 1
2⊗

1
2 ) =

aep
2

J J +1( ) − 1
2

1
2 +1( ) − 1

2
1
2 +1( )⎡⎣ ⎤⎦

=
aep / 4 for the (J = 1) triplet state,

−3aep / 4 for the (J = 0)    singlet state.
⎧
⎨
⎪

⎩⎪

            (24.1.14)

Note that the magnitude of the singlet-triplet splitting is equal to that of the interaction constant (aep). Substituting 

the magnetic constants given with Eq. (24.1.12) yields the following approximate value.

                                         aep calculated( ) = 1.4227 GHz.    (24.1.15)

 This agrees with the observed value up to the third decimal place. Further theory of relativistic spin- 1
2  

particles is needed to get more accuracy. However, no theory so far can honestly be said to have the 10- or 11-

place accuracy of the experiment since that is so far beyond our present accuracy of knowledge of fundamental 

constants other than c.

 To continue the coupling analysis for more general values of angular momentum, one needs to finish the 

lowering job started in Eq. (24.1.10). After N lowering steps the result is

   J _( )N J = j1 + j2
M = j1 + j2

= ∑
m1,m2=0

N N !
n1 !n2 !

J_
proton( )n1 j1

j1
J_
electron( )n2 j2

j2
,

where N = n1 + n2 . Using Eq. (5.4.23b) repeatedly one obtains
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                           J _( )n j
m

=
j + m( )! j − m + n( )!
j − m( )! j + m − n( )!

j
m − n

.  (24.1.16)

This gives the desired result

                           J = j1 + j2
M = m1 + m2

= ∑
m1,m2

C m1
j1

m2
j2

M
J j1 j2
m1 m2

,

where the total momentum J= j1 + j2  and z-component M = m1 + m2  are maximal.

         C m1
j1

m2
j2

M
j1 + j2=

J − M( )!
j1 − m1( )! j1 + m2( )!

J + M( )!
( j1 + m1( )! j1 + m2( )!

2 j1( )! 2 / 2( )!
2J( )! .   (24.1.17)

These are the coupling coefficients for the cases of highest total momentum J= j1 + j2 . The coefficients for the 

other possibilities,  J= j1 + j2 −1, j1 + j2 − 2,…, j1 − j2  are obtained by orthogonalization, or by a generalization of 

Eq. (24.1.17) and derived in the following Section 24.2.

Comparing singlet-triplet and NMR-ESR states: Entanglement 
 Before considering more general coupling theory let us consider the quantum mechanics of the coupling 

process and the physical difference between “primitive’ product states ↑ ↑ , ↑ ↓ , ↓ ↑ , or ↓ ↓  and the 

“coupled” product states, such as ↑ ↓ + ↓ ↑( ) / √ 2 , that are correlated or entangled by Clebsch-Gordan 

coefficients.  To do this we imagine an experiment in which correlated or coupled states are gradually 

transformed into primitive ones (or vice-versa) by changing an externally applied B-field. 

This could be done by a Hamiltonian that has Zeeman-Larmour magnetic moment interactions with an external 

B-field. Terms apJ
proton  and aeJ

electron  are added to Fermi-contact interaction operator (24.1.2).

   H1s−B− field = −apBzJz
proton + aeBzJz

electron + aepJ
proton • J electron         (24.1.18)

The constants are repeated in the tables below and discussed in Appendix 24A.
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g − factor Bohr − magneton gyromagnetic factor

electron
ge

= 2.0023

µe =
e

2me

= 9.27401 ⋅10−24 J
T

ae = geµe

= 1.8570 ⋅10−23 J
T

proton
gp

= 5.585

µp =
e

2mp

= 5.05078 ⋅10−27 J
T

ap = gpµp

= 2.8209 ⋅10−26 J
T

     Magnetic constant :  µ0 / 4π = 10−7 N / A2

Fermi − contact factor

aep = µ0
2
3

1
πa0

3 aeap = 9.427 ⋅10−25 J

µ0
2
3

1
πa0

3

aeap
h

= 1.4227 ⋅109Hz

µ0
2
3

1
πa0

3

aeap
hc

= 4.746m−1

                      = 1
21.1

cm−1

 The H(1s)-B-field energy (24.1.18) has Zeeman −m• B = gµBzJz interactions with an external B-field in the 

z direction. Primitive product states are eigenvectors of external m• B interactions while coupled states are 

eigenvectors of the internal Fermi-contact interaction. 

 The in-line-spin states 1
1 = ↑ ↑  and −1

1 = ↓ ↓  are eigenvectors of both interactions so their eigenvalues 

are calculated immediately in either basis as shown below. But, a conflict exists between the anti-aligned M=0 

states ↑ ↓ or ↓ ↑  versus correlated 0
1  or 0

0  states. As seen in the left hand matrix in the primitive { ↑ ↑ , ↑ ↓ ,

↓ ↑ , ↓ ↓ } representation below, the states ↑ ↓ and ↑ ↓  are eigenstates of the Zeeman operator, but ↑ ↓ and

↑ ↓  are not eigenstates of the Fermi-contact operator.  The latter is diagonal in the representation that uses 

correlated bases { 1
1 , 0

1 , 0
0 , −1

1 } as shown below.

−apBzJz
proton + aeBzJz

electron =

↑p↑e ↑p↓e ↓p↑e ↓p↓e

↑p↑e 1
2
ae − ap( )Bz ⋅ ⋅ ⋅

↑p↓e ⋅ −1
2

ae + ap( )Bz 0 ⋅

↓p↑e ⋅ 0 1
2
ae + ap( )Bz ⋅

↓p↓e ⋅ ⋅ ⋅ −1
2

ae − ap( )Bz

      

aepJ
proton • J electron =

↑p↑e ↑p↓e ↓p↑e ↓p↓e

↑p↑e aep
4

⋅ ⋅ ⋅

↑p↓e ⋅
−aep
4

aep
2

⋅

↓p↑e ⋅
aep
2

−aep
4

⋅

↓p↓e ⋅ ⋅ ⋅
aep
4

Correlated { 0
1 , 0

0 } are not Zeeman eigenstates but they do diagonalize the Fermi-contact operator.
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−apBzJz
proton + aeBzJz

electron =

1
1

0
1

0
0

−1
1

1
1 1

2
ae − ap( )Bz ⋅ ⋅ ⋅

0
1 ⋅ 0 −1

2
ae + ap( )Bz ⋅

0
0 ⋅ −1

2
ae + ap( )Bz 0 ⋅

−1
1 ⋅ ⋅ ⋅ −1

2
ae − ap( )Bz

        

aepJ
proton • J electron =

1
1

0
1

0
0

−1
1

1
1 aep

4
⋅ ⋅ ⋅

0
1 ⋅

aep
4

0 ⋅

0
0 ⋅ 0

−3aep
4

⋅

−1
1 ⋅ ⋅ ⋅

aep
4

The Hamiltonian is a sum of Zeeman and Fermi-contact operators, and so energy states lie somewhere between 

the two extremes depending on the relative strength of the Zeeman aeBz or apBz and Fermi aep. Note the following 

Clebsch-Gordan transformation (24.1.7) between the two extremes. It transforms the Zeeman 2-by-2 matrix from 

AD-symmetry to B-symmetry and vice-versa for the Fermi 2-by-2 matrix.  

1
2

1
2

1
2

−1
2

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

−
ae + ap

2
B 0

0
ae + ap

2
B

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

1
2

1
2

1
2

−1
2

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

              =
0 −

ae + ap
2

B

−
ae + ap

2
B 0

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

      

1
2

1
2

1
2

−1
2

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

−
aep
4

aep
2

aep
2

−
aep
4

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

1
2

1
2

1
2

−1
2

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

                =

aep
4

0

0 −
3aep

4

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

We know the eigenvalues of each operator in its preferred basis, that is, the Zeeman values in the product basis 

{ ↑ ↓ , ↓ ↑ } and Fermi values (24.1.14) in the coupled basis { 0
1 , 0

0 }. A CGC transformation (24.1.7) then 

provides a simple way to evaluate each operator in the other basis. (Nevertheless, you should develop your 

raising-operator skills by evaluating each operator representation directly.)

 We write the H-matrix in convenient form by defining a sum S and a difference D of moments.

    S = 2(ae + ap ) / aep   D = 2(ae − ap ) / aep    

Then the eigenvalues take a form convenient for plotting in Fig. 24.1 2. The straight-line eigenvalues are

 E ↑p↑e( ) = E11 = aep
4
1+ DBz( ) ,  E ↓p↓e( ) = E−11 =

aep
4
1− DBz( ) .

The hyperbolas are eigenvalues of the 2-by-2 matrix here rewritten in aep / 4  units. 
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       H ↑↓( ) =

aep
4

−
ae + ap
2

Bz

−
ae + ap
2

Bz −
3aep
4

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

=
aep
4

1 −SBz
−SBz −3

⎛
⎝⎜

⎞
⎠⎟

Low-Bz eigenvalues split like Bz2. Then they approach straight-line asymptotes as the Bz-field increases.

 E± =
aep
4

−1± 4 + S2Bz
2⎛

⎝
⎞
⎠ |Bz |→0⎯ →⎯⎯⎯

aep
4

1+ S2Bz
2 / 2

−3− S2Bz
2 / 2

⎧
⎨
⎪

⎩⎪
|Bz |→∞

⎯ →⎯⎯⎯
aep
4

−1+ SBz
−1− SBz

⎧
⎨
⎩

Eigenstates are transformed if field Bz varies. For low field they are singlet-triplet states 0
1  or 0

0  with H-

eigenvalues 1 and –3, respectively, in aep / 4  units. For higher Bz-field they gradually morph into primitive ↑ ↓

or ↓ ↑  product states. This is a B-to-A-type symmetry change similar to the Ch. 10 description of the NH3 

maser levels in Fig. 10.3.1. Levels in Fig. 24.1.2(a) support H-maser transitions.

 Level plots straighten out as the transformations finish. The absolutely straight level lines belong to states 

that do not transform at all. The levels cross if there is a difference, however slight, between the sum S and 

difference D between the two magnetic moments. The asymptotes –1±SBz will cross one of the straight-line 

levels +1±DBz at certain Bz-values Bz=±2/(S-D)=±8aep/ap, which for the H-atom in Fig. 24.1.2(a), happens well 

off the plot at Bz=±16 T. In Fig. 24.1.2(b), where ap is assumed to be 10 times larger, asymptote crossings occur 

at much smaller field values Bz=±1.6 T. However, the level crossings are just inside that value since the 

symmetry transformation pulls the hyperbola off the asymptote.

 A classical electron model has rotating negative charge and a magnetic moment m opposite to its spin S or 

J. Such a model would find its lowest magnetic potential energy −m• B  with spin anti-aligned to the B-field, 

while the proton wants to align its J with B.  So, it is not surprising that the lowest state for positive Bz-field is 

proton-up and electron-down ↑
p
↓
e  in the lower right hand side of Fig. 24.1.2(a). 

 However, the highest state is not the reverse spin state ↓
p
↑
e  until after the 2/(S-D)-level crossing. 

(Compare the upper right hand sides of parts (a) and (b) of Fig. 24.1.2.) Later we will describe transitions 

between these levels. Generally, transitions that flip nuclear spins give nuclear magnetic resonance NMR spectra 

while flipping electronic spins give electron spin resonance ESR spectra. Level crossing spectra, such as 21-cm 

lines at B=0, involve both NMR and ESR. (Do we need another acronym like NMESS?)
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1.0 Ghz

2.0 Ghz

3.0 Ghz

Tesla (Tesla)

↓
p
↑
e

↑
p
↑
e

↓p↓e

↑
p
↓
e

Bz field

ESR
transitions

NMR
transition

NMR
transition↓

p
↑
e

↑
p
↑
e

↓p↓e

↑
p
↓
e

1
1

1
0

1
−1+

1
0

J=1 triplet

J=0 singlet

(a)
Weak
Proton
Moment

Fig. 24.1.2 Model H-hyperfine levels and transitions versus B-field.

Tesla (Tesla)

↓
p
↑
e

↑
p
↑
e

↓p↓e

↑
p
↓
e

Bz field

ESR
transitions

NMR
transition

NMR
transition

(b)
Medium
p-Moment

Level crossings
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b. Two-Electron Atomic Configurations

Consider the elementary electronic structure of the Carbon atom which has six electrons in a configuration (1s)2

(2s)2(2p)2. An approximate model ignores, at first, the two pairs of electrons in the “closed” 1s and 2s shells, and 

treats the atom as though it had only a pair of 2p (=1)-electrons. The orbital basis of this model has nine (2p)2 

bases m1
1

m2
1  made from products of individual 2p orbital m1

1  and m2
1  states.

  Orbital states p⊗p=D⊕P⊕S
If no electrostatic repulsion or interaction of any kind existed between the electrons, then these nine states 

would be degenerate in energy. However, in the presence of interaction the following coupled states are model 

eigenstates whose energy depends on values of total orbit momentum L, but not M.

                                            2p( )2 L
M

= ∑
m1,m2

C m1
1

m2
1

M
L 1
m1

1
m2

     (24.1.19a)

 
Formula (24.1.17) gives the L=2 coefficients C m1

1
m2
1

M
2  in the left-hand block of the following table. Applying 

orthogonalization and lowering to the L=2 entries gives the L=1 and L=0 states.

