
1

Unit 2 Lagrangian and Hamiltonian 
Mechanics



θ

θ

θB

θB

φ

φB
φ−θ

θ

R

rb

X

Y

Beam-normal
relative azimuthal
coordinate angle φB

Beam-normal
vertical-absolute
polar angle θB

Previous lab absolute
trebuchet coordinate
angles θ and φ

compared to

new angles
θB and φB.

W. G. Harter

Methods of Lagrange and Hamilton are used to solve problems in generalized curvilinear 
coordinates. Practical aspects of these methods are shown by constructing and analyzing 
equations of motion including those of an ancient war machine called the trebuchet or 
ingenium. Also treated are pendulum oscillation and electromagnetic cyclotron dynamics 
that are used to introduce phase space and analytic and computational power of 
Hamiltonian theory. Some analogies of trebuchet mechanics with sports biomechanics 
provide a lesson on how you might improve your tennis or golf swing!
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Unit 2. Lagrangian and Hamiltonian Mechanics
BANG! A fiendish 30-ton war machine hurls a 5-ton load of rocks, garbage, and bodies of plague 

victims onto panicked warriors. Classical mechanics of this machine are the least of the warriors’ worries. 
Mechanics is our job and a comparatively easy one: Derive and apply Lagrange and Hamilton equations.

Chapter 1. The Trebuchet: A dream problem for Galileo? 
 Let us imagine Galileo as he began to get a reputation for developing a new science of mechanics. 
One day he is asked if he could improve the mechanics of this ancient war machine called the Trebuchet. 
(See Fig. 2.1.1.) If he succeeds in this endeavor, then physicists everywhere and for all time, will have a 
good story to tell their students. However, it didn't turn out that way. Even if Galileo had been asked, he 
probably wouldn't have told the generals anything they didn't already know. Far from being his dream 
problem, developing the theory of the trebuchet would more likely have become a nightmare.

θ
φ rb



m M
R

Fig. 2.1.1 An elementary ground-fixed trebuchet 

  Galileo's failure would have been quite understandable, as we will see below as we begin to do the 
problem.  The trebuchet (treb-yew-shay), a fiendishly clever double arm catapult shown in Fig. 2.1.1, existed 
in Europe since around the 10th century and a hand operated version in China since 3000BC. A hundred (or 
a thousand) years of trial and error is hard to beat, particularly if you haven't even invented calculus yet. 
 Newton's famous Second Law relating force F, mass m, and acceleration a, was not appreciated 
until the late 1600's. Using differential equations gives the following. (Recall (6.0) or (7.5) in Unit 1.)

  
  
F = ma = m d2x

dt2
  ,  or,   F = dp

dt
   ,  where:   p = mv = m dx

dt
 ,    (2.1.1a)

This was not an easy thing to do until the 1700's. Multi-dimensional Newton's equations such as 

  
   
F = ma = m d2x

dt2
  ,  or,   F = dp

dt
   ,  where:   p = mv = m dx

dt
     (2.1.1b)
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did not appear until around the 1800's. (Physicist J. Willard Gibbs brought Hamilton’s quaternions in a very  
simplified form to the US. See Unit 4. Such mathematics was not available to Galileo.)
 In spite of this, one may grant Galileo partial credit on the trebuchet problem. It is just a pair of 
compound coupled pendulums. He is known for the first quantitative analysis of the simple pendulum. 
Small throwing arm  of the trebuchet acts like a simple pendulum after it has thrown its projectile and the 
big arm r comes to rest upright. We could speculate that an image something like Fig. 2.1.2 b (if he ever 
saw it) might have stuck in his mind, an empty cable swinging back and forth after each launch. 
 As is often told, Galileo observed swinging lamps in a Chapel. He may have been first to note that 
small-angle simple pendulum oscillation rates depend on length but not mass and similarly for descent rates 
of bodies dropped from the tower of Pisa (neglecting air drag) if in fact he ever did that.

Any connection seen by Galileo between chapel lamps and business end of the terrible trebuchet is 
pure speculation. Let's just say he got the first part of the trebuchet problem partially correct. This would be 
the first step of an analysis, which is the breaking down of a complex problem into idealized but doable 
parts. Galileo analyzed simple pendulum oscillation indicated in Fig. 2.1.2 b without calculus.

(a) What Galileo Might

Have Tried to Solve
(b) What Galileo Did Solve

Fig. 2.1.2 Galileo's (supposed) problem

 However, to solve the whole Trebuchet Problem, Galileo would have needed to do more than invent 
vector calculus. The neat Cartesian coordinate equations (2.1.1) are too clumsy to do the job very well. 
There are two angles θ and φ shown in Fig. 2.1.1. They are the natural ones to describe this machine, but the 
equations describing their motion don't look quite like (2.1.1). Galileo would need to discover Lagrange's 
equations for generalized coordinates. Generalized curvilinear coordinates (GCC) will be our first topic.
 But, poor Galileo wouldn't have done his complete assignment even if he could have derived the 
correct Lagrange's equations for the trebuchet and given them to the generals. Instead of thanking or paying 
him for his efforts, they might very well have just shot him on the spot! Differential equations, by 
themselves, are quite useless unless you can solve them. 
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 As we will see below, the resulting trebuchet equations do not have easy exact analytic solutions. 
Often one solves such equations numerically many times to learn something about mechanics. To do this in 
a reasonable amount of time (such as one semester) one probably needs to use a computer. We call this a 
solution by synthesis; one makes a synthetic or mathematical model or analog to approximate the real 
thing. Solution by analysis, on the other hand, is an art of idealizing and approximating the problem in 
terms of its doable parts. These are topics of Units 2 and 3 that expose Lagrangian and Hamiltonian ideas.
 But, once again, poor Galileo! Even if he had Lagrange equations and invented computers with 
integration routines (another century of work) there is still a missing step needed to finish the trebuchet 
assignment. Lagrange equations are not in a suitable form for numerical integration. Rather the equations 
need to be what we call Riemann Equations. (This form, introduced in Chapter 2.4 is a main topic of Unit 3 
that redoes a lot of Unit 2 more elegantly. You might find it useful to study both Units in tandem.)
 The last step is a small one compared to all the others. However, it may be big enough to discourage 
descriptions of the trebuchet in standard mechanics books. This omission is particularly embarrassing for 
physicists (Galileo's predecessors) since mechanical engineers have studied trebuchets in considerable 
detail by computer synthesis. In 1993 two engineers built a trebuchet at Shropshire that tossed a piano over 
a hundred meters! (Scientific American July 1995) They pointed out that the trebuchet was also called the 
ingeneium or "ingenious device." This may be the root of the word engine and engineeer.
 Perhaps, the old physicists can be excused for continuing Galileo's 'failure' for another seven 
hundred years. They may express disdain for such a specialized device. ("It's just engineering! ," they 
harumph, while drawing another draft of smoke from a smelly pipe.) Now, it is true that the trebuchet 
became a truly awful weapon when it was used for biological warfare by hurling bodies of plague victims 
into castles under siege. A younger physicist, after a sip of Perrier, might sniff, "We don't do war machines 
here anymore!" One may certainly use that as an excuse to beg off. But, such excuses wear thin.
 Observant physicists may note the core problem is the motion of the trebuchet which duplicates 
human throwing, chopping, digging, cultivating, and reaping motions that have been executed billions of 
times to bring human history and culture to the point where it is now. It was the motion of the scythe that 
reaped our grandparents’ grain, the swing of the ax that cleared our forests, the arc of the pick that quarried 
and dug for our buildings, the muscle and hammer that pounded our rail spikes. (See Fig. 2.1.3a.) 
 In fact, it is probably closer to historical truth to say that it is the trebuchet that mimics the human 
throwing or chopping motion. It is a human analog. It appears that physicists have, since the beginning of 
their field, been avoiding discussion of a fundamental mechanical motion that is responsible for building a 
livable world over countless millennia. The trebuchet dynamics is an old and humanly relevant mechanics 
that was needed to plant and reap farmers' fields and build both the Old World and the New.
 Nowadays power machines do most of our chopping, digging, cultivating, and reaping. Strangely, 
however, it seems that this has made this particular physics problem even more acutely relevant. In a leisure 
culture, humans seem unable to stop their chopping, digging, cultivating, and reaping motions, as they 
become fascinated and habituated to a multitude of lever-sports including baseball, golf, tennis, hockey or 
lacrosse with these motions. Compare Fig. 2.1.3b to Fig. 2.1.3a above it. Details are discussed in Ch. 9.
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Throwing Slinging
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Cultivating and Digging

Reaping

Splitting

Hammering

(a) Early Human Agriculture and Infrastructure Building
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(b) Later Human Recreational Activity
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crackers
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Fig. 2.1.3 Trebuchet-like motion of humans. (a) Early work. (b) Later recreational kinesthetics.
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Chapter 2. Generalized Curvilinear Coordinates (GCC) and derivatives
 The first step in advanced mechanics problems is to choose a convenient set of coordinates to 
describe the state or position of a system or machine. For the trebuchet the two angles θ and φ are sufficient 
and convenient for locating the moving members relative to the vertical. They do so precisely only to the 
extent that the cables and beams don't stretch or bend and the base fulcrum is solid and fixed.
 For large mechanical systems the bending and stretching is problematic. Some trebuchets had 
masses over ten or twenty tons and threw 900 to 1300 kilogram projectiles. If the linear dimension or size 
of a body doubles its mass increases eight times (23=8) with its volume.  Meanwhile its ability to resist 
bending or stretching is proportional to relevant cross-sectional area that only increases four times (22=4) if 
all its proportions are not altered. Such consideration is called dimensional analysis and should be part of 
the repertoire of a physicist or engineer. (See Exercises 2.2.1 and 2.2.2.)

Relating GCC to CC (Cartesian coordinates)
A second step after choosing coordinates is to relate the chosen coordinates to Cartesian coordinates of all 
masses that will move when the system gets going. The trebuchet in Fig. 2.2.1 has three vectors R, r, and  
used to locate masses M and m. The Cartesian coordinates are as follows.
  Coordinates of M:   Coordinates of m:
  X =  R sin θ  ,    x = xr + x = - r sin θ +  sin φ      (2.2.1a)
  Y = -R cos θ  ,   y = yr + y =  r cos θ -  cos φ      (2.2.1b)
 Note that the Cartesian origin has been chosen at the supporting fulcrum, and rotations around this 
are positive if counter-clockwise. Both φ and θ are shown clockwise so they each have a (-) sign. Signs are a 
major source of errors. Here is a helpful point. Before beginning further calculations you should check that 
the coordinates are consistent for easily visualized end points. Three such points are shown in Fig. 2.2.2.
 Since generalized coordinates are usually non-linear, that is curvilinear, there is plenty of chance for 
them to become crazy. All curvilinear coordinate systems must have at least one point where they 'go 
bananas', that is, where they are singular. We'll see more examples of this in Unit 3 where more is said 
about the topological properties of generalized curvilinear coordinates (GCC).

Generalized coordinate differentials
The third step in GCC analysis uses the partial differential chain rule to relate linear differentials of 
Cartesian coordinates to GCC differentials. For coordinates φ and θ the chain rule is as follows.

  

dX = ∂X
∂θ

dθ + ∂X
∂φ

dφ,         dx = ∂x
∂θ

dθ + ∂x
∂φ

dφ,  

dY = ∂Y
∂θ

dθ + ∂Y
∂φ

dφ,         dy = ∂ y
∂θ

dθ + ∂ y
∂φ

dφ. 
    (2.2.2)

From (2.2.2) we get an explicit set of differential relations for (2.2.1).

  
   

dX = R cosθ   dθ + 0,         dx = −r cosθ   dθ + cosφ   dφ,  
dY = R sinθ   dθ + 0,         dy = −r sinθ    dθ +  sinφ   dφ. 

    (2.2.3)

This shows that the Cartesian coordinates {x,y,X,Y} are not independent variables. There are too many!
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R


−φ
−θ

M
m

r
R

X= R sin θ
Y= - R cos θ

r


xr= - r sin θ

yr= r cos θ

−φ
−θ

x =  sin φ

y = -  cos φ −θ

Fig. 2.2.1 Cartesian coordinates related to trebuchet angles θ and φ.

(θ = 0 , φ = 0 )
or

(X = 0 , Y = -R)
and

(x = 0 , y = r -  ) (θ =-π/2 , φ = -π/2 )
or

(X =-R , Y = 0 )
and

(x = r -  , y =0 )

(θ = 0 , φ =π/2 )
or

(X = 0 , Y = -R)
and

(x =  , y = r )

Fig. 2.2.2 Singular positions of the trebuchet.

The object is to see how the Cartesian coordinates will change if we make little tiny changes in one or more 

of the GCC {φ ,θ }. Not big changes as in Fig. 2.2.2, just tiny ones. This implies that our GCC {φ ,θ } are 
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really independent variables. You can change one or more of them quite arbitrarily without breaking arms 
of the trebuchet. The same cannot be said for the current Cartesian coordinates {x,y,X,Y}.
 For example, you cannot increase X without also changing Y unless you want to break off the R-arm 
of the trebuchet and void your warranty. An unbroken trebuchet straight from the factory must satisfy a 
Pythagorean relation of the form 

      c( X ,Y ) = X 2 + Y 2 = R2 = const.       (2.2.4)

This is an example of a constraint relation. The same goes for Cartesian x and y coordinates of the mass m. 
However, it looks like x and y are independent because you can imagine grabbing little m like the handle on 
a swivel lamp and moving it until it reached the limit of the swing. Indeed, x and y are quasi-independent as 
we will now see. But, they are not independent of X or Y, unless you break the trebuchet in two.

Jacobians (and Kajobians)
 To evaluate dependency one uses Jacobian differential relations. We rewrite (2.2.2) in matrix form.

  

   

dX
dY
dx
dy

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=

∂X
∂θ

∂X
∂φ

∂Y
∂θ

∂Y
∂φ

∂x
∂θ

∂x
∂φ

∂ y
∂θ

∂ y
∂φ

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

dθ
dφ

⎛

⎝
⎜

⎞

⎠
⎟ =

R cosθ 0
R sinθ 0
−r cosθ cosφ
−r sinθ  sinφ

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

dθ
dφ

⎛

⎝
⎜

⎞

⎠
⎟     (2.2.5)

The rectangular matrix is an example of a generalized Jacobian form. Because it is not square there is no 
chance of inverting it, that is, expressing dθ and dφ in terms of dX, dY, dx , and dy. Well, we know we can't 
do that without breaking the trebuchet into pieces. But, we might be able to find a square sub-matrix of the 
Jacobian rectangle that would be invertible. 
 The first 2-by-2 square is a singular matrix so it won't work. (Recall: X and Y are dependent.)

 

  

dX
dY

⎛

⎝⎜
⎞

⎠⎟
=

∂X
∂θ

∂X
∂φ

∂Y
∂θ

∂Y
∂φ

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

dθ
dφ

⎛

⎝
⎜

⎞

⎠
⎟ =

R cosθ 0
R sinθ 0

⎛

⎝⎜
⎞

⎠⎟
dθ
dφ

⎛

⎝
⎜

⎞

⎠
⎟  FAILS since: det R cosθ 0

R sinθ 0
= 0   (2.2.6)

However, the last two rows happen to be invertible. (Recall x and y are quasi-independent.)

     

   

dx
dy

⎛

⎝
⎜

⎞

⎠
⎟ =

∂x
∂θ

∂x
∂φ

∂ y
∂θ

∂ y
∂φ

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

dθ
dφ

⎛

⎝
⎜

⎞

⎠
⎟ =

−r cosθ cosφ
−r sinθ  sinφ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

dθ
dφ

⎛

⎝
⎜

⎞

⎠
⎟  OK: det

−r cosθ cosφ
−r sinθ  sinφ

= r sin(θ − φ)   (2.2.7)

The matrix inverse exists if the determinant    r sin(θ − φ)  is not zero but blows up when  θ − φ = 0,  or ± π .

  
   

dθ
dφ

⎛

⎝
⎜

⎞

⎠
⎟ =

1
r sin(θ − φ)

 sinφ −cosφ
r sinθ −r cosθ

⎛

⎝
⎜

⎞

⎠
⎟

dx
dy

⎛

⎝
⎜

⎞

⎠
⎟        (2.2.8)
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That is when the trebuchet is 'stretched out' or 'locked up' as in the first or second of Figs. 1.2.2. At that 
point x and y can't move independently. Independence fails if the Jacobian matrix inverse fails.

If a Jacobian matrix inverse exists, it is called a Kajobian matrix. (Tongue-in-cheek jargon.)

 

   

dθ
dφ

⎛

⎝
⎜

⎞

⎠
⎟ =

∂θ
∂x

∂θ
∂ y

∂φ
∂x

∂φ
∂ y

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

dx
dy

⎛

⎝
⎜

⎞

⎠
⎟ =

1
r sin(θ − φ)

 sinφ −cosφ
r sinθ −r cosθ

⎛

⎝
⎜

⎞

⎠
⎟

dx
dy

⎛

⎝
⎜

⎞

⎠
⎟     (2.2.9)

The two partial derivative Jacobian and Kajobian matrices are, by construction, inverses of each other. 

 

   

∂θ
∂x

∂θ
∂ y

∂φ
∂x

∂φ
∂ y

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

∂x
∂θ

∂x
∂φ

∂ y
∂θ

∂ y
∂φ

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

= 1
r sin(θ − φ)

 sinφ −cosφ
r sinθ −r cosθ

⎛

⎝
⎜

⎞

⎠
⎟

−r cosθ cosφ
−r sinθ  sinφ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
= 1 0

0 1

⎛

⎝⎜
⎞

⎠⎟
  (2.2.10)

Partial derivative chain-rule relations have chain-sums over its quasi-independent x and y variables.

 
  
1= ∂θ

∂θ
= ∂θ

∂θ
= ∂θ
∂x

∂x
∂θ

+ ∂θ
∂ y

∂ y
∂θ

 ,  0 = ∂θ
∂φ

= ∂θ
∂φ

= ∂θ
∂x

∂x
∂φ

+ ∂θ
∂ y

∂ y
∂φ

 ,etc.             (2.2.11a)

The matrices commute. (A left-inverse is a right-inverse.)  Here the chain sum is over φ and θ.

 
  
1= ∂x

∂x
= ∂x

∂x
= ∂x
∂θ

∂θ
∂x

+ ∂x
∂φ

∂φ
∂x

 ,  0 = ∂x
∂ y

= ∂x
∂ y

= ∂x
∂θ

∂θ
∂ y

+ ∂x
∂φ

∂φ
∂ y

 ,etc.             (2.2.11b)

This chain-sum is over 'truly' independent φ and θ coordinates. In advanced mechanics one does many such 
maneuvers that I call 'chain-saw-summing' where a partial derivative is 'sawed' apart and then summed over 
a set of (supposedly) independent and complete set of variables.
 This brings up the question of 'completeness'. Do x and y really provide as complete and reliable a 
description of the trebuchet as φ and θ ? In other words, if I give you x=0.5 and y=2.0, can you tell me what 
are the values of all the other coordinates, particularly φ and θ ? By Fig. 2.2.3 the answer is "not quite." 
Topological aspects of coordinate manifolds are discussed at the beginning of Unit 3.

y = 2.0

x = 0.5

y = 2.0

x = 0.5

Fig. 2.2.3 Trebuchet configurations with the same coordinates x and y of projectile m.
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Generalized velocity 
 Generalized coordinate differentials lead immediately to generalized velocities. For the trebuchet 
the velocities follow immediately from the Jacobian chain sums (2.2.2-3). We just 'divide' by dt.

  

   

X = ∂X
∂θ
θ + ∂X

∂φ
φ,         x = ∂x

∂θ
θ + ∂x

∂φ
φ,  

Y = ∂Y
∂θ
θ + ∂Y

∂φ
φ,         y = ∂ y

∂θ
θ + ∂ y

∂φ
φ. 

      (2.2.12)

The "dot" notation 
 
X ≡

dX
dt

,  φ ≡
dφ
dt

 , etc., for total time derivatives is a nice but only if you write neatly! 

  
   

X = R cosθ  θ + 0,         x = −r cosθ   θ + cosφ  φ,  
Y = R sinθ  θ + 0,         y = −r sinθ    θ +  sinφ   φ. 

