"SIMPLEST MOLECULE" CLARIFIES MODERN PHYSICS I. CW LASER SPACE-TIME FRAME DYNAMICS

T.C. REIMER, W. G. HARTER, Department of Physics, The University of Arkansas, Fayetteville, AR, USA.

Molecular spectroscopy makes very precise applications of quantum theory including GPS, BEC, and laser clocks. Now it can return the favor by shedding some light on modern physics mysteries by further unifying quantum theory and relativity.
We first ask, "What is the simplest molecule?" Hydrogen H_{2} is the simplest stable molecule. Positronium is an electron-positron $\left(e^{+} e^{-}\right)$-pair. An even simpler "molecule" or "radical" is a photon-pair (γ, γ) that under certain conditions can create an $\left(e^{+} e^{-}\right)$-pair.
To help unravel relativistic and quantum mysteries consider CW laser beam pairs or TE-waveguides. Remarkably, their wave interference immediately gives Minkowski space-time coordinates and clearly relates eight kinds of space-time wave dilations or contractions
 to shifts in Doppler frequency or wavenumber.
Modern physics students may find this approach significantly simplifies and clarifies relativistic physics in space-time $(x, c t)$ and inverse time-space ($\omega, c k$). It resolves some mysteries surrounding super-constant $c=299,792,458 \mathrm{~m} / \mathrm{s}$ by proving "Evenson's Axiom" named in honor of NIST metrologist Ken Evenson (1932-2002) whose spectroscopy established c to start a precision-renaissance in spectroscopy and GPS metrology.
The following Talk II applies this approach to relativistic quantum mechanics.

Goal: Understand relativity (and QM in next talk) using Laser-Phasor clocks

Improving on Einstein's PW axiom...

Einstein Pulse Wave (PW) Axiom: PW speed seen by all observers is c

Improving on Einstein's PW axiom. . . with Occam's Razors \& Evenson's Lasers

Improving on Einstein's PW axiom. . . with Occam's Razors \& Evenson's Lasers

Evenson Continuous Wave (CW) axiom: CW speed for all colors is c

More self-evident "must-be" axiom

Improving on Einstein's PW axiom. . . with Occam's Razors \& Evenson's Lasers

Evenson Continuous Wave (CW) axiom: CW speed for all colors is c

Fast-Alice tries to make Bob think she's shining a 600 THz laser at him (Bob doesn't know she's moving)

Alice: "Check the wavelength λ,Bob !"
A really fast Alice \& laser

Bob: " Alice! It looks like your v=600THz laser.

Fast-Alice tries to make Bob think she's shining a 600 THz laser at him (Bob doesn't know she's moving)

Alice: "Check the wavelength λ,Bob !"
A really fast Alice \& laser

Bob: " Alice! It looks like your v=600THz laser.

Q1: Can Bob tell it's a "phony" 600 THz by measuring his received wavelength?

Fast-Alice tries to make Bob think she's shining a 600 THz laser at him (Bob doesn't know she's moving)

Alice: "Check the wavelength λ,Bob !"

Bob: " Alice! It looks like your v=600THz laser.

Q1: Can Bob tell it's a "phony" 600 THz by measuring his received wavelength?
Q2:If so, what "phony" λ does Bob see?

Fast-Alice tries to make Bob think she's shining a 600THz laser at him (Bob doesn't know she's moving)

Alice: "Check the wavelength λ,Bob !"
A really fast Alice \& laser

Fast-Alice tries to make Bob think she's shining a 600THz laser at him (Bob doesn't know she's moving)

Alice: "Check the wavelength λ,Bob !"
A really fast Alice \& laser

Fast-Alice tries to make Bob think she's shining a 600 THz laser at him (Bob doesn't know she's moving)

Alice: "Check the wavelength λ,Bob !"

A really fast Alice \& laser

frequency $\mathrm{v}=\omega / 2 \pi$
(Inverse period $\mathrm{v}=1 / \tau$)

Fast-Alice tries to make Bob think she's shining a 600 THz laser at him (Bob doesn't know she's moving)

Alice: "Check the wavelength λ,Bob !"

Fast-Alice tries to make Bob think she's shining a 600 THz laser at him (Bob doesn't know she's moving)

Alice: "Check the wavelength λ,Bob !"

Fast-Alice tries to make Bob think she's shining a 600 THz laser at him (Bob doesn't know she's moving)

Alice: "Check the wavelength λ,Bob !"

Fast-Alice tries to make Bob think she's shining a 600 THz laser at him (Bob doesn't know she's moving)

Alice: "Check the wavelength λ,Bob !"

Colliding CW laser beams make

Alice's laser

 space-time coordinate frameCarla's laser (a) Right-moving wave $e^{i(k x-\omega t)}$ (b) Left-moving wave $e^{i(-k x-\omega t)}$

Colliding CW laser beams make

Alice's laser

 space-time coordinate frame

Colliding CW laser beams make

Alice's laser

 space-time coordinate frame

The result is the "simplest molecule" (a 2- γ "thing") with an "Eckart-frame" that reveals relativity (this talk) and QM (next talk) to Bob
(a) Right-moving $C W e^{i(k x-\omega t)}$

(b) Left-moving $C W e^{i(-k x-\omega t)}$

Carlás laser How do we find wave zeros?
$Q:$ How is wave sum:

$$
\Psi=e^{i a}+e^{i b}
$$

factored into:

$\Psi=\left(\psi_{\text {phase }}\right) \cdot\left(\psi_{\text {group }}\right)$?

Space x
(c) Standing $C W$ in space-time
$\begin{aligned} & \Psi(x, t)=\left(e_{\text {phase }}^{-i \omega t}\right)(2 \operatorname{group} \alpha x) \\ &|\Psi|\end{aligned}$
(d) Dispersion plot in per-space-time

(a) Right-moving $C W e^{i(k x-\omega t)}$

(c) Standing CW in space-time

$$
\begin{aligned}
\Psi(x, t)= & \left(\begin{array}{l}
\text { phase } \\
\\
\text { phat } \\
\text { factor froup }
\end{array}\right)|\Psi|
\end{aligned}
$$

(d) Dispersion plot in per-space-time

Carla's laser

How do we

 find wave zeros?$Q:$ How is wave sum:

$$
\Psi=e^{i a}+e^{i b}
$$

factored into:

$\Psi=\left(\psi_{\text {phase }}\right) \cdot\left(\psi_{\text {group }}\right) ?$

A:Easily! :

$$
\begin{aligned}
& \quad \Psi=e^{i a}+e^{i b}= \\
& e^{i \frac{a+b}{2}}\left[e^{i \frac{a-b}{2}}+e^{-i \frac{a-b}{2}}\right] \\
& = \\
& =\left(e^{i \frac{a+b}{2}}\right)\left[2 \cos \left(\frac{a-b}{2}\right)\right] \\
& = \\
& \left(\psi_{\text {phase }}\right) \cdot\left[\psi_{\text {group }}\right] ?
\end{aligned}
$$

Alice's laser Space x (c) Standing $C W$ in space-time
$\Psi(x, t)=\left(e^{-i \omega t}\right)(2 \cos k x)=e^{i(k x-\omega t)}+e^{i(-k x-\omega t)}$ phase group | $\Psi \mid$
factor factor group
Time ct

Alice's laser Space x (c) Standing $C W$ in space-time
$\Psi(x, t)=\left(e^{-i \omega t}\right)(2 \cos k x)=e^{i(k x-\omega t)}+e^{i(-k x-\omega t)}$ phase group | $\Psi \mid$
factor factor group

Time ct

Carla's laser
Space x
(d) Dispersion plot in per-space-time

$$
\Psi=e^{i a}+e^{i b}=
$$

Frequency
$\omega \quad\left[=\left(e^{i \frac{a+b}{2}}\right)\left[2 \cos \left(\frac{a-b}{2}\right)\right]\right.$

Alice's laser Space x (c) Standing $C W$ in space-time
$\Psi(x, t)=\left(e^{-i \omega t}\right)(2 \cos k x)=e^{i(k x-\omega t)}+e^{i(-k x-\omega t)}$ phase group | Ψ
factor factor group

Time ct

Carla's laser
Space x
(d) Dispersion plot in per-space-time

$$
\Psi=e^{i a}+e^{i b}=
$$

Frequency
$\omega \Gamma=\left(e^{i \frac{a+b}{2}}\right)\left[2 \cos \left(\frac{a-b}{2}\right)\right]$

$\mathrm{Re} \Psi$ phase-zero-path

Alice's laser Space x

 (c) Standing $C W$ in space-time$\Psi(x, t)=\left(e^{-i \omega t}\right)(2 \cos k x)=e^{i(k x-\omega t)}+e^{i(-k x-\omega t)}$ phase group | Ψ
factor factor group

Time ct

Carla's laser Space x
(d) Dispersion plot in per-space-time

$$
\Psi=e^{i a}+e^{i b}=
$$

Frequency

$=\left(\psi_{\text {phase }}\right) \cdot\left[\psi_{\text {group }}\right]$
Group vector
1/2-difference