 C m1
1

m2
1

M
L =

2 2 2 2 2 1 1 1 0
1 ⊗ 1 2 1 0 −1 −2 1 0 −1 0
1 1 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

1 0 ⋅ 1
2

⋅ ⋅ ⋅ 1
2

⋅ ⋅ ⋅

1 −1 ⋅ ⋅ 1
6

⋅ ⋅ ⋅ 1
2

⋅ 1
3

0 1 ⋅ 1
2

⋅ ⋅ ⋅ − 1
2

⋅ ⋅ ⋅

0 0 ⋅ ⋅ 2
3 ⋅ ⋅ ⋅ ⋅ ⋅ − 1

3

0 −1 ⋅ ⋅ ⋅ 1
2

⋅ ⋅ ⋅ 1
2

⋅

−1 1 ⋅ ⋅ 1
6

⋅ ⋅ ⋅ − 1
2

⋅ 1
3

−1 0 ⋅ ⋅ ⋅ 1
2

⋅ ⋅ ⋅ − 1
2

⋅

−1 −1 ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅

⋅⋅  (24.1.19b)

The electrostatic interaction causes a splitting of the nine m1
1

m2
1  levels and it results in L=2, 1, and 0 levels, 

labeled D, P, and S, respectively, in Figure 24.1.3(a) that shows the three lowest levels for carbon.
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-8

-9

-10

-11

-12

(2p)2

1S

1D

3P

(eV)(a) Carbon (2p)2

(2p3p)

1S

1D

3P

(b) Mixed Configuration

1P

3S

3D

Figure 24.1.3   Atomic 2S+1L multiplet levels for two (l = 1) p electrons. (a) Two equivalent electrons. Pauli 
exclusion principle allows only 1S, 1D, and 3P levels for two p-electrons with the same radial quantum number. 
(b) Two inequivalent electrons. All combinations of spin and orbit states are allowed.

Spin-S states to match orbital-L states:Pauli-Fermi-Dirac exclusion-symmetry rules
 Each 2p electron also has a spin-1/2 and total spin states make triplets and singlet of Figure 24.1.1. First 

there is a triplet set from (24.1.10) followed by a singlet state from (24.1.11).

  Ms =+1
S=1 = +1/2

1/2
+1/2
1/2 ,       Ms =0

S=1 = +1/2
1/2

−1/2
1/2 + −1/2

1/2
+1/2
1/2( ) / 2,       Ms =−1

S=1 = −1/2
1/2

−1/2
1/2 .

  
            (24.1.20a)
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                                            Ms =0
S=0 = +1/2

1/2
−1/2
1/2 − −1/2

1/2
+1/2
1/2( ) / 2    (24.1.20b)

The triplet atomic 3L-states are ket-ket products of an M
L  orbital state with a triplet spin state MS

S=1 .

                                            3LMLMS ≡
L
ML

S = 1
MS

     (24.1.21a)

A singlet atomic 1L-state is a ket-ket product of an M
L  orbital state with a singlet spin state 0

S=0 .

                                               1LML 0 ≡
L
ML

S = 0
0

      (24.1.21b)

But, the Pauli Exclusion Principle rules out some states due to Fermi-Dirac-anti-symmetry.

 The Pauli principle requires 2S+1 L  states be anti-symmetric to permutation of electrons. Even-L orbital 

states M
L=2  and 0

L=0  in the table of (24.1.19) are symmetric to the interchange m1
1

m2
1 → m2

1
m1
1  of the orbital 

states of the electrons and can only “marry” an anti-symmetric S = 0 singlet spin state. So, states 1L = 2  or (1D) 

and 1L = 0  or (1S) obey the Pauli principle and exist in Figure 24.1.3(a). Similarly, odd-L orbital state M
L=1 is anti-

symmetric and can only marry all symmetric (S=1)-triplet spin states to give the one (3P) triplet term containing 

nine states 3P ML

L=1
MS

S=1  in the ground (2p)2 configuration. 

 In excited configurations like (2p)(3p) shown in Figure 24.1.3(b), the terms  (3D), (1P), and (3S) missing 

from (2p)2 are no longer excluded since, for example an anti-symmetric (2p)(3p)-3D-orbital state such as 

(2 p3p)3D 2
2 = 2 p 1

1 3p 1
1 − 3p 1

1 2 p 1
1  exists, but (2 p)2 3D 2

2 = 2 p 1
1 2 p 1

1 − 2 p 1
1 2 p 1

1 = 0 vanishes for (2p)2.

 It is sometimes possible to estimate the ordering of 2S+1L terms. Because of its anti-symmetry the 3P ML

L=1  

orbital wave function must go to zero as its two electrons approach each other. ( x1 → x2 )

                                       x1x2 (2p)
2 3P ML

L=1 = − x2x1 (2p)
2 3P ML

L=1
x2→x1

⎯ →⎯⎯ 0

 Therefore, the two electrons in this triplet spin state are never at the same point, and seldom near each other, thus 

making electrostatic repulsion energy less for triplet spin-states than for singlet (S=0) total spin. Indeed 3P is the 

ground state of carbon.

 Now a classical argument can be made to tell which 2S+1L for a given total spin S should be lowest. One 

may imagine that to make the greatest L the electrons must orbit in more or less the same direction so they have 
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less chance of colliding and raising the electrostatic energy. Indeed, 1D is lower than 1S. Together, these 

arguments about symmetry of S and L states give what are known as Hund’s rule for atomic ()n ground states 2S

+1L. The ground configuration has the highest possible spin S and orbital momentum L allowed by the Pauli 

principle. They are followed throughout the Periodic chart of atoms wherever S and L are good quantum state 

labels.

c. Spin-Orbital Coupling
The Clebsch-Gordan outer product is used to describe states corresponding to two properties of a single electron, 

such as spin and orbit. The s-ket-kets of a single electron in hydrogen are written as follows.

                                               m1
l

ms

1
2 ≡ m1

l
m2

1
2 ,     (24.1.22)

Then Clebsch-Gordan coefficients (CGC) give states of definite total angular momentum j.

    
 
⊗ 1

2( ) m
j = ∑

m1m2
C m1


m2

1
2

m
j

m1


m2

1
2    (24.1.23)

 Before discussing the spin-orbit interaction, one may predict the form of the splitting of   -levels. Several 

 n j  levels of hydrogen are plotted in Figure 24.1.4 according to the following CGC reduction.

                           C
†D ⊗ D

1
2C = D+

1
2 ⊕ D−

1
2  > 0( )   (24.1.24)
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(2p)2

1S

1D

3P

(a) (2p)2 LS to jj Correlation
1S

1D

(b) (2p)2 or (2p3p) LS and jj Coupling

1P

3S

3D

1S0

1D2

3P2
3P1
3P0

J=0

J=2

J=2

J=1

J=0

J=1

J=3

J=2

J=1
J=1

3P

3P2
3P1
3P0

3D3
3D2
3D1

1D2

1S0
1P1

3S1

(1⊗1)⊗0
=0⊕1⊕2

(1⊗1)⊗1
=(0⊕1⊕2)⊗1

=0⊕1⊕1⊕2⊕2⊕3

(1⊗1)⊗(1/2⊗1/2)
LS Coupling
(l1⊗l2)⊗(s1⊗s2)

(1⊗1/2)⊗(1⊗1/2)
jj Coupling
(l1⊗s1)⊗(12⊗s2)

3/2⊗1/2
=0⊕1⊕2⊕3

1/2⊗1/2
=0⊕1

3/2⊗1/2
=1⊕2

1/2⊗3/2
=1⊕2

(2p3p)

(2p)2

Figure 24.1.4   Fine-structure nj  levels for atomic hydrogen. Hyperfine splitting is not shown. 

The splitting is quite small compared to the (1s) energy of -13.6 eV and shifts and splitting of excited 

levels is even less than the shift 1.8 · 10-4 eV of the ground (1s) level. The spectral structure that arises from 

transitions between these levels is called fine structure. This splitting is large compared to the 1.42 Ghz hyperfine 

splitting in Fig. 24.1.1. Indeed, each of the fine-electron spin-orbit levels is slightly split into electron spin-

nuclear hyperfine levels. Fermi-contact splitting for p levels tends to be even smaller than for s states, since p 

electrons avoid the nucleus due to their orbital momentum.

The spin-orbit Hamiltonian mentioned in (24A.17) is the following

                                                  Hs.o. = as.o. S ⋅L( ).      (24.1.25a)

The interaction constant for Hydrogen (n) states will later be derived as follows.

                                    
 
as.o. =

Za2

2
1 / r3( ) = Z 4a2

2n3  +1( )  + 1
2( )  ,     (24.1.25b)
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The fine-structure constant is α = e2 / hc ~ 1
137 . (Recall (5.6.3).  Atomic units are used here. 

 ε = e2 / a0 = me
4 / c ~ 27.21 eV ) The expectation values for the spin-orbit splitting are as follows.

                                      
 

j
m
⊗ 1

2( ) Hs.o.

j
m
⊗ 1

2( ) = as.o. j j +1( ) −   +1( ) − 3
4⎡⎣ ⎤⎦ j =  ± 1

2( ) ,  (24.1.26)

The total angular momentum j =  + s has been used in the same manner as in the preceding section.

 The spin-orbit effects, like most spin interactions, are derived most elegantly using the Dirac equation. 

This includes all relativistic effects and leads to a very simple expression for energy eigenvalues:

                                                     εn, j = − Z 2

2n2
− a

2Z 4

2n3
1
j + 1

2

− 3
4n

⎛
⎝⎜

⎞
⎠⎟
.    (24.1.27)

The Dirac formula predicts that a degeneracy remains between pairs of fine levels such as (2s1/2-2p1/2) and 

(3p3/2-3d3/2). This degeneracy is lifted by a small quantum electrodynamic (QED) perturbation and the splitting is 

called the Lamb shift. The degeneracy between  n j  and  n ′ j  states can also be understood in terms of a relativistic 

generalization of Coulomb symmetry discussed later.

 Fine structure is more easily observed in multi-electron configurations. In fact, it dominates the 

electrostatic energies in some larger atoms since the spin-orbit term in (24.1.25) varies as the 4th power Z4 of the 

atomic number. Model states such as those for carbon can be spin-orbit or LS coupled as follows.

                                           2S+1LJ M = ∑
MS ,ML

C MS

S
ML

L
M
J S
MS

L
ML

.  (24.1.28)

This gives, finally, states of definite total electronic angular momentum J. In general, a given 2S+1L term will split 

into a number 2S + 1 of J-states for each S ≤ L . For example, the triplet levels of carbon split into three, as shown 

in the lower left-hand side Fig. 24.1.5(a) and on the lower right-hand side of Fig. 24.1.5(a). The problem is that, 

while the fine-structure label J is a good quantum number (in absence of hyperfine effects), strong spin-orbit 

coupling mixes J-states (24.1.28) of different spin S and orbit L quanta.
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(2p)2

1S

1D

3P

(a) (2p)2 LS to jj Correlation
1S

1D

(b) (2p)2 or (2p3p) LS and jj Coupling

1P

3S

3D

1S0

1D2

3P2
3P1
3P0

J=0

J=2

J=2

J=1

J=0

J=1

J=3

J=2

J=1
J=1

3P

3P2
3P1
3P0

3D3
3D2
3D1

1D2

1S0
1P1

3S1

(1⊗1)⊗0
=0⊕1⊕2

(1⊗1)⊗1
=(0⊕1⊕2)⊗1

=0⊕1⊕1⊕2⊕2⊕3

(1⊗1)⊗(1/2⊗1/2)
LS Coupling
(l1⊗l2)⊗(s1⊗s2)

(1⊗1/2)⊗(1⊗1/2)
jj Coupling
(l1⊗s1)⊗(12⊗s2)

3/2⊗1/2
=0⊕1⊕2⊕3

1/2⊗1/2
=0⊕1

3/2⊗1/2
=1⊕2

1/2⊗3/2
=1⊕2

(2p3p)

(2p)2

Figure 24.1.5   Fine-structure levels for configurations involving two p electrons. (a) (2p)2 configuration in  
coupling case. (b) Comparison between jj- and LS-coupling cases. In the LS case L and S are good approximate 
quantum labels and the splitting between levels of different J and the same (L,S) is relatively small. In the jj case j 
and j’ are good approximate quantum labels.

 The four angular-momentum factors (1⊗ 1
2 ⊗1⊗ 1

2 )  for two p electrons may be associated differently. The 

following association corresponds to what is called LS coupling.

                             1⊗1( )⊗ 1
2 ⊗ 1

2( ) = 2⊗1⊗ 0( )⊗ 1⊗ 0( ) = ⊗ L( )⊗ ⊗ S( ) = ⊗ J ⊗( )
The LS levels appear on the outside of Figures 24.1.5(a and b). The gray lines in Fig. 24.1.5(b) indicate levels 

allowed in mixed-n (n1pn2p) configurations but Pauli-excluded from pure (np)2 configurations. The LS scheme 

provides useful quantum labels if spin-orbit energy is smaller than that of electron repulsion.

 A strong spin-orbit perturbation makes the following jj coupling association more appropriate.

                                    1⊗
1
2( )⊗ 1⊗ 1

2( ) = 3
2 ⊗ 1

2( )⊗ 3
2 ⊗ 1

2( ) = ⊗ j( )⊗ ⊗ j '( ) = ⊗ J ⊗( )  

The resulting levels are indicated in the center of Fig. 24.1.4(b). For each J term that comes out of the jj 

association, there must be a corresponding term with the same J in the LS association. Figures 24.1.5(a) and 

24.1.5(b) show the connection by “avoided-crossing” lines between the levels of the same J.
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d. Angular-momentum cones and vector coupling models

Two states of angular momentum j1 and j2 couple to make a total momentum  j3 = j1 + j2 , j1 + j2 −1,…,  or [j1 – j2]. 

The corresponding level diagram shown in Figure 24.1.6 is a generic version of Fig. 24.1.1. A vector triangle 

with sides j1, j2, and j3 is sketched at each level. A Clebsch-Gordan C m1
j1

m2
j2

m3
j3  coefficient (CGC) is zero unless the 

triangular condition j1 + j2 ≥ j3 ≥ j1 − j2  holds and Jz adds up m1 + m2 = m3 .

  

j1⊗j2

j3 = j1 + j2
j3 = j1 + j2 − 1
j3 = j1 + j2 − 2


j3 = j1 − j2 +1
j3 = j1 − j2



Figure 24.1.6  Level-splitting and vector-addition picture of angular-momentum coupling.

