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Chapter 25

Tensor Operators and 
Wigner-Eckart Matrices

W. G. Harter
The Wigner-Eckart representations of tensor operators are an important part of the 
development of Clebsch-Gordan-Wigner angular momentum calculus.  Hamilton-Pauli spinor 
representations of spin-1/2 operators of U(2) are generalized  to tensor operator matrix 
representations of spin-j operators of U(2j+1). By noting that spinor operator matrices are
1 / 2⊗1 / 2  Wigner coefficients, it is straightforward to generalize spin-j tensor operator matrices 

to j⊗ j  or j⊗ k  Wigner coefficients.  Generalization to states of 2, 3, …,n particles is done two 

ways. First, 2-particle operators are evaluated using Racah recoupling coefficients. Second, 
unitary and permutational symmetry is introduced for treating n-particle orbitals and compared 
to Racah analysis of n=2. Finally, the spectra of tensor operators are considered and applied to 
crystal field splitting. Techniques for analyzing high-J tensor spectra are introduced and applied 
to high resolution laser molecular spectroscopy.
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25.1 TENSOR OPERATORS AND THE WIGNER-ECKART THEOREM
The theory and application of R3 tensor operators will be introduced in this section. The development takes off 

from a CGC-construction of scalar, vector, and tensor products in Section 24.2 and uses CGC-products of ket-

bras to make general tensor operators. This leads to the Wigner-Eckart theorem and its application to atomic 

perturbations and transitions between N-particle orbital states of Section 24.4. Two-particle matrix theory 

introduces Racah-Wigner 6j-coefficients and continues the comparison between the standard tensor algebra and 

the more modern unitary   U (m) × SN algebra introduced at the end of Ch. 24.

a. Construction of R3 tensor operators
For each set of irrep bases 

   m
j : j

j , j−1
j ,…, − j

j{ }  of 2j + 1 ket vectors, an equal number of bra vectors

   
   
−1( ) j−m j

−m
:

j
− j

, −
j

− j +1
,…, −1( )2 j j

j
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
,

belong to the same irrep  D j . (Recall 24.2.20.) By combining the two using coupling coefficients, one may 

construct the irreducible tensorial operators or Fano-Racah tensorial sets.

   
  
T jj( )q

k
= ∑

m,m '
Cm

j
m '
j

q
k j

m
j

−m '
−1( ) j−m '

,    (25.1.1a)

Set members transform among themselves much as states do using irrep Dk 2 j ≥ k ≥ 0( )  as follows.

   
  
R aβ y( )T jj( )q

k
R† aβ y( ) = ∑

q '
Dq 'q

k aβ y( )T jj( )q '
k .  (25.1.1b)

This is similar to the scalar, vector, and tensor ket-ket products introduced in Section 24.2a. However, now we 

must account for the slightly different transformation behavior of the bra vectors.

 If two or more sets 
 j1

j1 ,…, m1
j1 ,…, j2

j2 ,…, m2
j2 ,…,{ },…  of angular-momentum states need to be 

considered, then one may make hetrogeneous tensorial combinations

    T j1 j2( )q
k = ∑

m1 ,m2
Cm1
j1

m2
j2

q
k j1
m1

j2
−m2

−1( ) j2 −m2 ,    (25.1.2a)

where:    j1 + j2 ≥ k ≥ j1 − j2 .      (25.1.2b)

All combinations are needed to make a complete set of irreducible tensor operators acting on any basis. The first 

few examples treated in the following will be based on a single set 
 m

j{ }  of angular-momentum states, and so 

there will be one combination Tqk jj( ) = Tqk  for each k = 0, 1, …, 2j, and q. k ≥ q ≥ −k( ).
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 Tensor operators for spin- 12  states: Hamilton-Pauli-spinors

From the spin- 12 states 
 1/2

1/2 , −1/2
1/2{ }  one may construct the tensor operators

    
  
Tq

k = ∑
m1

Cm1

1/2
m2

1/2
q
k

m1

1/2
−m2

1/2 −1( )1
2−m2     (25.1.3a)

Using 12 ⊗
1
2  coupling coefficients (24.1.7). The results are given in the following with their representations in the 

spin- 12 basis:

 

  

       T−1
1 =

0 0
−1 0

⎛
⎝⎜

⎞
⎠⎟

                  T0
1 =

1

2

−1 0
0 1

⎛
⎝⎜

⎞
⎠⎟

              T1
1 =

0 1
0 0

⎛
⎝⎜

⎞
⎠⎟

  = −
1/ 2

−1/ 2
1/ 2
1/ 2

, = −
1

2

1/ 2
1/ 2

1/ 2
1/ 2

−
1/ 2

−1/ 2
1/ 2

−1/ 2
⎡

⎣
⎢

⎤

⎦
⎥ ,     =

1/ 2
1/ 2

1/ 2
−1/ 2

,

                           T0
0 = −

1

2

1 0
0 1

⎛
⎝⎜

⎞
⎠⎟

           = −
1

2

1/ 2
1/ 2

1/ 2
1/ 2

+
1/ 2

−1/ 2
1/ 2

−1/ 2
⎡

⎣
⎢

⎤

⎦
⎥ .

  (25.1.3b)

The first three operators form a vector set. Consider the following Cartesian combinations:

               

  

Tx ≡ −
T−1

1 −T1
1

2
     Ty ≡ −i

T−1
1 +T1

1

2
     Tz ≡ −T0

1

=
1

2

0 1
1 0

⎛
⎝⎜

⎞
⎠⎟

=
1

2

0 −i
i 0

⎛
⎝⎜

⎞
⎠⎟

=
1

2

1 0
0 1

⎛
⎝⎜

⎞
⎠⎟

≡
1

2
σ x ≡

1

2
σ y ≡

1

2
σ z

≡ 2Jx ≡ 2J y ≡ 2Jz

   (25.1.4)

Except for an overall minus phase, these relations correspond to circular-to-linear polarization definitions 

(24.2.3). The resulting Cartesian tensors are proportional to the Pauli spinor operators:

                       σ x →
0 1
1 0

⎛
⎝⎜

⎞
⎠⎟
, σ y →

0 −i
i 0

⎛
⎝⎜

⎞
⎠⎟
, σ z →

1 0
0 −1

⎛
⎝⎜

⎞
⎠⎟
,    (25.1.5)

The spin- 12  angular-momentum operators recall the original ABC-definitions in Eq. (10.5.10).

                               
  
Jx =

σ x
2

,       J y =
σ y

2
,      Jz =

σ z
2

,           (25.1.6)

An explicit example of tensorial set transformation behavior in (25.1.1b) is represented in the following:
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R 0β0( ) T0
1 R† 0β0( ) = ′T0

↓ ↓ ↓ ↓

cos
β
2

− sin
β
2

sin
β
2

cos
β
2

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

−1 2 0

0 1 2

⎛

⎝
⎜

⎞

⎠
⎟

cos
β
2

sin
β
2

− sin
β
2

cos
β
2

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

=
−

1

2

cosβ sinβ
sinβ −cosβ

⎛
⎝⎜

⎞
⎠⎟

= D10
1 0β0( )T1

1 +D00
1 0β0( )T0

1 +D−10
1 0β0( )T−1

1

↓ ↓ ↓

=
− sinβ

2

0 1
0 0

⎛
⎝⎜

⎞
⎠⎟

+cosβ
−1 2 0

0 1 2

⎛

⎝
⎜

⎞

⎠
⎟ +

sinβ
2

0 0
−1 0

⎛
⎝⎜

⎞
⎠⎟

   (25.1.7)

The Cartesian form of this equation is simpler. Multiplying the angular-momentum form by  −1 2  and using 

(25.1.4) yields

                              Jz β - rotated( ) ≡ R 0β0( ) Jz R† 0β0( ) = sinβJx + cosβJz .    (25.1.8)

 It should be clear that products of spinor bases form operator quantities that behave like ordinary vectors 

in 3-space. In this sense spinors are “square roots” of vectors. In order to appreciate the physical meaning of 

(25.1.8) one may take its expectation value in an arbitrary state ψ :

                               
  
ψ Jz (β - rotated ) ψ = sinβ ψ Jx ψ + cosβ ψ Jz ψ .    (25.1.9)

Fig. 25.1.1 shows how the average or expectation value of the component of J on the (z-rotated) axis is given by 

(25.1.9) by vector geometry. 
              

Jz


J

Jx
Jy

z(β−rotated )

Jz (β− rotated) = Jx sinβ + Jz cosβ

Jz

β
β

x
y

z

Fig. 25.1.1 Geometry of angular momentum expectation values (25.1.9)
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 However, the actual values for the component in a Stern-Gerlach spin- 12  analyzer will be ±  2  for each 

click. (Recall discussions at the beginning of Chapter 1 and in Section 23.2.) By expanding the expectation 

matrix, one obtains the result in terms of probabilities 
  
〈ψ R m

1/2
2
   = 1( ) .

  

  

ψ R aβ y( ) Jz R† aβ y( ) ψ = ∑
m
∑
m '

ψ R
1/ 2
m

1/ 2
m

jz
1/ 2
m '

1 / 2
m '

R† ψ = ∑
m

ψ R
1/ 2
m

2

m

= 1
2

ψ R
1/ 2
1/ 2

2

− 1
2

ψ R
1/ 2

−1/ 2

2

.

 (25.1.10a)

Each amplitude 
  
ψ R

1 / 2
m

2

depends on initial unrotated amplitudes 
  
ψ m ' = ψ

1 / 2
m '

 and rotation matrices:

                                            
  
ψ R aβ y( ) 1 / 2

m
= ∑

m '
ψ m ' Dm 'm

1/2 aβ y( ).     (25.1.10b)

 The well-known classical behavior of the angular-momentum vector emerges after many spin- 12  states 

have passed the analyzer. The “expectation vector” for ψ  states has components

                        Jx = ψ Jx ψ , Jy = ψ Jy ψ , Jz = ψ Jz ψ .  (25.1.11)

as indicated in Fig. 25.1.1. This vector provides a useful picture of the properties of particles in a given pure spin-
1
2  state. The vector picture is the basis of all ABCD 2-level dynamics due to time independent spinor 

Hamiltonians in Ch.10 and resonance due to time dependent Hamiltonians in Ch. 19.

b.Tensor operators for higher spin states (j=1, 3/2, 2, 5/2, 3, 4)
The  1⊗1  coupling coefficients (24.1.19) are used to construct a complete set of nine tensor operators for the j = 1 

basis. The tensor operators and their representations are given by (25.1.12) on the next page.

 The lower four operators are the scalar (k  = 0) and vector (k = 1) operators.   T0
0  is proportional to the 

identity  (1), and   T−1
1 ,   T0

1  and   T1
1  are proportional to the angular-momentum operators   J− , Jz ,  and J+ ,  respectively as 

seen by comparing to the   D j=1  or vector representations in (23.1.2b) and (23.1.2).

                            
  
T−1

1 = J− 2 = Jx − iJ y( ) 2 , T0
1 = Jz 2 , T−1

1 = J+ 2 = Jx + iJ y( ) 2.   (25.1.13)

The three rank-1-tensor or vector operators 
  
T−1

1 ,T0
1,T1

1( )  or 
  

Jx , J y , Jz( )  have the same symmetry properties as vector 

operators constructed in the spin- 12  basis. Of course, the scalar operator   T0
0  is invariant.

 Beyond the scalar and vector operators in Eq. (25.1.12) there are five more (k=2) operators 

  
T−2

2 ,T−1
2 ,T0

2 ,T1
2 ,T2

2( )  known as unit quadrupole operators. These are the tensor operators that deserve this old-

fashioned “tensor” name. To label a (j=1)-state completely, one needs a set of quadrupole tensor expectation 

values 
  
Tq

2  as well as the 
  
Tq

1  or  Ja  vector expectation values. These are components of multipole density matrices 

just as spin expectation values are density operator components in Sec. 10.5.
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T−2
2 = −1

1
1
1 , T−1

2 =
0
1

1
1 − −1

1
0
1

2
, T0

2 =
1
1

1
1 − 2 0

1
0
1 + −1

1

6
, T1

2 =
− 1

1
0
1 + 0

1
−1
1

2
, T2

2 = 1
1

−1
1

→
0 0 0
0 0 0
1 0 0

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

→

0 0 0

1 2 0 0

0 −1 2 0

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

→

1 6 0 0

0 −2 6 0

0 0 1 6

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

→

0 −1 2 0

0 0 1 2
0 0 0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

→
0 0 1
0 0 0
0 0 0

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

T−1
1 =

0
1

1
1 + −1

1
0
1

2
, T0

1 =
1
1

1
1 − −1

1
−1
1

2
, T1

1 =
− 1

1
0
1 − 0

1
−1
1

2

→

0 0 0

1 2 0 0

0 1 2 0

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

→
1 2 0 0

0 0 0

0 0 −1 2

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

→

0 −1 2 0

0 0 −1 2
0 0 0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

T0
0 =

1
1

1
1 + 0

1
0
1 + −1

1
−1
1

2

→

1 3 0 0

0 1 3 0

0 0 1 3

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

     (25.1.12)

 Similarly, the quantum mechanics of higher j-states will require in general a complete set of 2 j +1( )2  

tensor operators. We define new tensor operators that differ by an overall phase factor −1( )2 j :

                                     
   
vq

k = ∑
m, ′m

Cm
j
− ′m
j

q
k −1( ) j−m ' j

m
j
′m
= −1( )2 j

Tq
k .  (25.1.14a)

The 3–j definition (24.2.30a) and symmetry relations (24.2.31) and (24.2.32) yield the following:

                                   
   
vq

k = ∑
m, ′m

−1( ) j−m
2k +1

k j j
q ′m −m

⎛
⎝⎜

⎞
⎠⎟

j
m

j
′m

 (25.1.14b)

The phase eliminates the annoying minus sign that occurs in Tk for half-integral j. [Recall Eqs. (25.1.3)x.] The 
  
vq

k  

representations are recorded in Tables 25.1-3 in a condensed form. To understand the condensed form, compare 

the (j = 1) tensor derived in Eq. (25.1.12) with the j=l=1 tables in Table 25.2(p). Note that each Tqk  has nonzero 

entries only in particular super- or sub-diagonals of the matrix. Each super-diagonal is labeled by a number q = 1, 

…, k in the tables. The main or center diagonal belongs to q=0 and the sub-diagonals belong to q = -1, -2, …, -k. 

At the end of each super-diagonal is a factored-out denominator. These act as norms of the super-diagonal vectors 

described below.

 Note that each qth super-diagonal in a set of
    
vq

q ,vq
q+1,…  matrices gives a set of orthonormal vectors. For 

example, with j = 2 the q = 2 super-diagonals of Table 25.2[d] are as follows.
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3
14

⋅ ⋅

⋅ − 8
14

⋅

⋅ ⋅ 3
14

1
2

⋅ ⋅

⋅ 0 ⋅

⋅ ⋅ − 1
2

2
7

⋅ ⋅

⋅ 3
7

⋅

⋅ ⋅ 2
7

for k = 4( ) for k = 3( ) for k = 2( ).
Because of orthonormality of coupling coefficients, these diagonals are orthonormal vectors. This makes it easy 

to express any (2j + 1) by (2j +1) matrix in terms of the 
  
vq

k . For example, using the second numbers from the q = 

2 super-diagonals we easily find the following elementary matrix or operator:

                                      

   

0 0 0 0 0
0 0 0 1 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

→ − 8
14

v2
4 + 0v2

3 + 3
7

v2
2 = E24 .  (25.1.15)

 Linear relations between the irreducible tensor operators vqk  and the elementary unitary  operators Em,m+q 

will be used in later chapters. A simple example of such a relation involves the q = 0 operators for (j = 1). From 

Eq. (25.1.12) (or the diagonals of Table 25.2[p] ) one may write

    

   

v0
2 = E11 − 2E22 + E33( ) 6 ,

v0
1 = E11 − E33( ) 2 ,

v0
0 = E11 + E22 + E33( ) 3.

 (25.1.16)

Here the row-column indices of the elementary operators Ekk are simply  numbers (1, 2, and 3) rather than 

angular-momentum quanta (m = 1, 0, and -1).] These operators are proportional to the diagonal U3 operators or 

number operators ak
†ak .

 The (2j + 1)2 tensor operators 
  
vq

k jj( )  are a complete set of generators of the group U2j+1, and so are the 

elementary operators Em,n. Every operator that acts on a (2j + 1)-dimensional angular-momentum basis 

   j
j , j−1

j ,…, − j
j{ }  is a linear combination of elementary operators Em,n, and hence a combination of 

  
vq

k ’s.
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Tables 25.2 Orbital (integer momentum) tensor matrices [p] l=1, [d] l=2, [f] l=3, and [g] l=4.
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Tables 25.2 Orbital (integer momentum) tensor matrices (continued)  [g] l=4.
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Tables 25.2   [g] l=4. (continued)
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Tables 25.3 Spinor (half-integer momentum) tensor matrices [a] j=1/2, [b] j=3/2, and [c] j=5/2.

©2005 W. G. Harter     Chapter 25 Tensor Operators    25-10



c. Mixed angular-momentum bases
Two or more sets

   

j1
j1

,
j1

j1 −1

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
,…

j2

j2

,…
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
,…

of the angular-momentum bases are connected by generalized tensor operators of the following form:

                                   
   
vq

k j1 j2( ) = −1( )2 j1 ∑
m1m2

Cm1

j1
−m2

j2
q
k j1

m1

j2

m2

−1( ) j2+m2    (25.1.17a)

   
  
= ∑

m1m2

−1( ) j1−m1 2k +1
k
q

j2

m2

j1
−m1

⎛

⎝
⎜

⎞

⎠
⎟

j1
m1

j2

m2

.    (25.1.17b)

This differs only by a phase −1( )2 j1  from the T operator given in Eq. (25.1.2). For j1 = j2  it reduces to the 

definition of Eq. (25.1.14). For nonzero “shift”Δ , where

                                                          Δ = j1 − j2,      (25.1.18)

The matrix representations of the operators are rectangular. Some examples are shown in Table 25.4 for integral 

j1, j2 = 1− 3.  Two explicit examples are the following:

                                    

  

10V1
1 pd( ) =

⋅ ⋅ 1 ⋅ ⋅

⋅ ⋅ ⋅ 3 ⋅

⋅ ⋅ ⋅ ⋅ 6

       10V−2
1 dp( ) =

⋅ ⋅ ⋅
⋅ ⋅ ⋅
1 ⋅ ⋅

⋅ 3 ⋅

⋅ ⋅ 6

= E63 + 3E74 + 6E85                         = E36 + 3E47 + 6E58.