Alice's laser Space x

 (c) Standing $C W$ in space-time$\Psi(x, t)=\left(e^{-i \omega t}\right)(2 \cos k x)=e^{i(k x-\omega t)}+e^{i(-k x-\omega t)}$ phase group | Ψ
factor factor group

Time ct

 1/2-sum

Carla's laser Space x
(d) Dispersion plot in per-space-time

$$
\Psi=e^{i a}+e^{i b}=
$$

Frequency
$\omega \Gamma=\left(e^{i \frac{a+b}{2}}\right)\left[2 \cos \left(\frac{a-b}{2}\right)\right]$
Phase vector
$=\left(\psi_{\text {phase }}\right) \cdot\left[\psi_{\text {group }}\right]$
Group vector
1/2-difference

$$
\begin{aligned}
& \underset{\text { 1st-bause }}{\mathrm{K}_{\text {group }}=\mathrm{G}=\frac{\mathrm{R}-\mathrm{L}}{2}} \\
& \text { Pitcher's } \\
& \text { mound } \\
& \text { Grandstand }
\end{aligned}
$$

Pulse Waves (PW) make "baseball diamonds" in space-time

Alice's laser (a) Right-moving CW $e^{i\left(k_{4} x-\omega_{4} t\right)}$

Alice's laser (a) Right-moving CW $e^{i\left(k_{4} x-\omega_{4} t\right)}$

Alice and Carla are moving at velocity u relative to $B o b$

What is velocity u? and
Where are wave zeros in
Bob's Frame? Answer both questions by factoring wave sum:

$$
\begin{aligned}
& \Psi=e^{i a}+e^{i b}= \\
& =\left(e^{i \frac{a+b}{2}}\right)\left[2 \cos \left(\frac{a-b}{2}\right)\right] \\
& =\left(\psi_{\text {phase }}\right) \cdot\left[\psi_{\text {group }}\right]
\end{aligned}
$$

Alice's laser (a) Right-moving CW $e^{i\left(k_{4} x-\omega_{4} t\right)}$

(b) Left-moving CW $e^{i\left(k_{-1} x-\omega_{-} t\right)}$ Carla's laser

Alice and Carla are moving at velocity u relative to $B o b$

What is velocity u? and
Where are wave zeros in
Bob's Frame? Answer both questions by factoring wave sum:

$$
\begin{aligned}
& \Psi=e^{i a}+e^{i b}= \\
& =\left(e^{i \frac{a+b}{2}}\right)\left[2 \cos \left(\frac{a-b}{2}\right)\right. \\
& =\left(\psi_{\text {phase }}\right) \cdot\left[\psi_{\text {group }}\right]
\end{aligned}
$$

Alice's laser (a) Right-moving CW $e^{i\left(k_{4} x-\omega_{4} t\right)}$
(b) Left-moving CW $e^{i\left(k_{-1} x-\omega_{-} t\right)}$ Carla's laser

Alice's laser (a) Right-moving CW $e^{i\left(k_{4} x-\omega_{4} t\right)}$
Al $k_{k=+4}$
(b) Left-moving CW $e^{i\left(k_{-} x-\omega_{-} t\right)}$ Carla's laser

Alice and Carla $\underset{\text { velocity } u}{\text { are moving }}$ at relative to Bob
What is velocity u? and
Where are wave zeros in
Bob's Frame? Answer both questions by factoring wave sum:

$$
\Psi=e^{i a}+e^{i b}=
$$

(d) Dispersion plot
$|\Psi|$ group

This determines space-time zero-path lattice that defines a Minkowski-coordinate grid as seen by Bob.

Frequency

$=\left(e^{i \frac{a+b}{2}}\right)\left[2 \cos \left(\frac{a-b}{2}\right)\right]$
$=\left(\psi_{\text {phase }}\right) \cdot\left[\psi_{\text {group }}\right]$
This gives 1/2-sum Phase $\mathbf{P}^{\prime}=\left(\mathbf{R}^{\prime}+\mathbf{L}^{\prime}\right) / 2$ vector and a 1/2-difference Group $\mathbf{G}^{\prime}=\left(\mathbf{R}^{\prime}-\mathbf{L}^{\prime}\right) / 2$ vector in (frequency, wavevector) space $\left(\omega^{\prime}, k^{\prime}\right)$ for Bob.

Wavelength $\lambda=2 \pi / k=1 / \kappa$

$$
\left(1 \mu \mathrm{~m}=10^{-6} \mathrm{~m}\right)
$$

(c) Minkowski CW-grid

Wavelength $\lambda=2 \pi / k=1 / \kappa$ $\left(0.25 \mu m=0.25 \cdot 10^{-6} \mathrm{~m}\right)$

Wavelength $\lambda=2 \pi / k=1 / \kappa$

$$
\left(1 \mu \mathrm{~m}=10^{-6} \mathrm{~m}\right)
$$

(d) Dispersion plot

According to Bob, Alice's right-moving $600 T H z$ laser beam is blue-shifted by $b_{B A}=e^{\rho}=2$ as she approaches him. So vector \mathbf{R}^{\prime} that Bob ascribes to Alice is her vector \mathbf{R} doubled in length to $\underline{\mathbf{R}}^{\prime}=\omega_{A} b_{B A}(1,+1)$. (It must stay on the 1st-baseline to obey Evenson's axiom.)

Dispersion plot

According to Bob, Alice's right-moving $600 T H z$ laser beam is blue-shifted by $b_{B A}=e^{\rho}=2$ as she approaches him. So vector \mathbf{R}^{\prime} that Bob ascribes to Alice is her vector \mathbf{R} doubled in length to $\underline{\mathbf{R}}^{\prime}=\omega_{A} b_{B A}(1,+1)$. (It must stay on the 1st-baseline to obey Evenson's axiom.)
Meanwhile, Bob sees Carla's left-moving 600THz laser beam red-shifted by $b_{B C}=e^{-\rho}=\frac{1}{2}$ as

According to Bob, Alice's right-moving $600 T H z$ laser beam is blue-shifted by $b_{B A}=e^{\rho}=2$ as she approaches him. So vector \mathbf{R}^{\prime} that Bob ascribes to Alice is her vector \mathbf{R} doubled in length to $\underline{\mathbf{R}}^{\prime}=\omega_{A} b_{B A}(1,+1)$. (It must stay on the 1st-baseline to obey Evenson's axiom.)
Meanwhile, Bob sees Carla's left-moving 600 THz laser beam red-shifted by $b_{B C}=e^{-\rho}=\frac{1}{2}$ as she recedes and her vector \mathbf{L} halved in length to $\mathbf{L}^{\prime}=\omega_{A} b_{B C}(1,-1)$ along the 3rd baseline. Bob's phase $\mathbf{P}^{\prime}=\left(\mathbf{R}^{\prime}+\mathbf{L}^{\prime}\right) / 2$ and group $\mathbf{G}^{\prime}=\left(\mathbf{R}^{\prime}-\mathbf{L}^{\prime}\right) / 2$ vectors define his warped view of

According to Bob, Alice's right-moving $600 T H z$ laser beam is blue-shifted by $b_{B A}=e^{\rho}=2$ as she approaches him. So vector \mathbf{R}^{\prime} that Bob ascribes to Alice is her vector \mathbf{R} doubled in length to $\underline{R}^{\prime}=\omega_{A} b_{B A}(1,+1)$. (It must stay on the 1st-baseline to obey Evenson's axiom.)
Meanwhile, Bob sees Carla's left-moving 600 THz laser beam red-shifted by $b_{B C}=e^{-\rho}=\frac{1}{2}$ as she recedes and her vector \mathbf{L} halved in length to $\mathbf{L}^{\prime}=\omega_{A} b_{B C}(1,-1)$ along the 3rd baseline. Bob's phase $\mathbf{P}^{\prime}=\left(\mathbf{R}^{\prime}+\mathbf{L}^{\prime}\right) / 2$ and group $\mathbf{G}^{\prime}=\left(\mathbf{R}^{\prime}-\mathbf{L}^{\prime}\right) / 2$ vectors define his warped view of

