Controlled Phenotyping Method Study and Genotyping a TIL Population

Yulin Jia and Shannon Pinson

Coordinated Agricultural Project RiceCAP

• Objective #1.3.2 and 1.3.9
 – Development of a sheath blight greenhouse screening method
 – Development of a population /genetic analysis SB4, Teqing-into-Lemont introgression lines (TILs)

Goals: USDA-ARS, DB NRRC, Stuttgart
 – Coordinate the evaluation of existing sheath blight screening methods
 – Lead the genotyping of TIL population
RiceCAP

- Experimental approach (cont.)
 1) Evaluate the existing sheath blight screening methods-Soft drink bottle, mist chamber and detached leaf

Update:
- Detached leaf and mist chamber are in progress
- Coke bottle-completed two independent experiments

<table>
<thead>
<tr>
<th>Variety</th>
<th>RR0140</th>
<th>Rank</th>
<th>RR0321</th>
<th>Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>#3</td>
<td>41.8</td>
<td>1</td>
<td>66.1</td>
<td>1</td>
</tr>
<tr>
<td>Jasm. 85</td>
<td>42.7</td>
<td>2</td>
<td>69.4</td>
<td>2</td>
</tr>
<tr>
<td>#4</td>
<td>55.6</td>
<td>3</td>
<td>82.0</td>
<td>3</td>
</tr>
<tr>
<td>#5</td>
<td>58.2</td>
<td>4</td>
<td>80.5</td>
<td>4</td>
</tr>
<tr>
<td>#1</td>
<td>58.4</td>
<td>5</td>
<td>80.7</td>
<td>5</td>
</tr>
<tr>
<td>#2</td>
<td>86.2</td>
<td>6</td>
<td>88.2</td>
<td>6</td>
</tr>
<tr>
<td>Lemont</td>
<td>91.8</td>
<td>7</td>
<td>93.8</td>
<td>7</td>
</tr>
</tbody>
</table>

RR0140 (slow growing) = mean of two expt.
RR0321(fast growing)= one expt.
Teqing-into-Lemont Introgression lines = SB4

Overview: TILs look good, in general. Phenotypically MUCH less variable the L/T RILs Lemont genetic background is quite evident

BUT NOT PERFECT
Discovery of the Problem (Shannon Pinson): 50% Teqing allele were detected in 2 of 11 markers….
• One SSR in Chromosome 1 and one SSR in chromosome 2
• Some TIL lines are still segregating phenotypically in 2004

Genotyping 57 BC3F2 Introgression Lines
Unique QTL for sheath blight resistance, independent of height and flowering loci found using Lemont/Teqing (SB4) wide cross

Range and Avg SB ratings 2004 in LA, BmtTX and AlvnTX

note: avg HD of R and S were both = 98 Dy to HD, ht avgs were different with R > S even so, some “good height” TILs with >R than LMNT were found

TIL: 541	79 cm
TIL: 615	93 cm
TIL: 642	95 cm
TIL: 468	95 cm
TIL: 455	95 cm
LMNT	94 cm
SABR	95 cm
EARL	not semidwarf
KBNT	not semidwarf
TQNG	111 cm
Avg and Range of SB ratings 2004 in LA, BmtTX and AlvnTX

LMNT SABR EARL KBNT TQNG

1 2 3 4 5 6 7 8 9

SBR QTL LOD peak +/− 1 LOD

Chromosomes: Chr 1 Chr 3 Chr 4 Chr 7 Chr 8 Chr 12

Gaps easily filled by running more markers
Monomorphic regions needing ‘new markers’
Bob’s parental-line work has dev’d some!
RiceCAP

• Experimental approach (cont.)
 2) Genotyping the TIL population
 – Genotype background of 96 key lines with total of 150 markers – to ID “best, cleanest parents” for fine-mapping work.

Update, 93 key lines were selected by Dr. Pinson
 – Genotyped 133 SSR (115AR, 18 in TX), 33 monomorphic
 – 15 Key lines were identified to contain 1 to 4 of 18 known QTLs

Project Contribution and Integration

• Identified greenhouse phenotyping method would accelerate breeding, mapping populations, mutants and functional genomics of overall objectives

• The SSR data would confirm previously reported SBR-QTLs
• Facilitate the clean up of the TIL population for fine mapping-SBR-genes

• High density of SSR markers will allow the development of TILs to be a functional genetic tool, an important goal of CAP
First Year Benchmarks

– Complete the evaluation of sheath blight screening methods- Still going
– Complete the genotyping Key TILs for identifying the top 20 TIL lines for backcrossing- Done

Personnel Involved

• Yulin Jia and Shannon Pinson: USDA-ARS
 – UA two hourly employees and a Postdoc associate (two months of Lieceng Zhu’s time)

• USDA ARS DB NRRC One technician from Molecular Plant Pathology Group and one supporting staff scientist (15% of Melissa Jia’s time)
Plan of work for Year 2

• Continue the coordinated sheath blight greenhouse screening method study
• Lead genotyping the rest of TILs (170 lines)
• Map the identified candidates genes from Jasmine 85 by SAGE and Microarray using RIL population of Lemont and Jasmine 85 that is under development and also using improved TIL population