 The numbering for Eij reflects the choice of numbers 1 to 5 for d states 
  

1 = 2
2 , 2 = 1

2 ,…, 5 = −2
2( )  and 6 

to 8 for the p states 
 

6 = 1
1 , 7 = 0

1 , 8 = −1
1( ).  The tables exhibit the 

   
vq

k l1l2( )  matrices for   l1 − l2 ≡ Δ > 0,  and the 

transpose is found using the symmetry relation

                                                  
    
va

k l2l1( ) = −1( )l+q
v−a

k l1l2( )      (25.1.19)
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Tables 25.4 Mixed orbital tensor matrices [f+d] l=3 and 2, [f+p] l=3 and 1, and [d+p] l=2 and 1.

d. Wigner-Eckart Theorem for R3
The Wigner-Eckart theorem is related to the R3-factorization lemmas (24.2.25) or (24.2.30). 
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d aβ y( )Dm3 ′m3

j3
*

αβγ( )Dq ′q
k∫ αβγ( )Dm2 ′m2

j2 αβγ( ) = Cq
k

m2

j2
m3

j3 C ′q
k

′m2

j2
′m3

j3 / (2 j3 +1)      (24.2.25)repeated 

Operator Tqj1
k  in a tensorial set 

 
T−q
k ,…,Tq

k( )  transforms according to R3 rotation matrices as follows:

                                
  
R aβ y( )Tq

k R† aβ y( ) = ∑
′q =−k

k
T ′q

k D ′q q
k aβ y( ) ,

Then matrix elements of Tqk  in angular-momentum basis are of the form

                                                  
  

j3
m3

Tq
k j2

m2
= Cq

k
m2

j2
m3

j3 j3 T k j2 ,    (25.1.20a)

where the 
  
Cq

k
m2

j2
m3

j3  are coupling coefficients, and the constants called reduced matrix elements 

                       
  

j3 T k j2 ≡
1

2 j3 +1
∑

q '=−k
∑
′m2 =− j2

∑
′m3=− j3

C ′q
k

′m2

j2
′m3

j3
j3
′m3

T ′q
k j2

′m2
  (25.1.20b)

are independent of q, m2, or m3.
 The theorem implies that the representations of different tensor operators that transform according to a 
given irrep Dk must be proportional to each other. The proportionality constants 

  
j1 T k j2  are called reduced 

matrix elements.
 A tensor operator Tqk representation must be proportional to unit tensor 

  
vq

k  in (25.1.17):

 
   
vq

k = −1( )2 j1 ∑Cm1

j1
−m2

j2
q
k −1( ) j2 +m2

j1
m1

j2
m2

= ∑ −1( ) j1−m1 2k +1
k
q

j2
m2

j1
−m1

⎛

⎝
⎜

⎞

⎠
⎟

j1
m1

j2
m2

The 3j definitions (7.2.30a) and symmetry relations (7.2.31) and (25.1.32) yield the following:

 

   

j1
m1

vq
k j2

m2
= −1( )2 j1 Cm1

j1
−m2

j2
q
k −1( ) j2 +m2 = ∑ −1( ) j1−m1 2k +1

k
q

j2
m2

j1
−m1

⎛

⎝
⎜

⎞

⎠
⎟

                   = Cq
k

m2

j2
m1

j1 −1( )k+ j1− j2 2k +1( ) 2 j1 +1( )
 (25.1.21)

This has the Wigner-Eckart form (25.1.20a) with the following reduced matrix element:

                                         
   

j1 vq
k j2 = −1( )k+ j1− j2 2k +1( ) 2 j1 +1( ).  (25.1.22)

Therefore, a general tensor operators 
 
Tq

k  is just 
  
vq

k  in tables (25.1 – 25.4) times a constant.

                                

   

j1
m1

Tq
k j2

m2
=

j1
m1

vq
k j2

m2

j1 Tq
k j2

j1 vq
k j2

     (25.1.23)

Each matrix of Tqk  between bases j1  and j2  equals a 
  
vq

k  matrix multiplied by the following factor:

                         

   

j1 Tq
k j2

j1 vq
k j2

= j1 T k j2 −1( )k+ j1− j2 2 j1 +1
2k +1

,    (25.1.24)

and it is proportional to the reduced matrix element of T k . We now apply the Wigner-Eckart theorem.
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e. Evaluation of crystal field splitting
Let us consider an elementary octahedral potential having the form

  
  
V 4( ) = D x4 + y4 + z4 − 3

4
r4⎡

⎣
⎤
⎦ = D 2

70
X4

4 + X−4
4( ) + 2

5
X0

4⎡

⎣
⎢

⎤

⎦
⎥    (25.1.25)

This form is derived using the multipole expansion (23.4.10). It also follows from the form of the elementary 

multipole functions (23.3.8) of fourth degree. The V (4) is the fourth-rank octahedral scalar A1g( )  function since 

the combination x4 + y4 + z4  clearly has cubic-octahedral symmetry. 

 Let us consider the effect of this potential on a d orbital, i.e., orbitals belonging to total angular 

momentum j = 2. Setting j1 = j2 = 2  in Eqs. (25.1.23) and (25.1.24) gives

                             
  

V 4( )
j=2

= D 2

70
v4

4 + v−4
4( ) + 2

5
v0

4

j=2

5
3

2 X 4 2 .  (25.1.26)

From the (j = 2) tables [Tables 25.2(d)] the following representation of the V (4)  potential is derived:

                            

  

V 4( )
j=2

=
D
70

2
5
⋅ ⋅ ⋅ ⋅ 2

⋅ − 8
5

⋅ ⋅ ⋅

⋅ ⋅ 12
5

⋅ ⋅

⋅ ⋅ ⋅ − 8
5

⋅

2 ⋅ ⋅ ⋅ 2
5

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

5
3

2 X 4 2 .  (25.1.27)

 The eigenvectors and eigenvalues of this matrix are easy  to find. In fact, we derived the eigenvectors 

  

T2

1
,

T2

2
,

T2

3

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
 and 

  

E
1

,
E
2

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
 in Eqs. (23.4.20) by symmetry  projection even before introducing the potential. 

Now the eigenvalues follow by multiplying 
  

V 4( )  by 
  

T2

j
 or 

 

E
j

. The triply degenerate T2  eigenvalue is

                                     

  

T2

3
V 4( ) T2

3
= 1

2

2
−2

−
2

−2
⎛

⎝⎜
⎞

⎠⎟
V 4 2

2
−

2
−2

⎛

⎝⎜
⎞

⎠⎟

= −8D 2 X 4 2 15 14( ) ,
 (25.1.28a)

And the double degenerate E eigenvalue is

                                        

  

E
2

V 4( ) E
2

= 1
2

2
2
+

2
−2

⎛

⎝⎜
⎞

⎠⎟
V 4 2

2
+

2
2

⎛

⎝⎜
⎞

⎠⎟

= 12D 2 X 4 2 15 14( ).
 (25.1.28b)

 Note the (-2:3) ratio of the eigenvalues. This preserves the “center of gravity” of the energy levels, since 

T2 has three levels while E has only  two. In fact, the scalar V 0( ) = v0
0( )  tensor operator is the only one with 

nonzero trace. No other tensor operator can shift the center of gravity.
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 Hence, the j = 2 example is a little too simple. The Wigner-Eckart results (25.1.28) do not predict 

anything interesting for the two levels E and T2 unless one knows the value of the reduced matrix element 

  
2 X 4 2 . Before we discuss formulas for the reduced matrix elements, let us treat examples of crystal field 

splitting of j = 3 levels. Setting  j1=j2=3 in Eqs. (25.1.23) and (25.1.24) gives the following representation of V(4) 

after using Table 25.2(f):

                 
  

V 4( )
j=3

= D 2 v4
4 + v−4

4( ) 70 + 2 5( )v0
4 7 3( ) 3 X 4 3  (25.1.29a)

                    

  

= D

3 ⋅ ⋅ ⋅ 15 ⋅ ⋅
⋅ −7 ⋅ ⋅ ⋅ 5 ⋅

⋅ ⋅ 1 ⋅ ⋅ ⋅ 15
⋅ ⋅ ⋅ 6 ⋅ ⋅ ⋅

15 ⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ 5 ⋅ ⋅ ⋅ −7 ⋅

⋅ ⋅ 15 ⋅ ⋅ ⋅ 3

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

2 7 15 154( ) 3 X 4 3 . (25.1.29b)

The eigenvectors of this V 4( )  matrix can be found by  symmetry  projection as in Section 23.4, by direct solution 

of the matrix eigenvalue problem, or by inspection of multipole functions. We will use the third method now, 

since it has not been discussed.

 From the O3 ⊃Oh  correlation table of (23.4.18) it is found that (j = 3) splits into A2u ⊕T1u ⊕T2u( ) . From 

Oh and O3 multipole functions, arise relations between polynomials of Oh and O3. For A2u one has

                                                  
  
X A2u = xyz = − i X−2

3 − X2
3( ) 30 .  (25.1.30)

For the third component of T1u one has

                                              
  
X3

T1u = x2 − y2( ) z = i X2
3 + X−2

3( ) 2 .  (25.1.31)

Finally, for the third component of T2u one has

                                                   
  
X3

T2u = x2 + y2( ) z = − X0
3 10.  (25.1.32)

From this we easily deduce three normalized eigenvectors

                          
  

A2u =
3
2

−
3

−2
⎛

⎝⎜
⎞

⎠⎟
2 ,

T1u

3
=

3
2

−
3

−2
⎛

⎝⎜
⎞

⎠⎟
2 ,        and 

T2u

3
=

3
0

.  (25.1.33)

  
A2u V 4( ) A2u = −12δ 4( ) ,              T1u

3
V 4( ) T1u

3
= −2δ 4( ) ,           T2u

3
V 4( ) T2u

3
= 6δ 4( ).  (25.1.34a)

respectively, where the reduced factor is

                                             
  
δ 4( ) = D 2 15 22( ) 3 X 4 3 .  (25.1.34b)
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From this we predict a (12-2):(6+2) or 5:4 splitting ratio with A2u and T2u levels sandwiching T1u.  This is 

indicated in Fig. 25.1.2(a). The 4th rank octahedral crystal fields will split all (j = 3) levels into the order (A2, T1, 

T2) with a 5:4 ratio. However, angular-momentum levels with j = 3 and higher may be effected by a sixth-rank 

tensor operator whose splitting ratios will be quite different.

                                     
  
V 6( ) = E 8 8( ) X0

y − 2 7 8( ) X4
6 + X−4

6( )⎡
⎣⎢

⎤
⎦⎥ .  (25.1.35)

This 6th rank operator is the next term in an octahedral multipole expansion (23.4.10). Its representation for (j = 

3) follows from Table 25.2(f).

 

  

V 6( )( )
j−3

= E

1 ⋅ ⋅ ⋅ −7 15 ⋅ ⋅
⋅ −6 ⋅ ⋅ ⋅ 42 ⋅

⋅ ⋅ 15 ⋅ ⋅ ⋅ −7 15
⋅ ⋅ ⋅ −20 ⋅ ⋅ ⋅

−7 15 ⋅ ⋅ ⋅ 15 ⋅ ⋅
⋅ 42 ⋅ ⋅ ⋅ −6 ⋅

⋅ ⋅ −7 15 ⋅ ⋅ ⋅ 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

× 3 X 6 3 4 462( ).  (25.1.36)

This gives a different set of eigenvalues

 
  

A2u V 6( ) A2u = −12δ 6( ) ,       
T1u

3
V 6( ) T1u = −9δ 6( ) ,       and 

T2u

3
V 6( ) T2u

3
= −5δ 6( ) ,   (25.1.37a)

where     
  
δ 6( ) = E 3 X 6 3 4 462( ).     (25.1.37b)

A pure V(6) makes the T1u level move into the high position as shown in Fig. 25.1.2(b). A 1:2 splitting ratio results 

for the three levels (A2, T2, T1).

 An eighth-rank V(8) octahedral scalar operator exists but cannot have any  effect on a (j = 3) level. (Its 

matrix must be zero, since Cq3 m8 n
3= 0 .) However, another scalar operator is not needed. The fourth- and sixth-rank 

octahedral operators V(4) and V(6) are sufficient in combination to cause any ordering or splitting of the A2, T2, and 

T1 sublevels of the j = 3 manifold. In fact, there are three Oh-scalar operators V(6), V(4), and V(0), but the V(0) only 

shifts the center of gravity. The number of independent scalar operators is exactly the number needed to 

determine all eigenvalues and eigenvectors subject to the constraints of symmetry. Constraints symmetry on C6 

eigensolutions were introduced in Ch. 8.

 At this point it may be instructive to review the counting of multipole functions and operators introduced 

in Section 23.4. Also the treatment of j = 4, 5, and 6 octahedral levels should be examined. The analyses for j = 5 

and 6 are complicated by  the fact that  octahedral species T1 or T2 are repeated. Then the T1 or T2 eigenvectors are 

not determined totally by symmetry constraints.

 For high j the number of repeated species can be large. For l = j = 50 one predicts in Section 23.4 that 12 

T1 levels and 13 T levels will appear. Since high values of angular quanta are common in molecular spectra it is 

important to learn how to deal with them. In Section 25.4 we will discuss some efficient methods for deriving 
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tensor operator eigensolutions for high-j states. The methods are based upon the theory of level clusters and 

induced representation bases.

 Related problems involve very high crystal potentials, which cause splitting that is comparable to or 

greater than the spacing between j levels. A large enough crystal potential could mix states of different angular 

momentum (j) strongly  enough to make j a useless quantum number. This happens in the theory of ions tunneling 

in solids. The theory of level clusters may also be useful then, too.

  

Fig. 25.1.2  Comparison of octahedral tensor splitting (a) Rank-4 (25.1.34) (b) Rank-6 (25.1.36) 
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25.2. Evaluation of Reduced Matrix Elements
So far we have used the Wigner-Eckart theorem while treating the reduced matrix elements as undetermined 

constants. Relative splitting does not require the values of these constants. Also, the constants can be fitted to 

experiment, and then the tensor analysis can be used to predict further results. Such approaches require that we 

know only the rotational symmetry properties of the system being studied.

 However, in order to compute the numerical value of a reduced matrix element one must define the 

involved operators and states in more detail. So far we have not assumed much about anything except R(3) 

symmetry properties. It did not matter whether the (j = 2)-states treated in Eqs. (25.1.28) were d-orbitals of one 

electron in hydrogen or D-orbitals made of over 100 electrons in mendelevium. R(3) Wigner-Eckart results only 

care that (j=2)-states belong to symmetry irrep  D[2] while T[k} operators belong to irreps D[k] and DA1g of O3 and Oh, 
respectively. We now compare the splitting of (l = 2)-orbitals for one electron with the splitting of (L = 2)-orbitals 

for two electrons, in the same cubic Oh symmetry perturbation.

a. Single-electron orbitals in potential fields   
Let us assume a single-electron orbital state with a wave function of the form

                                                 rθφ
l
m
N = RNl r( )Yml φθ( )  (25.2.1)

Here Rl(r) is the radial wave function and Yml  is the angular wave. The radial wave is of the form discussed before 

in Sec. 21.3 for 3D oscillator or later in Sec. 26.1 for Coulomb H-orbital (26.1.26).

    
 
RN r( ) = f0

e−ρ/Nρ

a
1+ (0 − n)

2 + 2( )
2ρ
N

⎛
⎝⎜

⎞
⎠⎟ +

(0 − n)(1− n)
2! 2 + 2( ) 2 + 3( )

2ρ
N

⎛
⎝⎜

⎞
⎠⎟
2

+ (0 − n)(1− n)(2 − n)
3! 2 + 2( ) 2 + 3( ) 2 + 4( )

2ρ
N

⎛
⎝⎜

⎞
⎠⎟
3⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

     (25.2.2)

The latter is a Laquerre polynomial of radius r=aρ  scaled to Bohr length a. The angular wave is a spherical 

harmonic given by (23.1.16) in terms of the R(3) irrep matrix components D[].

    Dm,n=0
 * φθ0( ) 2 +1 / 4π = Ym

 φθ( )      (25.2.3)

Let us compute matrix elements of a general potential field multipole expansion (23.4.10).

  

 

V r,φ,θ( ) = qc
r − rcc

∑ = k=0
∑

q=−

k
∑

Qq
k near( )
rk+1 Yq

k φ,θ( )     for:  r>rC

k=0
∑

q=−k

k
∑ Qq

k far( ) r k Yqk φ,θ( )     for:  r<rC

⎧

⎨
⎪
⎪

⎩
⎪
⎪

  (25.2.4)

Here we consider the far-charge case wherein the atomic orbital lies inside a cubic charge array.

   V r,φ,θ( ) =
k=0
∑

q=−k

k
∑ Qq

k r k Yq
k φ,θ( ) = Aq

k

k,q
∑ Xq

k    (25.2.5)

Yk-potential terms relate to multipole Xk-functions by (23.3.8) and Dk-functions by (25.2.3).
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   Xq
k =

4π
2k +1

rkYq
k = rkDq,0

k*       (25.2.6)

This completes the 3D-polar-radial integral for the potential matrix.

             
′m
′l ′N V m

l N = Aq
k

kq
∑ ′m

′l ′N Xq
k

m
l N

    = Aq
k

kq
∑ r2 dr R ′N ′l

*∫ (r)rkRNl (r) dφ dθ sin∫  ∫ θYm '
′l * θφ( ) 4π

2k +1
Yq
k θφ( )Yml θφ( ).

 (25.2.7)

This integral can be written as a product of angular and radial integrals.

                      ′m
′l N V m

l N = Aq
k

kq
∑ rk 4π

2k +1
dθ∫  sin θ     Y ′m

′l * θφ( )Yqk θφ( )Yml θφ( )  (25.2.8a)

Here the diagonal case ( ′N = N )  for the radial integral is denoted by

                                                     rk = r20
∞∫ dr RNl r( ) 2 rk . (25.2.8b)

We replace the spherical harmonics Ymj  by irrep components Dmoj  using (25.2.3).

  4π
2k +1

dφ∫ sin∫ θ dθ  Ym '
l '* θφ( )Yqk θφ( )Yml θφ( ) = 2l '+1( ) 2l +1( )

4π
dφ∫ sin ∫ θ dθ  Dm ' 0

l ' Dq0
k* Dm0

l  (25.2.9)

To get the integral into the D*D D∫  form (24.2.25) we add third Euler-angle integral 2π1 dγ∫ . This does nothing if 

all the body quantum numbers are zero. Then the D*D D∫ = CC  relation (24.2.25) is used.