     (2.2.13)

There is no need to write new Jacobian relations for velocities. They’re identical to corresponding ones for 
coordinates. From (2.2.12) and (2.2.13) this leads to what we will call Lemma 1. (Recall Unit 1 Ch. 12.)

   Lemma 1: 
 ∂ q
∂ x=∂q

∂x  	

 	

 	

 	

 	

 	

 	

 	

 	

 (2.2.14)

	

 	



   

∂ X
∂ θ

∂ X
∂ φ

∂ Y
∂ θ

∂ Y
∂ φ

∂ x
∂ θ

∂ x
∂ φ

∂ y
∂ θ

∂ y
∂ φ

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

=

∂X
∂θ

∂X
∂φ

∂Y
∂θ

∂Y
∂φ

∂x
∂θ

∂x
∂φ

∂ y
∂θ

∂ y
∂φ

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

=

R cosθ 0
R sinθ 0
−r cosθ cosφ
−r sinθ  sinφ

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

	

 	

 	

 	

 (2.2.14)example

Generalized acceleration 
 Generalized coordinate acceleration is a little trickier because the curvilinear coordinates give rise 
to what we call 'fictitious inertial forces.’ Some distinguish 'real' forces such as gravity or a punch in the 
nose from fictitious ones such as Coriolis effects discussed in Ch. 5 of Unit 1. But, Einstein's famous 
elevator analogy lends a reality to all inertial forces by noting that the effects may be indistinguishable. 

Time differentiation of (2.2.12) and (2.2.13) above gives the following. 

  
   
X = ∂X

∂θ
θ + d

dt
∂X
∂θ

⎛
⎝⎜

⎞
⎠⎟
θ + ∂X

∂φ
φ + d

dt
∂X
∂φ

⎛
⎝⎜

⎞
⎠⎟
φ,   etc.      (2.2.15)

Each variable gives rise to two kinds of terms. First are terms like 
   
∂X
∂θ
θ

 
that exist even if the Jacobian is 

constant. Next are terms like 
  

d
dt

∂X
∂θ

⎛
⎝⎜

⎞
⎠⎟
θ  due to the curvilinear nature of the coordinates. Let us study such 

time derivatives of Jacobian derivatives using chain-rule sums over independent variables. 

   
 

d
dt

∂X
∂θ

⎛
⎝⎜

⎞
⎠⎟
=

∂
∂θ

∂X
∂θ

⎛
⎝⎜

⎞
⎠⎟
θ +

∂
∂φ

∂X
∂θ

⎛
⎝⎜

⎞
⎠⎟
φ

Now φ and θ partial derivatives of X can be done in either order if X is a continuous function of θ and φ.
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∂
∂φ

∂X
∂θ

⎛
⎝⎜

⎞
⎠⎟
= ∂2 X
∂φ∂θ

= ∂2 X
∂θ∂φ

= ∂
∂θ

∂X
∂φ

⎛
⎝⎜

⎞
⎠⎟

The result (using (2.2.12)) is what we call Lemma 2.

Lemma 2: 
 dt
d

∂q
∂x=∂q

∂ x 	

 	

 	

 	

 	

 	

 	

 	

 	

 (2.2.16)

   

 

d
dt

∂X
∂θ

⎛
⎝⎜

⎞
⎠⎟
=

∂
∂θ

∂X
∂θ

⎛
⎝⎜

⎞
⎠⎟
θ +

∂
∂θ

∂X
∂φ

⎛
⎝⎜

⎞
⎠⎟
φ

              = ∂
∂θ

∂X
∂θ
θ +

∂X
∂φ
φ

⎛
⎝⎜

⎞
⎠⎟
=
∂ X
∂θ

     (2.2.16)example

So t-derivative of a Jacobian X coordinate partial-θ-derivative is that θ-partial of X velocity. (It is pretty 
hard to say this lemma in words!) Now the two lemmas, Lemma 1 of (2.2.14) and Lemma 2 of (2.2.16) 
above, will help us write Newton's equations of motion entirely in terms of generalized curvilinear 
coordinates.
 It may be helpful to compare derivations above and in the rest of Unit 2 and Unit 3 with a concise 
development given in the review Unit 1, particularly, Ch. 12 equations (1.12.22) thru (1.12.37).

Exercise 2.2.1 This is a dimensional analysis and power law problem. It involves Olympic weight lifters but is a general piece of 
mechanics that applies to everything. (Have you wondered why toy cars can fall off cliffs without damage while yours cannot?)
Olympic weight lifters are divided into classes according to their body weight. Generally top performers are close to maximum 
allowed by their class (except for “super-heavyweight" classes.)
(a) From dimensional arguments alone, you can predict that the Olympic records R in a given event (say, the "clean and jerk" 
which is always the greatest record) should have a definite functional relationship to the weight W=Mg of the performers: R= R
(W). Derive R(W) as a power law R=kWp with a yet-to-be-determined coefficient k.
(b) Obtain a set of records from an almanac or book of records, and plot them against W for a given event or events. See how 
well your theory and experiment jive. (Hint: It is most convenient to plot on log-log graph paper. Why?)
(c) Use the results of (a) and (b) to answer: How many times his bodyweight could a man lift if he was the size of an ant with a 
mass of M = 1 gm.? (A real ant is supposed to lift five or ten times its body weight. How much better or worse is the ant doing 
than "Antman"? )

Exercise 2.2.2 Another dimensional analysis problem like Prob. 1.1.1 involves Olympic high jump and animal related capability. 
A 2 meter jump is considered excellent for a human of dimension L=2m. What are we to expect from equivalent smaller jumpers 
such as an L=10cm. kangaroo rat or an L=1cm. grasshopper?
How about an L=20m high King Kong? State your arguments.
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Chapter 3. Lagrangian GCC derivatives and kinetic energy 
 Conventional classical mechanics starts with Newton's Cartesian F=m r  equations (2.1.1) as the 
main classical axiom following momentum conservation (2.1) of Unit 1. They relate acceleration 
component    X ,  Y ,  x,  or  y  for each mass to a corresponding force component   FX ,  FY ,  Fx , or Fy on that mass 

due to outside forces and other masses. And, that's a problem. While we know that mass M has a Y-
component contribution -Mg due to its gravitational weight and similarly for mass m, the constraint forces 
on M or m due to connecting arms and ropes are quite difficult to find. Good luck, Galileo! 
 A GCC approach lets us consider only forces that do work. Following (7.5) in Unit 1, the work dW 
done in a given time interval dt by all the forces on all the masses is a sum of F·dx for all components for 
all masses. (A general work differential is d(work)=cause·d(effect).) Our trebuchet’s work sum is here.
   dW = FX dX + FY dY +  Fx dx + Fy dy.     (2.3.1)
(We’re ignoring mass of arms.) Now use Newton's equations.
   FX =  M X , FY =  M Y , Fx  =   mx , Fy  =   my      (2.3.2)

The work sum then becomes

    dW = MXdX  +  M YdY +  mxdx  +  mydy .     (2.3.3)

These terms lead us to an elegant equation of motion in terms of our generalized coordinates φ and θ and let 
us ignore unknown (non-causal) constraint parts of Fx or Fy etc. 

Substituting the φ and θ    chain-rule expressions (2.2.2) and (2.2.3) gives the following form for each 
Cartesian component   X ,  Y ,  x,  and  y . Consider X, first. (The other three are similar.)

   

   

              FX dX          = M    X    dX

FX
∂X
∂θ

dθ + ∂X
∂φ

dφ
⎛
⎝⎜

⎞
⎠⎟

 = M X ∂X
∂θ

dθ + X ∂X
∂φ

dφ
⎛
⎝⎜

⎞
⎠⎟

    (2.3.4)

Each of the two terms on the right can be expressed as follows. 

   
X ∂X
∂θ

= d
dt
X ∂X
∂θ

⎛
⎝⎜

⎞
⎠⎟
− X d

dt
∂X
∂θ

   (using d
dt
XU( ) = XU + X U )  

   
         = d

dt
X ∂ X
∂ θ

⎛
⎝⎜

⎞
⎠⎟
− X ∂ X

∂θ
  (by lemma 1 (2.2.14) and lemma 2 (2.2.16))

   

         = d
dt

∂ X 2 / 2( )
∂ θ

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ −

∂ X 2 / 2( )
∂θ

   (using 
∂ U 2 / 2( )

∂x
= U ∂U

∂x
)      (2.3.5)

Equations like (2.3.4) must be true for arbitrary independent coordinate differentials dφ and dθ .

 

   

FX
∂X
∂θ

= d
dt

∂ M X 2 / 2( )
∂ θ

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ −

∂ M X 2 / 2( )
∂θ

 , and  FX
∂X
∂φ

= d
dt

∂ M X 2 / 2( )
∂ φ

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ −

∂ M X 2 / 2( )
∂φ

 . (2.3.6)

So there are eight equations like these, one pair for each of the four Cartesian coordinates   X ,  Y ,  x,  and  y . 

But, they still not quite useful by themselves because we don't know the constraint parts of the four force 
components   FX ,  FY ,  Fx , or Fy , nor can we deal with individual 'partial' kinetic energies like MVX2/2.
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 However, if we add up the equations like (2.3.6) for all four coordinates   X ,  Y ,  x,  and  y , then the 
eight equations will boil down to just two. Each involves the total kinetic energy T=KE which is the sum of 
1/2mv2 for every moving mass m. For the trebuchet the total kinetic energy is   

   
   
T = KE = 1

2
M X 2 + Y 2( ) + 1

2
m x2 + y2( )       (2.3.7)

(We ignore inertia of arms R, r, and  in Fig. 2.2.1. If arms are massive that is a big mistake! But, we're just 
getting started here. And besides, those papal-generals aren't paying us enough!)

Lagrangian derivative equations
 The sum of equations like (2.3.6) for   X ,  Y ,  x,  and  y  is the following very simple pair

   
 
Fθ =

d
dt

∂T
∂ θ

⎛
⎝⎜

⎞
⎠⎟
−
∂T
∂θ

,    
 
Fφ =

d
dt

∂T
∂ φ

⎛
⎝⎜

⎞
⎠⎟
−
∂T
∂φ

   (2.3.8a)

where generalized forces Fθ and Fφ are defined as follows. Equation (2.2.14) in lemma 1 was used again.

 
  
Fθ = FX

∂ X
∂θ

+FY
∂Y
∂θ

+Fx
∂ x
∂θ

+Fy
∂ y
∂θ

                                       Fφ = FX
∂ X
∂φ

+FY
∂Y
∂φ

+Fx
∂ x
∂φ

+Fy
∂ y
∂φ

      (2.3.8b)

      =FXRcosθ +FYRsinθ - Fx rcosθ  - Fy rsinθ             =    0 + 0 +Fx  cosφ +Fy  sinφ 
These are called the Lagrangian derivative equations. As we will see shortly they are very useful since we 
do not need to know any forces except those due to gravity or other external influences that actually cause 
work on the device. Those pesky and unknown constraint forces will cancel out completely, as we will see.

Kinetic energy in GCC: Metric Tensors γµν

The Lagrangian derivative equations (2.3.8) need a kinetic energy T expressed in GCC  {θ ,φ, θ , φ}  and not in 

CC  {x, y, x, y}  used by (2.3.7). Jacobian relations (2.2.13) convert velocities of CC-GCC definition (2.2.2). 

 

   

T =             1
2

M X 2 + Y 2( )                                                + 1
2

m x2 + y2( )
T = 1

2
M R cosθ  θ( )2 + R sinθ  θ( )2⎛

⎝⎜
⎞
⎠⎟ +

1
2

m −r cosθ   θ + cosφ  φ( )2 + −r sinθ    θ +  sinφ   φ( )2⎛
⎝⎜

⎞
⎠⎟

Expanding and simplifying yields the trebuchet kinetic energy KE labeled by T or later by Lagrange’s L.

 

   

T = 1
2

MR2 θ2 + 1
2

mr2 θ2 + 1
2

m2 φ2 − mr θ φ cosθ cosφ  + sinφ sinθ  ( )
   = 1

2
MR2 + mr2( ) θ2 + 1

2
m2 φ2 − mr θ φ cos(θ − φ)

   (2.3.9)

Note terms of the form Iω2/2 where I=mr2 is a moment of inertia, that is    MR2 θ2 / 2  for the big mass and 

   mr2 φ2 / 2  and    m
2 φ2 / 2  for the little mass. (Now arm inertia is easy to add to T. See exercise 2.3.2.)

Understanding and checking Lagrangian expressions
It helps to check and try to rationalize each term that shows up in a Lagrangian  algebra.
 The last-term (   mr θ φ cos(θ − φ) ) in T is called a Coriolis term or cross term. It is the term that makes 
the total inertia smaller when the trebuchet has its -arm tucked under the r-arm. Then φ and θ are equal 
and the cosine is unity ( cos(θ − φ) = cos0 = 1 ). Then KE forms 2

1 Iω2 appear with inertia I=µρ2. 

©2012 W. G. Harter Chapter 3 Lagrangian derivatives and KE  16



 
   
T = 1

2
MR2 θ2 + 1

2
m r θ −  φ( )2 = 1

2
MR2 + m r − ( )2⎛

⎝⎜
⎞
⎠⎟
θ2 , if θ = φ   and  θ=φ.          (2.3.10a)

The other extreme is the 'stretched out' case when φ and θ are opposite and the cosine is minus unity 
( cos(θ − φ) = cosπ = −1 ). Then the total inertia is maximum.

 
   
T = 1

2
MR2 θ2 + 1

2
m r θ +  φ( )2 = 1

2
MR2 + m r + ( )2⎛

⎝⎜
⎞
⎠⎟
θ2 , if θ = φ   and  θ=φ ± π.           (2.3.10b)

The intermediate case is when the two arms are orthogonal and the cosine is zero. Then the inertia due to m 
is just the square of the radial hypotenuse, i.e., a Pythagorean sum 

   
r2 + 2( ) , times the mass m. 

          
   
T = 1

2
MR2 θ2 + 1

2
mr2 θ2 + m2 φ2 = 1

2
MR2 + m r2 + 2( )( ) θ2 , if θ = φ  and θ=φ ± π / 2.     (2.3.10c)

A skater, tucking in his or her arms in order to spin faster, is analogous to the trebuchet. For a given KE 
(T=const.), angular velocity  θ  will be highest in the 'tucked-in' case-a, lowest in the 'stretched-out' case-b, 
and in between for the 'orthogonal' case-c.

Understanding the dynamic metric γµν

 The concept of orthogonality is important. KE is expressed as a matrix quadratic form or dynamic 
metric γµν-tensor sum. Similar metric gmn-forms (introduced by (1.12.30) in Unit 1) do not include mass.

 

   

T = 1
2

MR2 + mr2( ) θ 2     −    1
2

mr θ φ cos(θ −φ)

      − 1
2

mr φ θ cos(θ −φ)  +       1
2

m2 φ2           = 1
2
θ φ( ) γ θ ,θ γ θ ,φ

γ φ ,θ γ φ ,φ

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
θ
φ

⎛

⎝
⎜

⎞

⎠
⎟

         (2.3.11a)

These dynamic metric coefficients coefficients of velocity products   { θ θ , θ φ, φ θ , φ φ}  include masses M and m.

  
   

γ θ ,θ γ θ ,φ

γ φ ,θ γ φ ,φ

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

MR2 + mr2 −mrcos(θ − φ)

−mrcos(θ − φ) m2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

           (2.3.11b)

 The off-diagonal cross-term coefficients (
   
γ θ ,φ = mrcos(θ − φ) = γ φ ,θ ) are zero if the coordinate lines 

happen to intersect at right angles or orthogonally as in Fig 2.3.1a. They do this wherever the -lever is 
perpendicular to the main beam as in Fig. 2.3.1a where θ−φ = ±90°. Elsewhere φ and θ curves form affine 
or non othogonal intersections as in Fig. 2.3.1b and the γµν’s account precisely for this.
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(a) When (θ,φ) coordinates
are orthogonal

φ=+π/6= const.
circle

(b) When (θ,φ) coordinates
are not orthogonal

θ=−π/3 =const. circle

90°
orthogonal not

orthogonal

−π/6
+π/6

φ=−π/6= const.
circle

θ=−π/3=const. circle

Fig. 2.3.1 Examples of (θ,φ) intersections (a) othogonal (special case), (b) non-orthogonal (typical).

 General curvilinear coordinate (GCC) metricsγ µν  may not be constant or orthogonal so off-

diagonal KE cross-terms γ µνv
µvν may be non-zero as in (2.3.9) or (2.3.12a) below. Cartesian KE and 

metric forms, on the other hand, are simple diagonal Mδµνv
µvν sums like (2.3.7) or the following (2.3.12b).

 TGCC =2
1 γ µνv

µvν
µ ,v
∑   (2.3.12a)  TCartesian =2

1 δµνMµv
µvν

µ ,v
∑ =2

1 Mµ (v
µ )2

µ
∑    (2.3.12b)         

We shall gain more familiarity with metric tensors 
  
γ µ,ν  or gµ,ν  in the following and particularly in Unit 3.

 It helps to 'dissect' a GCC KE or quadratic metric form as was done in (2.3.10 a-c). Just as in the 

analysis of Fig. 2.3.2, this provides a check of the algebra and (after flushing out pesky sign errors) 

improves one's confidence and understanding of each term.

mL
1
6 mL

1
6

mL
2
3

mass=linear inertia=mL

CG rotation inertia= mLL
21

12

L

CG

IS

EQUIVALENT

TO

mass=linear inertia=mL

CG rotation inertia= mLL
2

L

CG 1
12

Fig. 2.3.2 Thin symmetric linear lever and its point-mass equivalent.

Arm inertia
 One may approximate inertial terms for arms and levers without wholly redoing Jacobian relations. 
This is simplest for linear symmetric arms and levers that are equivalent to a central point mass and two 
equal point masses on either end as in Fig. 2.3.2. Then the kinetic energy for each of the three mass points 
is found in terms of the GCC and generalized velocities. (See exercise 2.3.2.)
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 A general asymmetric body kinetic energy is a bit more complicated and so solid arm inertia 
requires detailed analysis described in Unit 6.

Exercise 2.3.1 Add up all four equations like (2.3.5) or (2.3.6) and verify (2.3.8).

Exercise 2.3.2 Consider some extra terms that might to be added to the trebuchet kinetic energy T and express them in terms of 
the generalized coordinates θ and φ and their velocities.
(a) Suppose the main big r-R arm had mass MrR and CG rotational inertia I. (Derive CG I in terms of MrR assuming uniform 
thickness.) Give the extra terms that are needed in T.
(b) Suppose the little  arm had mass M and rotational inertia I. (Derive CG I in terms of M assuming uniform thickness.) Give 
extra terms needed in T.
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Chapter 4. Canonical momentum in Lagrange equations: dp/dt=F 
 The Lagrange versions (2.3.8) of Newton's equations for the trebuchet are rewritten below.

               
   

d
dt

∂T
∂ θ

⎛
⎝⎜

⎞
⎠⎟
= Fθ + ∂T

∂θ
             d

dt
∂T
∂ φ

⎛
⎝⎜

⎞
⎠⎟
= Fφ + ∂T

∂φ
     (2.4.1a)

These can be viewed as the grand expression of Newton's equations (2.1.1) namely the total time derivative 
of each GCC component of momentum equals the corresponding component of the total GCC force.

            
  

dpθ
dt

= Fθ + ∂T
∂θ

             
dpφ
dt

= Fφ + ∂T
∂φ

      (2.4.1b)

Generalized momentum equations (2.4.1) are consistent with (1.12.10a) thru (1.12.25) in Unit 1.

          
 
pθ =

∂T
∂ θ

≡
∂T
∂vθ

             pφ =
∂T
∂ φ

≡
∂T
∂vφ

  .   (2.4.1c)

Each total force ( pθ or
 
pφ ) has a genuine part (

  
Fθ  or Fφ ) and a fictitious part  (

  

∂T
∂θ

 or ∂T
∂φ

). Lagrange's  GCC 

equations equate time rate of GCC canonical momentum to total GCC force. It’s just Newton-2 in GCC.
(A "Canon" is law by church or pope. If Galileo had discovered GCC momentum it’s doubtful he would so 
canonize it to honor a church that wanted to convert him to charcoal!) the first step is to compute GCC 
(canonical) momentum components using the KE = T given by (2.3.9).
First we do the momentum θ -component.