 Vector addition models of CGC become semi-quantitative if each vector is drawn with its quantum length 

| j1 |= j1( j1 +1) , | j2 |= j2 ( j2 +1)  and | j3 |= j3( j3 +1)  with quantum z-components m1 + m2 = m3 . The resulting 

angular-momentum cones were used to quantify Dmn
j (β)  amplitudes in Figures 23.1.2 and 23.2.2. A similar view 

of CGC amplitudes uses the angular-momentum cone and vector arrangement in Figure 24.1.7. Since z-

component conservation requires that m1 + m2 = m3 , we may plot C m
j1
m3−m
j2

m3
j3 , as a function of a single variable m1 = m 

for fixed j1, j2, j3 and m3. This is done in Figure 24.1.8 for j1 = j2 = 9 and select values of j3 and m3. The plots 

remind one of Dmn
j (β) plots in Figure 23.2.2 of the earlier chapter. 

 For one thing, the projection of angular-momentum cone rims on the m or z-axis defines “classical” limits 

and inflection points of a discrete wave. Outside the rims CGC or D values drops exponentially. Inside its rims 

C m
j1
m3−m
j2

m3
j3 has j1 + j2 − j3 nodes where it changes sign, while Dmn

j (β)  has j − n nodes. The discrete quantum number 

m3 plays a role for the CGC waves that the continuous rotation angle β plays for Dmn
j (β)  in Figure 23.2.2. Note 

that “nodes” are only rarely exact zeros of Dmn
j (β)  or C m1

j1
m2
j2

m3
j3 since they generally fall between the integer values 

of the quantum number m defining Dmn
j (β)  or C m

j1
m3−m
j2

m3
j3 . 
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Figure 24.1.7   Angular-momentum cone picture of Clebsch-Gordan coupling amplitudes.
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Figure 24.1.8   Clebsch-Gordan coefficients plotted next to their angular-momentum cones.

Anomalous magnetic moments and g-factors
 An uncoupled angular momentum state m1

j1
m2
j2  in a magnetic B-field has each magnetic moment 

m1 = g1µ1 j1 ≡ β1 j1  and m2 = g2µ2 j2 ≡ β2 j2  precess according to Zeeman m •B  energy eigenvalues that are a product 

of a gyromagnetic coefficient (24.1.18Table) with its z-momentum quantum number m1 or m2.

   E1 = g1µ1Bzm1 ≡ β1Bzm1  (24.1.29a)  E2 = g2µ2Bzm2 ≡ β2Bzm2  (24.1.29b)

Independent z-precessional motion is indicated in Fig. 24.1.9(a). Fig. 24.1(b) shows the effect of coupling.
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In a coupled angular momentum state m3=M
j3=J  j1  and j2  swivel about j3 = j1 + j2 instead of ẑ . A Bz-field disfavors 

rigid swiveling about internal j3 but favors independent swiveling about external ẑ  axes. The result is level 

splitting and crossing. (Recall Bz-field splitting of e-p-levels in Fig. 24.1.2.) If the Bz-field is less than that of 

interaction, a vector-coupling picture will approximate the Zeeman energy of m3=M
j3=J .

 An estimate of m •B  energy in the situation depicted in Fig. 24.1.9(b) assumes fast precession of vectors 

of moment m1  and m2 and momentum j1  and j2  in unison around the sum-total momentum vector J ≡ j3 = j1 + j2  

so that components of m1  and m2  transverse to j3 ≡ J  average to zero. So, only longitudinal components m1 • ĵ3  

and m2 • ĵ3  contribute, on the average, to Zeeman-z-components j3 • ẑ .

   
mTOTAL • ẑ = m1 • ẑ +m2 • ẑ = β1 j1 • ẑ + β2 j2 • ẑ

               ≅ β1 j1 • ĵ3 + β2 j2 • ĵ3( ) ĵ3 • ẑ = β1 j1 • j3 + β2 j2 • j3( ) j3 • ẑ
j3

2

The second line approximation ignores all but j3 -components of m1 and m2 . Sum j3 -vector is made of fast j1 + j2  

but z-precesses slowly according to its Zeeman Bz-field projection. The j•j trick of (24.1.13) is used.

 
mTOTAL−zBz ≅

β1 j1 • j3 + β2 j2 • j3( ) j3 • ẑ
j3

2 Bz =
β1 j1 • j3 + β2 j2 • j3

j3( j3 +1)
m3Bz

                 =
β1 j3( j3 +1) + j1( j1 +1) − j2 ( j2 +1)( ) + β2 j3( j3 +1) − j1( j1 +1) + j2 ( j2 +1)( )

2 j3( j3 +1)
m3Bz

 (24.1.30a)

This gives the Lande’ formula for effective magnetic moment.

 βLande ' =
β1 + β2( ) j3( j3 +1) + β1 − β2( ) j1( j1 +1) − j2 ( j2 +1)( )

2 j3( j3 +1)
  where: mTOTALBz = βLande 'm3Bz  (24.1.30b)

Electrons are a special case. Orbit j1 ≡ L  has β1 = g1µ1 ≡ µB . Spin j2 = S  is twice that with β2 = g2µ2 = 2µB . 

  gLande ' =
3J(J +1) − L(L +1) + S(S +1)

2J(J +1)
  where: mTOTALBz = gLande 'µBohrm3Bz   (24.1.30c)

Equal factors (β1 = β2 )  give g=1. SpingS is called anomalous since it is twice that of orbit (gS = 2gL = 2) .

j1

m1=β1j1

j2

m2=β2j2 m1=β1j1

m2=β2j2
g

(b) Zeeman
Coupled State

(a) Zeeman
Uncoupled State

(slow)

(fast)

Fig. 24.1.9 Zeeman effect on momenta j1 and j2. (a) Uncoupled state m1
j1

m2
j2 ,  (b) Coupled state m3=M

j3=J .
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24.2 Symmetry Properties of CGC and Wigner  3j Coefficients
We now discuss mathematical properties and applications of Clebsch-Gordan coefficients (CGC) beginning with 

their relation to common products in vector analysis. Then the fundamental relations between the CGC 

coefficients and the D irreps will be derived and used to define symmetry relations. This will lead naturally to the 

definition of the Wigner 3j coefficients.  

a. Scalars, Vectors, and Tensors 
Consider two ordinary three-dimensional vectors.

                                             A =
Ax

Ay

Az

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

   and  B =
Bx

By

Bz

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

   (24.2.1)

From the theory of vector analysis there are three different types of products between them. There is a scalar, dot, 

or Gibbs inner product

                                                  A • B  = AxBx + AyBy + AzBz ,     (24.2.2a)

a vector, or Gibbs cross-product

       A × B =
AyBz − AzBy

AzBx − AxBz
AxBy − AyBx

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
,      (24.2.2b)

and a tensor, dyadic, or Kronecker outer product

      AB=A⊗B = =
AxBx AxBy AxBz
AyBx AyBy AyBz
AzBx AzBy AzBz

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
.     (24.2.2c)

It is instructive to note that these three products correspond directly with the three reductions of products between 

 = 1 or (p)-states which give total L = 0, 1, and 2 states, respectively.

 To make this correspondence we recall having two different types of coordinates, namely, Cartesian or 

plane-polarization components (Ax, Ay, Az) on one hand, and R3 symmetry-defined or circular-polarization 

components A11, A01, A−1
1  on the other. An earlier eq. (23.3.3) relates the sets.

                      
A1

1 = − Ax + iAy( ) / 2,    Ax = A−1
1 − A1

1( ) / 2,               Az = A0
1,

A−1
1 =  Ax − iAy( ) / 2,    Ay = i A−1

1 + A1
1( ) / 2,      A0

1 = Az .
  (24.2.3)

 (x, y, z) relates to spherical harmonics (Y11, Y01, Y−1
1 )  or multipole functions (rY11, rY01, rY−1

1 )  in (23.3.3). 

We use the CGC in the 1⊗1  table (24.1.15) to make L-symmetry-defined products of A1 and B1.

                                            A1⊗ B1⎡
⎣

⎤
⎦M
L

≡ ∑
m1,m2

Cm1
1

m2
1

M
L Am1

1 Bm2
1     (24.2.4a)

The (L=0)-case is proportional to the scalar product in Eq. (24.2.2a).
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A1 ⊗ B1⎡
⎣

⎤
⎦0

0
=           1

3
A1

1B−1
1       − 1

3
A0

1B0
1           + 1

3
A−1

1 B1
1

=
−Ax − iAy( ) Bx − iBy( )

2 3
−
AzBz

3
+

Ax − iAy( ) −Bx − iBy( )
2 3

= − AxBx + AyBy + AzBz( ) / 3 = −A ⋅B / 3.

  (24.2.4)

The product for L=1 and M=0 is proportional to the 01  or z-component of the cross product (24.2.2b).

   

 	 

A1⊗ B1⎡
⎣

⎤
⎦0
1
≡ ∑
m1,m2

Cm1
1

m2
1
0
1 Am1

1 Bm2
1 = 1

2
A1
1B−1
1 − 1

2
A−1
1 B1

1

= i
−AyBx + AxBy( )

2
= i

2
(A × B)z

  (24.2.5)

Finally, the L = 2 products are made of second-rank tensor components.
                                            A1⊗ B1⎡

⎣
⎤
⎦m
2 = ∑

m1,m2

Cm1
1

m2
1

m
2 Am1

1 Bm2
1 ,     (24.2.6a)

                                      

A1⊗ B1⎡
⎣

⎤
⎦2
2= AxBx − AyBy + iAxBy + iAyBx( ) / 2,

A1⊗ B1⎡
⎣

⎤
⎦1
2= − AxBz + AzBx + iAyBz + iAzBy( ) / 2,

A1⊗ B1⎡
⎣

⎤
⎦0
2= −AxBx − AyBy + 2AzBz( ) / 6.

   (24.2.6b)

The above products are summarized in the following matrix that is a unitary transformation between Cartesian 
components Ti j = AiBj  and symmetry-defined components Tqk = A × B[ ]q

k  of a second-rank tensor:

                                          
 


T =∑

i j

Ti j x
∧

i x
∧

j =∑
k g

Tq
k xx[ ]q

k      (24.2.7a)

If the two vectors A and B are the radius vector (A=B=r) in (24.2.4-11), then one obtains elementary multipole 
functions Xq

k = ryYq
k 4π / 2k +1 . Here we get quadrupole Xq

2  functions shown in (23.3.8).

    
r1r1⎡
⎣

⎤
⎦2

2 = x2 − y2 + 2ixy( ) / 2,   r1r1⎡
⎣

⎤
⎦1

2 = − x + iy( )z,  r1r1⎡
⎣

⎤
⎦0

2 = − x2 + y2 − 2z2( ) / 6,

= 2
3X2

2     = 2
3X1

2  = 2
3X0

2
  (24.2.8)

Tensor or polynominal algebra may be continued up to arbitrary rank or order k, by attaching k vector factors. 

The new tensor or polynomial at each stage, i.e., the one which has the highest L = k, is made by the following 

coupling formulas using the CGC formulas (24.2.9) to (24.211) derived using (24.1.17).
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   xyz |q
k =

2 2 2 2 2 1 1 1 0
A ⊗ B 2 1 0 −1 −2 1 0 −1 0

x x 1
2

⋅ −1
6 ⋅ 1

2
⋅ ⋅ ⋅ −1

3

x y i
2

⋅ ⋅ ⋅ −i
2

⋅ i
2 ⋅ ⋅

x z ⋅ −1
2

⋅ 1
2

⋅ −1
2

⋅ −1
2

⋅

y x i
2

⋅ ⋅ ⋅ −i
2

⋅ − i
2 ⋅ ⋅

y y −1
2

⋅ −1
6 ⋅ −1

2
⋅ ⋅ ⋅ −1

3

y z ⋅ −i
2

⋅ −i
2

⋅ −i
2

⋅ i
2

⋅

z x ⋅ −1
2

⋅ 1
2

⋅ 1
2

⋅ 1
2

⋅

z y ⋅ −i
2

⋅ −i
2

⋅ i
2

⋅ −i
2

⋅

z z ⋅ ⋅ 2
6 ⋅ ⋅ ⋅ ⋅ ⋅ −1

3

⋅ ⋅    (24.2.9)

     

 

A1 × B1⎡
⎣

⎤
⎦
2
× C1⎡

⎣⎢
⎤
⎦⎥
k−1

× K1
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥q

k

= Cq−11q
k−11k ABC[ ] q−1k−1K1

1⎡
⎣
⎡
⎣ + Ck q

−
0 q
11k ABC[ ]qk−1K01⎡

⎣
⎡
⎣ + Cq+1−1q

k−1 1 k ABC[ ]⎡⎣⎡⎣ q+1
k−1K−1

1 ,

  (24.2.10)

    Cq−11q
k−11k =

k + q −1( ) k + q( )
2k −1( ) 2k( ) ,   Cq 0q

k−11k =
k2 − q2( )
k 2k −1( ) ,   Cq+11q

k−11k =
k − q( ) k − q −1( )

2k 2k −1( ) .   (24.2.11)

b. The general R3 scalar coupling
One type of coupling coefficients should be memorized, the CGC that make scalars ( = 0).

                                         Cm1
j1

m2
j2

0
0 =δ j1, j2δm1,−m2

−1( ) j1−m1 / 2 j1 +1.     (24.2.12)

We show below that the product of any two bases having the same j can be “scalarized” as follows.

                                                       0
0

= ∑
m

−1( ) j−m
2 j +1

j
m

j
−m

,      (24.2.13)

So the result has zero total J and belongs to the scalar irrep D0 R( ) ≡ 1 . Angular momentum scalar products are a 

little more difficult for complex bases than for real ones since the phase is variable.

 Let us consider how we Dj-transform ket vectors versus how we do bras.

HarterSoft –LearnIt     Unit 8 Quantum Rotation    24- 27



                                         

 

R aβy( ) mj( )† = ∑
′m
D ′m m
j aβy( ) ′m

j⎛
⎝⎜

⎞
⎠⎟

†

m
j R† aβy( )   = ∑

′m
D ′m m
j* aβy( ) ′m

j
   (24.2.14)

Clearly the complex conjugate D j( )*  does the transformation of bra vectors. Note that the ket-bra product 

completeness relation is clearly a scalar. (Recall Axiom 4.)