                ′m
′l N V m

l N = Cq
k
m
l

m '
′l Aq

k

k ,q
∑ 2l +1

2 ′l +1
C000

k l ′l r k
⎛

⎝⎜
⎞

⎠⎟
= Cq

k
m
l

m '
′l Aq

k

k ,q
∑ ′l X k l

⎛

⎝⎜
⎞

⎠⎟
 (25.2.10a)

The reduced matrix element in parentheses is the following CGC or 3jC using (24.2.30).

                    ′l X k l = 2l +1
2 ′l +1

C000
k l ′l r k = 2l +1 −1( )k−l k

0
l
0

′l
0

⎛
⎝⎜

⎞
⎠⎟
rk  (25.2.10b)

 For the crystal splitting example in (25.1.28) we would need the reduced matrix element

                                                2 X 4 2 =
2
7
r4 .  (25.2.10c)

For hydrogen the radial integral can be shown to be [see K. Bockaster, Phys. Rev. A 9, 1087 (1974)]

                    r4 = a0( )4 n
4

8
63n4 − n2 70l l +1( )−105⎡⎣ ⎤⎦{ +15 l −1( )l l +1( ) l + 2( )− 20l l +1( ) +12}

= a0( )4 63n4

8
n = 1( ) n −1( ) n + 2( ) n − 2( ) for l = 2( ).

The hydrogen values are often used for approximate theories of other atoms.
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b. Two-electron orbitals in potential fields    
We shall now compare the splitting due to a cubic crystal field of a two-electron L = 2 level (d2  1D) with that of 

the one-electron orbital (d1  2D). This amounts to a comparison of two separate applications of the Wigner-Eckart 

theorem and two different reduced matrix elements. For the two-d-electron case we need energy matrix elements 

given below. (Note that (p2  1D) atomic levels are not split by a 4th rank field.)

                                d2⎡⎣ ⎤⎦M '

2
Xq
4

total
d2⎡⎣ ⎤⎦M

2
= Cq

4
M
2

M '
2 d2⎡⎣ ⎤⎦2 X 4

total
d2⎡⎣ ⎤⎦2 ,    (25.2.11a)

Here the perturbation

                                                     Xq
4

total

= xq
4

electron 1

+ xq
4

electron 2

      (25.2.11b)

is a sum of individual electron operators. For one electron we have

                                    d1
2
M '

xq
4 d1

2
M

= Cq
4
M
2
M '
2 2 x4 2 ,      (25.2.12)

that is the same as Eq. (25.2.11a) except for the reduced matrix elements that we now compare.

 For the sake of generality, let us evaluate the matrix element of a general multipole operator Xqk  between 

general mixed configuration l1l2 L  states instead of pure l2L  configuration states.

                          l1l2[ ]M
L Xq

k
total

ll
'l2

'⎡⎣ ⎤⎦M '

L '
= l1l2[ ]M

L xq
k

electron 1l

ll
'l2

'⎡⎣ ⎤⎦M '

L '
+ l1l2[ ]M

L xq
k

electron 2

ll
'l2

'⎡⎣ ⎤⎦M '

L '  (25.2.13)

Treating the first term by the Wigner-Eckart theorem gives

                                l1l2[ ]M
L xq

k
electron 1

ll
'l2

'⎡⎣ ⎤⎦M '

L '
= Cq

k
M '
L '

M
L l1l2[ ]M

L L xk
electron 1

ll
'l2

'⎡⎣ ⎤⎦ L ' .  (25.2.14)

Each two-electron state is a coupling of the form

                                     ll
'l2
'⎡⎣ ⎤⎦M '

L '
= Cm '1

l '1
m '2
l '2

M '
L '

m1
'm2
1

∑ l '1
m '1

l '2
m '2

 (25.2.15)

of single-electron states. Inserting these on the left of (25.2.14) gives

        ∑
m1m2

∑
m '1m '2

Cm1

l1
m2

l2
M
L Cm '1

l '1
m '2
l '2

M '
L ' l '1

m '1

l2
m2

xq
k

electron 1 l '1
m '1

l '2
m '2

= Cq
k
M '
L '

M
L l1l2[ ]L xk

electron 1

l '1 l '2[ ]L ' .  (25.2.16)

Now xq
k

electron 1

only acts upon the state vectors of electron-1. Its Wigner-Eckart theorem follows.
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l1
m1

l2
m2

xq
k

electron 1 l '1
m '1

l '2
m '2

=
l1
m1

xq
k

electron 1 l '1
m '1

l2
m2

l '2
m '2

= Cq
k
m '1
l '1

m1

l1 l1 xq
k l '1 δl2l '2δm2m '2 .    (25.2.17)

We put this in (25.2.16) and let CGC orthonormality (24.2.21) bring Cqk M '
L '

M
L  to the left-hand side.

∑
m1m2

∑
m '1

∑
qM '

Cq
k
m '1
l '1

m1

l1 Cm1

l1
m2

l2
M
L Cq

k
M '
L '

M
L Cm '1

l '1
m2

l2
M '
L '⎛

⎝⎜
⎞
⎠⎟
l1 xq

k l '1 = l1l2[ ]L Xk
electron 1

l '1 l '2[ ]L '    (25.2.18)

The expression for electron-2 is similar.

∑
m1m2

∑
m '2

∑
qM '

Cq
k
m '2
l '2

m2

l2 Cm1

l1
m2

l2
M
L Cq

k
M '
L '

M
L Cm1

l1
′m2

′l2
′M
′L⎛

⎝⎜
⎞
⎠⎟
l2 xq

k l '2 = l1l2[ ]L xk
electron 2

l '1 l '2[ ]L '    (25.2.19)

 The combinations of coupling coefficients in the parentheses appear often in angular-momentum 

ca lcu la t ions . They invo lve the Racah 6 j recoup l ing coe f f i c i en t de f ined a s fo l lows .                         

Cm1
j1

m2
j2

m12
j12

m1 ,m2 ,m3
m12 ,m23

∑ Cm12
j12

m3
j3

M
J Cm1

j1
m23
j23

M
J Cm2

j2
m3
j3

m23
j23 = −1( ) j1+ j2 + j3 +J 2 j12 +1( ) 2 j23 +1( ) j12 j1 j2

j23 j3 J
⎧
⎨
⎩

⎫
⎬
⎭

 (25.2.20a)

Using (25.2.20a) and (25.2.18) gives the electron-1 reduced matrix element.

       l1l2[ ]L xk
electron 1

l '1 l '2[ ]L ' = −1( )k+l '1+l2 +L 2l1 +1( ) 2L '+1( ) l1 k l '1
L ' l2 L

⎧
⎨
⎩

⎫
⎬
⎭
l1 xk l '1       (25.2.20b)

Similarly (25.2.18) gives the electron-2 element.

      l1l2[ ]L xk
electron 2

l '1 l '2[ ]L ' = −1( )k+l '2 +l1+L 2l2 +1( ) 2L '+1( ) l2 k l '2
L ' l1 L

⎧
⎨
⎩

⎫
⎬
⎭
l2 xk l '2      (25.2.20c)

The numerical values of the 6j coefficient are given by a simplified formula that is derived later.

Our example has the following 2-electron reduced element in terms of 1-electron elements.

                                  
22[ ]2 X 4 22[ ]2 = 2 5 ⋅5

2 4 2
2 2 2

⎧
⎨
⎩

⎫
⎬
⎭
2 X 4 2

= 4
7 2 X 4 2 = 0.57 2 X 4 2 ,

 (25.2.20)x

This shows that the crystal field effect on a two-d-particle L = 2 level is 57% that of a single-electron state with 

the same radial and angular numbers. Coupled electrons can thus somewhat “protect” themselves from the 
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external potential field by their mutual correlations. As more electrons become so correlated their mutual 

“protection” can become very significant. 

 The following Section 25.3 introduces ways to deal with 3,4,…, and more identical fermions and bosons 

in a way that uses their underlying symmetry.
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25.3 Unitary and Permutation Symmetry of N-Particle States
 General coupled N-particle spin-1/2 states are bases of U(2) irreps that have definite spin angular 

momentum S. Using Clebsch-Gordan coefficients (CGC) would require many terms like (24.3.22) made of 

products of N kets and N-1 coefficients. Also, permutation symmetry for three or more particles is broken by 1-

particle-at-time CGC coupling. That is a serious problem for physics of electrons, nuclei and atoms for which 

identity symmetry plays a major role. CGC-coupling makes an oligarchy and not a democracy!

  The solution is to admit permutation symmetry operations and substitution groups SN introduced in Unit 

1-Appendix B and use SN irreducible representations (ireps) defined by Young tableaus as was introduced in 

Section 24.3. The S3 symmetry of three identical electrons is the first example. Since S3 is the same group  as the 

dihedral D3 group solved in Chapter 15, its ireps can be recycled with Young tableaus labels in a way that shows 

how SN ireps work on N-particle states in general.

 The SN groups are subgroups of unitary  groups U(N ) . The mixing of A-type and B-type particles by  the U

(2)BODY transformation (24.3.9) includes an SN  bicycle operation (ab) that simply permutes A and B, the strongest 

“mixing” operation possible. So SN is a sub-group of the unitary  mixing group  U(2)BODY and thus part of a general 

inside-and-out symmetry  U(N )LAB ×U(N )BODY ⊃U(N )LAB × SN . Once again, it pays to exploit reflections and the 

duality between outside “lab” and inside “body” quantum mechanics. 

 a. Lab-versus-body and particle-versus-state operations
 The lab-versus-body duality manifests itself in atomic physics by  distinguishing between internal 

bookkeeping operations like (ab) that work on imagined labels A and B of each individual particle, and external 

operations like [12] that work on labels 1 and 2 of each state available to particles.  These two views are sketched 

in FIg. 25.3.0.

 Let us consider an elementary case in which three particles a, b, and c occupy multiple states 1 , 2 , 3 , 

and up to m . An ordered Dirac-ket-ket-ket product represents particles a, b, and c, as follows.

   1,2, 3 ≡ 1 particle−a 2 particle−b 3 particle−c ≡ 1 a 2 b 3 c    (25.3.1)

Lab operation r = (abc) sends particle-a to replace particle-b who then replaces c who then replaces a. 

       
(abc) 1 a 2 b 3 c = 1 c 2 a 3 b

                   = r 1 = 2 a 3 b 1 c
         (25.3.2a)  

(acb) 1 a 2 b 3 c = 1 b 2 c 3 a

                = r−1 1 = 3 a 1 b 2 c

   (25.3.2b) 

Body operation r = [123]moves state-1 to replace state-2 who then replaces 3 who then replaces 1. 
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123[ ] 1 a 2 b 3 c

                   = r 1 = 3 a 1 b 2 c
      (25.3.3a)  

132[ ] 1 a 2 b 3 c

                   = r−1 1 = 2 a 3 b 1 c

(25.3.3b)

Lab and body operations share a group table since they differ only in notation: 1 for a, 2 for b, and 3 for c, but a 

lab r = (abc)  commutes with any body r = [123] since each acts on distinct independent symbols. 

Only relative positions of lab and body matter. So, effects (25.3.3) of lab operations r = (abc) or i1 = (bc) on identity 

state 1 ≡ 1 a 2 b 3 c are inverse to effects (25.3.2) of their body operations r = [123]or i1 = [23] .

 
p 1 a 2 b 3 c = p = p−1 1 a 2 b 3 c

                 p 1 = p = p−1 1
 (25.3.3c)   

 q ⋅p = p ⋅q
q ⋅p = p ⋅q

 (25.3.3d)

But, p and q  commute as do q and p  even if no commutation exists between p and q or betweenp and q .

Three-particle symmetry projection

 D3-matrices (15.1.12) apply  to lab S3 = {(1), (abc), (acb), (bc), (ac), (ab)} and D3 = {1, r, r
2 , i1, i2 , i3}  and body

S3 = {[1],[123],[132],[23],[13],[12]} and D3 = {1, r, r
2 , i1, i2 , i3}  operations that are related in Fig. 25.3.1. 

i3
[12]

i1
[23]

|1〉
a

i2
[13]

|2〉
b

i3
|3〉
c

i1
(bc)

|1〉
a

i2

|2〉
b

r [123]

[132]
r2

(ac)

(ab)

(abc)

(acb)

(a) Lab or State

Based Operators

(b) Body or Particle

Based Operators

r

r2

Fig. 25.3.0 Comparison of  (a) Lab or State based operators with (b) Body or particle based operators
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c |3〉

a

b

|1〉

|2〉

(a) Original state

|1〉〉=|1
a
,2
b
,3
c
〉

|3〉

|1〉

|2〉

(b) Lab-fixed

particle-3-cycle (120°rotation r)
|r〉〉=r|1〉〉
=(abc)|1

a
,2
b
,3
c
〉

=|1
c
,2
a
,3
b
〉=|2

a
,3
b
,1
c
〉

a

c

b

=r2|1〉〉=[132]|1
a
,2
b
,3
c
〉

|2〉

|3〉

|1〉

(c) Particle-fixed

lab-120°rotation r
|r〉〉=r|1〉〉

=[123]|1
a
,2
b
,3
c
〉

=|3
a
,1
b
,2
c
〉

c

a

b

=r2|1〉〉
=(acb)|1

a
,2
b
,3
c
〉

=|1
b
,2
c
,3
a
〉

|3〉

|1〉

|2〉

a

c

b

|3〉

|2〉

|1〉

b

c

a

(d) Apply to (b)

particle-2-cycle

i
3
=(ab)

(e) Apply to (b)

lab-2-cycle

i
3
=[12]

i
3
r2=(ab)(abc)
=(ac)=i

2

i
3
r=[12][132]
=[23]=i

1

|2〉

|3〉

|1〉

c

b

a

|1〉

|3〉

|2〉

c

a

b

(f) Apply to (c)

particle-2-cycle

i
3
=(ab)

(g) Apply to (c)

lab-2-cycle

i
3
=[12]

i
3
r2=(ab)(acb)
=(bc)=i

1

i
3
r=[12][123]
=[13]=i

2

Fig. 25.3.1 Relating D3 and S3 permutation operations (a) Original state. (b-g) Transformed states.

 Both the group table and the irreducible representations of D3 need to be adjusted in order to perform 

permutation symmetry analysis. Cycle products like those in Fig. 25.3.1 give the following tables. State group 

differs only in notation: 1 for a, 2 for b, and 3 for c,

      

(1) (acb) (abc) (bc) (ac) (ab)
(abc) (1) (acb) (ac) (ab) (bc)
(acb) (abc) (1) (ab) (bc) (ac)
(bc) (ac) (ab) (1) (acb) (abc)
(ac) (ab) (bc) (abc) (1) (acb)
(ab) (bc) (ac) (acb) (abc) (1)

 (25.3.4a) 

1 r2 r i1 i2 i3
r 1 r2 i2 i3 i1
r2 r 1 i3 i1 i2
i1 i2 i3 1 r2 r
i2 i3 i1 r 1 r2

i3 i1 i2 r2 r 1

(25.3.4b)

 S3 products in Fig. 25.3.1 relate to D3 operation products in Fig. 15.1.2. The bicycle subgroup 

S2 = {(1), (ab)}  is the 180° x-axial subgroup C2 = {1, i3}  that is made diagonal in an E-representation (15.1.12). 
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Tableau notation is used to show this. Eigenvalues +1 and -1 of i3 or (ab) have sub-tableaus a b  and  a

b
 that label 

their respective symmetry by a single row and anti-symmetry by a single column.    

 DE [12] =

1 2

3
+1 0

1 3

2
0 −1

 (25.3.5a)  DE (ab) =

a b

c
+1 0

a c

b
0 −1

  (25.3.5d)

The lab state-labeled ireps are the same except for the symbol change: 1 is a, 2 is b, and 3 is c. The next is a big 

step that uses the Yamanouchi formula for the irrep of a bicycle operation [n,n-1] such as [23].

 DE [23] =

1 2

3
−1
2

3
2

1 3

2
3
2

+1
2

 (25.3.5a)  DE (bc) =

a b

c
−1
2

3
2

a c

b
3
2

+1
2

 (25.3.5b)

The E-irrep uses tableau set {2,1} =  1 2

3

1 3

2

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
 having both [12]-symmetry ( 1 2 ) and anti-symmetry  ( 1

2
). But the 

[23]-symmetry  is neither, quite. The first tableau is nearly 2-over-3 so it is closer to anti-symmetry  than the other 

one which is closer to 2-besides-3 symmetry. (Neither 3-over-2 nor 3-besides-2 are allowed for reasons that will 

be clear later.) The diagonal matrix elements are ±(1/d) where d=2 here is the tableau hook-length between 

blocks-2-and-3, that is, the number of streets you cross walking between blocks. 

 The off-diagonal matrix elements are both equal to (d +1)(d −1) / d . This does not apply to totally 

symmetric A1-irrep  labeled by a single row{3, 0} =  1 2 3 or the totally anti-symmetric A2 –irrep labeled by  single 

column{13} = {1,1,1} =

1

2

3

. Both these are 1-by-1 matrices DA1 (p) = 1and DA2 (p) = −1 for odd-p.