 

   

pθ = ∂T
∂ θ

= ∂
∂ θ

1
2

MR2 + mr2( ) θ2 + 1
2

m2 φ2 − mr θ φ cos(θ − φ)
⎛
⎝⎜

⎞
⎠⎟

      = MR2 + mr2( ) θ − mr φ cos(θ − φ)
    (2.4.2a)

The momentum φ -component is next.

 

   

pφ = ∂T
∂ φ

= ∂
∂ φ

1
2

MR2 + mr2( ) θ2 + 1
2

m2 φ2 − mr θ φ cos(θ − φ)
⎛
⎝⎜

⎞
⎠⎟

      = m2 φ − mr θ cos(θ − φ)

    (2.4.2b)

The first term of pθ is the angular momentum 
   
Iω = MR2 + mr2( ) θ  of the big r-R arm if  φ =0, and the first 

term of pφ is the angular momentum    Iω = m2 φ  of the little  arm if  θ =0. The second terms are a little 

harder to explain, but you can see they give consistent values for the three cases: "tucked-in", "stretched-
out", and "orthogonal" that were discussed after (2.3.10 a-c). (See exercise 2.4.1.)
 Notice that the generalized momenta (pθ , pφ ) in (2.4.2) are related to the generalized velocities 
(  θ , φ ) precisely through the metric tensor coefficients 

 
γ µ,ν   in (2.3.11).

    pµ=Σγµν ν , or  
   

pθ
pφ

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

γ θ ,θ γ θ ,φ

γ φ ,θ γ φ ,φ

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
θ
φ

⎛

⎝
⎜

⎞

⎠
⎟ =

MR2 + mr2 −mrcos(θ − φ)

−mrcos(θ − φ) m2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

θ
φ

⎛

⎝
⎜

⎞

⎠
⎟  (2.4.3)

The p=γ·v relations are a general form and result for GCC systems. (See exercise 2.4.2.) 
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How Lagrange equations hide fictitious and constraint forces
 So far the generalized velocities, accelerations, and momenta have been calculated using partial 
derivatives. The next to last step in obtaining generalized equations of motion involves total time 
derivatives and these take just a little more care. Consider first the time derivative   pθ  of  pθ  in (2.4.2a). A 

dot means total differentiation so everything that moves or can move contributes to it. (It's very easy to 
miss a term!)

 

 

pθ =
d
dt
pθ = d

dt
MR2 +mr2( ) θ −mr φ cos(θ −φ)( )     [ M , R, m, r,  and  are (thankfully) zero]

         = MR2 +mr2( ) θ −mr φ cos(θ −φ)+mr φ( θ − φ)sin(θ −φ)  

         = MR2 +mr2( ) θ −mr φ cos(θ −φ)+mr θ φ sin(θ −φ)−mr φ 2 sin(θ −φ)  

  (2.4.4a)

Next, is the time derivative 
  
pφ  of 

 
pφ in (2.4.2b).

 

   

pφ = d
dt

pφ = d
dt

m2 φ − mr θ cos(θ − φ)( )              

         = m2 φ − mr θ cos(θ − φ) + mr θ( θ − φ) sin(θ − φ)  

         = m2 φ − mr θ cos(θ − φ) + mr θ2 sin(θ − φ) − mr θ φ sin(θ − φ)  

             (2.4.4b)

The last step is to calculate the fictitious force term in (2.4.1a), a partial derivative 
 
∂T
∂θ

.

 

   

d
dt

pθ = Fθ + ∂T
∂θ

= Fθ + ∂
∂θ

1
2

MR2 + mr2( ) θ2 + 1
2

m2 φ2 − mr θ φ cos(θ − φ)
⎛
⎝⎜

⎞
⎠⎟

 

                           = Fθ + mr θ φ sin(θ − φ)  
             (2.4.5a)

For 
  
pφ  the fictitious force term in (2.4.1b) is 

 

∂T
∂φ

.

 

   

d
dt

pφ = Fφ + ∂T
∂φ

= Fφ + ∂
∂φ

1
2

MR2 + mr2( ) θ2 + 1
2

m2 φ2 − mr θ φ cos(θ − φ)
⎛
⎝⎜

⎞
⎠⎟

 

                           = Fφ − mr θ φ sin(θ − φ)  
             (2.4.5b)

Equating the two expressions above for   pθ  and the two expression for 
  
pφ  gives two equations of motion.

 
   

Fθ = MR2 + mr2( ) θ − mrφ cos(θ − φ) − mr φ2 sin(θ − φ)

Fφ =  m2 φ − mr θ cos(θ − φ) + mr θ2 sin(θ − φ) 
              (2.4.6)

The fictitious force terms have opposite signs. Now recall the 'true' forces from (2.3.8b). 

 
  
Fθ = FX

∂ X
∂θ

+FY
∂Y
∂θ

+Fx
∂ x
∂θ

+Fy
∂ y
∂θ

                                       Fφ = FX
∂ X
∂φ

+FY
∂Y
∂φ

+Fx
∂ x
∂φ

+Fy
∂ y
∂φ

      (2.4.7)

      =FXRcosθ  +FYRsinθ -Fx rcosθ    -Fy rsinθ  ,           =    0 + 0 +Fx  cosφ +Fy  sinφ  .
We need to distinguish externally applied forces like gravity from internal constraint forces due to stress of 
the supporting arms. The next four paragraphs mostly describe how constraint forces cancel out.
 Consider first the constraint force F(m) on the mass m due to little arm . This force must be along 
the lever or cable  because its bearing connection to r is assumed to have negligible friction. (If it's just a 
cable like the original trebuchets it can only pull.) Geometry of Fig. 2.4.1 gives -constraint force on m.
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    Fx(m)=-F sin φ            Fy(m)= F cos φ           	

 	

  (2.4.8)
The φ -component of the -constraint force cancels to zero no matter how large is the tension F.
 Fφ   =  Fx(m)  cosφ + Fy(m)  sinφ  = -F sin φ    cosφ +F cos φ    sinφ  =0   (2.4.9)

  

F(m)φ

Fx(m)
=-Fsin φ

F(M)

FX(M)

FY(M) Fy(m)
= Fcos φ

	

 Fig. 2.4.1 Constraint forces on mass M and mass m

 Constraint forces FX (M) and FY(M) due to big arm R on mass M are a bit more tricky since F(M)  
points in whatever direction it needs to in order to keep M at a radius R from the fulcrum. However, the 
torque on the big R-r-arm due to equal-but-opposite (Newton's 3rd axiom) constraints -F(M) and -F(m) must 
always sum to zero or the arm's rotation θ  around the fulcrum will accelerate infinitely since we are still 
assuming the arm has no inertia. Similarly, the sum of -F(M),-F(m), and F(support) is zero.
    −R × F( M ) − r × F(m) = 0  (2.4.10a)  -F(M)-F(m)+F(support)=0 (2.4.10b)

Hence the constraint forces cancel out of the Fθ  relation (2.4.7) due to (2.4.10) and do not add to either 
GCC force component Fθ or Fφ. (See Exercise 2.4.3) The only forces that affect the Lagrange equations are 

applied forces due to gravitational weight –Mg ê y  and -mg ê y  as shown in Fig. 2.4.2.

-mg sin φ

F=-M g

-m g = f
-Mg sin θ

θ

φ

	

 	

 	

 Fig. 2.4.2 Applied forces on mass M and mass m

Cartesian y-components of the applied force are indicated in Fig. 2.4.2.
  FX = 0,   FY = -Mg,   Fx= 0 = fx,   Fy  = fy = -mg   (2.4.11)
These are used in (2.4.7) to give the correct generalized forces.
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Fθ =FX R cosθ  +FY R sinθ  -Fx  r cosθ  -Fy  r sinθ = −MgR sinθ + mgr sinθ

Fφ =Fx   cosφ +Fy   sinφ  = − mg sinφ  
   (2.4.12)

This is true even though equations in (2.4.11) are ignoring constraint forces.
 Note quantities Fθ and Fφ are actually not forces at all. They are torques. Note that for positive θ the 
M-term contributes a negative gravitational torque (clockwise) to Fθ while the m term contributes a positive 
(counter-clockwise) torque because M and m are on opposite sides of the fulcrum. Meanwhile, the mass m 
contributes a negative or clockwise restoring torque Fφ for positive φ. 
 Finally, the equations of motion with only generalized coordinates is the following.

 
   

−MgR sinθ + mgr sinθ = MR2 + mr2( ) θ − mrφ cos(θ − φ) − mr φ2 sin(θ − φ)

−mg sinφ =  m2 φ − mr θ cos(θ − φ) + mr θ2 sin(θ − φ) 
   (2.4.13)

Well, the equations are correct but a bit disorderly. Something has to be done to sort them out.

 
Exercise 2.4.1 Verify that the inertia coefficients of angular momentum in (2.4.2) have the correct m·ρ2 inertial form 
for each position: 9 o’clock “tucked-in”, 6 o’clock “orthogonal”, 3 o’clock “stretched out” shown below.

9 o'clock

3 o'clock

6 o'clock

Maximum KE of m

Starting point

Optimum release point

Mid point

Exercise 2.4.2 If kinetic energy has the metric dummy-index-sum rule form 
   
T =2

1 γ αβ α
β then verify the canonical 

momentum formula 
  
pα = γ αβ

β  .

Exercise 2.4.3 Verify (2.4.10).
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Chapter 5. Riemann equations of motion
 Our old friends the metric coefficients γµν from (2.4.3) are hiding in the equations (2.4.13). We 
rewrite the equations in matrix form in order to expose another important role of γµν metric relations.

      
   

mr − MR( ) g sinθ

−mg sinφ

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

MR2 + mr2 −mrcos(θ − φ)

−mrcos(θ − φ) m2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

θ
φ

⎛

⎝
⎜

⎞

⎠
⎟ +

−mr φ2

mr θ2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

sin(θ − φ)      (2.5.1)

By inverting the metric matrix we get an equation with the highest derivatives given explicitly. 

 

   

θ
φ

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= 1
µ

m2 mrcos(θ − φ)

mrcos(θ − φ) MR2 + mr2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

mr φ2

−mr θ2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

sin(θ − φ) +
mr − MR( ) g sinθ

−mg sinφ

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

     = 1
µ

m2 mrcos(θ − φ)

mrcos(θ − φ) MR2 + mr2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

mr φ2 sin(θ − φ) + mr − MR( ) g sinθ

−mr θ2 sin(θ − φ) − mg sinφ

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

  where:  µ = m2 MR2 + mr2 − mr2 cos2(θ − φ)⎡
⎣

⎤
⎦ = m2 MR2 + mr2 sin2(θ − φ)⎡

⎣
⎤
⎦

  (2.5.2)

Note: the metric determinant µ is non-zero even when trebuchet is 'tucked-in' or 'stretched-out'.
 The resulting equations are examples of what we call Riemann equations. Most mechanics texts do 
not include them, but they're quite useful. At the very least, they have a form suitable for numerical 
integration. More importantly, they lead to relativistic equations of motion. Here, we consider some special 
cases, generalizations, and approximations.  For example, the gravity-free (g=0) equation is as follows.

  
   

θ
φ

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= 1
µ

m2 mrcos(θ − φ)

mrcos(θ − φ) MR2 + mr2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

mr φ2

−mr θ2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

sin(θ − φ)   (2.5.3)

Much of advanced mechanics involves competing arts of idealization, generalization, and approximation. 
A more elegant treatment of Lagrange and Riemann equations is given by Ch. 5 and Ch. 6 in the following 
companion Unit 3. There we discuss of when and how explicitly time-dependent GCC may be used.

Checking torques and acceleration
 Once again, it is recommended that a new equation be tested for special cases in order to check its 
algebra and to understand its physics. We're allowed to choose arbitrary values for all independent 
variables. Let's choose coordinates ( θ = −π / 2 ,φ = 0  ) and velocities ( θ = ω = φ ). This simplifies (2.5.3).

  

   

θ
φ

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= 1

m2 MR2 + mr2( )
m2 0

0 MR2 + mr2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

−mrω 2

mrω 2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

θ
φ

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=

−mrω 2 / MR2 + mr2( )
ω 2r / 

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

    for: ω ≡ θ = φ,  θ= -π
2

,  φ=0

 (2.5.3)special case

In the Fig. 2.5.1 below this choice is drawn in order to help assess the resulting forces, torques, and angular 
accelerations. At this instant the device appears to be rotating rigidly with angular velocity ω. 
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|F|= mω2√(r2+2)

L
r

R


Centrifugal Force

L/= r/√(r2+2)

mω2= |F| /√(r2+2)

Fig. 2.5.1 Centrifugal force for a particular state of motion (
  
ω ≡ θ = φ,  θ= -π

2
,  φ=0 )

 The φ−torque on mass m at the end of leg  due to centrifugal force is the force times moment arm 
L=r·/√(r2+ 2). This is the rate of change of φ-angular momentum around the pivot at the top of .

   
   
m2 φ = FL = mω 2 r2 + 2 r

r2 + 2
= mω 2r     (2.5.4)

This yields 

        
φ = FL / m2 = ω 2r /       (2.5.5)

in agreement with the φ-component of (2.5.3). However, it may seem paradoxical that the θ-coordinate for 
the main r-arm should have any torque or acceleration at all. Indeed, if the device is rigid there can be none 
since the centrifugal force has no moment; its line of action hits the θ-axis of the R-arm. 
 However, this device isn't rigid. The -leg pivot is frictionless and can only transmit a component 
m·ω2 of force along . This causes a negative torque -mr  ω2 on the big r-arm. It reduces θ-angular 
momentum to exactly cancel the rate of increase (2.5.4) in φ-momentum, and this agrees with (2.5.3).

    
   

MR2 + mr2( ) θ = −mω 2r      (2.5.6)

Note that, according to (2.4.5) the time derivative of total momentum is zero if outside torques are zero.
    

   
pθ + pφ = 0,  if  Fθ = 0 = Fφ      (2.5.7)

Analogy: a twirling skater's body slows down as his or her relaxed arms fly out. This is one way the 
trebuchet delivers energy to the projectile m, and this will happen even without the help of gravity.

Trebuchet model force inventory
 We now pause to review a 'force inventory' associated with the Lagrangian  or Riemann GCC force 
equations. The inventory is sketched in the Fig. 2.5.2 below.

 The three classes of forces, acceleration ('fictitious'), applied ('real'), and constraint 
('internal') are somewhat arbitrarily named. For example, relativists might regard gravity as an acceleration 
force. Centrifugal and Coriolis effects introduced in Ch. 11 of Unit 1 are analyzed using different methods 
in Ch. 7 of Unit 3 where treatment of friction is in Ch. 9. Constraint forces are ignorable if and only if they 
can do no work. From (2.3.1) we expect no work or energy contribution from constraint forces. 
 dW  = FX dX + FY dY + Fx dx + Fy dy = Fθ dθ + Fφ dφ  = 0  with no applied forces (2.5.8a)

 = (−MgRsinθ + mgr sinθ) dθ − mg sinφ  dφ    with gravity  (2.5.8b)

This is sometimes called the principle of (no) virtual work. 
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 A geometric reason for ignoring constraint forces is that they always act normal or perpendicular to 
the coordinate directions. This will be shown more clearly by the GCC tensor geometry of Unit 3. Only 
forces acting along coordinates φ or θ can accelerate or change their momentum pφ or pθ .
 The physics of mechanics is first concerned with net energy and momentum flow in and out of an 
object and only later with its internal back-and-forth flow, particularly when the latter averages to zero. 
That is not to say that internal stresses are uninteresting or unimportant! But, to calculate stress it is first 
necessary to solve for the ideal behavior gotten by ignoring stress. Besides, when an object fails under 
excessive stress it is the engineer that gets sued and not his physics instructor! 
 Constraint and stress analysis are addressed from several points of view in Unit 3 Ch. 9 and in Unit 
7 discussion of variational methods and in Unit 8 discussion of optimal control theory. 

Exercise 2.5.1 Verify (2.5.8).
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rR


Centrifugal Force
~ φ2

Gravitational Force
~ mgGravitational Force

~ Mg

Constraint Force

Constraint Force

Centrifugal
Force
~ θ2

d
dt
∂T
∂φ

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

= ∂T
∂φ

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

+Fφ +0

d
dt
∂T
∂θ̇

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟
= ∂T
∂θ

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟
+Fθ +0

=

=pθ
•

pφ
•

•

•

Acceleration
and

'Fictitious'
Forces:
Coriolis
Centrifugal

Applied
'Real'
Forces:
Gravity
Stimuli
Friction...

Constraint
'Internal'
Forces:
Stresses
Support...

(Do not contribute.
Do no work.)

Coriolis Force ~ θφ

Support and
Steadying Force

•

• •

•

Fig. 2.5.2 Lagrangian force inventory divides forces into causative real applied forces, inertial accelerative 
and fictitious forces, and ignorable non-causitive constraint forces.
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Chapter 6.  Lagrangian and Hamiltonian equations of motion
 If theorists can't solve some equations they resort to what they do best: Derive more equations! We 
do that now before actually solving the trebuchet and related problems. A strategy of 'fighting fire with fire' 
can show different ways to look at a problem and suggest more elegant solutions.
 Many applied forces can be expressed as the gradient of a potential function V. 

  
   
F = −∇V  ,   or       FX = − ∂V

∂X
,  FY = − ∂V

∂Y
,  Fx = − ∂V

∂x
,    Fy = − ∂V

∂y
.    (2.6.1)

This is the case for uniform gravitational forces in (2.4.11) for which the potential has a simple form of 
(mass).(gravity).(height) for each mass. This was first used in (7.6) of Ch.7 in Unit 1.
    V(X, Y, x, y) = MgY + mgy     (2.6.2)
If a force is a gradient of a potential it is called a conservative force function. As before in (9.5) and (9.8) of 
Unit 1, we will find that a sum of kinetic energy T and potential V is a conserved constant of motion.

Do we define force like mathematician (F= +∇V) or physicist (F= −∇V)?
 The minus sign in (2.6.1) reverses the gradient vector that points up-slope so a system feels a force 

pointing down-slope. A positive gradient Fmath = +∇V is force needed to hold back motion that we called a 

‘mathematician-force’ in Ch. 1.7. We mow use a physicist’s-definition F phys = −∇V  like (6.9) of Unit 1.
 The gradient expression written in generalized coordinates is easy to derive and remember. Recall 
how we defined the generalized forces in (2.3.8b) as is repeated here.

 
  
Fθ = FX

∂X
∂θ

+FY
∂Y
∂θ

+Fx
∂x
∂θ

+Fy
∂ y
∂θ

,          Fφ = FX
∂X
∂φ

+FY
∂Y
∂φ

+Fx
∂x
∂φ

+Fy
∂ y
∂φ

     (2.6.3a)

Replacing each force by its gradient component (2.6.1) gives the following chain-rule.

Fθ = −
∂V
∂X

∂X
∂θ

−
∂V
∂Y

∂Y
∂θ

−
∂V
∂x

∂x
∂θ

−
∂V
∂y

∂y
∂θ

  Fφ = −
∂V
∂X

∂X
∂φ

−
∂V
∂Y

∂Y
∂φ

−
∂V
∂x

∂x
∂φ

−
∂V
∂y

∂y
∂φ

 Fθ = −
∂V
∂θ

      (2.6.3b)    Fφ = −
∂V
∂φ

  (2.6.3c)

This simplifies the formal expression of the Lagrangian force equations (2.4.1a) as repeated below.

               
   

d
dt

∂T
∂ θ

⎛
⎝⎜

⎞
⎠⎟
= ∂T
∂θ

+ Fθ              d
dt

∂T
∂ φ

⎛
⎝⎜

⎞
⎠⎟
= ∂T
∂φ

+ Fφ    (2.4.1a)repeated

               
   

d
dt

∂T
∂ θ

⎛
⎝⎜

⎞
⎠⎟
= ∂T
∂θ

− ∂V
∂θ

             d
dt

∂T
∂ φ

⎛
⎝⎜

⎞
⎠⎟
= ∂T
∂φ

− ∂V
∂φ

    (2.6.4)

The results are Lagrange's potential equations

           
   
pθ = d

dt
∂L
∂ θ

⎛
⎝⎜

⎞
⎠⎟
= ∂L
∂θ

                pφ = d
dt

∂L
∂ φ

⎛
⎝⎜

⎞
⎠⎟
= ∂L
∂φ

 where:  L = T - V  (2.6.5)

The Lagrangian function L = T - V is the difference between kinetic energy T and potential energy V where 
(most important!) V(r) is assumed to not be an explicit function of any GCC velocity   v = r variables.