                                                        1 = ∑
m

m
j

m
j      (24.2.16)

One needs to find which combinations of bras m '
j  transform like a given ket m

j . This will yield the coefficients 

that make scalars out of ket-ket products since bra-kets are ready-made scalars by Axiom 4.

 To this end, let us examine the transpose conjugate of D j  and use the fact that it is unitary.

                                     D j αβγ( )⎡
⎣

⎤
⎦
†
= D j αβγ( )⎡
⎣

⎤
⎦
−1

= D j −γ ,−β,−α( ),           (24.2.17)

If D-formula (23.1.15) is relabeled by α → −γ , γ → −α, m→ − ′m , ′m → −m , we find the following:

                                                 D ′m m
j αβγ( ) = D−m,− ′m

j −γ ,β,−α( ).     (24.2.18)

Also, by substituting β → −β , one obtains

                                              D ′m m
j α,−β,γ( ) = −1( )−m+ ′m D ′m m

j αβγ( ).    (24.2.19)

Combining the last three equations in turn gives

                          
Dm ′m
j† αβγ( ) = Dm ′m

j −γ ,−β −α( ),

D ′m m
j* αβγ( ) = D− ′m ,−m

j α,−β,γ( ) = D− ′m ,−m
j αβγ( ) −1( )−m+ ′m

  (24.2.20a)

This is substituted into Eq. (24.2.15):

                          
              

j
m
R† αβγ( ) = ∑

m '
D− ′m ,−m
j αβγ( ) −1( )−m+ ′m j

′m

−1( )−m j
−m

R† αβγ( ) = ∑
′m
   D ′m ,m

j αβγ( )    −1( )− ′m j
− ′m

  (24.2.20b)
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This shows that ket bases m
j  transform like the following bra bases, to within an overall phase.

                                          −1( )−m j
−m

or −1( ) j−m j
−m

An extra overall phase factor (-1)j does not affect the transformation. It is conventional to choose (-1)j-m as the 

phase factor since it is real even when j is half-integral. This sets the scalar coupling CGC of (24.2.12).

c. CGC Definitions and Symmetry Relations: The Wigner 3j Coefficient
Clebsch-Gordan coefficients CGC are components of unitary-orthogonal transformation matrices.

 ∑
m1=− j1

j1
∑

m2=− j2

j2
Cm1
j1
m2
j2

m3
j3 Cm1

j1
m2
j2

′m3
′j3 = δ j3 ′j3δm3 ′m3 = ∑

m1=− j1

j1
∑

m2=− j2

j2
m3
j3

m1
j1

m2
j2

m1
j1

m2
j2

′m3
j3         (24.2.21)

The CGC therefore satisfy completeness relations, too.

 ∑
j3= j1− j2

j1+ j2
∑

m3=− j3

j3
Cm1
j1
m2
j2

m3
j3 C ′m1

j1
′m2

j2
m3
j3 = δm1 ′m1δm2 ′m2 = ∑

j3= j1− j2

j1+ j2
∑

m3=− j3

j3
m1
j1

m2
j2

m3
j3

m3
j3

′m1
j1

′m2
j2  (24.2.22)

We shall use these relations with the fundamental D-matrix orthogonality relation (15.1.30).

                               d αβγ( )D ′m ′n
′j * αβγ( )Dmnj αβγ( ) = δ ′j jδ ′m mδ ′n n / (2 j +1)∫

Also, we need the reduction equation for D j1 ⊗ D j2 . This is the generic form of (24.1.6).

          ∑m1m2 ∑ ′m1 ′m2 Cm1
j1
m2
j2

m3
j3 Dm1 ′m1

j1 αβγ( )Dm2 ′m2
j2 αβγ( )C ′m1

j1
′m2

j2
′m3
′j3 = δ j3 ′j3Dm3m '3

j3 αβγ( )  (24.2.23)

From Eq. (24.2.22), the inverse reduction equation has a block-diagonal matrix become un-diagonal.

       Dm1m '1
j1 αβγ( )Dm2m '2

j2 αβγ( ) =
j3= j1− j2

j1+ j2
∑

m3=− j3

j3
∑

′m3=− j3

j3
∑ Cm1

j1
m2
j2

m3
j3 Dm3m '3

j3 αβγ( )C ′m1
j1

′m2
j2

′m3
j3     (24.2.24)

Then, applying D-matrix orthogonality gives what is called a D-matrix factorization lemma.

             d aβy( )Dm3 ′m3
j3
*

αβγ( )Dm1 ′m1
j1∫ αβγ( )Dm2 ′m2

j2 αβγ( ) = Cm1
j1
m2
j2

m3
j3 C ′m1

j1
′m2

j2
′m3

j3 / (2 j3 +1)      (24.2.25)

 Our first use of this equation will be to suggest a more symmetric form of coupling coefficient. We shall 

need the conjugation relation from Eq. (24.2.20a).
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                              Dm3 ′m3
j3
*

= −1( ) j3−m3− j3+ ′m3 D−m3− ′m3
j3 = −1( )− j3+m3− j3+ ′m3 D−m3− ′m3

j3  (24.2.26)

We also need to become familiar with some of the tricks of phase arithmetic. For example, one can often use the 

fact that a phase factor is positive or negative unity even if j3 is half-integral.

                                        ±1( ) = −1( ) j3−m3 = −1( )− j3+m3 = 1 / ±1( )     (24.2.27)

Note that if j3 is half-integral then so is m3. Thus, j3 ± m3 is an integer. Also, for any (j1j2j3) in C j1 j2 j3

                         1 = −1( )2 j1+2 j2+2 j3 = −1( )2 j1+2 j2−2 j3 = −1( )2 j1−2 j2+2 j3 etc.   (24.2.28)

This follows since the number of half-integral j’s in C j1 j2 j3 must be even. Finally, we obtain

                                   

d aβy( )Dm3 ′m3
j3 aβy( )∫ Dm1 ′m1

j1 aβy( )Dm2 ′m2
j2 aβy( )

=
−1( )− j3−m3 Cm1

j1
m2
j2

−m3
j3

2 j3 +1

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

−1( )− j3− ′m3 C ′m1
j1

′m2
j2

− ′m3
j3

2 j3 +1

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

=
−1( )− j1− j2−m3 Cm1

j1
m2
j2

−m3
j3

2 j3 +1

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

−1( )− j1− j2− ′m3 C ′m1
j1

′m2
j2

− ′m3
j3

2 j3 +1

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
.

 (24.2.29)

The last line added a unit factor 1 = (−1)2 j1−2 j2+2 j3 . This suggests the conventional Wigner 3j coefficient:

                                    m1
j1

m2
j2

m3
j3( ) ≡ −1( ) j1− j2−m3 Cm1

j1
m2
j2

−m3
j3 2 j3 +1    (24.2.30a)

Wigner 3-j coefficients have a D-factorization relation that is symmetric to permutations of j1, j2, and j3.

              d aβy( )Dm1 ′m1
j1 aβy( )∫ Dm2 ′m2

j2 aβy( )Dm3 ′m3
j3 aβy( ) = m1

j1
m2
j2

m3
j3( ) ′m1

j1
′m2

j2
′m3

j3( )  (24.2.30b)

   
From Eq. (24.2.30) a number of obvious symmetry relations follow. 

 However, the phase relations for the individual coefficients are not so obvious, since they depend on the 

detailed definition of Cm1
j1

m2
j2

m3
j3 for different products. Wigner’s definition is made so the following permutation 

properties hold.                             

m1
j1

m2
j2

m3
j3( ) = −1( ) j1+ j2+ j3 m2

j2
m1
j1

m3
j3( ) = −1( ) j1+ j2+ j3 m3

j3
m2
j2

m1
j1( ) = −1( ) j1+ j2+ j3 m1

j1
m3
j3

m2
j2( )

= m3
j3

m1
j1

m2
j2( ) = m2

j2
m3
j3

m1
j1( ) .  (24.2.31) 

Also, we have from Eqs. (24.2.30) and (24.2.20b),
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                                             m1
j1

m2
j2

m3
j3( ) = −1( ) j1+ j2+ j3 −m1

j1
−m2
j2

−m3
j3( ) .    (24.2.32)

The 3–j coefficients have simple symmetries that quickly produce relations for CGC Cm1
j1

m2
j2

m3
j3 . For example, 

transposing the first two factors of a CGC gives the following.

                               

Cm2
j2

m1
j1

m3
j3 = −1( ) j2− j1+m3 2 j3 +1 m2

j2
m1
j1

−m3
j3( )

= −1( ) j2− j1+m3 2 j3 +1 −1( )
j1+ j2 + j3

m1
j3

m2
j2

−m3
j1( )

= −1( ) j1+ j2− j3 Cm1
j1
m2
j2

m3
j3

    (24.2.33)

For j1 = j2 = j  this gives an important special case of this relation:

                                                   Cm2
j

m1
j

m3
j3 = −1( )2 j− j3 Cm1

j
m2
j

m3
j3      (24.2.34)

This we use to apply the Pauli principle. Pairing integral momentum j1 = j2 = n  makes even-j3 states symmetric 

and odd-j3 states anti-symmetric to permutation, and vice-versa for half-integral j1 = j2 = n/2. Recall that singlet-

(S=0) is anti-symmetric for a (1 / 2⊗1 / 2) -pair in Fig. 24.1.1, but scalar-(L=0) is symmetric for a (1⊗1)  pair of a (p)

2 configuration in Fig. 24.1.3 or Fig. 24.1.5.

 A permutation of the second two factors gives the following relation:

                                 Cm1
j1
m3
j3

m2
j2 = −1( ) j2− j3+m1 2 j2 +1

2 j3 +1
C−m1
j1

m2
j2

m3
j3    (24.2.35)

The CGC are unitary matrix components. The Wigner 3-j are not unitary per-se, but do manifest their 

permutation symmetry, rather nicely.
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Point symmetry group coupling coefficients
Every symmetry group has tensor or outer-product algebra with Clebsch-Gordan coefficients (CGC) for its 

irreducible representations (irreps). For Abelian groups like C2 and C3 the CGC are quite simple, and it is not too 

much trouble to derive CGC for non-Abelian groups like D3 , D4, and D6 discussed in Ch. 15.

 Indeed, the process of developing CGC algebra of point symmetry is a recursive one based on first 

dealing with that of the subgroups. Like many things in life, there is a hierarchy that one does well to at least 

acknowledge. This was true of the R(3) and U(2) symmetry algebra that has the z-axial Abelian sub-group 

symmetry of R(2) in its family tree. Without first diagonalizing the Jz operator, where would we be?

 For Abelian groups, all irreps are 1-by-1 matrices and so are their outer products, which are simple 

arithmetic products. For the z-angular momentum group R(2), the irreps are the plain old plane wave exponential 

functiols e-imφ  of polar angle φ.  Their outer products are just arithmetic products of e-imφ.

 D m1( )(φ)⊗ D m2( )(φ) = D m1( )(φ) ⋅D m2( )(φ) = e−im1φ ⋅ e−im2φ = e−i m1+m2( )φ = D m1+m2( )(φ)

In this case, all products are summed up by quantum angular momentum conservation: (m3 ) = (m1 + m2 ) .

 The same is true for the cyclic point groups like C2, C3, and, in general, CN. Their outer products reduce to 

arithmetic modulo-N that was introduced in Chapter 7. Examples C2 and C3 are given.

 C2 :
m( )2 ⊗ n( )2 0( )2 1( )2

0( )2 0( )2 1( )2
1( )2 1( )2 0( )2

    C3 :

m( )3 ⊗ n( )3 0( )3 1( )3 2( )3
0( )3 0( )3 1( )3 2( )3
1( )3 1( )3 2( )3 0( )3
2( )3 2( )3 0( )3 1( )3

    (24.2.36a)      (24.2.36b)

CN-Outer product tables look like CN-group product tables with label (m)N in place of operator rm of CN.  The C2 

case is the fundamental Boolean C2-algebra of even (A), (g), or (A1) and odd (B), (u), or (A2) states.

 Cσ :
A( ) B( )

A( ) A( ) B( )
B( ) B( ) A( )

(24.1.36c) CI :
g( ) u( )

g( ) g( ) u( )
u( ) u( ) g( )

(24.1.36d) CR :
A1 A2

A1 A1 A2
A2 A2 A1

(24.1.36e)

The three different “flavors” of C2 –symmetry indicated here are that of permutation or reflection (Cσ), inversion 

(CI), and 180°-rotation (CR), but to a mathematician, all C2 are the same, that is, isomorphic.

 Simple CN-operators are building blocks of greater symmetries DN, Oh, or U(m) that contain them. Since 

CN is Abelian (mutually commuting), it may belong to a maximal set of commuting observables that are diagonal 

or “quantized” together. Thus, CN quantum numbers, along with those in a hierarchy of higher symmetry 
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operators, help to define and construct irreps and CGC. Derivation of D3 irreps using a C2 or C3 based MSOCO is 

described in Section 15.2. Here, D3 subgroup hierarchy is used to derive its CGC.

 Outer products of D3 irreps have traces or characters that are arithmetic products of the irreducible 

characters (15.1.13) repeated below.

   

D3 characters g = 1 r,r2{ } i1, i2 , i3{ }
TraceDA1 g( ) = χ A1 g( ) 1 1 1
TraceDA2 g( ) = χ A2 g( ) 1 1 −1
TraceDx2 y2

E1 g( ) = χ E1 g( ) 2 −1 0

   (15.1.13)repeated 

The outer product DE1 g( )⊗ DE1 g( )  has a character set that is product of χ E1 g( ) and χ E1 g( )  for each class.

  
g = 1 r, r2{ } i1, i2 , i3{ }

TraceDE1 ⊗ DE1 g( ) = χ E1 g( ) ⋅ χ E1 g( ) 4 1 0
     (24.2.27)

The product character set is a sum of the irreducible characters for irreps DA1 g( ) , DA2 g( ) , and DE1 g( ) .