 Together this defines a complete set of S3 ⊃ S2  permutation irreducible representations and projectors. The 

S3 projection operators are applied to a general 3-particle state 1,2, 3 = 1 a 2 b 3 c .
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g = 1 = (a)(b)(c) r = (abc) r2 = (acb) i1 = (bc) i2 = (ac) i3 = (ab)
DA1 g( ) =
DA2 g( ) =
Dx2y2

E1 g( ) =

1
1

1 0
0 1

⎛
⎝⎜

⎞
⎠⎟

1
1

−1 / 2 − 3 / 2

3 / 2 −1 / 2

⎛

⎝
⎜

⎞

⎠
⎟

1
1

−1 / 2 3 / 2

− 3 / 2 −1 / 2

⎛

⎝
⎜

⎞

⎠
⎟

1
−1

−1 / 2 3 / 2

3 / 2 1 / 2

⎛

⎝
⎜

⎞

⎠
⎟

1
−1

−1 / 2 − 3 / 2

− 3 / 2 1 / 2

⎛

⎝
⎜

⎞

⎠
⎟

1
−1

1 0
0 −1

⎛
⎝⎜

⎞
⎠⎟

 

           Pj,k
[µ]    1 norm  = 

[µ]

OG
Dj,k

[µ](1) 1  + D(r) r  + D(r2 ) r2 + D(i1)  i1 + D(i2 ) i2 + D(i3) i3( )
1 2 3 = Pa b c 1 2 3 1,2, 3 6 =

   1,2, 3 +    2, 3,1 +       3,1,2 +      1, 3,2 +    3,2,1 +      2,1, 3
6

⎛
⎝⎜

⎞
⎠⎟

1
2
3

 =  Pa
b
c

1
2
3

1,2, 3 6         =
   1,2, 3 +    2, 3,1 +       3,1,2 + -1( ) 1, 3,2 + -1( ) 3,2,1 + -1( ) 2,1, 3

6
⎛
⎝⎜

⎞
⎠⎟

a b
c

1 2
3

= Pa b
c

a b
c

1,2, 3 3 =
 2 1,2, 3 + -1( ) 2, 3,1 + -1( ) 3,1,2 + -1( ) 1, 3,2 + -1( ) 3,2,1 + 2 2,1, 3

2 3
⎛
⎝⎜

⎞
⎠⎟

a c
b

1 2
3

= Pa c
b

a b
c

1,2, 3 3 =
 0 1,2, 3 + +1( ) 2, 3,1 + -1( ) 3,1,2 + +1( ) 1, 3,2 + -1( ) 3,2,1 + 0 2,1, 3

2
⎛
⎝⎜

⎞
⎠⎟

a b
c

1 3
2

= Pa b
c

a c
b

1,2, 3 3 =
 0 1,2, 3 + -1( ) 2, 3,1 + +1( ) 3,1,2 + +1( ) 1, 3,2 + -1( ) 3,2,1 + 0 2,1, 3

2
⎛
⎝⎜

⎞
⎠⎟

a c
b

1 3
2

= Pa c
b

a c
b

1,2, 3 3 =
 2 1,2, 3 + -1( ) 2, 3,1 + -1( ) 3,1,2 + +1( ) 1, 3,2 + +1( ) 3,2,1 − 2 2,1, 3

2
⎛
⎝⎜

⎞
⎠⎟

(25.3.5e)

Tableau particle (abc) labels [j] of projectors P[ j ](k ) face left, and state (123) labels [k] face the state 1, 2, 3 on the 
right. State operators commute through to act  on the right  index-(k) of P[ j ](k )  while particle operators work on the 
left index-[j]. Later (abc) labels sum with those of matching spin states to make Fermi-Dirac-Pauli antisymmetry, 
and (abc)‘s disappear leaving only orbital state [123] and spin (↑↑↓) labels. Electron particle-labels must 
disappear since Nature cannot  permanently label or distinguish a single electron! Spin states only  temporarily 
“mark” otherwise indistinguishable particles. 
 To include spin, the projectors are applied to 3-electron spin states of which there are eight (23=8). Spin-up

(↑)  or spin-down(↓)  replace 1,2, and 3 states in (25.3.5e). The first  is a single symmetric A1 projection PA1 = P

of state ↑↑↑ . (Note that PE1 = P acting on ↑↑↑  gives zero.)

   
↑ ↑ ↑ 3/2

3/2 = Pa b c ↑ ↑ ↑
↑,↑,↑ = ↑,↑,↑     (25.3.6a)

Anti symmetric A2 projection fails on all spin-1/2 states since 2-dimensions can’t fill a triple column.
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↑
↑
↑

=  Pa
b
c

↑
↑
↑

↑,↑,↑ = 0  (Does not exist),
↑
↑
↓

=  Pa
b
c

↑
↑
↓

↑,↑,↓ = 0  (Does not exist), ...etc.  (25.3.6b)

Symmetric PA1 = P or para-symmetric PE1 = P projection of ↑↑↓ and ↑↓↓ give M =±1/2
S=3/2 or M =±1/2

S=1/2 .

↑ ↑ ↓ 1/2
3/2 = Pa b c a b c ↑,↑,↓ 3 =

 ↑,↑,↓ +  ↑,↓,↑ +  ↓,↑,↑ +   ↑,↓,↑ +  ↓,↑,↑ +  ↑,↑,↓

6

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

                                                          =
 ↑,↑,↓ +  ↑,↓,↑ +  ↓,↑,↑

3

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

________________________________

a b
c

↑ ↑
↓

1/2
1/2 = Pa b

c
a b
c

↑,↑,↓ 3
2
=

 2 ↑,↑,↓ + -1( ) ↑,↓,↑ + -1( ) ↓,↑,↑ + -1( ) ↑,↓,↑ + -1( ) ↓,↑,↑ + 2 ↑,↑,↓

2 6

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

                                                        =
 2 ↑,↑,↓ + -1( ) ↑,↓,↑ + -1( ) ↓,↑,↑

6

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

a c
b

↑ ↑
↓

1/2
1/2 = Pa c

b
a b
c

↑,↑,↓ 3
2
=

 0 ↑,↑,↓ + +1( ) ↑,↓,↑ + -1( ) ↓,↑,↑ + +1( ) ↑,↓,↑ + -1( ) ↓,↑,↑ + 0 ↑,↑,↓

2 2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

                                                        =
                      +1( ) ↑,↓,↑ + -1( ) ↓,↑,↑

2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

            (25.3.6c) 

The latter are a permutation doublet noted in (24.3.21). Two spin-S=1/2 states M =±1/2
S=1/2  but only one spin-S=3/2 state 

M =±1/2
S=3/2  have z-component M=+1/2. All three states are projections of ↑↑↓ but the left [j]-labels of the latter two 

make a particle permutation doublet a b

c

a c

b

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
.

There are also two right hand [k]= a b

c

a c

b

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
labels. But symmetry of state ↑↑↓  makes a c

b
 projection zero. 

Pa b
c

a c
b

↑,↑,↓ = 0 =
 0 ↑,↑,↓ + -1( ) ↑,↓,↑ + +1( ) ↓,↑,↑ + +1( ) ↑,↓,↑ + -1( ) ↓,↑,↑ + 0 ↑,↑,↓

2 / 3

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

Pa c
b

a c
b

↑,↑,↓ = 0 =
 2 ↑,↑,↓ + -1( ) ↑,↓,↑ + -1( ) ↓,↑,↑ + +1( ) ↑,↓,↑ + +1( ) ↓,↑,↑ − 2 ↑,↑,↓

2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

(25.3.7a)

State ↑↑↓ = P ↑↑↓ is invariant to symmetric subgroup projector P = [1+ (ab)] / 2but P  zeros a c

b
.

 

ab( ) ↑,↑,↓ = ↑,↑,↓

Pa b
c

a c
b

ab( ) = −Pa b
c

a c
b

⎫

⎬
⎪⎪

⎭
⎪
⎪

implies :Pa b
c

a c
b

↑,↑,↓ = −Pa b
c

a c
b

↑,↑,↓ = 0    (25.3.7b)
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Similarly, projections of ↑↓↓ give three M=-1/2 states.

↑ ↑ ↑ 1/2
3/2 = Pa b c a b c ↑,↓,↓ 3 =

 ↑,↓,↓ +  ↓,↓,↑ +  ↓,↑,↓ +   ↑,↓,↓ +  ↓,↓,↑ +  ↓,↑,↓

2 3

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

                                                        =
 ↑,↓,↓ +  ↓,↑,↓ +  ↑,↓,↓

3

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

________________________________

a b
c

↑ ↓
↓

−1/2
1/2 = Pa b

c
a b
c

↑,↓,↓ 6 =
 2 ↑,↓,↓ + -1( ) ↓,↓,↑ + -1( ) ↓,↑,↓ + -1( ) ↑,↓,↓ + -1( ) ↓,↓,↑ + 2 ↓,↑,↓

6

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

                                                        =
 1 ↑,↓,↓ + +1( ) ↓,↑,↓ + -2( ) ↓,↓,↑

6

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

a c
b

↑ ↓
↓

−1/2
1/2 = Pa c

b
a b
c

↑,↓,↓ 6 =
 0 ↑,↓,↓ + +1( ) ↓,↓,↑ + -1( ) ↓,↑,↓ + +1( ) ↑,↓,↓ + -1( ) ↓,↓,↑ + 0 ↓,↑,↓

2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

                                                       =
+1( ) ↑,↓,↓ + -1( ) ↓,↑,↓                      

2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

            (25.3.8a)

Finally, the fourth state of the spin-S=3/2 quartet is the following.

   
↓ ↓ ↓ −3/2

3/2 = Pa b c ↓ ↓ ↓
↓,↓,↓ = ↓,↓,↓     (25.3.8b)

Are these a complete set of states?
 Do a permutation-pair of spin-doublets and a spin-quartet account for all 23=8 states in (1/2)3?

Notice that projections (25.3.8) of ↑↓↓ give the same as those of a (ab)-switched state ↓↑↓ = (ab) ↑↓↓ . But, an 

(ac)-switched state ↓↓↑ = (ac) ↑↓↓  projects to (-2) times the results in (25.3.8a) as seen below.

Pa b
c

a b
c

↓,↓,↑ 6 =
 2 ↓,↓,↑ + -1( ) ↓,↑,↓ + -1( ) ↑,↓,↓ + -1( ) ↓,↑,↓ + -1( ) ↑,↓,↓ + 2 ↓,↓,↑

6

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

                               =
 2 ↓,↓,↑ + -1( ) ↓,↑,↓ + -1( ) ↑,↓,↓

6 / 2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
= −2( )Pa b

c
a b
c

↑,↓,↓ 6

Pa c
b

a b
c

↓,↓,↑ 6 =
 0 ↓,↓,↑ + +1( ) ↓,↑,↓ + -1( ) ↑,↓,↓ + +1( ) ↓,↑,↓ + -1( ) ↑,↓,↓ + 0 ↓,↓,↑

2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

                              =
                     +1( ) ↓,↑,↓ + -1( ) ↑,↓,↓

2 / 2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
= −2( )Pa c

b
a b
c

↑,↓,↓ 6
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This result is more easily seen by letting  (ac) work first on the right index-(k) of projector P[ j ](k ) .

  

Pa b
c

a b
c

(ac) ↓,↓,↑ = Pa b
c

a b
c

↓,↓,↑ Dx,x
E (ac)+ Pa c

b
a c
b

↓,↓,↑ Dy,x
E (ac)

Pa b
c

a b
c

       ↑,↓,↓ = Pa b
c

a b
c

↓,↓,↑ −1
2

⎛
⎝⎜

⎞
⎠⎟

     +   [         0          ] − 3
2

⎛

⎝⎜
⎞

⎠⎟

 (25.3.9a)

Also, projection (25.3.7) might use an anti-symmetric right index-(k) ( (k) = y =
a c  

b
) on state ↓↑↑ = (ac) ↑↑↓ .

  

Pa b
c

a c
b

↓,↑,↑ = Pa b
c

a c
b

(ac) ↑,↑,↓

                         = Pa b
c

a b
c

↑,↑,↓ Dx,y
E (ac)+ Pa c

b
a c
b

↑,↑,↓ Dy,y
E (ac)

                         = Pa b
c

a b
c

↑,↑,↓ − 3
2

⎛

⎝⎜
⎞

⎠⎟
 +   [         0          ] 1

2
⎛
⎝⎜

⎞
⎠⎟

  (25.3.9b)

But, once again the result is the same except for an overall phase and factor (−2 / 3 )  to that of (25.3.6). In either 
of the two preceding alternative projections, the left index-[j] can be symmetric ( [ j] = x = a b  

c
) or antisymmetric 

( [ j] = y = a c  

b
)  without otherwise altering either equation. 

 This shows that  the right index is governed by the state-permutaion -symmetry, that is, whether two spins 
are equal or not, while the left  index is governed by particle-permutaion-symmetry, that is, whether two particles 
are the same or not. We do not consider cases where a, b, or c are repeated, but orbit states 1, 2, or 3 and spin 
states ↑ and↓  will often be repeated in what follows.
 This is used in the labeling of the states (25.3.5) through (25.3.8) by two tableaus. The left tableau has the 
particle labels (a,b,c) while the right tableau has state labels (1,2,3) or {↑,↓}  replacing a, b, or c exactly according 
to the projector’s right index-(k) and location of state labels m = (1,2,3) or {↑,↓}  on the particles a, b, and c in the 
state m, ′m , ′′m = ma , ′mb , ′′mc  being projected. The following are examples.

   a b
c

−2 −1
+3

= Pa b
c

a b
c

−2,−1,+3 (norm)   (25.3.10a) a b
c

−2 +3
−1

= Pa b
c

a c
b

−2,−1,+3 (norm)    (25.3.10b)

Permutation anti-symmetry rules out putting the same state in a column as was shown in (25.3.7).

   a b
c

−2 −1
−2

= 0 = Pa b
c

a b
c

−2,−1,−2        (25.3.10c) a b
c

−2 +3
−2

= 0 = Pa b
c

a c
b

−2,−2,+3    (25.3.10d)

But repeated states in rows are allowed.

   a b
c

−2 −2
−1

= Pa b
c

a c
b

−2,−1,−2 (norm)   (25.3.10e)   a b
c

−2 −2
+3

= Pa b
c

a b
c

−2,−2,+3 (norm) (25.3.10f)
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Fermi-Dirac-Pauli anti-symmetric states
 Orbital-tableau states like the above and (25.3.5e) are combined using SN-Clebsch-Gordan coefficients 
(SNCGC) with spin-tableau states (25.3.6-8) to make Pauli-allowed spin-orbit states. The simplest case is the 
following for which the (S3CGC) sum is a single term for each state in the 4S quartet.

p3 4S ↑ ↑ ↑ 1
2
3

MS =3/2
S=3/2 = ↑ ↑ ↑ 1

2
3

,  1/2
3/2 = ↑ ↑ ↓ 1

2
3

,  −1/2
3/2 = ↑ ↓ ↓ 1

2
3

,  −3/2
3/2 = ↓ ↓ ↓ 1

2
3

(25.3.11)

The p3doublet states 2L, with L yet to be determined, are each a sum of two terms that use the S3 coefficients 
CA

E1
B
E1
B
A2 = 1 / 2  and CB

E1
A
E1
B
A2 = −1 / 2 from (24.2.40a) to give Pauli-anti-symmetry (A2). 

 p3 2L ↑ ↑
↓

1 2
3

MS =1/2
S=1/2 = CA

E1
B
E1
B
A2

a b
c

↑ ↑
↓

a c
b

1 2
3

+CB
E1
A
E1
B
A2

a c
b

↑ ↑
↓

a b
c

1 2
3

 (25.3.12a)

 p3 2L ↑ ↓
↓

1 2
3

MS =−1/2
S=1/2 = CA

E1
B
E1
B
A2

a b
c

↑ ↓
↓

a c
b

1 2
3

+CB
E1
A
E1
B
A2

a c
b

↑ ↓
↓

a b
c

1 2
3

 (25.3.12b)

This is how permutation multiplicity and (abc) labels disappear, killed by  Pauli! But, spin degeneracy  of 4 
quartet-states and 2 doublet-states is still here. Also there are eight orbital doublet  pairs corresponding to an octet 
of tableaus that have a unitary U(3) multiplicity of  E1 = 8  for the Pauli-allowed E1-orbitals.

   U(3) octet tableau basis:
1 1
2 ,

1 2
2 ,

1 2
3 ,

1 3
2 ,

1 1
3 ,

1 3
3 ,

2 2
3 ,

2 3
3 ,

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪
   (25.3.13)

Each of three orbital quantum labels {1 : (m = −1), 2 : (m = 0), 3 : (m = +1)}  for a p-electron orbit (=1) may be repeated 

in tableau rows (but not in columns). Spin S=1/2 has the usual U(2) multiplicity of  E1 = 2  above.
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b. Three-particle orbital states: Nitrogen (2p)3 Example
 Perhaps, the simplest non-trivial example of 3-particle states is the (2p)3 configuration of the lowest levels 

of Nitrogen. The possible arrangements are diagrammed in figures below as they  were in the tableau arrays of the 

2D-oscillator in Fig. 21.3.2(b). The symmetrized (A1) orbitals of 2 and 3 p-particles are repeated in Fig. 25.3.2 and 

for para-symmetry (E1) and anti-symmetry (A2) in Fig. 25.3.3.

           

(b) N-particle 3-level states ...or spin-1 states
1 = |1 0 0〉 =a1† |0 0 0〉
2 = |0 1 0〉 =a2† |0 0 0〉
3 = |0 0 1〉 =a3† |0 0 0〉

1 = |↑〉 =| 〉
2 = |↔〉 = | 〉

j = 1
m=+1
j = 1
m=0

3 = |↓〉 = | 〉j = 1
m=-1

(vacuum)
= |0 0 0〉

1 2

3

1 1 1 1 1 2 1 2 2 2 2 2

2 2 3

2 3 3

3 3 3

1 3 3

1 1 3 1 2 3

n2n1

n3

angular
momentum

z-component
M=n

1 -n
3

0

−1

−2

−3

−4

+1

+2

+3

+4

a2
†a1

a1
†a2

a2
†a3

a3
†a2a1

†a3

a3
†a1

Fig. 25.3.2 U(3) orbital states for p (l=1) for 1-3 particles that are symmetric. 

 

 Each tableau has 3D Cartesian integer coordinates (n1,n2,n3)  that are the values of number operators 

(a1a1,a2a2,a3a3)  or, in the old fashioned notation of Ch. 21: (a1†a1,a2†a2,a3†a3) . All tableaus with the same total 

number N = n1 + n2 + n3  of particles lie in the same plane that is normal to the (1,1,1) direction and a distance 

N / 3 from the vacuum origin. The plane has orthogonal D and Q axes that measure the dipole-sum D of z-

component momentum and the quadrupole-sum Q of squared-z-component momentum.

 D = Lz = n3 − n1 = ML  (25.3.14a)   Q = Lz
2 = n3 + n1 = N − n2   (25.3.14b)

Fig. 25.3.4 shows how a (D,Q) plot finds the orbital quantum L states present in a given tableau manifold. 
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(b) (U(3) -1 states)
Para-symmetric
p3-states

1 1
2

1 2
2

2 2
3

2 3
3

1 3
3

1 1
3

1 2
3

n2n1

n3

angular
momentum
z-component

0

+1

+2

+2

+3

-1

-2

-3

-4

1
2
3

2
3

1
3

1
2

2
3

1
3

1
2

(b) (U(3) -1 states)
Anti-symmetric
p3-state (L=0)

3

1
2

Anti-symmetric
p2-states

Anti-symmetric
p2-states (L= 1)

M=0

M=+1
M= 0
M=-1

 
            Fig. 25.3.3 U(3) orbital states for p (l=1) for 2-3 particles that are para-or-anti-symmetric. 