   

∂V

∂ θ
≡ 0 ≡

∂V

∂ φ
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Hamiltonian equations of motion
 For the trebuchet and related problems the Lagrangian potential equations (2.6.5) represent no 
computational improvement over the first generalized coordinate equations (2.4.13), and are not as 
applicable as the Reimann equations (2.5.2). However, they are 'more elegant', that is, they fit in a smaller 
suitcase. Also, they are just a few steps away from very powerful forms of Newton-equations that are called 
the Hamiltonian formulations of mechanics.
 A Hamiltonian formulation treats generalized momenta and coordinates as independent variables. 
But, Lagrangians use generalized velocities and coordinates. Differentials of kinetic energy or Lagrangian 

 L(q, q,t)  are chain rule expansion with a term ∂q
∂L dq , 

 ∂ q
∂L d q  or ∂t

∂L dt  for each independent variable.  A dt 

term is needed if there is explicit time dependence in T or V. (For example, an oscillating electric field 
Ex=E0 sin(ω t) has potential V=-E0 x sin(ω t)  that is an explicit function of time t as well as of position x.)

  
   
dL θ ,φ, θ , φ, t( ) = ∂L

∂θ
dθ + ∂L

∂φ
dφ + ∂L

∂ θ
d θ + ∂L

∂ φ
d φ + ∂L

∂t
dt     (2.6.6)

The total time derivative has the same form as the total differential.

  
   
L θ ,φ, θ , φ, t( ) = dL

dt
= ∂L
∂θ

dθ
dt

+ ∂L
∂φ

dφ
dt

+ ∂L
∂ θ

d θ
dt

+ ∂L
∂ φ

d φ
dt

+ ∂L
∂t

    (2.6.7)

Now Lagrange equations (2.6.5) are inserted while using the identity: 
  
p dq

dt
+ p d q

dt
= d

dt
p q( )

  

   

L θ ,φ, θ , φ, t( ) = dL
dt

= pθ
dθ
dt

+ pφ
dφ
dt

+ pθ
d θ
dt

+ pφ
d φ
dt

+ ∂L
∂t

                    = dL
dt

= d
dt

pθ θ + pφ φ( ) + ∂L
∂t

    (2.6.8)

Now we collect the total time dt
d –derivatives on one side and partial ∂t

∂ –derivatives on the other. 

Legendre-Poincare relation H=p•v-L
Rewriting (2.6.8) gives    or:

   
  
d
dt

L − pθ θ − pφ φ( ) = ∂L
∂t

  
dH
dt

= −
∂L
∂t

    (2.6.9a)

This is our first explicit Legendre-Poincare  relation of the form H=p•v-L after (1.6.11b).
    

   
H = H θ , pθ ,φ, pφ , t( ) = pθ θ + pφ φ − L     (2.6.9b)

A Hamiltonian function H is constant(
 
H = 0 = dt

dH ) or conserved (while variables obey the equations of 

motion) if L has no explicit time dependence ( ∂t
∂L= 0 ). Metric definition: pµ=Σγµν   ν  from (2.4.3) helps to 

clarify the form if it is used to expand canonical momentum and the kinetic energy definition in (2.3.11).

 

 

H =     pθ θ           +         pφ φ                             − T                                    +V

H = γ θθ
θ + γ θφ

φ( ) θ + γ φθ
θ + γ φφ

φ( ) φ −
1
2
γ θθ
θ θ + γ θφ

φ θ + γ φθ
θ φ + γ φφ

φ φ( ) +V
H =

1
2
γ θθ
θ θ + γ θφ

φ θ + γ φθ
θ φ + γ φφ

φ φ( ) +V = T +V ≡ E             ( Only correct
numerically! ) 

 (2.6.9c)

So, the Hamiltonian is the sum of kinetic energy T and potential V that is the total energy E=T+V. 
Equations (2.6.9) prove the conservation of total energy provided L is not an explicit function of time. 
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L is function of v while H is a function of p
 Consider now the explicit or formal dependence of the Hamiltonian H. The definition (2.6.9c) is 
correct numerically, but not formally. Rather, Hamilton intended to express H in terms of generalized 
coordinates and momenta only. No explicit velocity dependence is allowed. So let's express   θ  and φ  in 

terms of 
  
pθ  and pφ  using inverse metric coefficients γµν first derived for the Riemann equations (2.5.2). 

 H =
1
2
γ θθ pθ pθ + γ

θφ pθ pφ + γ
φθ pφ pθ + γ

φφ pφ pφ( ) +V = T +V         ( Correct formally
and numerically )  (2.6.9d)

Here are the γµν-metric relations again from (2.3.11b) and the inverse γµν-relations.

         

   

pθ
pφ

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

γ θ θ γ θ φ

γ φ θ γ φ φ

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
θ
φ

⎛

⎝
⎜

⎞

⎠
⎟                                         

θ
φ

⎛

⎝
⎜

⎞

⎠
⎟ =

γ θ θ γ θ φ

γ φ θ γ φ φ

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

pθ
pφ

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

=
MR2 + mr2 −mrcos(θ − φ)

−mrcos(θ − φ) m2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

θ
φ

⎛

⎝
⎜

⎞

⎠
⎟                  =

m2 mrcos(θ − φ)

mrcos(θ − φ) MR2 + mr2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

pθ
pφ

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

m2 MR2 + mr 2 sin2 (θ − φ)⎡⎣ ⎤⎦

     (2.6.10a)      (2.6.10b)

Hamilton’s vs. Lagrange’s equations
The partial derivative of the Hamiltonian H with respect to a generalized velocity is formally zero. So is the 
formal partial derivative of the Lagrangian L with respect to momentum. (Recall (1.12.6) in Ch. 12 Unit 1.)

 
   
∂H
∂ θ

= ∂
∂ θ

pθ θ + pφ φ − L( ) = pθ − ∂L
∂ θ

= 0   
   

∂L
∂pθ

= ∂
∂pθ

H − pθ θ − pφ φ( ) = ∂H
∂pθ

− θ = 0

     (2.6.11a)      (2.6.11b)
The former (2.6.11a) defines momentum (again). The latter (2.6.11b) is a 1st type of Hamilton's equations.

  

   

∂H
∂pθ

= ∂
∂pθ

pθ θ + pφ φ − L( ) = θ  ,             ∂H
∂pφ

= ∂
∂pφ

pθ θ + pφ φ − L( ) = φ
      =  γ θ θ pθ +γ θ φ pφ                                  =  γ φ θ pθ +γ φ φ pφ  

  (2.6.12)

The 2nd type of Hamilton's equations involves partial derivatives of H with respect to coordinates.

       
   

∂H
∂θ

= ∂
∂θ

pθ θ + pφ φ − L( ) = − ∂L
∂θ

= − pθ  ,       ∂H
∂φ

= ∂
∂φ

pθ θ + pφ φ − L( ) = − ∂L
∂φ

= − pφ      (2.6.13a)

These yield equations that are numerically the same as Lagrange's equations (2.4.5).

  

   

pθ = ∂T
∂θ

− ∂V
∂θ

                             pφ = ∂T
∂φ

− ∂V
∂φ

    = mr θ φ sin(θ − φ) + Fθ  ,            =-mr θ φ sin(θ − φ) + Fφ  
    (2.6.13b)

However, to make them strictly conform to explicit Hamiltonian form, the generalized velocity factors in 
the above (2.6.13) must be expressed in terms of momenta and coordinates only. You should work out these 
expressions. (See exercise 2.6.1.) Below is a summary of our examples of Hamilton's equations. 

      
   

θ = ∂H
∂pθ

,      φ = ∂H
∂pφ

,         pθ = − ∂H
∂θ

,       pφ= − ∂H
∂φ

,       H = − ∂ L
∂ t

,      dL = pθdθ + pφdφ − Hdt     (2.6.14)
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What good are Hamilton's equations?
 The Hamiltonian form (2.6.14) of Newton's equations is regarded as a crowning achievement of 
classical mechanics. Indeed, the Hamiltonian formalism is the steppingstone to a number of powerful 
theoretical generalizations including the development of quantum mechanics. 
 However, at first sight they don't seem to help the trebuchet generals much. Galileo would not have 
made them very happy even if he had gotten this far. The equations have a deceptively simple first-order 
form, but we have seen that the emphasis is on the word 'deceptively'; at first, they are really no easier to 
solve numerically than the earlier Lagrangian or Riemann forms.

Conservation laws
 However, one of the advantages of the Hamiltonian formulation has already shown itself; it suggests 
conservation laws. We have seen that absence of explicit time dependence implied energy conservation; or 
more precisely, that the Hamiltonian H was a constant of the motion. 

  
   
∂L
∂t

= 0     implies:  H = 0, or  H = E = constant     (2.6.15)

By analogy we see that the absence of explicit coordinate dependence (suppose that the Hamiltonian H was 
not a function of θ at all) leads to momentum conservation. (By (2.6.14) angular momentum is constant.)

  
   
∂L
∂θ

= 0 = ∂H
∂θ

     implies:  pθ = 0, or  pθ =  = constant    (2.6.16)

Symmetry and conservation (No lumps? No bumps!)
 Hamilton's equations show a beautiful relation between symmetry in a generalized coordinate like θ   
and conservation of its conjugate momentum pθ. Symmetry, in this case, means that the system 'looks the 
same' for all values of the coordinate θ or is invariant to changes of that coordinate. In other words, we find 
no 'lumps' so the Hamiltonian doesn't go up or down as the symmetry coordinate θ moves. Because of this 
symmetry or 'smoothness', the system cannot alter momentum belonging or conjugate to this coordinate. 
In other words: "No lumps means no bumps!"

Conjugate variables
 The concept of conjugate or canonically conjugate variables, such as pθ and θ or pφ and φ, is 
important to Hamiltonian mechanics. A pair of variables (q,p) that satisfy a pair of Hamiltonian equations

    
   
q = ∂H

∂p
      p = − ∂H

∂q
,      (2.6.17)

are said to be canonically conjugate with respect to Hamiltonian H. By a similar definition one may say 
that total energy and time 

  
t, H( )  are also a conjugate pair of variables.

    
   
t = 1= ∂H

∂H
     H = ∂H

∂t
     (2.6.18)

However, the ±sign difference amounts to a big distinction between spatial coordinate variables like (pφ,φ) 
and temporal or time-like variables (t,H). This is at the heart of relativistic invariance and quantum theory.
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Lagrange-Poincare invariant action
The difference for the (H,t) pair is the sign of the second equation. Time and energy, while analogous to 
position and momentum, are also distinguished by their respective places in the Lagrangian differential. 

    
 
dS = Ldt =

k
∑ pk dqk − Hdt      (2.6.19)

This is called Poincare's invariant, or the differential of action S. It is an important form in physics, and we 
shall discuss it often. Note for now that S has the form of relativistically invariant phase k•r-ωt in a plane 

wave ψ = Aei(k⋅r−ω t ) . (Laws of Planck (E= ω) and DeBroglie (p= k) are being invoked here.) 

      dS = p • dr − E dt = k • dr − ω dt    (2.6.20)

Relativity and quantum theory are deeply connected to Hamiltonian mechanics as Unit 8 will show.

Momentum symmetry means no-go
 Momentum independence of a Hamiltonian has implications analogous to coordinate independence 
or symmetry. It implies that the conjugate coordinate cannot move; it's just a fixed parameter.

  
   

∂L
∂pθ

= 0 = ∂H
∂pθ

     implies:  θ = 0, or  θ(t) = θ(0) = constant   (2.6.21)

In other words: "No energy for momentum means no-go!" An active coordinate qµ must have at least one 
term in H containing its conjugate momentum pµ. Otherwise it’s just a dried-up constraint qµ=constant 
(like the trebuchet arms R or  that our approximation assumes) that cannot vary.
 Constraints are what keep our classical devices together and it is a good thing if and when they can 
be treated as constants. How far would we be on the trebuchet problem if its Hamiltonian were a function 
of every nut, screw, and wood molecule in the machine?  We wouldn’t be much better off than our fictitious 
Galileo trying to satisfy his generals and popes!
 Idealization by constraint, particularly, frictionless constraints, is one of the keys to a successful 
Hamiltonian or Lagrangian mechanics. Now we consider a simple version of the trebuchet that is just a 
simple pendulum.  (Also, this provides one more algebra check.)

Exercise 2.6.1 Verify or finish Hamilton’s equations for trebuchet (2.6.10) thru (2.6.13).
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Exercise 2.6.2 Elementary application of Lagrange or Hamilton equations.

m2 m1

R

T2 T1S2

d=1m

θ

Consider a bicycle chain of fixed length  draped over a pulley or sprocket of radius R =0.5m. and holding up two masses 
m1 =1kg. and m2 =2kg. Chain cannot slip relative to pulley even if one of the masses breaks free. Pulley is a circular 
disc of uniform density and mass M=4kg. and radius R =0.5m. and rotates freely. Initially, a string under tension S2 
keeps mass m2 from moving as shown. Constraint forces on bicycle chain are indicated (not to scale) by T1 and T2 . 
At t=0 the string is cut.

Before string S2 is cut (t<0).
(a) Give the magnitude of the forces  T1, T2 and S2 .
 (b) Give the magnitude of the rotational inertia of the disc.
After string S2 is cut (t>0).                                    Let gravity acceleration be exactly g=10 m/s2.
 (c) Give Lagrangian and Lagrange equations in terms of angle θ of the disc rotation.
 (d) When does mass m2  hit bottom?
 (e) Between string cutting and mass m2  hitting bottom, compute force magnitudes T1 and T2 . 
Suppose mass m1 or m2 falls off its chain if its force exceeds Fbreak (but they don’t break simultaneously.)
 (f) Which mass (or masses) may break free if Fbreak = 20N.?
 (g) Which mass (or masses) may break free if Fbreak = 30N.?
 (h) Which mass (or masses) may break free if Fbreak = 15N.?

	

 	

 	

 	

 	

 	

 	



−θ
M

m

R

r
φ

gravity g

Exercise 2.6.3 A Tamed Trebuchet

Derive Lagrangian L of double pendulum (above) with point mass m and lever r pivots by lab-relative angle q1=φ around main 
pendulum of mass M and lever R turning by q2=θ relative to fixed fulcrum. 
Give kinetic energy of L in metric form    2

1γ ab q
a qb  as in (2.3.11) and PE in terms of qa.

Derive canonical momentum pa , time derivatives   pa , and equations of motion 
  
pa =∂qa

∂L .
Convert equations to Riemann form (2.5.3) that gives accelerations 

  q
a  in terms of . 

  q
b  and 

 q
c .

Compare results to those of the trebuchet in Unit 2. (Check for errors this way.)
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Chapter 7. Hamiltonian mechanics of pendulum oscillation
 Let us look at Galileo's original problem: a swinging pendulum like the one in Fig. 2.1.2 after the 
trebuchet has thrown away mass m. Since our model assigns no mass to the throwing leg  we will, instead 
consider the large R-arm pendulum holding the massive counterweight M. In other words we will just set 
m=0 in all our trebuchet equations. The pendulum Hamiltonian then follows from equations (2.6.9).

   
  
H = 1

2
γ θθ pθ pθ +V = 1

2MR2
pθ

2 − MgR cosθ      (2.7.1a)

The gravitational potential of the remaining counterweight mass M follows from (2.6.2).
      V = MgY = −MgR cosθ        (2.7.1b)

Then Hamilton's equations (2.6.14) are the following.

 

θ =
∂H
∂pθ

=
∂
∂pθ

1
2MR2

pθ
2 − MgRcosθ

⎛
⎝⎜

⎞
⎠⎟

  
 
pθ = −

∂H
∂θ
=- ∂

∂θ
1

2MR2
pθ
2 − MgRcosθ

⎛
⎝⎜

⎞
⎠⎟

  =  
pθ
MR2   (2.7.2a)       = − MgRsinθ    (2.7.2b)

Hamiltonian theory might be regarded as overkill for such an elementary system. Newton, Riemann, or 
Lagrangian forms give the same coordinate equations we get by combining the Hamiltonian pair above.

   
   
θ =  −MgR sinθ

I
 ,    where: I=MR2       (2.7.3)

This is the coordinate equation for the general compound pendulum of inertia I whose center of mass lies at 
radius R from the pivot point. For a simple pendulum (point-mass on a massless stick), mass M drops out.

    
   
θ =  −g

R
 sinθ         (2.7.4)

For small swing angle the sine is nearly equal to its angle in radians. ( for  θ << 1 ,  sinθ ≅ θ  )

    
   
θ =  −g

R
 θ         (2.7.5)

This is a small oscillation approximation, which gives a simple harmonic oscillator equation. 

      θ +ω 2  θ = 0         (2.7.6)
Its solution   θ(t) = Acos(ω t +α ) = Acosα cosω t − Asinα sinω t  has angular frequency ω  (frequency ν).

    
  
ω= g

R
≡ 2πν  τ ≡

1
ν

       (2.7.7)

It is the same for arbitrary values of initial phase α or any small values of the oscillation amplitude A.
 However, for larger amplitudes the solution is more complicated. But, because the H=E is constant 
by (2.6.15) we can express the momentum in terms of the angle and total energy E. 

   
  
H = E = 1

2I
pθ

2 − MgR cosθ  ,   or:   pθ = 2I E + MgR cosθ( )    (2.7.8)

Then Hamilton's first equation leads to a (deceptively) simple differential equation.

    
 

∂H
∂pθ

= θ =
dθ
dt

= pθ / I = 2I E + MgRcosθ( ) / I   where: I = MR2   (2.7.9)
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 Pendulum geometry in Fig. 2.7.1 describes force, energy and time. Torque Fθ  equals -Mg·x exactly 

but potential Mg·h only approaches 2
1 Mgx2/R at low x. V=MgY is non-linear inθ with zeros at θ=±π/2. 

R
R

x
h

x2=h(2R-h) ~ 2hR
(Euclid mean)

1/2(Mg/R)x
2

~ Mgh

h

(b) Energy geometry

θR

x=R sinθ ~Rθ

(a) Force geometry

θ

θ- MgR sin θ=Fθ
=-Mg x

Mg

θ
R

(c) Time geometry

ε=θ/2

PE:
V=MgY
=-MgRcosθ

ε

M

    Fig. 2.7.1 Pendulum geometry (a)Force. (θ defined) (b) Energy. (h defined) (c) Time. (ε=θ/2 defined)

Suppose the pendulum is released at initial angle θ0 where potential energy is   V = −MgR cosθ0 . This 

PE must be the conserved total energy if initial velocity and kinetic energy are zero.

     E = MgY = −MgRcosθ0      (2.7.10a)

This lets us integrate (2.14.9) between θ0 and 0.

  
I

2MgR 0

θ0

∫
dθ

cosθ − cosθ0

=
0

θ0

∫ dt = Travel time 0 to θ0( ) = τ1/ 4    (2.7.10b)

This is known as a solution by quadrature or, in plain English, by an integral over a quarter period. The 
name refers to the time it takes the pendulum to go between its maximum amplitude and origin (or vice 
versa) that is one-quarter of a complete back-and-forth oscillation, or a quarter-period τ1/4 in duration. 

A standard form for the integral uses a half-angle coordinate ε = θ/2 shown in Fig. 2.7.1.

  
 
cosθ = 1− 2sin2 θ

2
= 1− 2sin2 ε ,         cosθ − cosθ0 = 2sin2 ε0 − 2sin2 ε .

A standard quadrature formula follows using d θ=2dε.

    τ1/ 4 =
I

MgR
dε

sin2 ε0 − sin2 ε0

ε0

∫ =
R
g

kdε

1− k 2 sin2 ε0

ε0

∫  , where:
1 / k = sinε0 = sinθ0 / 2

I = MR2

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
  (2.7.10c)

The integral is known as an elliptic integral of the first kind: F(k,ε0)=am-1 or the "inverse amu" function. 