    

χ A1 g( ) 1 1 1
χ A2 g( ) 1 1 −1
χ E1 g( ) 2 −1 0

χ E1 g( ) ⋅ χ E1 g( ) 4 1 0

    
implies :

CGC( )† DE1 g( )⊗ DE1 g( ) CGC( ) = DA1 g( )⊕ DA2 g( )⊕ DE1 g( )    (24.2.38a)

So, outer product DE1 g( )⊗ DE1 g( )reduces by CGC transformation to block sum DA1 g( )⊕ DA2 g( )⊕ DE1 g( ) . Also, there 

is a CGC transformation of product DE1 g( )⊗ DA2 g( )back to the irrep DE1 g( ).

 
χ E1 g( ) 2 −1 0

χ E1 g( ) ⋅ χ E1 g( ) 2 −1 0      
implies :

CGC( )† DE1 g( )⊗ DA2 g( ) CGC( ) = DE1 g( )   (24.2.38b) 

No CGC are needed to transform product DE1 g( )⊗ DA1 g( ) = DE1 g( ) to irrep DE1 g( ) since DA1 g( ) ≡ 1 . 

 Derivation of CGC requires us to first pick a sub-group hierarchy or MSOCO. Two possibilities in Fig. 

15.2.1 are a standing C2 -wave choice C2 = 1, i3{ } or the moving C3 -wave choice C3 = 1,r,r2{ } . CGC for E1 ⊗ E1  and 

E1 ⊗ A2  must have the forms given below according to subgroup products (24.2.36a-b).
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m2
E1

n2
E1

A
A1

B
A2

A
E1

B
E1

A
E1

A
E1 a ⋅ e ⋅

A
E1

B
E1 ⋅ c ⋅ g

B
E1

A
E1 ⋅ d ⋅ h

B
E1

B
E1 b ⋅ f ⋅

(24.2.39b) 

m3
E1

n3
E1

03
A1

03
A2

13
E1

23
E1

13
E1

13
E1 ⋅ ⋅ ⋅ φ

13
E1

23
E1 α γ ⋅ ⋅

23
E1

13
E1 β δ ⋅ ⋅

23
E1

23
E1 ⋅ ⋅ ε ⋅

(24.2.39b)

 

m2
E1

n2
A2

A
E1

B
E1

A
E1

B
A2 ⋅ x

B
E1

B
A2 y ⋅

  (24.2.39c) 

m3
E1

n3
A2

13
E1

23
E1

13
E1

03
A2 κ ⋅

23
E1

03
A2 ⋅ λ

  (24.2.39d)

To find coefficients a,b,... we solve a CGC-D equation for one operator g not in the MSOCO of the D.    

  DE1 ⊗ DE1 (g)( ) ⋅ CGC[ ] = CGC[ ] ⋅ DA1 (g)⊕ DA2 (g)⊕ DE1 (g)( )
Standing wave Dm2n2

E1 may pick r, r2 , i1,  or i2 , i.e., any but diagonal1 or i3  in a Dm2n2
E1 -MSOCO. Let’s pick r .

  

 

            DE1 ⊗ DE1 (r)( )        ⋅      CGC[ ]      =       CGC[ ]     ⋅  DA1 (r)⊕ DA2 (r)⊕ DE1 (r)( )

1
4

1 3 3 3

− 3 1 −3 3

− 3 −3 1 3

3 − 3 − 3 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

⋅

a ⋅ e ⋅
⋅ c ⋅ g
⋅ d ⋅ h
b ⋅ f ⋅

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
=

a ⋅ e ⋅
⋅ c ⋅ g
⋅ d ⋅ h
b ⋅ f ⋅

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
i

1
1

−1 / 2 − 3 / 2

− 3 / 2 −1 / 2

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

1
4

a + 3b 3 c + d( ) e + 3 f 3 g + h( )
3 b − a( ) c − 3d 3 f − e( ) g − 3h

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
=

a 0 −e / 2 − 3e / 2

0 c 3e / 2 −g / 2

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

   Solution: 

a = b
c = −d

e = −g = − f
h = g = f

⎧

⎨
⎪⎪

⎩
⎪
⎪

⎫

⎬
⎪⎪

⎭
⎪
⎪

Moving wave Dm3n3
E1  may pick i1, i2 ,  or i3 , i.e., any but diagonal1,  r, or r2 . Let’s pick i3 .

  

 

DE1 ⊗DE1 (i3)( ) ⋅      CGC[ ]     =       CGC[ ]     ⋅ DA1 (i3)⊕DA2 (i3)⊕DE1 (i3)( )
0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

⋅

⋅ ⋅ ⋅ φ
α γ ⋅ ⋅
β δ ⋅ ⋅
⋅ ⋅ ε ⋅

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

=

⋅ ⋅ ⋅ φ
α γ ⋅ ⋅
β δ ⋅ ⋅
⋅ ⋅ ε ⋅

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

i

1
−1

0 1
1 0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

                         

0 0 ε 0
β δ 0 0
α γ 0 0
0 0 0 φ

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
=

0 0 φ 0
α −γ 0 0
β −δ 0 0
0 0 0 ε

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

  Solution: 

α = β
γ = −δ
ε = φ

⎧

⎨
⎪
⎪

⎩
⎪
⎪

⎫

⎬
⎪
⎪

⎭
⎪
⎪
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Resolving unknowns x,y or κ,λ of product DE1 ⊗ DA2  is done the same way.

 DE1 ⊗ DA2 (r)( ) ⋅ CGC[ ] = CGC[ ] ⋅  DE1 (r)( )
  1

2
−1 − 3

3 −1

⎛

⎝
⎜

⎞

⎠
⎟ ⋅

⋅ y
x ⋅
⎡

⎣
⎢

⎤

⎦
⎥ =

⋅ y
x ⋅
⎡

⎣
⎢

⎤

⎦
⎥ ⋅

1
2

−1 − 3

3 −1

⎛

⎝
⎜

⎞

⎠
⎟  

− 3x −y

−x 3y

⎛

⎝
⎜

⎞

⎠
⎟ =

3y −y

−x − 3x

⎛

⎝
⎜

⎞

⎠
⎟ Solution: x = −y{ }

  

 DE1 ⊗DA2 (i3)( ) ⋅ CGC[ ] = CGC[ ]⋅  DE1 (i3)( )
       0 1

1 0
⎛
⎝⎜

⎞
⎠⎟

(−1) ⋅ κ ⋅
⋅ λ

⎡

⎣
⎢

⎤

⎦
⎥ =

κ ⋅
⋅ λ

⎡

⎣
⎢

⎤

⎦
⎥ ⋅

0 1
1 0

⎛
⎝⎜

⎞
⎠⎟

 

         0 −λ
−κ 0

⎛
⎝⎜

⎞
⎠⎟
= 0 κ

λ 0
⎛
⎝⎜

⎞
⎠⎟

Solution: κ = −λ{ }

The preceding solutions give “red” and “green” CGC up to an overall normalization and phase factor.

 

m2
E1

n2
E1

A
A1

B
A2

A
E1

B
E1

A
E1

A
E1 1

2
⋅ 1

2
⋅

A
E1

B
E1 ⋅ 1

2
⋅ −1

2

B
E1

A
E1 ⋅ −1

2
⋅ −1

2

B
E1

B
E1 1

2
⋅ −1

2
⋅

(24.2.40a) 

m3
E1

n3
E1

03
A1

03
A2

13
E1

23
E1

13
E1

13
E1 ⋅ ⋅ ⋅ 1

13
E1

23
E1 1

2
1
2

⋅ ⋅

23
E1

13
E1 1

2
−1
2

⋅ ⋅

23
E1

23
E1 ⋅ ⋅ 1 ⋅

(24.2.40b)

 

m2
E1

n2
A2

A
E1

B
E1

A
E1

B
A2 ⋅ 1

B
E1

B
A2 −1 ⋅

  (24.2.40c)  

m3
E1

n3
A2

13
E1

23
E1

13
E1

03
A2 −1 ⋅

23
E1

03
A2 ⋅ 1

  (24.2.40d)

 As before, choice of CGC phases can be annoyingly arbitrary. CGC-D equations only fix relative phases 

within each irrep, but not between them. For example, the moving wave solution is quite explicit in that κ = −λ  

and normalization requires κ 2 = 1 = −λ 2 . But, overall phase allows either the (+)-real solution κ = 1 = −λ  or the (−)-

one chosen in (24.2.40d) κ = −1 = −λ , or else, a continuum of complex choices.

 The 1st and 2nd columns of (24.2.40b) used solutions α = β  and γ = −δ  each of which come with an 

implied orthonormality |α |2 + | β |2= 1 =| γ |2 + |δ |2 . The choice α = 1 / 2 = β  could also have been its negative 
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α = −1 / 2 = β , or it could be a complex CGC, α = eiφ / 2 = β , with no regard to the choice γ = 1 / 2 = −δ  that is 

made in the 3rd and 4th columns of (24.2.40b). Again, overall phase of each irrep basis is arbitrary.

 Because the 3rd and 4th columns of (24.2.40d) belong to the same irrep Dm3n3
E1 of D3, their relative phase (and 

norm) is linked by ε = φ . No such linking occurs between the 1st and 2nd columns, which belong to different irreps 

D0303
A1  and D0303

A2 of D3. So CGC for the E1 ⊗ E1  product has three undetermined overall phases, one for each of three 

irreps A1 , A2 , and E1  yielded by E1 ⊗ E1 = A1 ⊕ A2 ⊕ E1 . 

 Such “loose” overall phase factors get pinned down when they become internal and relative to those of 

components belonging to symmetry higher up in a sub-group hierarchy. When D3 is a subgroup of a higher group 

like D6 or Oh or U(2) then its irreps are just components of a bigger irrep and have to obey whatever phase rules 

that super-symmetry demands. But, always the highest group in any chain gets to do whatever it pleases with its 

overall phases! 

 An important job for CGC analysis is to produce invariant or scalar functions. Those can be wave 

functions, potentials, or other kinds of operators. As an example, let us construct a third-degree scalar polynomial 

in Cartesian coordinates (x,y) that is invariant to D3 symmetry operation.

 This is done using CGC products of x = x1E  and y = x2E  which are the bases of the xy-standing wave irrep 

Dm2n2
E1 of D3. Before applying CGC, one must be certain that the objects used in the product, x = x1E  and y = x2E in 

this case, do indeed belong to the Dm2n2
E1  and CGC that we think they do. As cautioned at the beginning of Sec. 2.2, 

one does well to begin with base vector definitions of symmetry operations. In this case that would involve 

Cartesian base vectors that transform under D3 operations like Dm2n2
E1 .

 
r ⋅ x̂ = r ⋅ ex

E = Dx,x
E r( )exE + Dy,x

E r( )eyE = −1
2
ex
E + 3

2
ey
E

r ⋅ ŷ = r ⋅ ey
E = Dx,y

E r( )exE + Dy,y
E r( )eyE = − 3

2
ex
E + 1

2
ey
E

 
i3 ⋅ ex

E = Dx,x
E i3( )exE + Dy,x

E i3( )eyE = +1( )exE + 0( )eyE

i3 ⋅ ey
E = Dx,y

E i3( )exE + Dy,y
E i3( )eyE = 0( )exE + −1( )eyE

This is the same definition (15.1.10) of Dm2n2
E1 as first used in Chapter 15 discussion of D3. 

©2004 W. G. Harter     Chapter 24 Angular Momentum Coupling    24-36



 

ex
E ⋅ r ⋅ ex

E ex
E ⋅ r ⋅ ey

E

ey
E ⋅ r ⋅ ex

E ey
E ⋅ r ⋅ ey

E

⎛

⎝⎜
⎞

⎠⎟
=

−1
2

− 3
2

3
2

−1
2

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

                         =
Dx,x

E r( ) Dx,y
E r( )

Dy,x
E r( ) Dy,y

E r( )
⎛

⎝⎜
⎞

⎠⎟

 (24.2.41a) 

ex
E ⋅ i3 ⋅ ex

E ex
E ⋅ i3 ⋅ ey

E

ey
E ⋅ i3 ⋅ ex

E ey
E ⋅ i3 ⋅ ey

E

⎛

⎝⎜
⎞

⎠⎟
=

1 0
0 −1

⎛
⎝⎜

⎞
⎠⎟

                  =
Dx,x

E i3( ) Dx,y
E i3( )

Dy,x
E i3( ) Dy,y

E i3( )
⎛

⎝⎜
⎞

⎠⎟

(24.2.41b)

 We use the “alias” view so coordinates and bases transform to represent the same vector P.

    P = xiei
E = x j (r)e j

E (r) = xk (i)ek
E (i) = ...    (24.2.42)

(Repeated indices imply sum.) In that view, real coordinates transform just as their base vectors do. 

 x j (r) = P ⋅ e j
E (r) = xiei

E ⋅ e j
E (r) = xiei

E ⋅ r ⋅ e j
E = xiDi, j

E r( ) , x j (i3 ) = xiDi, j
E i3( ) ,… (24.2.43)

Then D3 CGC (24.2.40a) give E and A-symmetry-defined quadratic and cubic polynomial functions.

 
xE ⊗ xE⎡⎣ ⎤⎦x

E
= Ca

E
b
E
x
E xa

E xb
E = x2 − y2

2

xE ⊗ xE⎡⎣ ⎤⎦y
E
= Ca

E
b
E
y
E xa

E xb
E = −2xy

2

  
xE ⊗ xE⎡⎣ ⎤⎦

E
⊗ xE⎡

⎣
⎤
⎦A

A1
= Ca

E
b
E
A
A1 xE ⊗ xE⎡⎣ ⎤⎦a

E
xb
E = x3 − 3xy2

2

xE ⊗ xE⎡⎣ ⎤⎦
E
⊗ xE⎡

⎣
⎤
⎦B

A2
= Ca

E
b
E
B
A2 xE ⊗ xE⎡⎣ ⎤⎦a

E
xb
E = 3x

2y − y3

2

Scalar cubic A1 is i3-symmetric and pseudo-scalar A2 is i3-anti-symmetric as seen in Fig. 24.2.1. 