According to Bob, Alice's right-moving $600 T H z$ laser beam is blue-shifted by $b_{B A}=e^{\rho}=2$ as she approaches him. So vector \mathbf{R}^{\prime} that Bob ascribes to Alice is her vector $\underline{\mathbf{R} \text { doubled in }}$ length to $\underline{R}^{\prime}=\omega_{A} b_{B A}(1,+1)$. (It must stay on the 1st-baseline to obey Evenson's axiom.)
Meanwhile, Bob sees Carla's left-moving 600THz laser beam red-shifted by $b_{B C}=e^{-\rho}=\frac{1}{2}$ as she recedes and her vector \mathbf{L} halved in length to $\mathbf{L}^{\prime}=\omega_{A} b_{B C}(1,-1)$ along the 3rd baseline. Bob's phase $\mathbf{P}^{\prime}=\left(\mathbf{R}^{\prime}+\mathbf{L}^{\prime}\right) / 2$ and group $\mathbf{G}^{\prime}=\left(\mathbf{R}^{\prime}-\mathbf{L}^{\prime}\right) / 2$ vectors define his warped view of Alice's baseball diamond
$\binom{\omega_{\text {phase }}^{\prime}}{c k_{\text {phase }}^{\prime}}=\mathbf{P}^{\prime}=\frac{\mathbf{R}^{\prime}+\mathbf{L}^{\prime}}{2}=\omega_{A}\binom{\frac{e^{\rho}+e^{-\rho}}{2}}{\frac{e^{\rho}-e^{-\rho}}{2}}=\omega_{A}\binom{\cosh \rho}{\sinh \rho}=\omega_{A}\binom{\frac{5}{4}}{\frac{3}{4}}$
$\binom{\omega_{\text {group }}^{\prime}}{c k_{\text {group }}^{\prime}}=\mathbf{G}^{\prime}=\frac{\mathbf{R}^{\prime}-\mathbf{L}^{\prime}}{2}=\omega_{A}\binom{\frac{e^{\rho}-e^{-\rho}}{2}}{\frac{e^{\rho}+e^{-\rho}}{2}}=\omega_{A}\binom{\sinh \rho}{\cosh \rho}=\omega_{A}\binom{\frac{3}{4}}{\frac{5}{4}}$

This derives Einstein-Lorentz transformation matrix
$\left(\begin{array}{ll}\cosh \rho & \sinh \rho \\ \sinh \rho & \cosh \rho\end{array}\right)$

According to Bob, Alice's right-moving 600THz laser beam is blue-shifted by $b_{B A}=e^{\rho}=2$ as she approaches him. So vector \mathbf{R}^{\prime} that Bob ascribes to Alice is her vector \mathbf{R} doubled in length to $\mathbf{R}^{\prime}=\omega_{A} b_{B A}(1,+1)$. (It must stay on the 1st-baseline to obey Evenson's axiom.) Meanwhile, Bob sees Carla's left-moving 600THz laser beam red-shifted by $b_{B C}=e^{-\rho}=\frac{1}{2}$ as she recedes and her vector \mathbf{L} halved in length to $\mathbf{L}^{\prime}=\omega_{A} b_{B C}(1,-1)$ along the 3rd baseline. Bob's phase $\mathbf{P}^{\prime}=\left(\mathbf{R}^{\prime}+\mathbf{L}^{\prime}\right) / 2$ and group $\mathbf{G}^{\prime}=\left(\mathbf{R}^{\prime}-\mathbf{L}^{\prime}\right) / 2$ vectors define his warped view of Alice's baseball diamond

$$
\left.\left.\begin{array}{l}
\binom{\omega_{\text {phase }}^{\prime}}{c k_{\text {phase }}^{\prime}}=\mathbf{P}^{\prime}=\frac{\mathbf{R}^{\prime}+\mathbf{L}^{\prime}}{2}=\omega_{A}\binom{\frac{e^{\rho}+e^{-\rho}}{2}}{\frac{e^{\rho}-e^{-\rho}}{2}}=\omega_{A}\binom{\cosh \rho}{\sinh \rho}=\omega_{A}\binom{\frac{5}{4}}{\frac{3}{4}} \mathbf{\omega}^{\prime} \\
\binom{\omega_{\text {group }}^{\prime}}{\text { ck }}=\mathbf{G}_{\text {group }}^{\prime}=\frac{\mathbf{R}^{\prime}-\mathbf{L}^{\prime}}{2}=\omega_{A}\binom{\frac{e^{\rho}-e^{-\rho}}{2}}{\frac{e^{\rho}+e^{-\rho}}{2}}=\omega_{A}(\sinh \rho \\
\cosh \rho
\end{array}\right)=\omega_{A}\binom{\frac{3}{4}}{\frac{5}{4}} \begin{array}{c}
1500 \\
\mathrm{THz} \\
1200
\end{array}\right)
$$

According to Bob, Alice's right-moving 600THz laser beam is blue-shifted by $b_{B A}=e^{\rho}=2$ as she approaches him. So vector \mathbf{R}^{\prime} that Bob ascribes to Alice is her vector \mathbf{R} doubled in length to $\mathbf{R}^{\prime}=\omega_{A} b_{B A}(1,+1)$. (It must stay on the 1st-baseline to obey Evenson's axiom.) Meanwhile, Bob sees Carla's left-moving 600THz laser beam red-shifted by $b_{B C}=e^{-\rho}=\frac{1}{2}$ as she recedes and her vector \mathbf{L} halved in length to $\mathbf{L}^{\prime}=\omega_{A} b_{B C}(1,-1)$ along the 3rd baseline. Bob's phase $\mathbf{P}^{\prime}=\left(\mathbf{R}^{\prime}+\mathbf{L}^{\prime}\right) / 2$ and group $\mathbf{G}^{\prime}=\left(\mathbf{R}^{\prime}-\mathbf{L}^{\prime}\right) / 2$ vectors define his warped view of Alice's baseball diamond
Ratio $\frac{V_{\text {phase }}^{\prime}}{c}=\frac{\omega_{\text {phase }}^{\prime}}{c k_{\text {phase }}^{\prime}}$ is slope of phase vector \mathbf{P}^{\prime} Note $V_{\text {phase }}^{\prime}>c$. Frequency $\binom{\omega_{\text {phase }}^{\prime}}{c k_{\text {phase }}^{\prime}}=\mathbf{P}^{\prime}=\frac{\mathbf{R}^{\prime}+\mathbf{L}^{\prime}}{2}=\omega_{A}$
$\binom{\omega_{\text {group }}^{\prime}}{c k_{\text {group }}^{\prime}}=\mathbf{G}^{\prime}=\frac{\mathbf{R}^{\prime}-\mathbf{L}^{\prime}}{2}=\omega_{A}\binom{\frac{e^{\rho}-e^{-\rho}}{2}}{\frac{e^{\rho}+e^{-\rho}}{2}}=\omega_{A}\binom{\sinh \rho}{\cosh \rho}=\omega_{A}\binom{\frac{3}{4}}{\frac{5}{4}}$

$$
\frac{V_{\text {phase }}^{\prime}}{c}=\frac{\omega_{\text {phase }}^{\prime}}{c k_{\text {phase }}^{\prime}}=\frac{\cosh \rho}{\sinh \rho}=\operatorname{coth} \rho=\frac{5}{3}
$$

According to Bob, Alice's right-moving 600THz laser beam is blue-shifted by $b_{B A}=e^{\rho}=2$ as she approaches him. So vector \mathbf{R}^{\prime} that Bob ascribes to Alice is her vector \mathbf{R} doubled in length to $\mathbf{R}^{\prime}=\omega_{A} b_{B A}(1,+1)$. (It must stay on the 1st-baseline to obey Evenson's axiom.) Meanwhile, Bob sees Carla's left-moving 600THz laser beam red-shifted by $b_{B C}=e^{-\rho}=\frac{1}{2}$ as she recedes and her vector \mathbf{L} halved in length to $\mathbf{L}^{\prime}=\omega_{A} b_{B C}(1,-1)$ along the 3rd baseline. Bob's phase $\mathbf{P}^{\prime}=\left(\mathbf{R}^{\prime}+\mathbf{L}^{\prime}\right) / 2$ and group $\mathbf{G}^{\prime}=\left(\mathbf{R}^{\prime}-\mathbf{L}^{\prime}\right) / 2$ vectors define his warped view of Alice's baseball diamond

$$
\begin{aligned}
& \text { Ratio } \frac{V_{\text {phase }}^{\prime}}{c}=\frac{\omega_{\text {phase }}^{\prime}}{c k_{\text {phase }}^{\prime}} \text { is slope of phase vector } \mathbf{P}^{\prime} \text { Note } V_{\text {phase }}^{\prime}>c . \text { Frequency } \\
& \binom{\omega_{\text {phase }}^{\prime}}{c k_{\text {phase }}^{\prime}}=\mathbf{P}^{\prime}=\frac{\mathbf{R}^{\prime}+\mathbf{L}^{\prime}}{2}=\omega_{A}\binom{\frac{e^{\rho}+e^{-\rho}}{2}}{\frac{e^{\rho}-e^{-\rho}}{2}}=\omega_{A}\binom{\cosh \rho}{\sinh \rho}=\omega_{A}\binom{\frac{5}{4}}{\frac{3}{4}}^{\omega^{\prime}}[\\
& \begin{array}{c}
\binom{\omega_{\text {group }}^{\prime}}{c k_{\text {group }}^{\prime}}=\mathbf{G}^{\prime}=\frac{\mathbf{R}^{\prime}-\mathbf{L}^{\prime}}{2}=\omega_{A}\binom{\frac{e^{\rho}-e^{-\rho}}{2}}{\frac{e^{\frac{\rho}{+}+e^{-\rho}}}{2}}=\omega_{A}\binom{\sinh \rho}{\cosh \rho}=\omega_{A} \\
\text { Ratio } \frac{V_{\text {group }}^{\prime}}{c}=\frac{\omega_{\text {group }}^{\prime}}{c k_{\text {group }}^{\prime}} \text { is slope of group vector } \mathbf{G}^{\prime} \text { Note } V_{\text {group }}^{\prime}<c .
\end{array} \\
& \frac{V_{\text {group }}^{\prime}}{c}=\frac{\omega_{\text {group }}^{\prime}}{c k_{\text {group }}^{\prime}}=\frac{\sinh \rho}{\cosh \rho}=\tanh \rho=\frac{3}{5}
\end{aligned}
$$