    
  
F(k,ε0 ) ≡ dε

1− k2 sin2 ε0

ε0
∫ ≡ am−1(k,ε0 )      (2.7.10d)
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Integrals related to F(k,ε) pop up in many mechanics and electromagnetism problems. Many tables of them 
exist, and most general-purpose computer routines include a library of elliptic functions.
 Elliptic integrals simplify in the small-vibration case when a sine function nearly equals its 
argument. (sinε ≅ ε  if:ε << 1 as in (2.7.5)) Then the elliptic integral reduces to an elementary one.

  
  

τ1/ 4 = R
g

dε

ε0
2 − ε20

ε0
∫ = R

g
sin-1 ε

ε0 0

ε0
 = R

g
π
2

     (2.7.11)

The quarter period  τ1/ 4 is, indeed, one quarter of the simple pendulum period  τ = 1 / ν . (Recall (2.7.7).) The 
integral can also give the complete time behavior as an inverse sine function.

  t = R
g

dε
ε0

2 − ε 2
0

ε (t )

∫ = R
g

sin-1 ε
ε0 0

ε (t )

 = R
g

sin-1 ε(t)
ε0

    (2.7.12a)

The inverse of this is the usual sine wave solution to (2.7.6).

  
  
ε(t) = ε0 sin g

R
t = ε0 sinω t  ,  where: ω = g

R
,     (2.7.12b)

(Either angular coordinate, ε or θ, satisfies this.) But, large-vibrations require Jacobi elliptic functions or 
"amu" functions. Also defined: "snu" and "cnu" functions sn and cn analogous to sine and cosine.

 
  
ε(t) = am(k,ω t) ,  where:  k= 1

sin ε0
 , and: ω = g

R
 , 

Also: sn(k,ω t) ≡ sin ε(t)
          cn(k,ω t) ≡ cosε(t)

     (2.7.13)

For higher swings as ε0 approaches π/2 (or θ0 approaches π) the period (2.7.10c) of the "amu" function 
grows, approaching infinity when the pendulum tries (vainly) to "stand on its head." 

Hamiltonian phase space
 For energy beyond the θ0  =±π point, a pendulum will stop swinging and loop around and around 
like a high bar gymnast. Visualizing pendulum vibration or libration (swinging) and rotation (looping) is 
best done using a Hamiltonian phase portrait. This is a plot of possible trajectories in the space (pθ, θ) of 
momentum-vs-coordinate angle that is called phase space.  For the pendulum this is just a plot of (2.7.7) for 
various constant values of energy H=E. Resulting phase paths are plotted below.

    
Fig. 2.7.2 Phase portrait or topography map for simple pendulum 
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Fig. 2.7.2 is a topography map for the Hamiltonian H(pθ θ) in phase space. A 3D plot of the 
Hamiltonian topography is shown below in Fig. 2.7.3. If you were to slice a horizontal plane parallel to the 
(pθ θ) phase plane but at altitude H=E, then its intersection with H(pθ θ) mountains or valleys would be one 
of the constant-E  paths in Fig. 2.7.2. These topo-E-level curves are seen in Fig. 2.7.3, too.

	

 Fig. 2.7.3 Hamiltonian H(pq,q) topography plot for simple pendulum 

 If the energy is low (E<MgR ) then the phase path in Fig. 2.7.3 will be an oval going around a 
valley and doing pendulum vibrational or librational motion. If the energy is high (E>MgR ) then the path 
will be wavy line doing pendulum rotational motion along a high mountain road to the right (counter-
clockwise rotation) or else to the left (clockwise rotation). The dividing path at energy (E=MgR ) is called 
the separatrix (curve that separates) between these two types of motion. The two branches of the separatrix 
meet at so-called saddle points on top of the mountain passes in Fig. 2.7.3 where the pendulum is "standing 
on its head."
 Hamilton's equations can be viewed in phase space as a "cross-gradient" in the following form.

     
    

q
p

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
=

∂ p H

−∂q H

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= eH × −∇H( )=(H-axis) × (fall line), where:

(H-axis)=eH =eq × ep

(fall line)=-∇H

⎧
⎨
⎪

⎩⎪
       (2.7.14)

The velocity vector in phase (q,p)-space is proportional to the gradient or slope of H at each point but is 
directed perpendicular to the fall line. In ordinary (x,y) space it is the acceleration or force vector that is 
proportional to the gradient of the potential V and is directed down the fall line.

©2012 W. G. Harter Chapter 6 Lagrangian and Hamiltonian equations of motion  38



Small-amplitude motion: the "eye" of a storm
 Phase plots often look a little like storms drawn on a weather map. The one in Fig. 2.7.2 looks like 
the Jovian "red spot", a fierce storm on Jupiter. A sailor or pilot might use a weather map to locate the 
quietest areas or "eyes" of the storm and steer toward them. In phase plots, these "eyes" surround what are 
called fixed points in a phase plot. 
 Fixed points (q0, p0) are the points where both the coordinate and the momentum stand still. 
Examples of fixed points in Fig. 2.7.2 are the two saddle points at p0 = 0  andθ0 = ±π and a stable point at 
p0 = 0  andθ0 = 0. These special points are also indicated in the 3D plot of Fig. 2.7.3, and they are just the 
level points where the gradient (∂qH ,∂ pH)  of the Hamiltonian is a zero. Then  p  and  q are zero, too.

 A Taylor expansion of a Hamiltonian function H(q,p) can be done around any point (q0 ,p0) in phase 
space for which H(q,p) is properly defined. Let H(q0,p0) be H0 and set: Δq=q-q0 and: Δp=p-p0.

  

   

H ( p,q) = H0 + Δp ∂H
∂p p0 ,q0

+ Δq ∂H
∂q p0 ,q0

+
Δp( )2

2
∂2H
∂p2

p0 ,q0

+
Δq( )2

2
∂2H
∂q2

p0 ,q0

+ ΔpΔq ∂2H
∂p∂q

p0 ,q0

+

Linear terms at fixed points must be zero according to Hamilton's equations.  (2.7.15a)

  
   

q( p0 ,q0 ) = 0 = ∂H
∂p p0 ,q0

 ,         − p( p0 ,q0 ) = 0 = ∂H
∂q p0 ,q0

    (2.7.15b)

For small deviations (Δq,Δp) around fixed point (q0 ,p0) the Hamiltonian is a quadratic form in (Δq,Δp).

 

   

E = H ( p,q) = H (p0 ,q0 ) +   i
Δp( )2

2
+ k

Δq( )2
2

+ j ΔpΔq      +

             where:    1
I
≡ i = ∂2H

∂p2
p0 ,q0

,  k = ∂2H
∂q2

p0 ,q0

  , j = ∂2H
∂p∂q

p0 ,q0

 
   (2.7.16)

The pendulum Hamiltonian (2.14.1) has the following fixed-points by equations (2.16.1b).

 

   

H = E = 1
2I

p2 − MgR cos q ,   0 = ∂H
∂p

= p
I

,      0 = ∂H
∂q

= MgR sin q

                                                 p0 = 0,                 q0 = 0,  ± π , ± 2π , ± 3π ,…    
   (2.7.17a)

The first fixed point (q0,p0)=(0, 0 )  has the following elliptical quadratic form.

 

   

E = H ( p,q) = H (p0 ,q0 ) +    1
2I

p2         +   1
2

kq2                +

                     where:    1
I
= ∂2H

∂p2
0,0

,  k = ∂2H
∂q2

0,0

=MgR  , j = ∂2H
∂p∂q

0,0

=0 
   (2.7.17b)

For fixed values of E these are equations of ellipses ( Ap2 + Bq2 =1 ) in phase space. (See Fig. 2.7.4a)
The other fixed points (q0,p0)=(0, ±π )  have the following hyperbolic quadratic form. Let: Δq=q-π .

 

   

E = H ( p,q) = H (p0 ,q0 ) +    1
2I

p2         +   1
2

k Δq( )2            +

                     where:    1
I
= ∂2H

∂p2
0,π

,  k = ∂2H
∂q2

0,π

=-MgR  ,  
    (2.7.17c)

For fixed values of E these are equations of concentric hyperbolas ( Ap2 - Bq2 =1 ). (See Fig. 2.7.4b)
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 Elliptic points lie at the center of a region of stable vibrational motion, which, near the elliptic point 
obey Hamilton's equations for an approximate Hamiltonian (2.7.17b) for simple harmonic motion.

  
   
p = -kq,    q=p / I ,    or:  q +ω 2q = 0,  where: ω = k

I
    (2.7.18a)

Circular sine or cosine solutions (Recall (2.7.12b)) are small-amplitude-vibration approximations.

   
  

q(t) = q0 cos(ω t +α ) 

p(t) = −q0 Iω sin(ω t +α )
      (2.7.18b)

Angular frequncy ω is independent of amplitude   q0  only for the small   q0 . If   q0  is made larger, then this 

solution, like that of the pendulum (2.7.12b) for larger  ε0 , may become less and less accurate.

 Hyperbolic points lie at the center of a region of unstable motion, which, near the hyperbolic point, 
obey Hamilton's equations for an approximate Hamiltonian (2.7.17c) for exponential "blow-up."

  
   
p = kq,    q=p / I ,    or:  q − γ 2q = 0,  where: γ = k

I
     (2.7.19a)

The hyperbolic sine or cosine function solutions are small-amplitude-growth approximations.

   
  

q(t) = q0 cosh(γ t +α ) 

p(t) = q0 Iγ sinh(γ t +α )
       (2.7.19b)

But, even a small amplitude   q0  may grow exponentially and eventually invalidate the approximation. This 

describes the time behavior on hyperbolic paths near saddle points (q0,p0)=(0, ±π ) in Fig. 2.7.2. Note that 
the solutions (2.7.19) have both positive and negative exponentials. So q(t) may "blow down" at first.

  
  
sinh(γ t) = eγ t − e−γ t

2
 ,         cosh(γ t) = eγ t + e−γ t

2

But, after awhile the positive exponentials generally win and finally q and p have to "blow up." An 
exception to this involves motion exactly on a separatrix or hyperbolic asymptote.  However, such motion 
is very sensitive to error or noise both classical and quantum. (See problem 2.16.1)
 The cross term jpq in (1.16.2) is zero for the pendulum example in Fig. 2.7.2. A cross terms gives 
tipped or rotated elliptic (or hyperbolic) paths as noted after (1.11.20) in Unit 1. (Recall Exercise 1.11.1.)

p p

q q

(a) (b)

Fig. 2.7.4  Phase paths around fixed points (a) Stable point (b) Unstable saddle point 
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 Other benefits of Hamiltonians: The Liouville theorem

Pendulum phase flow in Fig. 2.7.2 is given by v = e z × ∇H if (y
x ) denotes phase space(p

q ) in (2.7.14). 

 

 

v = eH × ∇ p,qH q, p( )
q
p

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
=

  ∂p
∂H

−
∂q
∂H

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

(2.7.14)repeated     denoted by: 

v = e z × ∇H x, y( )
vx
vy

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

  ∂y
∂H

−
∂x
∂H

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

 (2.7.20)

This velocity flow has zero divergence  ( ∇iv= 0 ) since an xy-partial is symmetric to order. ( ∂y∂x
∂2H = ∂x∂y

∂2H ) 

   

 

∇iv = ∇i
vx
vy

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=
∂vx
∂x

+
∂vy
∂y

=
∂2H
∂x∂y

−
∂2H
∂y∂x

= 0    (2.7.21) 

On the other hand, the curl(∇ × v )  of this pseudo-velocity field  is (-)the Laplacian div-grad of H(x,y).

   ∇ ×
vx
vy

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=
∂vy
∂x

−
∂vx
∂y

= −
∂2H
∂x2

+
∂2H
∂y2

⎡

⎣
⎢

⎤

⎦
⎥= −∇2H    (2.7.22)

For an HO Hamiltonian (H=2
1 µp2+2

1 κq2) the curl works out to be a constant ∇ × v = −(µ +κ )  for a rigidly 

rotating HO phasor-space or rotating A-field (2.8.15) of constant B = ∇ × A in Fig. 2.8.1. Global properties 
of v-fields are revealed by Gauss divergence –flux or Stokes curl-circulation integrals (2.7.23). The first is 
total flux n̂ivd across a closed contour C around area A along its normal n̂ , and the second is the integral 
of v-circulation n̂ × vd  along a tangent to contour C. Total flux (circulation) is A-integral of  ∇iv (∇ × v ).

 
 

∇ivdA
A
∫∫ = n̂ivd = flux

C
∫  (2.7.23a)           

 
∇ × vdA

A
∫∫ = n̂ × vd

C
∫ = circ.  (2.7.23b)

By (2.7.21) total flux is zero for any (q,p)-phase-space area A. The v-flow is that of an incompressible fluid 
whose density ρ is constant as guaranteed by the flow continuity equation, itself a relativistic invariant.  

      
 
∇iv + ∂ρ

∂t
= 0      (2.7.24)

Crowded (q,p)-phase paths in Fig. 2.7.2 represent increased traffic velocity and not an increase in density ρ 
of points, and vice versa, lack of crowding at saddles is due to more loitering and not to any change in ρ. 
 Indeed, if three or more points define a (q,p)-phase-space area A, then as all the points in A follow 
their respective phase-paths the area they enclose is supposed to remain constant even as A becomes very 
distorted. This Liouville Theorem is quite a claim. It might appear we need a proviso that A has no singular 
points where  ∇iv is undefined such as at pendulum saddle points in Fig. 2.7.2, but apparently not!
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Other benefits of Hamiltonians : Virial relations

Phase space products like p·q or 
 
pir = pµq

µ may or may not be constant, but average p·q-values of bound 
orbits over one or more periods tend toward constant or zero values. For example, oscillation q=asinωt and 
p=bcosωt has a phase product p·q=absinωt·cosωt= 2

1 absin2ωt that averages to zero. So, it is reasonable to 
posit a zero value for the time derivative of average p·q-values pµq

µ . ( x denotes a time average of x.)

    
 
0 = d

dt
pµq

µ = pµq
µ + pµ q

µ     (2.7.25)

Hamiltonian H=T+V and Lagrangian L=T-V relate by
 
H = pµ q

µ − L  to give a virial relation of work to KE=T.

  
 
− pµq

µ = Fir = pµ q
µ = piv = H + L = 2T    (2.7.26)

Hamilton equations 
 
pµ =   ∂qµ

−∂H and 
 
qµ =   ∂pµ

  ∂H (2.6.14) give virial relations of kinetic KE=T to potential PE=V. 

   
 
− pµq

µ =
∂H
∂qµ q

µ = pµ q
µ = pµ ∂H

∂pµ     (2.7.27)

Power-law Hamiltonians
Virial relations take a simple form for a power-law Hamiltonian   H

PQ = µpP + κqQ =T +V .

   
∂HPQ

∂q
q = κQqQ−1q = pµPpP−1 = p ∂H

PQ

∂p
      (2.7.28)

The resulting virial theorem shows the average ratio KE:PE is inverse to their power ratio T : V = Q : P .

    κQqQ = Q V = P T = µPpP        (2.7.29)

Q:P ratios for Coulomb orbit (-1:2), harmonic oscillator (2:2), 4th-power well (4:2), and square well (∞:2) are 
consistent with what one expects. The latter is 100% KE. A δ-dip potential V(x)=- δ(x) is 100% PE.

Approximate quantum E-levels
Approximate quantum energy levels are given in terms of an action quantum number υ =p·q/h by minimal 
HPQ-values subject to an uncertainty constraint p·q= hυ=const. Recall (1.6.14) in Unit 1. We set q= hυ/p and 
find root pMIN of the HPQ derivative with respect to p that will give minimal HPQ. 

 
  

dH PQ

dp
= 0 = d

dp
µ pP +κqQ( ) = d

dp
µ pP +κ ( hυ

p
)Q⎛

⎝⎜
⎞
⎠⎟

  has root:
  
pMIN = κQ

µP
(hυ)Q⎡

⎣
⎢

⎤

⎦
⎥

1
P+Q

Substituting the root pMIN into the constrained HPQ function gives energy levels as function of υ.

   

  

H PQ ( pMIN ) = µQκ P(hυ)PQ⎡
⎣⎢

⎤
⎦⎥

1
P+Q Q

P
⎛
⎝⎜

⎞
⎠⎟

P
P+Q

+ Q
P

⎛
⎝⎜

⎞
⎠⎟

−Q
P+Q

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
= Tυ

PQ +Vυ
PQ = Eυ

PQ  (2.7.30)

KE coefficient  µ=1/2m and power P=2 is standard. Coulomb PE uses Q=-1. Oscillator uses Q=2. 

  
  
Eυ

2,−1 = − mκ 2

h2υ2
 (2.7.31a)  

  
Eυ

2,2 = hυ 2κ
m

⎛
⎝⎜

⎞
⎠⎟

1/2
= hυ k

m
 (2.7.31b)

 So (2.7.30) approximates quantum Bohr-Rydberg-Coulomb and Planck oscillator (for κ=k/2) levels.
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Exercise 2.7.1 This is another dimensional analysis problem with a power-law (L)p solution. Consider what the 
walking or strolling speed is for a legged animal if its legs are half its height L. Suppose it strolls by swinging its 
nearly-free pendulum legs. (Forced oscillation may be the subject of a similar problem in Unit 4.) Limit the swing to 
Δθ=±15° so we may assume harmonic oscillation. 
More advanced problem. Discuss how walking speed might vary with larger (anharmonic) stride range  |Δθ|>15°. 
First, discuss how pendulum frequency begins to decrease with Δθ and so does the increase in stride length as the 
projection  cos |Δθ| approaches . Show these dynamic and geometric effects lead to an optimal stride and speed.

Many mechanics problems are “gizmos” that model some principle(s). Here are two important examples.

M

m
M

mGizmo-X and Gizmo-Y

Gravity g=10m/s2

k/2


θ



X
-Y

−θ

k/2

k/2

k/2

Exercise 2.7.2 Suppose a main mass M slides on the beam attached to Earth by springs with total Hooke-constant k and 
carries a simple pendulum mass m on a frictionless lever . Consider two such devices, one horizontal (Gizmo-X) and 
one vertical (Gizmo-Y). 
(a) Derive the Lagrangian equations of motion for the devices.
(b) Derive the Hamiltonian equations of motion for the devices. Identify any constants of the motion.
(c) Reduce the equations to approximate small vibrations.(|θ|<<1,|X|<<1,|Y|<<1)
(d) Reduce equations (a) for the case that M>>m but let k/M and g/ be comparable values. 

Exercise 2.7.3 Suppose the main trebuchet driving mass M could slide on the beam but was held by a spring of Hooke-
constant k at an equilibrium radius R0 at resting angle θ=0. Describe how the equations of motion change to describe 
such a device.
(a) First, give equations with no second mass m and no gravity g.
(b) Then add gravity g.
(c) Then add the projectile mass m on lever .

Exercise 2.7.4 Check the derivation of the power-law potential virial ratio (2.7.29) and fixed-action minimum “quantum” energy 
(2.7.30). Discuss <KE>/<PE> ratios of average potential and kinetic energy for the most common potentials including the (ion-
atom) inverse quadratic power law potential V(q)=k/q2. List formulas for “quantum” energy levels derived in this way for 
common potentials square (V=kr∞), HO, Coulomb, atom-ion V=ar-2, and delta (V=-kr-∞)). Can the method work for logarithmic 
potentials? …for non-integral power law potentials? Discuss.
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Chapter 8. Charged particle in electromagnetic fields
 Newton's equations combined with Maxwell's definitions for electromagnetic fields can be put in 
Lagrangian and Hamiltonian form. This is based upon the so-called pondermotive form for Newton's F=ma 
equation for a mass m of charge e. The electron charge e=-1.602176·10-19Coulombs is imagined here.

     
  
m dv

dt
= F = e(E + v × B)      (2.8.1)

First, the electric field E and the magnetic field B are expressed in terms of scalar potential field Φ=Φ(r,t) 
and a vector potential field A=A(r,t) as follows.

    
   
E = −∇Φ − ∂A

∂t
,        B = ∇ × A      (2.8.2)

Combining these gives a v × ∇ × A( )  double-cross term.

m dv
dt

= F = e −∇Φ −
∂A
∂t

+ v × ∇ × A( )⎡

⎣
⎢

⎤

⎦
⎥     (2.8.3a)

Levi-Civita again
The double-cross is unraveled by Levi-Civita’s identity in Appendix 1.A.

   m dv
dt

= F = e −∇Φ −
∂A
∂t

+∇(v •A) − (v •∇)A⎡

⎣
⎢

⎤

⎦
⎥    (2.8.3b)

A chain rule expansion of the vector potential total t-derivative is then used.