 The fundamental (1-particle) triplet states in Fig. 25.3.4(a) have z-momentum D = ML = +1,0,−1  consistent 

with a total momentum quantum number L=1. The same is true of the anti-symetric 2-particle triplet in figure (c). 

(Carbon (p)2 3P in Fig. 24.1.3 is a triplet in both orbit and, by Pauli exclusion, spin.) Four symmetric 2-particle [20] 

states in figure (b) have unique valuesML = +2,+1,−1, and –2 so they  belong to a D-quintet  (L=2) orbital, but two 

have equal ML = 0 . There must be an S-singlet (L=0) mixed in there. 

    

2

3

a1a2

a2a3
a3a1

3 3

2 3

1 3

1 2

2 2

(a)Fundamental
P-triplet [10]

1
2

3

1 1
2

1 2
2

2 2
3

2 3
3

1 3
3

1 1
3

2
3

1
3

1
2

3

1
2

1 2
3

(b)Symmetric
D,S sextet [20]

(c)Anti-symmetric
P-triplet [11]

(d)Para-symmetric
D,P octet [21]

(e)Anit-
symmetric
S singlet
 [111]

D=2

01 Q=2 1

+1

0

-1

-2
Q=3

2

1Q=2Q=1 0

1

1 1

Fig. 25.3.4 (D,Q) Dipole-Quadrupole plots of U(3) orbital states for p (=1)having 1-3 particles. 
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 Indeed, from Fig. 24.1.3 we recall that the latter is (p)2 1S, a singlet in both spin and orbit, and it lies above 

the other spin singlet level (p)2 1D in this U(3) sextet  [20] of Fig. 25.3.4(b). (Recall Hund’s rule.) Disentangling the 

(p)2 1S from the (p)2 1D state in the U(3) tableau basis requires U(3) defined operators.

c. Multi-particle U(3) orbital operators
 The primary U(N) operators are the elementary  ejk operators introduced in Chapter 2 of Unit 1. They were 
defined by their fundamental N-by-N representations that are zero-matrices with a single 1 at the (j,k)-position, 
that is, jth row and kth column. Later in Chapter 21, we generalized these operators to the 2D oscillator by 
replacing the elementary ejk with the more powerful a j†ak , which in our new notation is simply ajak . A special 
case of elementary operator is the number operator ak

†ak = ekk = akak .
 Finally, the present Chapter introduced in Sec. 24.3 the idea of multiple boson operators for particles a, b, 
c, and so on, making us distinguish between 1-particle ejk and N-particle sums Ejk.

 a j
†ak = ejk = ajak (25.3.5a)   

 
a j
†ak + b j

†bk +…= Ejk = ajak + bjbk +… (25.3.5b)
Nevertheless, each and every elementary (or advanced) operator obeys the same commutation relation.

 
ejk ,epq⎡⎣ ⎤⎦ = ejkepq − epqejk

                 = δ pkejq −δq jepk
(25.3.5c)  Ejk ,Epq⎡⎣ ⎤⎦ = δ pkE jq −δq jEpk  (25.3.5d)

This is a simple result of fundamental boson commutation relations. 

  
 
a j ,ak

†⎡⎣ ⎤⎦ = δ j k1,   a j ,ak⎡⎣ ⎤⎦ = 0,   a j ,bk
†⎡⎣ ⎤⎦ = 0,   b j

†,bk
†⎡⎣ ⎤⎦ = 0,   b j ,bk

†⎡⎣ ⎤⎦ = δ j k1,  …  (25.3.5e)

  
 
aj ,ak⎡⎣ ⎤⎦ = δ j k1,   aj ,ak⎡⎣ ⎤⎦ = 0,   aj ,bk⎡⎣ ⎤⎦ = 0,   bj ,bk⎡⎣ ⎤⎦ = 0,   bj ,bk⎡⎣ ⎤⎦ = δ j k1,  …  (25.3.5f)

1-particle ejk relations derived here apply to N-particle Ejk since all a’s commute with all b’s, and so forth.

  

  

e jk ,epq
⎡
⎣

⎤
⎦ =        a jak apaq         −       apaqa jak

                 = a j δ pk + apak( )aq − ap δq j + a jaq( )ak

                 = δ pk a jaq + a japak aq −δq japak − apa jaqak = δk pe jq −δ jqepk

 (25.3.5c)

From these relations it is possible to construct all representations of multi-particle operators Ejk that make up the 
angular momentum component operators Lx , Ly ,  and Lz who define orbital states of definite L.

 We begin with the p-orbit (=1) representation of Lx , Ly ,  and Lz from (23.1.1) in Chapter 23.

  Dmn
1 Lx( ) = 1

2

⋅ 1 ⋅
1 ⋅ 1
⋅ 1 ⋅

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ ,         Dmn

1 Ly( ) = −i
2

⋅ 1 ⋅
−1 ⋅ 1
⋅ −1 ⋅

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ ,        Dmn

1 Lz( ) =
1 ⋅ ⋅
⋅ 0 ⋅
⋅ ⋅ −1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟  (25.3.6a)

It’s then easy to read off the elementary form of the operators Lx , Ly ,  and Lz .

    Lx = E12 + E23 + E21 + E32( ) / 2,     Ly = −i E12 + E23 − E21 − E32( ) / 2,         Lz = E11 − E33  (25.3.6b)

The angular momentum raising operators L+  and L−  were defined by (23.1.5) in Chapter 23.

       
  
L+ = Lx + i Ly = 2 E12 + E23( ) ,     L− = Lx − i Ly = 2 E21 + E32( ) = L+

† ,     Lz = [L+ , L− ]  (25.3.6b)
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Symmetric p2-orbitals: U(3) sextet
 The first non-trivial application of elementary creation-destruction pairs is to the [2,0] sextet states 
1 1 , 1 2 , 1 3 , 2 2 , 2 3 , 3 3 ,{ } . Identical-boson ladder operator formulas (21.1.15) apply directly.

  
  

E12 n1 ,n2 = a1a2 n1 ,n2 = a1 n2 n1 ,n2 −1 = n1 +1 n2 n1 +1,n2 −1

E23 n1 ,n2 ,n3 = a2a3 n1 ,n2 ,n3 = a2 n3 n1 ,n2 ,n3 −1 = n2 +1 n3 n1 ,n2 +1,n3 −1

 Or, one may apply elementary operations ejk to each particle a, b, c, and so forth in turn, as follows.

 
  
E23 3a3b3c = 2a3b3c + 3a2b3c + 3a3b2c = 3

2a3b3c + 3a2b3c + 3a3b2

3
= 3 2 3 3

 
  
a2a3 n1 = 0,n2 = 0,n3 = 3 = a1 3 0,0,2 = 1 3 0,1,2 = E23

3 3 3 = 3 2 3 3  (25.3.7)

The ejk procedure shows    a = a†  or   a = a factors 
 

nk or
  

nk +1  arise by adjusting norms as in the following.

  

E23
2a3b3c3d + 3a2b3c3d + 3a3b2c3d + 3a3b3c2d

2
       =   E23

2 3 3 3

  = 
2a2b3c3d + 2a2b3c3d + 2a3b2c3d + 2a3b3c2d

2
       = 6

2a2b3c3d + 2a3b2c3d + 2a3b3c2d

6

⎡

⎣
⎢
⎢

  + 
2a3b2c3d + 3a2b2c3d + 3a2b2c3d + 3a2b3c2d

2
            +

3a2b2c3d + 3a2b3c2d + 3a3b2c2d

6

⎤

⎦
⎥
⎥

  
  + 

2a3b3c2d + 3a2b3c2d + 3a3b2c2d + 3a3b2c2d

2
        = 6 2 2 3 3    (25.3.8a)

The creation 
 

aa( ) operator formulas give the same result but by a more compact notation.

 
  
E23

2 3 3 3 = a2a3 n1 = 0,n2 = 1,n3 = 3 = a2 3 0,1,2 = 2 3 0,2,2 = 6 2 2 3 3  (25.3.8b)

The matrix elememts for the [2,0] sextet states are one of the following forms. 

 
  
E11

1 1 = 2 1 1 ,   E21
1 1 = 2 1 2 ,  E21

1 2 = 2 2 2 ,  E21
1 3 = 2 3 ,  E21

2 3 = 0

Elementary operator representations are then found as follows.

  

E12 = E21
† =                                       E23 = E32

† =                                           E13 = E31
† =                                       

11 12 22 13 23 33

11 ⋅ 2 ⋅ ⋅ ⋅ ⋅

12 ⋅ 2 ⋅ ⋅ ⋅
22 ⋅ ⋅ ⋅ ⋅
13 ⋅ 1 ⋅
23 ⋅ ⋅
33 ⋅

  

11 12 22 13 23 33
11 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
12 ⋅ ⋅ 1 ⋅ ⋅

22 ⋅ ⋅ 2 ⋅
13 ⋅ ⋅ ⋅

23 ⋅ 2
33 ⋅

  

11 12 22 13 23 33

11 ⋅ ⋅ ⋅ 2 ⋅ ⋅
12 ⋅ ⋅ ⋅ 1 ⋅
22 ⋅ ⋅ ⋅ ⋅

13 ⋅ ⋅ 2
23 ⋅ ⋅
33 ⋅

(25.3.9)

All operators that can relate one sextet state to another, that is 36 “super-elementary” operators, can be made by 
combining products of   E12 and   E23  and their conjugates   E21 = E12

† and   E32 = E23
† . For example, the third operator is 
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  E13 = [E12 , E23] according to (25.3.5). (Verify by  Eab -commutation and by 
 

aa( ) operator algebra.) The first operators 

we need are the angular momentum  L+ ,  L− ,  Lx , and   L
2 from (25.3.6b). 

  

L+ = Lx + i Ly = 2 E12 + E23( )          L− = L+
† =                                          L2 = L+ L− + Lz (Lz -1)   

11 12 22 13 23 33
11 ⋅ 2 ⋅ ⋅ ⋅ ⋅

12 ⋅ ⋅ 2 2 ⋅ ⋅
22 ⋅ ⋅ ⋅ ⋅ 2 ⋅

13 ⋅ ⋅ ⋅ ⋅ 2 ⋅
23 ⋅ ⋅ ⋅ ⋅ ⋅ 2
33 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

11 12 22 13 23 33
11 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
12 2 ⋅ ⋅ ⋅ ⋅ ⋅
22 ⋅ 2 ⋅ ⋅ ⋅ ⋅

13 ⋅ 2 ⋅ ⋅ ⋅ ⋅

23 ⋅ ⋅ 2 2 ⋅ ⋅
33 ⋅ ⋅ ⋅ ⋅ 2 ⋅

11 12 22 13 23 33
11 4 + 2 ⋅ ⋅ ⋅ ⋅ ⋅
12 ⋅ 6 ⋅ ⋅ ⋅ ⋅

22 ⋅ ⋅ 4 2 2 ⋅ ⋅

13 ⋅ ⋅ 2 2 2 ⋅ ⋅
23 ⋅ ⋅ ⋅ ⋅ 4 + 2 ⋅
33 ⋅ ⋅ ⋅ ⋅ ⋅ 0 + 6

(25.3.10a)

The angular-momentum-squared operator
  

L2 = L(L +1)  is the one that tells what L-values are present.

  

  

L+L− = Lx + i Ly( ) Lx − i Ly( ) = Lx
2 + Ly

2 − iLx Ly + iLy Lx = Lx
2 + Ly

2 + Lz

Lx
2 + Ly

2 + Lz
2 = L+L− + Lz

2 − Lz

 (25.3.10b)

Commutatuion 
  
[Lx , Ly ] = Lx Ly − Ly Lx = i Lz  helps find   L

2 matrices. Of six eigenvalues, five are   L(L +1) = 6  implying 

an (L=2) or D-orbital. The 6th L-value (L=0) implies an S-orbital. Both are projected below.

  
P(L = 0) =

4 − 2(2 +1) 2 2

2 2 2 − 2(2 +1)

⎛

⎝
⎜

⎞

⎠
⎟

0(0 +1) − 2(2 +1)
= 1

3
1 − 2

− 2 2

⎛

⎝
⎜

⎞

⎠
⎟  (25.3.11a) 

  
P(L = 2) = 1

3
2 2

2 1

⎛

⎝
⎜

⎞

⎠
⎟ (25.3.11b)

This gives the transformation matrix for two tableau sextets
 

2 2 and
 

1 3 and L-orbitals with M=0.

  

  

2 2
L = 0
M = 0

2 2
L = 2
M = 0

1 3
L = 0
M = 0

1 3
L = 2
M = 0

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

=
0 0

0
0

0 0
2
0

+1 −1
0
0

+1 −1
2
0

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

=
1
3

2
3

− 2
3

1
3

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

   (25.3.12a)

Compare this to (M=0)-Clebsch-Gordan coefficients under 
 0

0  and 
 0

2  columns of table (24.1.19b). 

  

1⊗1M =0
L=0 = Cm

1
′m

1
0
0

0
1

0
1∑

= C0
1
0
1

0
0

0
1

0
1 +C+1

1
−1
1  0

0
+1
1

−1
1 +C−1

1
+1
1  0

0
−1
1

+1
1

= −
1
3 0

1
0
1 +   

1
3

   +1
1

−1
1 +    

1
3

   −1
1

+1
1

 

  

1⊗1M =0
L=2 = Cm

1
′m

1
0
2

0
1

0
1∑

= C0
1
0
1

0
2

0
1

0
1 +C+1

1
−1
1  0

1
+1
1

−1
1 +C−1

1
+1
1  0

2
−1
1

+1
1

=
2
3 0

1
0
1   +   

1
6

   +1
1

−1
1 +    

1
6

   −1
1

+1
1

 
= −

1
3 0 0

 +   
2
3

   
+1 −1

 (25.3.12b) 
 
=

2
3 0 0

  +   
1
3

   
+1 −1

  (25.3.12c)

The tableau results (25.3.12a) agree up to an overall column phase with the CGC results (25.3.12b-c).
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Para-symmetric p3-orbitals: U(3) octet

 The U(3) octet bases
1 1
2 ,

1 2
2 ,

1 2
3 ,

1 3
2 ,

1 1
3 ,

1 3
3 ,

2 2
3 ,

2 3
3

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪
(25.3.13) plotted in Fig. 25.3.4(d) are para-symmetric 

combinations due to [2,1]  tableau projections (25.3.5e) analogous to spin U(2) examples (25.3.6-8). For example, 
an elementary operation on the (M=1)-tableau state begins with primitive (M=1)-ket relations.
 

  
E23 1a3b3c = 1a2b3c + 1a3b2c ,     E23 3a1b3c = 2a1b3c + 3a1b2c ,     E23 3a3b1c = 2a3b1c + 3a2b1c .

Then  E23 acts on a (
  

a b  

c   

a b  

c
) projection of

  
1a3b3c . (Recall 3rd line of (25.3.5e) or 2nd line of (25.3.8a).)

  

E23

1 3
3 = E23

1a3b3c + 3a1b3c − 2 3a3b1c

6
=

1a2b3c − 2 2a3b1c + 3a1b2c + 1a3b2c − 2 3a2b1c + 2a1b3c

6

  E23 |
  

a b  

c  

1 2  

3
〉 is a combination of |

  

a b  

c  

1 2  

3
〉 and |

  

a b  

c  

1 3  

2
〉 states. (Recall 3rd and 5th rows of (24.5.5e).)

  

  

1 2
3 =

2 1a2b3c −1 2a3b1c −1 3a1b2c −1 1a3b2c −1 3a2b1c + 2 2a1b3c

2 3

1 3
2 =

0 1a2b3c −1 2a3b1c +1 3a1b2c +1 1a3b2c −1 3a2b1c + 0 2a1b3c
2

  (25.3.13a)

The last step is to add up the scalar product or overlap of   E23 |
  

a b  

c  

1 3  

3
〉 with |

  

a b  

c  

1 2  

3
〉 or |

  

a b  

c  

1 3  

2
〉.

  

1 2
3 E23

1 3
3 = 1

2 3
1
6

2 + 2 −1−1+ 2 + 2( ) = 1
2

 

  

1 3
2 E23

1 3
3 = 1

2
1
6

0 + 2 +1+1+ 2 + 0( ) = 3
2

     (25.3.13b)      (25.3.13c)

Overlaps are the same for   E23 |
  

a c  

b  

1 3  

3
〉 with |

  

a c  

b  

1 2  

3
〉 or |

  

a c  

b  

1 3  

2
〉 (Recall 4th or 6th rows of (24.5.5e). State-op  E23

commutes with particle-ops (abc).   E23 cares what each particle is doing but not who they are!

 For 2-column tableaus, simple hooklength formulas shown in Fig. 25.3.5 give matrix elements such as 

(25.3.13b-c) shown in Fig. 25.3.5(e). Tableau hooks make it easier to derive representations like those of 

(25.3.9-10) and find what tableau combinations have definite L. By Fig. 25.3.4(d), we see [2.1]-octet  orbits are 

either (L=1) or else (L=2). Detailed derivation of octet orbital states is left as an exercise.
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Fig. 25.3.5 U(m)-Tableau hooklength formulas for atomic orbital matrix representations

 Many have contributed to angular momentum coupling besides the originators Wigner, Racah, Clebsch 

and Gordan. Some have gone on to develop similar formulas for higher unitary groups U(m). Pioneers in this area 

include Schwinger, Baird, Biedenharn, Bincer, Gelfand, Louck, and Moshinsky.
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25.4   Rotational Tensor Levels for High J
Rotational or orbital mechanics of atomic electrons in anisotropic potentials is analogous to the quantum 

mechanics of molecular rotation, and it was first  studied in early  days of quantum theory. Bethe described the 

splitting of orbital levels by anisotropic crystalline fields having point symmetries ranging from octahedral (O) to 

orthorhombic (D2). This is one of the best known group theory applications

 In modern formalism the crystal field orbital eigensolutions are found by first expressing the Hamiltonian 

H in terms of (Racah-Wigner) tensors Tqk and then diagonalizing a representation of H in an orbital basis 

 
 n,L,N  n ',L ',M ' { } . Wigner-Eckart theorem (25.1.20) represents each tensor component in terms of 

coupling or Clebsch-Gordan coefficients (CGC) Cq
k
M
L

′M
′L and reduced matrix elements.