According to Bob, Alice's right-moving 600THz laser beam is blue-shifted by $b_{B A}=e^{\rho}=2$ as she approaches him. So vector \mathbf{R}^{\prime} that Bob ascribes to Alice is her vector \mathbf{R} doubled in length to $\mathbf{R}^{\prime}=\omega_{A} b_{B A}(1,+1)$. (It must stay on the 1st-baseline to obey Evenson's axiom.) Meanwhile, Bob sees Carla's left-moving 600THz laser beam red-shifted by $b_{B C}=e^{-\rho}=\frac{1}{2}$ as she recedes and her vector \mathbf{L} halved in length to $\mathbf{L}^{\prime}=\omega_{A} b_{B C}(1,-1)$ along the 3rd baseline. Bob's phase $\mathbf{P}^{\prime}=\left(\mathbf{R}^{\prime}+\mathbf{L}^{\prime}\right) / 2$ and group $\mathbf{G}^{\prime}=\left(\mathbf{R}^{\prime}-\mathbf{L}^{\prime}\right) / 2$ vectors define his warped view of Alice's baseball diamond

$$
\begin{aligned}
& \text { Ratio } \frac{V_{\text {phase }}^{\prime}}{c}=\frac{\omega_{p h a s e}^{\prime}}{c k_{\text {phase }}^{\prime}} \text { is slope of phase vector } \mathbf{P}^{\prime} \text { Note } V_{\text {phase }}^{\prime}>c . \text { Frequency } \\
& \binom{\omega_{\text {phase }}^{\prime}}{c k_{\text {phase }}^{\prime}}=\mathbf{P}^{\prime}=\frac{\mathbf{R}^{\prime}+\mathbf{L}^{\prime}}{2}=\omega_{A}\binom{\frac{e^{\rho}+e^{-\rho}}{2}}{\frac{e^{\rho}-e^{-\rho}}{2}}=\omega_{A}\binom{\cosh \rho}{\sinh \rho}=\omega_{A}\binom{\frac{5}{4}}{\frac{3}{4}}^{\omega^{\prime}}[\\
& \left.\binom{\omega_{\text {group }}^{\prime}}{c k_{\text {group }}^{\prime}}=\mathbf{G}^{\prime}=\frac{\mathbf{R}^{\prime}-\mathbf{L}^{\prime}}{2}=\omega_{A}\binom{\frac{e^{\rho}-e^{-\rho}}{2}}{\frac{e^{\rho}+e^{-\rho}}{2}}=\omega_{A}\binom{\sinh \rho}{\cosh \rho}=\omega_{A}\binom{\frac{3}{4}}{\frac{5}{4}} \begin{array}{c}
1500 \\
\mathrm{THz} \\
1200
\end{array}\right] \\
& \text { Ratio } \frac{V_{\text {group }}^{\prime}}{c}=\frac{\omega_{\text {group }}^{\prime}}{c k g_{\text {group }}^{\prime}} \text { is slope of group vector } \mathrm{G}^{\prime} \text { Note } V_{\text {group }}^{\prime}<c \text {. } \\
& \frac{V_{\text {group }}^{\prime}}{c}=\frac{\omega_{\text {group }}^{\prime}}{c k_{\text {group }}^{\prime}}=\frac{\sinh \rho}{\cosh \rho}=\tanh \rho=\frac{3}{5} \\
& \text { Alice and Carla see a } 600 \mathrm{THz} \text { standing wave between them. }
\end{aligned}
$$

According to Bob, Alice's right-moving 600THz laser beam is blue-shifted by $b_{B A}=e^{\rho}=2$ as she approaches him. So vector \mathbf{R}^{\prime} that Bob ascribes to Alice is her vector \mathbf{R} doubled in length to $\mathbf{R}^{\prime}=\omega_{A} b_{B A}(1,+1)$. (It must stay on the 1st-baseline to obey Evenson's axiom.) Meanwhile, Bob sees Carla's left-moving 600THz laser beam red-shifted by $b_{B C}=e^{-\rho}=\frac{1}{2}$ as she recedes and her vector \mathbf{L} halved in length to $\mathbf{L}^{\prime}=\omega_{A} b_{B C}(1,-1)$ along the 3rd baseline. Bob's phase $\mathbf{P}^{\prime}=\left(\mathbf{R}^{\prime}+\mathbf{L}^{\prime}\right) / 2$ and group $\mathbf{G}^{\prime}=\left(\mathbf{R}^{\prime}-\mathbf{L}^{\prime}\right) / 2$ vectors define his warped view of Alice's baseball diamond

$$
\begin{aligned}
& \text { Ratio } \frac{V_{\text {phase }}^{\prime}}{c}=\frac{\omega_{p h a s e}^{\prime}}{c k_{\text {phase }}^{\prime}} \text { is slope of phase vector } \mathbf{P}^{\prime} \text { Note } V_{\text {phase }}^{\prime}>c . \text { Frequency } \\
& \binom{\omega_{\text {phase }}^{\prime}}{c k_{\text {phase }}^{\prime}}=\mathbf{P}^{\prime}=\frac{\mathbf{R}^{\prime}+\mathbf{L}^{\prime}}{2}=\omega_{A}\binom{\frac{e^{\rho}+e^{-\rho}}{2}}{\frac{e^{\rho}-e^{-\rho}}{2}}=\omega_{A}\binom{\cosh \rho}{\sinh \rho}=\omega_{A}\binom{\frac{5}{4}}{\frac{3}{4}}^{\omega^{\prime}}[\\
& \left.\binom{\omega_{\text {group }}^{\prime}}{c k_{\text {group }}^{\prime}}=\mathbf{G}^{\prime}=\frac{\mathbf{R}^{\prime}-\mathbf{L}^{\prime}}{2}=\omega_{A}\binom{\frac{e^{\rho}-e^{-\rho}}{2}}{\frac{e^{\rho}+e^{-\rho}}{2}}=\omega_{A}\binom{\sinh \rho}{\cosh \rho}=\omega_{A}\binom{\frac{3}{4}}{\frac{5}{4}} \begin{array}{c}
1500 \\
\mathrm{THz} \\
1200
\end{array}\right] \\
& \text { Ratio } \frac{V_{\text {group }}^{\prime}}{c}=\frac{\omega_{g \text { group }}^{\prime}}{c k_{\text {group }}^{\prime}} \text { is slope of group vector } \mathbf{G}^{\prime} \text { Note } V_{\text {group }}^{\prime}<c \text {. } \\
& \frac{V_{\text {group }}^{\prime}}{c}=\frac{\omega_{\text {group }}^{\prime}}{c k_{\text {group }}^{\prime}}=\frac{\sinh \rho}{\cosh \rho}=\tanh \rho=\frac{3}{5} \\
& \text { Alice and Carla see a } 600 \mathrm{THz} \text { standing wave between them. }
\end{aligned}
$$ So velocity u of Alice, Carla, and standing wave is $\underbrace{V_{\text {in }}^{\prime}}_{0 \text { group }=u=\frac{3}{5} \mathrm{c}} \frac{\text { Bob's }\left(x^{\prime}, \mathrm{ct}^{\prime}\right) \text { frame. }{ }^{+3}+4}{\text { Wavevector } \mathrm{ck}^{\prime}}$