   
    

dA
dt

= ∂A
∂x
x + ∂A

∂y
y + ∂A

∂z
z + ∂A

∂t
= ∂A

∂t
+ (v •∇)A     (2.8.4)

Combining this with (2.8.3b) allows a Lagrangian form (2.6.4) to emerge.

  

   

m dv
dt

= e −∇Φ +∇(v • A) − ∂A
∂t

− (v •∇)A
⎡

⎣
⎢

⎤

⎦
⎥ = e −∇(Φ− v • A) − dA

dt
⎡

⎣
⎢

⎤

⎦
⎥

d
dt

∂
∂v

1
2

mv • v = d
dt

∂
∂v

eΦ− v • eA( ) − ∇(eΦ− v • eA)

0 = d
dt

∂
∂v

1
2

mv • v − (eΦ− v • eA)
⎛
⎝⎜

⎞
⎠⎟
+∇(eΦ− v • eA) = d

dt
∂L
∂v

− ∂L
∂r

  (2.8.5a)

The resulting Lagrangian  has a linear velocity term ev•A in addition to the usual quadratic KE=mv2/2.

   
   
L = L(r, v, t) = 1

2
mv • v − eΦ(r, t) − v • eA(r, t)( )     (2.8.5b)

The canonical momentum is defined by L’s v-derivative according to (2.6.5)

   

   

p = ∂L
∂v

= ∂
∂v

1
2

mv • v − eΦ(r, t) − v • eA(r, t)( )⎛
⎝⎜

⎞
⎠⎟

p = mv + eA(r, t)
    (2.8.5c)

Without the magnetic vector potential A=A(r,t) the Lagrangian has the usual form L= T - V in (2.6.5) with 
a electric (scalar) potential V=eΦ(r,t) . However, the vector potential term -v.eA leads to an unusual 
canonical momentum p. Particle momentum mv is not canonical, but related to canonical p as follows.
      mv = p − eA(r, t)        (2.8.6)
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Hamiltonian for charged particle in fields
The Hamiltonian function of the Legendre-Poincare form defined in (2.6.9b) is the following.

      

 

H = qµ pµ − L
µ
∑ = v • p − L = v • mv + eA(r, t)( ) − 1

2
mv • v − eΦ(r, t) − v • eA(r, t)( )⎛

⎝⎜
⎞
⎠⎟

H =
1
2
mv • v + eΦ(r, t)                                                          ( Only correct

numerically! ) 
  (2.8.7)

Interestingly, the vector potential A seems to cancel out completely, leaving a familiar H=T+V form seen 
first in (2.6.9c). However, the Hamiltonian is formally correct only if it is written in terms of canonical 
momentum, not velocity. Just like (2.6.9c), the equation (2.8.7) above is numerically correct, only. Using 
(2.8.6) to rewrite velocity v in terms of momentum p gives the following.

  H =
1

2m
p − eA(r, t)( ) • p − eA(r, t)( ) + eΦ(r, t)      ( Correct formally

and numerically )   (2.8.8)

The result expands into a more complicated but still formally correct Hamiltonian.

  
   
H = p •p

2m
− e

2m
p • A + A •p( ) + e2

2m
A • A + eΦ(r, t)     (2.8.9)

Hamilton's equations (2.6.14) then follow. The   r  equation just relates   r = v  to p. (Recall (2.8.6).)

    
    
v = r = ∂H

∂p
= p − eA(r, t)

m
     (2.8.10)

For the   p  equation we use index notation to avoid confusing  ∇(p • A)  and   (p •∇)A . 

 
   
pa = − ∂H

∂xa
= − ∂

∂xa

pµ − eAµ( )2
2mµ

∑ − e ∂Φ
∂xa

=
pµ − eAµ( )

m
e
∂Aµ

∂xaµ
∑ − e ∂Φ

∂xa
   (2.8.11a)

We use (2.8.2) to express Φ in terms of E and A, and (2.8.10) to give p in terms of v.

   
  
m va + e Aa = e vµ

∂Aµ

∂xaµ
∑ +

∂Aa
∂t

+ Ea

⎛

⎝
⎜

⎞

⎠
⎟      (2.8.11b)

Index notation for (2.8.4) is

    
  

Aa = vµ
∂Aa
∂xµµ

∑ +
∂Aa
∂t

      (2.8.12)

Finally, an equation for particle momentum is found by combining the preceding two equations.

   
  
m va = e vµ

∂Aµ

∂xaµ
∑ − vµ

∂Aa
∂xµ

+ Ea

⎛

⎝
⎜

⎞

⎠
⎟      (2.8.13)

The result cancels out the partial time derivative of the vector potential A, and is the same as the simple 
Newtonian equations (2.8.1-3). The Lagrangian and Hamiltonian forms have no obvious advantage, here. If 
you just need Cartesian equations of motion, Newton will usually win! However, the Hamiltonian form 
may win in other coordinate systems if the question of conservation laws and symmetry arises.
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Cyclotron orbits in E and B fields
 Consider how a particle orbits in a constant electric field E which is perpendicular to a constant 
magnetic field B . A constant E field has a scalar potential field Φ with constant gradient.
  

   
Φ(r) = −E• r,           −∇Φ(r) = ∇ −E• r( ) = E = const.     (2.8.14)

 A constant B field has a vector potential field A that resembles the velocity field of a disc or body 
spinning counter-clockwise around the B axis. (See Fig. 2.4.1.) 

  A(r) = 1
2
B × r,           ∇ × A(r) = ∇ ×

1
2
B × r

⎛
⎝⎜

⎞
⎠⎟
= B = const.   (2.8.15)

Suppose the B field is along the z-axis while the E field is along the x axis as in Fig. 2.8.1. Many effects of 
arbitrary B and E fields can be seen if we first understand this one.
 The Newtonian electromagnetic equations of motion (2.8.1) are repeated here.
       mv = e(E + v × B)       (2.8.16a)

The Newton equations are given explicitly below for the fields (2.8.14) and (2.8.15).

  

   

m vx

m vy

m vz

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

= e
Bzvy

−Bzvx

0

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
+ e

Ex

0
0

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
=

eBzvy + eEx

−eBzvx

0

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

    (2.8.16b)

The reduced (x,y) velocity equations are 

  
   

vx = B vy + E

vy = −B vx      
    where: B ≡ eBz / m,    and  E ≡ eEx / m .    (2.8.17)

Note z-velocity is a constant. These are made into second order oscillator equations with solutions. 

 
   

vx = B vy = −B2vx   : solution:   vx (t) = a sin  Bt  + b cos  Bt

vy = −B vx               : solution:   vy (t) = -Bvx  =-aB sin  Bt  - bB cos  Bt   
   (2.8.18a)

So the vx equation gives simple harmonic motion at the cyclotron angular frequency ω c=B=eBz/m while 
the vy equation gives simple harmonic motion plus an integration constant that is a y-ward drift velocity.

   
  
  vy (t) =a cos Bt  - b sin Bt + vy

drift       (2.8.18b)

The drift velocity is found by substituting (2.8.18) into (2.8.17).

  
   

                 vx                =                    B vy                         + E

aB cos Bt  - bB sin Bt  =aB cos Bt  - bB sin Bt + Bvy
drift + E   

    (2.8.18c)

The substitution checks only if the following holds.

  
  
Bvy

drift + E = 0 ,        or:  vy
drift = −E / B = −Ex / Bz      (2.8.18d)

Hall-effect drift
So, a positively charged particle would drift downward in Fig. 2.8.1 perpendicular to the E field while 
spiraling around the B field. This is analogous to the Hall-Effect drift in conductors. Equations of motion 
(2.8.16) are solved conventionally here. A quicker complex-variable method is shown in Appendix 2.A.
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y

x

EA A=Bxr
Φ=-E. r2

(rigid rotor field)
(uniform
vector
translation
field)

Fig. 2.8.1  Crossed magnetic and electric fields and their respective vector and scalar potentials

Now we integrate the velocity equations to get the coordinate positions at time t.

      
x(t) = dt∫ vx (t)+cx= dt∫ asinBt+bcosBt( )+cx        = - a

B
cos  Bt+ b

B
sin  Bt+cx

y(t) = dt∫ vy (t)+cy= dt∫ acosBt-bsinBt + vy
drift( )+cy = a

B
sinBt- b

B
cosBt + vy

driftt+cy

   (2.8.19)

At an initial time t=0 the integration constants may be related to initial conditions:

       

  

vx (0) = 0 + b ,                  x(0) = − a
B

+0+cx ,          

vy (0) =a  - 0 + vy
drift          y(0) = 0- b

B
+ 0+cy ,

       (2.8.20a)

Solving for coefficients a, b, and (cx, cy) gives revealing forms of rotation matrices and vectors. 

  

  

a = vy (0)-vy
drift  ,  b = vx (0) , cx = x(0) + a

B
 ,                 cy = y(0) − b

B
        

  = vy (0) + E
B

                              = x(0) +
vy (0)

B
+ E

B2
 ,      = y(0) −

vx (0)
B

     (2.8.20b)

The velocity vector from (2.8.18-8) reduces to the following rotation plus translation.

   
  

vx (t)

vy (t)

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= cos Bt sin Bt

− sin Bt cos Bt

⎛

⎝⎜
⎞

⎠⎟
vx (0)

vy (0) + E / B

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
+ 0

−E / B
⎛

⎝⎜
⎞

⎠⎟
  (2.8.21)

Velocity v(t) is a rotation Bt clockwise (for B=eBz/m>0 ) of initial vector v(0) plus a constant drift 
downward (for E=eEx /m>0 ) of velocity -E/B. The position r(t) vector (2.8.19) is similarly viewed.

     

  

x(t)
y(t)

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
=

cos Bt sin Bt

−sin Bt cos Bt

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

−vy (0)
B

− E
B2

vx (0)
B

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

+
0

− E
B

t

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

+
x(0)+

vy (0)
B

+ E
B2

y(0)−
vx (0)

B

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

 (2.8.22)

 Examples of trajectories for fields (E=1/2 , B=1.0) are shown in Fig. 2.8.2. These all correspond to 
points on a rolling "railroad wheel" as shown in Fig. 2.8.3. First let us zero the initial velocity to v(0)=0 in 
(2.8.22) to simplify (2.8.22). This corresponds to the trajectory in part (a) of Fig. 2.8.2.
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x(t)
y(t)

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
=

cos Bt sin Bt

−sin Bt cos Bt

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

− E
B2

0

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

+
0

− E
B

t

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

+

E
B2

0

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

  (2.8.23)

The point (x(t),y(t))  sits on the rim of a wheel of radius R=E/B2=1/2 rotating at ω c= B=1.0  while the 
wheel's center drifts along at velocity vdrift =-E/B=-1/2  down the Y-axis. In one cyclotron orbit period 
τc=2π/B, (here τc=2π), the wheel revolves once and drifts a distance equal wheel circumference 2πR. 
    y=vdriftτc= -(E/B)2π/B=-2πE/B2=-2πR=-π   (2.8.24)
The wheel rolls without slipping on the Y-axis, and the (x(t),y(t)) trajectory is a simple cycloid as shown in 
Fig. 2.8.2a. Points on a rolling rail wheel make other trajectories, too. However the trajectories will be 
curlate cycloids if the particle sits on a rim whose radius Rrim is greater than Rw of the wheel in Fig. 2.8.3, 
or else prolate cycloids if the particle is at a radius less than Rw. The rim vector is the operand in (2.8.22). 
    Rrim(0) = (-vy(0)-E/B ,  vx(0) )/B    (2.8.25)
 In order to use the picture we need a formula for the radius Rw of the wheel. This is just the point 
where the velocity ω cRw due to cyclotron rotation exactly cancels the constant drift velocity 

 
vy

drift .
  

  
ωc RW = −vy

drift  ,  or:   RW = −vy
drift /ωc = E / B2 = Ex / eBz

2     (2.8.26)
So all the trajectories in Fig. 2.8.2 have the same sized wheel, but most of the ones shown in Fig. 2.8.3b 
and all but one of the paths in Fig. 2.8.3c have a larger rim radius |Rrim|> Rw. 

The latter are obtained by throwing the particle along the x-axis in the direction of the electric force.  
Like a boomerang, it always loops back and forth across the y-axis while drifting down it at a rate 
determined by the Ex field strength. Without the E-field, the path is just a cyclotron circular orbit.

To make prolate or “loopless” cycloids one must throw the particle down the y-axis. If the vy(0) 
speed is just right, the path is the “most-loopless” cycloid, that is, a straight line! Then the static electric 
eEx-force just balances the e[v × B]x component of the magnetic field.

The FBI right-hand rule

Have trouble remembering directions of Fmagnetic = e[v × B] = I × B ? Then here is a “right-hand rule” 
with political overtones that won’t let you easily forget it. The FBI is, rightly or wrongly, thought of as a 
right-wing  organization. Right? Well, take your right hand and write (right) the letters “F”, “B”, and “I” on 
the right-most three fingers as your hand faces you with the “I” on the thumb (at the right, of course).

Finally, make a “gun” (FBI uses guns, right?) with the fingers of the right hand extended naturally 
perpendicular to each other. This gives directions of force F due to magnetic field B acting on current I=ev 
due to a positive charge e traveling along velocity v. (PS: Don’t let the TSA see you doing this!)
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(a)  vx(0)=0, vy(0)=0    (b) vx(0)=0, vy(0)=-2 to 2                     (c) vx(0)=0 to 2, vy(0)=0

                     
	

 Fig. 2.8.2 Trajectories of unit charge and mass in magnetic and electric fields  (E=1/2, B=1)

B

E E

vdrift

vdrift
Rw Rw

rrim

	

 Fig. 2.8.3  Rolling railroad wheel and rim analogy for cyclotron orbits

Mechanical analogy for cyclotron motion in magnetic field
A smooth sphere or ball rolling on a horizontal rotating table, as shown in Fig. 2.8.4 obeys the same 
equations as a charged particle in a uniform magnetic B field (and E field if the turntable is tilted). 
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R

ωω(t)ΩΩ(t)

r(t)
r(t)=v(t) F=m v(t)

FxR=I ωω(t)

Fig. 2.8.4 Mechanical analog of magnetic v×B cyclotron mechanics.

A plastic pool ball has linear velocity r(t) = v(t)as it rolls without slip at angular velocity ω(t) on a 

plexiglass® disc turntable turning at constant angular velocity Ω = Ωẑ . The velocity vector of the ball 
bottom contact point (v(t)-ω(t)×R) must equal the table surface velocity Ω×r(t) at its contact point r(t). 
    v(t)-ω(t)×R= Ω×r(t)   (where: R=Rẑ  and Ω = Ωẑ  are constant.)

v(t) = Ω × r(t) +ω(t) × R = Ω × r(t) +ω(t) × ẑR    (2.8.27)
Newton-2 for translation is Force= F = mv , and for rotation it is Torque = F × R = I ω  as in Fig. 2.8.4.

     I ω(t) = F(t) × R = mv(t) × R = mv(t) × ẑR     (2.8.28)
The acceleration  a(t) = v(t)  is given by the time derivative of the velocity constraint (2.8.27).

 v(t) = Ω × r(t) + ω(t) × ẑR = Ω × v(t) + ω(t) × ẑR    (2.8.29)
Putting in (2.8.28) gives the velocity equation of translational motion on the table.

 
v(t) = Ω × v(t) + 1

I
mv(t) × ẑR( ) × ẑR = Ω × v(t) − mR

2

I
v(t)   (2.8.30)

It is like the cyclotron equation  mv(t) = ev(t) × B+eE in (2.8.16). (The eE term corresponds to table tilt!) 

 
1+ mR

2

I
⎛

⎝⎜
⎞

⎠⎟
v(t) = Ω × v(t)   analogous to: 

 

v(t) = e
m
v(t) × B  where:  e

m
B = −

Ω

1+ mR
2

I
⎛
⎝⎜

⎞
⎠⎟

 (2.8.31)

 A solid ball with inertia I=2/5mR2 leads to an effective cyclotron frequency of 2Ω/7, that is, the ball 
will orbit exactly twice for each seven rotations of the table. The actual surface velocity V=Ω×r of the 
table is analogous to a vector potential A=1/2B×r of a uniform magnetic field as sketched in Fig. 2.8.1.  A 
ping-pong ball has a noticeably higher “charge-to-mass” ratio and cyclotron frequency. To get a lower 
value one might construct a light plastic ball with a dense core of tungsten or uranium.
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Appendix 2.A. Complex analysis of charge-mass cycloidal trajectory in uniform crossed E and B fields
Complex variables give concise equations for mass-m of charge-e in electric E and magnetic B fields.

    mv = eE + ev × B   or:      v = m
e E +v ×m

e B = ε + v ×Bêz    (2.A.1a)

Shorthand notation is used.    εx =m
e Ex  

 
ε y =m

e Ey   B =m
e Bz   (2.A.1b)

We let the usual Gibb’s vector notation be restricted to 2D(x,y) motion normal to B-field z-direction.

   

    

v = ε + v ×Bêz

vxêx+ vyêy = εxêx+ ε yêy + (vxêx+ vyêy ) ×Bêz

= εxêx+ ε yêy − Bvxêy+Bvyêx             where: êx×êz = −êx       and: êy×êz = êx

 (2.A.2)

This suggests more concise complex variables for velocity
 
v=vx+ivy and electric field

 
ε=εx+iε y .

   

    

vx+ i vy = εx+ iε y − iBvx+ Bvy = εx+ iε y − iB(vx+ ivy )

v = ε − iBv            with replacements : êx→ 1      and : êy→ i = −1
  (2.A.3)

A velocity transformation  V (t)=v(t)+β  may cancel the constant ε-field to give an equation    V=(const.)V .

 

   

V (t)= v(t)+ β = ε − iBν
 = ε − iB(V (t)−β ) = −iBV (t)+ ε + iBβ

 = −iBV (t)       where :  β = − ε
iB

= i ε
B

     (2.A.4)

An exponential V(t)=e-iBtV(0) solution results. As noted in Unit 1 (10.27), e-iBt is a clockwise 2D rotation.

  

v(t)+β =V(t) = e−iB⋅tV(0) = e−iB⋅t (v(0) +β)

v(t)= e−iB⋅t (v(0) +β) −β = e−iB⋅t (v(0) +i ε
B

) − i ε
B

    (2.A.5a)

Expanding e-iBt,
 
v=vx+ivy , and 

 
ε=εx+iε y  reveals x (Real) and y (Imaginary) components seen in (2.8.21).

   

  

vx (t)

vy (t)

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

cos B⋅t sin B⋅t
− sin B⋅t cos B⋅t

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

vx (0) −
ε y

B

vy (0) +
εx
B

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
+

ε y

B

−
εx
B

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

   (2.A.5b)

Integrating (2.A.5a) yields complex coordinate q=x+iy affected by both εx and εy. (Compare to (2.8.22).)

 

  

q(t) = v(t) dt∫ =
e−iB⋅t

−iB
(v(0) +i ε

B
) − i ε

B
⋅ t + Const.    where: Const. = q(0) − (

v(0)
−iB

−
ε

B2
)

x(t) + iy(t) =e−iB⋅t (i v(0)
B

−
ε

B2
) − i ε

B
⋅ t + x(0) + iy(0) − i v(0)

B
+

ε
B2

 (2.A.6a)

 

  

x(t)
y(t)

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
=

cos B⋅t sin B⋅t
− sin B⋅t cos B⋅t

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

−
vy (0)

B
−
εx

B2

vx (0)
B

−
ε y

B2

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

+

ε y

B
t

−
εx
B

t

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
+

x(0) +
vy (0)

B
+
εx

B2

y(0) −
vx (0)

B
+
ε y

B2

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

  (2.A.6b)
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 For positive magnetic  B=m
e Bz the mass m moves as though attached to a clockwise rotating disc that 

also translates perpendicular to the applied E-field. The path follows a generalized cycloid that is curlate 
for relatively slow translation and prolate for faster translation. A normal cycloid results for zero initial 
velocity. This case is given first below and compared to paths of points on a hammered flying stick.  