                          n ',L ',M ' Tq
k n,L,M = Cq

k
M
L

M
L ' n 'L ' T k nL     (25.4.1)

The remainder of the problem (and most of the numerical labor) involves truncating the basis, summing the 
operators, and matrix diagonalization of the result.
 Molecular rotations in a vacuum may  be described analogously  using anisotropic Hamiltonians. In the 
simplest cases the rotational Hamiltonians are conveniently  expressed as polynomials of angular momentum 
operators Jx, Jy, and Jz defined with respect to the molecular frame. Pure rotational Hamiltonians conserve J and 
cannot couple rotational states J,K  and J ',K '  having different J values. This makes the rotational analysis 
simpler than the external crystal field problem since numerical diagonalization is limited to treating individual 
(2J + 1) dimensional block matrices. Even so, heavy molecules tend to have high J. For example, SF6 spectra 
with J = 150 and higher can be resolved, and so the numerical problem is still quite formidable.
 However, for high-J states it is possible to make approximations. It turns out that for high symmetry the 
diagonal (K = K’) contributions to the tensor matrix elements are dominant, and for high J and K they can be 
approximated by an asymptotic expression for the Clebsch-Gordan coefficients in terms of a Wigner rotation 
matrix or a Legendre polynomial. (Here the reduced matrix factor is unity.) 

                             J,K T0
k J,K = C0

k
K
J
K
J ≅ D0,0

k 0,ΘJK , 0( ) = Pk cosΘJK( )  (25.4.2a)

The polar angle θJK  is that of the angular-momentum cones introduced in Figures 23.1.1, and 23.1.2.

                             
 
cosΘJK = K J J +1( )⎡⎣ ⎤⎦

1 2 , K = J, J −1, J − 2,….  (25.4.2b)

The approximation (25.4.2a) is valid in the limit that J and K are both large compared to the tensorial rank 
K >> k( ) . The angle ΘJK  is the apex half-angle of a cone with a slant height of J J +1( )⎡⎣ ⎤⎦  and altitude of K. 

The cone is the locus of the quantum angular-momentum vector J subject to the constraints J ⋅  J = J J +1( )⎡⎣ ⎤⎦  

and Jz = K  imposed by the state J,K . The cone angle ΘJK  is a measure of the quantum uncertainty ΔJx( )  or 

ΔJy( )  of transverse components for that state.
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 The possible motion of a classical angular-momentum J vector can be displayed using a rotational energy 
(RE) surface. RE surfaces are radial plots of rotational energy as a function of the direction of the J vector in the 

body frame for a constant magnitude J = J J +1( )⎡⎣ ⎤⎦  of the angular-momentum. The classical J vector, while 

fixed in a laboratory frame, follows a body-frame trajectorythat conserves both energy E and magnitude J  of J.

 Each classically  allowed J trajectory is a topography  line on an RE surface, that is the intersection of an 
RE surface for a given J  with an energy sphere for a given E. Examples of RE surfaces for D2  and O shall see 

the quantum eigenvalues can be related to special “quantizing” J trajectories and that these can be approximated 
by the intersection of the angular momentum cones with the RE surface.

a. Rigid rotors D∞ ⊃ D2  symmetry( )  
The following starts with a review of the rigid rotor theory introduced in Section 23(c) and extends it to 
asymmetric rotors using geometry of Rotational Energy Surfaces (RES). Then RES are used for non-rigid rotors 
and coupled rotors to develop a powerful conceptual and computational theory of their spectra.

 Rotational Energy Surfaces (RES)  
The Hamiltonian for an, in general, asymmetric rigid rotor or top follows from (23.1.21)

                                                 H = AJx
2 + BJy

2 +CJz
2  (25.4.3)

An RES of H follows if we substitute classical body-frame angular-momentum components

                       Jx = − J sinβ cosγ , Jy = J sinβ sinγ , Jz = J cosβ.  (25.4.4a)

Here the J magnitude is a constant approximated by binomial theorem to about 1/2-quantum above J.

                                                 J = J J +1( ) ≅ J + 1
2  (25.4.4b)

The exact quantum magnitude is J 2 = J(J +1)  from (23.1.10). The resulting energy expression

                              E = J J +1( ) Asin2 β cos2 γ + Bsin2 β sin2 γ +C cos2 γ⎡⎣ ⎤⎦  (25.4.5)

is plotted radially  in Fig. 25.4.1 to give RES as a function of body-frame polar coordinates of azimuth φ = −γ( )  

and polar angle θ = β( )  for the J vector. These angles are two of the three Euler angles (α,β,γ )  introduced in 

Chapter 10 and Appendix 10A.

Three examples of rigid top RE surfaces are shown in Fig. 25.4.1 for the cases of (a) a prolate symmetric 

top (A = B < C), (b) an asymmetric top (A < B < C), and (c) an oblate symmetric top (A < B = C). A (J=10)-

surface has one contour line for each of (2J+1=21) quantum energy  levels for J=10. Quantum J-phase paths are 

labeled in Fig. 25.4.1(d), an expanded view of Fig. 25.4.1(a), and satisfy the following Bohr Jz-quantization 

conditions found by solving (25.4.5). The (±) is due to time reversal symmetry.
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1


Jzdγ = ±K = ±(J, J −1, J − 2,…0), where:   Jz = ±
J(J +1)(C cos2 γ + Bsin2 γ )− E

(C cos2 γ + Bsin2 γ )− A
∫  (25.4.6)

Time reversal symmetry requires that for each J on a K-path there is a –J on a –K-path of equal E.

Tensor operator mechanics 
To improve the quantum mechanics it helps to rewrite the Hamiltonian in terms of tensor operators or as a J-

operator multipole expansion. The J-multipole functions,

                                            Tqk = D0qk (0,β,γ )* =
4π
2k +1

J k Yq
k γ ,β)( )  (25.4.7)

are analogous to spatial multipole functions defined in (23.3.8). Consider quadrupole J-functions first.

                                             T0
0 = J ⋅ J = J 2               =      Jx

2 + Jy
2 + Jy

2( ),    (25.4.8a)

                                             T02 = 1
2 J 2 3cos2 β −1( ) = 1

2 2Jz
2 − Jx

2 − Jy
2( ),    (25.4.8b)

                               T2
2 +T−2

2( ) = J 2 6
2

sin2 β cos 2γ =       6
2

Jx
2 − Jy

2( ).    (25.4.8c) 

Solving this for Jx2 , Jy2 , and Jz2  gives a tensor operator expression for a rigid rotor Hamiltonian (25.4.3).

                             H =
A + B +C

3
T0
0 +

2C − A − B
3

T0
2 +

A − B
6

T2
2 +T−2

2( )  (25.4.9)

Only the first term survives for a spherical top (A = B = C). Symmetric tops (A = B ≠ C) have the first two terms. 

The asymmetric tops (A ≠ B ≠ C) use all three. The energy is given by (25.4.8) and (25.4.9). 

                    E = J J +1( ) A + B +C
3

+
2C − A − B

6
3cos2 β −1( )⎡

⎣⎢
+
A + B
2

sin2 β cos2γ ⎤
⎦⎥
.  (25.4.10)

 The preceding multipole expansion is equal to the polynomial expression (25.4.5) but has some quantum 

mechanical advantages over it. Tensor multipole operator expressions like (25.4.9) provide matrix elements in 

terms of CGC and reduced matrix elements of the Wigner-Eckart theorem (25.4.1). Only one reduced matrix 

J T 2 J  is needed. The scalar eigenvalue of (25.4.8a) is J(J+1) by (23.1.10).

                                                      J T 0 J = J J +1( )

Tensor matrices are found by evaluating the easiest component J
J T0

2
J
J  by elementary means.
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J
J T0

2
J
J = J

J 1
2 3Jz

2 − Jx
2 − Jy

2 − Jz
2( ) JJ = J

J 1
2 3Jz

2 − J • J( ) JJ
= 1
2 3J

2 − J J +1( )( ) = 1
2 2J

2 − J( )
 (25.4.11)

Then the Wigner-Eckart theorem (25.4.1) and CGC formulas (23.4.20) give

                            K
J T0

2
J
J = C0

2
J
J
J
J J T 2 J =

2 2J 2 − J( )
2J + 3( ) 2J + 2( ) 2J 2J −1( )

.  (25.4.12)

Solving gives the desired reduce matrix element:

                                  J T 2 J = 2J + 3( ) 2J + 2( ) 2J 2J −1( ) / 4.  (25.4.13)

 Still you might wonder why  we deal with tensor T-operators when J-polynomials seem simpler. The 

reasons for using tensor operators become clearer when comparing the work involved with higher-degree 

polynomials and corresponding high-rank tensors. Manipulating and computing matrix elements for fourth- or 

sixth-degree polynomials can be extremely laborious while fourth- or sixth-rank tensors use the same Wigner-

Eckart analysis as the T2 example above.

  Symmetric top energy levels (J = 10 Example)  
The trajectories on the RE surface for A = B = 0.2 and C = 0.6 [see Figures 25.4.1(a and d)] are precisely the 

ones that correspond to exact quantum energy  levels for J = 10. If the cone-angle cosine formula (25.4.2b) is 

substituted into the tensor RE surface energy expression (25.4.10) for A = B one obtains

                            E = J J +1( ) 2B +C
3

+
C − B
3

3
K 2J J +1( )
J J +1( ) −1

⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
,    (25.4.14)

                           E = BJ J +1( ) + C − B( )K 2.       (25.4.15)

This is the exact symmetric top quantum energy level equation. Recall (23.1.21). Here the cone-angle tensor 

matrix element approximation (25.4.2) gives an exact result. The angular-momentum cones exactly  define the 

quantizing J trajectories shown in Fig. 25.4.1a. The same applies to the oblate symmetric top surface shown in 

Fig. 25.4.1c. However, J-trajectories for the asymmetric top in Fig. 25.4.1(b) are not flat circles like symmetric 

top paths. Then cone intersections are approximate averages of Jz = K -values. 
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Fig. 25.4.1 Rotational energy (RE) surfaces for rigid rotors. (a) Prolate symmetric top (A = 0.2, B = 0.2, C = 
0.6). (b) Rigid asymmetric top (A = 0.2, B = 0.4, C = 0.6). (c) Oblate symmetric top (A = 0.2, B = 0.6, C – 0.6). 
(d) Prolate symmetric top with J = 10 quantum energy levels.
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Asymmetric top energy levels (J = 10 Example)  
This J-inversion symmetry  and the D2 rotational symmetry of top Hamiltonian (25.4.3) or (25.4.9) combine to 

give (at least) a D2h symmetry to the RE surface regardless of the symmetry  of the rotor which it models. The 

simplest rigid molecule having the surface shown in Fig. 25.4.1(b) would be a bent XY2 structure like the water 

molecule.

 It is evident that every  path on the asymmetric surface in Fig. 25.4.1b belongs to a mirror image pair of 

(±K)-paths with exception of the (K=0) path. The exceptional path is the x-shaped separatrix curve that crosses 

the saddle points on the ±y axes. The separatrix divides the surface into regions containing two different kinds of 

trajectory pairs. One kind of trajectory  pair encircles the high-energy regions centered on the ±z-axes or C axis. 

These paths are distorted versions of the paths for the prolate top  shown in Fig. 25.4.1a. The other pairs encircle 

the low-energy valley regions around the ±x axes or A axis, and they are distorted versions of the oblate 

symmetric top paths in Fig. 25.4.1(c).

 The separation of regions is manifested in the quantum level spectrum that is shown in the lower center 

portion of Fig. 25.4.2. Here the lower energy quasi-oblate pairs of trajectories are each identified with quasi-

degenerate or clustered pairs of energy  levels below the separatrix level at 44 cm-1. Similarly, the quasi-prolate 

pairs are indicated in the high-energy region on the right-hand side of Fig. 25.4.2. The levels belonging to each 

pair are indicated inside magnifying circles that give D2 symmetry labels for each level and the magnitude of the 

splitting between each pair.

 The rotational fine structure splitting is the intercluster frequency splitting such as the 150 GHz splitting 

between the lowest two pairs. This is approximately the frequency of classical precession or the wobbling 

frequency for the J vector to go once around the lowest energy  path. The intracluster splitting such as the 26 kHz 

splitting of the A1B1 pair in the lowest circle is called superfine structure. This corresponds to the frequency of a 

purely  quantum mechanical tunneling process between equivalent  pairs of semiclassical paths. If the molecule 

was set initially into a localized nonstationary  state with J-wobbling around the lowest (K = 10) path near the +x 

axis, then it would gradually evolve into a similar motion around the equivalent (K = -10) path near the –x axis 

after which it would return and (more or less) repeat the whole process at a rate of 26 kHz.

 The cluster doublets are the angular momentum analogs or inversion doublet levels of a two-well 

oscillator potential discussed in Chapter 2. (Recall Fig. 2.12.7.)  The stationary A1 or B1, eigenstates are, 

respectively, symmetric or antisymmetric combinations of two separate but equivalent wave functions localized 

on separate but equivalent paths or K-states : z  (or positive Kz) and  z  (or negative Kz).
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Fig. 25.4.2   J = 10 asymmetric top energy levels and related RE surface paths (A = 0.2, B = 0.4, C = 0.6). 

Clustered pairs of levels are indicated in magnifying circles that show superfine splittings.
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Eigenvectors z z Eigenvalues

A 1 / 2 1 / 2 EA (K ) = EK + 2SK
B 1 / 2 −1 / 2 EB (K ) = EK − 2SK

 
where:              SK =νKe−PK

 and:    PK = i dγ
γ −

γ +
∫

J(J +1)(C cos2 γ + Bsin2 γ )− EK
(C cos2 γ + Bsin2 γ )− A

  

            (25.4.16a)

The degree of separation or localization is given by the tunneling rate SK and superfine level splitting 4SK. 

   

This rate SK varies exponentially  with the magnitude of a path integral between the points γ ± of closest approach 

of the separate K-paths and proportional to classical precession rate νK. For the highest-K-paths that have the 

greatest separation, the precession rate νK is more than a million times faster than tunneling SK. However, near the 

separatrix the tunneling rate or superfine splitting increases enormously while the classical precession rate νK and 

fine structure splitting (hνK ≈ EK − EK−1 )  reduces near saddles and J-body orientation is fuzzy as is the distinction 

between semi-classical (fine) and quantum (superfine) motion.

 A classical rotor is always located on just one K-path at once. A quantum rotor eigenstate of the following 

tunneling Hamiltonian submatrix is a ±combination (25.4.16) of two or more K-paths. 

    H K =
EK 2SK
2SK EK

⎛
⎝⎜

⎞
⎠⎟ in  z  and z  basis

 

This is necessary  for the state to belong to a single irreducible representation such as A1 or B1 of the global 

symmetry group D2, which contains the local subgroup C2 symmetries of x-and-z-axes of the RES.

   

D2 1 Rx Ry Rz

A1 1 1 1 1
A2 1 -1 1 -1
B1 1 1 -1 -1
B2 1 -1 -1 1

   Table 25.4.1    
C2 1 R
A 1 1
B 1 −1

 Table 25.4.2

 A state localized on one Kx -path is a sum (or difference) A1 and B1 states. Both Kx= ±10 states have 0-mod 

2 (02)x symmetry  with respect to local symmetry subgroup C2(x) of x-axis rotation. (Both Kx =10 and Kx =-10  are 

even numbers.) The combination states are a basis of the induced representation 02(of C2(x))↑ D2 of the global D2 

symmetry induced by the even representation 02 of the local symmetry C2(x). The even induced representation is 

indicated by the first column of the D2 ⊃C2 x( )  correlation table in the left-hand side of Fig. 25.4.3. The table 
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gives the D2 species in the even (02)x and odd (12)x induced representations using the Frobenius reciprocity 

theorem: 

 02 of C2 x( )( )↑D2− = A1 ⊕ B1   ,       12 of C2 x( )( )↑D2− = A2 ⊕ B2 .

An even (odd) induced representation labels even- Kx (odd- Kx) clusters that lie below the separatrix in Fig. 

25.4.2. Clusters above the separatrix have local symmetry  C2(z), and clusters corresponding to this region are 

labeled according to the columns of the D2 ⊃C2 z( )  correlation table shown in the right-hand part of Fig. 25.4.3.

Fig. 25.4.3  Correlations between the asymmetric top symmetry D2 and subgroups C2(x), C2(y), and C2(z).

 Sketches of the classical motion correspond to the locally  C2 symmetric trajectories. The C2(x) motion 

corresponds to an XY2 rotating on its side like a boomerang, while C2(z) motion is like a spinning crankshaft. The 

C2(y) motion is around the classically unstable saddle point, and hence no C2(y) level clusters appear in the 

spectrum. One should note that the phase portraits describe the precession or “rotation of rotation” rather than 

rotation itself. Precession-free rotation of a rigid body would occur only if the J vector were precisely localized 

on one of the principal axes, not quite possible for a quantum rotor.
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 Quantum uncertainty prohibits pure rotation without precession because the transverse components 

cannot be exactly  zero. The transverse components are minimum for the K = J states which have the least cone 

angle-ΘJ ,J . This corresponds to minimum angular-momentum uncertainty  or angular zero-point motion. States 

with lower z-component quanta K=J–1, J–2, … have higher uncertainty angles ΘJ ,K  according to (25.4.2b). The 

states J,K  are eigenstates of the symmetric top (A=B)-Hamiltonian, and each angular-momentum cone exactly 

intersects the corresponding semiclassical path on the symmetric top RE surface in Fig. 25.4.1(a).

 For the asymmetric top in Fig. 25.4.1(b) the Θ j , j  cones only approximate their corresponding 

semiclassical trajectories. Asymmetric top  trajectories are distorted or “squeezed” so that the projection of J on 

the local axis of quantization oscillates around the K value that labels each path. The classical precession 

becomes more and more nonuniform as K decreases and the separatrix is approached. This corresponds to the 

mixing of more of the states J,K ± 2 , J,K ± 4 , and so on into the dominant J,K component of the eigenstate. 

The global and local symmetries for the symmetric top are continuous groups O2 or D∞h ⊃ R2  while the 

asymmetric top  has only  a discrete set of symmetries D2 ⊃C2 . So the K value is not  strictly  conserved nor is the 

±K degeneracy perfectly maintained in the latter.

 However, the extent of breakdown of R2 symmetry or K conservation is not necessarily related to the 

splitting of the cluster doublets. K conservation and cluster splitting are separate phenomena associated with 

different regions of the RE phase space; the former depends upon the shape of the phase paths, and the latter 

depends upon the height of the pass or saddle region between the equivalent paths. Furthermore, the symmetry 

properties of the clusters should be associated with a C2 induced representation and not an R2 irreducible 

representation. This point will be amplified by  examples involving the higher octahedral symmetry in the 

following section.