According to Bob, Alice's right-moving 600THz laser beam is blue-shifted by $b_{B A}=e^{\rho}=2$ as she approaches him. So vector \mathbf{R}^{\prime} that Bob ascribes to Alice is her vector \mathbf{R} doubled in length to $\mathbf{R}^{\prime}=\omega_{A} b_{B A}(1,+1)$. (It must stay on the 1st-baseline to obey Evenson's axiom.) Meanwhile, Bob sees Carla's left-moving 600THz laser beam red-shifted by $b_{B C}=e^{-\rho}=\frac{1}{2}$ as she recedes and her vector \mathbf{L} halved in length to $\mathbf{L}^{\prime}=\omega_{A} b_{B C}(1,-1)$ along the 3rd baseline. Bob's phase $\mathbf{P}^{\prime}=\left(\mathbf{R}^{\prime}+\mathbf{L}^{\prime}\right) / 2$ and group $\mathbf{G}^{\prime}=\left(\mathbf{R}^{\prime}-\mathbf{L}^{\prime}\right) / 2$ vectors define his warped view of Alice's baseball diamond

$$
\text { So velocity } u \text { of Alice, Carla, and standing wave is } V_{\text {group }}^{\prime}=u=\frac{3}{5} \mathrm{c} \text { in Bob's }\left(x^{\prime}, c^{\prime}\right) \text { frame. }{ }^{+3} \text { Wavevector } c^{+4}{ }^{\prime}
$$

$$
\begin{aligned}
& \text { Ratio } \frac{V_{\text {phase }}^{\prime}}{c}=\frac{\omega_{\text {phase }}^{\prime}}{c k_{\text {phase }}^{\prime}} \text { is slope of phase vector } \mathbf{P}^{\prime} \text { Note } V_{\text {phase }}^{\prime}>c . \text { Frequency } \\
& \binom{\omega_{\text {phase }}^{\prime}}{c k_{\text {phase }}^{\prime}}=\mathbf{P}^{\prime}=\frac{\mathbf{R}^{\prime}+\mathbf{L}^{\prime}}{2}=\omega_{A}\binom{\frac{e^{\rho}+e^{-\rho}}{2}}{\frac{e^{\rho}-e^{-\rho}}{2}}=\omega_{A}\binom{\cosh \rho}{\sinh \rho}=\omega_{A}\binom{\frac{5}{4}}{\frac{3}{4}}^{\omega^{\prime}}[\\
& \binom{\omega_{\text {group }}^{\prime}}{c k_{\text {group }}^{\prime}}=\mathbf{G}^{\prime}=\frac{\mathbf{R}^{\prime}-\mathbf{L}^{\prime}}{2}=\omega_{A}\binom{\frac{e^{\rho}-e^{-\rho}}{2}}{\frac{e^{\rho}+e^{-\rho}}{2}}=\omega_{A}\binom{\sinh \rho}{\cosh \rho}=\omega_{A}\binom{\frac{3}{4}}{\frac{5}{4}} \\
& \text { Ratio } \frac{V_{\text {group }}^{\prime}}{c}=\frac{\omega_{\text {group }}^{\prime}}{c k_{\text {group }}^{\prime}} \text { is slope of group vector } \mathbf{G}^{\prime} \text { Note } V_{\text {group }}^{\prime}<c \text {. } \\
& \frac{V_{\text {group }}^{\prime}}{c}=\frac{u}{c}=\tanh \rho=\frac{e^{\rho}-e^{-\rho}}{e^{\rho}+e^{-\rho}}=\frac{b-b^{-1}}{b+b^{-1}}=\frac{b^{2}-1}{b^{2}+1} \equiv \beta \\
& \text { Alice and Carla see a } 600 \mathrm{THz} \text { standing wave between them. }
\end{aligned}
$$

According to Bob, Alice's right-moving 600THz laser beam is blue-shifted by $b_{B A}=e^{\rho}=2$ as she approaches him. So vector \mathbf{R}^{\prime} that Bob ascribes to Alice is her vector \mathbf{R} doubled in length to $\mathbf{R}^{\prime}=\omega_{A} b_{B A}(1,+1)$. (It must stay on the 1st-baseline to obey Evenson's axiom.) Meanwhile, Bob sees Carla's left-moving 600THz laser beam red-shifted by $b_{B C}=e^{-\rho}=\frac{1}{2}$ as she recedes and her vector \mathbf{L} halved in length to $\mathbf{L}^{\prime}=\omega_{A} b_{B C}(1,-1)$ along the 3rd baseline. Bob's phase $\mathbf{P}^{\prime}=\left(\mathbf{R}^{\prime}+\mathbf{L}^{\prime}\right) / 2$ and group $\mathbf{G}^{\prime}=\left(\mathbf{R}^{\prime}-\mathbf{L}^{\prime}\right) / 2$ vectors define his warped view of Alice's baseball diamond

$$
\begin{aligned}
& \text { Ratio } \frac{V_{\text {phase }}^{\prime}}{c}=\frac{\omega_{\text {phase }}^{\prime}}{c k_{\text {phase }}^{\prime}} \text { is slope of phase vector } \mathbf{P}^{\prime} \text { Note } V_{\text {phase }}^{\prime}>c \text {. Frequency } \\
& \binom{\omega_{\text {phase }}^{\prime}}{c k_{\text {phase }}^{\prime}}=\mathbf{P}^{\prime}=\frac{\mathbf{R}^{\prime}+\mathbf{L}^{\prime}}{2}=\omega_{A}\binom{\frac{e^{\rho}+e^{-\rho}}{2}}{\frac{e^{\rho}-e^{-\rho}}{2}}=\omega_{A}\binom{\cosh \rho}{\sinh \rho}=\omega_{A}\binom{\frac{5}{4}}{\frac{3}{4}} \boldsymbol{\omega}^{\prime}[\\
& \binom{\omega_{\text {group }}^{\prime}}{c k_{\text {group }}^{\prime}}=\mathbf{G}^{\prime}=\frac{\mathbf{R}^{\prime}-\mathbf{L}^{\prime}}{2}=\omega_{A}\binom{\frac{e^{\rho}-e^{-\rho}}{2}}{\frac{e^{\rho}+e^{-\rho}}{2}}=\omega_{A}\binom{\sinh \rho}{\cosh \rho}=\omega_{A}\binom{\frac{3}{4}}{\frac{5}{4}} \begin{array}{r}
1500 \\
\mathrm{THz} \\
1200-5 \\
-4
\end{array} \\
& \text { Ratio } \frac{V_{\text {group }}^{\prime}}{c}=\frac{\omega_{\text {group }}^{\prime}}{c k_{\text {group }}^{\prime}} \text { is slope of group vector } \mathrm{G}^{\prime} \text { Note } V_{\text {group }}^{\prime}<c . \text {. } \\
& \frac{V_{\text {group }}^{\prime}}{c}=\frac{u}{c}=\tanh \rho=\frac{e^{\rho}-e^{-\rho}}{e^{\rho}+e^{-\rho}}=\frac{b-b^{-1}}{b+b^{-1}}=\frac{b^{2}-1}{b^{2}+1} \equiv \beta \\
& \text { Inverse Doppler-blue } \\
& b=\sqrt{\frac{1+\beta}{1-\beta}}=\sqrt{\frac{1+u / c}{1-u / c}}
\end{aligned}
$$

According to Bob, Alice's right-moving 600THz laser beam is blue-shifted by $b_{B A}=e^{\rho}=2$ as she approaches him. So vector \mathbf{R}^{\prime} that Bob ascribes to Alice is her vector \mathbf{R} doubled in length to $\mathbf{R}^{\prime}=\omega_{A} b_{B A}(1,+1)$. (It must stay on the 1st-baseline to obey Evenson's axiom.) Meanwhile, Bob sees Carla's left-moving 600THz laser beam red-shifted by $b_{B C}=e^{-\rho}=\frac{1}{2}$ as she recedes and her vector \mathbf{L} halved in length to $\mathbf{L}^{\prime}=\omega_{A} b_{B C}(1,-1)$ along the 3rd baseline. Bob's phase $\mathbf{P}^{\prime}=\left(\mathbf{R}^{\prime}+\mathbf{L}^{\prime}\right) / 2$ and group $\mathbf{G}^{\prime}=\left(\mathbf{R}^{\prime}-\mathbf{L}^{\prime}\right) / 2$ vectors define his warped view of Alice's baseball diamond

$$
\begin{aligned}
& \text { Ratio } \frac{V_{\text {phase }}^{\prime}}{c}=\frac{\omega_{\text {phase }}^{\prime}}{c k_{\text {phase }}^{\prime}} \text { is slope of phase vector } \mathbf{P}^{\prime} \text { Note } V_{\text {phase }}^{\prime}>c \text {. Frequency } \\
& \binom{\omega_{\text {phase }}^{\prime}}{c k_{\text {phase }}^{\prime}}=\mathbf{P}^{\prime}=\frac{\mathbf{R}^{\prime}+\mathbf{L}^{\prime}}{2}=\omega_{A}\binom{\frac{e^{\rho}+e^{-\rho}}{2}}{\frac{e^{\rho}-e^{-\rho}}{2}}=\omega_{A}\binom{\cosh \rho}{\sinh \rho}=\omega_{A}\binom{\frac{5}{4}}{\frac{3}{4}} \boldsymbol{\omega}^{\prime}[\\
& \binom{\omega_{\text {group }}^{\prime}}{c k_{\text {group }}^{\prime}}=\mathbf{G}^{\prime}=\frac{\mathbf{R}^{\prime}-\mathbf{L}^{\prime}}{2}=\omega_{A}\binom{\frac{e^{\rho}-e^{-\rho}}{2}}{\frac{e^{\rho}+e^{-\rho}}{2}}=\omega_{A}\binom{\sinh \rho}{\cosh \rho}=\omega_{A}\binom{\frac{3}{4}}{\frac{5}{4}} \begin{array}{r}
1500 \\
\mathrm{THz} \\
1200-5 \\
-4
\end{array} \\
& \text { Ratio } \frac{V_{\text {group }}^{\prime}}{c}=\frac{\omega_{\text {group }}^{\prime}}{c k_{\text {group }}^{\prime}} \text { is slope of group vector } \mathbf{G}^{\prime} \text { Note } V_{\text {group }}^{\prime}<c . \text {. } \\
& \frac{V_{\text {group }}^{\prime}}{c}=\frac{u}{c}=\tanh \rho=\frac{e^{\rho}-e^{-\rho}}{e^{\rho}+e^{-\rho}}=\frac{b-b^{-1}}{b+b^{-1}}=\frac{b^{2}-1}{b^{2}+1} \equiv \beta \\
& \text { Inverse Doppler-blue includes Lorentz coefficient } \lambda=\sqrt{1-\beta^{2}} \\
& b=\sqrt{\frac{1+\beta}{1-\beta}}=\sqrt{\frac{1+u / c}{1-u / c}}=\frac{1+u / c}{\sqrt{1-u^{2} / c^{2}}} \equiv \frac{1+\beta}{\lambda}
\end{aligned}
$$