A +y-field electric (εx=0 and εy>0) and zero initial values (q(0)=0=v(0)) gives a horizontal cycloid traced 
by a circle of radius R=εy/B2 rolling through angle θ=B·t and horizontal x-distance R·θ=B =εy·t/B.

  

x(t)
y(t)

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
= cosθ sinθ

− sinθ cosθ

⎛

⎝⎜
⎞

⎠⎟
0
−R

⎛

⎝⎜
⎞

⎠⎟
+ R⋅θ

0

⎛

⎝
⎜

⎞

⎠
⎟ +

0
R

⎛

⎝⎜
⎞

⎠⎟
= R⋅θ − R sinθ

R − R cosθ

⎛

⎝
⎜

⎞

⎠
⎟  where: 

θ = B⋅t

R = ε y /B2

⎧
⎨
⎪

⎩⎪
 (2.A.7)

If you hammer a stick at a point h meters from its center you give it some linear momentum Π and 
some angular momentum Λ = h·Π as shown in Fig. 2.A.1 below.  The resulting angular velocity ω about the 
center is the angular momentum Λ divided by the moment of inertia I= M 2/3 of the stick.
   ω = Λ / I    (= 3 Λ /(M 2) for stick)    (2.A.8a)
       = h Π / I    (= 3 hΠ /(M 2) for stick)    (2.A.8b)
This depends on the hitting radius h and is zero when h=0. Otherwise, points on the stick follow cycloids 
that are variously curlate or prolate. One point P, called center of percussion (CoP), is on a normal cycloid 
made by a circle of radius p rolling on an imaginary road thru point P in direction of Π. This is the point on 
the wheel where speed pω due to rotation just cancels the translational speed of the stick center.
   Π /M =VCenter =|pω|= 3p·hΠ/I  or:  |p|= I/(Mh)   (2.A.9)
Solving gives the percussion radius p of the CoP point that has no velocity just after the hammer hits at h.
     p   = 2/3h       (2.A.10)

Imaginary wheel of radius p rolls on imaginary road
that intersects the Center of Percussion P

bang!





P

Π= linear momentum

h Πh = angular momentum about

p

p

πp

Fig. 2.A.1 Cycloidic paths due to hitting a stationary stick.
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Exercise 2.8.1 The cycloidal path solutions (2.8.23) include a straight-line path. Describe initial conditions that give a line path.

Exercise 2.8.2 How might the mechanical analog of cyclotron orbits change the charge-to-mass ratio (e/m), that is, the ratio of 

orbit-to-table revolutions? What experimental range is available?
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Chapter 9. Idealization, analogy, and analysis of trebuchet motion!
         Writing theory and equations is one thing and understanding what it all means is quite another. 
Application of theory is certainly satisfying if not the most satisfying part of mechanics or, perhaps any 
branch of physics. Very often it only there that you finally get the theory right!
 This section includes a discussion of the trebuchet and its relation to human dynamics (kinesiology) 
and mechanics of lever-sports like tennis or golf. So if you like doing one of these sports or you just want to 
impress your significant other by ringing the bell at the fair, then listen up!

Trebuchet-sports analogies: Aristotle vs Newton and flinger vs trebuchet !
 A difficult part of learning physics is disabusing an Aristotelian misconception that applied force 
gives immediate and proportional velocity. It is also a difficult misconception to overcome in lever-sports 
like tennis, golf, or baseball. Simulations of a trebuchet (Fig. 2.9.1a-b) help show how expert tennis players 
(Fig. 2.9.1c) can hit precise 70 mph tennis drives but "hackers" can barely control half that speed.
 The trebuchet simulation shows how and when energy is transferred from the big mass M to the 
much smaller projectile m. The only power channel to mass m is the tension vector F along the rope . 
Since power is the scalar product F•v of force and velocity v, the big lever rb has to do all its work early on 
when F and v are nearly collinear and well before the rope swings out perpendicular to velocity v. (Then 
F•v becomes zero or negative.) The later trajectory in Fig. Fig. 2.9.1b serves only to steer mass m.

The trick is to get energy into m at the lever end (racquet head) early when it is well behind the 
point where the energy is going to be used. An early force F is more effective pulling along lever arm- 
(analogous to a nearly rigid arm-and-racquet handle) as the mass m (racquet head) begins to swing out due 
to centrifugal force as in Fig. 2.9.1a. A large force is applied early by the trebuchet M-beam (or player 
body) pulling along the -lever as the M-beam rotates due to gravity. The trebuchet cannot apply torque at 
the joint end of the -lever. However, a beginning tennis player or golfer naturally tends to wrongly apply 
hand, wrist, elbow or shoulder torque to get the -lever moving. 

A coach will then say, "Rotate your body!" This is based on Galilean relativity and kinetics that a 
trebuchet analogy may clarify. Like a trebuchet, expert tennis strokes use a later "follow-through" period to 
aim an arm-racquet system analogous to the trebuchet mass m and lever . In the follow-through phase, the 
arm-racquet system, like the trebuchet mass m, has already gained its energy early by rb rotation pulling 
along a nearly rigid  leaving one to direct the flight of  better without requiring late and less effective 
"hacking" acceleration. Simply put, the shoulder lever or beam rb provides a moving body frame that 
smoothly "throws" the arm-racquet system- at the ball.

A modern high-pace-tennis technique pioneered by Oscar Weggner at MIT involves two features 
that improve efficiency and precision. The first suggests an initial stance facing the net with upper body 
rotation achieved mostly by abdominal twisting. The second feature is a remarkable stroke that aims the 
butt of the racquet at the ball as though you were trying to wipe it with the palm on the forehand side or 
with the back of the hand on the backhand side. With some practice one imagines their hand hits the ball 
while actually hitting it at racquet head center with a final trebuchet-like snap having pace and precision.
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

(b) Later on
v

Most velocity v
gained earlier here.

m
F mostly
serves to
steer m here.

r b

Rotation of body rb provides most of energy of arm-racquet lever .

(a) Early on

Driving
Force:
Gravity

 F

Large force F
nearly parallel
to velocity v
so v increases
rapidly.
rb

m
v





(c) Trebuchet analogy with racquet swing

Preparation
Center-of-mass for semi-rigid
arm-racquet system  is "cocked."

Energy Input
Most of speed gained early
by arm-racquet system .

rb r b
Follow-Through
Arm-racquet system
 flies nearly freely.

Small applied forces
mostly for steering.

Ball hit occurs.

r b



Force F nearly
perpendicular
to velocity v
so v increases
very little. 70

60
50

4010

v =80 mph

0

F

Fig. 2.9.1 Example of elementary trebuchet dynamics and qualitative analogy with tennis racquet swing

 Another coach's mantra is, "Let the racquet (or driver) do the work!" Arm muscles should be 
practically rigid so as to do little work that helps or hinders the flight. Relatively loose shoulder muscles are 
like a trebuchet hinge between beam rb and lever  and should not to hinder (or help) -speed, either.
 In contrast, a "hacker" waits until the racquet head is near the delivery point (Fig. 2.9.1b) and has to 
apply a large torque, that is, a large perpendicular force-couple to a lower part of lever . At this late time a 
long racquet and arm-lever length  acts to one's disadvantage. Poor leverage reduces the acceleration at the 
delivery end as it is inversely proportional to . Also, the racquet-arm system, in a desperate attempt to 
quickly add energy, degenerates into a floppy multi-angle and low-leverage multi-torque system that is very 
difficult to control. Between the shoulder and the racquet there are (at least) four independent angles in 
wrist and elbow that involves an eight-dimensional phase space. This is a human control-system nightmare 
that provides a veritable gold-mine for orthopedic surgeons.
 It may help to study an anti-analogy to a trebuchet and a well-evolved tennis or golf swing. Before 
apes and man could throw (or play golf) there were plenty of animals (and microbes) that could swim with 
simple flagella, flippers, or flinging motions. So for a moment, let’s un-evolve back to our roots!
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Semi-quantitative comparison: trebuchet vs. flinger
 Consider now a device we will call the "flinger" which seems to (but really doesn't) track one's 
innate Aristotelian misconceptions about force and velocity. This device is an exact opposite of trebuchet in 
that it applies most of its force later rather than earlier and perpendicular rather than along a lever. To use 
sports analogy, this is like comparing a pass (flinger launch) to a slapshot (trebuchet launch) in hockey.
 One common way to make a flinger is to insert a pool queue-stick into a lubricated skateboard 
wheel which may slide down the tapered stick about a half way before being stopped by the thicker handle. 
Then the pool stick is cast like a fly-fishing rod so that the wheel flies off with enough speed to go quite a 
distance. (See Fig. 2.9.4b in the following section.)
 Many of us have, at one time or another, done something like this with an apple pierced by a stick. 
However, apples tend to stick to a stick more than the skateboard wheel does, and so the apple may also get 
an appreciable initial longitudinal force just like the trebuchet projectile. The wheel on the flinger, however, 
slides with negligible friction so it cannot take much advantage of trebuchet-like energy transfer. Rather 
flinging relies solely on orthogonal forces and torques that increase as the stick rotates; its physics is quite 
the opposite to that of the trebuchet. Also, flinging applies force later rather than earlier and may require 
large (arm wrenching) torque if the apple is a large one.
 A flinger simulation in Fig. 2.9.2 is set up like the trebuchet to be gravity-driven. The projectile 
energies achieved by the flinger are well below those of the trebuchet with similar mass and lever ratios. 
However, flinger proponents may object that such a gravity driven device unfairly penalizes flinging which, 
unlike trebuchet, puts off most of its work until the last moment when its beam is slowing down.

(a) Early on

F

F v

Not much
increase in
velocity v

(b) Later
on
Maximum
increase in
velocity v
just before
m slides off
end

Driving
Force:
Gravity

Fig. 2.9.2 Example of elementary "flinger" dynamics and qualitative analysis

To address these objections, let us imagine that either system is mounted on a main beam that turns 
with constant angular velocity ω as sketched in Fig. 2.9.3. Also, we will handicap the trebuchet by starting 
it out in a poorer half-cocked initial position as seen in Fig. 2.9.3a. This starting position is more like a 6-
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o'clock racquet-back-and-ready position often recommended for tennis. (Initially, the racquet handle butt 
points at the incoming ball and is drawn like a sword toward it.) Full-cocked 8-9 o'clock positions like Fig. 
2.9.3b were used by ancient warriors for maximum  trebuchet range and definitely desired for golf or 
baseball. These are calculated below, too.
 For a mass fixed in a rotating frame at radius r the radial outward centrifugal acceleration is ω2r. If 
the mass is moving with velocity v there is an additional Coriolis acceleration of ωxv, but since that is 
normal to the frictionless constraints of this problem, it can be ignored. Then the rotating frame speed can 
be calculated using an inverted quadratic effective potential, an “anti-oscillator” if you will. 

     
  
V centrifugal r( ) = − 1

2
mω 2r2      (2.9.1)

The potential is such that its gradient is the centrifugal force.

     
  
− dV centrifugal

dr
= mω 2r = F centrifugal     (2.9.2)

 It might seem at first that the flinger should win this comparison since radius r(t) for m will grow as 
a hyperbolic coshω t  function that is soon an exponential, while the trebuchet seems limited by its 
pendulum design. However, we will see the trebuchet is gaining speed at a similar rate, albeit from a 
starting radius R1 at the 6-o'clock position which has less potential, but the trebuchet finally redirects its 
mass toward the tangential direction so its velocity adds directly to the rotation in the inertial lab frame 
while the flinger only flings m along the rotating beam radius. 
     

rb-rb 

(a) Trebuchet in
rotating beam frame

(b) Flinger in
rotating beam frame

R1


ω ω
rb

Initial ( 6 o'clock position)

Initial FinalFinal

( 3 o'clock position)

Fig. 2.9.3 Comparing rotating frame dynamics of (a)  trebuchet  and  (b) flinger  for similar dimensions

Final beam-relative speed vbeam rel. is found using KE resulting from a difference of potentials (2.9.1) at 
final radius rf and initial radius r0. (Initial beam-relative velocity is assumed zero and gravity is ignored.)
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1
2

mvbeamrel.
2 = V r0( ) −V rf( ) = 1

2
mω 2rf

2 − 1
2

mω 2r0
2     (2.9.3)

The flinger initial radius is r0 = rb and the final radius is rf = rb + . 

  
   
1
2

mvbeamrel.
2 fling.( ) = 1

2
mω 2 rb + ( )2 − 1

2
mω 2rb

2 = 1
2

mω 2 2rb + ( )    (2.9.4)

The trebuchet final radius is the same but initial radius is:  r0 =R1 where: R12 = rb2 +  2 in Fig. 2.9.3a  

  
   
1
2

mvbeamrel.
2 treb.( ) = 1

2
mω 2 rb + ( )2 − 1

2
mω 2 rb

2 + 2( ) = 1
2

mω 2 2rb ( )   (2.9.5)

The inertial lab-relative final velocity for the flinger is a vector sum of the radial velocity 
   
ω  2rb + ( )  from 

(2.9.4) and the tangential velocity ω(rb +  ) due to the beam-frame rotation at the end point rf = rb + .

  

   

vlab rel. fling.( ) = vbeamrel.
2 fling.( ) +ω 2 rb + ( )2 = ω  2rb + ( ) + rb + ( )2

                       = ω 2 rb + ( )2 − rb
2

  (2.9.6)

The inertial lab-relative final velocity for the trebuchet is a simple sum of the tangential velocity 
   
ω 2rb  

from (2.9.5) and the tangential velocity ω(rb + ) due to beam-frame rotation at end point rf = rb + .

  

   

vlab rel. treb.( ) =
ω rb +  + 2rb( )  , for  half -cocked  6 o'clock  inital  position

ω rb +  + 2 rb( )  , for  full-cocked  9 o'clock  inital  position

⎧

⎨
⎪

⎩
⎪

 (2.9.7)

The second answer given above is for a fully cocked (9 o'clock) trebuchet that gains twice the effective 
potential drop of a half-cocked (6 o'clock) trebuchet if both release at 3 o'clock.
 Here are numerical comparisons, first with rb=2 and  =1 (long beam and short lever)

  
  
vlab rel. treb.( ) = 5.00ω  ,  half -cocked  

5.82ω  ,    full-cocked

⎧
⎨
⎪

⎩⎪
             vlab rel. fling.( ) = 3.74ω   (2.9.8a)

then with rb=1.5 and  =1.5 (medium lever and medium beam)

  
  
vlab rel. treb.( ) = 5.16ω  ,  half -cocked  

6.00ω  ,     full-cocked

⎧
⎨
⎪

⎩⎪
             vlab rel. fling.( ) = 3.96ω   (2.9.8b)

and finally, with rb=1 and  =2 (short beam and long lever)

  
  
vlab rel. treb.( ) = 5.00ω  ,  half -cocked  

5.82ω  ,    full-cocked

⎧
⎨
⎪

⎩⎪
             vlab rel. fling.( ) = 4.12ω   (2.9.8c)

The flinger starts to catch up with the trebuchet as the lever gets longer, but in the examples above, even a 
half-cocked trebuchet is clearly superior and is delivering 50% to nearly 100% more energy than a flinger. 
 Also, it should be noted that this ultra-simplified example of a trebuchet favors equal beam and 
lever lengths (rb= ), something that is generally borne out in more comprehensive numerical simulations. 
The flinger, on the other hand just wants a longer lever  that would entail excessive torque to keep the 
flinger moving even for a small projectile mass m. Some ancient trebuchets threw a four or five ton 
projectile. It is doubtful that anything could fling such a thing!
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 The approximate trebuchet analysis, ending with equations (2.9.7), also provide estimates for 
biomechanical energy transfer, specifically ancient pick-axing or wood-chopping, later rail spike driving or 
ringing the bell at the fair. As noted before in the tennis analogy, the secret is to pull as much as possible 
along the handle using an abdominal powered rotating torso. Shoulder muscle contraction helps, too, but 
generally should not be wasted applying forces transverse to the lever. Assuming the optimal ratio of torso 
length rb and lever  (rb=r= ), the expected final velocity (2.9.7) for the hammer head m should be 
approximately 4rω with energy 8mr2ω2. For a torso and lever length of r=2.5 feet and an average torso 
rotation rate of ω=5 radians/second gives a velocity of 50 feet/s. For an 8lb (or 1/4 slug) hammer head, the 
kinetic energy is 500 ft.lbs. that (disregarding friction) sends a 10lb ringer up to 50 ft. (Ringers are usually 
less than 5lbs, so this is a fairly conservative estimate.)

Experiments for comparing trebuchet vs. flinger
 Short of pick-axing or fair-bell-ringing, one may compete for distance using either a stick and string 
arrangement that resembles trebuchet mechanics (Fig. 2.9.4a) or a flinger arrangement (Fig. 2.9.4b). 
Casting a 1 meter fling stick with a slider m starting at 50 centimeters as shown in Fig. 2.9.4b provides an 
easy comparison to casting a 50 centimeter stick and hook holding a 50 centimeter string-pendulum made 
from the same mass m (a skateboard wheel) as sketched in Fig. 2.9.4a. Fig. 2.9.4 is a rough attempt at the 
comparison in Fig. 2.9.3.



rb 

(a) Trebuchet-like
experiment

(b) Flinger
experiment

rb

α

Fig. 2.9.4 Simple experiments for comparing dynamics of (a) trebuchet (b) flinger  for similar dimensions.

While good for hours of fun, these experiments can easily degenerate into some pretty sorry science. There 
are several reasons for this, all interesting in themselves. Most penalize the trebuchet model. 
 First, what is about to happen in Fig. 2.9.4 may not correspond to Fig. 2.9.3. One tends to throw the 
flinger rather than just rotating it. Due to unavoidable longitudinal "stiction" the flinger can gain some of 
the longitudinal advantage of trebuchet-like acceleration. In any case, it is hard to make sticks rotate with 
constant angular velocity unless attached to a machine. An initial jerk is necessary to start a launch.
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Second, humans are natural flingers (like most animals going back to primitive fish). Throwing or 
any sort of trebuchet-like dynamics requires skill and coaching to be optimal. One is likely to be more 
comfortable, at first, with the (Aristotelian) flinger unless one does fly-casting or some related activity.

Third, the curve and angle α of the release hook on the trebuchet-model stick is critical. Usually, 
α=0 gives the optimal range but small variations may be desired for different throwing styles. Release 
settings are the bane of trebuchets. Failure of Cortez's ingeniators to set the proper release angle is rumored 
to have resulted in the projectile going straight up and destroying the machine on its first shot! [1] With the 
device in Fig. 2.9.4a, it is quite easy to shoot yourself in the foot or more sensitive body parts. Cuidado!

Linear and parametric resonance: Trebuchets and twiddling
 There is another universal modern human activity called twiddling: swinging one's glasses, keys or 
a key ring during periods of contemplation or procrastination. Such motion is related to that of the 
trebuchet and to some other phenomena such as quantum waves that would seem, at first, totally unrelated.
 Suppose you are holding a small mass by a string attached to it as sketched in Fig. 2.9.5. This is 
similar to the trebuchet-model in Fig. 2.9.4a if length  could be assumed large compared to the motions. 
Wiggling the supporting end of the string may rapidly excite the hanging mass. How rapidly depends on 
frequency and direction, horizontal x or vertical y, of the wiggle. Horizontal wiggle would be the most 
natural for most and leads to ordinary (linear) resonance. However, as shown below, vertical wiggle may 
cause much more rapid excitation if done correctly and corresponds to parametric or nonlinear resonance 
which is described (for small angles) by an equation similar to the Schrodinger wave equation. [6]
 The equations of motion can be derived quite easily by applying the equivalence principle to the 
accelerating frame attached to the pendulum support or hook at the end of a trebuchet beam. According to 
this, it is only necessary to subtract the acceleration vector a of an oscillating frame from the usual vertical 

gravity acceleration vector g to obtain the effective gravity   g
eff  experienced by the pendulum.

    
   

geff = g − a(t) = 0
−g

⎛

⎝
⎜

⎞

⎠
⎟ −

ax (t)

ay (t)

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

    (2.9.9)

 If the support is oscillating in the horizontal direction according to X0(t)=Axcos(ωx t+αx) and in the 
vertical direction according to Y0(t)=Aycos(ωy t+αy), then the acceleration vector is

   

    

a(t) =
ax (t)

ay (t)

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

X 0

Y 0

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
=

−ω x
2 Ax cos(ω xt +α x )

−ω y
2 Ay cos(ω yt +α y )

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

,   (2.9.10)

for arbitrary constant amplitudes Ax, Ay, and phases αx, and αy. This gives the effective gravity vector.