  

    
A1

A2

i3
axis

Fig. 24.2.1

24.3 Clebsch-Gordon and Wigner Coefficient Formulas
The connection between two-dimensional oscillator symmetry U(2) and three-dimensional R(3)-rotation begins in 

Ch. 10. Quantum two-dimensional oscillator states and three-dimensional angular momentum states are related in 

Section 21.2 and detailed in Sec. 23.1. [Recall (23.1.5).] Schwinger-Jordan boson creation operator algebra gives 

a formula (23.1.15) for U(2) irreducible representation or irrep Dmn
j αβγ( ) . Here the same methods are used to 

derive Cm1
j1
m2
j2
m3
j3  formulas for Clebsch-Gordan coefficients (CGC). 

a. The A-and-B-Boson states
 The product states m1

j1
A m2

j2
B

 use two pairs of oscillator operators. One pair a↑
† ≡ a1

1,a↓
† ≡ a2

1{ } for boson-A, 

are spin-1/2 creation operators for momentum j1. The second pair b↑
† ≡ a1

2 , b↓
† ≡ a2

2{ } for boson-B, are spin-1/2 
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creation operators for momentum j2. Note the change in notation. Creation operators ai
j  are indicated without the 

dagger (†). Here we do more creating than destroying, and so it is silly to have to write a dagger † over and over. 

For destruction operators aij( )† ≡ aij we replace the knife with a “lid”( ) . (One wonders, “Why was a creation 

operation ever denoted by a murder weapon!”)

 The product state consists of generalization of (23.1.4) in which the oscillator boson analogy is used once 

for the angular-momentum j1 state of particle A and then again for the j2 state of particle B.

           j1
m1

j2
m2

=
    a1

1( ) j1+m1 a2
1( ) j1−m1 a1

2( ) j2+m2 a2
2( ) j2−m2

j1 + m1( )! j1 − m1( )! j2 + m2( )! j2 − m2( )!
00; 00 = j1 + m1 j1 − m1; j2 + m2 j2 − m2 .   (24.3.1)

The empty ket 00, 00  denotes the vacuum zero angular momentum or “unoccupied” state.

 We want to make states m
j  that are eigenvectors of definite total angular momentum using A and B pairs 

of creation-operators. Derivation of the D-matrix is based on the (a† ) -operator formula (23.1.12b) for the 

fundamental (Dm,n
1/2 = um,n ) -transformation in terms of a-operators.

    ′a1
k = u11a1

k + u21a2
k

′a2
k = u12a1

k + u22a2
k ( j = 1, 2 or A,B).

  (24.3.2)

Here, uij are components of a general unitary u† = u−1( )  unimodular (det |u |= 1)  two-by-two matrix where u is an 

element of SU(2). The u-transformation of creation operators gives irrep D j(u) of U(2) in (23.1.15a). 

       Dmnj
u11 u12
u21 u22

⎛
⎝⎜

⎞
⎠⎟
= ∑

k

( j + n)!( j − n)!( j + m)!( j − m)!
( j − k + m)!(k − m + n)!k!( j − n − k)!

(u11)
j−k+m (u21)

k−m+n (u12 )
k (u22 )

j−n−k

 (24.3.3) 
A product of representations is a representation of products: D j (u)D j (v) = D j (uv) ≡ D j (w) .

                                    ∑
n
Dmn
j u11 u12

u21 u22
⎛
⎝⎜

⎞
⎠⎟
Dnl
j v11 v12
v21 v22

⎛
⎝⎜

⎞
⎠⎟
= Dml

j w11 w12
w21 w22

⎛
⎝⎜

⎞
⎠⎟
,    (24.3.4a)

where
                                                             j=1

2∑ uijv jk = wik      (24.3.4b)

 Here is a big trick. Let each uij be replaced by creation operator aij to define a boson polynomial.
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            Bm,nj (a) = ∑
k

( j + n)!( j − n)!( j + m)!( j − m)!/ (2 j)!
( j − k + m)!(k − m + n)!k!( j − n − k)!

a1
1( ) j−k+m a2

1( )k−m+n
a1
2( )k a2

2( ) j−n−k (24.3.5)

The boson polynomialBm,nj is the same as Dmn
j (a)  with (a) replacing (u). (A factor 1 / (2 j)!  normalizes 2j bosons.) 

The result is a polynomial that has the correct transformation properties of a total angular-momentum state m
j . 

To see this, consider the polynomial made of transformed ( ′a ) operators given by (24.3.2). Here ′a  is written as a 

matrix product. The tilde (~) denotes a matrix transpose.

     ′a = u ⋅a,    where:   uij = uji .   (24.3.6)

The representation equation  D
j ua( ) = D j u( )D j (a)  is a transformation of the Bj-polynomial.

    
 
Bmn

j ua( ) = ∑
′m
Dm, ′m

j u( )B ′m ,n
j a( )    (24.3.7)

    Bmn
j ′a( ) = ∑

′m
D ′m ,m

j u( )B ′m ,n
j a( ) ,   (24.3.8)

Unitarity D j u†( ) = D j u( )†  and conjugation D j u *( ) = D j * u( )  require  Dm,n
j u( ) =Dn,m

j u( ) . A Bj-polynomial transforms 

by D j as spin components [1=“up” ( ↑ ), 2=“down” ( ↓ )] are mixed by the same uij according to (24.3.2) for both 

boson-A and boson-B. The fundamental spin-1 / 2  up-down-mixing then generates a rigid rotation of bosons A and 

B together in a coupled (j,m)-state of angular momentum.

 The Bj-polynomial also transforms irreducibly under transformations that mix boson “A-ness” and “B-

ness” of the two different particles in a transformation analogous to (24.3.2)

    
′am
1 = v11am

1 + v21am
2 ,

′am
2 = v12am

1 + v22am
2 m = 1, 2 or ↑, ↓( ),   (24.3.9a)

In matrix notation this is:   ′a = a ⋅v.      (24.3.9b)

The representation multiplication rules (24.3.4) lead to the following transformation properties:

    Bmn
j ′a( ) = Bmnj a ⋅v( ) = ∑

′n
Bm ′n
j a( )D ′n n

j v( ) .  (24.3.10)

 Thus, there are dual commuting groups of transformations for the system. The right-and-left-

transformation laws (24.3.8) and (24.3.10) are analogous to “laboratory” and “body” transformations (23.1.20a-

b). A transformation group  U(2) = {u}  of states commutes with a transformation group  U(2) = {v}  of 
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particles, and together they are labeled U2 ×U2 or U2 *U2 . The modified cross-product (*) notation is used to 

indicate that the two groups share a common irrep D j.

 A normalized j-state results if the boson creation operator (24.3.5) is applied to the vacuum:

 
j
mn

= Bmn
j a( ) 00,00 =

j + m( )! j − m( )!
2 j( )! ∑

k

j + n( )! j − n( )!
n1
1( )! n21( )! n1

2( )! n22( )! n1
1n2
1 ,n1

2n2
2  (24.3.11a)

The occupation numbers nm1 = nm
A  of “A-ons” or nm2 = nm

B of “B-ons” in state m are from (24.3.5).

                  n1
1 = j + m − k,      n2

1 = n − m + k,     n1
2 = k,        n2

2 = j − n − k.    (24.3.11b)

The following oscillator creation rules are used. [Recall Eqs. (21.1.15a) or (23.1.5e).]

                            a11( )n1
1

a2
1( )n2

1

a1
2( )n1

2

a2
2( )n2

2

00,00 = n1
1( )! n211( )! n12( )! n22( )! n11n21 , n12n22

The normalization is verified by evaluating the j-state scalar product.

                                     j
mn

j
mn

=
j + m( )! j − m( )!

2 j!
∑
k

( j + n)!
j + m − k( )! n − m + k( )

j − n( )!
k! j − n − k( )! ,

Orthonormality relations for oscillator eigenstates are assumed.

                                                       a 'b ',c 'd ' ab,cb = δa 'aδb 'bδc 'cδd 'd

A binomial coefficients relation p
m

⎛
⎝⎜

⎞
⎠⎟
= p!/ m! p − m( )!  is used to do the sum.

                                               ∑
m

p
m

⎛
⎝⎜

⎞
⎠⎟

q
s − m

⎛
⎝⎜

⎞
⎠⎟
=

p + q
s

⎛
⎝⎜

⎞
⎠⎟

    (24.3.12)

This relation is obtained by equating terms of binomial expansions:

   x + y( )p+q = ∑
x

p + q
s

⎛
⎝⎜

⎞
⎠⎟
xsx p+q−s = x + y( )p x + y( )q

The desired normalization is then proven.

j
mn

j
mn

=
j + m( )! j − m( )!

2 j( )! ∑
k

j + n
j + m − k

⎛
⎝⎜

⎞
⎠⎟

j − n
k

⎛
⎝⎜

⎞
⎠⎟
=

j + m( )! j − m( )!
2 j( )!

2 j
j + m

⎛
⎝⎜

⎞
⎠⎟
= 1

The j-state (24.3.11) is made of exactly (2j) bosons, the minimum number of spin-1/2 particles needed to make 

total angular momentum j. Each spin-1/2 counts toward the total, and so we call it an all-count state.
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b. Scalar “no-count” states
 The opposite of an all-count state is a no-count state that ends up with zero angular momentum. The 

smallest no-count state is an anti-symmetric singlet made by an N=2 boson determinant.

                                            det a( ) ≡ D a( ) ≡ a11a22 − a21a12 .       (24.3.13)

D(a) is invariant to transformations u and v in SU2 × SU2 , that is, unimodular ones detu = 1 = det v . We use 

elementary properties of determinants: det | A ⋅ B |= det | A | ⋅det | B |  and  det | A |= det | A | .

                                              det uav( ) = det u( )det v( )det a( ) = det a( )                             (24.3.14)

A “no-count” scalar (j = 0) state with (N = 2d) bosons is as follows.

    
0,0
j=0 N=2d =

a1
2a2

2 − a2
1a1

2( )2d
2d( )! 2d +1( )!

00;00 = ∑
r

2d
r

⎛
⎝⎜

⎞
⎠⎟
a1

1a2
2( )r −a2

1a1
2( )2d−r

2d( )! 2d +1( )!
00;00

                   = ∑
r

2d( )! −1( )r r r ; 2d − r 2d − r
2d( )! 2d +1( )!

=  ∑
r
−1( )r r r ; 2d − r 2d − r

2d +1

  (24.3.15)

The sum over r contains (2d + 1) terms, so the normalization of the scalar state is verified by having 

j = 0 j = 0 = 1 . No-count states are used to make general N-boson j-coupled states m,n
j N by putting  (N-2j) no-count 

bosons (24.3.15) with (2j) bosons in an all-count state (24.3.11) to satisfy three criteria.

 First, the number n↑  of spin-up minus the number n↓  spin-down is the same for m1
j1
m2
j2  and m,n

j N . 

    m1 + m2 = m = n↑ − n↓( ) / 2       (24.3.16b)

That is total spin z-component m or Jz -eigenvalue is constant. 

    Jz ≡ Jz
A + Jz

B = a1
1a1

1 − a2
1a2

1 + a1
2a1

2 − a2
2a2

2( ) / 2 = n↑ − n↓( ) / 2    (24.3.16a)

Second, the number nA  of  “A-ons” minus the number nB  of “B-ons” is the same for m1
j1
m2
j2  and m,n

j N . 

    j1 − j2 = n = nA − nB( ) / 2 .     (24.3.17b) 

The total “body- z ”-component n or Jz -value is constant.  (This is called isospin or quasi-spin.) 

   Jz = a1
1a1

1 + a2
1a2

1 − a1
2a1

2 − a2
2a2

2( ) / 2 = nA − nB( ) / 2     (24.3.17a)

Finally, the total number N of  “A-ons” and “B-ons” is the same for the states m1
j1
m2
j2  and m,n

j N .

    N = 2 j1 + j2( ) = a11a11 + a21a21 + a12a12 + a22a22 = n↑A + n↓A + n↑B + n↓B = nA + nB = n↑ + n↓    (24.3.18)

The grand total N counts each kind (A or B) of boson or each state (↑ or ↓ ) in which it may reside.

c. N-Boson coupled momentum states
 To get a general N-boson j-coupled state m,n

j N  an even number (N – 2j) of bosons, in scalar determinant 

(no-count) combination (24.3.15), is added to an all-count state  mn
j = m,n

j N=2 j in (24.3.11)..

   j  N
mn

=
2 j +1( )! j + m( )! j − m( )!
N 2 − j( )! N 2 + j +1( )! ∑

k

j + n( )!
n1

1( )! n2
1( )!

j − n( )!
n1

2( )! n2
2( )!

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
a1

1a2
2 − a1

2a2
2( )N /2− j

n1
1n2

1 ,n1
2n2

2   (24.3.19a)

HarterSoft –LearnIt     Unit 8 Quantum Rotation    24- 41



Here the occupation numbers nj
u  from (24.3.11b) are used. The normalization factors for this state are not so easy 

to prove. Expansion of the determinantal expression gives the following.

                           a11a22 − a21a12( )N /2− j = ∑
r
−1( )r N / 2 − j( )!

r! N / 2 − j − r[ ]! a1
1a2

2( )N /2−r a2
1a1

2( )r .     (24.3.19b)

The no-count pairs (24.3.19b) are merged to make a coupled state.

 j  N
m,n

=
2 j +1( )! j + m( )! j − m( )!
N 2 − j( )! N 2 + j +1( )! ∑

r
−1( )r

j + n( )! j − n( )! m1
1( )! m2

1( )! m1
2( )! m2

2( )!
r! N / 2 − j − r( )! n1

1( )! n2
1( )! n1

2( )! n2
2( )!

N
2
− j⎛

⎝⎜
⎞
⎠⎟ ! m1

1m2
1 ,m1

2m2
2  (24.3.19c)

Modified occupation numbers are found using quantum conservation relations (24.3.16) to (24.3.18).