 Another point which arises in the study of higher symmetries concerns the ordering of clusters and the 

symmetry species inside them. The species ordering in Fig. 25.4.2 consists of a repetition of the sequence 

A1B1A2B2 through the entire spectrum. This remarkably uniform ordering can be related to the number of wave 

function nodes occurring along and between the semiclassical paths. This sort of ordering was observed in the Cn 

energy band level structure  A1E1B1B2E1A2  in Chapter 9.

©2005 W. G. Harter     Chapter 25 Tensor Operators    25-48



Fig. 25.4.4   Rigid rotor energy levels correlations for angular momentum J = 10 and J = 20.

Level correlation between C2(x) and C2(z) symmetry  
The coefficients A, B, and C determine the symmetry of the rotor Hamiltonian (25.4.3) and its RE surface. The 

surface represents a rotor that is prolate-symmetric (A = B < C) in (a) of Fig. 25.4.1, asymmetric (A < B < C ) in 

(b), and oblate-symmetric (A < B = C) in (c). The two extreme symmetric rotor cases have levels labeled by 

different R3 ⊃ R2  subgroup chains. The prolate case is labeled by  R2(z) and the oblate case by R2(x). The 

intermediate asymmetric case is labeled using finite subgroup  chains R3 ⊃ D2 ⊃C2.  Furthermore, different 

subgroups are appropriate for different levels; the levels below the separatrix belong to C2(x) and those above 

belong to C2(z).

 In Fig. 25.4.4 the J=10 and J=20  levels are plotted as a function of parameter B which ranges between the 

prolate (B = 0.2 cm-1) and oblate (B = 0.6 cm-1) cases. Coefficients A = 0.2 cm-1 and C = 0.6 cm-1 are fixed. One 

can see that most J=10 symmetric top  doublets tend to stick together for most values of B and even more so for 

J=20. The J=10 levels in Fig. 25.4.2 lie above the point B = 0.4 in the J=10 plot of Fig. 25.4.4. The separatrix 

region of the levels in the center of Fig. 25.4.2 is the transition region where doublets split and trade levels in Fig. 

25.4.4. The separatrix or transition region appears to be a small fraction of the J=10 spectrum and even smaller 

part for J=20.

 The doublets in the upper left-hand part of Fig. 25.4.4 above the transition region belong to C2 (z)↑ D2  

induced representations. Those in the lower right-hand part belong to C2 (x)↑ D2  doublets. This correlation plot 
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should be compared to the lattice level correlation diagrams in Fig. 14.2.11. The latter involves a correlation 

between bands of doublets of levels belonging to Cn (z)↑ Dn  induced representations and n-fold degenerate 

clusters or bands of levels belonging to C2 (x)↑ Dn  representations. For n = 2 the plot in Fig. 16.1.2 is more 

closely analogous to the one in Fig. 25.4.4. Then the A1,A2,B1 and B2  levels (which are the band boundaries 

plotted in Fig. 14.2.11) are the only levels allowed; the E-type levels do not exist for n = 2. The transition region 

occurs at the tops of the potential barriers.

 By analogy the asymmetric top spectral transition region occurs at the top (or bottom) of the saddles on 

the RE surface. The saddle points are on the ± axes and rise linearly  with the coefficient B of Jy2 . Certain of the 

transition levels are seen to rise rapidly and quasi-linearly  in Fig. 25.4.4, while their doublet partners are seen to 

sail right through the transition region. Wave symmetry determines which of the D2 species are most sensitive to 

the y-axis saddle. The correlation table in Fig. 25.4.3 for the C2(y) symmetry shows that only A1 and A2 are 

symmetric (02). Therefore only they have wave antinodes and substantial amplitudes on the saddles, and it is 

therefore A1 and A2 levels that “divorce” their partners in the transition region.

 Outside the transition region the pairs of levels mostly stick together to form quasi-degenerate tunneling 

doublets. One exception is the K = ±1 double near the lower left-hand side of Fig. 25.4.4. It splits immediately, 

that is to first order. This is analogous to the first order splitting observed in Fig. 16.1.2. Symmetry  allows 

nonzero matrix elements between this pair of states. In this case it is matrix element K = 1 T2
2 K = −1  and its 

conjugate that cause the K = ±1 doublet to split.

b. Semirigid spherical tops [Octahedral (O) Symmetry]

We now consider the high-J eigenvalues of octahedrally  symmetric tensor Hamiltonians. The fourth-rank tensor 

term in the Hamiltonian,

                                               H = BT0
0 + 4t044 T0

4 +
5
14

T4
4 +T−4

4( )⎡

⎣
⎢

⎤

⎦
⎥  (25.4.17)

is the same, apart from its overall scale factor, as the one introduced in (25.1.25). Its polynomial form

                                                H = BJ2 +10t044 Jx
4 + Jy

4 + Jz
4 − 3

5 J
4( )  (25.4.18)
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was also introduced in (25.1.25). It is known as the Hecht Hamiltonian after K. T. Hecht who first applied it to 

the analysis of methane (CH4) spectra taken by E. Plyler in 1960. The Hamiltonian describes rotation-vibrational 

distortion of molecules having tetrahedral (Td) as well as octahedral (Oh) symmetry. Changing the sense of 

rotation J→− J( )  should give a rotor state with the same energy so all rotors must have only  pure rotational 

energy operators of even rank. The third-rank tetrahedral invariant JxJyJz is forbidden by time-reversal symmetry 

to appear alone.

Fig. 25.4.5  Semirigid rotor RE surfaces with Oh symmetry. (a) t044 > 0. (b) t044 < 0.

Oh Rotational energy surfaces  
We now express the Hecht Hamiltonian (25.4.17) in terms of body  polar angles as was done in the preceding 

section for the asymmetric rotor. The polynomial

                 E = B J 2 + t044 J 4 35 cos4 β − 30 cos2 β + 3+ 5 sin4 β cos 4y( ) 2  (25.4.19)

has the form of the harmonic polynomial functions in Eq. (5.6.29). The resulting RE surface is shown in Fig. 

25.4.5a for positive centrifugal distortion constant t044. This constant is around 5 Hz for SF6 and is positive for 

most octahedral XY6 molecules. It is greatly  exaggerated for the figure so that the hill and valleys are clearly 

visible.

 In an octahedral XY6 molecule rotation about the four-fold XY radial bond axes generally  has the highest 

energy for a given J value since these bonds are stretched relatively little by  a longitudinal centrifugal force. 

However, transverse forces which arise during rotation about the three-fold symmetric axes in between the bonds 
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can bend the molecule relatively easily. Hence, the three-fold symmetry axes lie in RE surface valleys in Fig. 

25.4.5a while the four-fold (x, y, z) axes are on peaks. For tetrahedral XY4 or cubic molecules the sign of t044 is 

negative as it is for the surface in Fig. 25.4.5(b).

Spherical top energy levels (J = 30 Example)   
The RE topography  lines correspond to quantizing J trajectories and to level clusters in the energy spectrum as 

shown by the diagram of the J = 30 levels of SF6 in Fig. 25.4.6. The levels consist mainly of clusters of levels 

belonging to the octahedral symmetry species A1, A2, E, T1, or T2. The characters of these species are the 

following Table 25.4.3. (The tetrahedral Td group  has a similar table where T1 and T2 are often labeled F1 and 

F2 ). Local subgroups C4 and C3 have characters (from Fig. 7.3.3) listed, too.

 

O 0° 120° 180° 90° 180°
A1 1 1 1 1 1
A2 1 1 1 −1 −1
E 2 −1 2 0 0
T1 3 0 −1 1 −1
T2 3 0 −1 −1 1

 

C4 0° 90° 180° 270°
04 1 1 1 1
14 1 i −1 −i
24 1 −1 1 −1
34 1 −i −1 i

    

C3 0° 120° 240°
03 1 1 1
13 1 e2πi/3 e−2πi/3

23 1 e−2πi/3 e2πi/3

 

   Table 25.4.3      Table 25.4.4       Table 25.4.5

This spectrum contains clusters of six and eight rotational levels that are analogous to the rigid rotor doublet 

clusters in Fig. 25.4.2. Above the separatrix region there are repeating sextets (T1, T2), (A2T2E), (T1, T2), or 

(A1T1E) composed of clustered singlet (A1 or A2), double (E), or triplet (T1 or T2) octahedral symmetry  species. 

Below the separatrix there are two octets (A1T1T2A2) and (T2ET1). Each set of six or eight clustered levels can be 

related to the same number of semiclassical J trajectories on the RE surface in Fig. 25.4.5 or 25.4.6.

 Each set of six rotational levels belongs to one of the C4 induced representations 

04 ↑O, 14 ↑O, 24 ↑O,  or 34 ↑O  depending upon whether the effective K value is 0, 1, 2, or 3 modulo 4 for the 

corresponding set of fourfold symmetric semiclassical trajectories. The correlation tables in the lower right-hand 

part of Fig. 25.4.7 tell which O species belong to each K4 cluster and to each set of trajectories. For example, the 

minimum uncertainty trajectory has J = K = 30 and corresponds to the highest energy 24 ↑O or A2T2E( )  cluster 

in Fig. 25.4.6.
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Fig. 25.4.6  J = 30 octahedral rotor levels and related RE surface paths.
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Fig. 25.4.7  Different choices of rotation axes for octahedral rotor corresponding to local symmetry C3, C2, and 
C4.  Tables correlate global octahedral symmetry species with the local ones.

 The highest energy semiclassical trajectories are very close to the intersection of the RE surface with the 

K = 30 angular momentum cone which has half-angle Θ3030 = cos
−1 30 30( ) 31( )( ) = 10.3° . A series of J = 30 angular 

momentum cones are drawn for K = 30 down to K = 24 in Fig. 25.4.8. The next highest 14 ↑O or T1T2( )  cluster 

corresponds to six trajectories which are localized to within about Θ3029 = 18°  of their respective four-fold 

symmetry axes. This sequence of clusters ends when Θ30 K  approaches the angle 35.3° between the separatrix 

and the four-fold axes. The J = 30 cutoff value is K4 = 30( ) 31( ) cos 35.3° = 24.9  or about 25 as shown in Fig. 

25.4.8. This corresponds to a weak (T1,T2) cluster just above the separatrix in Fig. 25.4.6.
 Since the eight three-fold symmetric valley regions of the RE surface are smaller, there are fewer clusters 
associated with the C3 induced representations. There is only a 19.5° angle between the separatrix and the three-

fold axes. Hence, the J = 30 cut-off value is K3 = 30( ) 31( ) cos19.5° = 28.7  or about 29 as indicated in Fig. 

25.4.8. So two J = 30 clusters on the three-fold symmetry side of Fig. 25.4.6 belonging to the induced 
representations 03 ↑O = A1T1T2A2( )  for K = 30 and 23 ↑O = T2ET1( )  for K = 29.
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Fig. 25.4.8  Quantum (J,K)-cone angles for angular momentum states of total J=30.

 Two C3 clusters and five or six C4 clusters are visible in the infrared spectra of tetrafluorosilane (SiF4) and 

cubane (C8H8) which is shown in Fig. 25.4.9. The spectra are actually due to transitions between level clusters on 

lower and upper RE surfaces corresponding to ground and vibrationally  excited states, respectively. However, the 

spectra are simply scaled copies of the pure rotational level patterns since the upper and lower RE surfaces have 

almost the same shape apart from a scale factor. Note that fine structure spectra outside of the separatrix region is 

relatively insensitve to the J value in that P(30), and P(31), and P(32) are quite similar. Note the similarity of J = 

30 fine structure patterns for quite different molecules having tetrahedral, cubic, and octahedral shapes. 

 However, the superfine structure of intracluster splitting depends only  on the shape of the RE surface in 

the neighborhood of the saddle points through a tunneling factor S that can be approximated by an exponential of 

a phase integral across the saddle region. (Note the rapid decrease of the superfine splitting from about one 

Megahertz down to just 4.8 Hz as K4 goes from 25 up to 30 in Fig. 25.4.6.)

HarterSoft –LearnIt     Unit 8 Quantum Rotation    25- 55



      

Fig. 25.4.9  Infrared spectra showing fine structure clusters. Tetrafluorosilane (SiF4) spectrum from a v3 R(30) 
transition ____. [After C. W. Patterson, R. S. McDowell, N. G. Nereson, B. J. Krohn, J. S. Wells, and F. R. 
Peterson, J. Mol. Spectrosc. 91, 416 (1982).[ Cubane (C8H8) spectrum from v11 P(30), P(31), and P(32), 
transitions; cubane (C8H8) spectrum from v12 R(36), transition. [After A. S. Pine, A. G. Maki, A. G. Robiette, B. J. 
Krohn, J. K. G. Watson, and Th Urbanek, J. Am. Chem. Soc., 106, 891 (1984).]
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Superfine tunneling analysis
 The magnitude of superfine splitting may vary  by  many orders, the splitting patterns have the following 

invariant form. The first of these is derived from a tunneling matrix between (25.4.20) involving the six (K4=28)-

path bases x , x , y , y , z , z ,{ }  paths around six octahedral ±x, ±y, and ±z-axes.

 

                     x  x  y  y  z  z

H K4=28 =

H 0 S S S S
0 H S S S S
S S H 0 S S
S S 0 H S S
S S S S H 0
S S S S 0 H

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

  

Eigenvector x x y y z z Eigenvalue

6 A1 = 1 1 1 1 1 1 EA1 = H + 4S

12 E,1 = 2 2 −1 −1 −1 −1 EE = H − 2S
2 E, 2 = 0 0 1 1 −1 −1

2 T1,1 = 1 −1 0 0 0 0 ET1 = H

2 T1, 2 = 0 0 1 −1 0 0

2 T1, 3 = 0 0 0 0 1 −1

 

    (25.4.20)       Table 25.4.6

The eigenvectors and eigenvalues for this matrix are given in the Table 25.4.6. The resulting superfine splitting 

predictions are listed (25.4.21a) along with other similarly derived values for other cluster types.

          

04 ↑ O : 14 or 34 ↑O 24 ↑O
ΔE A1( ) = 4S, ΔE T2( ) = 2S, ΔE E( ) = 2S,
ΔE T1( ) = 0, ΔE T2( ) = 2S, ΔE T2( ) = 0,
ΔE E( ) = −2S ΔE A2( ) = −4S.

(25.4.21a)      

03 ↑ O : 13 or 23 ↑O
ΔE A2( ) = 3S, ΔE T1( ) = 2S,
ΔE T2( ) = S, ΔE E( ) = 0,
ΔE T1( ) = −S ΔE T2( ) = −2S.
ΔE A1( ) = −3S

 (25.4.21b)

Splitting ratios and ordering of levels hold if tunneling occurs only between nearest neighboring trajectories. The 

patterns (25.4.20) and (25.4.21) are seen magnified in Fig. 25.4.6.

 Just as the asymmetric top  maintains (A1A2B1B2 )  ordering throughout Fig. 25.4.2 we also note the 

following overall ordering is maintained throughout the fine structure spectrum of Fig. 25.4.6. 

                                           01 ↑O = A1T1T2A2T2ET1T2ET1( )  (25.4.22)

Taken together, this would be the largest possible cubic cluster. It contains just the O regular representation. Giant 

clusters like (25.4.22) or the C2 clusters half this size are possible, too, if stable semi-classical orbits are localized 
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around low symmetry points. This occurs for octahedral tensor combination of sixth, eighth, and higher ranks. 

Some examples are described in the next section.

(c) Level Correlation between C3 and C4 Symmetry    So far we have considered only the lowest order rotational 

tensors which exhibit the symmetries D2 of the rigid rotor and Oh of the semirigid cubic or octahedral rotor. We 

consider now the effect of the sixth-rank normalized octahedral tensor operator introduced in Eq. (7.3.35),

                                            T [6] = 1 8( ) T06 − 7 2( ) T46 +T−46( )⎡
⎣

⎤
⎦ ,  (25.4.23)

This will be added in varying amounts to the normalized fourth-rank tensor,

                                            T [4] = 7 12( ) T04 − 5 14( ) T44 +T−44( )⎡
⎣

⎤
⎦ ,  (25.4.24)

Introduced in Eqs. (7.3.25) and (25.4.17). A sixth-rank centrifugal distortion may be necessary  in the presence of 

anharmonic and other higher order effects. The magnitude of the T[6] contribution would vary according to a 

higher power of J than that of T[4] and might be significant at higher J values. Here the magnitudes of their 

respective contributions are varied artificially through an angle parameter v  in a combination which maintains the 

overall normalization.

                                         T 4,6 v( ) = T [4] cos v +T [6] sin v.  (25.4.25)

The exact quantum (J = 30)-eigenvalues for this mixed [4,6]-rank tensor operator are plotted as a function of the 

mixing angle v  in Fig. 25.4.10. The plot begins on the left-hand side (v = 0) with a scaled copy of the T[4] level 

spectrum in Fig. 25.4.6 and ends on the right-hand side (v = π) with the same spectrum inverted. Between these 

limits the level clusters become completely reorganized.

 Certain values of the v parameter in Fig. 25.4.10 are marked (b), (c), (d), and (e). At these values the RE 

surface of the combination tensor (25.4.25) is drawn in Fig. 25.4.11. The RE surface function used for T[4] is as 

follows. [Recall (25.4.19)] 

  E[4] β,γ( ) = 7 12( )1 2 9 4π( )1 2 35 cos4 β − 30 cos2 β + 3+ 5 sin4 β cos 4γ( ) 8  (25.4.26)

For T[6] the RE function is as follows,
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E[6] β,γ( ) = 1 8( )1 2 13 4π( )1 2 231 cos6 β − 315 cos4 β +105 cos2 β − 5(

                            − 21 sin4 β 11 cos2 β −1( ) cos 4γ ) /16.
 (25.4.27)

Fig. 25.4.10  Eigenvalues of T[4,6]( v) tensor in (25.4.25) versus v values (See RES in Fig. 25.4.11.) 

(a) v = 0.0, (b) v = 0.4π/6, (c) v = 2π/6, (d) v = 4π/6 (e) v = 4.6 π/6, (f) v = 5 π/6..

The tensors T[r] and RE functions E[r] have a spherical harmonic normalization factor 2r +1[ ] 4π( )1/2  that was not 

included in the previous definition (25.4.19). This factor is used here to slightly enhance the effect of the sixth-
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rank tensor for this particular example. Also, the J r  factors are depleted in (25.4.26) and (25.4.27) so that the 

higher rank tensor effects are not J dependent.

 The eigenlevels marked by (b) in Fig. 25.4.10 correspond to the RE surface drawn in Fig. 25.4.11(b). The 

latter shows that the separatrix has taken over the regions that formerly held C3 symmetric trajectories, and only 

C4 trajectories remain. (Note that these are equally spaced contours and are not quantized paths.) The result is the 

destruction of C3 clusters in the spectrum which is composed almost entirely of C4 clusters above the (b) point in 

Fig. 25.4.10.