Optical wave parameters for relativity
Doppler BLUE SHIFT $b=\mathrm{e}^{+\rho}$ or RED SHIFT $r=\mathrm{e}^{-\rho}=1 / b$ or RAPIDITY $\rho=\log _{\mathrm{e}} b$

Optical wave parameters for relativity
Doppler BLUE SHIFT $b=\mathrm{e}^{+\rho}$ or RED SHIFT $r=\mathrm{e}^{-\rho}=1 / b$ or RAPIDITY $\rho=\log _{\mathrm{e}} b$

16 Optical wave parameters for relativity

based on Doppler BLUE SHIFT $b=\mathrm{e}^{+\rho}$ or RED SHIFT $r=\mathrm{e}^{-\rho}=1 / b$ or RAPIDITY $\rho=\log _{\mathrm{e}} b$

16 Optical wave parameters for relativity

 based on Doppler BLUE SHIFT $b=\mathrm{e}^{+\rho}$ or RED SHIFT $r=\mathrm{e}^{-\rho}=1 / b$ or RAPIDITY $\rho=\log _{\mathrm{e}} b$

16 Optical wave parameters for relativity (including inverses and symmetry)

 based on Doppler BLUE SHIFT $b=\mathrm{e}^{+\rho}$ or RED SHIFT $r=\mathrm{e}^{-\rho}=1 / b$ or RAPIDITY $\rho=\log _{\mathrm{e}} b$(c) Space-time ($c \tau^{\prime}, x^{\prime}$) geometry of 2-CWcrest-paths $c \cdot$ Time-Period $c \cdot \tau^{\prime}=\lambda^{\prime}$
(units: $\lambda_{A}=c \tau_{A}=0.5 \mathrm{~m}$)

16 Optical wave parameters for relativity (including inverses and symmetry)

 based on Doppler BLUE SHIFT $b=\mathrm{e}^{+\rho}$ or RED SHIFT $r=\mathrm{e}^{-\rho}=1 / b$ or RAPIDITY $\rho=\log _{\mathrm{e}} b$(c) Space-time $\left(c \tau^{\prime}, x^{\prime}\right)$ geometry of $2-\mathrm{CWcrest-paths}$ $c \cdot$ Time-Period $c \cdot \tau^{\prime}=\lambda^{\prime}$
(units: $\left.\lambda_{A}=c \tau_{A}=0.5 \mathrm{~m}\right)$

16 Optical wave parameters for relativity (including inverses and symmetry)

 based on Doppler BLUE SHIFT $b=\mathrm{e}^{+\rho}$ or RED SHIFT $r=\mathrm{e}^{-\rho}=1 / b$ or RAPIDITY $\rho=\log _{\mathrm{e}} b$(c) Space-time $\left(c \tau^{\prime}, x^{\prime}\right)$ geometry of $2-\mathrm{CWcrest-paths}$ $c \cdot$ Time-Period $c \cdot \tau^{\prime}=\lambda^{\prime}$
(units: $\lambda=c \tau=0.5 \mathrm{~m})$

16 Optical wave parameters for relativity (including inverses and symmetry)

 based on Doppler BLUE SHIFT $b=\mathrm{e}^{+\rho}$ or RED SHIFT $r=\mathrm{e}^{-\rho}=1 / b$ or RAPIDITY $\rho=\log _{\mathrm{e}} b$(c) Space-time $\left(c \tau^{\prime}, x^{\prime}\right)$ geometry of $2-\mathrm{CW}$ crest-paths $c \cdot$ Time-Period $c \cdot \tau^{\prime}=\lambda^{\prime}$
(units: $\left.\lambda_{A}=c \tau_{A}=0.5 \mathrm{~m}\right)$

Space-time graph slope $\equiv \frac{t \text {-ordinate }}{x \text {-abscissa }}=\frac{c t^{\prime}}{x^{\prime}}$
Wavenumber-frequency graph slope $\equiv \frac{v \text {-ordinate }}{c \kappa \text {-abscissa }}=\frac{v^{\prime}}{c \kappa^{\prime}}$
(a) Space-time $\left(c \tau^{\prime}, x^{\prime}\right)$ geometry of $2-\mathrm{CW} \phi$-paths $c \cdot$ Time-Period $c \cdot \tau^{\prime}=\lambda^{\prime}$
(units: $\lambda_{A}=c \tau_{A}=0.5 \mathrm{~m}$)
"seconds'per wave"..0 ${ }_{c t_{G}^{\prime}}^{\prime} \frac{X_{G}^{\prime}}{c t_{G}^{\prime}}=\frac{V_{\text {group }}^{\prime}}{c}=\frac{3}{5}$

Space-time graph slope $\equiv \frac{t \text {-ordinate }}{x \text {-abscissa }}=\frac{c t^{\prime}}{x^{\prime}}$
Wavenumber-frequency graph slope $\equiv \frac{v \text {-ordinate }}{c \kappa-\text { abscissa }}=\frac{v^{\prime}}{c \kappa^{\prime}}$

Two MOST FAMOUS of 16 Optical wave parameters for relativity

(a) Heighway
paradox-1

Alice: " No Bob, you're the one with short

Carla: "I agree with Alice!"

$$
\overline{r=1 / 2}
$$

A "Lover's Quarrel"

...(The worst kind...when both are right and wrong)

(a) Heighway paradox-1

Alice: " No Bob, you're the one with short

Carla: "I agree with Alice!"
$r=1 / 2$

SOURCE
(b) Paradox-2

Alice: " No Bob, you're
the one with short laser- λ !"
 A "Lover's Quarrel"
...(...easily resolved?!...)
Bob: "Alice! Your group- λ is 20% short!"

Carla: "I'm outa here.
They have really lost it!"
(Doppler blue-shifts $0.5 \mu \mathrm{~m}$
to $0.25 \mu \mathrm{~m}$ for Alice)

Bob: "Alice! Your laser- λ is 50% short!"

Imagine as before, that Bob detects counter-propagating laser beams of frequency ω_{R} going left-to-right (previously Alice's laser) and ω_{L} going right-to-left (Carla's laser). We ask two questions: (1.) To what velocity u_{E} must Bob accelerate so he sees beams with equal frequency ω_{E} ? And, (2.) What is that frequency ω_{E} ?

Imagine as before, that Bob detects counter-propagating laser beams of frequency ω_{R} going left-to-right (previously Alice's laser) and ω_{L} going right-to-left (Carla's laser). We ask two questions: (1.) To what velocity u_{E} must Bob accelerate so he sees beams with equal frequency ω_{E} ? And, (2.) What is that frequency ω_{E} ?

Query (1.) has a Jeopardy-style answer-by-question: What is beam group velocity? $\frac{\text { Difference Mean }}{\text { Arithmetic Mean }}=$

$$
u_{E}=V_{\text {group }}=\frac{\omega_{\text {group }}}{k_{\text {group }}}=\frac{\omega_{R}-\omega_{L}}{k_{R}-k_{L}}=c \frac{\omega_{R}-\omega_{L}}{\omega_{R}+\omega_{L}} \quad \frac{1200-300}{1200+300} c=\frac{900}{1500} c=\frac{3}{5} c
$$

Imagine as before, that Bob detects counter-propagating laser beams of frequency ω_{R} going left-to-right (previously Alice's laser) and ω_{L} going right-to-left (Carla's laser). We ask two questions: (1.) To what velocity u_{E} must Bob accelerate so he sees beams with equal frequency ω_{E} ? And, (2.) What is that frequency ω_{E} ?