                              

m1
1 = n1

1 + N
2
− j − r      = j1 + j2 + m − k − r = j1 + m1( )

m2
1 = n2

1 + r                    = j1 − j2 − m + k + r    = j1 − m1( )
m1

2 = n1
2 + r                    = k + r     = j2 + m2( )

m2
2 = n2

2 + N
2
− j − r       = 2 j2 − r − k           = j2 − m2( )

    (24.3.19d)

The equalities written in parentheses on the right must hold when this state is matched with (24.3.1) to derive the 

coupling coefficient. The r sum is eliminated then, since

                                                r = j2 − k + m − m1 = j2 + m2 − k.        (24.3.19e)

The resulting coupling coefficient formula then has the conservation relations built into it.

   

Cm1
j1

m2
j2

m3
j3 = m1

j1
m2
j2

m3n
j N             with:     N = 2 j1 + j2( ),         and:       n = j1 − j2,

= −1( ) j2 +m2 2 j3 +1( ) j1 + j2 − j3( )! j3 + j1 − j2( )! j2 + j3 − j1( )!
j1 + j2 + j3 +1( )!

⋅ ∑
k

−1( )k ⋅ j1 + m1( )! j1 − m1( )! j2 + m2( )! j2 − m2( )! j3 + m3( )! j3 − m3( )!
j2 + m2 − k( )! j1 − j3 − m2 + k( )! j3 + m3 − k( )! j1 − j2 − m3 + k( )!k! j3 − j1 + j2 − k( )!

  (24.3.20a)

The standard formula for the Wigner 3-j coefficient follows from (24.2.30) and is given below.

     j1
m1

j2
m2

j3
m3

⎛
⎝⎜

⎞
⎠⎟
= −1( ) j1− j2−m3 Cm1

j1
m2
j2

m3
j3 2 j3 +1( )

1
2      (24.3.20b)

The ( j1, j2 , j3 ) -numbering has been reshuffled in the following to give a more standard formula.  

       

j1
m1

j2
m2

j3
m3

⎛
⎝⎜

⎞
⎠⎟
= −1( ) j1− j2 −n3 j1 + j2 − j3( )! j1 − j2 + j3( ) − j1 + j2 + j3( )

j1 + j2 + j3 +1( )!
−1( )k
k!k

∑
j1 + m1( )! j1 − m1( )! j2 + m2( )! j2 − m2( )! j3 + m3( )! j3 − m3( )!

j1 − m1 − k( )! j2 − m2 − k( )! j1 + j2 − j3 − k( )! j3 − j2 − m1 + k( )! j3 − j1 − m2 + k( )!

 (24.3.20c)

Young tableau notation for N-spin-1/2 

 Building an N-spin-1/2 boson state is a complicated undertaking, but one of great utility in both quantum 

electronics and quantum optics as well as in atomic and molecular physics. It is directly applicable to N-photon 

©2004 W. G. Harter     Chapter 24 Angular Momentum Coupling    24-42



states since photons are Bose’s original bosons for the electromagnetic oscillators given in Chapter 22 or for the 

general 2D-quantum oscillator introduced in Chapter 21.

 To help visualize an N-spin-1/2 state let us revisit the Young-tableau notation for symmetric oscillator 

states given at the end of Chapter 21. There in Fig. 21.3.2, symmetric N-boson oscillator states are indicated by 

horizontal rows of N-boxes with one box for each boson. Fig. 24.3.1 is similar but also has vertical columns of 

just two boxes denoting anti-symmetric singlet states made by determinant (24.3.13). Each N-box tableau for a 

spin-(j=S) state has (N-2j) column-boxes and an “overhang” of (2j=2S)-horizontal boxes. Overhang-plus-one is spin 

multiplicity (2S+1), the number of ways ↑ and ↓ can go it that tableau.

  N=2

N=1 N=3

N=4

N=5

Spin S

S=1/2

S=1

S=3/2

S=2

S=5/2

↑

↓

↑
↓

↑ ↑

↑ ↓
↓ ↓

ParticleNumber

S=0

↑ ↑ ↑
↑ ↑ ↓

↑ ↓ ↓
↓ ↓ ↓

↑ ↑
↓

↑ ↓
↓

↑ ↑
↑ ↑ ↑ ↓

↑ ↑ ↓ ↓
↑ ↓ ↓ ↓

↓ ↓ ↓ ↓

↑ ↑ ↑
↓ ↑ ↑ ↓

↓ ↑ ↓ ↓
↓

↑ ↑ ↑
↓ ↓ ↑ ↑ ↓

↓ ↓

↑
↓
↑
↓

↑ ↑ ↑↑
↓ ↑ ↑ ↓↑

↓ ↑ ↓ ↓↑
↓ ↓ ↓ ↓↑

↓[2,0]

=1

[3,0]

=1

[4,0]

=1

[1,1]

=1

[2,1]

=2

[3,1]

=3

[2,2]

=2

[3,2]

=5

↑ ↑ ↑
↑ ↑ ↑ ↓

↑ ↑ ↓ ↓
↑ ↓ ↓ ↓

↓ ↓ ↓ ↓

[5,0]

=1 ↓

↑↑

↑ ↑ ↑↑ ↑
↑

↓
↓

↓
↓

[4,0]

=4

 Fig. 24.3.1 N-Particle Spin-1/2 State Labeling by Young Tableaus.

Another kind of multiplicity is an arrangement-multiplicity or permutation-degeneracy [µ] discussed now.

 The simplest tableau with 2-fold permutation multiplicity is a 3-particle case   2.1[ ] = 2 . It also happens to 
have a 2-fold spin-multiplicity [S] =2S+1=2. But, do not confuse spin multiplicity [S] with permutation 

multiplicity [µ]. The spin multiplicity [S]=2S+1 is the number of spin states for a given S-tableau. Permutation 

multiplicity is the number   µ1 .µ2[ ]  of ways to make an S-multiplet from a product of N-spin-1/2. For example, the 

number of 5-particle S=1/2 doublets is   3,2[ ] = 5  in Fig. 24.3.1. Another example is a 3-particle product 1 / 2( )3  

that has two (  2.1[ ] = 2 ) ways to make S=1/2 or tableau [2,1].

  1
2
⊗ 1

2
⊗ 1

2
= 0⊕1( )⊗ 1

2
= 0⊗ 1

2
⎛
⎝⎜

⎞
⎠⎟ ⊕ 1⊗ 1

2
⎛
⎝⎜

⎞
⎠⎟ =

1
2
⊕  1

2
⊕ 3

2
= 2 1

2
⎛
⎝⎜

⎞
⎠⎟ ⊕1 3

2
⎛
⎝⎜

⎞
⎠⎟   (24.3.21)

But, a tableau [3,0] or S=3/2 quartet appears in 1 / 2( )3 just once (  3,0[ ] =1 ). In all, 1 / 2( )3has 23=8 states.
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 To each column of (N)-particle tableaus in Fig. 24.3.1, one adds a single box in one of two ways to make 

an (N+1)-particle tableau in the next column. One may add a box to the first row and raise total spin from S to S

+1/2, or one may add a box to the second row and lower total spin from S to S-1/2. For example, an (N=8)-box 

tableau of spin (S=2) is the following combination of four (N-1=7)-box tableaus. 

        
↑ ↑ ↑ ↑ ↑ ↓

↓ ↓

S = 2
MS = 1

=       (24.3.22)

  

= C1/2
5/2

1/2
1/2

1
2 ↑ ↑ ↑ ↑ ↓ ↓

↓ ⋅⋅

5 / 2
1 / 2

↑ 1/2
1/2

+C3/2
5/2

−1/2
1/2

1
2 ↑ ↑ ↑ ↑ ↑ ↓

↓ ⋅⋅

5 / 2
1 / 2

↓ −1/2
1/2

+C1/2
3/2

1/2
1/2

1
2 ↑ ↑ ↑ ↑ ↓ ⋅⋅

↓ ↓

3 / 2
1 / 2

↑ 1/2
1/2

+C3/2
3/2

−1/2
1/2

1
2 ↑ ↑ ↑ ↑ ↑ ⋅⋅

↓ ↓

3 / 2
1 / 2

↓ −1/2
1/2

The first two have spin (S=5/2) and add a box to their second row to lower total spin from 5/2 to 2. The next two 

have spin (S=3/2) and add a box to their first row to raise total spin from 3/2 to 2. The CGC that are needed at 

each stage of “1-box-addition” have the following four general formulae and values for j=3/2. 

  
Cm

j
1/2
1/2

m+1/2
j+1/2 = j + m +1

2 j +1
Cm+1

j
−1/2

1/2
m+1/2
j+1/2 = j − m

2 j +1

Cm
j+1

1/2
1/2

m+1/2
j+1/2 = − j − m +1

2 j + 3
Cm+1

j+1
−1/2

1/2
m+1/2
j+1/2 = j + m + 2

2 j + 3

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

   example:  
C1/2

3/2
1/2
1/2

1
2= 2

3
C1/2

3/2
1/2
1/2

1
2= 1

3

C1/2
5/2

1/2
1/2

1
2= − 1

3
C1/2

5/2
1/2
1/2

1
2= 2

3

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 (24.3.23)

A box-addition diagram of [µ] in Fig. 24.3.2(a) reminds one of the Pascal’s triangles in Fig. 21.3.2(a). 

Each [µ] entry in the Nth column (N>1) is a sum of one or two numbers located diagonally to its left in the 

preceding (N-1)th column. Fig. 24.3.2(b) shows spin degeneracy ([S] =2S+1) for each entry. Fig. 24.3.2(c) shows 

both [S] and permutation [µ]-multiplicity. The Nth-column sum of their products [S][µ] is 2N.

   
 
2N =  S[ ]

S

N /2
∑  µ1 ,µ2[ ] = 2S +1( )

S

N /2
∑ 

N +2S
2

,N −2S
2

⎡
⎣⎢

⎤
⎦⎥    (24.3.24)

 Clebsch-Gordan coefficients (CGC) of U(2)  give N-particle states with total spin S. Fig. 24.1.1 shows the 

simplest 2-particle (N=2) case involving spin-1/2-particle states. The CGC give a singlet (S=0) and a triplet (S=1) 

listed in the (N=2)–column of Fig. 24.3.2 and makes the singlet anti-symmetric ( ↑
↓
⎡

⎣
⎢

⎤

⎦
⎥ ) and triplets ( ↑↑⎡⎣ ⎤⎦, ↑↓⎡⎣ ⎤⎦, ↓↓⎡⎣ ⎤⎦ ) 

symmetric. But for N>2, CGC schemes like (24.3.23) give ill-defined permutation symmetry. Section 25.3 shows 

a more natural and elegant way to couple three or more particles.
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[2,0]=1
2S+1=3

[3,0]=1
2S+1=4

[4,0]=1
2S+1=5

[1,1]=1
2S+1=1

[2,1]=2
2S+1=2

[3,1]=3
2S+1=3

[2,2]=2
2S+1=1

[3,2]=5
2S+1=2

[5,0]=1
2S+1=6

[4,1]=4
2S+1=4

[1,0]=1
2S+1=2

[4,2]=9
2S+1=3

[6,0]=1
2S+1=7

[5,1]=5
2S+1=5

[3,3]=5
2S+1=1

1
1 9

1 8
1 7 35

1 6 27
1 5 20 75

1 4 14 48
1 3 9 28 90

1 2 5 14 42
1 2 5 14 42

9 9
8 8

7 7 7
6 6 6

5 5 5 5
4 4 4 4

3 3 3 3 3
2 2 2 2 2
1 1 1 1 1

21=2 22=4 23=8 24=16 25=32 26=64

(a) Permutation
U(N)⊃SN
Multiplicity

(b) Spin
U(2)⊃S2
Multiplicity
S=2S+1

(c) Combined
U(N)xU(2)
Multiplicity

2S
N-2S
2

µ1
µ2

↑ ↑ ↑
↓ ↓ ↓

 µ1 ,µ2⎡⎣ ⎤⎦

[5,2]=14
2S+1=4

[7,0]=1
2S+1=8

[6,1]=6
2S+1=6

[4,3]=14
2S+1=2

27=128

[6,2]=20
2S+1=5

[8,0]=1
2S+1=9

[7,1]=7
2S+1=7

[5,3]=28
2S+1=3

[4,4]=14
2S+1=1

28=128

1 2 3 4 5 6 7 8 9 10
N

1 2 3 4 5 6 7 8 9N=

Fig. 23.3.2 Spin-1/2 and U(2) Tableau branching diagrams 
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Appendix 24A Classical theory for spin-interactions and fine structure
 Classical models for spin and orbit interactions in fields and their resulting spectral fine structure is based 

upon the A•p interaction of the pondermotive–electromagnetic Hamiltonian (17.1.10) and is given as follows in 

the first chapter 17 of Unit 6 for a mass m charge e in a vector potential field A.

 H = 1
2m

p − eA( ) • p − eA( ) + eV (r) = p2

2m
− e
m
A • p + e2

2m
A •A + eV (r)  (24A.1a)

Electron momentum p, charge e=-|e|=1.60218·10-19C, and mass m=9.10939·10-31 kg (or reduced mass 

meM = mM / (M +m) =9.10443·10-31) appear in the electron-nucleon-field interaction term that is used.

    HeM = − e
meM

A • p     (24A.1b)

Nuclear vector potential A and mass M=1.67262·10-27kg of a single proton are assumed above. Here we assume 

the non-relativistic “Coulomb gauge” requirement (∇ • A = 0 ) so that p • A( )ψ = A • p( )ψ .

 The vector potential is expressed using a multipole expansion as developed in Chapter 23.

   
 

1
r − ′r

= 4π
2k +1

′r k

rk+1m=−k

k

∑
k
∑ Ym

k (θϕ )Ym
k*( ′θ ′ϕ ) = 1

r
− r • ′r
r 3

+

The first two far-field (r >> ′r )  multipole expansion terms of internal nuclear currents near origin are here.