   

   

geff (t) =
gx

eff (t)

gy
eff (t)

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟
=

ω x
2 Ax cos(ω xt +α x )

−g +ω y
2 Ay cos(ω yt +α y )

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

   (2.9.11)

The general jerked-pendulum equation of motion in such a   g
eff  field is the following.
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X

Y

X-stimulated pendulum:
(Linear Resonance)

X

Y

Y-stimulated pendulum:
(Non-Linear Resonance)

φφ



 Fig. 2.9.5 Two (very different) types of accelerated pendulum resonance.

    
   

d2φ
dt2

−
gx

eff


cosφ −

gy
eff


sinφ = 0      (2.9.12a)

For small angles (cos φ~1 and sin φ~φ ) this reduces to 

    
   

d2φ
dt2

−
gy

eff


φ =

gx
eff


.      (2.9.12b)

Two cases indicated in Fig. 2.9.5 are X-force: Ax>0, Ay=0 with phase αx = α for linear resonance

    
   

d2φ
dt2

+ g

φ =

ω x
2 Ax


cos(ω xt +α ) ,     (2.9.12c)

or Y-force parametric resonance: Ax=0, Ay>0 with αy = π so Y(t) accelerates upward from vy (0) = 0 at t=0. 

    
   

d2φ
dt2

+ g

+
ω y

2 Ay


cos(ω yt)

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
φ = 0      (2.9.12d)

The latter is like a Schrodinger wave equation. (With a cosine potential it is a Mathieu equation.[6])

Most physicists know of these equations as functions of spatial dimension x.

    
  

d2φ
dx2

+ E −V (x)( )φ = 0 ,  where: V (x) = −V0 cos(nx)    (2.9.12e)

Here time t replaces coordinate x as the independent variable, and y-effective gravity -ay(t)/ replaces 

potential V(x).  This equation is known for having Gaussian super-exponential e±ax
2

(or in our casee±at
2

) 
asymptotic solutions. So the trebuchet is capable of even faster acceleration than the flinger’s impressive 
exponential growth.  It is also more likely to undergo chaotic behavior.

The linear harmonic resonance turns out to grow only linearly, but it is the most common resonance 
mechanism in terms of the mechanics of our human visual, audio, and vocal systems Both these examples 
of resonance have detailed treatments in the Unit 4 devoted to waves and resonance. There we will take up 
the more complicated and powerful parametric resonance.
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Hamiltonian gravity-free trebuchet kinematics
What about a trebuchet in space? Galileo’s generals would certainly laugh that idea out of the Vatican! But 
if a rocket blast could impart beam momentum, then throwing ability would be recovered. And, this time 
the Hamiltonian problem has analytic solutions. The trebuchet Hamiltonian for zero gravitational potential 
(g=0=V) is a function only of the beam-relative angle  φB = φ  − θ  − π/2. A coordinate transformation 
based on Fig. 2.9.6 takes advantage of this.
 φB = φ  − θ  − π/2  (2.9.13a)   φ = φB + θB  + π    (2.9.13c)
 θB = θ  + π/2   (2.9.13b)   θ = θB - π/2   (2.9.13d)
The velocities (for a Lagrangians) and momenta (for our Hamiltonian) are transformed by Jacobians.
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    (2.9.14a)
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    (2.9.14b)

Transformation of momenta pk is transpose-inverse to that of   q
k  so Poincare's invariant (2.6.9) is!

  
pθ
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pφ
B
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⎝
⎜
⎜
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⎟
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⎟
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⎛

⎝
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⎠
⎟
⎟

    (2.9.15a)         
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    (2.9.15b)

(p•v must be invariant to coordinate transformation.) The transformed Hamiltonian is found by writing qk 
in terms of qmB using (2.9.13c-d) and pk in terms of pmB using (2.9.15b) and substituting into (2.6.9d).
            (2.9.16)

   

H =
m2 pθ

B − pφ
B( )2

+ MR2 + mr2( ) pφ
B( )2

− 2mrpφ
B pθ

B − pφ
B( ) sinφB

m2 MR2 + mr2 cos2 φB
⎡
⎣

⎤
⎦

− g MR − mr( ) sinθB  − gmcos φB +θB( ) 

When gravity is zero, the θB-angular momentum is constant (pθB = Λ=const.) according to (2.6.16). This 
combined with energy conservation (2.6.15) gives the following for the (g=0) case. 

 

   

H =
m2 Λ − pφ

B( )2
+ MR2 + mr2( ) pφ

B( )2
− 2mrpφ

B Λ − pφ
B( ) sinφB

m2 MR2 + mr2 cos2 φB
⎡
⎣

⎤
⎦

= E = const.  (2.9.17)

This quadratic equation relates φB-angular momentum pφB to angle φB and constants Λ and E.
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Fig. 2.9.6 Lab (θ,φ) and beam-normal (θB,φB) relative coordinates for trebuchet. (Each value is positive.)

   
m2 + 2mr sinφB + I( ) pφ

B( )2 + 2Λ mr sinφB − m2( ) pφ
B = Em2 MR2 + mr2 cos2 φB

⎡
⎣

⎤
⎦ − m2Λ2  (2.9.18a)

 
   

1− 2 r


sinφB + J
⎛
⎝⎜

⎞
⎠⎟

pφ
B( )2 + 2Λ r


sinφB −1

⎛
⎝⎜

⎞
⎠⎟

pφ
B + Λ2 − E I − mr2 sin2 φB

⎡
⎣

⎤
⎦ = 0   (2.9.18b)

The total effective moment of inertia I of the main beam (if m were stuck on the hook end) is defined by

       I = MR2 + mr2 = Jm2 .      (2.9.18c)

Coordinate kinetics in gravity-free (g=0) case
If one is seeking kinetic quantities, that is, final velocities, it helps to rewrite conserved momenta pθB = Λ 
and energy H=E=T (for g=0) in terms of desired angular velocities (  θ , φ ) using  (2.4.2) and (2.9.15a).

  
   

Λ = pθ
B = pθ + pφ = I θ + mr φ sinφB( ) + m2 φ + mr θ sinφB( )

2E = I θ2 + 2mr φ θ sinφB + m2 φ2
   (2.9.19a)

For sake of simplicity, we consider the trebuchet for which beam and rope are equal length (r=).

  

   

Λ = MR2 θ + mr2 1+ sinφB( ) θ + φ( )
2E = MR2 θ2 + mr2 θ2 + 2 φ θ sinφB + φ2  ( )

⎫

⎬
⎪

⎭
⎪

 (For:  r = )     (2.9.19b)

©2012 W. G. Harter Chapter 8 Charged particle in electromagnetic fields  64



       

9 o'clock

Starting point

3 o'clock

Optimum release point

6 o'clock

Maximum KE of m

Mid point

(c) φ
B

+π/2

(b) φ
B

0(a) φ
B

−π/2

	

 Fig. 2.9.7 Extreme beam-relative coordinate positions for trebuchet throwing sequence.

We evaluate (2.9.19) at three relative positions 9 o'clock (φB=-π/2), 6 o'clock (φB=0), and 3 o'clock (φB=π/2) 
shown by Fig. 2.9.7a-c. Since total angular momentum Λ and energy E remain constant at all three 
positions and independent of φB and θB, the differing velocities (  

φπ /2, θπ /2 ), (  
φ0, θ0 ), or (  

φ−π /2, θ−π /2 ) at 

the different positions are easily related to each other.
If the rope or lever- is tucked in along the main beam at 9 o'clock then φB=-π/2 so (2.9.19b) reduces to 

 

   

φB = −π
2

:
Λ = MR2 θ−π / 2

2E = MR2 θ−π / 2
2 + mr2 φ−π / 2 − θ−π / 2( )2

⎧

⎨
⎪

⎩
⎪

    or : Λ = MR2ω
2E = MR2ω 2

⎧
⎨
⎪

⎩⎪
  For: ω = θ−π / 2 = φ−π / 2   (2.9.20a)

We will assume φB=-π/2 is the initial position where both angles have the same initial velocity ω. If the 
rope or lever- is normal to the main beam (at 6 o'clock in Fig. 2.9.7b) then φB=0 so (2.9.19b) reduces. 

    

   

φB = 0 :
Λ = MR2 θ0 + mr2 φ0 + θ0( )

2E = MR2 θ0
2 + mr2 φ0

2 + θ0
2( )

⎧

⎨
⎪

⎩
⎪

        (2.9.20b)

If the rope or lever- is stretched out along the main beam at 3 o'clock then φB=π/2 so (2.9.19b) reduces. 

   

   

φB = π / 2 :
Λ = MR2 θπ / 2 + 2mr2 φπ / 2 + θπ / 2( )
2E = MR2 θπ / 2

2 + mr2 φπ / 2 + θπ / 2( )2
⎧

⎨
⎪

⎩
⎪

       (2.9.20c)

We take 9 o'clock (φB=π/2) to be a launch position that, presumably, would provide the greatest velocity for 
the projectile m. According to (2.2.13) and (2.3.9) mass m has the following KE and speed v.

  

 

KE(m) = 1
2
mr2 φ2 + θ2 + 2 φ θ sinφB( ) =

1
2
mr2 φ − θ( )2     For: φB = −

π
2

⎛
⎝⎜

⎞
⎠⎟

1
2
mr2 φ2 + θ2( )     For: φB = 0( )

1
2
mr2 φ + θ( )2     For: φB =

π
2

⎛
⎝⎜

⎞
⎠⎟

⎧

⎨

⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪

            (2.9.21a)

Final projectile speed is

      
  
v = 2KE(m)

m
.      (2.9.21b)

Equating final (Λ,E) in (2.9.20c) to initial (Λ,E) in (2.9.20a) gives easily solved equations.
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ω − θπ / 2 = 2mr2

MR2
φπ / 2 + θπ / 2( )        (2.9.22a)

    
   
ω 2 − θπ / 2

2 = mr2

MR2
φπ / 2 + θπ / 2( )2        (2.9.22b)

Dividing (2.9.22b) by (2.9.22a) gives a linear relation.

   
  
ω + θπ / 2 = 1

2
φπ / 2 + θπ / 2( )    or:  φπ / 2 = θπ / 2 + 2ω       (2.9.22c)

If the main beam is massive compared to the projectile (M>>m), then its angular velocity may remain 
fairly constant, so its initial velocity   

θ−π / 2 ≡ ω  is not significantly greater than the final velocity   
θπ / 2 ≅ ω . 

Then by (2.9.22c) projectile lever or rope  has final angular velocity 3 times that of the beam:    
φπ / 2 ≅ 3ω .

 Substituting this approximation into the KE and speed formula (2.9.21) for φB=π/2 gives a kinetic 
energy that is sixteen times that of a mass on the end of the r-beam where m rides on a simple catapult.

  
   
KE(m) = 1

2
mr2 φπ / 2 + θπ / 2( )2 ≅ 1

2
mr2 4ω( )2 = 16 mr2ω 2

2
     (2.9.23a)

This amounts to a projectile velocity (2.9.21b) that approaches four times the speed of the beam tip.

    
  
v final =

2KE(m)
m

≅ 4ω r        (2.9.23b)

This is consistent with the result v=
   
ω rb +  + 2 rb( )  in (2.9.7) for a constant-ω model with rb=  in the case 

for which it starts full-cocked in a 9 o'clock initial position and releases at 3 o'clock.
 However, this model tells what angular velocity the beam loses. Substituting   

φπ / 2  from (2.9.22c) 

into (2.9.22a) shows that the final beam angular velocity   
θ−π / 2  can be reduced to zero or negative values.

   

   

ω − θπ / 2 = 2mr2

MR2
2ω + 2 θπ / 2( )         or:      θπ / 2 =

1− 4mr2

MR2

1+ 4mr2

MR2

ω     (2.9.24)

The case MR2=4mr2 is interesting because the beam is stopped completely while giving 100% of its energy 
to the projectile. With   

θπ / 2 ≅ 0  the projectile angular velocity ends up 2 times that of the initial beam 

angular velocity (   
φπ / 2 ≅ 2ω  according to (2.9.22c)) instead of 3 times which is the limit for small m.

 These results are reminiscent of those for a super-ball-pen or tower described in Unit 1 and in ref. 
[7]. In those experiments, a superball of mass M descends to the floor with a smaller object m riding on top. 
If the rider is of negligible mass m compared to M, it is bounces skyward at three times the initial contact 
velocity. (Recall Fig. 1.2.5) But if mass m is just large enough (that is m=M/3) to stop M and take all its 
energy, then it is thrown skyward at just twice the initial velocity. Both these analyses neglect gravity.
 Relating the simple gravity-free kinetic theory above to a gravity driven trebuchet is problematic, to 
say the least. One is left to devise a number of estimation schemes. For example, the initial beam angular 

velocity ω could be derived from the average velocity 
 
θ  of a gravity driven beam with projectile m fixed 

at some average position, say at the 6 o'clock position. For m/M<<1 this can be (over)estimated to be the 
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average angular velocity of a pendulum of length R falling angle π/2 from the 9 o'clock initial position in 
Galileo's approximation. 

     
   
ω = θ ~ g

R
      (2.9.25)

 The reproductions of 13th-century trebuchets in Ref. [2] were based on drawings from ingeniums 
used in the 1215 Siege of Kenilworth. The modern-day ingeniators used twelve to thirteen thousand pounds 
of lead and sand to throw a 250 pound stone ball, that is, M/m~50. Had they used the criterion MR2=4mr2 
for 100%-energy transfer from (2.9.24) their trebuchet would have a ratio r/R = √50/2=3.5 of the throwing 
beam to driving beam radii. Instead, the drawings show that  ~r~42 ft. is about 3.7 times the driving radius 
R of the sand box M. Using (2.9.22) to (2.9.25) with 100% energy transfer assumption we find the 
following approximate launch velocity.

   
  
v final ≅ 2ω r = 2 g

R
r = 2 32

42 / 3.5
42 = 137 ft / sec.= 94 mph   (2.9.26)

As one might expect, this 100% estimate is below the 100 to 120 mph. velocities achieved in Ref. [2]. By 
assuming the correct ratio of radii in using (2.9.22) to (2.9.25), one can bring the estimate closer.

Advanced trebuchet mechanics
 Accurate theoretical simulation or prediction of trebuchet launches such as those described in Ref. 
[2] generally requires analytical and numerical techniques such as those described in Sec. 2.10. For one 
thing, Ref. [2] described a trebuchet with wheels that moved forward and thereby added translation velocity 
to the projectile. This involves a translation degree of freedom x and carriage mass µ as shown in Fig. 2.9.8. 
Each degree of freedom makes analytical solutions more difficult and numerical simulation more necessary.

As long as numerical techniques are used, one may as well improve the stick-and-ball pendulum 
models so they account for the compound pendulums whose radii of gyration are generally smaller than the 
geometric radii. The discrepancy between inertial and geometric radii is most obvious in discussions of the 
analogy with tennis racquet dynamics involving Fig. 2.9.1c, but most trebuchets could use this correction, 
as well. 

Last but not least, most trebuchets have their big mass M hanging as a pendulum, too, just like the 
little mass m that is the projectile. This lends at least one more degree of freedom. So sorry, Galileo! This is 
one tough problem.
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 Fig. 2.9.8 Trebuchet with translation uncoil and recoil allowed.

 Modern materials and analysis also open the possibility of serial-segment trebuchets such as the 
triple segmented device sketched in a simulation shown by Fig. 2.9.9. A trebuchet with more than two 
moving parts is easily capable of exceeding the upper limit of    

φ−π / 2 ≅ 3ω  and vfinal=4ωr that limits two-

part machines. In Sec. 1.8 of Unit 1 it was shown how superball towers with n=3, 4, 5,... parts can, in 
principle, achieve very high velocity. 
 A multi-segment trebuchet is analogous to a baseball pitch and a tennis serve, the latter of which is 
achieving extraordinary velocities in world-class play. More simply, the multi-segment trebuchet is like a 
(sometimes dangerous) "crack-the-whip" game played by a chain of children on skates. More to the point, 
such a device could be modeled after a bullwhip. 
 One wonders, "Could a gravity driven multi-trebuchet actually throw a massive object faster than 
the speed of sound?" Certainly a spring, motor or hand driven device can exceed 700 mph. For centuries it 
was done daily using bullwhips on Southern and Latin American cattle ranches. (It is said that semi-tropical 
cowhands were called "Crackers" for this reason.) But, getting such kinetic energy solely from a large mass 
potential Mgh would require some extraordinary physics and engineering. The PE of M=50 kg mass raised 
1 m equals the KE of a m=1 gm mass traveling v=1km/sec. or 2,215 mph or about Mach 3, according to a 
simple energy equation.

   
  
v final =

2Mgh
m

= 2 ⋅50kg ⋅10ms−2 ⋅1m
10−3kg

= 103ms−1 .   (2.9.27)

This is reduced to Mach 1 for a 1 gm mass powered by a 5.5 kg mass or a 0.18 gm mass powered by a 1kg 
weight. The latter begins to sound practical, but it assumes that 100% transfer is possible for each trebuchet 
segment. However, it remains to be seen if the 2-segment analysis leading to (2.9.22) through (2.9.24) may 
be applicable to a multi-segmented device.
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(a)

(b)

Fig. 2.9.9 Non-optimized example of simulated 3-stage trebuchet dynamics.
                      (a) Inital position state.  (b) Just after launch.

 Instead, a better model for a multi-segment device may be that of a bull-whip wave traveling from 
the heavier end toward the lighter segments and gradually increasing velocity at each joint. Again, this is 
very similar to the dynamics of the superball tower analyzed in Ref. [7]. Under the right conditions the 
independent 2-particle collision model was applicable to N-superball amplification. Such multi-stage 
dynamics have a relativistic version in stellar models of super-novae and the resulting kinetic transfer is 
called super-elastic-bounce.[8] 
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 Such a complex and high speed system is likely to require numerical simulation to accompany its 
construction and engineering. Optimal control theory techniques (See Unit 7) should help find the best 
designs and initial settings. A student using a computer can try more different settings in five minutes than 
all the ingeniators of the world did in five centuries! High speed digital video tracking of real lab devices 
can be used to calibrate and check the numerical simulations each time another segment is added to the 
device. Bending of segments may also be important as it certainly was for the great thirty-ton wooden 
trebuchets of the 11-th century.
 Each increase in speed will bring even larger increases in frictional loss of energy. Friction can only 
be modeled semi-emperically so the video input coupled with numerical computer graphical techniques 
will become more essential as the device gains complexity. (Perhaps the whole experiment could be done in 
a vacuum, but what fun would it be, if you can't hear the "Crack!")

References
1. Paul E. Chevedden, Les Eigenbrod, Vernard Foley, and Werner Soedel, "The Trebuchet", 
	

 Scientific American  273, 66-71 (July 1995).
2. Evan Hadingham and Patrick Ward, "Ready, Aim, Fire!", Smithsonian (January 2000) p. 80.
3. Ref. 1 p.69.
4. Literature search beyond the above references reveals a number of exercises in computer synthesis of the 
trebuchet, but practically no physical analysis. It is this imbalance that we seek to begin correcting. The 
ingenium was invented by engineers. (Or, they were invented by it.) Physicists seem quite late coming to 
this party.
5. William G. Harter, Quantum Theory for the Computer Age (U of A Course 5301 Text (Unpublished)).
6. Jon Mathews and R. L. Walker, Mathematical Methods for Physics (Benjamin, NewYork, 1964) p. 189; 
The mechanical analogy is discussed extensively in Ref.5 .
7. Class of W. G. Harter, "Velocity Amplification in Collision Experiments Involving Superballs," 
Am. J. Phys. 39, 656 (1971) (A class project which received NBC news coverage).
8. S. E. Wollsley, and M. M. Phillips, "Super-Nova 1987A!" Science  240, 750 (May 1988).

©2012 W. G. Harter Chapter 8 Charged particle in electromagnetic fields  70



Unit 1.1 Problems 

Exercise
3.1.1 

Unit 1 Review Topics and Formulas 
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