Query (1.) has a Jeopardy-style answer-by-question: What is beam group velocity? $\frac{\text { Difference Mean }}{\text { Arithmetic Mean }}=$

$$
u_{E}=V_{\text {group }}=\frac{\omega_{\text {group }}}{k_{\text {group }}}=\frac{\omega_{R}-\omega_{L}}{k_{R}-k_{L}}=c \frac{\omega_{R}-\omega_{L}}{\omega_{R}+\omega_{L}} \quad \frac{1200-300}{1200+300} c=\frac{900}{1500} c=\frac{3}{5} c
$$

Query (2.) similarly: What ω_{E} is blue-shift $b \omega_{L}$ of ω_{L} and red-shift ω_{R} / b of ω_{R} ?

$$
\omega_{E}=b \omega_{L}=\omega_{R} / b \Rightarrow b=\sqrt{\omega_{R} / \omega_{L}} \Rightarrow \omega_{E}=\sqrt{\omega_{R} \cdot \omega_{L}}
$$

Geometric Mean

$$
\sqrt{1200 \cdot 300}=600
$$

Bob: " Alice! You're 1200THz and Carla is 300THz. How fast do I gotta go to catch up?"

Thales Mean Geometry (600BCE)

helps "Relawavity"

Thales Mean Geometry (600BCE)

helps "Relawavity" Thales showed a circle diameter subtends a right angle with any circle point P

Thales Mean Geometry (600BCE)

helps "Relawavity" Thales showed a circle diameter subtends a right angle with any circle point P

Thales Mean Geometry (600BCE)

Comparing Longitudinal relativity parameter:Rapidity $\rho=\log _{c}$ Doppler Shift) to a Transverse*relativity parameter: Stellar aberration angle σ *Lewis Carroll Epstein, Relativitätstheorie, Birkhäuser, (2004) Earier English version (1985)-
Observer fixed below star sees it directly overhead. Observer going \boldsymbol{u} sees star at angle σ in \boldsymbol{u} direction.

Comparing Longitudinal relativity parameter:Rapidity $\rho=\log _{c}$ Doppler Shift) to a Transverse* relativity parameter: Stellar aberration angle σ
*Lewis Carroll Epstein, Relativitätstheorie, Birkhäuser, (2004) Earlier English version (1985)-

Proper time c τ vs. coordinate space x - (L. C.Epstein's "Cosmic Speedometer")
Particles P and P^{\prime} have speed u in ($x^{\prime}, c t^{\prime}$) and speed c in $(x, c \tau)$
Proper time $\mathcal{C} \tau$

Comparing Longitudinal relativity parameter:Rapidity $\rho=\log _{c}($ Doppler Shift $)$

 to a Transverse relativity parameter: Stellar aberration angle σ(a) Circular Functions

$$
\begin{aligned}
& \sin (\sigma)=0.6000 \\
& \tan (\sigma)=0.7500 \\
& \sec (\sigma)=1.2500
\end{aligned}
$$

Comparing Longitudinal relativity parameter:Rapidity $\rho=\log _{(}($Doppler Shift)

 to a Transverse relativity parameter: Stellar aberration angle σ Circular Functions Hyperbolic Functions```
sin}(\sigma)=0.600
\(\tan (\sigma)=0.7500\)
\(\tan (\sigma)=0.7500\)
\(\sec (\sigma)=1.2500\)
\(\sec (\sigma)=1.2500\)

Circular Functions
\(\mathrm{m} \angle(\sigma)=0.6435\)
Length \((\sigma)=0.6435\)
Area \((\sigma)=0.6435\)
\(\sin (\sigma)=0.6000\)
\(\tan (\sigma)=0.7500\)
\(\sec (\sigma)=1.2500\)
\(\cos (\sigma)=0.8000\)
\(\cot (\sigma)=1.3333\)
\(\csc (\sigma)=1.6667\)

Each of 6
trig (or trigh)
functions serves
at least once as
a hyperbolic
\(x, y\), and \(z\)
coordinate,
\(x, y\), and \(z\)
tangent intercept,
and tangent slope,
Each of 6
trig (or trigh)
functions serves
at least once as
a hyperbolic
\(x, y\), and \(z\)
coordinate,
\(x, y\), and \(z\)
tangent intercept,
and tangent slope,
Each of 6
trig (or trigh)
functions serves
at least once as
a hyperbolic
\(x, y\), and \(z\)
coordinate,
\(x, y\), and \(z\)
tangent intercept,
and tangent slope,
Each of 6
trig (or trigh)
functions serves
at least once as
a hyperbolic
\(x, y\), and \(z\)
coordinate,
\(x, y\), and \(z\)
tangent intercept,
and tangent slope,
Each of 6
trig (or trigh)
functions serves
at least once as
a hyperbolic
\(x, y\), and \(z\)
coordinate,
\(x, y\), and \(z\)
tangent intercept,
and tangent slope,
Each of 6
trig (or trigh)
functions serves
at least once as
a hyperbolic
\(x, y\), and \(z\)
coordinate,
\(x, y\), and \(z\)
tangent intercept,
and tangent slope,
Each of 6
trig (or trigh)
functions serves
at least once as
a hyperbolic
\(x, y\), and \(z\)
coordinate,
\(x, y\), and \(z\)
tangent intercept,
and tangent slope,
Each of 6
trig (or trigh)
functions serves
at least once as
a hyperbolic
\(x, y\), and \(z\)
coordinate,
\(x, y\), and \(z\)
tangent intercept,
and tangent slope,
Each of 6
trig (or trigh)
functions serves
at least once as
a hyperbolic
\(x, y\), and \(z\)
coordinate,
\(x, y\), and \(z\)
tangent intercept,
and tangent slope,
Each of 6
trig (or trigh)
functions serves
at least once as
a hyperbolic
\(x, y\), and \(z\)
coordinate,
\(x, y\), and \(z\)
tangent intercept,
and tangent slope, and a circular \(x, y\), and \(z\) coordinate, \(x, y\), and \(z\) tangent intercept, and tangent slope.

\section*{Hyperbolic Functions}
\[
\begin{aligned}
& \varrho=0.6931 \\
& \text { Area }(\varrho)=0.6931 \\
& \tanh (\varrho)=0.6000 \\
& \sinh (\varrho)=0.7500 \\
& \cosh (\varrho)=1.2500 \\
& \operatorname{sech}(\varrho)=0.8000 \\
& \operatorname{csch}(\varrho)=1: 3333 \\
& \operatorname{coth}(\varrho)=1: 6667
\end{aligned}
\]

\section*{Optical wave parameters for relativity}
...and their geometry

It's all based on Doppler shifts RED \(r\) and BLUE \(b=1 / r\) RED \(e^{-\rho}\) and BLUE \(e^{+\rho}\)

Optical wave parameters for relativity
...and their geometry

\section*{Optical wave parameters for relativity}
...and their geometry

Optical wave parameters for relativity
...and their geometry

\section*{Optical wave parameters for relativity}
...and their geometry

Optical wave parameters for relativity
...and their geometry

Optical wave parameters for relativity
...and their geometry

\section*{Optical wave parameters for relativity}

PHASE Freq is HALF-SUM Bcosh \(\rho\)
PHASE k-vec is HALF-DIFF Bsinh \(\rho\)

GROUP Freq is HALF-DIFF Bsinh \(\rho\)
GROUP k-vec is HALF-SUM Bcosh \(\rho\)
GROUP is per-Space axis or \(k_{x}=2 \pi \kappa_{x}=\) Kappa \(_{x}\) dimension PHASE is per-Time axis or \(v=2 \pi v=\) Nu dimension

PHASE and GROUP hyperbolas are \(\rho\)-invariant due to \(T\)-symmetry \(b=1 / r\)
PHASE tangent slope is
GROUP velocity and axis slope GROUP tangent slope is PHASE velocity and axis slope g-circles inscribe Doppler RED \(e^{-\rho}\) and BLUE \(e^{+\rho}\)

\section*{Optical wave parameters for relativity}
...and their geometry

PHASE Freq is HALF-SUM Bcosh \(\rho\)
PHASE \(k\)-vec is HALF-DIFF Bsinhp

GROUP Freq is HALF-DIFF Bsinhp
GROUP \(k\)-vec is HALF-SUM Bcosh \(\rho\)
GROUP is per-Space axis or
\(k_{x}=2 \pi k_{x}=\) Kappax dimension
PHASE is per-Time axis or
\(\sigma=2 \pi v=N u\) dimension
PHASE and GROUP hyperbolas are \(\rho\)-invariant due to \(T\)-symmetry \(b=1 / r\)
PHASE tangent slope is
GROUP velocity and axis slope GROUP tangent slope is PHASE velocity and axis slope g-circles inscribe Doppler RED \(e^{-\rho}\) and BLUE \(e^{+\rho}\) p-circles circumscribe Doppler RED \(e^{-\rho}\) and BLUE \(e^{+\rho}\)

\section*{Optical wave parameters for relativity}
...and their geometry

GROUP Freq is HALF-DIFF Bsinhp
GROUP k -vec is HALF-SUM Bcoshp
GROUP is per-Space axis or \(k_{x}=2 \pi k_{x}=\) Kappax dimension PHASE is per-Time axis or \(\omega=2 \pi v=\) Nu dimension