 

A(r) = µ0
4π

d3 ′r∫∫∫
j( ′r )
r − ′r

= µ0
4π r

d3 ′r∫∫∫ j( ′r ) + µ0
4π r 3 d3 ′r∫∫∫ r • ′r( ) j( ′r )

                                        =            0               + µ0
4π r 3 d3 ′r∫∫∫ ′r × j( ′r )

2
 × r 

    (24A.3)

Only the second magnetic dipole term survives if nuclear currents are assumed localized with no net flow. (For 

now we ignore the quadrupole and higher order moments.) Moreover, the dipole integrand separates into 

symmetric (S) and anti-symmetric (A) parts. Only the latter survive for zero net flow. (∇ • j = 0 )

 r • ′r( ) jb = ra ′ra( ) jb = 1
2
ra ′ra jb + ′rb ja( ) + 1

2
ra ′ra jb − ′rb ja( ) = 1

2
ra Sab + Aab( )         (24A.4) 

Levi-Civita cross-product analysis and identity εabcεefc = δaeδbf − δbeδaf  gives a triple-cross identity.

 
′r × j( ) × r b = εbca ′r × j( )c ra = εabc εcef ′re j f( )ra = εabcεefc = δaeδbf − δbeδaf( ) ′re j f ra

                    = ′ra jbra − ′rb jara = ra ′ra jb − ′rb ja( )( ) = r • ′r( ) j − r • j( ) ′r b

The volume integral of term Sab = ′ra jb ( ′r ) + ′rb ja ( ′r )  is zero if ∇ • j = 0  since S is a divergence ∇ • ′ra ′rb j( ′r )( ) .

  ∇ • ′ra ′rb j( ′r )( ) = ∂
∂ ′rc

′ra ′rb jc( ) = ′rb ja + ′ra jb + ′ra ′rb
∂jc
∂ ′rc

= ′rb ja + ′ra jb

Then the divergence theorem reduces the volume integral to one over a large surface that has no current.

  
 

d3 ′r∫∫∫ ′rb ja + ′ra jb( ) = d3 ′r∫∫∫ ∇ • ′ra ′rb j( ′r )( ) = dS∫∫ ′ra ′rb j( ′r )( )→ 0
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Continuity equation ∇ • j = − ∂ρ
∂t

 precludes time-dependent charge if ∇ • j = 0 , which like ∇ • A = 0  is strictly a non-

relativistic approximation. This gives then the static magnetic dipole vector potential.

 A(r) = µ0
4π r 3M × r = µ0

4π
M × ∇ 1

r
⎛
⎝⎜

⎞
⎠⎟      where:       M= d3 ′r∫∫∫ ′r × j( ′r )

2
      (24A.5a)

The nuclear magnetic moment M is defined above. The magnetic field due to such a moment is

  B(r) = ∇ × A(r) = µ0
4π

∇ × M × r
r 3

⎛

⎝
⎜

⎞

⎠
⎟ =

µ0
4π

∇ × M × ∇ 1
r

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

 (24A.5b)

Electronic-nuclear-orbit-spin interaction
The Hamiltonian for nuclear moment M coupled to electronic orbital momentum L = r × p is here.

 

HeM = − e
m
A • p = − e

m
µ0

4π r 3M × r • p = − e
m

µ0
4π r 3M • r × p

        = − e
m

µ0
4π
M •L
r 3 = −M •B   where:  B(at M due to e)= µ0

4π
e
m
L
r 3

 (24A.6a)

The B-field at the nucleus due to electronic charge e = − e  Bohr-orbiting with  L =  = mvr is

   

 

B(at r = 0)= µ0
4π

e
m

mvr
r3 = − µ0

4π
e v
r2

                 = µ0
4π

e
m


r3   = − µ0
4π

j
r2

 .    (24A.6b)

This relates a classical loop current j = ev  to the orbital quantum number   = 0,1, 2, .. .

 
 
j ⋅ r = e

m
 = g ⋅µe ⋅  ,   where:  µe = e

2m
  (Bohr magneton)  and: g = 2  (24A.6c)

The Bohr magneton µe = 9.27401 ⋅10−24 (J ⋅T −1  or  A ⋅m)  was first given after (24.1.18). For   = 1  the magnetic 

moment is j ⋅ r / 2 = e / 2m = µe . For   = 1 / 2  we have that j ⋅ r = µe . But, this is just numerology like earlier 

numerology (5.6.5) in Chapter 5. Instead, Dirac’s spin theory is the current standard we will use.

Electronic-nuclear spin-spin interaction
 First approximation Dirac theory of electron spin magnetic moment is me = −2µe . Using this we derive the 
energy of the electron spin moment in the B-field (24A.5) of the proton spin moment.
  He−spin− p−spin = −me •Bp = −me •∇ × A(r)    (24A.7)
The proton spin B-field is reduced using the Levi-Civita algebra.εbcaεbdf = δcdδaf − δcfδad .

 4π
µ0
B = ∇ ×

Mp × r

r 3
⎛

⎝
⎜

⎞

⎠
⎟ = −∇ × Mp × ∇r

−1( )     (24A.8a)

 − 4π
µ0

Bc = εabc∂a M × ∇r−1( )b = εabc∂a εbdf Md∂ f r
−1( )    (24A.8b)

             = εbcaεbdf Md∂a∂ f r
−1 = δcdδaf − δcfδad( )Md∂a∂ f r

−1 = Mc∂a∂ar
−1 − Ma∂a∂cr

−1
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Monopole derivatives∇(1 / r) = ∂ar
−1  use ∂a  to denote derivatives ∂ / ∂ra  of coordinates (r1, r2 , r3 ) = (x, y, z) . Repeated 

indices are summed as in the Pythagorean radial square rbrb = r1r1 + r2r2 + r3r3 = x2 + y2 + z2 = r2 .

 ∂ar
−1 = ∂a rbrb( )−1/2 = −ra rbrb( )−3/2 = −rar

−3     (24A.9a)

 ∂a∂cr
−1 = −∂arc rbrb( )−3/2 − rc∂a rbrb( )−3/2 = −δacr

−3 + 3rarcr
−5   (24A.9b)

This translates back to Gibbs-vector notation for dipole-dipole interactions.

− 4π
µ0
m •B = − 4π

µ0
mcBc

                 = −mcMc∂a∂ar
−1 + Ma∂amc∂cr

−1      = −mcMc∂a∂ar
−1 + Mamc δacr

−3 − 3rarcr
−5( )

                 = −m •M ∇2 1
r

⎛
⎝⎜

⎞
⎠⎟ + m •∇( ) M •∇( ) 1

r
⎛
⎝⎜

⎞
⎠⎟ = −m •M ∇2 1

r
⎛
⎝⎜

⎞
⎠⎟ +
m •M
r3 −

3 m • r( ) M • r( )
r5

We put in the standard definitions me = − geµe J
e  and M p = + gpµp J

p  for electron and proton moments.

 He−spin− p−spin = µ0
4π

−m •M ∇2 1
r

⎛
⎝⎜

⎞
⎠⎟ +  m •M

r3 −
3 m • r( ) M • r( )

r5
⎡
⎣⎢

⎤
⎦⎥

 (24A.10a)

       =
µ0 geµegpµp

4π
Je • Jp  ∇2 1

r
⎛
⎝⎜

⎞
⎠⎟ −

Je • Jp

r3 +
3 Je • r( ) Jp • r( )

r5

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

 (24A.10b)

We now see a way to derive from this the Fermi contact interaction aepJ proton • Jelectron  stated in (24.1.12). (The first 

term Je • J p  ∇2 (r−1 ) = 4π δ (0)Je • J p  is wrong since the other terms contribute.)

    Gauss hyper-theorem analysis of Fermi-contact term 

 Freshman electromagnetism students are drilled on the divergence theorem and Gauss law.

  
 

d3r∫∫∫ ρ(r) / ε0 = d3r∫∫∫ ∇ •E(r) = dS •∫∫ E(r) = dΩ∫∫ R2n •E(R)  (24A.11)

Not as well known are two E and B-vector integration relations that sum fields as do the following.

  
 

d3r∫∫∫ E(r)     = − d3r∫∫∫ ∇ϕ(r) = − dS∫∫ ϕ(r) = − dΩ∫∫ R2nϕ(r)  (24A.12a)

  
 

d3r∫∫∫ B(r)    = d3r∫∫∫ ∇ × A(r) = dS × A(r)∫∫ = dΩ∫∫ R2n × A(r)  (24A.12b)

Volume sums of fields involve some chargeρ(r) , current j(r) , and scalar or vector potentialsϕ(r) orA(r) .

  ϕ(r) = 1
4πε0

d3 ′r∫∫∫
ρ( ′r )
r − ′r

 (24A.13a) A(r) = µ0
4π

d3 ′r∫∫∫
j( ′r )
r − ′r

 (24A.

13b)  
The sum over B-field observer position r  can be reversed with the sum over source position ′r  if the R-surface is 

beyond current carrying points so that j( ′r ) = 0  where ′r ≥ R  to avoid a 1 / r − ′r  blowup.
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 d3r∫∫∫ B(r) = dΩ∫∫ R2n × µ0
4π

d3 ′r∫∫∫
j( ′r )
r − ′r

= − µ0
4π

d3 ′r∫∫∫ j( ′r ) × dΩ∫∫
nR2

r − ′r
    

The solid angle integral is easily evaluated using the addition theorem expansion (23.4.9) of 1 / r − ′r .

 
 
dΩ∫∫  nR

2

r − ′r
= dΩ∫∫ n  

=0
∑

m=−



∑ 4πR2

2 +1( )
′r 

R+1Ym
* φ,θ( )Ym ′φ , ′θ( )  

Sum and integral switch and unit normal in vector or dipole coordinates is n = nn
1Yn

1 φ,θ( )∑  

 

 

dΩ∫∫
nR2

r − ′r
=
=0
∑

m=−



∑ dΩ∫∫ nn
1Yn

1 φ,θ( )
n=−1

n=1
∑   Ym

* φ,θ( )Ym ′φ , ′θ( ) 4πR2

2 +1( )
′r 

R+1

                     =
=0
∑

m=−



∑ nn
1   dΩ∫∫ Yn

1 φ,θ( )
n=−1

n=1
∑ Ym

* φ,θ( ) Ym
 ′φ , ′θ( ) 4πR2

2 +1( )
′r 

R+1

                    =
=0
∑

m=−



∑ nn
1

n=−1

n=1
∑               δ ,1δm,n               Ym

 ′φ , ′θ( ) 4πR2

2 +1( )
′r 

R+1  

Orthonormality of Yn1  and  Ym
  reduces the result to the source radius times 4≠/3.

  
 
dΩ∫∫

nR2

r − ′r
= nm

1

m=−



∑  Ym
1 ′φ , ′θ( ) 4πR2

3( )
′r
R2  = ′n ′r 4π

3
= 4π

3
′r   (24A.14)

Finally, the magnetic field-sum reduces to the source current’s total magnetic dipole M times 8≠/3.

     d3r∫∫∫ B(r) = − µ0
4π

d3 ′r∫∫∫ j( ′r ) × ′r 4π
3

= µ0
4π

d3 ′r∫∫∫ ′r × j( ′r )
2

8π
3

= µ0
4π
M 8π

3
 (24A.15a)

In contrast an electric field-sum is the electric source charge’s total dipole p times -4≠/3.

 d3r∫∫∫ E(r) = − d3 ′r∫∫∫ ∇ϕ = −1
4πε0

d3 ′r∫∫∫ ρ( ′r ) 4π
3

= 1
4πε0

p −4π
3

  (24A.15b)

Fig. 25A.1 suggests the difference in sign and magnitude is due to different field geometry at the “heart” of each 

dipole type where the field intensity is greatest. The magnetic B-field flux is continuous through the origin as 

shown in Fig. 24A.1(b) while the electric dipole has a huge E-field reversal in between the (+) and (−) charges 

that are the presumed sources for a dipole. Yet, the far-field geometry is the same for each.
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 An electron at r=0, the “heart” of the proton, tends to strongly align its moment m with the moment M of 

the proton. (Like currents attract.)  An electric dipole at r=0 tends to strongly anti-align its moment p with the P 

at the “heart” of its source. (Like charges repel.)   

 Electron spin Je is opposite to m, The electron moment m tends to align with whatever B-field it finds as 

the Je does the opposite as shown in Fig. 24A.1(b). At the origin r=0 and on z-axis, electron m and minus-Je tend 

to align with M and proton spin Jp. Hence, the coefficient of the Fermi-contact interaction operator δ (0)Je • J p

should be positive so state ↑p ↓e  is the lowest s-configuration. 

 But, in the xy-plane normal to z with r≠0, electron m and minus-Je tend to anti-align with M and proton 

spin Jp. Hence, the coefficient of the dipole-dipole interaction operator Je • J p / r3 should be negative. At 

intermediate angles, the other dipole-dipole term 3 Je • r( ) J p • r( ) / r5  becomes non-zero and, close to the z-axis, it 

tends to anti-align Je to proton Jp and M like the Fermi contact term does. 

 The full electron-nuclear-spin-moment Hamiltonian is now collected in one place.

     He− p−spin  =
µ0 geµegpµp

4π
8π
3
δ (0)Je • Jp  +L

e • Jp

r3 − J
e • Jp

r3 +
3 Je • r( ) Jp • r( )

r5

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

    (25A.16)

First is the Fermi-contact term using (24A.15a) and then e-orbit-p-spin from (24A.6a). The final terms give the 

anisotropic or tensor spin-spin interaction with its quadratic (or quadrupole)Je • rr • J p  form.

Electronic-spin -orbit interaction
The interaction of an electron spin with its own electronic orbital momentum L = r × p is, perhaps, the single 

interaction most in need of a relativistic theory. Without considering the effects of relativistic velocity and 

acceleration by rotation, it comes out wrong by a factor of two or worse. Dirac algebra gives directly the 

following operator for spin-orbit-in-potential-V(r) as will be shown later.

 He−spin−orbit  =
∂V
∂r
Le • Se

2rm2c2 = e2Z
2r3

Le • Se

4πε0m
2c2 = µ0

4π
e2Z

2m2r3 L
e • Se    for potential: V (r) = 1

4πε0

Ze2

r
 (24A.

17)     
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(b) Magnetic Dipole B-Field

Proton
Magnetic
moment

M

Proton
spin
Jp

Electron
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spin
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(a) Electric Dipole E-Field

Electric
Dipole
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Fig. 25A Comparing near-source fields and interacting dipoles (a) Electric dipole and (b) Magnetic dipole.
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