 Beyond this point a remarkable new type of cluster is formed. Just above the points marked (c) and (d) in 

Fig. 25.4.10 lie two clusters that contain twelve levels each. These correspond to trajectories which encircle 12 

equivalent valleys which lie on the C2 symmetry axes in Figures 25.4.11(c) and 25.4.11(d). The symmetry species 

within each of these clusters are exactly the ones contained in the C2 correlation table in the center of Fig. 25.4.7. 

The lowest cluster in Fig. 25.4.10 would correspond to K = 30 and hence to the even local symmetry or 02 

column of the C2 table which contains species A1E, T1, and 2T2. The next cluster has K = 29 and contains the five 

species A2, E, 2T1, and T2 listed in the odd column 12. The superfine splittings between these five levels are 

actually visible in the scale of Figures 25.4.10. As v changes the levels as seem to change order within this 

cluster. This is the result of competition between tunneling mechanisms.

 Between the (b) and (d) points in Fig. 25.4.10 there is another phenomenon which occurs in the upper 

energy levels. There are a number of crossings or Fermi-like resonances between accidentally  coinciding C3 and 

C4 clusters. This is because there are two kinds of mountains on the RE surfaces in Figures 25.4.11(c) and 25.4.11

(d): the C4 mountains which are shrinking and C3 mountains which are growing with v. For certain values of v, 

quantizing paths on one type of mountain are bound to be in resonance with different kinds of paths on the other. 

The result is an extraordinary kind of tunneling in which eigenfunctions are delocalized over both kinds of paths 

at once and a peculiar hybrid superfine eigenlevel structure occurs.

 The spectral region containing the unusual fine structure is bounded on the right-hand side by  the (e) point 

in Fig. 25.4.10 which corresponds to the RE surface in Fig. 25.4.11(e). At this point the eight C3 mountains 

dominate the surface geometry  entirely and the eigenlevels are composed entirely  of very strong C3 clusters of 

eight levels each. The final 25.4.11(f) shows the situation at v = 5.0(π/6) where the C4 trajectories begin to return. 

Now they are occupying the valleys.
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Fig. 25.4.11  RE surfaces corresponding to selected v values in Fig. 25.4.10. 

(a) v = 0.0, (b) v = 0.4π/6, (c) v = 2π/6, (d) v = 4π/6 (e) v = 4.6 π/6, (f) v = 5 π/6.
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25.5 Composite rotors and multiple rotational energy surfaces MRES
 Sec. 25.4 introduces Hamiltonians and RE surfaces involving functions of even mulipolarity, that  is, 

constant (k=0), quadratic or quadrupole (k=2), quartic or hexadecapole (k=4), leaving out functions that are 

linear-dipole (k=1), or octupole (k=3) for reasons of time-reversal symmetry. In composite “rotor-rotors” any 

mulitpolarity is possible and the dipole is of primary utility. 

a. Gyro-Rotors 
 A composite rotor is one composed of two or more objects with more or less independent angular 

momenta. This could be a molecule with attached methyl (CH3) “gyro” or “pinwheel” sub-rotors, a system of 

considerable biological interest. It could be a molecule with a vibration or “phonon” excitation that couples 

strongly to rotation. Also, any nuclear or electronic spin with significant coupling may be regarded as an 

elementary sub-rotor. The classical analogy is a spacecraft with gyro(s) on board.

 A rotor-rotor Hamiltonian has the following general interaction form.

  
  
Hrotor R+S = HrotorR

+ HrotorS
+VRS     (25.5.1)

A useful approximation assumes the rotorS “gyro” is fastented to the frame of rotorR so the interaction VRS 

becomes a constraint, does no work, and is thus assumed zero. An asymmetric top  with body-fixed spin is the 

following modified version of (31.1).

  
    
HR+S(Body−fixed) = ARx

2 + BRy
2 +CRz

2 + HrotorS
+ (~ 0)         (31. 19a)

The system total angular momentum is a conserved vector J=R+S  in the lab-frame and a conserved magnitude |J| 

in the rotor-R body frame. So we use R=J-S in place of R. 

 

    

HR,S(fixed) = A Jx − Sx( )2 + B Jy − Sy( )2 +C Jz − Sz( )2 + HrotorS

           = AJx
2 + BJy

2 +CJz
2 − 2AJxSx − 2BJySy − 2CJz Sz + ′HrotorS

   (25.5.2b)

Gyro-spin components Sa are treated at first as constant classical parameters Sa.

    

HR,S(fixed) = const.1− 2ASxJx − 2BSyJy − 2CSzJz + AJx
2 + BJy

2 +CJz
2

               = M0T0
0       +       DdTd

1
d∑        +         QqTq

2
q∑

 (25.5.2c)

This is a simple Hamiltonian multipole tensor operator expansion having here just a monopole 
  
T0

0  term, three 

dipole 
   
Ta

1  terms, and two quadrupole 
   
Tq

2  terms shown in Fig. 25.5.1. Each is a radial plot of a spherical harmonic 

function 
    
Yq

k ϕ,ϑ( )  representing a tensor operator 
  
Tq

k .
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(a)
Monopole

(b)
Dipole

(c)
Quadrupole

Fig. 25.5.1 The six lowest order RES components needed to describe rigid gyro-rotors.

   

    

T0
0 =

Jx
2 + Jy

2 + Jz
2

3
 (25.5.3a)          

    

Tx
1 = Jx =

T+1
1 + T−1

1

2

Ty
1 = Jy =

T+1
1 −T−1

1

i 2

Tz
1 = Jz = T0

1

(25.5.3b)       

    

Tzz
2 =

2Jz
2 − Jx

2 − Jy
2

2
= T0

2

T
x2−y2
2 = Jx

2 − Jy
2 =

2 T2
2 −T−2

2( )
6

(25.5.3c)
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The constant coefficients or moments indicate strength of each multipole symmetry.

    

   

M0 = A + B +C + 3 ′HrotorS  (25.5.4a)    

   

Dx =−2ASx ,

Dy =−2BSy ,

Dz =−2CSz

 (25.5.4b)               

   

Qzz = 2C −A−B( )/ 6

Q
x2−y2 = A−B( )/ 2

(25.5.4c)

 The scalar monopole RES (a) is a sphere, while vector dipole RES (b) are bi-spheres pointing along 

Cartesian axes, and the RES (c) resemble quadrupole antenna patterns. Also, Fig. 25.5.1(a-c) plot the six s, p, and 

d Bohr-Schrodinger orbitals that are analogs for the six octahedral J-tunneling states listed in Table 24.5.6.

 The asymmetric and symmetric rotor Hamiltonians (31.1) and (31.2) are combinations of a monopole 

(25.5.3a) that, by  itself makes a spherical rotor, and varying amounts of the two quadrupole terms (25.5.3c) to 

give the rigid rotor RES pictured previously in Fig. 31.1 and Fig. 31.2. Both Q-coefficients (25.5.4c) are zero for 

a spherical top (A=B=C) but only one is zero for a symmetric top (A=B). 

 Combining monopole (25.5.3a) with dipole terms (25.5.3b) gives a gyro-rotor Hamiltonian (25.5.2b) for a 

spherical rotor (A=B=C) that has the following form.

 H=const+ BJ2 -gµS·J  (where: -gµ=2A=2B=2C)    (25.5.5)

H resembles a dipole potential -m·B for a magnetic moment m=gJ that precesses clockwise around a lab-fixed 

magnetic field B=µS. (The PE is least for J along S.)

Here, the Hamiltonian (25.5.5) is a simple example of Coriolis rotational energy. It  is least for J along S 

where |R|=|J-S| is least and rotor kinetic energy BR2 is least. (Magnitudes |J| and |S| are constant here.) The 

spherical rotor-gyro RES in Fig. 25.5.2 is minimum along body  axis +S  and maximum along –S  where BR2 is 

greatest.

As is the case for rigid solid rotors in Fig. 31.1 and Fig. 31.2, the RES energy topography lines determine 

the precession J-paths in the body frame wherein gyro-S  is fixed in Fig. 25.5.2. The left hand rule gives J-

precession sense in the body  S-frame, that is, all J precess anti-clockwise relative to the “low” on the +S-axis or 

clockwise relative to the “high” on the –S-axis. In the lab, S precess clockwise around a fixed J.

Gyro-RES differ from solid rotor RES that  have two opposite “highs” and/or two opposite “lows” 

separated by saddle fixed points where the precessional flow direction reverses as seen in Fig. 31.2. The gyro-

RES in Fig. 25.5.2 has no saddle fixed points and only one “high” and one direction of flow with the same 

harmonic precession frequency for all J-vectors between the high +S  and low –S-axes.This is because the 

spectrum of the gyro-rotor Hamiltonian (25.A.22) is harmonic or linear in the K. 

   
   

K
J H K

J = const.+ BJ(J + 1)− 2BK     (25.5.6)
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In contrast, even the symmetric rigid rotor spectrum (31.4) is quadratic in K. Other rotors shown in Fig. 31.2 and 

Fig. 31.4 have levels that are quite non-linear. 
      

Fig. 25.5.2 The spherical gyro-rotor RES is a cadioid of revolution around gyro spin S 

b. 3D-Rotor and 2D-Oscillator Analogy
 One associates linear levels with harmonic oscillators not rotors, but the gyro-rotor’s linear spectrum 

lighlights a 150-year-old analogy between motions of 3D rotors and 2D vibrations. Stokes [] described 2D 

electric vibration or optical polarization, by a 3D vector later known as Stokes vector and labeled appropriately 

by the letter S. (Now we say  S  labels “spin.”) Stokes’ spin uses Hamilton quaternions, redone 80 years later as 

Pauli spinor σµ components of a general 2D Hermitian operator H. 

    

H =
A B − iC

B + iC D

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

=
A + D

2
σ0 +

A−D
2
σA    + BσB       +CσC , 

                where: σ0 =
1 0
0 1

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟
,  σA =

1 0
0 −1

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟
,  σB =

0 1
1 0

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟
,  σC =

0 −i
i 0

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟
. 

  (25.5.7)

Labels: A(“Asymmetric-diagonal”), B(“Bilateral-balanced”), and C(“Circular-Coriolis”) are alternatives to 

Pauli’s dry z, x, and y, respectively. The 2D Hamiltonian has a S·J form of Coriolis coupling (25.5.5). 

      

          H =      S01        + SAJA         + SBJB      + SCJC    =S0J0 +

S • J, 

where:          J0 = 1,      JA =
σA
2

,       JB =
σB
2

,  JC =
σC
2

,  

   and: S0 = (A + D) / 2,  SA = (A−D),  SB = 2B,    SC = 2C . 

  (25.5.8)

The 2D-3D analogy is helped by using elementary oscillator ladder a†a operators.
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J0=N=a1
†a1 + a2

†a2, JA=
1
2

a1
†a1 − a2

†a2( ), JB=
1
2

a1
†a2 + a2

†a1( ), JC =
-i
2

a1
†a2 − a2

†a1( ).
                where: a1

†a1 =
1 0
0 0

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟
,  a1

†a2 =
0 1
0 0

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟
,  a2

†a1 =
0 0
1 0

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟
,  a2

†a2 =
0 0
0 1

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟
. 

  (25.5.9)

This easily  gives Schwinger’s 3D angular momentum raising-lowering operators 
    
J+ = JB + iJC = a1

†a2 and 

    
J− = JB − iJC = a2

†a1 , where 2D dimensions 1 and 2 are spin-up (+/2) and spin-down (-/2) instead of x-and y-

polarized states envisioned by Stokes.
 Angular 3D ladder operation is replaced by far simpler 2D oscillator operations.

   
    

J+ n1n2 = a1
†a2 n1n2 = n1 + 1 n2 n1 + 1,n2 −1

J− n1n2 = a2
†a1 n1n2 = n1 n2 + 1 n1 −1,n2 + 1

   (25.5.10)

2D oscillator states are labeled by  total number N=(n1+n2) of quanta and the net quantum population ΔN=(n1-n2). 3D 

angular momentum states 
 K
J  are labeled by total momentum J=N/2=(n1+n2)/2 and z-component K=N/2=(n1+n2)/2, 

just half (or /2 ) of N and ΔN. 

     

   

n1,n2 =
a1

†( )
n1

a2
†( )

n2

n1 !n2 !
0,0 = K

J =
a1

†( )
J +K

a2
†( )

J−K

J + K( )! J −K( ) !
0,0 ,  where:

n1 = J + K

n2 = J −K

⎧
⎨
⎪⎪⎪

⎩
⎪⎪⎪

 (25.5.11)

From this point, Schwinger’s derivation of quantum angular momentum matrices 
   
DMK

J αβγ( )  in (31.5) and (31.6), 

becomes relatively straightforward. Also, it gives Clebsch-Gordan Wigner-Eckart  relations upon which RE 

matrix calcualtions depend, as well as the asymptotic values for RE surface approximations such as (31.10).

   
′K
′J Tq

k
K
J =Cq

k
K
J
′K
′J ′J k J ~C0

k
K
J

K
J J k J ~ DJK

J ΘK
J( ) .  
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c.  Gyro-Rotors and 2D-Local Mode Analogy! 
In molecular rotation theory, the 

  
T0

2  term along with 
  
T0

0  make the initial unperturbed Hamiltonian (31.3) of a 

symmetric top, and gyro terms 
   
Tq

1  are viewed as perturbations. For vibration theory, the latter make up a normal 

mode Hamiltonian and the former 
  
T0

2  term is viewed as an anharmonic perturbation. 

The effect of 
  
T0

2 , seen in Fig. 25.5.3(c), is to replace the stable fixed point  +B (representing the (+)-

normal mode) by a saddle point  as B bifurcates (splits) into a pair of fixed points that head toward the ±A-axes. 

So one normal mode dies and begats two stable local modes whereby  one mass may hold its energy and not have 

to give it all up to the other in the usual beating process. (The A-modes are anharmonically detuned.)

 Pairs of classical modes, each localized on different sides of an RES in Fig. 25.5.3, are analogous to 

asymmetric top  ±K-precession pairs in Fig. 25.4.2 and are degenerate in a classical RES picture. Quantum-

tunneling Hamiltonians (31.15) split  each trajectory pair to a superfine doublet with (±)-eigenstates on both RES 

paths in Table 31.1), and so also will quantum gyro-spin doublets have J both up and down the A-axis in Fig. 

25.5.3c.

 

                  

A
(or z)

B
(or x)

C (or y)

−Α FIXED PT.
Local

Mode-2
+Α FIXED PT.

Local
Mode-1

S

+B FIXED PT.
Symmetric

Normal
Mode

S

−B FIXED PT.
Anti-Symmetric

Normal
Mode

Symmetric normal
mode becomes

UNSTABLE

(a) Spherical Gyro-Rotor
or

 Normal ± B-Modes

(b) Perturbed  Gyro-Rotor
or

“Soft” +B- Mode

(c) Symmetric  Gyro-Rotor
or

Local  ±A-Mod e
Normal -B-ModeT0

(0) + Dy
(1)Ty

(1)

T0
(0) + Dy

(1)Ty
(1) +Q0

(2)T0
(2)

 Fig. 25.5.3 A spherical gyro-rotor becomes a symmetricgyro-rotro by adding 
  
T0

2 .  

 

HarterSoft –LearnIt     Unit 8 Quantum Rotation    25- 67



d. Multiple Gyro-Rotor RES and Eigen-surfaces
 While simple quantum rotors have J on multiple RES paths, a gyro-rotor J may on multiple paths and 

surfaces. For quantum spin S the Gyro-rotor the distribution may occupy over multiple RES. 

 The simplest semi-classical theory of S  considers just +S  and -S. The RES for each is plotted one on top 

of other as in Fig. 25.5.4 (a) while component RES are shown in Fig. 25.5.4(b) for +S  and in Fig. 25.5.4(c) for -S. 

An energy sphere is shown intersecting an RES pair for an asymmetric gyro-rotor. If the spin S  is set to zero, the 

pair of RES collapse to a rigid asymmetric top RES shown in Fig. 31.2 having angular inversion (time-reversal 

J→-J) and reflection symmetry. The composite RES in Fig. 25.5.4(a) has inversion  symmetry but lacks 

reflection symmetry. Its parts in Fig. 25.5.4 (b) and in Fig. 25.5.4 (c) have neither reflection nor inversion 

symmetry due to their gyro-spins ±S.

      

-S

S SS

Jz

Jx

Jy
-S

(c) Time
reversed gyro
-S=(-1,-1,-1)

(b) Forward
gyro-spin
+S=(1,1,1)

(a) Composite
±S Rotational
Energy Surface

Fig. 25.5.4 Asymmetric gyro-rotor RES. (a) Composite ±S. (b) Forward spin +S. (c) Reversed spin – S.

  A quantum theory  of multiple RES involves a tunneling or mixing between its base states. The 
simplest quantum gyro-spin is a two-state spin-1/2 having a 2-by-2 Hamiltonian matrix. Semi-classical gyro-rotor 
dynamics are approximated by a pair of RES obtained from eigensolutions of the following 2-by-2 matrix for 
each classical orientation (β,γ) of the J-vector in the body frame.

 

HR,S(quantized ) = AJx
2 + BJy

2 +CJz
2 − AJxσ x − BJyσ y −CJzσ z + const.

=
REatop − JC cosβ −AJ cosγ sinβ − iBJ sinγ sinβ

−AJ cosγ sinβ + iBJ sinγ sinβ REatop + JC cosβ
⎛
⎝⎜

⎞
⎠⎟

 

where:  REatop = J 2 (A cos2 γ sin2 β + Bsin2 γ sin2 β +C cos2 β)

 (25.5.12)
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 Fig. 25.5.5 compares of views of both the classical RES of Fig. 25.5.4 (top half of Fig. 25.5.5) and the 
semi-classical RES (bottom half of Fig. 25.5.5) resulting from inserting quantum spin S=σ/2 matrices in (25.5.2) 
to give (25.5.12) then diagonalizing and plotting the resulting eigenvalues. Each sc-RES surface is an asymmetric 
RES perturbed around where the c-RES cross. The inner surface is particularly affected by a bifurcation into an 
unstable saddle point and a pair of loops around fixed points.

Fig. 25.5.5 (a) Views of classical gyro-rotor c-RES in Fig. 25.5.4 (a) based on (25.5.2).
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Fig. 25.5.5 (b) Views of semi-classical gyro-rotor sc-RES based on eigenvalues of (25.5.12) with S=σ/2.
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