PHASE and GROUP hyperbolas are \(\rho\)-invariant due to \(T\)-symmetry \(b=1 / r\)
DłIASE tangent slope is GROUP tangent slope is PHASE velocity and axis slope g-circles inscribe Doppler RED \(e^{-\rho}\) and BLUE e \({ }^{+\rho}\)
p-circles circumscribe Doppler
RED \(e^{-\rho}\) and BLUE \(e^{+\rho}\)
hyper-tangent Btanh \(\rho\) sets space-time axis slope
\(\mathrm{V}_{\text {group }} / \mathrm{C}=\tanh \rho\)

\section*{Optical wave parameters for relativity}
...and their geometry

GROUP Freq is HALF-DIFF Bsinhp
GROUP k -vec is HALF-SUM Bcoshp
GROUP is per-Space axis or \(k_{x}=2 \pi k_{x}=\) Kappax dimension PHASE is per-Time axis or \(\omega=2 \pi v=\) Nu dimension

PHASE and GROUP hyperbolas are \(\rho\)-invariant due to \(T\)-symmetry \(b=1 / r\)
DłIASE tangent slope is velocity and axis slop GROUP tangent slope is PHASE velocity and axis slope g-circles inscribe Doppler RED \(e^{-\rho}\) and BLUE e \({ }^{+\rho}\)
p-circles circumscribe Doppler
RED \(e^{-\rho}\) and BLUE \(e^{+\rho}\)
hyper-tangent Btanh \(\rho\) sets space-time axis slope
\(V_{\text {group }} / \mathrm{C}=\tanh \rho\)
hyper-cotangent Bcoth \(\rho\) sets space-time axis slope
\(\mathrm{V}_{\text {phase }} / \mathrm{C}=\) coth \(\rho\)

\section*{Optical wave parameters for relativity}
...and their geometry

GROUP Freq is HALF-DIFF Bsinh \(\rho\)
GROUP k-vec is HALF-SUM Bcoshp

GROUP is per-Space axis or \(k_{x}=2 \pi \kappa_{x}=K a p p a_{x}\) dimension PHASE is per-Time axis or \(\omega=2 \pi v=\) Nu dimension

PHASE and GROUP hyperbolas are \(\rho\)-invariant due to T-symmetry \(b=1 / r\)

DHIASE tangent slope is velocity and axis slop GROUP tangent slope is PHASE velocity and axis slope g-circles inscribe Doppler RED \(e^{-\rho}\) and BLUE \(e^{+\rho}\)
p-circles circumscribe Dopple
RED \(e^{-\rho}\) and BLUE \(e^{+\rho}\)
hyper-tangent Btanh \(\rho\) sets space-time axis slope
\(V_{\text {group }} / \mathrm{C}=\tanh \rho\)
hyper-cotangent Bcoth \(\rho\) sets space-time axis slope
\(V_{\text {phase }} / \mathrm{C}=\) coth \(\rho\)
hyper-secant Bsech \(\rho\) is compliment coord to hyper-tangent Btanh \(\rho\)

\section*{Optical wave parameters for relativity}
...and their geometry

GROUP Freq is HALF-DIFF Bsinh \(\rho\)
GROUP k-vec is HALF-SUM Bcoshp
GROUP is per-Space axis or \(k_{x}=2 \pi \kappa_{x}=\) Kappax dimension PHASE is per-Time axis or \(\omega=2 \pi v=\) Nu dimension

PHASE and GROUP hyperbolas are \(\rho\)-invariant due to T-symmetry \(b=1 / r\)
PXIASE tangent slope is
GR velocity and axis slop GROUP tangent slope is PHASE velocity and axis slope g-circles inscribe Doppler RED \(e^{-\rho}\) and BLUE \(e^{+\rho}\)
p-circles circumscribe Dopple
RED \(e^{-\rho}\) and BLUE \(e^{+\rho}\)
hyper-tangent Btanh \(\rho\) sets space-time axis slope
\(\mathrm{V}_{\text {group }} / \mathrm{c}=\tanh \rho\)
hyper-cotangent Bcoth \(\rho\) sets space-time axis slope
\(V_{\text {phase }} / \mathrm{c}=\) coth \(\rho\)
hyper-secant Bsech \(\rho\) is compliment coord to hyper-tangent Btanh \(\rho\)
hyper-secant Bsech \(\rho=\mathrm{B} \cos \sigma\) is compliment coord to hyper-tangent \(B \tanh \rho=B \sin \sigma\) for stellar aberration angle \(\sigma\) slope of stellar k-vector is \(\operatorname{csch} \rho=\cot \sigma\)

\section*{Optical wave parameters for relativity}
...and their geometry

GROUP Freq is HALF-DIFF Bsinhp
GROUP k-vec is HALF-SUM Bcoshp

GROUP is per-Space axis or \(k_{x}=2 \pi \kappa_{x}=\) Kappax dimension PHASE is per-Time axis or \(\omega=2 \pi v=\) Nu dimension

PHASE and GROUP hyperbolas are \(\rho\)-invariant due to T-symmetry \(b=1 / r\)
DXIASE tangent slope is
GR velocity and axis slop GROUP tangent slope is PHASE velocity and axis slope g-circles inscribe Doppler RED \(e^{-\rho}\) and BLUE \(e^{+\rho}\)
p-circles circumscribe Dopple
RED \(e^{-\rho}\) and BLUE \(e^{+\rho}\)
hyper-tangent Btanh \(\rho\) sets space-time axis slope \(V_{\text {group }} / \mathrm{c}=\tanh \rho\)
hyper-cotangent Bcoth \(\rho\) sets space-time axis slope
\(V_{\text {phase }} / \mathrm{C}=\) coth \(\rho\)
hyper-secant Bsech \(\rho\) is compliment coord to hyper-tangent Btanh \(\rho\)
hyper-secant Bsech \(\rho=\mathrm{B} \cos \sigma\) is compliment coord to hyper-tangent Btanh \(\rho=B \sin \sigma\)
for stellar aberration angle \(\sigma\) slope of stellar k-vector is \(\operatorname{csch} \rho=\cot \sigma\)

\section*{Optical wave parameters for relativity}
...and their geometry

Optical wave guide relativistic geometry aided by Occam's Sword
geometry applies to \((x, y)\) space-space to \(\left(k_{x}, k_{y}\right)\) per-space-per-space to \((x, c t)\) space-time

Optical wave guide relativistic geometry aided by Occam's Sword
geometry applies to \((x, y)\) space-space to \(\left(k_{x}, k_{y}\right)\) per-space-per-space to \((x, c t)\) space-time

Optical wave guide relativistic geometry aided by Occam's Sword
geometry applies to \((x, y)\) space-space to \(\left(k_{x}, k_{y}\right)\) per-space-per-space Relativistic mode with near-c \(V_{\text {group }}=c / 2\) and \(V_{\text {phase }}=2 c\). (Low dispersion.) to \((x, c t)\) space-time

Example of near-cut-off mode with low \(V_{\text {group }}=c / 2\) and high \(V_{\text {phase }}=2 c\). (High dispersion.)
(a) Spherical wave pair In Alice-Carla frame

Spherical wave relativistic geometry
Also, aided by Occam's Sword
(a) Spherical wave pair In Alice-Carla frame

stellar angle \(\sigma=\sin ^{-1}(u / c)\)

(b) Spherical wave pair velocity angle \(v=\tan ^{-1}(u / c)\)
slope u/c of \(t=-5\)

Spherical wave

Occam

Doppler Red \(\lambda=c+u\)
dilates to: \((\mathrm{c}+u) \cosh \rho=c \sqrt{\frac{c+u}{c-u}}=c e^{+\rho}\)

ellipse focal length \(\mathrm{FO}=u=c \tanh \rho\) dilates to: \(u \cosh \rho=c \sinh \rho\)

Doppler Blue \(\lambda=c-u\)
dilates to: \((c-u) \cosh \rho=c \sqrt{\frac{c-u}{c+u}}=c e^{-\rho}\) ellipse latus radius \(\mathbf{F T}=c\left(1-u^{2} / c^{2}\right)\) dilates to: \(c\left(1-u^{2} / c^{2}\right) \cosh \rho\)
\(=c \sqrt{1-u^{2} / c^{2}}=c \operatorname{sech} \rho\)

Base height \(\mathbf{F T k}=\sqrt{c^{2}-u^{2}}\)
dilates to: \(\sqrt{c^{2}-u^{2}} \cosh \rho=c\)
(equal to ellipse minor radius \(b\))

Spherical wave relativistic geometry
1) Alice's laser beam \(\mathbf{k}\)-vectors \(\left(\mathbf{k}_{0}, \mathbf{k}_{+90}, \mathbf{k}_{180}\right)\)

\section*{(b) \(\mathrm{u} / \mathrm{c}=3 / 4\)}
```

